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Abstract

Assessing treatment effects in observational studies igltifateted problem that not only involves
heterogeneous mechanisms of how the treatment or caugenisazkto subjects, known as propen-
sity, but also differential causal effects across sub-faimns. We introduce a concept termed the
facilitating score to account for both the confounding ameracting impacts of covariates on the
treatment effect. Several approaches for estimating ttiétéding score are discussed. In par-
ticular, we put forward a machine learning method, calleasehinference tree (CIT), to provide
a piecewise constant approximation of the facilitatingracdNith interpretable rules, CIT splits
data in such a way that both the propensity and the treatnfiett decome more homogeneous
within each resultant partition. Causal inference at déffe levels can be made on the basis of
CIT. Together with an aggregated grouping procedure, Qtifies data into strata where causal
effects can be conveniently assessed within each. Besideasible way of predicting individual
causal effects (ICE) is made available by aggregating eblge@IT models. Both the stratified
results and the estimated ICE provide an assessment obbetegity of causal effects and can be
integrated for estimating the average causal effect (AERN square consistency of CIT is also
established. We evaluate the performance of proposed aeethith simulations and illustrate their
use with the NSW data in Dehejia and Wahba (1999) where thecti is to assess the impact of
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a labor training program, the National Supported Work (NS¥fhdnstration, on post-intervention
earnings.

Keywords: CART, causal inference, confounding, interaction, obatowal study, personalized
medicine, recursive partitioning

1. Introduction

Comparative studies that involve evaluation of the effect of an investigati@asment or a putative
cause on an outcome variable are fundamental in many application fielddafhmay come from
either a designed experiment or an observational study. Regardltss ddita sources, two major
issues exist when assessing the treatment effect: confounding aratiiereffects of covariates.

A confounding variable or confounder is an extraneous covariatedlates to both the treat-
ment and the response and hence influences the treatment effect esti@atitolling or adjusting
for confounders can be done in either design or analysis. In desexpetiments, randomization,
matching, cohort restriction, and stratification are commonly-used wayseictieély control for
confounding variables. However, observational studies are oftearilyeavailable choice due to
ethical or practical considerations. Causal inference with obserehtiata is particularly challeng-
ing. The main obstacle is the nonrandom treatment assignment mechanism, lirtlrehgubjects
select a treatment that they believe best serve their interests or areéxpastreatment according
to individual traits. As a result, systematic imbalance or heterogeneity maybetigeen individu-
als in the treated group and those in the control group. Thus it is cruciahtoot for confounders
in the analysis stage of such data. Common approaches include analysiaidhoce (ANCOVA),
propensity score methods (Rosenbaum and Rubin, 1983), and dieeytdit graphs (DAGs; Pearl
2000 and Spirtes, Glymour, and Scheines 2001). Even with randomipedmental data, covariate
imbalance can also be revealed when examining data in a multivariate manmsidé€ta hypo-
thetical example whena older women andn younger men are assigned to the treated group while
m older men anan younger women are assigned to the control group. The data appeapéu-be
fectly balanced in terms of either age or gender, despite the perfect imbaltitheir combination
levels. When the dimension of covariates gets high, each experimentakgaeiit&lly represents
an unique individual that is not replicable, which makes randomization édsgnt. This partially
explains why covariate adjustment is practiced even with randomized expé¢gindata. Associ-
ated with variable selection issues, additional challenges present thesngethe form of over-
or under- adjustment when confounders are incorrectly identifiedeXample, under-adjustment
occurs when an important confounder is uncollected in the data or exicitaie the model. On the
other hand, some intermediary outcome variables, often referred to-eféztiators, are important
in understanding the mechanism how and why the treatment becomes effe&van example
of over-adjustment, the treatment effect would be under-estimated whediatards mistakenly
considered as a confounder and included in the model for adjustment-a@ustment also may
occur when controlling for a collider that correlates with both the treatmeahtrenoutcome via an
‘M-diagram’ (Greenland, 2003).

In terms of influence of covariates on treatment effect assessmenteargiinally important
issue is interaction, also known as effect modification or effect moderéges e.g., VanderWeele
and Robins 2007 and VanderWeele 2009), which is concerned withradiffal treatment effects
at different levels or values of covariates. An effect modifier is a datathat interacts with the
treatment and changes the direction and/or degree of its causal effénet outcome. Existence of
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interaction complicates model interpretation. Detection of interaction is chalign@ithile inter-
actions are mostly formulated via cross-product terms in a linear model atritted to be of the
first- or second-order, complex nonlinear or higher-order interagtioay exist in reality. It is also
important to distinguish between qualitative interactions and quantitative ititerac Qualitative
interaction (Gail and Simon, 1985) occurs when there is a directionabeharterms of treatment
preference, a cause of greater concern to practitioners. Closdlydétetreatment-by-covariate in-
teractions, subgroup analysis (see, e.g., Lagakos 2006) is an irgagrai the analysis of clinical
trials. Practitioners and regulatory agencies are keen to know if thesibgeoups of trial partic-
ipants who are more or less likely to be helped or harmed by the interventi@r investigation.
Subgroup analysis helps explore the heterogeneity of the treatment adfess sub-populations
and extract the maximum amount of information from the available data. On tbe lodind, sub-
group analysis is subject to malpractice owing to difficulties in subgrouprdetation, multiple
testings, and lack of power. The new stimulating concept of personalizéitime or personalized
treatments (see, e.g., Jain 2009) is intended to refine the traditional medisade by capitalizing
on results of subgroup analysis or the knowledge of individualized tredtefiects. Nevertheless,
sorting out differential causal effects often entails large data thatodlexted at post-trial periods,
for example, the Medicare or Medicaid databases.

Assessments of confounding and interaction intervene with each othst.ofall, confound-
ing emerges as one primary issue in the assessment of the main effectroktrgalso known as
the average causal effect (ACE). However, ACE implicitly assumes herneity or unimportant
heterogeneity of causal effects. When strong treatment-by-covartaetaétion exists, ACE may
become less practically useful. This is the case especially when the interaaigalitative. Sup-
pose, for example, that the treatment effecd for half of the data (say, males) ane for the
other half (say, females), both having important scientific implications. ThE &Chis case is
null. When solely based on ACE, one would arrive at the misleading cdonltizat the treatment
does not have an effect. On the other hand, when the estimation biasl tauis@dequately han-
dled confounders gets overwhelming, it may be disguised as differeddhient effects. We shall
illustrate more on this point later with simulation in Section 4. Therefore, it is drtecizave both
confounding and interaction well addressed in comparative analysis.

Rubin’s causal model (Rubin, 1974, 1977, 1978, 2005) providesargl framework for making
these assessments, within which the treatment effect is finely calibratedeatifferent hierarchi-
cal levels (i.e., unit, subpopulation, and population) using a counterfaotdel and the concept
of potential outcomes. In this article, causal inference is explicitly refornailagea predictive
modeling problem within the framework of Rubin’s causal model. To approae introduce a
concept, termed facilitating score, to address both the confounding amdciirg impact of ex-
traneous variables on causal inference. Conditional on the facilitatorg,sesomogeneity can be
achieved in both the assignment mechanism and and the effect of the treaiinen we put for-
ward a causal inference tree (CIT) procedure, to approximate thiteftieg score with a piecewise
constant function. CIT recursively splits data into disjoint groups in susfay that both treatment
assignment mechanisms and the treatment effects become more homogeitigiousagh group.
On the basis of CIT, a group of recursive partitioning methods are dktasmake causal inference
at different levels.

The remainder of this paper is arranged in the following manner. In Sectitoll@ving an
outline of Rubin’s causal inference framework, the concept of facilgasicore is introduced and
methods for estimating the facilitating score are discussed. Section 3 préee613 methodology
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in detail. Section 4 contains simulation studies that are designed to investigaerfilienance of
CIT. An illustration is provided via a real data example in Section 5. In SectioveGextend the
results to situations where the treatment variable is ordinal or nominal. Sectindsrthe article
with a brief discussion.

2. Facilitating Scores

We first review Rubin’s causal models, then we introduce the facilitatingesmmncept and discuss
methods for estimating the facilitating score.

2.1 Causal Inference

In Rubin’s causal model (Rubin, 1974, 1977, 1978, 2005), a filibration of treatment effect is
facilitated by a comparison between the observed outcome on an individugit and the potential
outcome if the individual had been assigned to the counterfactual treajreermi. Adopting his
notations, lefQ = {w} be a finite population wittN units, endowed with a probability measure
that places uniform masglll on each unit. LeT =T (w) be a binary treatment assignment variable
with value 1 if unitw receives the putative treatment and 0 otherwise. While the term ‘treatment
assignment’ or ‘selection’ is best suitable for designed experiments, alleuske it throughout this
article. In addition, leiX = X(w) be ap-dimensional vector of measured covariates for unit

Let Yo = Yo(w) be the response that would have been observed ifeumiere assigned to the
control group and leY; = Y;(w) be the response that would have been observed itwreceived
the treatment. These two variables are cafletential outcome@Neyman, 1923). In reality, either
Yo(w) or Y1(w), but not both, can actually be observed depending on the valli¢wf, an inher-
ent fact called théundamental problem of causal inferen@dolland, 1986). Thus the observed
outcome is

Y(w) = {1-T(w)}Yo(w) + T (w)Y1(w).

Throughout this paper, we consider random sampling ffbso that{w;, ..., wn} forms an indepen-
dent and identically distributed (iid) sample of size The available data{(y;,ti,x) =
(Y(ox),t(wx),x(w)) 1 i =1,...,n} consist ofn realizations ofy, T, andX. For the sake of sim-
plicity, we sometimes omit unib from the notations.

Causal inference is concerned with the comparison of the two potentiaroatcvia the ob-
served data. Holland and Rubin (1988) distinguished three levels odldafesrences: unit level,
subpopulation level, and population level. The lowest level of causakinée is a comparison of
Yo(w) andY;(w), typically the differencer; (w) — Yo(w), for each unitw. Subpopulations can be
formed by restricting the values of covariates to a partitioRofThe causal effect in a subpopula-
tion {w: X(w) € B} isE(Y1|X € B) — E(Yp|X € B) for some Borel seB in the predictor spack.
The average causal effect (ACE) over the entire populd@as E(Y:) — E(Yp). These three levels
form a hierarchy of causal inference in decreasing order of dtieimgthe sense that knowledge of
upper-level causal inferences can be inferred from that of ladvkneel causal inferences, but not
vice versa. A preponderance of the literature in causal inferencatisreel on schemes for making
the population-level inference or estimating ACE under various scenarios

Rosenbaum and Rubin (1983) introduced the concept of balancirgtedackle the confound-
ing issue in causal inference. A balancing sdofe) accounts for the dependence betw&eand
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treatment assignment or selectibnthat is
X 1L T|b(X).

Treated and untreated subjects sharing the same balancing score tewel tioeehsame distribution
of covariates. Various covariate adjustment techniques implicitly adjustrfarstimated scalar
balancing score. They showed that the propensity score

e(x) =P(T =1|X =x),

which is defined as the conditional probability of assignment to the treateg green the measured
covariatesX, is the coarsest balancing score. Namb(y) is a balancing score if and only i x)
is finer thare(x), that is,e(x) is a function ofb(x).

Propensity score based matching, stratification (or subclassificatiahdinstment have been
extensively used to balance the discrepancy in covariates betweendtmeent groups in the as-
sessment of ACE. In propensity score analysis, the assumptgiroaf) ignorabilityplays a pivotal
role. Similar to that of missing at random (MAR) in the missing data literature (RW8IRG), this
assumption states thR{T | X, Yp, Y1) = P(T|X) or,

T 1L (Yo,Y1)|X.

It is possible that strong ignorability is violated even there are no unmeahsar@ables that are
direct causes of any pair of measured variables. See, for exammeni@nd (2003) for more
discussions. It is worth noting that this assumption does not implyThat Y | X. To illustrate,
consider a simple example where the causal effect at the unit level isaagnsamely,Y;(w) —
Yo(w) = 6 for anyw. Suppose thaty = f(X) +¢€ andY; = f(X) + &+ ¢, wheree LL X is the error
term. It follows thaty = 8T + f(X) + €. The ignorability assumption amountsgd.L T | X, which,
by no means, implie¥ LL T |X.

Under this assumption of strong ignorability, Rosenbaum and Rubin (1&88plished that
(Y1,Yo) LL T|b(X) when 0< e(X) < 1.1t follows that

E(M[b(X), T =1) —E(Yo[b(X), T = 0) = E(Ya[b(X)) — E(Yo|b(X)). (1)

Therefore, the population-level causal interpretation may be achigvaddraging over the distri-
bution ofb(X),

E(Y1—Yo) = Enx){E(Y2[b(X)) — E(Yo|b(X))}. (2
Equations (1) and (2) provide the basis for propensity score basedaseth

2.2 Facilitating Score

Parallel to confounding, interaction is concerned with differential daffects among units or sub-
populations. Itis important to note that both Equation (1) and (2) involvdacten of hierarchy in
causal inference, where individual-level inferences are integtat@@dke subpopulation-level infer-

ences or)p = {w: b(X(w)) = b} or sub-population level inferences are reduced to the population-
level inference oM. Such a reduction may not be taken for granted, because it implicitly assumes

homogenous lower-level causal effects. Specifically, if substantigrdifces in causal effects are
present at a lower level of inference, then transition to an upperitgezénce may not be plausible
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and conclusions based on upper-level causal effects can be migleaktis can be particularly
problematic when qualitative interactions exist.
To gain insight, note that with balancing sctnX),

X /L (Yo, Y1) |b(X).

As a result,dp(X) = E(Y1|b(X) = b) — E(Yo|b(X) = b) in (2) is not a constant, but a function of
X within the subpopulatio®y,. If &,(X) varies substantially witiX, we say that a treatment-by-
covariate interaction exists. In this case, the overall causal dfeat Qp becomes less pertinent
as it implicitly assumes thaj,(X) can be reduced to a constagt A fine delineation of treatment
effectdp(X) at the individual level is desirable in the efforts of advancing perscedlzedicines.
Even if estimatingd, is of interest, it cannot be summarized by direct comparison of treatment
means. Instead, it should be obtained by integrating over the distributirirof)y, that is,d, =
Ja, B(x) dp(x). Direct comparison of treatment means(®p makes another implicit assumption
that, withinQp, X follows a uniform distribution. The same problem remains when using (2) for
ACE estimation.

It is therefore critical to take both heterogeneous treatment assignmehtinigons and dif-
ferential treatment effects into consideration when assessing the treatfieets. We introduce a
concept termed facilitating score to address these two issues simultaneously.

Definition 1 A facilitating scoreap(X) is a gp-dimensional @ < go < p) function ofX such that
X 1L (Yo,Yl,T) | a()(X)

In this definition, the joint independence betweémnd (Yo, Y1, T) givenap(X) can be relaxed as
two marginal independence conditioné:LL T |ag(X) andX LL (Yo, Y1) |ao(X), which separately
address the confounding effect and the interacting effeet.dBut, if strong ignorability, that is,
T LL (Yo,Y1) | X, is further assumed, it follows that LL (Yp,Y1)|ao(X) and hence the marginal
independence implies the joint independence as well. Existenag(X} is guaranteed, sincé
itself can be regarded as a facilitating score.

Nevertheless, Definition 1 places strong requirementagi). Estimating the facilitating
score essentially involves jointly modelidYo, Y1, T} conditional onX, which is unworkable since
(Yo, Y1) can not be observed at the same time. To get around this difficulty, wecoastder a
weaker definition of facilitating score that is more practically useful.

Definition 2 A weak facilitating scor@(X) is a g-dimensionalq < g < p) function ofX such that
(i) X LL T|a(X) and (ii) E(Y1 — Yo|X) = E(Y1 — Yo|a(X)).

By condition (i), a weak facilitating scor&X) must be a balancing score; by condition (ii), any
effect moderation owing t& can be fully represented layX). Condition (i) is equivalent to saying
thatE (Y1 — Yola(X) = a) is independent oK. However, this does not necessarily imply that
E(Y1|X) = E(¥ila(X)) and E(Yo|X) = E(Yola(X)). 3)
There could exist a common functigX) that has been cancelled out in Condition (ii). Namely,

9(X) = EM[X) —E(Y1/a(X)) = E(Yo|X) — E(Yo[a(X)).
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A facility score must also be a weak facilitating score, but not vice versa.u$¢ the term ‘fa-
cilitating’ because conditioning oa(X) helps facilitate causal inference, in the sense that causal
inference within the sub-populatid®,; = {w: a(X(w)) = a} can be conveniently obtained via di-
rect comparison of sample mean responses. This is because bothgiiyoped the treatment effect
04 become constant withi€,.

Since the propensitg(X) is the coarsest balancing score, it follows tegX) = ein Q,. In
some scenario®(X) is explicitly a separate componenta(iX ), as exemplified by the parametric
approach outlined in Section 2.3; but this is not necessarily true in geasrakemplified by the
semi-parametric approach outlined in the same section. In terms of stratifictigmovides ad-
ditional refinements o€ = {w: e(X(w)) = e} in order to achieve homogeneous within-stratum
treatment effects.

Theorem 3 Suppose that the conditional joint density @t T) given X, fy1x(Y,T[X), can be
written as § 1x (Y, T|X) =g(Y, T,h(X)) for some function @). In other words(Y, T) LL X |h(X).
Assuming that treatment assignment is strongly ignorail¥,) is a weak facilitating score when
0<eX) <1

We defer the proof of Theorem 3 to Appendix A, where it is establishedsgecial case of a more
general resultin Theorem 7. Theorem 3 basically states that bothuwuatifig and interacting effect
of X on causal inference with the potential outconésYy) can be handled by working with the
observed datdY, T, X). More specifically, if the joint density ofY,T) given X can be accounted
for by a vector-valued functioh(X), that is, (Y, T) LL X|h(X), thenh(X) is a weak facilitating
score. Besides, it can be shown that Equation (3) holds(®, that is,E(Y1|X) = E(Y1/h(X)) and
E(Yo|X) = E(Yo|h(X)). This condition will be relaxed in Section 2.3.

Estimation ofh(X) involves modeling the joint distribution @Y, T) given X. Searching for a
satisfactoryh(X) is not an easy task; we have to look for approximate solutions. On the athdr h
it is no longer unattainable as the involved eleméntd, X) are all observed. Although(X) is
generally set as vector-valued, its dimension should be small in order t@abtcplly useful.

2.3 Estimating the Facilitating Score

We shall discuss three proposals for finding useful approximatioh$>6f, which are parametric,
semiparametric, and nonparametric in nature, respectively. While theyllarethodologically
interesting, we deem the nonparametric approach most practically useful.

The first method is parametric. Consider

FYLTIX) = f(Y[T,X)- £(T|X)
{fYT =101 -{f(Y[T=0X)}""T-f(T|X) (4)
by Bayes’ rule. With a parametric approach, we assume a model for éable terms in (4):
propensity score model fdi(T|X) and outcome regression models f@¥ |T = 0, X) andf (Y|T =

1,X). Itis convenient to modeT |X with logistic regression and mod¥| (T, X) with Gaussian
linear regression so that

OO = S ) (a0 T2 mhax))) T, ©
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wherego is the constant error variance;
H:E(Y‘T,X):Vo—l-le—i-hl(X)—i-T-hz(X); (6)

@(+) is the density function of the standard norntgl0, 1) distribution; andr(x) = exp(x)/(1+
exp(X)) is the logistic or expit function.

Proposition 4 Suppose that the propensity model can be specifie@oy-ee(hz(X)) as in (5) and
the conditional mean response giveh X) is formulated by (6). Under the assumption of strong
ignorability, h(X) = (hp(X),hg(X))! is a weak facilitating score.

The proof is provided in Appendix B. Proposition 4 says thdiX) is not a necessary component
of a weak facilitating score. It holds as long as the conditional mean outcaspedsfied by (6); in
other words, normality is not needed either. Besides, note that Equalim@ required with this
definition ofh(X).

To continue with the parametric approach, linearity is further enforcedegbtfX ) = Bthj for
j =1,2,3, whereX; contains selected componentsXfThe involved paramete= {f,y,0} can
be estimated via maximum likelihood in a straightforward manner. The likelihoaditumis

1O =[50 15" ) [] (e} (1B} ™ ~Lo-Le )

Clearly there is a variable selection issue involved. Note tRaf3,) are involved only inL; for
the outcome regression model whilgis involved only inL; for the propensity score model. This
property not only simplifies the likelihood optimization, but also allows for vdeigelection to be
performed separately for the propenS|ty model and outcome regressa®igno

With an estimatedh(x) = ([32x [33x) data can be stratified via combined use of the medians
or terciles of its components, similar to propensity score subclassificationle Wirs parametric
method provides a feasible approach for stratification, there are sdifficalties in practice. First
of all, it is a two-step approach. The final results rely on correct mqutifications. Moreover,
the number of strata has to be rather arbitrarily determined. The fachtkiis vector-valued
contributes added difficulties to execution. In particular, as the dimensiﬁl(mxc)fincreases, the
number of strata grows precipitously. Even with only two categories indogeghch component,
there are 2subclasses for g-dimensionah(x).

Another intuitive semi-parametric approach to estintg€) is via dimension reduction tech-
niques. In view of(Y,T) LL X|h(X), if it is further assumed that(X) is linear in X so that
h(X) = BX, then the subspace spanned by columnB,d$(B), is called the dimension-reduction
subspace that accounts for the conditional distributiofYoT ) givenX. Let Sy 1)x denote the in-
tersection of all dimension-reduction subspaces. Under some regsisnponssSy,1)x is also a
subspace, termed the central dimension-reduction subspace or spatal Sliced inverse regres-
sion (SIR; Li 1991) and its variants can be used to estirfigte)x. While further research efforts
are needed in handling the bivariate respdi¥s& ), there is no additional conceptual complication
involved. For example, one convenient approach is to first introg@8gslice indicator variables

Zst=H{ (W1 <Y <) N(T =1)},

wheres=0,1,...,§t=0,1; and{—0 =Yy, <y} < --- < Yg= +o} are pre-specified grid points
that defineSslices forY. Then the sliced regression method (Wang and Xia, 2008) can be applied
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to estimate the central mean spaceZof= (Zs), which approximates the central spagi@ 1) x-
Nevertheless, the same above-mentioned difficulties as in the parametoacppemain when it
comes to stratification on the estimated linear facilitating scores.

In the next section, we consider yet another recursive partitioningdha@nparametric alterna-
tive, which seems to provide a more satisfactory solution to the problem. fit&sreee refer to this
method as CIT for causal inference tree. CIT combines estimatitrix)fand data stratification
into one step. On the basis of CIT, we devise methods for making causednn&at different
levels.

3. Causal Inference via Recursive Partitioning

Tree-based methods (Morgan and Sonquist 1963 and Breiman et 4). d@&oximate the under-
lying function of interest with piecewise constants by recursively partitiottiegpredictor space.

At the same time, a tree structure offers natural grouping of data with eatghpiatable splitting
rules. With an automated algorithmic approach, CIT seeks disjoint groupkata homogeneous
joint density of(Y, T) within each. The resultant grouping rules, which are induced by birditg s

on the covariateX, are meaningfully interpretable, implying a nonparametric estimation of the
facilitating score.

In this section, we first follow the CART (Breiman et al., 1984) conventiondostruct one
single CIT, which consists of three steps: growing a large tree and sei¢lciroptimal subtree via
pruning and cross validation. On the basis of CIT, methods for causakimée at different levels
are then developed. CIT itself provides a natural stratification of datsutmpopulation inference.
An aggregated grouping method is introduced in order to enhance itgparfoe. Conditional
inference at the individual unit level can also be obtained by combinisglteefrom ensemble
CIT models. Both stratified and individualized causal effect estimates elpndepict variations
in propensity and treatment effects and make available a natural evaluatioa plausibility of
treatment comparability and ACE assessment. These results can also batéutdégr estimating
ACE estimates. Finally, we establish the mean square risk consistency ofnd€r aonditions
similar to those in CART (Breiman et al., 1984).

3.1 Causal Inference Trees (CIT)

Atree model can be expressed as a graph with connected nodespdadaorresponding to a subset
of the data. We us€” as a generic notation for a tree structure aridr a node. In tree modeling,
the effects ofX are exclusively explained by the splitting rules. To start the tree constnuctio
we consider one single split of data. When restricted to a nodee distribution of(Y,T) no
longer depends o, implying a constant propensity and a constant treatment effect. Following
decomposition of the joint densitiy(Y,T) = f;(Y|T) f;(T) within nodet, it is convenient to impose
that

T ~ Bernoulli(tg) and Y|T ~ AL{p= (1—T)pro+ T ph1, 0} .
We would like to comment that recursive partitioning can be viewed as a lodaizgroach with
local optimality achieved at each split. In local areas, the model needs betdomplicated and

often employs a parametric form. The procedure starts with splits that areupoitt something
that is relatively simple and then evolves into a comprehensive model bysiesly bisecting.
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The resultant tree model is nonparametric in nature and relatively robustab distributional
assumptions.
The associated log-likelihood function becomes

n 112
l; = —ETIn(Znoz) — W + N1 InTh 4+ NoIn(1— 1)

where {n;,no, N1} are the total number of observations in nadehe number of observations
in nodet that are assigned to the control group, and the number of observatiowslét that
are assigned to the treatment group, respectively. Maximum likelihood estimiatiee involved
parameters are explicitly availablég = ny1/ny, fro = Yro, fk1 = Vo1, andd? = SSE/ny, where

SSE= Y (i-ya)i+ 5 (%o
{iet: ti=1} {iet: t=0}

and {y.0,Yr1} are the sample average responses of the control and treatment graupdein
respectively. Up to a constant, the maximized log-likelihood function in nade

~ n
e 0= In (- SSE) + Nea Ny + ool o, (8)

Note that we have assumed a mean-shift Gaussian model with the same tteaistance for the
causal effect. If different variances are considered, the fimai faf I would be slightly different.

Without loss of generality, we consider binary splits only. When a splisects node into the
left child nodet, and the right child nodeg, the associated likelihood ratio test statistic is

LRT(S) = 2'(IAT|_+IATR_IAT)7 9)

where the max[mized log-likelihood score for nodgsandtg, ﬂL and fTR, can be obtained in the
same manner dsin (8). TheLRT; can be used as the splitting statistic to select the best split. After
removing irrelevant components, we have

LRT(s) O —ny/2-In(ny SSE )—ne,/2-In (N, SSE,) +
Mg 11NN 1+ N o INNg 0+ Nepa NN + Nego INNego.

The best splis* is the one that yields the maximuoRT(s) among all allowable splits. Accordingly
nodet is splitintot. andtr usings*. Subsequently, a similar procedure is applied to split either of
T, andtr. We repeat the procedure until some mild stopping rules are satisfied. Bomsstresults
in a large initial tree, denoted &.

The final tree model is a subtree @§. Nevertheless, it is practically infeasible to examine
every subtree because the number of subtrees increases rapidlyrasrther of terminal nodes
in 9p increases. The idea of pruning is to provide a subset of candidateessltiy iteratively
truncating off the ‘weakest link’ oflp. There are several pruning algorithms available, including the
cost-complexity pruning of CART (Breiman et al., 1984) for trees that aik bppon minimizing
within-node impurity, the split-complexity pruning of LeBlanc and Crowley @pRfbr trees that
are built upon maximizing between-node differences, and the AIC prufigy, Wang, and Fan
(2004) for trees that are built within the maximum likelihood framework. Sinkdei€essentially
likelihood based, the AIC pruning is adopted for direct use. We shafi kee descriptions concise
by referring the reader to appropriate references for greater details
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In the AIC pruning algorithm, the performance of a given tfEés measured by the Akaike
(1974) information criterion: A _
AlICr =-2-17+Ax (4-|7))

where the associated maximized log-likelihoodZofs

lr=73 I (10)

€T

A = 2 is the penalty parameter for tree complexity; &Addenotes the number of terminal nodes in
T, with T being the set of all terminal nodes‘iand|- | for cardinality when the argument is a set.
Note that each added terminal introduces four more new parametefso, L1, 07 }. Thus the total
number of parameters in tr&eis 4- |§“|. A tree with a smaller AIC is preferable. Alternatively, the
Bayesian information criterion (BIC; Schwarz 1978) wkhk= In(n) is another choice in common
use. At each step, the algorithm examines all available internal nodes oiflithiespresent tree and
truncates the link that results in the subtree with the smallest AIC. The pruridcggure yields a
nested sequence of subtregs- 71 > - -- Iy, wherey is the null tree structure with root node
only and “~" is read as “has subtree”.

The final step of tree size selection entails identifying the optimal fieffom the subtree
sequence. The same AIC or BIC measure can be used for this putposever, cross validation
is needed to validatlé[ in Equation (10), which can be done via either the test sample method or
resampling methodd/(fold cross-validation or bootstrapping), depending on the availablelsamp
size. Again, we refer readers to Su, Wang, and Fan (2004) for details
Remark Using the parametric approach in Section 2.3, an alternative splitting statistizecan
obtained by maximizing the between-node difference. To split nodiet Is denote the indicator
function corresponding to a permissible sglif . Consider model

Pr(T=1]x)
|Wﬁﬁ;ﬂg—%+&kmd

Y=Yo+W1T+VY2ls+VysT-Is+ o€ with € ~ A((0,1). (12)

In view of Proposition 4, the Wald test statistic for testiig: 31 = y3 = 0 can be used as the splitting
statistic. Since the log-likelihood function is separablefandy as shown in (7), ca\B,y) = 0.
After some algebraic simplification, the Wald test statistic is given by

1 1 1 1\ 1
+ + +
nTLO nTLl nTRO nTRl

whered? = {FL1y? — (M 0¥2 0+ M 1Y2 1 4 NoYZ0 + NipiY2e ) } /N is the MLE of 6% in model
(11).

<Iog nuonn@) *, {0 -Yo) G~ Veeo)

A~ )
Mt 1Mz0

3.2 Aggregated Grouping

Despite easy interpretability, one single tree model is notoriously unstable $etise that a minor
perturbation of the data could result in substantial changes in the finadtmesture. In order to
get around this problem, we propose an aggregated grouping methodgi@iatthe stratification
results from a number of competitive tree models. The key idea of this methodligaim am x n
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distance or dissimilarity matri® with entries that measure how likely each pair of observations is
assigned to different strata. Cluster analysis can then be applied flogringing.

The procedure is described as follows. letlenote the whole data set. At each iteratidior
b=1,...,B, generate bootstrap sampi¢® from L. Divide £® into two parts at random with a
ratio of 2:1, the learning sampleim and the test sampleéb). Using Lib), a large initial CIT‘IO(b)
is grown and pruned. With the aid of the test sampi@, a best-sized tre@,” is selected. Let
Ky = |§;(b)| be the number of terminal nodes‘iﬁl(b). Then we applyz;(b) to the whole dataC so

that each observation in falls into one and only one terminal node ‘ﬁfb). Next, we define an
n x n pairwise distance matri®, = {d;'} such that

g, —J 0 ff observationdi,i’} fall into the same terminal node ai®;
! 1 otherwise,

fori,i’ =1,...n. To computeDy, first obtain am x K, matrix Z, = (zy) such that

(12)

| 1 ifobservation falls into thek-th terminal node,
=10 otherwise,

fori=1,...,nandk=1,...,Ky. It follows that
Dp = ZpZL}. (13)

Next, the distance matrices are integrated by averaging®werations: D = ZE:1 Dp/B. It can

be seen that the entriesihsatisfy the triangle inequality and other properties that are required for
being a legitimate distance measures. Finally, we can apply a clustering algoritBnin order

to obtain the final data stratification. The number of clustersan be either determined by the
clustering algorithm itself or preset as the mod&gt. Other techniques for exploring distance or
proximity matrices can also be applied, such as multidimensional scaling (MD&rson 1958).
The whole procedure is outlined in Algorithm 1.

Algorithm 1 Pseudo-Codes for Aggregated Grouping
SetB < number of repetitions.
for b=1toBdo
— Generate bootstrap samplé?.
— Randomly divide data® into {£.”, £{”'} with a ratio of 2:1.
— Grow a large CIT%(b) usingLib) and prune.
— Select the best tre@(b) usinng(b). LetKy = |§;(b) |.
— Apply ‘T*(m to dataZ and compute distance matig = (d;i/) such thatj =1
if observation paiKi,i’} falls into different nodes of® and 0 otherwise.
end for
ObtainD «+ 1/B-SE , Dy;
ObtainK <~ mod€K,:b=1,...,B}.
Apply a clustering algorithm ob with K clusters.

We also suggest an optional alternative for computing the distance niatriwhich is moti-
vated by the amalgamation or node merging idea of Ciampi et al. (1988). Itvimoa that non-
neighboring terminal nodes in a final tree structure do not show muchetiffes from each other.
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This is because similar patterns in treatment assignment and effect maytosur-populations
with different characteristics. By taking this issue into consideration of tartte matrixDy, in
Algorithm 1, a more effective way of grouping data may be achieved.

To do so, we first obtain K, x K, pairwise distance matrik, = {k } for all the terminal nodes
in Q;(b), the best-sized tree obtained in thh iteration. Herek = k(t,T’) > 0 denotes the distance
between two terminal nodest’ € ‘ﬂb), which can be defined as the logworth (i.e., the negative
logarithm with base 10) of the p-value obtained from a likelihood ratio test)ithg& compares
with T. That is,

K(T,T') = —log,o(p-value.

The likelihood ratio test can be conducted using all data.ihe smaller the p-value, the larger
the difference betweenandt’ is, as reflected by a larger valueft, v). Elements in matriXDp
are then defined by

dir = k(t(i), (")),

wheret(i) denotes the terminal node into which theh observation falls. In matrix fornD, can
be computed as

Dy = ZpKbZ}, (14)

whereZy, is given by (12). Thdy in (13) can be viewed as a special case of (14) Wigh= 1.

With modifiedDy, in (14), there are two immediate consequences: first, the distapcesD
may not necessarily satisfy the triangle inequality; secondly, the numberabtcfusterK can no
longer be suggested by the best tree sizes. Instead, it has to be detielbynihe clustering algo-
rithm itself. Recent work on automatic determination of the optimal number of cfustexempli-
fied by Tibshirani, Walther, and Hastie (2001) and Wang (2010). Bothadsthre computationally
demanding.

Compared to one single CIT, the aggregated grouping produces a nmnatacand stable
grouping of data. Its results can help evaluate the instability of CIT. Howewe drawback is loss
of interpretability of the stratification rules.

3.3 Summarizing Strata and ACE Estimation

To summarize the finak strata obtained from either one single CIT or the aggregated grouping
method, estimated propensity rageand the treatment effedd can be obtained for each stratum.
Such information helps delineate the heterogeneity structures in both aseigneehanisms and
effects of the treatment. Strata with extremely low or high propensities may thedexicfrom
causal inference due to lack of comparison basis. One may take a lipprabah when inspecting
differential causal effects acrosstrata. The use of ACE to summarize treatment effects can be
tentatively justified unless strong evidence for qualitative interaction exI$ts is similar to the
common practice in multi-center trials. While the quantitative treatment-by-centeadtiten is
commonly seen, the overall efficacy of an investigational drug can stilstebkshed as long as
there is no significant directional change in the comparison. An estimate BfAG given by

~ K N — _
A= kzl re (Yk1 — Yko) (15)
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with sampling variance approximated by

K K2
zl:lg. (Sil+5§o> (16)

& N1 Nko

where(37k1,§1) are the sample mean and variance of obseMedn the treated group of thieth
stratum and similar definitions apply to other quantities. Additional covariatesiagnt within
each terminal node can be made and alternative stratification estimates ofrA@&aiable, as
summarized and discussed in Lunceford and Davidian (2004).

Propensity score stratification or subclassification seeks subpopulatidosm Q. = {w:
e(X) = e}, in which homogeneity of treatment effects, however, can not be gigg@n Direct
comparison of the mean responses could give a distorted estimate of théeféers inQ.. Com-
paratively, CIT and aggregating grouping offer refined stratificatmthat the causal effect within
each resultant stratuf, can be correctly captured, which consequently offers improved estima-
tion of ACE. Alternatively, one may try to correct the problem with propensigre stratification
by applying additional ANCOVA-typed adjustment within each stratum. It is ingmdrto note
that ANCOVA does no help with this correction, unless effect modificationdsriporated into the
model by allowing for treatment-by-covariate interaction terms. This appreauld consist of
two steps. In the first step, a number of strata are obtained by stratifyipgipsity scores. In the
second step, an extended ANCOVA model that allows for interactions igfiitveach stratum. We
may adopt an approach explained by Aiken and West (1991) in order ke tha overall causal
effect inQe appear as a regression coefficient. This approach fits a linear modeirof

E(Y|Ti Xi) = Bo+ 86T + BX, + T -y, (17)

wherexi = x; — E(X|Qe) for i € Q¢ denotes the centered covariate vector. Then the paradeter
in (17) coincides with the overall causal effectq. Finally, the ACE is estimated by combining
0¢'s via (15). The CIT stratification roughly resembles this two-step apjprdascribed above, yet
with additional advantages. First, the facilitating score offers a unified gettiere these two steps
are naturally combined. Secondly, how to specify interaction terms in (h7ins a dazzling task,
which, however, can be efficiently handled with recursive partitioninglin C

3.4 Predicting Individual Causal Effects (ICE)

With the advent of research with biobanks, molecular profiling technologies been greatly ad-
vanced to allow for collection of a patient’s proteomic, genetic, and metaboticnnaition. Given
various information collected on a patient, how to customize treatments to the umaligidhest
needs has posed great challenges to players in the field of persomaézézine, including statisti-
cians. A fine delineation of treatment effects plays a critical role in suchaamuls.

For this purpose, we definéitividual causal effe¢t(ICE) as a conditional expectatida(Y; —
Yo|X), given a subject wittK = x. ICE is conceptually different from the unit level causal effect
Y1(w) — Yo(w). Strictly speaking, ICE makes conditional causal inference at the subgiam level
{w: X(w) =x}. On the other hand, ICE is the best that one could practically do with availdbte in
mation in order to approximate the unit level causal effect. Especially whierhigh-dimensional
and has many continuous components, it is likely that each vadweresponds uniquely to urut
with X (w) = x. In what follows, we devise a powerful method via ensemble CITs to prégieby
borrowing ideas from random forests (Breiman, 2001).
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To proceed, we first randomly divide datainto V folds. To ensure similar proportions of
individuals in the treatment groups across all folds, stratified sampling widtifi&tation onT can
be used. Let, denote thew-th fold and ) = L — £, for the remaining data.

Algorithm 2 Pseudo-Codes for Predicting Personal Causal Effects (ICE)
SetV, B, andm.
Randomly split dateC intoV sets{ Ly, ..., Ly }, with stratification orir.
forv=1toV do
SetL) = L— L.
for b=1toBdo
— Generate bootstrap sammévb)) from L.

— Grow a CITQE\(IE’) using L((\?)) without pruning. At each split, onlyn randomly selected
variables are used. A B
— Estimate causal effects; and propensitg,“for eacht € ‘sz,t)’) based or’ ).

— Apply T ® to datars,.

v)

— computeA” ande® for eachi € £,NT, via A, and;.

end for

Obtain{A;, &} as averages df(A"”, &) :b=1,...,B}, for eachi € £,.
end for
Merge estimatedA;, &} into dataZ using ID key.
return L.

We drawB bootstrap samples from,,). With each bootstrap samprq(\?)), grow a moderately-

sized CITT\(,?) without pruning. When constructi \(,b), we adapt the approach in random forests
(Breiman, §001), where onlyn randomly selected variables and their associated cutoff points are
evaluated at each split. This tactic helps improve the predictive perforntgnde-correlating the

tree models in the random forests. For each terminal mc&iévz\(,k;), estimates of the causal effect
and propensity,

Ar =y —Yo and € =g/,
are computed using data ij). Then we applyf(\(,l;) to L) and predict the ICéi(b) and propensity
scoreefb) for each individual € £,. Specifically,

AP =A; and &” =g,

if the i-th individual falls into the terminal node The final predicted ICE and propensity for the

individual are 8
(b
q( ).

A 1B .
Ai:—ZAi(b) and € =
B:1 b=1

W+~

Their standard errors can also be obtained from the bootstrap repetitions

The same procedure is repeated for each fold to estimate ICE and pippases for all
individuals in L. The whole method is described in Algorithm 2. Further exploration can be don
with the estimated ICE and propensity scores and some illustrations are gi8ewation 5. While
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we have used ¥-fold cross-validation approach in Algorithm 2, the method can be directliyegpp
to an independent future sample for predicting ICE. Other featuresdionaforests such as variable
importance ranking and partial dependence plots could also be adoptadigal inference.

Some alternative ways of predicting ICE are discussed below. First afialstandard method
for modeling treatment-by-covariates interaction in many application fields isadifiear model
with first-order cross-product terms, that is,

y = Bo+BiT+PBox+T-Box+e
= PBo+PBox+ (B1+P5x) T +e. (18)

The ICE is formulated a§3; + ng), which is also linear irx. While this parametric approach is
readily available, it relies heavily on linearity and is subject to a greater fislodel misspecifica-
tion.

Another convenient way for predicting ICE is to use the ‘regression estimiapproach, as
described in Schafer and Kang (2008). In this approach, we sepafiaa predictive model (pos-
sibly using machine learning techniques) ¥arusing data in the treated group only and a predic-
tive model forYy using data in the untreated group only. Then we apply these models to obtain
predicted valuesyi1,Vio) for the potential outcomes for every subject in the data. ICE can be esti-
mated ad\; = Vi1 — Vio. Alternatively, the observed response can be used in the calculationtso tha
A = Vi — Vo for the treated group antj = ¥i1 —V; for the untreated group. Note that this regression
estimation method solely involves the outcome models. The underlying rationalsed ba the
fact thatE(Y;|X =Xx) = E(Y|X =x,T =t) fort = 0,1, given strong ignorability and other condi-
tions. However, the prediction across treatment groups heavily invokeegpelation, again due to
the imbalance in covariates. When used for ACE estimation, Schafer argl(Ra68) found that
it is not among the top performers, but may be possibly improved by incatipgrthe propensity
score into the model.

Estimating ICE also emerges as one intermediate step in some ACE inferenedypascin-
cluding structural nested models introduced by Robins (1989), mardgingitigral models (see,
e.g., Robins 1999), and the targeted maximum likelihood method (see, e.genlaaeth and Rubin
2006). These procedures are particularly advantageous in dealingpwgitudinal observational
data where both treatment and covariates are time-varying, but they arapglcable to cross-
sectional or ‘point treatment’ data. Two estimation methods are commonly usedsia ghoce-
dures: the g-computation and the inverse probability of treatment weight#ig/\(). Model (18)
is often embedded in either method, for handling effect moderators in IPTh¥ing used as the
Q-model in g-computation (see, e.g., Snowden, Rose, and Mortimer 201ajgeted maximum
likelihood (see, e.g., Rosenblum and van der Laan 2011) to model adidtgpetential outcomes.
With g-computation, it is clear that other semiparametric or nonparametric dapgiveedmethods
(as in ‘the ‘regression estimation’ approach) can be flexibly used fatigting potential outcomes
for each observation under each possible treatment regimen. Seea\aadePolley, and Hubbard
(2007) and Austin (2012) for examples.

Yet another method for estimate IGHY: — Yo|X = X) directly is to relaxX = x to a neigh-
borhood ofx, A’(x). Such a neighborhood of can be facilitated using eithé-nearest neighbor
(KNN) or, more generally, kernel smoothing. If KNN is used, 4¢t(x) denote the corresponding
neighborhood ok. A natural estimate of ICE is given by

2ixiengoo T T xengx) Yi(1-T)
ZiZXiEM(X)Ti Zi:xieﬂ\&(x)(l_-ri) .
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This KNN approach assigns weight 1Koobservations withim (x) and weight O to others. More
generally, we may use kernel smoothing to have weights dependifigienx || for all data points.
To make it more robust to non-random treatment assignment mechanism, itbeiglaissible to
incorporate propensity score into the weights as well. While this implementatiamohagen seen
in the literature, it has some promising potentials for its nonparametric naturdesedves further
research. On the other hand, a neighborhood defined with high-dimehsiata could have poor
performance and the computation could be demanding. In addition, intaipmnetath respect to
covariates becomes obscure with nearest neighbor approaches.

Comparatively, the essential ingredient in our ensemble CIT approattaigied causal esti-
mates within subpopuatiorx : a(x) = a}, which is intermediary in-between ACE and ICE. We
have the convenience to either move forward for ICE with ensemble modelsver lmackward for
ACE by integrating stratified results. It is natural to use tree methods foaatxtg strata. Tree-
structured methods are nonparametric in nature and hence more robustebmisspecification.
Recursive partitioning excels in efficiently handling interactions and catsdwariables and pro-
vides meaningful interpretations. Besides, ensemble models usuallymsri@tter in predictive
modeling. With that being said, a comprehensive comparison study of thesetve approaches
in predicting ICE would be interesting for future research.

3.5 Consistency

In terms of asymptotic properties of recursive partitioning based estim&aisnan et al. (1984)
provided detailed developments of convergenadghirmean and uniform convergence on compacts.
Gordon and Olshen (1984) established the almost sure convergetieeaamtain constraints. In
this section, consistency of the CIT based causal effect estimator isledown the light of Breiman

et al. (1984).

Let the predictor spackE € RP be Euclidean. A tree structufg partitionsX into a number of
disjoint sets or terminal nodds : T € ‘f‘}. Again,t(x) denotes the terminal node whexélls into.
Letd(-) be the diameter of a set, that 8y(T) = SUp v || X —X' ||, where|| - || is the Euclidean
norm. With the observed data of singlet k,, be nonnegative constants such that, with probability
one, ~

n: > kylogn foranyt e 7,

where, same as before;; is used to denote the number of subjects in nodeat are assigned
to the treated group, that is;; = S Ti, andny for the control group. Suppose that) is a
weak facilitating score and; = ¥ a(xi) denotes its mean vector in nodeLet (Y1,Y,Y, T,X) €

T represent a new observation that is independent of current{@datd;,x;) : i = 1,...,n}. The
following theorem establishes the mean square risk consistendy:for yro), the causal effect
estimate based on direct comparison of sample means in the terminal aode).

Theorem 5 Suppose that
max{E|Y1|?™¢, E[Yo|*"®} <M < « for somee > 0and M> 0, (19)

0 < e(x) < 1, and treatment assignment is strongly ignorable. Assume thatdj and E(Yo|a) are
continuous im anda(x) is continuous irx. Further assume that

lim kg = co. (20)

n—oo
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and
r!g])odn(T) =0 (21)
in probability. Then
lim E | (V1 — Yro) — E{Y1 — Yol a(x) = &}|* = 0. (22)

The results in Theorem 5 can be improved_toconvergence for any > 1 if we change the as-
sumption (19) to
EVi"™ <M < o and E[Yp|" "™ <M < .

This can be immediately seen from the proof provided in Appendix C, whHetheaarguments
we have used hold ih; spaces. Toth and Eltinge (2010) has recently proved asymptotic design
L, consistency of tree-based estimator when applied to complex survey débayirig similar
arguments in Gordon and Olshen (1978, 1980). It is worth noting thatdhatzThompson ( 1952)
typed estimator via inverse probability weighting has fundamental use in basialdaference with
observational data and in estimation the superpopulation mean with stratifiey siata.

These convergence results for recursive partitioning are obtaineduwittependence on the
specifics of the algorithm. Unfortunately, no theoretical justifications haes lwbtained so far
for the splitting rules and pruning algorithms (p. 327; Breiman et al. 1984ebVer, one of key
assumptions for consistency requires that the mesh sizegoés to 0 when the sample size gets
large, as implied by assumption (21). This is an unappealing constrain ticpfapplications.

4. Simulated Experiments

In this section, simulation experiments are performed to first understanasards CIT and make
comparisons with other methods and then investigate how CIT performs nmiskecification.

4.1 Performance of CIT

In terms of applications of tree methods relevant to treatment effect asssisshere have been two
major developments serving different purposes: 1) propensity trdggi{gt estimate the propen-
sity scoree(X), as studied by McCaffrey, Ridgeway, and Morral (2004) and Lessler, and Stuart
(2010); and 2) interaction trees (IT) for subgroup analysis (Su €2@09). An interaction tree ex-
plicitly models the treatment-by-covariates interactions for detecting diffetéra@ment effects.
However, this method was developed for experimental data and doekedh&non-randomized
treatment assignment into account. As we shall demonstrate, failure ogurseto account for
propensity information may lead to misleading interaction results, in that thefmigletifference
in treatment effects might have been caused merely by heterogenous treagteetion mecha-
nisms.

We generate data with the following steps.

1. Generat&, ... Xs independently from Unif(0,1) and create threshold varialles 1;x; <o)
forj=1,...,5.

2. Setlogitm) = ag+ a1Z; + axZ with logit(m) = log{m/(1— ) }. Generatél ~ Bernoulli(T).

3. Setu=bg+ by T 4 pZ5 + bsZz + baZy + bsT - Z4 and generat¥ ~ A(l, 62) with 0 = 1.
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In addition to the response varialdeand treatment indicatdr, each data set involves five covari-
ates. In the above simulation strategy, covarktés an exposure or treatment predictor involved
in the propensity model only; is a confounder that relates to bothandyY, X3 is a response pre-
dictor or prognostic factor, is an effect-modifier, anfs is a totally irrelevant covariate. All the
covariate values are rounded at the second decimal place.

By applying different values for the coefficierds i = 0,1,2, andbj, j =0,...5, we can obtain
different model configurations, for example, containing either interacifooonfounding terms,
both, or neither. We can also investigate how these tree methods handiatesthat play different
types of roles in the causal pathway betwdeandY. Specifically we consider the following five
model configurations:

/.

/.

/.

Model A. a={a;}=(2,0,0/, b={bj}=(2200,0,0
Model B. a={aj}=(2,2,-4), b={bj}=(2,2,2,2,2,2
ModelC. a={a;}=(2,0,—4), b={bj}=(2,2,2,0,2,2
( ) (
( (

/.

~— ~— ~— ~—

Model D. a={aj} =(2,2,—-4), b={bj} =(2,2,2,0,0,0
Model E. a={aj}=(22-4), b={bj}=(220,022).

Model A is a null model, where the covariates have no influence on the tretgffiect. This model
helps investigate the size issue or the type | error rate. Model B is equipipiedll structures.
Nevertheless, a massive tree with 16 terminal nodes is needed in orddy tefuesent the model
structure. Model C also contains both confounding effect,oénd interacting effect aky, while
neitherX; nor Xz is involved. In this case, a tree with four terminal nodes is expected. Madel
mainly involves the confoundexy, plus the exposure predict®f. Lastly, the active components
in Model E are the effect modifief, and the prognostic factofs.

For each simulated data set, all three tree methods, CIT, IT, and PT, gliedapOnly one
sample size is reported and the test sample method is used to select the optisiakiredth 600
observations for the training sample and 400 observations for the teslesddgth AIC and BIC
are used for the tree model selection. For each final tree selected;avd tiee optimal tree size and
the splitting variables involved in the final tree structure. Table 1 presensuthenarized results
over 200 simulation runs.

We first examine the results from the null Model A. When BIC is used, adletiree methods
seem rather conservative in committing Type | errors, implying that unsolisitgdils are unlikely
to be identified. With AIC, the empirical size, that is, the rate of giving false signals, i100—
90.5)% = 9.5% for CIT, (100— 88.5)% = 11.4% for IT, and(100— 98.5)% = 1.5% for PT.

Next, Model B contains all the components that are related to the treatmetiienesponse.
Experimenting with this model provides an overall picture of what patterds #ae method tends
to recognize. It can be seen that CIT yields the largest tree models by roatthing the effects of
Xz, X3, andXy. The treatment predictof; is completely missed out by BIC and occasionally (32%
of the time) selected by AIC. Note thXi is neither a confounder nor a modifier to the treatment
effect. Due to the smaller penalty for mode complexity, AIC tends to selectrlanags than BIC.
As expected, the final propensity trees are split by baqtandX,. The average final tree size of IT
is 2.92, compared to its expected value 2. It is interesting to note that ITeindggets confused
by the confounding effect of,.

Model C contains only the components that actively influence the cadsatsfnamely, the
confounderX, and the effect-modifieK,s. Both are perfectly identified by CIT. PT performs well
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Selection Final Tree Size Splitting Variables
Model Method Criterion 1 2 3 4 5 6>7 X3 X2 X3 X3 Xs

A CIT AIC 905 55 15 15 1.0 0.0 00 45 20 25 20 20
BIC 1000 00 00 0.0 00 00 00 00 00 00 0.0 00

IT AIC 885 60 45 10 00 00 00 25 40 35 30 30
BIC 1000 0.0 00 00 00 00O 0O 00 00 00 0.0 00

PT AIC 985 05 10 00 00 00 00 05 05 05 10 00
BIC 1000 00 00 0.0 00 00 00 00 00 00 0.0 00

B CIT AIC 0.0 40 0.0 195 55 395315 320 96.0 96.0 100.0 1.5
BIC 00 40 00 260 00 615 85 0.0 96.0 96.0 100.0 0.0

IT AIC 0.0 6.5 25.0 505 13.0 3.0 20 7.0 935 6.0 100.0 8.0
BIC 0.0 405 285 270 35 05 0.0 1.0 595 0.5 100.0 1.0

PT AIC 0.0 05 335 615 40 05 00 995 1000 05 20 15
BIC 00 10 515 465 1.0 0.0 0.0 99.0 1000 0.0 0.5 0.0

C CIT AIC 0.0 00 45 9.5 50 0.0 00 1.0 100.0 2.0 100.0 0.5
BIC 0.0 00 45 9.5 00 0.0 0.0 0.0 100.0 0.0 100.0 0.0

IT AIC 0.0 470 355 140 15 15 05 0.5 525 05 100.0 25

BIC 0.0 555 33.0 100.0 1.0 05 0.0 0.0 445 0.0 100.0 0.0

PT AIC 00 975 10 15 00 00 00 1.0 1000 10 05 05
BIC 0.0 100.0 0.0 0.0 0.0 00 00 0.0 1000 0.0 0.0 0.0

D CIT AIC 0.0 1.0 835 110 2.0 15 1.0 99.0 1000 2.0 25 45
BIC 0.0 105 895 0.0 0.0 0.0 00 895 1000 0.0 0.0 0.0

IT AIC 15 43.0 315 180 45 10 05 55 985 3.0 45 20
BIC 0.2 545 280 140 15 00 0.0 1.0 980 05 15 0.0

PT AIC 0.0 00 335 620 25 15 05 1000 1000 20 25 1.0
BIC 0.0 1.0 495 490 05 0.0 0.0 99.0 1000 0.0 0.0 0.0

E CIT AIC 00 00 25 89.0 85 0.0 00 15 3.0 100.0 100.0 2.0
BIC 0.0 00 25 975 00 0.0 0.0 0.0 0.0 100.0 100.0 0.0

IT AIC 0.0 900 90 1.0 00 00 00 25 15 25 100035

BIC 15 975 10 00 00 00O 0O 05 00 00 985 05

PT AIC 965 35 00 00 00 00 OO 15 05 10 05 0.0

BIC 985 15 00 00 00 00 0O 10 05 00 0.0 0.0

Table 1: Simulation Results Based on the Test Sample Method: Relative rfi@gsi€in percent-
ages) of the final tree sizes in 200 runs identified by the causal infetese (CIT), inter-
action tree (IT), and propensity tree (PT). Only one set of sample sizepasted, with
600 observations forming the learning sample and 400 observations festreample.

in identifying the confoundeX; while IT succeeds in recognizing the effect-modifigr The same
interesting phenomenon as with Model B occurs again: IT wrongly se¥easite often. This will
further be elaborated in Model D.

Model D is basically a propensity model, involving both the exposure preditand the
confounderX; only. In this case, CIT and PT provide equivalent results. Aiming at rdiffgal
treatment effects, IT is supposed to have a null tree structure. Howegeran see that most of
time IT ends up with one or more splits . To gain insight, Figure 1 plots the splitting statistic
used in both IT and CIT versus each cutoff point ¥orin a single split of the data. The splitting
statistic used in IT is a squarédest statistic for interaction; thus the best cutoff point corresponds
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@
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squared t statistic for interaction
10
1

LRT used in CIT

x2

Figure 1: Plot of splitting statistic versus cutoff point on the confounder (a) t test statistic
(squared) for interaction used in IT; (b) likelihood ratio test statistic (uptoesconstant)
used in CIT. Data were generated from Model D in Section 4.

to the maximum of splitting statistics. It is interesting to note in Figure 1(a) that the gplittin
statistic actually reaches its minimum>gt = 0.5, the only place where the treatment comparison
is unbiased. At other cutoff points, the splitting statistic as a measure of itiberaisleadingly
inflates due to lack of adjustment for propensity. On the contrary, thismlutesause a problem for
CIT, which correctly selects the right cutoff point 0.5 as shown in Figp. ITherefore, in order

to identify differential causal effects correctly, it is critical to take canfders into consideration;
otherwise, the estimation bias owing to imbalance of confounders betweémergagroups may
become overwhelming and eventually lead to misleading conclusions abouffénerdial causal
effects.

Finally, Model E is essentially an outcome regression model, in which both thgnpstic
factor Xz and the effect-modifieXs are involved. It can be seen that CIT functions similarly to IT in
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Effect Propensity Case | Case ll Case Il Case IV
Group A & Dy & Dy & Dy & Dy &
1 -1940 0.156 —2.077 0.189 —3.246 0.502 —2.005 0.171 —2.106 0.201
2 2.067 0.866 1.924 0.861 1.925 0.86%10.098 0.857 1.916 0.860
3 —1938 0.843 1987 0.829 —2.629 0.676 —1.016 0.840 —2.006 0.824

Table 2: Simulation Results for Assessing Sensitivity of CIT to Misspecificatimur scenarios
are considered. In Case |, variable$, X2, X3, X4} are used; In Case I, the confounder
Xo is omitted; In Case lll, the effect-modifietz is omitted; In Case 1V, the collideXs
is included. The estimated treatment effect and propensity for each grengpaveraged
over 100 runs.

detecting treatment-by-covariate interactions. CIT also identifies splits omdgagstic factoixs.
It comes as no surprise that PT, concerning propensity only, givell sige for most of the time.

4.2 Sensitivity under Misspecification

We next investigate how CIT performs under misspecified scenariogwaheémportant confounder
or effect-modifier is omitted or when a collider is included. We design an ewrpet with the
following data generation scheme:

1. Generat&s,..., Xs independently from Unif(0,1) and create threshold variaBjes 1;x, < 5
forj=1,....4

2. Generat&\yh andW, independently from Bernoulli(0.5) and hence simuldge~ A (2W; +
2Wh, 1).

3. Set logitr) = 0.5— 23 Z, +W;. Generatd ~ Bernoulli(Tt).
4. Setu=2+272,7,—2T +47Z,Z3T +W, and generatg ~ A (W, 1).

The observed data consist of repetitiong¥6fX, ..., Xs}. With the above configuratiorx; is both

a confounder and an effect-moderatés;is a confounderXs is a moderatorXy is irrelevant; and

Xs is a collider with theM diagram model (see, e.g., Figure 2(a) in Greenland 2003). The data
essentially involve three groups with either different propensities or tredtefiects. Observations

in Group 1 satisfieZ;Z, = 1; Group 2 is characterized §§ — Z;)Z3 = 1; and Group 3 contains the
others.

In order to assess sensitivity, an independent validation set wib0bobservations is first gen-
erated. Based on true grouping, the causal effect and propensigpdb group are computed and
presented in Table 2. Next, a total of 100 simulation runs are considesedagh simulation run, a
training set with 600 observations and a test set with 400 observatiogereeated, on which basis
ClITs are constructed using different sets of variables. In Caseigqblas{ Xy, Xp, X3, X4} are used;
Case Il use$ X1, X3, X4} with confoundeiX, omitted; In Case l11{X1, X2, X4} are used by omitting
the moderatoiXs; In Case IV,{ X, X2, X3, X4, X5} are used by including the collidé. Each final
CIT (based on BIC) is applied to the validation set to compute the individumlataffectd; and
propensitye” for each observation in the validation set. The predicted ICEs and sitiesrare
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aggregated for each group, based on the true grouping. The grocapeal effect and propensity
estimates are then averaged over 100 simulation runs. The results arecalsoted in Table 2. It
can be seen that, in Case |, CIT does very well in estimating treatment edfet{zropensities. In
both Case Il and Case lll, substantial bias is present in estimating the treadfieets. The results
for Case IV suggest that the collid&g also introduces bias. However, compared to the bias from
omitting a confounder or moderator, the bias from including a collider is muctlesmdhis is
consistent with the conclusions in Greenland (2003).

5. Analysis of NSW Data

As an illustration, we revisit the NSW data set extensively analyzed by had ¢1986) and Dehejia
and Wahba (1999), where the objective is to assess the impact of the dlaiopported Work
(NSW) Demonstration on post-intervention income levels. The NSW demonstratie a labor
training program implemented in the mid-1970s to provide work experiences feriod of 6-
18 months to individuals facing economic and social difficulties. NSW itself dessgned as a
randomized controlled study where subjects were randomly assigned tcewtmént groups: the
NSW-exposed group and the unexposed group.

With a rather innovative approach that later on became influential, LaL@r886) compiled
a composite data set by taking subjects in the NSW-exposed group only emalttaining the
nonexperimental control group from other sources, including thelFdndy of Income Dynamics
(PSID) and the Current Population Survey (CPS) databases. His arovweaamine the extent to
which nonexperimental estimators can replicate the unbiased experiméimalte of the treatment
impact. He concluded that nonexperimental estimators are either inacceledieerto the experi-
mental benchmark or sensitive to model specification. Since then, the mixatddd& have been
analyzed by various authors with alternative approaches. Among pbehigjia and Wahba (1999)
obtained estimates of the treatment effect that are close to the experimarmtiaitzgk estimate or
the ‘gold’ standard using propensity score matching and stratification.

Most of these previous works are focused on estimating the ACE of N&¥¢ We shall apply
the CIT methods to explore the variabilities of its effects, in addition to dealing wéthdmrandom
treatment assignments. There are several versions of the data withgvsoyirces for obtaining the
control or unexposed group, available frdwtp://www.nber.org/ ~ rdehejia/nswdata.html
The data set we use is the one available in the R paddatghlt contributed by Ho et al. (2007,
2011). Thisis a subset restricted to males who had 1974 earnings avdiabie reasons explained
in Dehejia and Wahba (1999). There are 614 observations (185 traated29 control) and 10
variables in the data, which include the treatment assignment indicator. Adasefiption and
some summary statistics of these variables are provided in Table 3. The outadai#e isre78 ,
the 1978 earnings. All covariates kmstuc are severely unbalanced between the participants actively
exposed to NSW and those in the unexposed group selected from athey databases.
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(a) Propensity Tree (b) Interaction Tree

Not b?/ \ re74 < 27%4\
156 87
re74 < 0.0147 /\ 36208
20.75 9.267

83.152 66.69

(c) Causal Inference Tree

-\
A A

22 156 7 186 121 55 / \

15.10 70.22

Figure 2: Final Tree Models for the NSW Data: (a) Propensity Trednfbyaction Tree; (c) Causal
Inference Tree.
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(a) Continuous Variables

Variable All NSW Exposed Unexposed P-value
Name Description mean sd mean sd mean sd two-samplWilcoxon
age Age in years 27.36 9.88 25.82 7.16 28.03 10.79 0.0107 0.5195
educ  Schooling years 10.27 2.63 10.35 2.01 10.24 2.86 0.6330 0.7920
re74 1974 earnings 4,557.55 6,477.96 2,095.57 4,886.62 5,619.24 6,788.75 0 0.000 0.0000
re75 1975 earnings 2,184.94 3,295.68 1,532.06 3,219.25 2,466.48 3,292.00 2 0.001 0.0000
re78 1978 earnings 6,792.83 7,470.73 6,349.14 7,867.40 6,984.17 7,294.16 20.3340.2818

(b) Discrete Variables

Variable Frequency P-value
Name Description NSW Exposed Unexposed X Fisher's Exact
black 0-No 29 342 0.0000 0.0000
1 - African-American 156 87
hispan 0-No 174 368 0.0053 0.0026
1 - of Hispanic origin 11 61
married 0-No 150 209 0.0000 0.0000
1-Yes 35 220
nodegree  0-No 54 173 0.0113 0.0106
1 - Has a high school degree. 131 256

Table 3: Variable description and summary statistics for the NSW data set.rAlhga are expressed in U.S. dollars.
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(a) Propensity Tree
NSW Group Unexposed Group Estimated
Node size mean sd size mean sd Propensity
I 20 8.1423 6.6646 75 5.2302 6.3981  21.05%
I 9 6.0534 4.9218 267 8.1712 7.6170 3.26%
1 156 6.1363 8.1435 87 4.8534 6.2017 64.20%

(b) Interaction Tree

NSW Group Unexposed Group Treatment Effect
Node size mean sd size mean sd estimate s.e.
I 83 5.0392 5.1160 152 5.2804 5.5401 -0.2412 0.7192
Il 66 8.4894 10.3819 69 3.4528 5.8233 5.0366 1.4576
[ 36 5.4455 7.0965 208 9.4007 8.0201 —3.9552 1.3070

(c) Causal Inference Tree

NSW Group Unexposed Group Estimated  Treatment Effect
Node size mean sd size mean sd Propensity  estimate s.e.
I 22 81431 6.3676 156 4.8438 5.6728 12.35% 3.2993 1.3118
I 7 5.4539 5.3997 186 9.7759 8.0259 3.62% —4.3221 3.0634
1 71 4.6987 4.8043 55 4.8545 5.9303 56.35% —0.1558 0.9564
v 15 3.8662 3.9130 10 1.0999 2.8541 60.00% 2.7663  1.4438
\Y 70 8.0809 10.7408 22 6.5570 7.3371 76.09% 1.5239 2.4565

Table 4: Summary statistics for the terminal nodes: (a) the final propensityRi8; (b) the final
interaction tree (IT); and (c) the final causal inference tree (Cliig means and standard
deviations are given in thousand dollars.

We applied three tree procedures to the data: PT, IT, and CIT. Thetfewlistructures, all
selected by BIC, are plotted in Figure 2. Considering the moderate sampla bizetstrap method
was used for final tree selection. In Figure 2, the internal nodes ametkby circles. The splitting
rule is given under each internal node. Observations satisfying theyoule the left child node
and observations not satisfying go to the right child node. The terminagshatk denoted by
rectangles and renamed by Roman numerals inside. Underneath eachlteoaénia the number of
exposed subjects versus the number of unexposed subjects within thealerotia. Some summary
statistics for the terminal nodes in each final tree are provided in Table 4.

Figure 2(a) gives the final PT structure, which delineates a meaningfielidgeneity in propen-
sity. It is clear that African Americans were more likely to participate in this lglyogram. PT
also identifies a group, terminal node I, with extremely low propensity (3)26¥his group is
characterized by people who were not African Americans and had saoméin 1974. However,
this PT model tells nothing about differential treatment effects.

Figure 2(b) displays the final IT structure. Variable84 andage stand out as determinants
of differential causal effects. Apparently remarkable differentiahtireent effects seem to exist
across the three terminal nodes based on Table 4(b). However, ssnagethod does not adjust
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Figure 3: Aggregated Grouping for the NSW Data: (a) Multidimensiondireg@dMDS) plot; (b)
Dendrogram for hierarchical clustering with average linkage. Thermistanatrix was
computed by aggregating 100 bootstrap samples.
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for heterogeneous propensity, the results are not reliable. Hence e moafurther attempt in
interpreting.

Figure 2(c) presents the final CIT model, which has a more compreleessivcture. It is
interesting to see that the left-half of the tree resembles the PT tree in Figyrér2particular, the
CIT comes up with a similar terminal node I, which contains non-African Anagrsowith income
higher than $2,721 in 1974. Since CIT accounts for both propensity iffiedethtial causal effects,
it is valid to estimate the NSW effect via direct comparison of sample means witbimteaminal
node. Table 4(c) provides the relevant quantities. CIT also identifies sueresting patterns
of differential treatment effects. The surprising comparison occurgrairtal node I, where the
NSW-exposed group had a lower average income than the unexpasgrvgith a mean difference
of $4,322. However, this should not be a point of great concern duts teery low propensity
3.62%.

o NSW
e Control

personal causal effect

T T T 1
0.2 0.4 0.6 0.8

propensity score

Figure 4: Plot of the Estimated Personal Causal Effects vs. PropernsitgsSfor the NSW Data.
Referring to Algorithm 2B = 1000 bootstrap samples were used in a three-fold cross
validation procedure and the parametewas set as 3.

If it is agreed that terminal node Il be excluded from consideration digctoof comparison
basis and the minor negative effect of NSW in terminal node Il be igndhet one may tentatively
conclude the absence of qualitative interactions. Using Equations{&pgtd information in Table
4(c), the ACE is estimated as $1,845%$809, which is very close to the benchmark randomized
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experiment estimate of $1,794 $633. As a comparison, the unadjusted estimate is $63677
and the ANCOVA estimate is $1,548%781 after adjusting for all covariates. It is worth mentioning
that the ANCOVA estimate varies dramatically when different sets of variadsiedncluded in
the model. Using nonparametric matching method (Ho et al., 2007) implemented Mattiiné
package, the subclassification estimate (with 5 subclasses) is $1, 337196 and the optimal
matching (Rosenbaum, 1989) based estimate is $1:36B620.

Next, we applied the aggregated grouping method described in Algorithm lob¥dened an
averaged distance matrix from 100 bootstrap samples. The modal numbptiro&l tree sizes
is 5. The classical MDS (Gower, 1966) was used to explore the the distaatrix. Figure 3(a)
provides the resultant plot when the data are represented in a two-dimedrsgiane. Agglomerative
hierarchical clustering with average linkage was then used to determinedhelfisters. See Figure
3(b) for the dendrogram. The cluster membership specification was aled &althe MDS plot in
Figure 3(a). It can be seen that Cluster 2 and Cluster 5 are distanpffmnthree clusters. Table
5(a) shows the correspondence between the five clusters and thdTiter@inal nodes. It can
be seen that overall they match well, except for minor inconsistency betalasters 4 & 5 and
terminal nodes IV & V. This indicates that the CIT structure is relatively stafilee summary
statistics for the five clusters are outlined in Table 5(b), showing a pattern similEable 4(c).
After removing Cluster 2, the estimate of ACE is $1,89%807. We would like to emphasize that
the excluded Group Il in CIT can be explained by the fact that peoplewdre not black and had
some income in 1974 seemed unlikely (with estimated propensity 3.62%) to partitipatesSWwW
intervention program. This easy interpretation is no longer available with Cl2gibtained from
the aggregated grouping procedure.

Finally, ensemble CITs were used to estimate the ICE and propensity sceacfoindividual.
Referring to Algorithm 2, three-foloM = 3) cross-validation witlB = 1,000 bootstrap samples
(with stratification on treatment) was used in the analysis; and at eachnsph3 variables were
randomly selected as candidate splitting variables. Figure 4 plots the estim&ed.|@ropensity
scores. The interpretation for ICE is the difference between what @&ridodl would have earned
in 1978 if he had attended NSW, compared to the 1978 earnings if he hadteded. It can be
seen that the area with low propensity (below .10) is dominated by subjectsdontrel and their
associated personal effects of NSW are quite mixed. Other than that, theimiten program seem
to have an overall positive effect. Figure 5 summarizes the results fortezetment-by-stratum
combination, in which the five strata obtained from aggregated groupingsack It can be seen
that both propensity and individual causal effects are reasonalbipdeneous within each stratum,
even though the individuals were from different treatment groups.

6. Extension to Ordinal/Continuous Treatments

The concept and properties of the facilitating score can be extendegitargrs where the treatment
variable is nominal (Lechner, 1999) or ordinal (Imbens, 2000). 8sgphat the treatment variable
T is allowed to range withirid, wherel is a discrete set with ordered or unordered values. Let
Y; = Y;(w) denote the potential outcome if unitwas assigned to the treatment letudlet g (X) =
Pr{T =t|X} be the generalized propensity score (GPS). A generalized weak faajitatore can

be defined as below.

Definition 6 A generalized weak facilitating scoe€X) is a g-dimensionald < g < p) function of
X such that (i)X LL T |a(X) and (ii) E(Y; — Yv|a(X)) = E(Y; — Y¢|X) forany tt’ € O.
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Figure 5: Parallel Box-Plots of (a) the Propensity Scores and (b) ttim&sd ICE for Each of
the Treatment Stratum Combinations. The ‘0.k’ combination corresponds to individuals
in Stratumk who did not attend the NSW program while ‘1.k’ corresponds to those in
Stratumk who did, fork = 1,...,5. The width of each box has been made proportional
to the sample size in each combination.

Condition (ii) is equivalent to saying th&(Y; — Yv|a(X) = a) is independent oK. The following
theorem provides a basis for its usage. It shows that, if the joint distribotiof T) can be modeled
through a vector-valued functidr(X), thenh(X) is a generalized weak facilitating score and direct
estimates of causal effects can be obtained by conditionirig Xh= h.
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(a) Correspondence

Cluster
1 2 3 4 5
I 178 O 0 0O O
Il 0O 193 O 0 O
i o 0O 126 0 O
v 0 0 0 22 3
vV 0 0 0O 11 81

(b) Summary of Five Groups

NSW Group Unexposed Group Estimated Treatment Effect
Node size mean sd size mean sd Propensity estimate s.e.
1 22 8.1431 6.3676 156 4.8438 5.6728 12.36% 3.2993 1.3118
2 7 5.4539 5.3997 186 9.7759 8.0259 3.63% —4.3221 3.0634
3 71 4.6987 4.8043 55 4.8545 5.9303 56.35%—-0.1558 0.9564
4 21 4.1514 4.3182 12 2.4027 5.5116 63.64% 1.7487 1.7283
5 64 8.3825 11.0826 20 6.3210 7.1054 76.19% 2.0614 2.6383

Table 5: Results for the five groups obtained from aggregated grouf@gorrespondence be-
tween the obtained groups and the five CIT terminal nodes; (b) summaryictatiche
distance matrix was computed from 100 bootstrap samples and hierard¢hatatiog with
average linkage was used for determining the final groups.

Theorem 7 Assume that the conditional joint density & T) given X, fy1x(Y,T|X), can be
written as § 1 x (Y, T|X) =g(Y, T,h(X)) for some function @). In other words(Y, T) L1 X |h(X).

Further assume that treatment assignment is strongly ignorable so that Yir_, |X for any
t € 0. When0 < &(X) < 1, we have

(1). h(X) is a generalized weak facilitating score.
(2). Concerning the causal effect in subpopulatidn= {w: h(X(w)) = h},
EM—Yh(X)=h) = E{4T=t,h(X)=h}—E{%|T=th(X)=h}
= E{Y|T =t,h(X) =h} —E{Y|T =t',h(X) =h}
is independent oX.

The proof of Theorem 7 is deferred to Appendix A. As stressed byhec(1999) and Imbens
(2000), GPSa(X) does not have a causal interpretation. However, the reinforcednptisn
fy1x (Y, T[X) = g(Y, T,h(X)) implies thate(X) can be fully characterized by(X) or its com-
ponents. This is analogous to the assumptiomniduely parameterized propensity functiarimai
and van Dyk (2004), where a parametric form is prescribedfot). To estimateh(X), a multi-
nomial or cumulative logit model can be used for propensity and the outcamieecmodeled with
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multiple linear regression. The above results also can be extended to custineatment variables
with arguments similar to Hirano and Imbens (2005).

7. Discussion

Embedded in Rubin’s causal model, we have introduced a new conceffactlimting score, to
help tackle the heterogeneity in both propensity and causal effects.attitating score is a finer
balancing score of Rosenbaum and Rubin (1983), plus additionaltimoredfor dealing with dif-
ferential causal effects. It supplies a framework that promotes joinefimadof (Y, T) for a better
understanding of causal effects. Accordingly we have devisedsgelpartitioning methods to aid
in causal inference at different levels.

The facilitating score concept and the CIT methods can be useful innaized medicine and
other similar applications. Medical treatment is traditionally centered on s@sdécare on the ba-
sis of large epidemiological cohort studies or randomized trials that arerpoviior assessing ACE.
These studies however do not account for variabilities of individualeacting to the treatments
and drug-to-drug interactions. The new medical model of personalizelicime or treatments
seeks flexible ways that allow for treatment decisions or practices beingethilo individual by
integrating post-trial clinical data and new developments in biotechnology tmiragrealthcare.
The collected covariates are often expanded to a more comprehenssideration of the patient,
including medical measurements, family history, social circumstances, emémt and behaviors,
and biological variables. As a result, the data are often observatioddligh-dimensional in na-
ture. As demonstrated in the NSW data example, causal inference in atiseaV studies could be
very complex, owing to the confounding and interacting effects complicatembtariates. While
personalized medicine is the ultimate goal, stratified medicine has been the eypperach. Strat-
ified medicine aims to select the best therapy for groups of patients whe stiaemon biological
characteristics. The proposed CIT method and aggregated groupirg essed seeking strategies
for deploying stratified medicines. Insight into a greater degree of paligzed treatment can be
gained by studying the personal treatment effects with ensemble CITs.

Some limitations of the proposed methods are listed below. First, despite thénesefof
ICE, assessing ICE entails larger data than assessment of ACE in ottueredhe same level of
precision (or variance). There are many trials in research practicanhanly powered to detect
ACE. For this reason, the proposed methods are best suitable for rredgesiaed or large follow-
up data collected in post trial periods or extracted from Medicare or Ma&tlidatabases, in which
randomization is not available. Secondly, the recursive partitioning metmedsghnly adaptive or
data-driven in nature and often regarded as exploratory or hypstheserating. It is important to
interpret the results with caution. In addition, the validity of Theorem 7 relethe assumption of
strong ignorability. Like other methods, CIT performance is vulnerable tatéd assumptions and
model misspecification. Shpitser and Pearl (2008) examines possibly mildéitions to ensure
identifiability and facilitate estimation in causal inference. It would be interestinyestigate how
to extend the proposed methods under mild conditions.

In terms of future research, Theorem 7 is readily applied to data with bm&gomes. With
further research efforts, both the facilitating score and CIT may be @&teto other types of out-
comes such as censored survival times or longitudinal measurementsildtalso be interesting to
extend the proposed methods to scenarios when both treatment andnctr®are time-varying, as
studied in marginal structural models and structural nested models (RtBB%), and when some
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confounders are unmeasured but there exist some instrumental v&(idhlangrist, Imbens, and
Rubin 1996) that satisfy the strong ignorability and other conditions. litiaddRobins, Rotnitzky,
and Zhao (1994) proposed doubly robust (DB) estimation methods tevitbahis-specification in
either the response model or the propensity model. Along similar lines, thégdmaximum like-
lihood (TML; van der Laan and Rubin 2006) is another newly developeda inference method
that enjoys a favorable theoretical property for being doubly robugti@cally efficient, meaning
that if at least one of the propensity and outcome models is correctly spetifen the TML es-
timator is consistent and asymptotically normal; if both models are correctly sukdifis also
efficient. Similar work with facilitating score modeling could be another aveautifure research.
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Appendix A. Proof of Theorem 7.

We sketch the proof whem is ordinal or nominal. Theorem 3 follows as a special case when
0= {0,1}. Some steps are standard arguments in propensity score theories. We ithauordfor
the sake of completeness.

First of all, the conditional probability density function 6fX is

fT‘x(T|X):/YfY7T|X(Y,T|X)dY:/Yg(Y,T,h(X))dY.

Thus the GPS& (X) = P(T =t|X) = g1(h(X)) for some functiorg;(-). Namely, h(X) is a finer
function ofg (X). For this reason, we denotg X) = e (h(X)).
Next, sincen(X) is measurable with respect w(X), thec-algebra generated 1,

PHT =t|X,h(X)} =P{T =t|X,} = a(X).
Let& = I{T =t} be the indicator function of wheth@r=t. By iterated expectation,

PHT =tlh(X)} = E(&|h(X)) =E{E(&[X,h(X))[h(X)}
= E{E&[X)|h(X)} = E{a(X)[h(X)} = &(X).
Namely, P{T =t|X,h(X)} = a(X) = P{T =t|h(X)}, which impliesT LL X|h(X).
Further assuming the treatment assignment is strongly ignorable ¥ivérfollows that the

treatment assignment is ignorable giveiX), that is,T LL Y;|h(X), which can be established by
showing

PHT = t'[%,h(X)}

E{dv[Y,h(X)} = E{E(&[X, ¥, h(X))[¥;, h(X)}
= E{E(&|X)[%,h(X)} due to strong ignorability
= E{a(X)[Y,h(X)} =& (X) = Pr{T =t'|h(X)}.
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To check condition (ii) in Definition 6, consid&r{Y;|h(X)}. SinceY = 3 Y;& and&éy = O for
t #At’', we haveyd = Y;&. Consider

EMIhX)} = E{MIhX)}-E{&|h(X)}/E{&|h(X)}
E{Y;&|h(X)}/E{&|h(X)} by strong ignorability
= E{Y&[h(X)}/a(X).

It can be seen thai(x) is a finer function of both the numerate and denominator in the above
expression. Thug{Y;|h(X) = h} is fully determined byh and no longer relies on the valueXf

Finally, in order to have available causal inference, it is important to noteftitegivent and
t’, h(x) = h fully determines botte (h) andey (h). Therefore,

EQM-Ylh(X)=h} = E{¥h(X)=hT=ta(h)}—E{¥h(X)=hT=t e(h)}

= E{Yh(X)=h,T =t} —E{Y|h(X)=h,T =t}

is independent oK. This justifies the direct use of mean response comparison for causarioge
in subpopulatiorQ,. |}

Appendix B. Proof of Proposition 4.

First of all, condition (i) in Definition 2 holds aX LI T|hz(X). Assuming(Y1,Yo) LL T|X, it
follows that(Yi,Yo) LL T | hg(X) under strong ignorability.
Now it suffices to verify condition (ii). Consider

E{Y1|h2(X),h3(X)} = E{V1|T =1 hy(X),hg(X)}
= E{Y|T =1,hy(X),h3(X)}
= E{E(Y[X,T =1)[hz(X),hs(X)
= E{Yo+y1+h(X)+h2(X)[h2(X),hg(X)}
= Yo+ V1+h2(X)+E{h(X)|h2(X),hs(X)}
Similarly, it can be found that
E{Yo|h2(X),ha(X)} = yo+ E(h1(X)[h2(X), h3(X)}.

Thus,
E{Y1 —Yo|h2(X) = hp, h3(X) = h3} =y1+hy,

which is independent of. |}

Appendix C. Proof of Theorem 5.

The following lemma (see, e.g., Chapter 9 of Lin and Bai 2011), derivedtiirfromC; inequality,
will be used in the proof.

Lemma 8 Given a sequenceiX.., X, of random variables)?n = z{;m/n. Then

— 1 n
E|Xa|" < o zlE|Xi|r forr > 1.
i=
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By condition (i) in Definition 2 ofa(x),

(i1 —Yo) —E(M1—Yolar) = (Yr1—Yr0) —E(Y1—Yo(X)
+E(Y1—Yola(x)) —E(Y1 —Yo| &)
= {yu—EMX)+E(M|a(x)) —E(Yi|ar)} —
{yro—E(Yo|X) + E(Yo|a(x)) — E(Yola)}
= G-
For convenience, we have usadas shorthand for the conditioning evefat(x) = a;}. To prove
(22), it suffices, by Minkowski’s inequality, to verify the mean squaré&pconsistency fo; and

(o separately.
Consider

G ={yn —EMX)} +{E(V1a(x)) —E(M]ar)},
which has two terms. We examine the second t¢EfY; |a(x)) — E(Yi|ar)} first. If assumptions

(19), (20), and (21) hold, thesm Lt a(x) by Theorem 12.7 of Breiman et al. (1984, p. 322). Since
E(Y1|a) is assumed continuous &

E(Via) 5 E(Yila(x))

by the continuous mapping theorem. Moreover, sifie€r|ar)| < E(|Yi]|ar) < E(|Y1]) < oo, it
follows that
lim E [E(Y1a) —E(W1]ax))[?=0

by the dominated (or bounded) convergence theorem.
Next, consider the first term i€y, {yr1 — E(Y1]X) }. Rewriteyr; as

YT Y YT/m

Vo — i€t _ et __€n

11 — - - —.

ST ST/ P
iet i€t

which is a ratio estimator. The convergence of ratio estimators in the genarailfas studied by
Craner (1946). Using Theorem 12.7 of Breiman et al. (1984) again, we have E(YT|x) and
Pn Lt e(x) in probability. Thus
&n LY E(YT|X)
Pn e(x)
in probability as well ife(x) # O, under the assumption of strong ignorability. To establish its mean

square risk consistency, the necessary and sufficient condition ih¢éhandom sequent{éfl}n is
uniformly integrable, that is,

=EM[x)

dim SUPE{yry | (Vo1 > co)} =O.
A sufficient condition for uniform integrability?) is that

SUPE|yr1|?™® <
n
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for somee > 0. This can be verified because

_ 1
SUPEyr[** <sup— 5 EY* <M<
n n T et =1}

following from (19) and Lemma 8.

Therefore, liM E|{1|? = 0 using Minkowski’s inequality again. Similar arguments can be used
to show limy E|{o|2 = 0. This completes the proof of Theorem 5. |
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