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Abstract

We introduce a framework for feature selection based onrmigrece maximization between the
selected features and the labels of an estimation problsimg the Hilbert-Schmidt Independence
Criterion. The key idea is that good features should be figbbendent on the labels. Our ap-
proach leads to a greedy procedure for feature selectiorshde that a number of existing feature
selectors are special cases of this framework. Experinmntsoth arti cial and real-world data
show that our feature selector works well in practice.

Keywords: kernel methods, feature selection, independence measilivert-Schmidt indepen-
dence criterion, Hilbert space embedding of distribution

1. Introduction

used for a number of tasks, such as novelty detection, low-dimensigmabentation, or a range of
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our disposition. Tasks include ranking, classi cation, regressioneguence annotation. While not
always true in practice, we assume in the following that the HaaadY are drawn independently
and identically distributed (i.i.d.) from some underlying distributiof®y).

We often want to reduce the dimension of the data (the number of featwefesg lthe actual
learning (Guyon and Elisseeff, 2003); a larger number of featurebeassociated with higher data
collection cost, more dif culty in model interpretation, higher computationat émsthe classi er,
andsometimeslecreased generalization ability. In other words, there often exist rsativagldition
to nding a well performing estimator. It is therefore important to select anrimftive feature
subset.

The problem of supervised feature selection can be cast as a comiaihapdimization prob-
lem. We have a full set of features, denoted®feach element i corresponds to one dimension
of the data). It is our aim to select a subdet S such that this subset retains the relevant infor-
mation contained iXX. Suppose the relevance of a feature subset (to the outcome) is quanyi ed
Q(T), and is computed by restricting the data to the dimensioris.ifreature selection can then
be formulated as

To= argp%xQ(T) subjecttgTj t; 1)

wherej j computes the cardinality of a set an an upper bound on the number of selected fea-
tures. Two important aspects of problem (1) are the choice of the crit€{dn and the selection
algorithm.

1.1 Criteria for Feature Selection

A number of quality functional€(T) are potential candidates for feature selection. For instance,
we could use a mutual information-related quantity or a Hilbert Space-lessiedhtor. In any case,
the choice ofQ(T) should respect the underlying task. In the case of supervised leatinéngoal

is to estimate a functional dependerfc&om training data such thdt predicts well on test data.
Therefore, a good feature selection criterion should satisfy two conglition

I: Q(T) is capable of detecting desired (linear or nonlinear) functional depeedeetween the
data and the labels.

II: Q(T) is concentrated with respect to the underlying measure. This guarantekigh
probability that detected functional dependence is preserved in test data

While many feature selection criteria have been explored, not all of thesrthake two conditions
explicitly into account. Examples of criteria that satisfy both conditions includdeive-one-out
error bound of SVM (Weston et al., 2000) and the mutual information &&@ifand Hutter, 2002).
Although the latter has good theoretical justi cation, it requires density estimatibich is prob-

lematic for high dimensional and continuous variables. We sidestep thdslempsoby employing
the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 200Bike the mutual in-

formation, HSIC is a nonparametric dependence measure, which takesootoné all modes of
dependence between the variables (not just linear correlation). Ulike popular mutual infor-
mation estimates, however, HSIC does not require density estimation as aneidiate step, being
based on the covariance between variables mapped to reproducimg IKébert spaces (RKHS).
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HSIC has good uniform convergence guarantees, and an unbiapédcal estimate. As we show
in Section 2, HSIC satis es conditions | and Il required €Q¢T).

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2008)ess the criterion is
easily decomposable or has properties which make approximate optimizatien asexample,
submodularity (Nemhauser et al., 1978; Guestrin et al., 2005). Manyithlignsrtransform (1) into
a continuous problem by introducing weights on the dimensions (Weston 20@0; Bradley and
Mangasarian, 1998; Weston et al., 2003; Neal, 1998). These methddsp well for linearly sep-
arable problems. For nonlinear problems, however, the optimisation usegiyries non-convex
and a local optimum does not necessarily provide good features. yzappdoaches, such as for-
ward selection and backward elimination, are often used to tackle problediréttly. Forward
selection tries to incread@(T) as much as possible for each inclusion of features, and backward
elimination tries to achieve this for each deletion of features (Guyon et al2)2@0though for-
ward selection is computationally more ef cient, backward elimination providdtebfeatures in
general since the features are assessed within the context of all ptheent. See Section 7 for
experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employe@dture selection
using either a weighting scheme, forward selection or backward seleatiemen a mix of several
strategies. While the main focus of this paper is on the backward eliminationgsirate also
discuss the other selection strategies. As we shall see, several spegiaes of kernel function
will lead to well known feature selection and feature rating methods. Notedoitvard elimination
using HSIC (BAHSIC) is a Iter method for feature selection. It selectduess independent of a
particular classi er. Such decoupling not only facilitates subsequexttife interpretation but also
speeds up the computation over wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regpasproblems.
Most other feature selection methods are only formulated either for bitesgication or regres-
sion. Multiclass extensions of these methods are usually achieved usiegve@us-the-rest strat-
egy. Still fewer methods handle classi cation and regression cases sathe time. BAHSIC, on
the other hand, accommodates all these caseunsupervised feature selection in a principled
way: by choosing different kernels, BAHSIC not only subsumes maistieg methods as special
cases, but also allows us to de ne new feature selectors. This versatiitieiso the generality of
HSIC. The current work is built on earlier presentations by Song e2@01b,a). Compared with
this earlier work, the present study contains more detailed proofs of thetherems, proofs of
secondary theorems omitted due to space constraints, and a number ohadlditigeriments.

Our paper is structured as follows. In Section 2, we introduce the Hilldma@it Indepen-
dence criterion. We provide both biased and unbiased empirical estimaitesll as more ef cient
approximate empirical estimates. In addition, we prove the empirical estimatergesvin prob-
ability, and provide its asymptotic distribution. Section 3 contains a brief deseripf notation
for the remainder of the paper. Section 4 presents our two feature selatgimrithms, based re-
spectively on forward selection and backwards elimination. Section gmiea number of variants
of BAHSIC obtained via different kernel choices, with a focus on usirgappropriate kernel for
the underlying task (e.g., two-class classi cation, multiclass classi cationregkssion). Section
6 gives an overview of a variety of feature selection approacheshvdaioc be shown to employ
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particular variants of HSIC as their feature relevance criterion. Finadlgii@s 7—9 contain our ex-
periments, where we apply HSIC to a number of domains, including realréiraileh benchmarks,
brain computer interface data, and microarray data.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and themalgent® the de-
tection of more general kinds of dependence. Consider spceR? andY R!, on which we
jointly sample observatior(; y) from a distribution Pfx;y). Denote byG,, the covariance matrix

h i h i
Coy= By xy  ExIXEy Yy ; (2)

which contains all second order dependence between the randorblesria statistic that ef -
ciently summarizes the degreelofear correlationbetweerx andy is the Frobenius norm dE,y.
Given the singular valuesi of Gy the norm is de ned as

kGokEron = é. sf=trGyCy:
|

This quantity is zero if and only if there exists hioear dependencbetweerx andy. This statistic

is limited in several respects, however, of which we mention two: rst, ddpeoe can exist in
forms other than that detectable via covariance (and even when a saandelation exists, the
full extent of the dependence betweemandy may only be apparent when nonlinear effects are
included). Second, the restriction to subsetR6fexcludes many interesting kinds of variables,
such as strings and class labels. In the next section, we generalizetibie obcovariance to
nonlinear relationships, and to a wider range of data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In generalX andY will be two domains from which we draw samplesy): these may be real val-
ued, vector valued, class labels, strings (Lodhi et al., 2002), gf&irter et al., 2003), dynamical
systems (Vishwanathan et al., 2007), parse trees (Collins and Dufiyl,) 20nages (Sabikopf,
1997), and any other domain on which kernels can be de ned. Se@kegh et al. (2004) and
Schdlkopf and Smola (2002) for further references.

We de ne a (possibly nonlinear) mappirig: X! F from eachx 2 X to a feature spack
(and an analogous map: Y ! G wherever needed). In this case we may write the inner product
between the features via the positive de nite kernel functions

k(xx9 = £(;f (9 andi(yy):= yy),yo) :

The kernelsk and| are associated uniquely with respective reproducing kernel Hilbaces-
andG (although the feature mapsandy may not be unique). For instance Xf= RY, then this
could be as simple as a set of polynomials of order up o the components of, with kernel
k(x;x9 = ( hx;x3 + a)°. Other kernels, like the Gaussian RBF kernel correspond to in nitelyelarg
feature spaces. We need never evaluate these feature repressmgpiiitly, however.
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We may now de ne a cross-covariance operatoetween these feature maps, in accordance
with Baker (1973) and Fukumizu et al. (2004): this is a linear opefGiprG 7! F such that

Gy:= Exyl(f(® ) (Y(y) W] wherep,= E4f (X)] anduy = Eyly (Y)]:

Here denotes the tensor product. We need to extend the notion of a Frobeniusmaoperators.
This leads us to the Hilbert-Schmidt norm, which is given by the traéé)@?y. For operators with
discrete spectrum this amounts to computing theorm of the singular values. We use the square of
the Hilbert-Schmidt norm of the cross-covariance operator (H¥G)kZs as our feature selection
criterionQ(T). Gretton et al. (2005a) show that HSIC can be expressed in termsrafl&ers

HSIC(F ; G; I;yr) := kGyKas (3)
= Exotyy KOG (1 Y91+ Exotl KOG Eyyell (Y] 2B [Exdlk(x X Eyell (v; yOII:

This allows us to compute a measure of dependence betxnaashy simply by taking expectations
over a set of kernel functiorisand| with respect to the joint and marginal distributionsxiandy
withoutthe need to perform density estimation (as may be needed for entropyrhatiests).

2.2 Estimating the Hilbert-Schmidt Independence Criterion

the joint distribution Pg. We denote byE; the expectation with respegt as drawn from Ry,

Moreover,K;L 2 R™ ™ are kernel matrices containing entriég = k(x;;X;) andLij = I(yi;yj).
Finally, H=1 m 1112 R™ Mis a centering matrix which projects onto the space orthogonal to
the vectorl.

Gretton et al. (2005a) derive estimators of HFFGCG; Pr,,) which haveO(m 1) biasand they
show that this estimator is well concentrated by means of appropriate tailbokiar completeness
we brie y restate this estimator and its properties below.

Theorem 1 (Biased estimator oHSIC Gretton et al., 2005a) The estimator
HSIC)(F:G;Z) :=(m 1) 2trKHLH (4)
has bias @m 1), that is,HSIC(F ; G;Pr,) Ez[HSICo(F;G;2)]= O(m 1).

This bias arises from the self-interaction terms which are present in ¢;18iét is, we still have
O(m) terms of the formK;j;L;j andKjL,; present in the sum, which leads to t@¢m 1) bias.

To address this, we now devise an unbiased estimator which removes tuiisenal terms while
ensuring proper normalization. Our proposed estimator has the form

1”K11” L1 2
(m )(m 2) m 2

HSIC(F:G;Z) = tr(KL)+ 1”KL1 ; (5)

1
m(m 3)

whereK andL are related t& andL by Kjj =(1 d;j)Kjj andljj=(1 dij)Lj; (i.e., the diagonal
entries ofK andL are set to zero).

1. We abuse the notation here by using the same subscript in the of8ga#srin the covariance matrix of (2), even
though we now refer to the covariance between feature maps.
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Theorem 2 (Unbiased estimator oHSIC) The estimatorHSIC; is unbiased, that is, we have
Ez[HSIC(F ; G;Z)] = HSIC(F ; G; Pryy).

Proof We prove the claim by constructing unbiased estimators for each term iN@8. that we
have three types of expectations, nanglyE,qe, a partially decoupled expectatidiyyExEyo, and
ExEyExEyo, Which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we neelet@ase to avoid
using the same discrete indices more than once for independent randaliiesa In other words,
when taking expectations ovaeiindependent random variables, we neetiples of indices where
each index occurs exactly once. We de ne the §8t® be the collections of indices satisfying this
property. By simple combinatorics one can see that their cardinalities ane lgjvthe Pochhammer
symbols(m), = ~™_. Jointly drawn random variables, on the other hand, share the same index

(m ‘n)!'
For the joint expectation over pairs we have _
[
ExExyo KI(yy) =(m),Ez & KijLij =(m),'Ez KL : (6)

(i;p2ig
Recall that we seKj = L = 0. In the case of the expectation over three independent terms
ExyExoEyo[K(X X1 (y; Y] we orllatain _ ] _
i i
(m3Ez & KijLiq =(mj3lEz PKI1 KL : (7)
(i;j:q)2iF
For four independel?t random variabEiYEonyoH((x; XAy y91, _
i i
(MyEz & Kilg =(m),Ez "K117[1 41" KL1+ 2wrKL (8)
(i;iign)2iy
To obtain an expression for HSIC we only need to take linear combinationg (8. Collecting
terms related to KL, 1> KL1, and1” K11” L1 yields

1 S~ PPK11”[(1 2 e
HSlC(F,G,I;yr)— mEz triK L + DM 3 m SUKLL - (9)
This is the expected value of HSJ[E ; G; Z]. |

Note that neither HSIgnor HSIG require any explicit regularization parameters, unlike earlier
work on kernel dependence estimation. Rather, the regularization is implitieiohoice of the
kernels. While in general the biased HSIC is acceptable for estimating diepes bias becomes a
signi cant problem for diagonally dominant kernels. These occur maintiiéncontext of sequence
analysis such as texts and biological data. Experiments on such datai@@tmét al., 2009) show
that bias removal is essential to obtain good results.

For suitable kernels HSIE ; G; Pry) = 0 if and only if x andy are independent. Hence the
empirical estimate HSI{Ccan be used to design nonparametric tests of independence. A kegfeatur
is that HSIQ itself is unbiasedand its computation is simple. Compare this to quantities based
on the mutual information, which requires sophisticated bias correctiongigai@.g., Nemenman
et al., 2002).

Previous work used HSIC tmeasureindependence between two sets of random variables
(Feuerverger, 1993; Gretton et al., 2005a). Here we usesielecta subsefl from the rst full
set of random variableS. We next describe properties of HSIC which support its use as a éeatur
selection criterion.
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2.3 HSIC Detects Arbitrary Dependence (Property |)

Whenevelf- ; G are RKHSs with characteristic kernédd (in the sense of Fukumizu et al., 2008;
Sriperumbudur et al., 2008, 2010), then HEFCG; Pr,y) = 0 if and only if x andy are indepen-
dent? In terms of feature selection, a characteristic kernel such as the Ga&BFakernel or the
Laplace kernel permits HSIC to detect any dependence bet®eamd Y. HSIC is zero only if
features and labels are independent. Clearly we want to reach the opessite namely strong
dependence between features and labels. Hence we try to selecedetitar maximize HSIC.
Likewise, whenever we want to select a subset of features ¥ome will try to retain maximal
dependence betweehand its reduced version.

Note that non-characteristic and non-universal kernels can alssdx for HSIC, although
they may not guarantee that all dependence is detected. Differeri&kénaorporate distinctive
prior knowledge into the dependence estimation, and they focus HSICpemdence of a certain
type. For instance, a linear kernel requires HSIC to seek only seaded dependence, whereas a
polynomial kernel of degreb restricts HSIC to test for dependences of degree (up.t@learly
HSIC is capable of nding and exploiting dependence of a much more genature by kernels on
graphs, strings, or other discrete domains. We return to this issue in SBctidrere we describe
the different kernels that are suited to different underlying classi cetasks.

2.4 HSIC is Concentrated (Property 1)

HSIC,, the estimator in (5), can be alternatively formulated using U-statistics (tHngff1948).
This reformulation allows us to derive a uniform convergence bounti&iC,. Thus for a given
set of features, the feature quality evaluated using H$8IGsely re ects its population counterpart
HSIC.

Theorem 3 (U-statistic of HSIC) HSIC; can be rewritten in terms of a U-statistic

HSIC(F;G;2)=(m),* & h(;j;qr); (10)
(i; ;o) 2iy

where the kernel h of the U-statistic is de ned by

(i;j;06r)

.. 1Y%
h(i;j;ar)= — A Kslbstt Luv 2Lsd (11)
24(s;t;u:V)
1 (i;jc;)q;r) 1 (i;jc;)q;r)

-~ a Ksflstt Luj

6 12 a Kstlsu (12)

(s t)i(u v) (stu)

Here the rst sum represents all 4! 24 quadruplegs;t;u;Vv) which can be selected without re-
placement fron{i; j;q;r). Likewise the sum ove(s;t;u) is the sum over all triples chosen without
replacement. Finally, the sum oves t);(u V) has the additional condition that the order im-
posed by(i; j;q;r) is preserved. That i§;q) and(j;r) are valid pairs, wheredg;i) or (r;q) are
not.

2. This result is more general than the earlier result of Gretton et &520rheorem 4), which states that wHenG
are RKHSs with universal kernelsl in the sense of Steinwart (2001), on respectismpactdomainsX andY ,
then HSIGF ; G; Pry) = 0 if and only if x andy are independent. Universal kernels are characteristic on compact
domains, however characteristic kernels also exist on non-compagtids.
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Proof Combining the three unbiased estimators in (6-8) we obtain a single U-statistic

HS|C1(F;G;Z)=(m)41 é (KijLij+ Kijl—qr 2KijLiq)Z (13)
(i:j:qm)2i7

In this form, however, the kerndi(i; j;q;r) = KjjLij + KijjLgr 2KjjLiq is not symmetric in its
arguments. For instand®i; j;q;r) 6 h(q; j;r;i). The same holds for other permutations of the
indices. Thus, we replace the kernel with a symmetrized version, whiclsyield

o 1 (i;jéq;r)
h(i;j;gr) = — a (Ksbstt Ksibuy 2Ktk sy) (14)

4! (st;uv)

where the sum in (14) represents all ordered quadriples; v) selected without replacement from
(i 5;qr).

This kernel can be simpli ed, sindés = KisandLg = Lis. The rst one only contains terms
LK s, hence the indice@u;v) are irrelevant. Exploiting symmetry we may impdse t) without
loss of generality. The same holds for the second term. The third term rearaihanged, which
completes the proof. |

We nO\B show that HSIGF ; G; Z) is concentrated and that it converges to HHCG; Pry) with
rate = m. The latter is a slight improvement over the convergence of the biased estimato
HSICy(F ; G; Z), proposed by Gretton et al. (2005a).

Theorem 4 (HSIC is Concentrated) Assume H are bounded almost everywhere hyand are
non-negative. Then for m 1 and alld > 0, with probability at leastlL.  d for all Pryy,

HSIC(F;Gi2)  HSIC(F;GiPY) 8" Tog(z=d)=m

Proof [Sketch] By virtue of (10) we see immediately that HI€ a U-statistic of order 4, where
each term is contained in 2;2]. Applying Hoeffding's bound for U-statistics as in Gretton et al.
(2005a) proves the result. |

If kandl were just bounded by 1 in terms of absolute value the bound of Theoresuld \we worse
by a factor of 2.

2.5 Asymptotic Normality

Theorem 4 givesvorst casébounds on the deviation between HSIC and HSI@ many instances,
however, an indication of this difference fyppical cases is needed. In particular, we would like
to know the limiting distribution of HSIE for large sample sizes. We now show that HSIE
asymptotically normal, and we derive its variance. These results are &ifut sisice they allow us
to formulate statistics for a signi cance test.

Theorem 5 (Asymptotic Normality) If E[h?] < ¥, and data and labels are not independérien
as m! ¥, HSIC;, converges in distribution to a Gaussian random variable with mean

3. This is a subtle but important point: if the data and labels are indepetidenthe U-statistic is degenerate, and the
null distribution takes a different form. See Gretton et al. (2008) ardi(®), 1980, Section 5.5).
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HSIC(F ; G; Pryy) and estimated variance

m 2
sfsic, = 16 R HSIC? where R= lé (m 1)1 & hGjqgr) (15)
m Mi=1 (jian)2ignfig

whereil'nfig denotes the set of all n-tuples drawn without replacement frigm :; mg nfig.

Proof [Sketch] This follows directly from Ser ing (1980, Theorem B, p. 198hich shows asymp-
totic normality of U-statistics. |

Unfortunately (15) is expensive to compute by means of an explicit summadi@mn computing
the kernelh of the U-statistic itself is a nontrivial task. For practical purposes we aeegkpres-
sion which can exploit fast matrix operations. As we shall sé@ml can be computed i®(mP),
given the matrice andL. To do so, we rst form a vectoh with its ith entry corresponding to
& (j:qn2imntigh(i; J;G;1). Collecting terms in (11) related to matricksandL(, h can be written as

h=(m 2*K [)1+(m 2) (rKi)1 K[1 L[K1 mK1) ([1)
+(1TP[1K1+(1"K1L1 ("KL1)1

where denotes elementwise matrix multiplication. ThBnn (15) can be computed a8 =
(4m) Y(m 1)32h> h. Combining this with the the unbiased estimator in (5) leads to the matrix
computation o6 g, -

2.6 Computation

In this section, we rst analyze the complexity of computing estimators for HilBehmidt Inde-
pendence Criterion. We then propose ef cient methods for approximetehputing these estima-
tors which are linear in the number of examples.

2.6.1 EXACT COMPUTATION OFHSICy AND HSIC;

Note that both HSIgand HSIG are simple to compute, since only the kernel matri¢endL are
needed, and no density estimation is involved. Assume that computing an eRtrgrdL takes
constant time, then computing the full matrix takagr?) time. In term of the sample siza, we
have the following analysis of the time complexity of Hgl&hd HSIG (by considering summation
and multiplication as atomic operations):

HSICqy CenteringL takesO(n?) time. Since ttKHLH ) is equivalent tal” (K HLH )1, it also
takesO(m?) time. Overall, computing HSIgtakesO(mP) time.

HSIC; Each of the three terms in HSjCnamely t(KL), 1> K11> (1 and1> K L1, takesO(n?)
time. Overall, computing HSICalso take€D(n¥) time.
2.6.2 APPROXIMATE COMPUTATION OFHSICy AND HSIC;

Further speedup is also possible via a low rank approximation of the keatekes. Particularly,
using incomplete Cholesky decomposition, Gretton et al. (2005a) derigEcent approximation
of HSIC,. Formally, it can be summarized as the following lemma:
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Lemma 6 (Ef cient Approximation to HSIC o) LetK AA> andL BB”, whereA 2 R™ dr
andB 2 R™ %. ThenHSIC, can be approximated i(m(d? + d3)) time.

Note that in this case the dominant computation comes from the incomplete Chdleskmpo-
sition, which can be carried out i@md?) and O(mog) time respectively (Fine and Scheinberg,
2000).

The three terms in HSICcan be computed analogously. Denotely = diaglAA”) and
D, = diag(BB”) the diagonal matrices of the approximating terms. The latter can be computed in
O(mdr) andQ(md,) time respectively. We have

1K1 = 1"(AA> Dg)1= k1" Ak?+ 1” Dk 1:

Computation require®(md;) time. The same holds when computitijL1. To obtain the second
term we exploit that

1”KL{1=1"(AA> Dk)(BB> Dk)1=((A(A>1) Dk1)>((B(B>1) D_1):
This can be computed i@(m(d; + dy)). Finally, to compute the third term we use

trKL = tr(AA> Dg)(BB> D)
= kA”BkZ,,, trB°DkB trA”D_ A+ trDkDy:

This can be computed i@(md;dy) time. It is the most costly of all operations, since it takes all
interactions between the reduced factorizationk gfhdL into account. Hence we may compute
HSIC; ef ciently (note again that dominant computation comes from the incomplete €kyotie-
composition):

Lemma 7 (Ef cient Approximation of HSIC;) LetK AA> andL BB>, whereA 2 R™ d
andB 2 R™ %. ThenHSIC; can be approximated i@(m(d? + d2)) time.
2.6.3 WARIANCE OF HSIC;

To compute the variance of HS{Qve also need to deal wittK L)1. For the latter, no imme-
diate linear algebra expansion is available. However, we may use of theviftidecomposition.
Assume that andb are vectors irR™. In this case

((aa) (bb™))1=(a b)(a b)”1

which can be computed iB(m) time. Hence we may compute

di dg
(AA”) (BB”))1= 4 a ((Ai Bj)(Ai Bj)”)1
i=1j=1

which can be carried out i(mdidg) time. To take care of the diagonal corrections note that
(AA> Dg) Dp = 0. The same holds fdB andDx. The remaining ternDx D 1 is obviously
also computable i®)(m) time.
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3. Notation

In the following sections, we will deal mainly with vectorial data. Wheneveheaxe vectorial data,
we useX as a shorthand to denote the matrix of all vectorial observasipRR? (theith row of X
corresponds t&;” ). Likewise, whenever the labels can be bundled into a matiax a vectory (for
binary classi cation), we will use the latter for a more concise notation. Alsowill refer to the
jth column ofX andY asx j andy j respectively as needed.

Furthermore, we denote the mean and standard deviation gfthhieature (dimension) by
xj= LaMx; andsj=( 2 aM"(x; X))%)' respectively; is the value of thgth feature of data).
For binary classi cation problems we denote iy andm the numbers of positive and negative
observations. Moreovek;+ andx; correspond respectively to the means of the positive and
negative classes at thjeh feature (the corresponding standard deviationssareands; ). More
generally, lem, be the number of samples with class label equgl(tbis notation is also applicable
to multiclass problems). Finally, Idt, be a vector of all ones with lengthand0,, be a vector of all
zeros.

For non-vectorial or scalar data, we will use lower case letters to denene thlery often the
labels are scalars, we ugéo denote them. The mean and standard deviation of the labgJsaace
sy respectively.

4. Feature Selection via HSIC

Having de ned our feature selectiatriterion, we now describalgorithmsthat conduct feature
selection on the basis of this dependence measure. Den@éheyfull set of features] a subset
of featuresT S). We wantto nd T such that the dependence between featurds and the
labels is maximized. Moreover, we may choose between different feai@ation strategies, that s,
whether we would like to build up a catalog of features in an incremental fiagtiovard selection)
or whether we would like to remove irrelevant features from a catalogk(mac selection). For
certain kernels, such as a linear kernel, both selection methods araleqtiithe objective function
decomposes into individual coordinates, and thus feature selectiorecdonie without recursion
in one go. Although forward selection is computationally more ef cient, bakirelimination in
general yields better features (especially for nonlinear featuresk Hie quality of the features is
assessed within the context of all other features (Guyon and Elis2668).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a li§" which contains the features in increasing degree of relevance.
At each stefS' is appended by a feature froBwhich is not contained 8" yet by selecting the
features which are least dependent on the reference seY (aethe full setX).

Once we perform this operation, the feature selection problem in (1) emoleed by simply
taking the last elements fronS'. Our algorithm produceS' recursively, eliminating the least
relevant features frors and adding them to the end 8F at each iteration. For convenience, we
also denote HSIC as HS(€; S), whereS are the features used in computing the data kernel matrix
K, ands is the parameter for the data kernel (for instance, this might be the size atisstan
kernelk(x;x9 = exp( skx x%?)).

Step 3 of the algorithm denotes a policy for adapting the kernel paramBtepgnding on the
availability of prior knowledge and the type of preprocessing, we exgltnee types of policies
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1. If we have prior knowledge about the nature of the nonlinearity in tkeg dee can use a xed
kernel parameter throughout the iterations. For instance, we can wdgn@mial kernel of
xed degree, for examplgjhx; x4 + 1), to select the features for the XOR data set in Figure
2(a).

2. If we have no prior knowledge, we can optimize HSIC over a set ofdtgrarameters. In this
case, the policy corresponds to argmax HSIC(s; S), whereQ is a set of parameters that
ensure the kernel is bounded. For instarscean be the scale parameter of a Gaussian kernel,
k(x;x9 = exp( skx x‘kz). Optimizing over the scaling parameter allows us to adapt to the
scale of the nonlinearity present in the (feature-reduced) data.

3. Adapting kernel parameters via optimization is computational intensive. natigely we
can use a policy that produces approximate parameters in each iteratianstéace, if we
normalize each feature separately to zero mean and unit variance, wehatdhe expected
value of the distance between data poifts(x x9? , is 2d (d is the dimension of the data).
When using a Gaussian kernel, we can then use a policy that assignd=(2d) as the
dimension of the data is reduced.

We now consider in more detail what it means to optimize the kernel. In the ¢aseadial
basis kernel on the observations and a linear kernel on binary labelsxdmple in Section 5.2 is
instructive: optimizing the bandwidth of the kerriebn the observations corresponds to nding the
optimum lengthscale for which smooth functions may be found to maximizkntb&r covariance
with the labels. This optimum lengthscale will change as the dimensionality of thexvaltien
feature space changes (as feature selection progresses). labed descussion, see (Sriperumbudur
et al., 2009, Section 5): in this case, the kernel bandwidth which maximizesnelkdistance
measure between two distributioRandQ corresponds to the lengthscale at whitandQ differ.
WhenP is the joint distirbutionP = Pr(x;y), andQ the product of the marginal® = Pr(x) Pr(y),
the kernel distance measure in Sriperumbudur et al. (2009) cordspoi SIC (see Gretton et al.,
2007b, Section 7.3). Note further that when a radial basis kerneh @sithe Gaussian) is used,
the unbiased HSICis zero both for bandwidth zero, and as the bandwidth approaches ininity (
the former case, the off-diagonal kernel values are zero; in the lditteoff-diagonal kernel values
are all equal). Thus HSKOmust have a maximum between these two extremes in bandwidth, and
this maximum is bounded since the kernel is bounded. Again, see Sripetunddial. (2009) for a
related discussion when comparing arbitrary distributibraedQ.

Algorithm 1 BAHSIC

Input: The full set of featureS
Output: An ordered set of features'

1. St 2

2: repeat

33 s X

4: | argmax &j HSIC(s;Snfjg); I S
5: S Snl
6
7

sSt(ShI)
until S= 2
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Step 4 of the algorithm is concerned with the selection of & sétfeatures to eliminate. While
one could choose a single elementSyfthis would be inef cient when there are a large number of
irrelevant features. On the other hand, removing too many featureseatisks the loss of relevant
features. In our experiments, we found a good compromise betweeth apedeature quality was
to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matribL for the labels is xed through the whole process. It can be
precomputed and stored for speedup if needed. Therefore, the naajgrutation comes from
repeated calculation of the kernel matkixfor the dimension-reduced data. If we remove h of
the data at every step and under the assumption that beyond computing firedict the actual
evaluation of an entry iK requires only constant time irrespective of the dimension of the data, then
theith iteration of BAHSIC take€(b' 1dn?) time: d is the total number of features, herlweld
features remain aftdér 1 iterations and we have’ elements in the kernel matrix in total. If we
want to reduce the number of features e need at most= log,(t=d) iterations. This brings the

total time complexity tdD %dm2 = O &In? operations. When using incomplete Cholesky

factorization we may reduce computational complexity somewhat furth€r té—ém(d% dé)
time. This saving is signi cant as long akdy < m, which may happen, for instance whenever

is a binary label matrix. In this cagh = 1, hence incomplete factorizations may yield signi cant
computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it build®&féatures irdecreasing
degree of relevance. This is achieved by adding one feature at a time $ettloé featuresS'
obtained so far using HSIC as a criterion for the quality of the so-addedriss. For faster selection
of features, we can choose a group of features (for instance,dapraportiong) at step 4 and add
them in one shot at step 6. The adaptation of kernel parameters in stbpuasfthe same policies
as those for BAHSIC. The feature selection problem in (1) can be sblyaimply taking therst

t elements fronS'.

Algorithm 2 FOHSIC

Input: The full set of featureS
Output: An ordered set of features'

1. St 2

2: repeat

33 s X

4. | argmax &y HSIC(s;S'[f jg); | S
5. S Snl
6
7

st (Sh)
until S= 2

4.2.1 TiIME COMPLEXITY

Under the same assumption as BAHSIC, itheteration of FOHSIC take€((1 g)' dn?) time.

. . . . . loa(d logd
The total number of iterationisto obtaint features ig =[1 (1 ¢)']d, that ist = %
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iterations. Performing steps will therefore tak&'_sd(1 g'=d(1 (1 ¢')=g= t=goperations.
This means that FOHSIC tak&§tn?=g) time to extract features.

5. Variants of BAHSIC

So far we discussed a set of algorithms to select featureswe decided to choose a certain family
of kernelsk;| to measure dependence between two sets of observations. We nowdtoats-
cussing a number of design choiceskandl. This will happen in two parts: in the current section
we discuss generic choices of kernels on data and labels. Various aiiabof such kernels will
then lead to new algorithms that aim to discover different types of depeadetween features and
labels (or between a full and a restricted data set we are interested ipeuvised feature selec-
tion). After that (in Section 6) we will study speci ¢ choices of kernels whiorrespond to existing
feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, diffeenels will correspond to a
range of different assumptions on the type of dependence betweeanithen variablex andy.
Hence different kernels induce distinctive similarity measure on the data.

5.1.1 LUNEAR KERNEL

The simplest choice fok is to take a linear kernéd(x;x9 = hx;x3. This means that we are just
using the underlying Euclidean space to de ne the similarity measure. Waethe/dimensionality
d of x is very high, this may allow for more complexity in the function class than whatauédc
measure and assess otherwise. An additional advantage of this settirtighe tkernel decomposes
into the sum of products between individual coordinates. This meansthakaression of the type
trKM can be maximized with respect to the subset of available features via

This means that the optimality criterion decomposes into a sum over the scaones/afual coor-
dinates. Hence maximization with respect to a subset ot s&zgivial, since it just involves nding
thet largest contributors. Using (9) we can see that for H3hK@ matrixM is given by

1”11 2

— - > C > : r
_7m(m 3 L+ 117 | m Dm 2 m 2 L11” diag L1

These terms are essentially rank-1 and diagonal updates which means that they can be com-
puted very ef ciently. Note also that in this case FOHSIC and BAHSIC gatee¢heoptimalfeature
selection with respect to the criterion applied.

5.1.2 POLYNOMIAL KERNEL

Clearly in some cases the use of linear features can be quite limiting. It is |gogkilugh, to use
higher order correlations between data for the purpose of featuretisale This is achieved by
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using a polynomial kernel
k(xx9= xx° +a P forsomea Oandb2 N:

This kernel incorporates all polynomial interactions up to dedréprovided thata > 0). For
instance, if we wanted to take only mean and variance into account, we wuyldeed to consider
b= 2 anda= 1. Placing a higher emphasis on means is achieved by increasing the tofffsiin
a.

5.1.3 RaDIAL BASIS FUNCTION KERNEL

Note that polynomial kernels only map data intoie dimensional space: while potentially huge,
the dimensionality of polynomials of bounded degree is nite, hence criteisangrfrom such ker-
nels will not provide us with guarantees for a good dependence me&@nithe other hand, many
radial basis function kernels, such as the Gaussian RBF kernekrnmap anin nite dimensional
space. One may show that these kernels are in fact characteristiarffzuket al., 2008; Sriperum-
budur et al., 2008, 2010). That is, we use kernels of the form

k(x;x9 = k(kx x%) wherek(x) = exp( x) ork(x) = exp( x?)

to obtain Laplace and Gaussian kernels respectively. Since the spedtituercorresponding matri-
ces decays rapidly (Bach and Jordan, 2002, Appendix C), it is eagypute incomplete Cholesky
factorizations of the kernel matrix ef ciently.

5.1.4 SRING AND GRAPH KERNEL

One of the key advantages of our approach is that it is not limited to vectlatial For instance, we
can perform feature selection on documents or graphs. For manyituetions we have

k(XY = & Watta(XN)#a00O;

av x

whereav X is a substring ok (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar
decompositions can be made for graphs, where kernels on randomamalsths can be de ned.
As before, we could use BAHSIC to remove or FOHSIC to generate a lisatiires such that only
relevant ones remain. That said, given that such kernels are addithr features, we can use the
same argument as made above for linear kernels to determine meaningitg$aa one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on whpértes ofx (e.g., linear,
polynomial, or nonparametric) are relevant for estimation. We now desttrdbbeomplementary
part, namely a set of possible choices for kernels on labels. Note thatkbesels can be just as
general as those de ned on the data. This means that we may apply oritraigoto classi cation,
regression, Poisson models, ranking, etc., in the same fashion. This isi aasit) difference to
previous approaches which only apply to specialized settings such ay biaasi cation. For
completeness we begin with the latter.
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5.2.1 BNARY CLASSIFICATION

The simplest kernel we may choose is
l(y;y3 = yyPwherey,y°2 f 1g: (16)

In this case the label kernel matrix= yy” has rank 1 and it is simply the outer product of the
vector of labels. Note that we could transfolhy adding a positive constant such as to obtain
I(y;y9 = yyP+ cwhich yieldsl (y;y9 = 2dy.0for c= 1. This transformation, however, is immaterial:
onceK has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: wedmayge the relative
weights of positive and negative classes. This is achieved by transfpgnhincyy. For instance,
we may pickc, = m,tandc = m 1 Thatis, we choose

y= m'1; ;m 17 ” which leads td(y:y) = m, ‘mg'yy’ (17)

That is, we give different weight to positive and negative class aatgito their sample size. As
we shall see in the next section, this corresponds to making the featuréseledependent of the
class size and it will lead to criteria derived from Maximum Mean Discrepastmators (Gretton
et al., 2007a).

At this point, it is worth examining in more detail what it means to maximize HSIC in ginar
classi cation, as required in Step 3 of Algorithms 1 and 2 (see Section 4erVdHinear kernel is
used on the observations, HSIC is related to a number of well-establisheddince measures, as
we will establish in Section 6. Hence, we focus for the moment on the cage Wiesfeature space
F for the observations is nonlinear (eg, an RBF kernel), and we use tle keenel (16) on the
labels. HSIC being the squared Hilbert-Schmidt norm of the covarianeeatgy between the fea-
ture space§ andG, it corresponds to the sum of the squared singular values of this operam
maximum singular value (COCO; see Gretton et al., 2005b) corresponds kargiest covariance
between the mapping& (X) andgi(Y) of X andY. Given a linear kernel is used on the labels,
g1(Y) will be a linear function on the label space. The naturé;¢X) will depend on the choice of
observation kernék. For a Gaussian kernell; (X) will be a smooth mapping.

We illustrate this property with a simple toy example in Figure 1. Figure 1(a) plotsluser-
vations, where one class has a bimodal distribution in feaXyneith cluster centres at 1. The
second class has a single peak at the origin. The maximum singular ¥getdiis shown in Figure
1(b), and is computed using a Gaussian kernel on the observation®ndacce with Gretton et al.
(2005b). The resulting mapped points in Figure 1(c) have a strong lie&ion with the labels
(which can only be linearly transformed). Thus, when a nonlinear kexnsed on the observations,
the features that maximize HSIC are those that can be smoothly mapped tostawegdinear cor-
relation with the labels. The family of smooth mappings is determined by the cholazrdl on
the observations: as we see from Figure 1(b), too large or small alleaimeesult in a mapping
that does not re ect the lengthscale of the underlying difference itufea. This demonstrates the
need for the kernel bandwidth selection step described in Section 4.
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Figure 1: Maximum eigenfunction of the covrariance operator. Figuag¢ dgntains the original
data, where blue points have the lakel and red points are labeledl. The feature of
interest is plotted along theaxis, and an irrelevant feature on th@xis. Figure 1(b)
contains the largest eigefunction of the covariance operator on thameéfeature alone,
for three different kernel sizes: the smallest kernel shows over ttargl the largest is
too smooth. Figure 1(c) contains the mapped points for a “good” kerméteh = 0:1,
illustrating a strong linear relation between the mapped points and the labels for this
choice ofs.

5.2.2 MULTICLASS CLASSIFICATION

Here we have a somewhat larger choice of options to contend with. Clearlsirtiplest kernel
would be

I(y;¥9) = ¢ydy0wheregy > O: (18)

Forcy = m, 1 we obtain a per-class normalization. Clearly, foclasses, the kernel matrix can

be represented by the outer product of a ramkatrix, where each row is given lnyie; , Wheregy
denotes thg-th unit vector inR". Alternatively, we may adjust the inner product between classes

to obtain

Iy = y»iyo) (19)
wherey(y)zq,my(n:nm zandz=((m my) L::(m my) Y7

This corresponds to assigning a “one versus the rest” feature to &sshand taking the inner
product between them. As before in the binary case, note that we may fimm the expansion,
since constant offsets do not change the relative values of HSI@d&ture selection. In this case
we recover (18) witley = nPm, ?(m  m,) 2.
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5.2.3 REGRESSION

This is one of the situations where the advantages of using HSIC are cdggdyent: we are able

to adjust our method to such situations simply by choosing appropriate ke@ieksly, we could

just use a linear kerné{y;y9 = yyPwhich would select simple correlations between data and labels.
Another choice is to use an RBF kernel on the labels, such as

IyY=exp Sy yY?: (20)

This will ensure that we capture arbitrary nonlinear dependence betwaedy. The price is that
in this casd. will have full rank, hence computation of BAHSIC and FOHSIC are gpoadingly
more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special daBAsISIC by choosing appro-
priate preprocessing of data and kernels. We will directly relate thesaatitehe biased estimator
HSICy in (4). Given the fact that HSICconverges to HSICwith rateO(m 1) it follows that the
criteria are well related. Additionally we can infer from this that by using@iShese other criteria
could also be improved by correcting their bias. In summary BAHSIC is dapetbnding and
exploiting dependence of a much more general nature (for instancendiepce between data and
labels with graph and string values).

6.1 Pearson Correlation

Pearson's correlation is commonly used in microarray analysis (vanit &eal., 2002; Ein-Dor
etal., 2006). Itis de ned as

1 a Xi X %Y where (21)
M=y S S

5= L8 % anayz L8 i ands = 1 ‘r’n(x-- Xj)? ands] = 1 31( 5
b miglm Y= mgl)ﬁ - mi?1 o ) migl e

RJ' =

This means that all features are individually centeredcppnd scaled by their coordinate-wise
variancesy; as a preprocessing step. Performing those operations before appliiesar kernel
yields the equivalent HSIgCformulation:

2
trKHLH = tr XX”Hyy”H = HX”Hy (22)
|
P2
d m v Vi d
_ o o Xj X Yi Yy - 8 p2.
=a a = ar: (23)
=1 =1 S i1

Hence HSIG computes the sum of the squares of the Pearson Correlation (pc) iemg$ c Since
the terms are additive, feature selection is straightforward by picking theflisést performing
features.
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6.2 Mean Difference and Its Variants

The difference between the means of the positive and negative clasisefth feature(X;+  Xj ),

is useful for scoring individual features. With different normalizatidrtte data and the labels,
many variants can be derived. In our experiments we compare a numbeesef variants. For
example, the centroid (lin) (Bedo et al., 2006})tatistic (t), signal-to-noise ratio (snr), moderated
t-score (m-t) and B-statistics (lods) (Smyth, 2004) all belong to this family. énfélowing we
make those connections more explicit.

Centroid Bedo etal. (2006) usg := | xj+ (1 1)x; forl 2 (0;1) as the score for featurg*
Features are subsequently selected according to the absolute walue experiments the
authors typically chooske = %

Forl =  we can achieve the same goal by chooging= % (yi;yo2f 1g), in which

caseHLH = L, since the label kernel matrix is already cente'red. Hence we have

d
Yivio s ] o

Xxo= 8§ a —221
Lmymy =1 iie1 MyMyo j=1

g
trkKHLH = §
jo=

This proves that the centroid feature selector can be viewed as a sygesaailf BAHSIC in the
caseof = % From our analysis we see that other valuek amount to effectively rescaling
the patterng; differentlyfor different classes, which may lead to undesirable features being
selected.

t-Statistic The normalization for thgth feature is computed as

n #
&, &
L (24)
my m

NI

Sj

In this case we de ne thestatistic for thejth feature vig; = (xj+  Xj )=S;.

Compared to the Pearson correlation, the key difference is that nownwelipe each feature
not by the overall sample standard deviation but rather by a value whiek &ch of the two
classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is to normalize
each feature bg; = sj+ + s; instead. Subsequently tifg;. X; )=S; are used to score
features.

Moderated t-score is similar tot-statistic and is used for microarray analysis (Smyth, 2004). Its
normalization for theth feature is derived via a Bayes approach as

« _ S+ Mo
[ —

wheres;j is from (24), ands; andmg are hyperparameters for the prior distributionspiall s;
are assumed to biel). s andmy are estimated using information from all feature dimensions.

4. The parameterization in Bedo et al. (2006) is different but it carhbess to be equivalent.
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This effectively borrows information from the ensemble of features to #idthve scoring of
an individual feature. More speci callygy andmg can be computed as (Smyth, 2004)
!

. 14 ) m
m=2C"' 23 (z 2 5 (25)
d <1 2
_ g M Mo Mo
S=exp z G ;> tG 5 In
whereQ ) is the gamma functiorfdenotes derivatives; = In(éz) andz= éé? zj.

B-statistic is the logarithm of the posterior odds (lods) that a feature is differentiallyessed.
Lonnstedt and Speed (2002) and Smyth (2004) show that, for large nainfsatures, B-
statistic is given by

Bj= a+ df

where botha andb are constant(> 0), andf; is the moderatedistatistic for thejth feature.
Here we see thd; is monotonic increasing if), and thus results in the same gene ranking
as the moderatedstatistic.

The reason why these connections work is that the signal-to-noise ratiterated-statistic, and
B-statistic are three variants of theest. They differ only in their respective denominators, and are
thus special cases of HYJ@ we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classi cation, an alternative criterion for selecting featurds isheck whether the dis-
tributions P(xjy = 1) and P(xjy= 1) differ and subsequently pick those coordinates of the data
which primarily contribute to the difference between the two distributions.

More speci cally, we could use Maximum Mean Discrepancy (MMD) (Greté&t al., 2007a),
which is a generalization of mean difference for Reproducing Kernel Hifgaces, given by

MMD = KE([f (0jy= 1] Exlf(Qjy= 1k

A biased estimator of the above quantity can be obtained simply by replaciegtakpns by av-
erages over a nite sample. We relate a biased estimator of MMD to hi&é@in by settingn, *

as the labels for positive samples anch ! for negative samples. If we apply a linear kernel on
labels,L is automatically centered, that is] = O andHLH = L. This yields

trKHLH = trKL (26)

'L“k( ) 1r2k( ) 2%‘*“3k( )

= S a kix)+ s akxix) ———aakxix

me | i " mzi;j " mem i "o

2

1’1}* 1%

= — = A f(x;

rm"’} f(x) - ajt (X)) ]

The quantity in the last line is an estimator of MMD with bi@gm 1) (Gretton et al., 2007a). This
implies that HSIG@ and the biased estimator of MMD are identical up to a constant factor. Siace th
bias of HSIG is alsoO(m 1), this effectively show that scaled MMD and HSI€onverges to each
other with rateO(m 1).
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6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristiargtial., 2003) to test di-
rectly whether there exists any correlation between data and labels. KsTBeem used for feature
selection in this context. Formally it is de ned ag¢Kt. )=kK kkL k, that is, as the normalized cosine
between the kernel matrix and the label matrix.

The nonlinear dependence Bnmakes it somewhat hard to optimize for. Indeed, for compu-
tational convenience the normalization is often omitted in practice (Neumann 20@%), which
leaves us with tKL , the corresponding estimator of MMDNote the key difference, though, that
normalization ofL according to label size does not occur. Nor does KTA take centeringaimto
count. Both normalizations are rather important, in particular when dealing \atén wlith very
uneven distribution of classes and when using data that is highly collineaataré space. On the
other hand, whenever the sample sizes for both classes are approximatehed, such lack of
normalization is negligible and we see that both criteria are similar.

Hence in some cases in binary classi cation, selecting features that maxiAts€salso maxi-
mizes MMD and KTA. Note that in general (multiclass, regression, or geberary classi cation)
this connection does not hold. Moreover, the use of HSIC offers imifmnvergence bounds on
the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2008)rpes feature ranking using
the differences from the class centroids to the centroid of all the datasthat
(e X2+ X))

as a criterion to determine the relevance of a given feature. It alsosseach feature separately.
To show that this criterion is related to HSIC we need to devise an approprégiéor the labels
y. Consider the feature map(y) with y (1) = (m, ;00> andy ( 1) =(0;m %)>. Clearly, when
applyingH to Y we obtain the following centered effective feature maps
y(=(m* m*% mHYhandy( D=( mim?* m?):

Consequently we may expres&iLH via

2 2
17 18 17 1
trKHLH = — 3 x —ax + —ax —axXi (27)
me -y mi— m - mi-y
0 Iy ! 2l
d m. m m m
o 1 [*] 1 [*] 1 [¢] 1 o
=1 M= Miz1 m =1 Miz1
8 ol -
=a (e X)) x)
J:

1

5. The denominator provides a trivial constraint in the case where#teresare individually normalized to unit norm
for a linear kernel, since in this cakK k = d: that is, the norm of the kernel matrix scales with the dimensiondlity
of remaining features iXX. The normalization in the denominator can have a more meaningful dffeeever, for
instance in the taxonomy tting work of Blaschko and Gretton (2009), whke quality-of- t score could otherwise
be made arbitrarily large independent of the data.
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This is the information used by the shrunken centroid method, hence weatee ¢hn be seen
to be a special case of HSIC when using a linear kernel on the data quetiacfeature map on
the labels. Note that we could assign different weights to the two classét) wbuld lead to a
weighted linear combination of distances from the centroid. Finally, it is stifaigiard how this
de nition can be extended to multiclass settings, simply by considering theymgg  m, lg,.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problegeptehat in this case the
labels are continuous variables. We could, in principle, use an RBFIkarsamilar on the labels
to address the feature selection issue. What we show now is that evarsifople linear kernel,
interesting results can be obtained. More to the point, we show that fealerien using ridge
regression can also be seen to arise as a special case of HSIC seddgtmn. We assume here that
y is centered.

In ridge regression (Hastie et al., 2001), we estimate the ouypusing the design matrix¥
and a parameter vectar by minimizing the following regularized risk functional

J=ky Vwk®+ | kwk?:

Here the second term is known as the regularizer. If we chdas&X we obtain the family ofinear
models. In the general (nonlinear) cagenay be an arbitrary matrix, where each row consists of
a set of basis functions, for example, a feature fingg). One might conclude that small values of
J correspond to good sets of features, since thexevath small norm would still lead to a small
approximation error. It turns out thatis minimized forw = (V>V + 1 1) ly. Hence the minimum

is given by

(&
1

Yy yVVHID Wy (29)
i
constant tr V(VV+11) v> yy:

Whenever we are only gived = V>V we have the following equality

J = constant tr K(K+11) * yy™:
This means that the matrices
K:=VNV>V+I11) V> andK := K(K+11) 1

are equivalent kernel matrices to be used in BAHSIC. Note that obvidnstigad of usingy” as
a kernel on the labels we could use a nonlinear kerrialconjunctionwith the matrices arrived at
from feature selection by ridge regression. It also generalizes thegseftiastie et al. (2001) to
situations other than regression.

6.7 Quadratic Mutual Information

Torr (2003) introduces the quadratic mutual information for feature setecThat is, he uses the
distance between the joint and the marginal distributionsa@mdy as a criterion for how dependent

the two distributions are:
ZZ

1(xy) = (Pr(x;y)  Pr(x) Pr(y)) “cxdy: (30)
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In general, (30) is not ef ciently computable. That said, when usingraéfawindows estimate of
the joint and the marginals, it is possible to evaludtey) explicitly. Since we only have a nite
number of observations, one uses the estimates

10
p(x)= —a k(X X);
Mi-y

m
o

o1 .
py) = ﬁiglky(yl y);

By = — A KX Ky Y):
i=1

Hereky andky are appropriate kernels of the Parzen windows density estimator. Dgnote b
z z

kij = Kkx(x Xkx(xj x)dx andnmj = ky(yi Y)ky(y; ydy
inner products between Parzen windows kernels. In this case we have
h [
kp(xy) PO pKk?=m 2 trkn 217knl+ 1k11n1 = m 2kHnH:

In other words, we obtain the same criterion as what can be deriveddrbrased estimator of
HSIC. The key difference, though, is that this analogy only works wherk andn can be seen to
be arising from an inner product between Parzen windows kernel égtimEhis is not universally
true: for instance, for graphs, trees, or strings no simple density esticetd®e found. This is a
serious limitation. Moreover, since we are using a plug-in estimate of the densigeinherit an
innate slow-down of convergence due to the convergence of the dessityators. This issue is
discussed in detail in Anderson et al. (1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector Mestand to determine
the relevance of features by the size of the induced margin as a solutioa dbi#h optimization

problem (Guyon et al., 2002). While the connection to BAHSIC is somewhag meouous in this

context, it is still possible to recast this algorithm in our framework. Befoeedw so, we describe
the basic idea of the method, usingVM instead of plairC-SVMs: forn-SVM without a constant
offsetb we have the following dual optimization problem (Sthopf et al., 1999).

o1 .
mlnlamlzeéa>(K L)a subjecttoa”1= nmanda; 2 [0;1]: (31)

This problem is rst solved with respect & for the full set of features. Features are then selected
from (31) by removing coordinates such that the objective functionedses least (if at all). For
computational convenienca,is not recomputed for a number of feature removals, since repeated
solving of a quadratic program tends to be computationally expensive.

We now show that this procedure can be viewed as a special case dIBAWhere now the
class of kernels, parameterized $ys the one oftonformalkernels. Given a base kerniglx; x9
Amari and Wu (1999) propose the following kernel:

k(x;x9 = a(x)a(xyk(x;xy wherea(x) O

1415



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

It is easy to see that
a”(K L)a=y [diaga]K [diaga]y = y” Ky;

whereK is the kernel matrix arising from the conformal ker¢k;x%. Hence for xeda the
objective function is given by a quantity which can be interpreted as adhesion of HSIC.
Re-optimization with respect @ is consistent with the kernel adjustment step in Algorithm 1. The
only difference being that here the kernel parameters are givenrbyher than a kernel width.
That said, it is also clear from the optimization problem that this style of fealeztion may not
be as desirable, since the choice of kernel parameters emphasizegiotdygose to the decision
boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of expdsnidme current section
contains results on synthetic and real benchmark data, that is, datatadii, $he UCI repository,
and data from the NIPS feature selection challenge. Sections 8 and 9shassés applications to
biological data, namely brain signal analysis and feature selection for amiess.

Since the number of possible choices for feature selection within the BAKEIQY is huge,
it is clearly impossible to investigate and compare all of them to all possible othteiréeselectors.
In the present section we pick the following three feature selectors essgggative examples. A
wider range of kernels and choices is investigated in Section 8 and 9 in itextof biomedical
applications.

In this section, we presents three concrete examples of BAHSIC whichsacdefor our later
experiments. We apply a Gaussian kerk(et: x9 = exp( skx x%?) on data, while varying the
kernels on labels. These BAHSIC variants are dedicated respectivibly following settings:

Binary classi cation (BIN) Use the feature map in (17) and apply a linear kernel.
Multiclass classi cation (MUL) Use the feature map in (18) and apply a linear kernel.
Regression problem (REG) Use the kernel in (20), that is, a Gaussian RBF kernel on

For the above variants a further speedup of BAHSIC is possible bytimgdantries in the data kernel
matrix incrementally. We use the fact that distance computation of a RBF ki#gnemposes into
individual coordinates, that is, we use that xjok? = é‘j’zlkxij Xk, Hencekx;  Xijk? needs
to be computed only once, and subsequent updates are effectedtacsogkx;j X k2.

We will use BIN, MUL and REG as the particular instances of BAHSIC in oyregiments.
We will refer to them commonly as BAHSIC since the exact meaning will be clepeidding on
the data sets encountered. Furthermore, we also instantiate FOHSIC esaagrid kernels as BIN,
MUL and REG, and we adopt the same convention when we refer to it inxperienents.

7.1 Arti cial Data

We constructed 3 arti cial data sets, as illustrated in Figure 2, to illustrate tferelifce between
BAHSIC variants with linear and nonlinear kernels. Each data set haisrighdions—only the rst

two dimensions are related to the prediction task and the rest are just Gangisia. These data
sets areij Binary XOR data: samples belonging to the same class have multimodal distributions;
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Figure 2: Arti cial data sets and the performance of different methodsnuwrarying the number of
observationsThe rst row contains plots for the rst 2 dimension of the (a) binary (b)
multiclass and (c) regression data. Different classes are encodediffetierat colours.

The second rowplots the median rank (y-axis) of the two relevant features as a function
of sample size (x-axis) for the corresponding data sets in the rstTéw.third row plots
median rank (y-axis) of the two relevant features produced in the nsttiten of BAHSIC

as a function of the sample size. (Blue circle: Pearson's correlatiorenGréangle:
RELIEF; Magenta downward triangle: mutual information; Black triangle:HSIC;

Red square: BAHSIC. Note that RELIEF only works for binary clasaiion.)

(i) Multiclass data: there are 4 classes but 3 of them are collineiir) Nonlinear regression
data: labels are related to the rst two dimension of the dataylay x; exp( xf x§)+ e, wheree
denotes additive Gaussian noise. We compare BAHSIC to FOHSIC dPé&acsrrelation, mutual
information (Zaffalon and Hutter, 2002), and RELIEF (RELIEF workdydfor binary problems).
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We aim to show that when nonlinear dependencies exist in the data, BAKMSiGonlinear kernels
is very competent in nding them.

We instantiate the arti cial data sets over a range of sample sizes (from 4Djpahd plot the
median rank, produced by various methods, for the rst two dimensiotiseoflata. All numbers
in Figure 2 are averaged over 10 runs. In all cases, BAHSIC showd gerformance. More
speci cally, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the rst two dimensions of theadaven
for small sample sizes; while FOHSIC, Pearson's correlation, and mutioeimation fail.
This is because the latter three evaluate the goodness of each featyreniheiatly. Hence
they are unable to capture nonlinear interaction between features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct featurespae-
tive of the size of the sample. Pearson's correlation only works for Isageple size. The
collinearity of 3 classes provides linear correlation between the data atabts, but due to
the interference of the fourth class such correlation is picked up by&®arcorrelation only
for a large sample size.

Nonlinear Regression DataThe performance of Pearson's correlation and mutual information is
slightly better than random. BAHSIC and FOHSIC quickly converge to theecbanswer as
the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is abiktthearelevant features
(the rsttwo dimensions) almost correctly in the rstiteration. In the third rofAFigure 2, we show
the median rank of the relevant features produced in the rst iterationfasciion of the sample
size. Itis clear from the pictures that BAHSIC effectively selects festim a single iteration when
the sample size is large enough. For the regression case, we also SBAHRIC with several
iterations, indicated by the red square in Figure 2(f), slightly improves theaoranking over
BAHSIC with a single iteration, given by the blue square in Figure 2(i).

While this does not prove BAHSIC with nonlinear kernels is always bettertte with a linear
kernel, it illustrates the competence of BAHSIC in detecting nonlinear featdreis is obviously
useful in a real-world situations. The second advantage of BAHSIC isttisaeadily applicable to
both classi cation and regression problems, by simply choosing a difféegnel on the labels.

7.2 Public Benchmark Data

In this section, we compare our method, BAHSIC, to several state-adstifeature selectors on a
large collection of public benchmark datasets. BAHSIC achieves thelblest performance in
three experimental settingse., feature selection for binary, multiclass and regression problems.

7.2.1 ALGORITHMS

In this experiment, we show that the performance of BAHSIC can be cableato other state-of-
the-art feature selectors, namely SVM Recursive Feature Elimination)(&&FtEon et al., 2002),
RELIEF (Kira and Rendell, 1992}),o-norm SVM (o) (Weston et al., 2003), and R2W2 (Weston
et al.,, 2000). We used the implementation of these algorithms as given in the &mdhine
learning toolbox, since those were the only publicly available implementdtiénsthermore, we

6. The Spider toolbox can be foundkdtp://www.kyb.tuebingen.mpg.de/bs/people/spider
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also include Iter methods, namely FOHSIC, Pearson's correlation (P@),rautual information
(MI), in our comparisons.

7.2.2 DATA SETS

We used various real world data sets taken from the UCI repoditthrg, Statlib repositor§,the
LibSVM website? and the NIPS feature selection challed§dor comparison. Due to scalability
issues in Spider, we produced a balanced random sample of size le0@tafor data sets with
more than 2000 samples.

7.2.3 EXPERIMENTAL PROTOCOL

We report the performance of an SVM using a Gaussian kernel onta@rdéesubset of size 5 and
10-fold cross-validation. These 5 features were selected per fold dgierent methods. Since
we are comparing the selected features, we used the same family of cladsireall methods:
an SVM with a Gaussian kernel. To address issues of automatic bandwidttiee (after all,
we are interested in adjusting the function class to the data at hand) wesho$® the median
distance between points in the sample @kbpf and Smola, 2002) and we xed the regularization
parameter t€ = 100. On classi cation data sets, we measured the performance usingdheage,
and on regression data sets we used the percentage of varatreelained (also known as 1r?).
The results for binary data sets are summarized in the rst part of Tallladse for multiclass and
regression data sets are reported respectively in the second anddhzatttérof Table 1.

To provide a concise summary of the performance of various methods aryllata sets, we
measured how the methods compare with the best performing one in eacletdatdable 1. We
recorded the best absolute performancalbfeature selectors as the baseline, and computed the
distance of each algorithm to the best possible result. In this context it nsakeg to penalize
catastrophic failures more than small deviations. In other words, we wo@ddikave a method
which is at least almost always very close to the best performing onéngrtdde” , distance achieves
this effect, by penalizing larger differences more heavily. It is also oal tp choose an algorithm
that performs homogeneously well across all data sets. "7 ligstance scores are listed for the
binary data sets in Table 1. In general, the smaller ghéistance, the better the method. In this
respect, BAHSIC and FOHSIC have the best performance. We didroduge the , distance for
multiclass and regression data sets, since the limited number of such data swis alldw us to
draw statistically signi cant conclusions.

Besides using 5 features, we also plot the performance of the leamaffsiaction of the num-
ber of selected features for 9 data sets (covertype, ionosphei, satimage, segment, vehicle,
housing, bodyfat and abalone) in Figure 3. Generally speaking, thiesitiee plotted number the
better the performance of the corresponding learner. For multiclassegnession data sets, it is
clear that the curves for BAHSIC very often lie along the lower boundlohathods. For binary
classi cation, however, SVM-RFE as a member of our framework perfothe best in general.
The advantage of BAHSIC becomes apparent when a small perceffitiageues is selected. For
instance, BAHSIC is the best when only 5 features are selected fronsefaiaand 2. Note that

7. UCI repository can be found hitp://www.ics.uci.edu/ ~ mlearn/MLSummary.html
8. Statlib repository can be found ftp://lib.stat.cmu.edu/datasets/ .
9. LibSVM can be found atttp://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/datasets/

10. NIPS feature selection challenge can be fourtdtat/clopinet.com/isabelle/Projects/NIPS2003/

1419



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

Data BAHSIC | FOHSIC PC Ml RFE RELIEF Lo R2W2
covertype | 26.3 1.5 | 37.9 1.7 | 40.3 1.3 | 26.7 1.1 | 33.0 1.9 | 427 0.7 | 43.4 0.7 | 442 1.7
ionosphere | 12.3 1.7 | 128 1.6 | 123 1.5 | 13.1 1.7 | 20.2 2.2 | 11.7 20| 359 04 | 13.7 2.7

sonar 279 31| 250 23| 255 24| 269 19| 216 34| 24.0 24| 365 3.3 | 323 1.8

heart 148 24 | 144 2.4 | 16.7 24| 152 25| 219 3.0 | 219 3.4 | 30.7 28| 193 2.6
breastcancer 3.8 0.4 3.8 04 4.0 04 35 05 3.4 0.6 3.1 03| 327 23 34 04
australian | 14.3 1.3 | 143 1.3 | 145 13| 145 13| 148 1.2 | 145 1.3 | 359 1.0 | 145 1.3

splice 226 111|226 1.1 228 09| 219 10| 20.7 1.0 | 223 1.0| 452 1.2 | 240 1.0
svmguide3 | 20.8 0.6 | 20.9 0.6 | 21.2 0.6 | 20.4 0.7 | 21.0 0.7 | 21.6 0.4 | 23.3 0.3 | 239 0.2

adult 248 0.2 244 06| 183 11| 216 1.1 | 21.3 09| 24.4 0.2 | 24.7 0.1 | 100.0 0.0
cleveland | 19.0 2.1 | 205 19| 219 1.7 | 195 22| 209 21| 224 25| 252 0.6 | 215 1.3

derm 0.3 03| 0.3 0.3 03 03| 0303| 0303| 0303|243 26 0.3 0.3
hepatitis 13.8 35| 15.0 25| 150 41| 150 41| 150 25| 175 20| 163 19| 175 2.0

musk 299 25| 296 1.8 | 269 20| 319 2.0 | 34.7 25| 27.7 1.6 | 426 22| 364 24
optdigits 05 02| 05 0.2 0502| 3406| 3016| 09 03] 125 17 0.8 0.3

specft 20.0 28| 20.0 2.8 | 188 3.4 | 18.8 3.4 | 375 6.7 | 26.3 3.5| 36.3 44| 313 34

wdbc 5.3 0.6 5.3 0.6 53 07| 67 05| 77 18| 7.2 10| 16.7 2.7 6.8 1.2

wine 1.7 11 1.7 11 1.7 11 1.7 11| 34 14| 42 19| 251 7.2 1.7 11

german 292 191|292 18| 26.2 15| 26.2 1.7 | 272 24| 33.2 1.1 | 320 00| 248 1.4

gisette 124 1.0 | 13.0 0.9 | 16.0 0.7 | 50.0 0.0 | 42.8 1.3 | 16.7 0.6 | 42.7 0.7 | 100.0 0.0

arcene 22.0 51| 19.0 3.1 | 31.0 3.5 | 45.0 2.7 | 34.0 45| 30.0 3.9 | 46.0 6.2 | 32.0 5.5
madelon 379 08| 380 07| 384 06| 516 1.0| 415 08| 38.6 0.7 | 51.3 1.1 | 100.0 0.0

2 11.2 14.8 19.7 48.6 42.2 25.9 85.0 138.3
satimage | 15.8 1.0 | 179 0.8 | 52.6 1.7 | 22.7 0.9 | 18.7 1.3 - 221 1.8 -
segment | 28.6 1.3 | 33.9 0.9 | 229 05| 27.1 1.3 | 245 0.8 - 68.7 7.1 -
vehicle 36.4 15| 48.7 2.2 | 428 1.4 | 458 25| 357 1.3 - 40.7 1.4 -

svmguide2 | 22.8 2.7 | 22.2 2.8 | 26.4 25| 274 16| 356 1.3 - 345 1.7 -
vowel 447 2.0 | 447 20 | 48.1 2.0 | 45.4 22| 519 2.0 - 85.6 1.0 -
usps 43.4 1.3 | 434 1.3 | 73.7 22 | 67.8 1.8 | 55.8 2.6 - 67.0 2.2 -

housing 185 2.6 | 189 3.6 | 253 25| 189 2.7 - - - -
bodyfat 3525| 35 25| 34 25| 34 25 - - - -
abalone 55.1 2.7 | 55.9 29 | 54.2 3.3 | 56.5 2.6 - - - -

Table 1: Classi cation error (%) or percentage of varianogexplained (%). The best result, and
those results not signi cantly worse than it, are highlighted in bold (Matlabraigitest
with 0:05 signi cance level). 100.00.0 : program is not nished in a week or crashed. -:
not applicable.

in these cases, the performance produced by BAHSIC is very closettodihg all features. In a
sense, BAHSIC is able to shortlist the most informative features.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meahingfractice. Here
we use it to select a frequency band for a brain-computer interfac (Bfa set from the Berlin
BCI group (Dornhege et al., 2004). The data contains EEG signalsctidrghels, sampled at 100
Hz) from ve healthy subjects (‘aa’, "al’, "av', ‘aw' and "ay') recded during two types of motor
imaginations. The task is to classify the imagination for individual trials.
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Figure 3: The performance of a classi er or a regressor (verticagpas a function of the number
of selected features (horizontal axes). Note that the maximum of the htaizxes are
equal to the total number of features in each data set. (a-c) Balancedater by a SVM
classi er on the binary data sets Covertype (1), lonosphere (2) andr§3) respectively;
(d-f) balanced error rate by a one-versus-the-rest SVM classemulticlass data sets
Satimage (22), Segment (23) and Vehicle (24) respectively; (g-iepé&age of variance
not-explained by a SVR regressor on regression data set Housing @%y),fét (26) and
Abalone (27) respectively.

Our experiment proceeds in 3 steps: A Fast Fourier transformation (FFT) is performed on
each channel and the power spectrum is computijl Tie power spectra from all channels are
averaged to obtain a single spectrum for each tri@). BAHSIC is used to select the top 5 discrim-
inative frequency components based on the power spectrum. The teddieguencies and their 4
nearest neighbours are used to reconstruct the temporal signals l{veithest Fourier coef cients
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@ (b) ()

(d) (e)

Figure 4: HSIC, encoded by the colour value for different freqydrands. The x-axis corresponds
to the upper cutoff and the y-axis denotes the lower cutoff (clearly n@kaggm be found
where the lower bound exceeds the upper bound). Red correspastdstg dependence,
whereas blue indicates that no dependence was found. The g@wésraubject (a) "aa’,
(b) "al', (c) "av', (d) "aw' and (e) "ay'.

eliminated). The result is then passed to a normal CSP method (Dornhdge2804) for feature
extraction and then classi ed using a linear SVM.

Automatic ltering using BAHSIC is then compared to other Iltering approachesmal CSP
method with manual Itering (8-40 Hz), the CSSP method (Lemm et al., 2005)tkeadCSSSP
method (Dornhege et al., 2006). All results presented in Table 2 are edtasing 50 2-fold
cross-validation. Our method is very competitive and obtains the rst andrmgeplace for 4 of
the 5 subjects. While the CSSP and the CSSSP methodpac@lizecembedded methods (w.r.t.
the CSP method) for frequency selection on BCI data, our method is entealrig. BAHSIC
decouples feature selection from CSP, while proving competitive.

In Figure 4, we use HSIC to visualize the responsiveness of différemiency bands to motor
imagination. The horizontal and the vertical axes in each sub gure septeghe lower and upper
bounds for a frequency band, respectively. HSIC is computed fdr ehthese bands. Dornhege
et al. (2006) report that thg rhythm (approx. 12 Hz) of EEG is most responsive to motor imagi-
nation, and that thb rhythm (approx. 22 Hz) is also responsive. We expect that HSIC vélte
a strong peak at therhythm and a weaker peak at thehythm, and the absence of other respon-
sive frequency components will create block patterns. Both predicti@nsom rmed in Figure 4.
Furthermore, the large area of the red region for subject "al' indicated gesponsiveness of his
rhythm. This also corresponds well with the lowest classi cation errorinbthfor him in Table 2.
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Method aa al av aw ay
CSP(8-40Hz)| 175 25| 3.1 1.2| 321 25|73 27| 6.0 1.6
CSSP 149 29|24 1.3|33.0 27|54 19| 6.2 15
CSSSP 122 21|22 09318 28|6.3 1.8|12.7 2.0
BAHSIC 13.7 43|19 1.3|305 33|6.1 3.8| 9.0 6.0

Table 2: Classi cation errors (%) on BCI data after selecting a frequescge.

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create prolite applica-
tion, that is, it is not immediately clear which criteria we might want to choosee Mer provide
guidelines for choosing a speci c member of the BAHSIC family by using gesglection as an
illustration.

9.1 Data Sets

While some past work focused on analysis cffgeci ¢ single microarray data set we decided to
perform a large scale comparison of a raft of techniques on many datdéebelieve that this leads
to a more accurate description of the performance of feature selectersandur experiments on
28 data sets, of which 15 are two-class data sets and 13 are multiclasstdat@lsse data sets
are assigned a reference number for convenience. Two-classtiatese a reference number less
than or equal to 15, and multiclass data sets have reference numberaraf &6ove. Only one data
set, yeast, has feature dimension less than 1000 (79 features). Alldatiaesets have dimensions
ranging from approximately 2000 to 25000. The number of samples vategbn approximately
50 and 300 samples. A summary of the data sets and their sources is as:follows

The six data sets studied in Ein-Dor et al. (2006). Three deal with bteaser (van't Veer
et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numberedahdZ3), two with

lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, Sphramavith hepatocellular
carcinoma (lizuka et al., 2003) (6). The B cell ymphoma data set (Raddrat al., 2002) is
not used because none of the tested methods produce classi cationlewer than 40%.

The six data sets studied in Warnat et al. (2005). Two deal with prostateicé@hanasekaran
et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Grgebet al., 2001; West,
2003) (9, 10), and two with leukaemia (Bullinger et al., 2004; Valk et al. 42006, 17).

Five commonly used bioinformatics benchmark data sets on colon cancer€dd., 1999)
(11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Getuth., 1999)(13), lym-
phoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19

Nine data sets from the NCBI GEO database. The GDS IDs and referandgers for this pa-
per are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 @RF968 (23), GDS1021
(24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454, @8d GDS1490 (15),
respectively.
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9.2 Classi cation Error and Robustness of Genes

We used strati ed 10-fold cross-validation and SVMs to evaluate the preeligerformance of the
top 10 features selected by various members of BAHSIC. For two-cléases, a nonlinear SVM

with an Gaussian RBF kerndd(x;x9 = exp kXZSXZq‘Z , was used. The regularization const&nt

and the kernel widtls were tuned on a grid of0:1;1;10;10%10%g f 1;10;10%10%g. Classi -
cation performance is measured as the fraction of misclassi ed samplesnuticlass data sets,
all procedures are the same except that we used the SVM in a one-testest fashion. A new
BAHSIC member are also included in the comparison, with kerflels x%k+ e) 1 (dis; eis a
small positive number to avoid singularity) on the data.

The classi cation results for binary and multiclass data sets are reporteabie B and Table
4, respectively. In addition to error rate we also report the overlapdmtwhe top 10 gene lists
created in each fold. The multiclass results are presented separatel\sgineeolder members
of the BAHSIC family, and some competitors, are not naturally extensible to mutidias sets.
From the experiments we make the following observations:

When comparing the overall performance of various gene selectioritalgsy it is of primary
interest to choose a method which works veslerywhererather than one which sometimes works
well and sometimes performs catastrophically. It turns out that the lineaek@in) outperforms
all other methods in this regard, both for binary and multiclass problems.

To show this, we measure how various methods compare with the bestpedarne in each
data set in Tables 3 and 4. The deviation between algorithms is taken as #ne sfjthe differ-
ence in performance. This measure is chosen because gene expdadaits relative expensive to
obtain, and we want an algorithm to select the best genes from them. Ij@uittam selects genes
that are far inferior to the best possible among all algorithms (catastropségd,ave downgrade the
algorithm more heavily. Squaring the performance difference achieaeslethis effect, by penal-
ising larger differences more heavily. In other words, we want to ahaasalgorithm that performs
homogeneously well in all data sets. To provide a concise summary, we eskl dbviations over
the data sets and take the square root as the measure of goodnessschines (called, distance)
are listed in Tables 3 and 4. In general, the smaller thaistance, the better the method. It can
been seen that the linear kernel has the smaljedistance on both the binary and multiclass data
sets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) providiehgenes for clas-
si cation in three data sets from Table 4 (data sets 18 Alizadeh et al., 200@;RS1319), and
28 (GDS1454)). These data sets all represent multiclass problems atHeast two of the classes
are subtypes with respect to the same supertypeeally, the selected genes should contain infor-
mation discriminating the classes. To visualise this information, we plot in Figure &xression
value of the top-ranked gene against that of a second gene rankedtoptth0. This second gene
is chosen so that it has minimal correlation with the rst gene. We use cobmdsshapes to dis-
tinguish data from different classes (data sets 18 and 28 each contkiss8s; therefore we use

11. For data set 18, the 3 subtypes are diffuse large B-cell lymphachéeakemia, follicular lymphoma, and chronic
lymphocytic leukemia; For data set 27, the 4 subtypes are various C kxganutant embryos: wild type, pie-
1, pie-1+pal-1, and mex-3+skn-1; For data set 28, the 3 subtypasoamal cell, IgV unmutated B-cell, and gV
mutated B-cell.
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3 different colour and shape combinations for them; data set 27 hasskgla we use 4 such
combinations).

We found that genes selected using nonlinear kernels provide betemasgep between the
two classes that correspond to the same supertype (red dots and gmeends), while the genes
selected with the linear kernel do not separate these subtypes well. Iagbetdata set 27, the
increased discrimination between red and green comes at the cost aiter gnember of errors in
another class (black triangle), however these mistakes are less sewethdlerrors made between
the two subtypes by the linear kernel. This eventually leads to better classhgaerformance for
the nonlinear kernels (see Table 4).

The principal characteristic of the data sets is that the blue square cldssiiy separated
from the rest, while the difference between the two subtypes (red dotgraed diamonds) is
less clear. The rst gene provides information that distinguishes the lojuars class, however it
provides almost no information about the separation between the two sabffpe linear kernel
does not search for information complementary to the rst gene, whareaknear kernels are
able to incorporate complementary information. In fact, the second geneistiaguishes the two
subtypes (red dots and green diamonds) does not separate all.classeshis gene alone, the blue
square class is heavily mixed with other classes. However, combining thestves ¢pgether results
in better separation between all classes.

(@) (b) ()

(d) (e) ®

Figure 5: Nonlinear kernels (MUL and dis) select genes that discrimindittyges (red dots and
green diamonds) where the linear kernel fails. The two genes in theowsare represen-
tative of those selected by the linear kernel, while those in the second eopr@stuced
with a nonlinear kernel for the corresponding data sets. Differentgalod shapes rep-
resent data from different classes. (a,d) data set 18; (b,e) da28;sand (e,f) data set
27.
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9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kpemiermed best in our
feature selection evaluation, yet also taking into account the existen@anlfear interaction be-
tween genes (as demonstrated in Section 9.3), we propose the followinglés@f thumb for gene
selection:

1. Always apply a linear kernel for general purpose gene selection.

2. Apply a Gaussian kernel if nonlinear effects are present, such kisnodality or comple-
mentary effects of different genes.

This result should come as no surprise, due to the high dimensionality of meyatata sets, but
we corroborate our claims by means of an extensive experimental evaludti@se experiments
also imply a desirable property of gene activity as a whole: it correlateswittlithe observed
outcomes. Multimodal and highly nonlinear situations exist, where a nonlieature selector is
needed (as can be seen in the outcomes on data sets 18, 27 and 2&) gettir relatively rarely
in practice.

10. Conclusion

This paper provides anifying framework for a raft of feature selection methods. This allows us to
give tail bounds and asymptotic expansions for feature selectors.oMatave are able to design
new feature selectors which work well in practice by means of the Hilbdnn®&ilt Independence
Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the featusesthiat maximises
the dependence between the data and labels. The absence of biapardmeergence properties
of the empirical HSIC estimate provide a strong theoretical justi cation forgi$i$IC in this
context. Although BAHSIC is a Iter method, it still demonstrates good perfaroeacompared
with more specialised methods in both arti cial and real world data. It is alsp eempetitive in
terms of runtime performandé.

A variant of BAHSIC can also be used to perform feature selectionritabeled data. In this
case, we want to select a subgebf variables such that it is strongly correlated with the full data
set. In other words, we want to nd a compressed representation ofatiagitdelf in the hope that
it is useful for a subsequent learning tasks. BAHSIC readily accomtasdhis by simply using
the full data seX as the labels. Clearly, we want to maximize dependence between the selected
variables an& without adding many variables which are simply very much correlated to ¢aeh o
This ingredient is not yet explicitly formulated in the BAHSIC framework. W# investigate this
in the future.
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Data Set pc snr pam t m-t lods lin RBF dis rfe
1 12.43 11.43 11.44 12.93 12.94 12.94 15.53 19.31 13.92 14.30
2 33.31 33.92 3391 2951 29.51 27.91 32.92 31.53 32.92 34.30
3 37.40 37.40 37.40 34.66 34.66 34.66 3741 37.40 37.40 37.40
4 41.40 38.90 41.40 40.71 40.740 37.80 41.40 41.60 39.70 41.60
5 27.90 26.710 27.90 26.712 26.72 26.712 27.90 27.90 27.40 27.90
6 30.g2 25.4g0 31.70 25.05 25.g5 25.05 30.g0 31.70 30.01 30.g0
7 2.6 2.5 2.05 28.14 26.34 26.34 2.3 2.4 30.g0 2.0
8 3.33 0.04 0.4 0.04 3.36 3.36 3.32 3.31 6.712 0.g0
9 10.06 10.g6 8.714 34.Gg5 37.76 37.76 12.g3 10.05 12.4J1 10.g0
10 16.02 18.2 14.92 14.08 22.99 22.909 16.g2 16.90 18.90 32.50
11 12.95 12.95 12.95 19.50 22.30 33.§0 11.34 9.56 16.04 19.90
12 30.32 36.¢2 31.32 26.713 35.70 35.70 18.71 35.¢0 33.01 29.70
13 8.45 11.30 7.05 22.33 27.96 1541 7.2 9.60 11.30 431
14 20.91 20.91 20.30 20.93 20.93 20.93 20.90 20.30 19.70 20.90
15 0.g7 0.71 0.05 401 0.78 0.78 0.03 0.g2 2.2 0.1

best 3j2 4j1 51 56 3j10 59 3j0 4j2 1j0 50
"o 169 20:9 173 435 505 50:3 13.2 229 354 26:3

Table 3: Two-class data sets: classi cation error (%) and number of cangeaes (overlap) for 10-fold cross-validation using the top
10 selected features. Eaabw shows the results for a data set, and eemlumnis a method. Each entry in the table contains
two numbers separated by the rst number is the classi cation error and the second number is thelbmu of overlaps. For
classi cation error, the best result, and those results not signi cantlgsesdhan it, are highlighted in bold (Matlab signrank test
with 0:05 signi cance level; a table containing the standard errors is providedeisupplementary materipl For the overlap,
largest overlaps for each data set are highlighted (no signi cancestpstformed). The second lastv summarises the number of
times a method was the best. The last contains the , distance of the error vectors between a method and the best performing
method on each data set. We use the following abbreviations: pc - Peagcsorglation, snr - signal-to-noise ratio, pam - shrunken
centroid, t - t-statistics, m-t - moderated t-statistics, lods - B-statistics, lin -aidnulis - (kx x%+ €) 1, rfe - svm recursive
feature elimination)

NOILVZINIXV NIONIANIHIJ VIA NOILDIT1IS FdNLv3IS

Data

16

17

18

19

20

21

22

23

24

25

26

27

28

best

2

lin
RBF
dis

36.91
33.33
29.72

0.G3
5.14
28.95

5.3
1.73
6.70

10.56
7.9
8.29

35.03
33.30
29.47

37.56
40.g1
38.34

18.1
22.50
43.44

40.33
72.50
66.30

28.133
39.50
40.90

26.66
24.74
38.94

5.66
5.66
7.61

27.97
22.310
8.28

45.31
21.53
31.63

6i6
5i5
34

32.4
37.9
51.0

Table 4: Multiclass data sets: in this casBumnsare the data sets, angwsare the methods. The remaining conventions follow Table 3.
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Appendix A. Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIClsampieoceed by
converting problem (1) into a continuous optimization problem. By adding alfyeon the number
of nonzero terms, such as a relaxed‘'norm” of a weight vector over the features we are able
to solve the problem with continuous optimization methods. Unfortunately, thisoagp does
not perform as well as the the backward elimination procedure propasée main text. For
completeness and since related methods are somewhat popular in the litetauspproach is
described below.

We introduce a weightingy 2 R" on the dimensions of the data7! w x, where denotes
element-wise product. Thus feature selection using HSIC becomes an ofitmizeoblem with
respect taw (for convenience we write HSIC as a functiorvafHSIC(w)). To obtain a sparse solu-
tion of the selected features, the zero “norkky is also incorporated into our objective function
(clearlyk:k, is not a proper norm)kwko computes the number of non-zero entriesvirand the
sparsity is achieved by imposing heavier penalty on solutions with large nwhben-zero entries.
In summary, feature selection using HSIC can be formulated as:

w = arg rrJvaxHSIC(W) | kwk, wherew 2 [0;¥)": (32)

The zero “norm” is not a continuous function. However, it can be agprated well by a concave
function (Fung et al., 2002p(= 5 works well in practice):

kwk, 17(1 exp aw): (33)

While the optimization problem in (32) is non-convex, we may use relatively rabceent opti-
mization procedures for the concave approximation of theorm. For instance, we may use the
convex-concave procedure (CCCP) of Yuille and Rangarajan j2Fa$ a Gaussian kernel HSIC
can be decomposed into the sum of a convex and a concave function:

HSIC(w) |kwkg tr(K(I m 12)L(I m 1)) 1171 e @W):

Depending on the choice &f we need to assign all terms involving exp with positive coef cients
into the convex and all terms involving negative coef cients to the concawetion.
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