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Abstract
We introduce a framework for feature selection based on dependence maximization between the
selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence
Criterion. The key idea is that good features should be highly dependent on the labels. Our ap-
proach leads to a greedy procedure for feature selection. Weshow that a number of existing feature
selectors are special cases of this framework. Experimentson both arti�cial and real-world data
show that our feature selector works well in practice.
Keywords: kernel methods, feature selection, independence measure,Hilbert-Schmidt indepen-
dence criterion, Hilbert space embedding of distribution

1. Introduction

In data analysis we are typically given a set of observationsX = f x1; : : : ;xmg � X which can be
used for a number of tasks, such as novelty detection, low-dimensional representation, or a range of
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supervised learning problems. In the latter case we also have a set of labelsY = f y1; : : : ;ymg � Y at
our disposition. Tasks include ranking, classi�cation, regression, or sequence annotation. While not
always true in practice, we assume in the following that the dataX andY are drawn independently
and identically distributed (i.i.d.) from some underlying distribution Pr(x;y).

We often want to reduce the dimension of the data (the number of features) before the actual
learning (Guyon and Elisseeff, 2003); a larger number of features can be associated with higher data
collection cost, more dif�culty in model interpretation, higher computational cost for the classi�er,
andsometimesdecreased generalization ability. In other words, there often exist motives in addition
to �nding a well performing estimator. It is therefore important to select an informative feature
subset.

The problem of supervised feature selection can be cast as a combinatorial optimization prob-
lem. We have a full set of features, denoted byS (each element inScorresponds to one dimension
of the data). It is our aim to select a subsetT � S such that this subset retains the relevant infor-
mation contained inX. Suppose the relevance of a feature subset (to the outcome) is quanti�edby
Q(T ), and is computed by restricting the data to the dimensions inT . Feature selection can then
be formulated as

T0 = argmax
T � S

Q(T ) subject tojT j � t; (1)

wherej � j computes the cardinality of a set andt is an upper bound on the number of selected fea-
tures. Two important aspects of problem (1) are the choice of the criterionQ(T ) and the selection
algorithm.

1.1 Criteria for Feature Selection

A number of quality functionalsQ(T ) are potential candidates for feature selection. For instance,
we could use a mutual information-related quantity or a Hilbert Space-basedestimator. In any case,
the choice ofQ(T ) should respect the underlying task. In the case of supervised learning, the goal
is to estimate a functional dependencef from training data such thatf predicts well on test data.
Therefore, a good feature selection criterion should satisfy two conditions:

I: Q(T ) is capable of detecting desired (linear or nonlinear) functional dependence between the
data and the labels.

II: Q(T ) is concentrated with respect to the underlying measure. This guarantees with high
probability that detected functional dependence is preserved in test data.

While many feature selection criteria have been explored, not all of them take these two conditions
explicitly into account. Examples of criteria that satisfy both conditions include the leave-one-out
error bound of SVM (Weston et al., 2000) and the mutual information (Zaffalon and Hutter, 2002).
Although the latter has good theoretical justi�cation, it requires density estimation, which is prob-
lematic for high dimensional and continuous variables. We sidestep these problems by employing
the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a). Like the mutual in-
formation, HSIC is a nonparametric dependence measure, which takes into account all modes of
dependence between the variables (not just linear correlation). Unlike some popular mutual infor-
mation estimates, however, HSIC does not require density estimation as an intermediate step, being
based on the covariance between variables mapped to reproducing kernel Hilbert spaces (RKHS).
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HSIC has good uniform convergence guarantees, and an unbiased empirical estimate. As we show
in Section 2, HSIC satis�es conditions I and II required forQ(T ).

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2003), unless the criterion is
easily decomposable or has properties which make approximate optimization easier, for example,
submodularity (Nemhauser et al., 1978; Guestrin et al., 2005). Many algorithms transform (1) into
a continuous problem by introducing weights on the dimensions (Weston et al.,2000; Bradley and
Mangasarian, 1998; Weston et al., 2003; Neal, 1998). These methods perform well for linearly sep-
arable problems. For nonlinear problems, however, the optimisation usually becomes non-convex
and a local optimum does not necessarily provide good features. Greedy approaches, such as for-
ward selection and backward elimination, are often used to tackle problem (1) directly. Forward
selection tries to increaseQ(T ) as much as possible for each inclusion of features, and backward
elimination tries to achieve this for each deletion of features (Guyon et al., 2002). Although for-
ward selection is computationally more ef�cient, backward elimination provides better features in
general since the features are assessed within the context of all otherspresent. See Section 7 for
experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employed for feature selection
using either a weighting scheme, forward selection or backward selection,or even a mix of several
strategies. While the main focus of this paper is on the backward elimination strategy, we also
discuss the other selection strategies. As we shall see, several speci�cchoices of kernel function
will lead to well known feature selection and feature rating methods. Note thatbackward elimination
using HSIC (BAHSIC) is a �lter method for feature selection. It selects features independent of a
particular classi�er. Such decoupling not only facilitates subsequent feature interpretation but also
speeds up the computation over wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regression problems.
Most other feature selection methods are only formulated either for binary classi�cation or regres-
sion. Multiclass extensions of these methods are usually achieved using a one-versus-the-rest strat-
egy. Still fewer methods handle classi�cation and regression cases at thesame time. BAHSIC, on
the other hand, accommodates all these casesand unsupervised feature selection in a principled
way: by choosing different kernels, BAHSIC not only subsumes many existing methods as special
cases, but also allows us to de�ne new feature selectors. This versatility isdue to the generality of
HSIC. The current work is built on earlier presentations by Song et al. (2007b,a). Compared with
this earlier work, the present study contains more detailed proofs of the maintheorems, proofs of
secondary theorems omitted due to space constraints, and a number of additional experiments.

Our paper is structured as follows. In Section 2, we introduce the Hilbert-Schmidt Indepen-
dence criterion. We provide both biased and unbiased empirical estimates, as well as more ef�cient
approximate empirical estimates. In addition, we prove the empirical estimate converges in prob-
ability, and provide its asymptotic distribution. Section 3 contains a brief description of notation
for the remainder of the paper. Section 4 presents our two feature selection algorithms, based re-
spectively on forward selection and backwards elimination. Section 5 presents a number of variants
of BAHSIC obtained via different kernel choices, with a focus on usingthe appropriate kernel for
the underlying task (e.g., two-class classi�cation, multiclass classi�cation, andregression). Section
6 gives an overview of a variety of feature selection approaches, which can be shown to employ
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particular variants of HSIC as their feature relevance criterion. Finally, Sections 7–9 contain our ex-
periments, where we apply HSIC to a number of domains, including real and arti�cial benchmarks,
brain computer interface data, and microarray data.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and then generalize to the de-
tection of more general kinds of dependence. Consider spacesX � Rd andY � Rl , on which we
jointly sample observations(x;y) from a distribution Pr(x;y). Denote byCxy the covariance matrix

Cxy = Exy

h
xy>

i
� Ex [x]Ey

h
y>

i
; (2)

which contains all second order dependence between the random variables. A statistic that ef�-
ciently summarizes the degree oflinear correlationbetweenx andy is the Frobenius norm ofCxy.
Given the singular valuess i of Cxy the norm is de�ned as

kCxyk2
Frob := å

i
s2

i = trCxyC>
xy:

This quantity is zero if and only if there exists nolinear dependencebetweenx andy. This statistic
is limited in several respects, however, of which we mention two: �rst, dependence can exist in
forms other than that detectable via covariance (and even when a secondorder relation exists, the
full extent of the dependence betweenx andy may only be apparent when nonlinear effects are
included). Second, the restriction to subsets ofRd excludes many interesting kinds of variables,
such as strings and class labels. In the next section, we generalize the notion of covariance to
nonlinear relationships, and to a wider range of data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In generalX andY will be two domains from which we draw samples(x;y): these may be real val-
ued, vector valued, class labels, strings (Lodhi et al., 2002), graphs(Gärtner et al., 2003), dynamical
systems (Vishwanathan et al., 2007), parse trees (Collins and Duffy, 2001), images (Scḧolkopf,
1997), and any other domain on which kernels can be de�ned. See Schölkopf et al. (2004) and
Scḧolkopf and Smola (2002) for further references.

We de�ne a (possibly nonlinear) mappingf : X ! F from eachx 2 X to a feature spaceF
(and an analogous mapy : Y ! G wherever needed). In this case we may write the inner product
between the features via the positive de�nite kernel functions

k(x;x0) :=


f (x); f (x0)

�
andl (y;y0) :=



y (y);y (y0)

�
:

The kernelsk andl are associated uniquely with respective reproducing kernel Hilbert spacesF
andG (although the feature mapsf andy may not be unique). For instance, ifX = Rd, then this
could be as simple as a set of polynomials of order up tob in the components ofx, with kernel
k(x;x0) = ( hx;x0i + a)b. Other kernels, like the Gaussian RBF kernel correspond to in�nitely large
feature spaces. We need never evaluate these feature representations explicitly, however.
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We may now de�ne a cross-covariance operator1 between these feature maps, in accordance
with Baker (1973) and Fukumizu et al. (2004): this is a linear operatorCxy : G7�! F such that

Cxy := Exy[(f (x) � µx) 
 (y (y) � µy)] whereµx = Ex[f (x)] andµy = Ey[y (y)]:

Here
 denotes the tensor product. We need to extend the notion of a Frobenius norm to operators.
This leads us to the Hilbert-Schmidt norm, which is given by the trace ofCxyC>

xy. For operators with
discrete spectrum this amounts to computing the`2 norm of the singular values. We use the square of
the Hilbert-Schmidt norm of the cross-covariance operator (HSIC),kCxyk2

HS as our feature selection
criterionQ(T ). Gretton et al. (2005a) show that HSIC can be expressed in terms of kernels as

HSIC(F ;G;Pr
xy

) := kCxyk2
HS (3)

= Exx0yy0[k(x;x0)l (y;y0)] + Exx0[k(x;x0)]Eyy0[l (y;y0)] � 2Exy[Ex0[k(x;x0)]Ey0[l (y;y0)]]:

This allows us to compute a measure of dependence betweenx andy simply by taking expectations
over a set of kernel functionsk andl with respect to the joint and marginal distributions inx andy
withoutthe need to perform density estimation (as may be needed for entropy basedmethods).

2.2 Estimating the Hilbert-Schmidt Independence Criterion

We denote byZ = ( X;Y) the set of observationsf (x1;y1); : : : ; (xm;ym)g which are drawniid from
the joint distribution Prxy. We denote byEZ the expectation with respectZ as drawn from Prxy.
Moreover,K;L 2 Rm� m are kernel matrices containing entriesK i j = k(xi ;x j ) andL i j = l(yi ;y j ).
Finally, H = I � m� 1112 Rm� m is a centering matrix which projects onto the space orthogonal to
the vector1.

Gretton et al. (2005a) derive estimators of HSIC(F ;G;Prxy) which haveO(m� 1) biasand they
show that this estimator is well concentrated by means of appropriate tail bounds. For completeness
we brie�y restate this estimator and its properties below.

Theorem 1 (Biased estimator ofHSIC Gretton et al., 2005a) The estimator

HSIC0(F ;G;Z) := ( m� 1) � 2 trKHLH (4)

has bias O(m� 1), that is,HSIC(F ;G;Prxy) � EZ [HSIC0(F ;G;Z)] = O(m� 1).

This bias arises from the self-interaction terms which are present in HSIC0, that is, we still have
O(m) terms of the formK i j L il and K ji L li present in the sum, which leads to theO(m� 1) bias.
To address this, we now devise an unbiased estimator which removes those additional terms while
ensuring proper normalization. Our proposed estimator has the form

HSIC1(F ;G;Z) :=
1

m(m� 3)

�
tr(K̃ L̃ ) +

1> K̃11> L̃1
(m� 1)(m� 2)

�
2

m� 2
1> K̃ L̃1

�
; (5)

whereK̃ andL̃ are related toK andL by K̃ i j = ( 1� di j )K i j andL̃ i j = ( 1� di j )L i j (i.e., the diagonal
entries ofK̃ andL̃ are set to zero).

1. We abuse the notation here by using the same subscript in the operatorCxy as in the covariance matrix of (2), even
though we now refer to the covariance between feature maps.
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Theorem 2 (Unbiased estimator ofHSIC) The estimatorHSIC1 is unbiased, that is, we have
EZ [HSIC1(F ;G;Z)] = HSIC(F ;G;Prxy).

Proof We prove the claim by constructing unbiased estimators for each term in (3).Note that we
have three types of expectations, namelyExyEx0y0, a partially decoupled expectationExyEx0Ey0, and
ExEyEx0Ey0, which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we need to take care to avoid
using the same discrete indices more than once for independent random variables. In other words,
when taking expectations overn independent random variables, we needn-tuples of indices where
each index occurs exactly once. We de�ne the setsimn to be the collections of indices satisfying this
property. By simple combinatorics one can see that their cardinalities are given by the Pochhammer
symbols(m)n = m!

(m� n)! . Jointly drawn random variables, on the other hand, share the same index.
For the joint expectation over pairs we have

ExyEx0y0
�
k(x;x0)l (y;y0)

�
= ( m) � 1

2 EZ

h
å

(i; j)2 im2

K i j L i j

i
= ( m) � 1

2 EZ
�
tr K̃ L̃

�
: (6)

Recall that we set̃K ii = L̃ ii = 0. In the case of the expectation over three independent terms
ExyEx0Ey0[k(x;x0)l (y;y0)] we obtain

(m) � 1
3 EZ

h
å

(i; j ;q)2 im3

K i j L iq

i
= ( m) � 1

3 EZ

h
1> K̃ L̃1 � tr K̃ L̃

i
: (7)

For four independent random variablesExEyEx0Ey0[k(x;x0)l (y;y0)],

(m) � 1
4 EZ

h
å

(i; j ;q;r)2 im4

K i j Lqr

i
= ( m) � 1

4 EZ

h
1> K̃11> L̃1 � 41> K̃ L̃1 + 2trK̃ L̃

i
: (8)

To obtain an expression for HSIC we only need to take linear combinations using (3). Collecting
terms related to tr̃KL̃ , 1> K̃ L̃1, and1> K̃11> L̃1 yields

HSIC(F ;G;Pr
xy

) =
1

m(m� 3)
EZ

�
tr K̃ L̃ +

1> K̃11> L̃1
(m� 1)(m� 2)

�
2

m� 2
1> K̃ L̃1

�
: (9)

This is the expected value of HSIC1[F ;G;Z].

Note that neither HSIC0 nor HSIC1 require any explicit regularization parameters, unlike earlier
work on kernel dependence estimation. Rather, the regularization is implicit inthe choice of the
kernels. While in general the biased HSIC is acceptable for estimating dependence, bias becomes a
signi�cant problem for diagonally dominant kernels. These occur mainly inthe context of sequence
analysis such as texts and biological data. Experiments on such data (Quadrianto et al., 2009) show
that bias removal is essential to obtain good results.

For suitable kernels HSIC(F ;G;Prxy) = 0 if and only if x andy are independent. Hence the
empirical estimate HSIC1 can be used to design nonparametric tests of independence. A key feature
is that HSIC1 itself is unbiasedand its computation is simple. Compare this to quantities based
on the mutual information, which requires sophisticated bias correction strategies (e.g., Nemenman
et al., 2002).

Previous work used HSIC tomeasureindependence between two sets of random variables
(Feuerverger, 1993; Gretton et al., 2005a). Here we use it toselecta subsetT from the �rst full
set of random variablesS. We next describe properties of HSIC which support its use as a feature
selection criterion.
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2.3 HSIC Detects Arbitrary Dependence (Property I)

WheneverF ;G are RKHSs with characteristic kernelsk; l (in the sense of Fukumizu et al., 2008;
Sriperumbudur et al., 2008, 2010), then HSIC(F ;G;Prxy) = 0 if and only if x andy are indepen-
dent.2 In terms of feature selection, a characteristic kernel such as the Gaussian RBF kernel or the
Laplace kernel permits HSIC to detect any dependence betweenX andY . HSIC is zero only if
features and labels are independent. Clearly we want to reach the oppositeresult, namely strong
dependence between features and labels. Hence we try to select features that maximize HSIC.
Likewise, whenever we want to select a subset of features fromX we will try to retain maximal
dependence betweenX and its reduced version.

Note that non-characteristic and non-universal kernels can also be used for HSIC, although
they may not guarantee that all dependence is detected. Different kernels incorporate distinctive
prior knowledge into the dependence estimation, and they focus HSIC on dependence of a certain
type. For instance, a linear kernel requires HSIC to seek only second order dependence, whereas a
polynomial kernel of degreeb restricts HSIC to test for dependences of degree (up to)b. Clearly
HSIC is capable of �nding and exploiting dependence of a much more general nature by kernels on
graphs, strings, or other discrete domains. We return to this issue in Section5, where we describe
the different kernels that are suited to different underlying classi�cation tasks.

2.4 HSIC is Concentrated (Property II)

HSIC1, the estimator in (5), can be alternatively formulated using U-statistics (Hoeffding, 1948).
This reformulation allows us to derive a uniform convergence bound forHSIC1. Thus for a given
set of features, the feature quality evaluated using HSIC1 closely re�ects its population counterpart
HSIC.

Theorem 3 (U-statistic of HSIC) HSIC1 can be rewritten in terms of a U-statistic

HSIC1(F ;G;Z) = ( m) � 1
4 å

(i; j ;q;r)2 im4

h(i; j;q; r); (10)

where the kernel h of the U-statistic is de�ned by

h(i; j;q; r) =
1
24

(i; j ;q;r)

å
(s;t;u;v)

K st[L st + Luv � 2L su] (11)

=
1
6

(i; j ;q;r)

å
(s� t);(u� v)

K st[L st + Luv] �
1
12

(i; j ;q;r)

å
(s;t;u)

K stL su: (12)

Here the �rst sum represents all 4!= 24 quadruples(s;t;u;v) which can be selected without re-
placement from(i; j;q; r). Likewise the sum over(s;t;u) is the sum over all triples chosen without
replacement. Finally, the sum over(s � t); (u � v) has the additional condition that the order im-
posed by(i; j;q; r) is preserved. That is(i;q) and( j; r) are valid pairs, whereas(q; i) or (r;q) are
not.

2. This result is more general than the earlier result of Gretton et al. (2005a, Theorem 4), which states that whenF ;G
are RKHSs with universal kernelsk; l in the sense of Steinwart (2001), on respectivecompactdomainsX andY ,
then HSIC(F ;G;Prxy) = 0 if and only if x andy are independent. Universal kernels are characteristic on compact
domains, however characteristic kernels also exist on non-compact domains.
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Proof Combining the three unbiased estimators in (6-8) we obtain a single U-statistic

HSIC1(F ;G;Z) = ( m) � 1
4 å

(i; j ;q;r)2 im4

(K i j L i j + K i j Lqr � 2K i j L iq) : (13)

In this form, however, the kernelh(i; j ;q; r) = K i j L i j + K i j Lqr � 2K i j L iq is not symmetric in its
arguments. For instanceh(i; j;q; r) 6= h(q; j; r; i). The same holds for other permutations of the
indices. Thus, we replace the kernel with a symmetrized version, which yields

h(i; j;q; r) :=
1
4!

(i; j ;q;r)

å
(s;t;u;v)

(K stL st + K stLuv � 2K stL su) (14)

where the sum in (14) represents all ordered quadruples(s;t;u;v) selected without replacement from
(i; j;q; r).

This kernel can be simpli�ed, sinceK st = K ts andL st = L ts. The �rst one only contains terms
L stK st, hence the indices(u;v) are irrelevant. Exploiting symmetry we may impose(s � t) without
loss of generality. The same holds for the second term. The third term remainsunchanged, which
completes the proof.

We now show that HSIC1(F ;G;Z) is concentrated and that it converges to HSIC(F ;G;Prxy) with
rate 1=

p
m. The latter is a slight improvement over the convergence of the biased estimator

HSIC0(F ;G;Z), proposed by Gretton et al. (2005a).

Theorem 4 (HSIC is Concentrated) Assume k; l are bounded almost everywhere by1, and are
non-negative. Then for m> 1 and all d > 0, with probability at least1� d for all Prxy

�
�
�HSIC1(F ;G;Z) � HSIC(F ;G;Pr

xy
)
�
�
� � 8

p
log(2=d)=m:

Proof [Sketch] By virtue of (10) we see immediately that HSIC1 is a U-statistic of order 4, where
each term is contained in[� 2;2]. Applying Hoeffding's bound for U-statistics as in Gretton et al.
(2005a) proves the result.

If k andl were just bounded by 1 in terms of absolute value the bound of Theorem 4 would be worse
by a factor of 2.

2.5 Asymptotic Normality

Theorem 4 givesworst casebounds on the deviation between HSIC and HSIC1. In many instances,
however, an indication of this difference intypical cases is needed. In particular, we would like
to know the limiting distribution of HSIC1 for large sample sizes. We now show that HSIC1 is
asymptotically normal, and we derive its variance. These results are also useful since they allow us
to formulate statistics for a signi�cance test.

Theorem 5 (Asymptotic Normality) If E[h2] < ¥ , and data and labels are not independent,3 then
as m ! ¥ , HSIC1 converges in distribution to a Gaussian random variable with mean

3. This is a subtle but important point: if the data and labels are independent,then the U-statistic is degenerate, and the
null distribution takes a different form. See Gretton et al. (2008) and (Ser�ing, 1980, Section 5.5).
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HSIC(F ;G;Prxy) and estimated variance

s2
HSIC1

=
16
m

�
R� HSIC2

1

�
where R=

1
m

m

å
i= 1

�
(m� 1) � 1

3 å
( j;q;r)2 im3 nf ig

h(i; j;q; r)
� 2

; (15)

whereimn n f ig denotes the set of all n-tuples drawn without replacement fromf 1; : : : ;mgn f ig.

Proof [Sketch] This follows directly from Ser�ing (1980, Theorem B, p. 193), which shows asymp-
totic normality of U-statistics.

Unfortunately (15) is expensive to compute by means of an explicit summation:even computing
the kernelh of the U-statistic itself is a nontrivial task. For practical purposes we needan expres-
sion which can exploit fast matrix operations. As we shall see,s2

HSIC1
can be computed inO(m2),

given the matrices̃K andL̃ . To do so, we �rst form a vectorh with its ith entry corresponding to
å ( j;q;r)2 im3 nf igh(i; j;q; r). Collecting terms in (11) related to matricesK̃ andL̃ , h can be written as

h =( m� 2)2(K̃ � L̃ )1+ ( m� 2)
�

(tr K̃ L̃ )1� K̃ L̃1 � L̃ K̃1
�

� m(K̃1) � (L̃1)

+ ( 1> L̃1)K̃1 + ( 1> K̃1)L̃1 � (1> K̃ L̃1)1

where � denotes elementwise matrix multiplication. ThenR in (15) can be computed asR =
(4m) � 1(m� 1) � 2

3 h> h. Combining this with the the unbiased estimator in (5) leads to the matrix
computation ofs2

HSIC1
.

2.6 Computation

In this section, we �rst analyze the complexity of computing estimators for Hilbert-Schmidt Inde-
pendence Criterion. We then propose ef�cient methods for approximatelycomputing these estima-
tors which are linear in the number of examples.

2.6.1 EXACT COMPUTATION OF HSIC0 AND HSIC1

Note that both HSIC0 and HSIC1 are simple to compute, since only the kernel matricesK andL are
needed, and no density estimation is involved. Assume that computing an entry inK andL takes
constant time, then computing the full matrix takesO(m2) time. In term of the sample sizem, we
have the following analysis of the time complexity of HSIC0 and HSIC1 (by considering summation
and multiplication as atomic operations):

HSIC0 CenteringL takesO(m2) time. Since tr(KHLH ) is equivalent to1> (K � HLH )1, it also
takesO(m2) time. Overall, computing HSIC0 takesO(m2) time.

HSIC1 Each of the three terms in HSIC1, namely tr(K̃ L̃ ), 1> K̃11> L̃1 and1> K̃ L̃1, takesO(m2)
time. Overall, computing HSIC1 also takesO(m2) time.

2.6.2 APPROXIMATE COMPUTATION OF HSIC0 AND HSIC1

Further speedup is also possible via a low rank approximation of the kernelmatrices. Particularly,
using incomplete Cholesky decomposition, Gretton et al. (2005a) derive anef�cient approximation
of HSIC0. Formally, it can be summarized as the following lemma:
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Lemma 6 (Ef�cient Approximation to HSIC 0) Let K � AA> and L � BB> , whereA 2 Rm� df

andB 2 Rm� dg. ThenHSIC0 can be approximated inO(m(d2
f + d2

g)) time.

Note that in this case the dominant computation comes from the incomplete Choleskydecompo-
sition, which can be carried out inO(md2

f ) andO(md2
g) time respectively (Fine and Scheinberg,

2000).
The three terms in HSIC1 can be computed analogously. Denote byDK = diag(AA> ) and

DL = diag(BB> ) the diagonal matrices of the approximating terms. The latter can be computed in
O(mdf ) andO(mdg) time respectively. We have

1> K̃1 = 1> (AA> � DK )1 = k1> Ak2 + 1> DK 1:

Computation requiresO(mdf ) time. The same holds when computing1> L̃1. To obtain the second
term we exploit that

1> K̃ L̃1 = 1> (AA> � DK )(BB> � DK )1 = (( A(A> 1)) � DK 1)> ((B(B> 1)) � DL 1):

This can be computed inO(m(df + dg)) . Finally, to compute the third term we use

tr K̃ L̃ = tr(AA> � DK )(BB> � DL )

= kA> Bk2
Frob� trB> DK B � trA> DL A + trDK DL :

This can be computed inO(mdf dg) time. It is the most costly of all operations, since it takes all
interactions between the reduced factorizations ofK andL into account. Hence we may compute
HSIC1 ef�ciently (note again that dominant computation comes from the incomplete Cholesky de-
composition):

Lemma 7 (Ef�cient Approximation of HSIC1) Let K � AA> and L � BB> , whereA 2 Rm� df

andB 2 Rm� dg. ThenHSIC1 can be approximated inO(m(d2
f + d2

g)) time.

2.6.3 VARIANCE OF HSIC1

To compute the variance of HSIC1 we also need to deal with(K̃ � L̃ )1. For the latter, no imme-
diate linear algebra expansion is available. However, we may use of the following decomposition.
Assume thata andb are vectors inRm. In this case

((aa> ) � (bb> ))1 = ( a� b)(a� b)> 1

which can be computed inO(m) time. Hence we may compute

((AA> ) � (BB> ))1 =
df

å
i= 1

dg

å
j= 1

((A i � B j )(A i � B j )> )1

which can be carried out inO(mdf dg) time. To take care of the diagonal corrections note that
(AA> � DK ) � DL = 0. The same holds forB andDK . The remaining termDK DL 1 is obviously
also computable inO(m) time.
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3. Notation

In the following sections, we will deal mainly with vectorial data. Whenever wehave vectorial data,
we useX as a shorthand to denote the matrix of all vectorial observationsxi 2 Rd (theith row of X
corresponds tox>

i ). Likewise, whenever the labels can be bundled into a matrixY or a vectory (for
binary classi�cation), we will use the latter for a more concise notation. Also,we will refer to the
jth column ofX andY asx� j andy� j respectively as needed.

Furthermore, we denote the mean and standard deviation of thejth feature (dimension) by
x̄ j = 1

m å m
i xi j andsj = ( 1

m å m
i (xi j � x̄ j )2)1=2 respectively (xi j is the value of thejth feature of dataxi).

For binary classi�cation problems we denote bym+ andm� the numbers of positive and negative
observations. Moreover, ¯x j+ and x̄ j � correspond respectively to the means of the positive and
negative classes at thejth feature (the corresponding standard deviations aresj+ andsj � ). More
generally, letmy be the number of samples with class label equal toy (this notation is also applicable
to multiclass problems). Finally, let1n be a vector of all ones with lengthn and0n be a vector of all
zeros.

For non-vectorial or scalar data, we will use lower case letters to denote them. Very often the
labels are scalars, we usey to denote them. The mean and standard deviation of the labels are ¯y and
sy respectively.

4. Feature Selection via HSIC

Having de�ned our feature selectioncriterion, we now describealgorithmsthat conduct feature
selection on the basis of this dependence measure. Denote byS the full set of features,T a subset
of features (T � S). We want to �ndT such that the dependence between features inT and the
labels is maximized. Moreover, we may choose between different feature selection strategies, that is,
whether we would like to build up a catalog of features in an incremental fashion (forward selection)
or whether we would like to remove irrelevant features from a catalog (backward selection). For
certain kernels, such as a linear kernel, both selection methods are equivalent: the objective function
decomposes into individual coordinates, and thus feature selection can be done without recursion
in one go. Although forward selection is computationally more ef�cient, backward elimination in
general yields better features (especially for nonlinear features), since the quality of the features is
assessed within the context of all other features (Guyon and Elisseeff,2003).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a listS† which contains the features in increasing degree of relevance.
At each stepS† is appended by a feature fromS which is not contained inS† yet by selecting the
features which are least dependent on the reference set (i.e.,Y or the full setX).

Once we perform this operation, the feature selection problem in (1) can be solved by simply
taking the lastt elements fromS†. Our algorithm producesS† recursively, eliminating the least
relevant features fromS and adding them to the end ofS† at each iteration. For convenience, we
also denote HSIC as HSIC(s;S), whereSare the features used in computing the data kernel matrix
K, ands is the parameter for the data kernel (for instance, this might be the size of a Gaussian
kernelk(x;x0) = exp(� s kx � x0k2)).

Step 3 of the algorithm denotes a policy for adapting the kernel parameters.Depending on the
availability of prior knowledge and the type of preprocessing, we explored three types of policies
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1. If we have prior knowledge about the nature of the nonlinearity in the data, we can use a �xed
kernel parameter throughout the iterations. For instance, we can use a polynomial kernel of
�xed degree, for example,(hx;x0i + 1)2, to select the features for the XOR data set in Figure
2(a).

2. If we have no prior knowledge, we can optimize HSIC over a set of kernel parameters. In this
case, the policy corresponds to argmaxs2Q HSIC(s;S), whereQ is a set of parameters that
ensure the kernel is bounded. For instance,s can be the scale parameter of a Gaussian kernel,
k(x;x0) = exp(� s kx � x0k2). Optimizing over the scaling parameter allows us to adapt to the
scale of the nonlinearity present in the (feature-reduced) data.

3. Adapting kernel parameters via optimization is computational intensive. Alternatively we
can use a policy that produces approximate parameters in each iteration. For instance, if we
normalize each feature separately to zero mean and unit variance, we know that the expected
value of the distance between data points,E

�
(x � x0)2

�
, is 2d (d is the dimension of the data).

When using a Gaussian kernel, we can then use a policy that assignss to 1=(2d) as the
dimension of the data is reduced.

We now consider in more detail what it means to optimize the kernel. In the case of a radial
basis kernel on the observations and a linear kernel on binary labels, the example in Section 5.2 is
instructive: optimizing the bandwidth of the kernelk on the observations corresponds to �nding the
optimum lengthscale for which smooth functions may be found to maximize thelinear covariance
with the labels. This optimum lengthscale will change as the dimensionality of the observation
feature space changes (as feature selection progresses). For a related discussion, see (Sriperumbudur
et al., 2009, Section 5): in this case, the kernel bandwidth which maximizes a kernel distance
measure between two distributionsP andQ corresponds to the lengthscale at whichP andQ differ.
WhenP is the joint distirbutionP = Pr(x;y), andQ the product of the marginalsQ = Pr(x) Pr(y),
the kernel distance measure in Sriperumbudur et al. (2009) corresponds to HSIC (see Gretton et al.,
2007b, Section 7.3). Note further that when a radial basis kernel (such as the Gaussian) is used,
the unbiased HSIC1 is zero both for bandwidth zero, and as the bandwidth approaches in�nity (in
the former case, the off-diagonal kernel values are zero; in the latter,the off-diagonal kernel values
are all equal). Thus HSIC1 must have a maximum between these two extremes in bandwidth, and
this maximum is bounded since the kernel is bounded. Again, see Sriperumbudur et al. (2009) for a
related discussion when comparing arbitrary distributionsP andQ.

Algorithm 1 BAHSIC
Input : The full set of featuresS
Output : An ordered set of featuresS†

1: S†  ?
2: repeat
3: s  X
4: I  argmaxI å j2 I HSIC(s;Sn f jg); I � S
5: S  SnI
6: S†  (S†; I )
7: until S= ?
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Step 4 of the algorithm is concerned with the selection of a setI of features to eliminate. While
one could choose a single element ofS, this would be inef�cient when there are a large number of
irrelevant features. On the other hand, removing too many features at once risks the loss of relevant
features. In our experiments, we found a good compromise between speed and feature quality was
to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matrixL for the labels is �xed through the whole process. It can be
precomputed and stored for speedup if needed. Therefore, the major computation comes from
repeated calculation of the kernel matrixK for the dimension-reduced data. If we remove 1� b of
the data at every step and under the assumption that beyond computing the dot product the actual
evaluation of an entry inK requires only constant time irrespective of the dimension of the data, then
theith iteration of BAHSIC takesO(bi� 1dm2) time: d is the total number of features, hencebi� 1d
features remain afteri � 1 iterations and we havem2 elements in the kernel matrix in total. If we
want to reduce the number of features tot we need at mostt = logb(t=d) iterations. This brings the

total time complexity toO
�

1� bt

1� b dm2
�

= O
�

d� t
1� bm2

�
operations. When using incomplete Cholesky

factorization we may reduce computational complexity somewhat further toO
�

d� t
1� bm(d2

f + d2
g)

�

time. This saving is signi�cant as long asdf dg < m, which may happen, for instance wheneverY
is a binary label matrix. In this casedg = 1, hence incomplete factorizations may yield signi�cant
computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it builds a list of features indecreasing
degree of relevance. This is achieved by adding one feature at a time to theset of featuresS†

obtained so far using HSIC as a criterion for the quality of the so-added features. For faster selection
of features, we can choose a group of features (for instance, a �xed proportiong) at step 4 and add
them in one shot at step 6. The adaptation of kernel parameters in step 3 follows the same policies
as those for BAHSIC. The feature selection problem in (1) can be solvedby simply taking the�rst
t elements fromS†.

Algorithm 2 FOHSIC
Input : The full set of featuresS
Output : An ordered set of featuresS†

1: S†  ?
2: repeat
3: s  X
4: I  argmaxI å j2 I HSIC(s;S† [ f jg); I � S
5: S  SnI
6: S†  (S†; I )
7: until S= ?

4.2.1 TIME COMPLEXITY

Under the same assumption as BAHSIC, theith iteration of FOHSIC takesO((1� g) i� 1dm2) time.
The total number of iterationst to obtaint features ist = [ 1� (1� g)t ]d, that ist = log(d� t)� logd

log(1� g)
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iterations. Performingt steps will therefore takeå t � 1
i= 0 d(1� g) i = d(1� (1� g)t )=g= t=goperations.

This means that FOHSIC takesO(tm2=g) time to extractt features.

5. Variants of BAHSIC

So far we discussed a set of algorithms to select featuresoncewe decided to choose a certain family
of kernelsk; l to measure dependence between two sets of observations. We now proceed to dis-
cussing a number of design choices fork andl . This will happen in two parts: in the current section
we discuss generic choices of kernels on data and labels. Various combinations of such kernels will
then lead to new algorithms that aim to discover different types of dependence between features and
labels (or between a full and a restricted data set we are interested in unsupervised feature selec-
tion). After that (in Section 6) we will study speci�c choices of kernels which correspond to existing
feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, different kernels will correspond to a
range of different assumptions on the type of dependence between the random variablesx andy.
Hence different kernels induce distinctive similarity measure on the data.

5.1.1 LINEAR KERNEL

The simplest choice fork is to take a linear kernelk(x;x0) = hx;x0i . This means that we are just
using the underlying Euclidean space to de�ne the similarity measure. Whenever the dimensionality
d of x is very high, this may allow for more complexity in the function class than what we could
measure and assess otherwise. An additional advantage of this setting is that the kernel decomposes
into the sum of products between individual coordinates. This means that any expression of the type
trKM can be maximized with respect to the subset of available features via

d

å
j= 1

x>
� jMx � j :

This means that the optimality criterion decomposes into a sum over the scores ofindividual coor-
dinates. Hence maximization with respect to a subset of sizet is trivial, since it just involves �nding
thet largest contributors. Using (9) we can see that for HSIC1 the matrixM is given by

M =
1

m(m� 3)

�
L̃ +

�
11> � I

� 1> L̃1
(m� 1)(m� 2)

�
2

m� 2

�
L̃11> � diag

�
L̃1

� � �
:

These terms are essentially rank-1 and diagonal updates onL̃ , which means that they can be com-
puted very ef�ciently. Note also that in this case FOHSIC and BAHSIC generate theoptimalfeature
selection with respect to the criterion applied.

5.1.2 POLYNOMIAL KERNEL

Clearly in some cases the use of linear features can be quite limiting. It is possible, though, to use
higher order correlations between data for the purpose of feature selection. This is achieved by
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using a polynomial kernel

k(x;x0) =
�


x;x0� + a
� b for somea � 0 andb 2 N:

This kernel incorporates all polynomial interactions up to degreeb (provided thata > 0). For
instance, if we wanted to take only mean and variance into account, we would only need to consider
b = 2 anda = 1. Placing a higher emphasis on means is achieved by increasing the constant offset
a.

5.1.3 RADIAL BASIS FUNCTION KERNEL

Note that polynomial kernels only map data into a�nite dimensional space: while potentially huge,
the dimensionality of polynomials of bounded degree is �nite, hence criteria arising from such ker-
nels will not provide us with guarantees for a good dependence measure. On the other hand, many
radial basis function kernels, such as the Gaussian RBF kernel mapx into anin�nite dimensional
space. One may show that these kernels are in fact characteristic (Fukumizu et al., 2008; Sriperum-
budur et al., 2008, 2010). That is, we use kernels of the form

k(x;x0) = k(kx � x0k) wherek(x) = exp(� x) or k(x) = exp(� x2)

to obtain Laplace and Gaussian kernels respectively. Since the spectrumof the corresponding matri-
ces decays rapidly (Bach and Jordan, 2002, Appendix C), it is easy tocompute incomplete Cholesky
factorizations of the kernel matrix ef�ciently.

5.1.4 STRING AND GRAPH KERNEL

One of the key advantages of our approach is that it is not limited to vectorialdata. For instance, we
can perform feature selection on documents or graphs. For many such situations we have

k(x;x0) = å
av x

wa#a(x)#a(x0);

wherea v x is a substring ofx (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar
decompositions can be made for graphs, where kernels on random walksand paths can be de�ned.
As before, we could use BAHSIC to remove or FOHSIC to generate a list offeatures such that only
relevant ones remain. That said, given that such kernels are additivein their features, we can use the
same argument as made above for linear kernels to determine meaningful features in one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on which properties ofx (e.g., linear,
polynomial, or nonparametric) are relevant for estimation. We now describethe complementary
part, namely a set of possible choices for kernels on labels. Note that these kernels can be just as
general as those de�ned on the data. This means that we may apply our algorithms to classi�cation,
regression, Poisson models, ranking, etc., in the same fashion. This is a signi�cant difference to
previous approaches which only apply to specialized settings such as binary classi�cation. For
completeness we begin with the latter.
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5.2.1 BINARY CLASSIFICATION

The simplest kernel we may choose is

l (y;y0) = yy0wherey;y02 f � 1g: (16)

In this case the label kernel matrixL = yy> has rank 1 and it is simply the outer product of the
vector of labels. Note that we could transforml by adding a positive constantc, such as to obtain
l (y;y0) = yy0+ c which yieldsl (y;y0) = 2dy;y0 for c = 1. This transformation, however, is immaterial:
onceK has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: we maychange the relative
weights of positive and negative classes. This is achieved by transforming y ! cyy. For instance,
we may pickc+ = m� 1

+ andc� = m� 1
� . That is, we choose

y =
�

m� 1
+ 1>

m+
;m� 1

� 1>
m�

� >
which leads tol (y;y0) = m� 1

y m� 1
y0 yy0: (17)

That is, we give different weight to positive and negative class according to their sample size. As
we shall see in the next section, this corresponds to making the feature selection independent of the
class size and it will lead to criteria derived from Maximum Mean Discrepancy estimators (Gretton
et al., 2007a).

At this point, it is worth examining in more detail what it means to maximize HSIC in binary
classi�cation, as required in Step 3 of Algorithms 1 and 2 (see Section 4). When a linear kernel is
used on the observations, HSIC is related to a number of well-established dependence measures, as
we will establish in Section 6. Hence, we focus for the moment on the case where the feature space
F for the observations is nonlinear (eg, an RBF kernel), and we use the linear kernel (16) on the
labels. HSIC being the squared Hilbert-Schmidt norm of the covariance operator between the fea-
ture spacesF andG, it corresponds to the sum of the squared singular values of this operator. The
maximum singular value (COCO; see Gretton et al., 2005b) corresponds to the largest covariance
between the mappingsf1(X) andg1(Y) of X andY. Given a linear kernel is used on the labels,
g1(Y) will be a linear function on the label space. The nature off1(X) will depend on the choice of
observation kernelk. For a Gaussian kernel,f1(X) will be a smooth mapping.

We illustrate this property with a simple toy example in Figure 1. Figure 1(a) plots our obser-
vations, where one class has a bimodal distribution in featureX, with cluster centres at� 1. The
second class has a single peak at the origin. The maximum singular vectorf1(X) is shown in Figure
1(b), and is computed using a Gaussian kernel on the observations in accordance with Gretton et al.
(2005b). The resulting mapped points in Figure 1(c) have a strong linear relation with the labels
(which can only be linearly transformed). Thus, when a nonlinear kernel is used on the observations,
the features that maximize HSIC are those that can be smoothly mapped to have astrong linear cor-
relation with the labels. The family of smooth mappings is determined by the choice ofkernel on
the observations: as we see from Figure 1(b), too large or small a kernel can result in a mapping
that does not re�ect the lengthscale of the underlying difference in features. This demonstrates the
need for the kernel bandwidth selection step described in Section 4.

1408



FEATURE SELECTION VIA DEPENDENCEMAXIMIZATION

-1.5 -1 -0.5 0 0.5 1 1.5
X

(a)

-2 -1 0 1 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

X
f 1(X

)
 

 

s = 1´  10-3

s = 1´  10-1

s=1

(b)

-1 -0.5 0 0.5 1 1.5
f
1
(X)

(c)

Figure 1: Maximum eigenfunction of the covrariance operator. Figure 1(a) contains the original
data, where blue points have the label+ 1 and red points are labeled� 1. The feature of
interest is plotted along thex-axis, and an irrelevant feature on they-axis. Figure 1(b)
contains the largest eigefunction of the covariance operator on the relevant feature alone,
for three different kernel sizes: the smallest kernel shows over�tting, and the largest is
too smooth. Figure 1(c) contains the mapped points for a “good” kernel choices = 0:1,
illustrating a strong linear relation between the mapped points and the labels for this
choice ofs.

5.2.2 MULTICLASS CLASSIFICATION

Here we have a somewhat larger choice of options to contend with. Clearly the simplest kernel
would be

l (y;y0) = cydy;y0 wherecy > 0: (18)

For cy = m� 1
y we obtain a per-class normalization. Clearly, forn classes, the kernel matrixL can

be represented by the outer product of a rank-n matrix, where each row is given bycyi e
>
yi

, whereey

denotes they-th unit vector inRn. Alternatively, we may adjust the inner product between classes
to obtain

l (y;y0) =


y (y);y (y0)

�
(19)

wherey (y) = ey
m

my(m� my)
� z andz = (( m� m1) � 1; : : : ; (m� mn) � 1)> :

This corresponds to assigning a “one versus the rest” feature to each class and taking the inner
product between them. As before in the binary case, note that we may dropz from the expansion,
since constant offsets do not change the relative values of HSIC for feature selection. In this case
we recover (18) withcy = m2m� 2

y (m� my) � 2.
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5.2.3 REGRESSION

This is one of the situations where the advantages of using HSIC are clearlyapparent: we are able
to adjust our method to such situations simply by choosing appropriate kernels. Clearly, we could
just use a linear kernell (y;y0) = yy0which would select simple correlations between data and labels.

Another choice is to use an RBF kernel on the labels, such as

l (y;y0) = exp
�

� s̄

 y� y0


 2

�
: (20)

This will ensure that we capture arbitrary nonlinear dependence between x andy. The price is that
in this caseL will have full rank, hence computation of BAHSIC and FOHSIC are correspondingly
more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special cases of BAHSIC by choosing appro-
priate preprocessing of data and kernels. We will directly relate these criteria to the biased estimator
HSIC0 in (4). Given the fact that HSIC0 converges to HSIC1 with rateO(m� 1) it follows that the
criteria are well related. Additionally we can infer from this that by using HSIC1 these other criteria
could also be improved by correcting their bias. In summary BAHSIC is capable of �nding and
exploiting dependence of a much more general nature (for instance, dependence between data and
labels with graph and string values).

6.1 Pearson Correlation

Pearson's correlation is commonly used in microarray analysis (van't Veer et al., 2002; Ein-Dor
et al., 2006). It is de�ned as

Rj :=
1
m

m

å
i= 1

�
xi j � x̄ j

sx j

� �
yi � ȳ

sy

�
where (21)

x̄ j =
1
m

m

å
i= 1

xi j andȳ =
1
m

m

å
i= 1

yi ands2
x j

=
1
m

m

å
i= 1

(xi j � x̄ j )2 ands2
y =

1
m

m

å
i= 1

(yi � ȳ)2:

This means that all features are individually centered by ¯x j and scaled by their coordinate-wise
variancesx j as a preprocessing step. Performing those operations before applyinga linear kernel
yields the equivalent HSIC0 formulation:

trKHLH = tr
�

XX> Hyy> H
�

=


 HX> Hy





2
(22)

=
d

å
j= 1

 
m

å
i= 1

�
xi j � x̄ j

sx j

� �
yi � ȳ

sy

� ! 2

=
d

å
j= 1

R2
j : (23)

Hence HSIC1 computes the sum of the squares of the Pearson Correlation (pc) coef�cients. Since
the terms are additive, feature selection is straightforward by picking the listof best performing
features.
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6.2 Mean Difference and Its Variants

The difference between the means of the positive and negative classes at the jth feature,(x̄ j+ � x̄ j � ),
is useful for scoring individual features. With different normalization of the data and the labels,
many variants can be derived. In our experiments we compare a number ofthese variants. For
example, the centroid (lin) (Bedo et al., 2006),t-statistic (t), signal-to-noise ratio (snr), moderated
t-score (m-t) and B-statistics (lods) (Smyth, 2004) all belong to this family. In the following we
make those connections more explicit.

Centroid Bedo et al. (2006) usev j := l x̄ j+ � (1� l )x̄ j � for l 2 (0;1) as the score for featurej.4

Features are subsequently selected according to the absolute value
�
�v j

�
� . In experiments the

authors typically choosel = 1
2.

For l = 1
2 we can achieve the same goal by choosingL ii0 = yiyi0

myi myi0
(yi ;yi0 2 f� 1g), in which

caseHLH = L, since the label kernel matrix is already centered. Hence we have

trKHLH =
m

å
i;i0= 1

yiyi0

myi myi0

x>
i xi0 =

d

å
j= 1

 
m

å
i;i0= 1

yiyi0xi j xi0j

myi myi0

!

=
d

å
j= 1

(x̄ j+ � x̄ j � )2:

This proves that the centroid feature selector can be viewed as a specialcase of BAHSIC in the
case ofl = 1

2. From our analysis we see that other values ofl amount to effectively rescaling
the patternsxi differentlyfor different classes, which may lead to undesirable features being
selected.

t-Statistic The normalization for thejth feature is computed as

s̄j =

"
s2

j+

m+
+

s2
j�

m�

# 1
2

: (24)

In this case we de�ne thet-statistic for thejth feature viat j = ( x̄ j+ � x̄ j � )=s̄j .

Compared to the Pearson correlation, the key difference is that now we normalize each feature
not by the overall sample standard deviation but rather by a value which takes each of the two
classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is to normalize
each feature by ¯sj = sj+ + sj � instead. Subsequently the(x̄ j+ � x̄ j � )=s̄j are used to score
features.

Moderated t-score is similar tot-statistic and is used for microarray analysis (Smyth, 2004). Its
normalization for thejth feature is derived via a Bayes approach as

s̃j =
ms̄2

j + m0s̄2
0

m+ m0

wheres̄j is from (24), and ¯s0 andm0 are hyperparameters for the prior distribution on ¯sj (all s̄j

are assumed to beiid). s̄0 andm0 are estimated using information from all feature dimensions.

4. The parameterization in Bedo et al. (2006) is different but it can be shown to be equivalent.
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This effectively borrows information from the ensemble of features to aid with the scoring of
an individual feature. More speci�cally, ¯s0 andm0 can be computed as (Smyth, 2004)

m0 = 2G0� 1

 
1
d

d

å
j= 1

(zj � z̄)2 � G0
� m

2

�
!

; (25)

s̄2
0 = exp

�
z̄� G

� m
2

�
+ G

� m0

2

�
� ln

� m0

m

��

whereG(�) is the gamma function,0denotes derivative,zj = ln(s̄2
j ) andz̄= 1

d å d
j= 1zj .

B-statistic is the logarithm of the posterior odds (lods) that a feature is differentially expressed.
Lönnstedt and Speed (2002) and Smyth (2004) show that, for large number of features, B-
statistic is given by

B j = a+ bt̃2
j

where botha andb are constant (b > 0), andt̃ j is the moderated-t statistic for thejth feature.
Here we see thatB j is monotonic increasing iñt j , and thus results in the same gene ranking
as the moderated-t statistic.

The reason why these connections work is that the signal-to-noise ratio, moderatedt-statistic, and
B-statistic are three variants of thet-test. They differ only in their respective denominators, and are
thus special cases of HSIC0 if we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classi�cation, an alternative criterion for selecting features isto check whether the dis-
tributions Pr(xjy = 1) and Pr(xjy = � 1) differ and subsequently pick those coordinates of the data
which primarily contribute to the difference between the two distributions.

More speci�cally, we could use Maximum Mean Discrepancy (MMD) (Gretton et al., 2007a),
which is a generalization of mean difference for Reproducing Kernel Hilbert Spaces, given by

MMD = kEx [f (x)jy = 1] � Ex [f (x)jy = � 1]k2
H :

A biased estimator of the above quantity can be obtained simply by replacing expectations by av-
erages over a �nite sample. We relate a biased estimator of MMD to HSIC0 again by settingm� 1

+
as the labels for positive samples and� m� 1

� for negative samples. If we apply a linear kernel on
labels,L is automatically centered, that is,L1 = 0 andHLH = L. This yields

trKHLH = trKL (26)

=
1

m2
+

m+

å
i; j

k(xi ;x j ) +
1

m2
�

m�

å
i; j

k(xi ;x j ) �
2

m+ m�

m+

å
i

m�

å
j

k(xi ;x j )

=







1
m+

m+

å
i

f (xi) �
1

m�

m�

å
j

f (x j )







2

H

:

The quantity in the last line is an estimator of MMD with biasO(m� 1) (Gretton et al., 2007a). This
implies that HSIC0 and the biased estimator of MMD are identical up to a constant factor. Since the
bias of HSIC0 is alsoO(m� 1), this effectively show that scaled MMD and HSIC1 converges to each
other with rateO(m� 1).
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6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristianiniet al., 2003) to test di-
rectly whether there exists any correlation between data and labels. KTA has been used for feature
selection in this context. Formally it is de�ned as tr(KL )=kKkkLk, that is, as the normalized cosine
between the kernel matrix and the label matrix.

The nonlinear dependence onK makes it somewhat hard to optimize for. Indeed, for compu-
tational convenience the normalization is often omitted in practice (Neumann et al.,2005), which
leaves us with trKL , the corresponding estimator of MMD.5 Note the key difference, though, that
normalization ofL according to label size does not occur. Nor does KTA take centering intoac-
count. Both normalizations are rather important, in particular when dealing with data with very
uneven distribution of classes and when using data that is highly collinear in feature space. On the
other hand, whenever the sample sizes for both classes are approximatelymatched, such lack of
normalization is negligible and we see that both criteria are similar.

Hence in some cases in binary classi�cation, selecting features that maximizesHSIC also maxi-
mizes MMD and KTA. Note that in general (multiclass, regression, or generic binary classi�cation)
this connection does not hold. Moreover, the use of HSIC offers uniform convergence bounds on
the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2003) performs feature ranking using
the differences from the class centroids to the centroid of all the data, thatis

(x̄ j+ � x̄ j )
2 + ( x̄ j � � x̄ j )

2 ;

as a criterion to determine the relevance of a given feature. It also scores each feature separately.
To show that this criterion is related to HSIC we need to devise an appropriatemap for the labels

y. Consider the feature mapy (y) with y (1) = ( m� 1
+ ;0)> andy (� 1) = ( 0;m� 1

� )> . Clearly, when
applyingH to Y we obtain the following centered effective feature maps

ȳ (1) = ( m� 1
+ � m� 1; � m� 1) andȳ (� 1) = ( � m� 1;m� 1

� � m� 1):

Consequently we may express trKHLH via

trKHLH =







1
m+

m+

å
i= 1

xi �
1
m

m

å
i= 1

xi







2

+







1
m�

m�

å
i= 1

xi �
1
m

m

å
i= 1

xi







2

(27)

=
d

å
j= 1

0

@

 
1

m+

m+

å
i= 1

xi j �
1
m

m

å
i= 1

xi j

! 2

+

 
1

m�

m�

å
i= 1

xi j �
1
m

m

å
i= 1

xi j

! 2
1

A (28)

=
d

å
j= 1

�
(x̄ j+ � x̄ j )

2 + ( x̄ j � � x̄ j )
2
�

:

5. The denominator provides a trivial constraint in the case where thefeaturesare individually normalized to unit norm
for a linear kernel, since in this casekKk = d: that is, the norm of the kernel matrix scales with the dimensionalityd
of remaining features inX. The normalization in the denominator can have a more meaningful effect, however, for
instance in the taxonomy �tting work of Blaschko and Gretton (2009), where the quality-of-�t score could otherwise
be made arbitrarily large independent of the data.
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This is the information used by the shrunken centroid method, hence we see that it can be seen
to be a special case of HSIC when using a linear kernel on the data and a speci�c feature map on
the labels. Note that we could assign different weights to the two classes, which would lead to a
weighted linear combination of distances from the centroid. Finally, it is straightforward how this
de�nition can be extended to multiclass settings, simply by considering the mapy : y ! m� 1

y ey.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problems, except that in this case the
labels are continuous variables. We could, in principle, use an RBF kernel or similar on the labels
to address the feature selection issue. What we show now is that even fora simple linear kernel,
interesting results can be obtained. More to the point, we show that feature selection using ridge
regression can also be seen to arise as a special case of HSIC featureselection. We assume here that
y is centered.

In ridge regression (Hastie et al., 2001), we estimate the outputsy using the design matrixV
and a parameter vectorw by minimizing the following regularized risk functional

J = ky � Vwk2 + l kwk2 :

Here the second term is known as the regularizer. If we chooseV = X we obtain the family oflinear
models. In the general (nonlinear) caseV may be an arbitrary matrix, where each row consists of
a set of basis functions, for example, a feature mapf (x). One might conclude that small values of
J correspond to good sets of features, since there aw with small norm would still lead to a small
approximation error. It turns out thatJ is minimized forw = ( V> V + l I ) � 1y. Hence the minimum
is given by

J� = y> y � y> V(V> V + l I ) � 1V> y (29)

= constant� tr
h
V(V> V + l I ) � 1V>

i
yy> :

Whenever we are only givenK = V> V we have the following equality

J� = constant� tr
�
K(K + l I ) � 1�

yy> :

This means that the matrices

K̄ := V(V> V + l I ) � 1V> andK̄ := K(K + l I ) � 1

are equivalent kernel matrices to be used in BAHSIC. Note that obviouslyinstead of usingyy> as
a kernel on the labelsL we could use a nonlinear kernelin conjunctionwith the matrices arrived at
from feature selection by ridge regression. It also generalizes the setting of Hastie et al. (2001) to
situations other than regression.

6.7 Quadratic Mutual Information

Torr (2003) introduces the quadratic mutual information for feature selection. That is, he uses theL2

distance between the joint and the marginal distributions onx andy as a criterion for how dependent
the two distributions are:

I (x;y) =
Z Z

(Pr(x;y) � Pr(x) Pr(y))2dxdy: (30)
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In general, (30) is not ef�ciently computable. That said, when using a Parzen windows estimate of
the joint and the marginals, it is possible to evaluateI (x;y) explicitly. Since we only have a �nite
number of observations, one uses the estimates

p̂(x) =
1
m

m

å
i= 1

kx(xi � x);

p̂(y) =
1
m

m

å
i= 1

ky(yi � y);

p̂(x;y) =
1
m

m

å
i= 1

kx(xi � x)ky(yi � y):

Herekx andky are appropriate kernels of the Parzen windows density estimator. Denote by

ki j =
Z

kx(xi � x)kx(x j � x)dx and ni j =
Z

ky(yi � y)ky(y j � y)dy

inner products between Parzen windows kernels. In this case we have

kp̂(x;y) � p̂(x) � p̂(y)k2 = m� 2
h
trkn � 21> kn1+ 1> k11> n1

i
= m� 2kHnH:

In other words, we obtain the same criterion as what can be derived froma biased estimator of
HSIC. The key difference, though, is that this analogy only works wheneverk andn can be seen to
be arising from an inner product between Parzen windows kernel estimates. This is not universally
true: for instance, for graphs, trees, or strings no simple density estimatescan be found. This is a
serious limitation. Moreover, since we are using a plug-in estimate of the densities, we inherit an
innate slow-down of convergence due to the convergence of the densityestimators. This issue is
discussed in detail in Anderson et al. (1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector Machines and to determine
the relevance of features by the size of the induced margin as a solution of the dual optimization
problem (Guyon et al., 2002). While the connection to BAHSIC is somewhat more tenuous in this
context, it is still possible to recast this algorithm in our framework. Before we do so, we describe
the basic idea of the method, usingn-SVM instead of plainC-SVMs: forn-SVM without a constant
offsetb we have the following dual optimization problem (Schölkopf et al., 1999).

minimize
a

1
2

a> (K � L)a subject toa> 1 = nmanda i 2 [0;1]: (31)

This problem is �rst solved with respect toa for the full set of features. Features are then selected
from (31) by removing coordinates such that the objective function decreases least (if at all). For
computational convenience,a is not recomputed for a number of feature removals, since repeated
solving of a quadratic program tends to be computationally expensive.

We now show that this procedure can be viewed as a special case of BAHSIC, where now the
class of kernels, parameterized bys is the one ofconformalkernels. Given a base kernelk(x;x0)
Amari and Wu (1999) propose the following kernel:

k̄(x;x0) = a(x)a(x0)k(x;x0) where a(x) � 0:
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It is easy to see that

a> (K � L)a = y> [diaga]K [diaga]y = y> K̄y ;

whereK̄ is the kernel matrix arising from the conformal kernelk̄(x;x0). Hence for �xed a the
objective function is given by a quantity which can be interpreted as a biased version of HSIC.
Re-optimization with respect toa is consistent with the kernel adjustment step in Algorithm 1. The
only difference being that here the kernel parameters are given bya rather than a kernel widths.
That said, it is also clear from the optimization problem that this style of featureselection may not
be as desirable, since the choice of kernel parameters emphasizes only points close to the decision
boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of experiments. The current section
contains results on synthetic and real benchmark data, that is, data from Statlib, the UCI repository,
and data from the NIPS feature selection challenge. Sections 8 and 9 then discusses applications to
biological data, namely brain signal analysis and feature selection for microarrays.

Since the number of possible choices for feature selection within the BAHSICfamily is huge,
it is clearly impossible to investigate and compare all of them to all possible other feature selectors.
In the present section we pick the following three feature selectors as representative examples. A
wider range of kernels and choices is investigated in Section 8 and 9 in the context of biomedical
applications.

In this section, we presents three concrete examples of BAHSIC which areused for our later
experiments. We apply a Gaussian kernelk(x;x0) = exp(� skx � x0k2) on data, while varying the
kernels on labels. These BAHSIC variants are dedicated respectively tothe following settings:

Binary classi�cation (BIN) Use the feature map in (17) and apply a linear kernel.

Multiclass classi�cation (MUL) Use the feature map in (18) and apply a linear kernel.

Regression problem (REG)Use the kernel in (20), that is, a Gaussian RBF kernel onY.

For the above variants a further speedup of BAHSIC is possible by updating entries in the data kernel
matrix incrementally. We use the fact that distance computation of a RBF kerneldecomposes into
individual coordinates, that is, we use thatkxi � xi0k2 = å d

j= 1kxi j � xi0jk2. Hencekxi � xi0k2 needs
to be computed only once, and subsequent updates are effected by subtractingkxi j � xi0jk2.

We will use BIN, MUL and REG as the particular instances of BAHSIC in our experiments.
We will refer to them commonly as BAHSIC since the exact meaning will be clear depending on
the data sets encountered. Furthermore, we also instantiate FOHSIC using the same kernels as BIN,
MUL and REG, and we adopt the same convention when we refer to it in our experiments.

7.1 Arti�cial Data

We constructed 3 arti�cial data sets, as illustrated in Figure 2, to illustrate the difference between
BAHSIC variants with linear and nonlinear kernels. Each data set has 22 dimensions—only the �rst
two dimensions are related to the prediction task and the rest are just Gaussian noise. These data
sets are (i) Binary XOR data: samples belonging to the same class have multimodal distributions;

1416



FEATURE SELECTION VIA DEPENDENCEMAXIMIZATION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Arti�cial data sets and the performance of different methods when varying the number of
observations.The �rst row contains plots for the �rst 2 dimension of the (a) binary (b)
multiclass and (c) regression data. Different classes are encoded with different colours.
The second rowplots the median rank (y-axis) of the two relevant features as a function
of sample size (x-axis) for the corresponding data sets in the �rst row.The third row plots
median rank (y-axis) of the two relevant features produced in the �rst iteration of BAHSIC
as a function of the sample size. (Blue circle: Pearson's correlation; Green triangle:
RELIEF; Magenta downward triangle: mutual information; Black triangle: FOHSIC;
Red square: BAHSIC. Note that RELIEF only works for binary classi�cation.)

(ii ) Multiclass data: there are 4 classes but 3 of them are collinear; (iii ) Nonlinear regression
data: labels are related to the �rst two dimension of the data byy = x1exp(� x2

1 � x2
2) + e, wheree

denotes additive Gaussian noise. We compare BAHSIC to FOHSIC, Pearson's correlation, mutual
information (Zaffalon and Hutter, 2002), and RELIEF (RELIEF works only for binary problems).
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We aim to show that when nonlinear dependencies exist in the data, BAHSICwith nonlinear kernels
is very competent in �nding them.

We instantiate the arti�cial data sets over a range of sample sizes (from 40 to 400), and plot the
median rank, produced by various methods, for the �rst two dimensions ofthe data. All numbers
in Figure 2 are averaged over 10 runs. In all cases, BAHSIC shows good performance. More
speci�cally, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the �rst two dimensions of the data even
for small sample sizes; while FOHSIC, Pearson's correlation, and mutual information fail.
This is because the latter three evaluate the goodness of each feature independently. Hence
they are unable to capture nonlinear interaction between features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct features irrespec-
tive of the size of the sample. Pearson's correlation only works for largesample size. The
collinearity of 3 classes provides linear correlation between the data and thelabels, but due to
the interference of the fourth class such correlation is picked up by Pearson's correlation only
for a large sample size.

Nonlinear Regression DataThe performance of Pearson's correlation and mutual information is
slightly better than random. BAHSIC and FOHSIC quickly converge to the correct answer as
the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is able to rank the relevant features
(the �rst two dimensions) almost correctly in the �rst iteration. In the third rowof Figure 2, we show
the median rank of the relevant features produced in the �rst iteration as afunction of the sample
size. It is clear from the pictures that BAHSIC effectively selects features in a single iteration when
the sample size is large enough. For the regression case, we also see thatBAHSIC with several
iterations, indicated by the red square in Figure 2(f), slightly improves the correct ranking over
BAHSIC with a single iteration, given by the blue square in Figure 2(i).

While this does not prove BAHSIC with nonlinear kernels is always better than that with a linear
kernel, it illustrates the competence of BAHSIC in detecting nonlinear features. This is obviously
useful in a real-world situations. The second advantage of BAHSIC is that it is readily applicable to
both classi�cation and regression problems, by simply choosing a different kernel on the labels.

7.2 Public Benchmark Data

In this section, we compare our method, BAHSIC, to several state-of-the-art feature selectors on a
large collection of public benchmark datasets. BAHSIC achieves the overall best performance in
three experimental settings,i.e., feature selection for binary, multiclass and regression problems.

7.2.1 ALGORITHMS

In this experiment, we show that the performance of BAHSIC can be comparable to other state-of-
the-art feature selectors, namely SVM Recursive Feature Elimination (RFE) (Guyon et al., 2002),
RELIEF (Kira and Rendell, 1992),L0-norm SVM (L0) (Weston et al., 2003), and R2W2 (Weston
et al., 2000). We used the implementation of these algorithms as given in the Spider machine
learning toolbox, since those were the only publicly available implementations.6 Furthermore, we

6. The Spider toolbox can be found athttp://www.kyb.tuebingen.mpg.de/bs/people/spider .
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also include �lter methods, namely FOHSIC, Pearson's correlation (PC), and mutual information
(MI), in our comparisons.

7.2.2 DATA SETS

We used various real world data sets taken from the UCI repository,7 the Statlib repository,8 the
LibSVM website,9 and the NIPS feature selection challenge10 for comparison. Due to scalability
issues in Spider, we produced a balanced random sample of size less than2000 for data sets with
more than 2000 samples.

7.2.3 EXPERIMENTAL PROTOCOL

We report the performance of an SVM using a Gaussian kernel on a feature subset of size 5 and
10-fold cross-validation. These 5 features were selected per fold using different methods. Since
we are comparing the selected features, we used the same family of classi�ers for all methods:
an SVM with a Gaussian kernel. To address issues of automatic bandwidth selection (after all,
we are interested in adjusting the function class to the data at hand) we choses to be the median
distance between points in the sample (Schölkopf and Smola, 2002) and we �xed the regularization
parameter toC = 100. On classi�cation data sets, we measured the performance using the error rate,
and on regression data sets we used the percentage of variancenot-explained (also known as 1� r2).
The results for binary data sets are summarized in the �rst part of Table 1.Those for multiclass and
regression data sets are reported respectively in the second and the third parts of Table 1.

To provide a concise summary of the performance of various methods on binary data sets, we
measured how the methods compare with the best performing one in each data set in Table 1. We
recorded the best absolute performance ofall feature selectors as the baseline, and computed the
distance of each algorithm to the best possible result. In this context it makessense to penalize
catastrophic failures more than small deviations. In other words, we would like to have a method
which is at least almost always very close to the best performing one. Taking the`2 distance achieves
this effect, by penalizing larger differences more heavily. It is also our goal to choose an algorithm
that performs homogeneously well across all data sets. The`2 distance scores are listed for the
binary data sets in Table 1. In general, the smaller the`2 distance, the better the method. In this
respect, BAHSIC and FOHSIC have the best performance. We did not produce thè 2 distance for
multiclass and regression data sets, since the limited number of such data sets didnot allow us to
draw statistically signi�cant conclusions.

Besides using 5 features, we also plot the performance of the learners as a function of the num-
ber of selected features for 9 data sets (covertype, ionosphere, sonar, satimage, segment, vehicle,
housing, bodyfat and abalone) in Figure 3. Generally speaking, the smaller the plotted number the
better the performance of the corresponding learner. For multiclass and regression data sets, it is
clear that the curves for BAHSIC very often lie along the lower bound of all methods. For binary
classi�cation, however, SVM-RFE as a member of our framework performs the best in general.
The advantage of BAHSIC becomes apparent when a small percentage of features is selected. For
instance, BAHSIC is the best when only 5 features are selected from dataset 1 and 2. Note that

7. UCI repository can be found athttp://www.ics.uci.edu/ ˜ mlearn/MLSummary.html .
8. Statlib repository can be found athttp://lib.stat.cmu.edu/datasets/ .
9. LibSVM can be found athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/ .

10. NIPS feature selection challenge can be found athttp://clopinet.com/isabelle/Projects/NIPS2003/ .
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Data BAHSIC FOHSIC PC MI RFE RELIEF L0 R2W2
covertype 26.3� 1.5 37.9� 1.7 40.3� 1.3 26.7� 1.1 33.0� 1.9 42.7� 0.7 43.4� 0.7 44.2� 1.7
ionosphere 12.3� 1.7 12.8� 1.6 12.3� 1.5 13.1� 1.7 20.2� 2.2 11.7� 2.0 35.9� 0.4 13.7� 2.7

sonar 27.9� 3.1 25.0� 2.3 25.5� 2.4 26.9� 1.9 21.6� 3.4 24.0� 2.4 36.5� 3.3 32.3� 1.8
heart 14.8� 2.4 14.4� 2.4 16.7� 2.4 15.2� 2.5 21.9� 3.0 21.9� 3.4 30.7� 2.8 19.3� 2.6

breastcancer 3.8� 0.4 3.8� 0.4 4.0� 0.4 3.5� 0.5 3.4� 0.6 3.1� 0.3 32.7� 2.3 3.4� 0.4
australian 14.3� 1.3 14.3� 1.3 14.5� 1.3 14.5� 1.3 14.8� 1.2 14.5� 1.3 35.9� 1.0 14.5� 1.3

splice 22.6� 1.1 22.6� 1.1 22.8� 0.9 21.9� 1.0 20.7� 1.0 22.3� 1.0 45.2� 1.2 24.0� 1.0
svmguide3 20.8� 0.6 20.9� 0.6 21.2� 0.6 20.4� 0.7 21.0� 0.7 21.6� 0.4 23.3� 0.3 23.9� 0.2

adult 24.8� 0.2 24.4� 0.6 18.3� 1.1 21.6� 1.1 21.3� 0.9 24.4� 0.2 24.7� 0.1 100.0� 0.0�

cleveland 19.0� 2.1 20.5� 1.9 21.9� 1.7 19.5� 2.2 20.9� 2.1 22.4� 2.5 25.2� 0.6 21.5� 1.3
derm 0.3� 0.3 0.3� 0.3 0.3� 0.3 0.3� 0.3 0.3� 0.3 0.3� 0.3 24.3� 2.6 0.3� 0.3

hepatitis 13.8� 3.5 15.0� 2.5 15.0� 4.1 15.0� 4.1 15.0� 2.5 17.5� 2.0 16.3� 1.9 17.5� 2.0
musk 29.9� 2.5 29.6� 1.8 26.9� 2.0 31.9� 2.0 34.7� 2.5 27.7� 1.6 42.6� 2.2 36.4� 2.4

optdigits 0.5� 0.2 0.5� 0.2 0.5� 0.2 3.4� 0.6 3.0� 1.6 0.9� 0.3 12.5� 1.7 0.8� 0.3
specft 20.0� 2.8 20.0� 2.8 18.8� 3.4 18.8� 3.4 37.5� 6.7 26.3� 3.5 36.3� 4.4 31.3� 3.4
wdbc 5.3� 0.6 5.3� 0.6 5.3� 0.7 6.7� 0.5 7.7� 1.8 7.2� 1.0 16.7� 2.7 6.8� 1.2
wine 1.7� 1.1 1.7� 1.1 1.7� 1.1 1.7� 1.1 3.4� 1.4 4.2� 1.9 25.1� 7.2 1.7� 1.1

german 29.2� 1.9 29.2� 1.8 26.2� 1.5 26.2� 1.7 27.2� 2.4 33.2� 1.1 32.0� 0.0 24.8� 1.4
gisette 12.4� 1.0 13.0� 0.9 16.0� 0.7 50.0� 0.0 42.8� 1.3 16.7� 0.6 42.7� 0.7 100.0� 0.0�

arcene 22.0� 5.1 19.0� 3.1 31.0� 3.5 45.0� 2.7 34.0� 4.5 30.0� 3.9 46.0� 6.2 32.0� 5.5
madelon 37.9� 0.8 38.0� 0.7 38.4� 0.6 51.6� 1.0 41.5� 0.8 38.6� 0.7 51.3� 1.1 100.0� 0.0�

`2 11.2 14.8 19.7 48.6 42.2 25.9 85.0 138.3

satimage 15.8� 1.0 17.9� 0.8 52.6� 1.7 22.7� 0.9 18.7� 1.3 - 22.1� 1.8 -
segment 28.6� 1.3 33.9� 0.9 22.9� 0.5 27.1� 1.3 24.5� 0.8 - 68.7� 7.1 -
vehicle 36.4� 1.5 48.7� 2.2 42.8� 1.4 45.8� 2.5 35.7� 1.3 - 40.7� 1.4 -

svmguide2 22.8� 2.7 22.2� 2.8 26.4� 2.5 27.4� 1.6 35.6� 1.3 - 34.5� 1.7 -
vowel 44.7� 2.0 44.7� 2.0 48.1� 2.0 45.4� 2.2 51.9� 2.0 - 85.6� 1.0 -
usps 43.4� 1.3 43.4� 1.3 73.7� 2.2 67.8� 1.8 55.8� 2.6 - 67.0� 2.2 -

housing 18.5� 2.6 18.9� 3.6 25.3� 2.5 18.9� 2.7 - - - -
bodyfat 3.5� 2.5 3.5� 2.5 3.4� 2.5 3.4� 2.5 - - - -
abalone 55.1� 2.7 55.9� 2.9 54.2� 3.3 56.5� 2.6 - - - -

Table 1: Classi�cation error (%) or percentage of variancenot-explained (%). The best result, and
those results not signi�cantly worse than it, are highlighted in bold (Matlab signrank test
with 0:05 signi�cance level). 100.0� 0.0� : program is not �nished in a week or crashed. -:
not applicable.

in these cases, the performance produced by BAHSIC is very close to that using all features. In a
sense, BAHSIC is able to shortlist the most informative features.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meaningful in practice. Here
we use it to select a frequency band for a brain-computer interface (BCI) data set from the Berlin
BCI group (Dornhege et al., 2004). The data contains EEG signals (118channels, sampled at 100
Hz) from �ve healthy subjects (`aa', `al', `av', `aw' and `ay') recorded during two types of motor
imaginations. The task is to classify the imagination for individual trials.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The performance of a classi�er or a regressor (vertical axes) as a function of the number
of selected features (horizontal axes). Note that the maximum of the horizontal axes are
equal to the total number of features in each data set. (a-c) Balanced error rate by a SVM
classi�er on the binary data sets Covertype (1), Ionosphere (2) and Sonar (3) respectively;
(d-f) balanced error rate by a one-versus-the-rest SVM class�eron multiclass data sets
Satimage (22), Segment (23) and Vehicle (24) respectively; (g-i) percentage of variance
not-explained by a SVR regressor on regression data set Housing (25), Body fat (26) and
Abalone (27) respectively.

Our experiment proceeds in 3 steps: (i) A Fast Fourier transformation (FFT) is performed on
each channel and the power spectrum is computed. (ii ) The power spectra from all channels are
averaged to obtain a single spectrum for each trial. (iii ) BAHSIC is used to select the top 5 discrim-
inative frequency components based on the power spectrum. The 5 selected frequencies and their 4
nearest neighbours are used to reconstruct the temporal signals (with all other Fourier coef�cients
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(a) (b) (c)

(d) (e)

Figure 4: HSIC, encoded by the colour value for different frequency bands. The x-axis corresponds
to the upper cutoff and the y-axis denotes the lower cutoff (clearly no signal can be found
where the lower bound exceeds the upper bound). Red corresponds tostrong dependence,
whereas blue indicates that no dependence was found. The �gures are for subject (a) `aa',
(b) `al', (c) `av', (d) `aw' and (e) `ay'.

eliminated). The result is then passed to a normal CSP method (Dornhege et al., 2004) for feature
extraction and then classi�ed using a linear SVM.

Automatic �ltering using BAHSIC is then compared to other �ltering approaches: normal CSP
method with manual �ltering (8-40 Hz), the CSSP method (Lemm et al., 2005) andthe CSSSP
method (Dornhege et al., 2006). All results presented in Table 2 are obtained using 50� 2-fold
cross-validation. Our method is very competitive and obtains the �rst and second place for 4 of
the 5 subjects. While the CSSP and the CSSSP methods arespecializedembedded methods (w.r.t.
the CSP method) for frequency selection on BCI data, our method is entirely generic. BAHSIC
decouples feature selection from CSP, while proving competitive.

In Figure 4, we use HSIC to visualize the responsiveness of differentfrequency bands to motor
imagination. The horizontal and the vertical axes in each sub�gure represent the lower and upper
bounds for a frequency band, respectively. HSIC is computed for each of these bands. Dornhege
et al. (2006) report that theµ rhythm (approx. 12 Hz) of EEG is most responsive to motor imagi-
nation, and that theb rhythm (approx. 22 Hz) is also responsive. We expect that HSIC will create
a strong peak at theµ rhythm and a weaker peak at theb rhythm, and the absence of other respon-
sive frequency components will create block patterns. Both predictions are con�rmed in Figure 4.
Furthermore, the large area of the red region for subject `al' indicates good responsiveness of hisµ
rhythm. This also corresponds well with the lowest classi�cation error obtained for him in Table 2.
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Method aa al av aw ay
CSP(8-40Hz) 17.5� 2.5 3.1� 1.2 32.1� 2.5 7.3� 2.7 6.0� 1.6

CSSP 14.9� 2.9 2.4� 1.3 33.0� 2.7 5.4� 1.9 6.2� 1.5
CSSSP 12.2� 2.1 2.2� 0.9 31.8� 2.8 6.3� 1.8 12.7� 2.0

BAHSIC 13.7� 4.3 1.9� 1.3 30.5� 3.3 6.1� 3.8 9.0� 6.0

Table 2: Classi�cation errors (%) on BCI data after selecting a frequency range.

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create problems for applica-
tion, that is, it is not immediately clear which criteria we might want to choose. Here we provide
guidelines for choosing a speci�c member of the BAHSIC family by using geneselection as an
illustration.

9.1 Data Sets

While some past work focused on analysis of aspeci�c single microarray data set we decided to
perform a large scale comparison of a raft of techniques on many data sets. We believe that this leads
to a more accurate description of the performance of feature selectors. We ran our experiments on
28 data sets, of which 15 are two-class data sets and 13 are multiclass data sets. These data sets
are assigned a reference number for convenience. Two-class data sets have a reference number less
than or equal to 15, and multiclass data sets have reference numbers of 16and above. Only one data
set, yeast, has feature dimension less than 1000 (79 features). All otherdata sets have dimensions
ranging from approximately 2000 to 25000. The number of samples varies between approximately
50 and 300 samples. A summary of the data sets and their sources is as follows:

� The six data sets studied in Ein-Dor et al. (2006). Three deal with breastcancer (van't Veer
et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numbered 1, 2and 3), two with
lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, 5), andone with hepatocellular
carcinoma (Iizuka et al., 2003) (6). The B cell lymphoma data set (Rosenwald et al., 2002) is
not used because none of the tested methods produce classi�cation errors lower than 40%.

� The six data sets studied in Warnat et al. (2005). Two deal with prostate cancer (Dhanasekaran
et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Gruvberger et al., 2001; West,
2003) (9, 10), and two with leukaemia (Bullinger et al., 2004; Valk et al., 2004) (16, 17).

� Five commonly used bioinformatics benchmark data sets on colon cancer (Alon et al., 1999)
(11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Golubet al., 1999)(13), lym-
phoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19).

� Nine data sets from the NCBI GEO database. The GDS IDs and referencenumbers for this pa-
per are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 (22),GDS968 (23), GDS1021
(24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454 (28), and GDS1490 (15),
respectively.
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9.2 Classi�cation Error and Robustness of Genes

We used strati�ed 10-fold cross-validation and SVMs to evaluate the predictive performance of the
top 10 features selected by various members of BAHSIC. For two-class data sets, a nonlinear SVM

with an Gaussian RBF kernel,k(x;x0) = exp
�

� kx� x0k2

2s2

�
, was used. The regularization constantC

and the kernel widths were tuned on a grid off 0:1;1;10;102;103g � f 1;10;102;103g. Classi�-
cation performance is measured as the fraction of misclassi�ed samples. Formulticlass data sets,
all procedures are the same except that we used the SVM in a one-versus-the-rest fashion. A new
BAHSIC member are also included in the comparison, with kernels(kx � x0k + e) � 1 (dis; e is a
small positive number to avoid singularity) on the data.

The classi�cation results for binary and multiclass data sets are reported in Table 3 and Table
4, respectively. In addition to error rate we also report the overlap between the top 10 gene lists
created in each fold. The multiclass results are presented separately sincesome older members
of the BAHSIC family, and some competitors, are not naturally extensible to multiclass data sets.
From the experiments we make the following observations:

When comparing the overall performance of various gene selection algorithms, it is of primary
interest to choose a method which works welleverywhere, rather than one which sometimes works
well and sometimes performs catastrophically. It turns out that the linear kernel (lin) outperforms
all other methods in this regard, both for binary and multiclass problems.

To show this, we measure how various methods compare with the best performing one in each
data set in Tables 3 and 4. The deviation between algorithms is taken as the square of the differ-
ence in performance. This measure is chosen because gene expression data is relative expensive to
obtain, and we want an algorithm to select the best genes from them. If an algorithm selects genes
that are far inferior to the best possible among all algorithms (catastrophic case), we downgrade the
algorithm more heavily. Squaring the performance difference achieves exactly this effect, by penal-
ising larger differences more heavily. In other words, we want to choose an algorithm that performs
homogeneously well in all data sets. To provide a concise summary, we add these deviations over
the data sets and take the square root as the measure of goodness. These scores (called̀2 distance)
are listed in Tables 3 and 4. In general, the smaller the`2 distance, the better the method. It can
been seen that the linear kernel has the smallest`2 distance on both the binary and multiclass data
sets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) provide better genes for clas-
si�cation in three data sets from Table 4 (data sets 18 Alizadeh et al., 2000, 27 (GDS1319), and
28 (GDS1454)). These data sets all represent multiclass problems, where at least two of the classes
are subtypes with respect to the same supertype.11 Ideally, the selected genes should contain infor-
mation discriminating the classes. To visualise this information, we plot in Figure 5 the expression
value of the top-ranked gene against that of a second gene ranked in the top 10. This second gene
is chosen so that it has minimal correlation with the �rst gene. We use coloursand shapes to dis-
tinguish data from different classes (data sets 18 and 28 each contain 3 classes, therefore we use

11. For data set 18, the 3 subtypes are diffuse large B-cell lymphoma and leukemia, follicular lymphoma, and chronic
lymphocytic leukemia; For data set 27, the 4 subtypes are various C blastomere mutant embryos: wild type, pie-
1, pie-1+pal-1, and mex-3+skn-1; For data set 28, the 3 subtypes are normal cell, IgV unmutated B-cell, and IgV
mutated B-cell.
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3 different colour and shape combinations for them; data set 27 has 4 classes, so we use 4 such
combinations).

We found that genes selected using nonlinear kernels provide better separation between the
two classes that correspond to the same supertype (red dots and green diamonds), while the genes
selected with the linear kernel do not separate these subtypes well. In the case of data set 27, the
increased discrimination between red and green comes at the cost of a greater number of errors in
another class (black triangle), however these mistakes are less severe than the errors made between
the two subtypes by the linear kernel. This eventually leads to better classi�cation performance for
the nonlinear kernels (see Table 4).

The principal characteristic of the data sets is that the blue square class is clearly separated
from the rest, while the difference between the two subtypes (red dots andgreen diamonds) is
less clear. The �rst gene provides information that distinguishes the blue square class, however it
provides almost no information about the separation between the two subtypes. The linear kernel
does not search for information complementary to the �rst gene, whereasnonlinear kernels are
able to incorporate complementary information. In fact, the second gene thatdistinguishes the two
subtypes (red dots and green diamonds) does not separate all classes. From this gene alone, the blue
square class is heavily mixed with other classes. However, combining the two genes together results
in better separation between all classes.

(a) (b) (c)

(d) (e) (f)

Figure 5: Nonlinear kernels (MUL and dis) select genes that discriminate subtypes (red dots and
green diamonds) where the linear kernel fails. The two genes in the �rst row are represen-
tative of those selected by the linear kernel, while those in the second row are produced
with a nonlinear kernel for the corresponding data sets. Different colors and shapes rep-
resent data from different classes. (a,d) data set 18; (b,e) data set28; and (e,f) data set
27.
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9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kernel performed best in our
feature selection evaluation, yet also taking into account the existence of nonlinear interaction be-
tween genes (as demonstrated in Section 9.3), we propose the following two rules of thumb for gene
selection:

1. Always apply a linear kernel for general purpose gene selection.

2. Apply a Gaussian kernel if nonlinear effects are present, such as multimodality or comple-
mentary effects of different genes.

This result should come as no surprise, due to the high dimensionality of microarray data sets, but
we corroborate our claims by means of an extensive experimental evaluation. These experiments
also imply a desirable property of gene activity as a whole: it correlates wellwith the observed
outcomes. Multimodal and highly nonlinear situations exist, where a nonlinear feature selector is
needed (as can be seen in the outcomes on data sets 18, 27 and 28), yet they occur relatively rarely
in practice.

10. Conclusion

This paper provides aunifyingframework for a raft of feature selection methods. This allows us to
give tail bounds and asymptotic expansions for feature selectors. Moreover, we are able to design
new feature selectors which work well in practice by means of the Hilbert-Schmidt Independence
Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the feature subset that maximises
the dependence between the data and labels. The absence of bias and good convergence properties
of the empirical HSIC estimate provide a strong theoretical justi�cation for using HSIC in this
context. Although BAHSIC is a �lter method, it still demonstrates good performance compared
with more specialised methods in both arti�cial and real world data. It is also very competitive in
terms of runtime performance.12

A variant of BAHSIC can also be used to perform feature selection for unlabeled data. In this
case, we want to select a subsetT of variables such that it is strongly correlated with the full data
set. In other words, we want to �nd a compressed representation of the data itself in the hope that
it is useful for a subsequent learning tasks. BAHSIC readily accommodates this by simply using
the full data setX as the labels. Clearly, we want to maximize dependence between the selected
variables andX without adding many variables which are simply very much correlated to each other.
This ingredient is not yet explicitly formulated in the BAHSIC framework. We will investigate this
in the future.
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Data Set pc snr pam t m-t lods lin RBF dis rfe
1 12.7j3 11.4j3 11.4j4 12.9j3 12.9j4 12.9j4 15.5j3 19.1j1 13.9j2 14.3j0
2 33.2j1 33.9j2 33.9j1 29.5j1 29.5j1 27.8j1 32.9j2 31.5j3 32.8j2 34.2j0
3 37.4j0 37.4j0 37.4j0 34.6j6 34.6j6 34.6j6 37.4j1 37.4j0 37.4j0 37.4j0
4 41.6j0 38.8j0 41.6j0 40.7j1 40.7j0 37.8j0 41.6j0 41.6j0 39.7j0 41.6j0
5 27.8j0 26.7j0 27.8j0 26.7j2 26.7j2 26.7j2 27.8j0 27.8j0 27.6j0 27.8j0
6 30.0j2 25.0j0 31.7j0 25.0j5 25.0j5 25.0j5 30.0j0 31.7j0 30.0j1 30.0j0
7 2.0j6 2.0j5 2.0j5 28.7j4 26.3j4 26.3j4 2.0j3 2.0j4 30.0j0 2.0j0
8 3.3j3 0.0j4 0.0j4 0.0j4 3.3j6 3.3j6 3.3j2 3.3j1 6.7j2 0.0j0
9 10.0j6 10.0j6 8.7j4 34.0j5 37.7j6 37.7j6 12.0j3 10.0j5 12.0j1 10.0j0
10 16.0j2 18.0j2 14.0j2 14.0j8 22.0j9 22.0j9 16.0j2 16.0j0 18.0j0 32.5j0
11 12.9j5 12.9j5 12.9j5 19.5j0 22.1j0 33.6j0 11.2j4 9.5j6 16.0j4 19.0j0
12 30.3j2 36.0j2 31.3j2 26.7j3 35.7j0 35.7j0 18.7j1 35.0j0 33.0j1 29.7j0
13 8.4j5 11.1j0 7.0j5 22.1j3 27.9j6 15.4j1 7.0j2 9.6j0 11.1j0 4.3j1
14 20.8j1 20.8j1 20.2j0 20.8j3 20.8j3 20.8j3 20.8j0 20.2j0 19.7j0 20.8j0
15 0.0j7 0.7j1 0.0j5 4.0j1 0.7j8 0.7j8 0.0j3 0.0j2 2.0j2 0.0j1

best 3j2 4j1 5j1 5j6 3j10 5j9 3j0 4j2 1j0 5j0
`2 16:9 20:9 17:3 43:5 50:5 50:3 13.2 22:9 35:4 26:3

Table 3: Two-class data sets: classi�cation error (%) and number of common genes (overlap) for 10-fold cross-validation using the top
10 selected features. Eachrow shows the results for a data set, and eachcolumnis a method. Each entry in the table contains
two numbers separated by “j”: the �rst number is the classi�cation error and the second number is the number of overlaps. For
classi�cation error, the best result, and those results not signi�cantly worse than it, are highlighted in bold (Matlab signrank test
with 0:05 signi�cance level; a table containing the standard errors is provided in the supplementary material). For the overlap,
largest overlaps for each data set are highlighted (no signi�cance testis performed). The second lastrow summarises the number of
times a method was the best. The lastrow contains thè 2 distance of the error vectors between a method and the best performing
method on each data set. We use the following abbreviations: pc - Pearson's correlation, snr - signal-to-noise ratio, pam - shrunken
centroid, t - t-statistics, m-t - moderated t-statistics, lods - B-statistics, lin - centroid, dis - (kx � x0k + e) � 1, rfe - svm recursive
feature elimination)

Data 16 17 18 19 20 21 22 23 24 25 26 27 28 best `2

lin 36.7j1 0.0j3 5.0j3 10.5j6 35.0j3 37.5j6 18.6j1 40.3j3 28.1j3 26.6j6 5.6j6 27.9j7 45.1j1 6j6 32.4
RBF 33.3j3 5.1j4 1.7j3 7.2j9 33.3j0 40.0j1 22.1j0 72.5j0 39.5j0 24.7j4 5.6j6 22.1j10 21.5j3 5j5 37.9
dis 29.7j2 28.8j5 6.7j0 8.2j9 29.4j7 38.3j4 43.4j4 66.1j0 40.8j0 38.9j4 7.6j1 8.2j8 31.6j3 3j4 51.0

Table 4: Multiclass data sets: in this casecolumnsare the data sets, androwsare the methods. The remaining conventions follow Table 3.
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Appendix A. Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIC can also proceed by
converting problem (1) into a continuous optimization problem. By adding a penalty on the number
of nonzero terms, such as a relaxed`0 “norm” of a weight vector over the features we are able
to solve the problem with continuous optimization methods. Unfortunately, this approach does
not perform as well as the the backward elimination procedure proposedin the main text. For
completeness and since related methods are somewhat popular in the literature, the approach is
described below.

We introduce a weightingw 2 Rn on the dimensions of the data:x 7�! w � x, where� denotes
element-wise product. Thus feature selection using HSIC becomes an optimization problem with
respect tow (for convenience we write HSIC as a function ofw, HSIC(w)). To obtain a sparse solu-
tion of the selected features, the zero “norm”kwk0 is also incorporated into our objective function
(clearly k:k0 is not a proper norm).kwk0 computes the number of non-zero entries inw and the
sparsity is achieved by imposing heavier penalty on solutions with large numberof non-zero entries.
In summary, feature selection using HSIC can be formulated as:

w = argmax
w

HSIC(w) � l kwk0 wherew 2 [0;¥ )n: (32)

The zero “norm” is not a continuous function. However, it can be approximated well by a concave
function (Fung et al., 2002) (a = 5 works well in practice):

kwk0 � 1> (1� exp� aw): (33)

While the optimization problem in (32) is non-convex, we may use relatively moreef�cient opti-
mization procedures for the concave approximation of the`0 norm. For instance, we may use the
convex-concave procedure (CCCP) of Yuille and Rangarajan (2003). For a Gaussian kernel HSIC
can be decomposed into the sum of a convex and a concave function:

HSIC(w) � l kwk0 � tr(K(I � m� 111> )L(I � m� 111> )) � l 1> (1� e� aw):

Depending on the choice ofL we need to assign all terms involving exp with positive coef�cients
into the convex and all terms involving negative coef�cients to the concave function.
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