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Abstract

Assessing treatment effects in observational studies is a multifaceted problem that not only involves
heterogeneous mechanisms of how the treatment or cause is exposed to subjects, known as propen-
sity, but also differential causal effects across sub-populations. We introduce a concept termed the
facilitating score to account for both the confounding and interacting impacts of covariates on the
treatment effect. Several approaches for estimating the facilitating score are discussed. In par-
ticular, we put forward a machine learning method, called causal inference tree (CIT), to provide
a piecewise constant approximation of the facilitating score. With interpretable rules, CIT splits
data in such a way that both the propensity and the treatment effect become more homogeneous
within each resultant partition. Causal inference at different levels can be made on the basis of
CIT. Together with an aggregated grouping procedure, CIT stratifies data into strata where causal
effects can be conveniently assessed within each. Besides,a feasible way of predicting individual
causal effects (ICE) is made available by aggregating ensemble CIT models. Both the stratified
results and the estimated ICE provide an assessment of heterogeneity of causal effects and can be
integrated for estimating the average causal effect (ACE).Mean square consistency of CIT is also
established. We evaluate the performance of proposed methods with simulations and illustrate their
use with the NSW data in Dehejia and Wahba (1999) where the objective is to assess the impact of
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a labor training program, the National Supported Work (NSW) demonstration, on post-intervention
earnings.

Keywords: CART, causal inference, confounding, interaction, observational study, personalized
medicine, recursive partitioning

1. Introduction

Comparative studies that involve evaluation of the effect of an investigational treatment or a putative
cause on an outcome variable are fundamental in many application fields. Thedata may come from
either a designed experiment or an observational study. Regardless ofthe data sources, two major
issues exist when assessing the treatment effect: confounding and interaction effects of covariates.

A confounding variable or confounder is an extraneous covariate thatrelates to both the treat-
ment and the response and hence influences the treatment effect estimation. Controlling or adjusting
for confounders can be done in either design or analysis. In designedexperiments, randomization,
matching, cohort restriction, and stratification are commonly-used ways to effectively control for
confounding variables. However, observational studies are often theonly available choice due to
ethical or practical considerations. Causal inference with observational data is particularly challeng-
ing. The main obstacle is the nonrandom treatment assignment mechanism, in which the subjects
select a treatment that they believe best serve their interests or are exposed to a treatment according
to individual traits. As a result, systematic imbalance or heterogeneity may existbetween individu-
als in the treated group and those in the control group. Thus it is crucial to control for confounders
in the analysis stage of such data. Common approaches include analysis of covariance (ANCOVA),
propensity score methods (Rosenbaum and Rubin, 1983), and directedacyclic graphs (DAGs; Pearl
2000 and Spirtes, Glymour, and Scheines 2001). Even with randomized experimental data, covariate
imbalance can also be revealed when examining data in a multivariate manner. Consider a hypo-
thetical example wherem older women andm younger men are assigned to the treated group while
m older men andm younger women are assigned to the control group. The data appear to beper-
fectly balanced in terms of either age or gender, despite the perfect imbalance at their combination
levels. When the dimension of covariates gets high, each experimental unit essentially represents
an unique individual that is not replicable, which makes randomization less relevant. This partially
explains why covariate adjustment is practiced even with randomized experimental data. Associ-
ated with variable selection issues, additional challenges present themselves in the form of over-
or under- adjustment when confounders are incorrectly identified. Forexample, under-adjustment
occurs when an important confounder is uncollected in the data or excluded from the model. On the
other hand, some intermediary outcome variables, often referred to effect-mediators, are important
in understanding the mechanism how and why the treatment becomes effective. As an example
of over-adjustment, the treatment effect would be under-estimated when a mediator is mistakenly
considered as a confounder and included in the model for adjustment. Over-adjustment also may
occur when controlling for a collider that correlates with both the treatment and the outcome via an
‘M-diagram’ (Greenland, 2003).

In terms of influence of covariates on treatment effect assessment, another equally important
issue is interaction, also known as effect modification or effect moderation(see, e.g., VanderWeele
and Robins 2007 and VanderWeele 2009), which is concerned with differential treatment effects
at different levels or values of covariates. An effect modifier is a covariate that interacts with the
treatment and changes the direction and/or degree of its causal effect on the outcome. Existence of
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interaction complicates model interpretation. Detection of interaction is challenging. While inter-
actions are mostly formulated via cross-product terms in a linear model and restricted to be of the
first- or second-order, complex nonlinear or higher-order interactions may exist in reality. It is also
important to distinguish between qualitative interactions and quantitative interactions. Qualitative
interaction (Gail and Simon, 1985) occurs when there is a directional change in terms of treatment
preference, a cause of greater concern to practitioners. Closely related to treatment-by-covariate in-
teractions, subgroup analysis (see, e.g., Lagakos 2006) is an integralpart in the analysis of clinical
trials. Practitioners and regulatory agencies are keen to know if there aresubgroups of trial partic-
ipants who are more or less likely to be helped or harmed by the intervention under investigation.
Subgroup analysis helps explore the heterogeneity of the treatment effect across sub-populations
and extract the maximum amount of information from the available data. On the other hand, sub-
group analysis is subject to malpractice owing to difficulties in subgroup determination, multiple
testings, and lack of power. The new stimulating concept of personalized medicine or personalized
treatments (see, e.g., Jain 2009) is intended to refine the traditional medical decisions by capitalizing
on results of subgroup analysis or the knowledge of individualized treatment effects. Nevertheless,
sorting out differential causal effects often entails large data that are collected at post-trial periods,
for example, the Medicare or Medicaid databases.

Assessments of confounding and interaction intervene with each other. First of all, confound-
ing emerges as one primary issue in the assessment of the main effect of treatment, also known as
the average causal effect (ACE). However, ACE implicitly assumes homogeneity or unimportant
heterogeneity of causal effects. When strong treatment-by-covariate interaction exists, ACE may
become less practically useful. This is the case especially when the interactionis qualitative. Sup-
pose, for example, that the treatment effect isδ for half of the data (say, males) and−δ for the
other half (say, females), both having important scientific implications. The ACE in this case is
null. When solely based on ACE, one would arrive at the misleading conclusion that the treatment
does not have an effect. On the other hand, when the estimation bias caused by inadequately han-
dled confounders gets overwhelming, it may be disguised as differential treatment effects. We shall
illustrate more on this point later with simulation in Section 4. Therefore, it is crucial to have both
confounding and interaction well addressed in comparative analysis.

Rubin’s causal model (Rubin, 1974, 1977, 1978, 2005) provides a general framework for making
these assessments, within which the treatment effect is finely calibrated at three different hierarchi-
cal levels (i.e., unit, subpopulation, and population) using a counterfactual model and the concept
of potential outcomes. In this article, causal inference is explicitly reformulated as a predictive
modeling problem within the framework of Rubin’s causal model. To approach, we introduce a
concept, termed facilitating score, to address both the confounding and interacting impact of ex-
traneous variables on causal inference. Conditional on the facilitating score, homogeneity can be
achieved in both the assignment mechanism and and the effect of the treatment. Then we put for-
ward a causal inference tree (CIT) procedure, to approximate the facilitating score with a piecewise
constant function. CIT recursively splits data into disjoint groups in sucha way that both treatment
assignment mechanisms and the treatment effects become more homogeneous within each group.
On the basis of CIT, a group of recursive partitioning methods are devised to make causal inference
at different levels.

The remainder of this paper is arranged in the following manner. In Section 2, following an
outline of Rubin’s causal inference framework, the concept of facilitating score is introduced and
methods for estimating the facilitating score are discussed. Section 3 presentsthe CIT methodology
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in detail. Section 4 contains simulation studies that are designed to investigate the performance of
CIT. An illustration is provided via a real data example in Section 5. In Section 6, we extend the
results to situations where the treatment variable is ordinal or nominal. Section 7ends the article
with a brief discussion.

2. Facilitating Scores

We first review Rubin’s causal models, then we introduce the facilitating score concept and discuss
methods for estimating the facilitating score.

2.1 Causal Inference

In Rubin’s causal model (Rubin, 1974, 1977, 1978, 2005), a fine calibration of treatment effect is
facilitated by a comparison between the observed outcome on an individual or unit and the potential
outcome if the individual had been assigned to the counterfactual treatmentgroup. Adopting his
notations, letΩ = {ω} be a finite population withN units, endowed with a probability measureP
that places uniform mass 1/N on each unit. LetT = T(ω) be a binary treatment assignment variable
with value 1 if unitω receives the putative treatment and 0 otherwise. While the term ‘treatment
assignment’ or ‘selection’ is best suitable for designed experiments, we shall use it throughout this
article. In addition, letX = X(ω) be ap-dimensional vector of measured covariates for unitω.

Let Y0 = Y0(ω) be the response that would have been observed if unitω were assigned to the
control group and letY1 =Y1(ω) be the response that would have been observed if unitω received
the treatment. These two variables are calledpotential outcomes(Neyman, 1923). In reality, either
Y0(ω) or Y1(ω), but not both, can actually be observed depending on the value ofT(ω), an inher-
ent fact called thefundamental problem of causal inference(Holland, 1986). Thus the observed
outcome is

Y(ω) = {1−T(ω)}Y0(ω)+T(ω)Y1(ω).

Throughout this paper, we consider random sampling fromΩ so that{ω1, ...,ωn} forms an indepen-
dent and identically distributed (iid) sample of sizen. The available data{(yi , ti ,xi) =
(y(ωi), t(ωi),x(ωi)) : i = 1, . . . ,n} consist ofn realizations ofY, T, andX. For the sake of sim-
plicity, we sometimes omit unitω from the notations.

Causal inference is concerned with the comparison of the two potential outcomes via the ob-
served data. Holland and Rubin (1988) distinguished three levels of causal inferences: unit level,
subpopulation level, and population level. The lowest level of causal inference is a comparison of
Y0(ω) andY1(ω), typically the differenceY1(ω)−Y0(ω), for each unitω. Subpopulations can be
formed by restricting the values of covariates to a partition ofΩ. The causal effect in a subpopula-
tion {ω : X(ω) ∈ B} is E(Y1|X ∈ B)−E(Y0|X ∈ B) for some Borel setB in the predictor spaceX.
The average causal effect (ACE) over the entire populationΩ is E(Y1)−E(Y0). These three levels
form a hierarchy of causal inference in decreasing order of strength, in the sense that knowledge of
upper-level causal inferences can be inferred from that of lowered-level causal inferences, but not
vice versa. A preponderance of the literature in causal inference is centered on schemes for making
the population-level inference or estimating ACE under various scenarios.

Rosenbaum and Rubin (1983) introduced the concept of balancing score to tackle the confound-
ing issue in causal inference. A balancing scoreb(x) accounts for the dependence betweenX and
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treatment assignment or selectionT; that is

X ⊥⊥ T |b(X).

Treated and untreated subjects sharing the same balancing score tend to have the same distribution
of covariates. Various covariate adjustment techniques implicitly adjust for an estimated scalar
balancing score. They showed that the propensity score

e(x) = P(T = 1|X = x),

which is defined as the conditional probability of assignment to the treated group given the measured
covariatesX, is the coarsest balancing score. Namely,b(x) is a balancing score if and only ifb(x)
is finer thane(x), that is,e(x) is a function ofb(x).

Propensity score based matching, stratification (or subclassification), and adjustment have been
extensively used to balance the discrepancy in covariates between the treatment groups in the as-
sessment of ACE. In propensity score analysis, the assumption ofstrong ignorabilityplays a pivotal
role. Similar to that of missing at random (MAR) in the missing data literature (Rubin, 1976), this
assumption states thatP(T|X,Y0,Y1) = P(T|X) or,

T ⊥⊥ (Y0,Y1)|X.

It is possible that strong ignorability is violated even there are no unmeasured variables that are
direct causes of any pair of measured variables. See, for example, Greenland (2003) for more
discussions. It is worth noting that this assumption does not imply thatT ⊥⊥ Y |X. To illustrate,
consider a simple example where the causal effect at the unit level is constant, namely,Y1(ω)−
Y0(ω) = δ for anyω. Suppose thatY0 = f (X)+ ε andY1 = f (X)+δ+ ε, whereε⊥⊥ X is the error
term. It follows thatY = δT+ f (X)+ε. The ignorability assumption amounts toε⊥⊥ T |X, which,
by no means, impliesY ⊥⊥ T |X.

Under this assumption of strong ignorability, Rosenbaum and Rubin (1983)established that
(Y1,Y0)⊥⊥ T|b(X) when 0< e(X)< 1.It follows that

E(Y1|b(X),T = 1)−E(Y0|b(X),T = 0) = E(Y1|b(X))−E(Y0|b(X)). (1)

Therefore, the population-level causal interpretation may be achieved by averaging over the distri-
bution ofb(X),

E(Y1−Y0) = Eb(X){E(Y1|b(X))−E(Y0|b(X))}. (2)

Equations (1) and (2) provide the basis for propensity score based methods.

2.2 Facilitating Score

Parallel to confounding, interaction is concerned with differential causal effects among units or sub-
populations. It is important to note that both Equation (1) and (2) involve a reduction of hierarchy in
causal inference, where individual-level inferences are integratedto make subpopulation-level infer-
ences onΩb = {ω : b(X(ω)) = b} or sub-population level inferences are reduced to the population-
level inference onΩ. Such a reduction may not be taken for granted, because it implicitly assumes
homogenous lower-level causal effects. Specifically, if substantial differences in causal effects are
present at a lower level of inference, then transition to an upper-levelinference may not be plausible
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and conclusions based on upper-level causal effects can be misleading. This can be particularly
problematic when qualitative interactions exist.

To gain insight, note that with balancing scoreb(X),

X 6⊥⊥ (Y0,Y1) |b(X).

As a result,δb(X) = E(Y1|b(X) = b)−E(Y0|b(X) = b) in (2) is not a constant, but a function of
X within the subpopulationΩb. If δb(X) varies substantially withX, we say that a treatment-by-
covariate interaction exists. In this case, the overall causal effectδb in Ωb becomes less pertinent
as it implicitly assumes thatδb(X) can be reduced to a constantδb. A fine delineation of treatment
effectδb(X) at the individual level is desirable in the efforts of advancing personalized medicines.
Even if estimatingδb is of interest, it cannot be summarized by direct comparison of treatment
means. Instead, it should be obtained by integrating over the distribution ofX in Ωb, that is,δb =∫

Ωb
δb(x)dµ(x). Direct comparison of treatment means inΩb makes another implicit assumption

that, withinΩb, X follows a uniform distribution. The same problem remains when using (2) for
ACE estimation.

It is therefore critical to take both heterogeneous treatment assignment mechanisms and dif-
ferential treatment effects into consideration when assessing the treatmenteffects. We introduce a
concept termed facilitating score to address these two issues simultaneously.

Definition 1 A facilitating scorea0(X) is a q0-dimensional (0 < q0 ≤ p) function ofX such that
X ⊥⊥ (Y0,Y1,T) |a0(X).

In this definition, the joint independence betweenX and(Y0,Y1,T) givena0(X) can be relaxed as
two marginal independence conditions:X ⊥⊥ T |a0(X) andX ⊥⊥ (Y0,Y1) |a0(X), which separately
address the confounding effect and the interacting effect ofX. But, if strong ignorability, that is,
T ⊥⊥ (Y0,Y1) |X, is further assumed, it follows thatT ⊥⊥ (Y0,Y1) |a0(X) and hence the marginal
independence implies the joint independence as well. Existence ofa0(X) is guaranteed, sinceX
itself can be regarded as a facilitating score.

Nevertheless, Definition 1 places strong requirements ona0(X). Estimating the facilitating
score essentially involves jointly modeling{Y0,Y1,T} conditional onX, which is unworkable since
(Y0,Y1) can not be observed at the same time. To get around this difficulty, we nextconsider a
weaker definition of facilitating score that is more practically useful.

Definition 2 A weak facilitating scorea(X) is a q-dimensional (0< q≤ p) function ofX such that
(i) X ⊥⊥ T |a(X) and (ii) E(Y1−Y0|X) = E(Y1−Y0|a(X)).

By condition (i), a weak facilitating scorea(X) must be a balancing score; by condition (ii), any
effect moderation owing toX can be fully represented bya(X). Condition (ii) is equivalent to saying
thatE(Y1−Y0|a(X) = a) is independent ofX. However, this does not necessarily imply that

E(Y1|X) = E(Y1|a(X)) and E(Y0|X) = E(Y0|a(X)). (3)

There could exist a common functiong(X) that has been cancelled out in Condition (ii). Namely,

g(X) = E(Y1|X)−E(Y1|a(X)) = E(Y0|X)−E(Y0|a(X)).
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A facility score must also be a weak facilitating score, but not vice versa. We use the term ‘fa-
cilitating’ because conditioning ona(X) helps facilitate causal inference, in the sense that causal
inference within the sub-populationΩa = {ω : a(X(ω)) = a} can be conveniently obtained via di-
rect comparison of sample mean responses. This is because both propensity and the treatment effect
δa become constant withinΩa.

Since the propensitye(X) is the coarsest balancing score, it follows thate(X) = e in Ωa. In
some scenarios,e(X) is explicitly a separate component ofa(X), as exemplified by the parametric
approach outlined in Section 2.3; but this is not necessarily true in general,as exemplified by the
semi-parametric approach outlined in the same section. In terms of stratification,Ωa provides ad-
ditional refinements ofΩe = {ω : e(X(ω)) = e} in order to achieve homogeneous within-stratum
treatment effects.

Theorem 3 Suppose that the conditional joint density of(Y,T) given X, fY,T|X(Y,T|X), can be
written as fY,T|X(Y,T|X) = g(Y,T,h(X)) for some function g(·). In other words,(Y,T)⊥⊥X |h(X).
Assuming that treatment assignment is strongly ignorable,h(X) is a weak facilitating score when
0< e(X)< 1.

We defer the proof of Theorem 3 to Appendix A, where it is established asa special case of a more
general result in Theorem 7. Theorem 3 basically states that both confounding and interacting effect
of X on causal inference with the potential outcomes(Y1,Y0) can be handled by working with the
observed data(Y,T,X). More specifically, if the joint density of(Y,T) given X can be accounted
for by a vector-valued functionh(X), that is,(Y,T) ⊥⊥ X |h(X), thenh(X) is a weak facilitating
score. Besides, it can be shown that Equation (3) holds forh(X), that is,E(Y1|X) = E(Y1|h(X)) and
E(Y0|X) = E(Y0|h(X)). This condition will be relaxed in Section 2.3.

Estimation ofh(X) involves modeling the joint distribution of(Y,T) givenX. Searching for a
satisfactoryh(X) is not an easy task; we have to look for approximate solutions. On the other hand,
it is no longer unattainable as the involved elements(Y,T,X) are all observed. Althoughh(X) is
generally set as vector-valued, its dimension should be small in order to be practically useful.

2.3 Estimating the Facilitating Score

We shall discuss three proposals for finding useful approximations ofh(X), which are parametric,
semiparametric, and nonparametric in nature, respectively. While they are all methodologically
interesting, we deem the nonparametric approach most practically useful.

The first method is parametric. Consider

f (Y,T|X) = f (Y|T,X) · f (T|X)

= { f (Y|T = 1,X)}T · { f (Y|T = 0,X)}1−T · f (T|X) (4)

by Bayes’ rule. With a parametric approach, we assume a model for each of the terms in (4):
propensity score model forf (T|X) and outcome regression models forf (Y|T = 0,X) and f (Y|T =
1,X). It is convenient to modelT|X with logistic regression and modelY|(T,X) with Gaussian
linear regression so that

f (Y,T|X) =
1
σ

φ
(

Y−µ
σ

)
· {π(h3(X))}T{1−π(h3(X))}1−T , (5)
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whereσ is the constant error variance;

µ= E(Y|T,X) = γ0+ γ1T +h1(X)+T ·h2(X); (6)

φ(·) is the density function of the standard normalN (0,1) distribution; andπ(x) = exp(x)/(1+
exp(x)) is the logistic or expit function.

Proposition 4 Suppose that the propensity model can be specified by e(X) = e(h3(X)) as in (5) and
the conditional mean response given(T,X) is formulated by (6). Under the assumption of strong
ignorability, h(X) = (h2(X),h3(X))t is a weak facilitating score.

The proof is provided in Appendix B. Proposition 4 says thath1(X) is not a necessary component
of a weak facilitating score. It holds as long as the conditional mean outcome isspecified by (6); in
other words, normality is not needed either. Besides, note that Equation (3) is not required with this
definition ofh(X).

To continue with the parametric approach, linearity is further enforced so thath j(X) = βt
jX j for

j = 1,2,3, whereX j contains selected components ofX. The involved parametersθ = {β,γ,σ} can
be estimated via maximum likelihood in a straightforward manner. The likelihood function is

L(θ) =
n

∏
i=1

1
σ

φ
(

yi−µi

σ

)
·

n

∏
i=1

{
π(βt

3xi)
}ti {1−π(βt

3xi)
}1−ti = L1 ·L2. (7)

Clearly there is a variable selection issue involved. Note that(β1,β2) are involved only inL1 for
the outcome regression model whileβ3 is involved only inL2 for the propensity score model. This
property not only simplifies the likelihood optimization, but also allows for variable selection to be
performed separately for the propensity model and outcome regression models.

With an estimated̂h(x) = (β̂
t
2x, β̂

t
3x)t , data can be stratified via combined use of the medians

or terciles of its components, similar to propensity score subclassification. While this parametric
method provides a feasible approach for stratification, there are several difficulties in practice. First
of all, it is a two-step approach. The final results rely on correct model specifications. Moreover,
the number of strata has to be rather arbitrarily determined. The fact thatĥ(x) is vector-valued
contributes added difficulties to execution. In particular, as the dimension ofĥ(x) increases, the
number of strata grows precipitously. Even with only two categories inducedby each component,
there are 2q subclasses for aq-dimensional̂h(x).

Another intuitive semi-parametric approach to estimateh(X) is via dimension reduction tech-
niques. In view of(Y,T) ⊥⊥ X |h(X), if it is further assumed thath(X) is linear in X so that
h(X) = BX, then the subspace spanned by columns ofB, S(B), is called the dimension-reduction
subspace that accounts for the conditional distribution of(Y,T) givenX. Let S(Y,T)|X denote the in-
tersection of all dimension-reduction subspaces. Under some regular assumptions,S(Y,T)|X is also a
subspace, termed the central dimension-reduction subspace or centralspace. Sliced inverse regres-
sion (SIR; Li 1991) and its variants can be used to estimateS(Y,T)|X . While further research efforts
are needed in handling the bivariate response(Y,T), there is no additional conceptual complication
involved. For example, one convenient approach is to first introduce(2S) slice indicator variables

Zst = I{(y′k−1 <Y ≤ y′k)∩ (T = t)},

wheres= 0,1, . . . ,S; t = 0,1; and{−∞ = y′0 < y′1 < · · · < y′S= +∞} are pre-specified grid points
that defineSslices forY. Then the sliced regression method (Wang and Xia, 2008) can be applied
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to estimate the central mean space ofZ = (Zst), which approximates the central spaceS(Y,T)|X .
Nevertheless, the same above-mentioned difficulties as in the parametric approach remain when it
comes to stratification on the estimated linear facilitating scores.

In the next section, we consider yet another recursive partitioning based nonparametric alterna-
tive, which seems to provide a more satisfactory solution to the problem. Hereafter, we refer to this
method as CIT for causal inference tree. CIT combines estimation ofh(x) and data stratification
into one step. On the basis of CIT, we devise methods for making causal inference at different
levels.

3. Causal Inference via Recursive Partitioning

Tree-based methods (Morgan and Sonquist 1963 and Breiman et al. 1984) approximate the under-
lying function of interest with piecewise constants by recursively partitioningthe predictor space.
At the same time, a tree structure offers natural grouping of data with easily interpretable splitting
rules. With an automated algorithmic approach, CIT seeks disjoint groups that have homogeneous
joint density of(Y,T) within each. The resultant grouping rules, which are induced by binary splits
on the covariatesX, are meaningfully interpretable, implying a nonparametric estimation of the
facilitating score.

In this section, we first follow the CART (Breiman et al., 1984) convention to construct one
single CIT, which consists of three steps: growing a large tree and selecting the optimal subtree via
pruning and cross validation. On the basis of CIT, methods for causal inference at different levels
are then developed. CIT itself provides a natural stratification of data forsubpopulation inference.
An aggregated grouping method is introduced in order to enhance its performance. Conditional
inference at the individual unit level can also be obtained by combining results from ensemble
CIT models. Both stratified and individualized causal effect estimates can help depict variations
in propensity and treatment effects and make available a natural evaluation of the plausibility of
treatment comparability and ACE assessment. These results can also be integrated for estimating
ACE estimates. Finally, we establish the mean square risk consistency of CIT under conditions
similar to those in CART (Breiman et al., 1984).

3.1 Causal Inference Trees (CIT)

A tree model can be expressed as a graph with connected nodes, each node corresponding to a subset
of the data. We useT as a generic notation for a tree structure andτ for a node. In tree modeling,
the effects ofX are exclusively explained by the splitting rules. To start the tree construction,
we consider one single split of data. When restricted to a nodeτ, the distribution of(Y,T) no
longer depends onX, implying a constant propensity and a constant treatment effect. Following
decomposition of the joint densityfτ(Y,T) = fτ(Y|T) fτ(T) within nodeτ, it is convenient to impose
that

T ∼ Bernoulli(πτ) and Y|T ∼N
{

µ= (1−T)µτ0+Tµτ1, σ2
τ
}
.

We would like to comment that recursive partitioning can be viewed as a localized approach with
local optimality achieved at each split. In local areas, the model needs not tobe complicated and
often employs a parametric form. The procedure starts with splits that are builtupon something
that is relatively simple and then evolves into a comprehensive model by recursively bisecting.

2963



SU, KANG, FAN , LEVINE AND YAN

The resultant tree model is nonparametric in nature and relatively robust tolocal distributional
assumptions.

The associated log-likelihood function becomes

lτ =−
nτ

2
ln(2πσ2)−

∑i∈τ(yi−µi)
2

2σ2 +nτ1 lnπτ +nτ0 ln(1−πτ)

where{nτ,nτ0,nτ1} are the total number of observations in nodeτ, the number of observations
in nodeτ that are assigned to the control group, and the number of observations innodeτ that
are assigned to the treatment group, respectively. Maximum likelihood estimates of the involved
parameters are explicitly available:π̂τ = nτ1/nτ, µ̂τ0 = ȳτ0, µ̂τ1 = ȳτ1, andσ̂2 = SSEτ/nτ, where

SSEτ = ∑
{i∈τ: ti=1}

(yi− ȳτ1)
2+ ∑

{i∈τ: ti=0}

(yi− ȳτ0)
2,

and {ȳτ0, ȳτ1} are the sample average responses of the control and treatment groups innodeτ,
respectively. Up to a constant, the maximized log-likelihood function in nodeτ is

l̂τ ∝−
nτ

2
ln(nτ ·SSEτ)+nτ1 lnnτ1+nτ0 lnnτ0. (8)

Note that we have assumed a mean-shift Gaussian model with the same constant variance for the
causal effect. If different variances are considered, the final form of l̂τ would be slightly different.

Without loss of generality, we consider binary splits only. When a splitsbisects nodeτ into the
left child nodeτL and the right child nodeτR, the associated likelihood ratio test statistic is

LRT(s) = 2· (l̂τL + l̂τR− l̂τ), (9)

where the maximized log-likelihood score for nodesτL andτR, l̂τL and l̂τR, can be obtained in the
same manner aŝlτ in (8). TheLRTs can be used as the splitting statistic to select the best split. After
removing irrelevant components, we have

LRT(s) ∝ −nτL/2· ln(nτL SSEτL)−nτR/2· ln(nτR SSEτR)+

nτL1 lnnτL1+nτL0 lnnτL0+nτR1 lnnτR1+nτR0 lnnτR0.

The best splits⋆ is the one that yields the maximumLRT(s) among all allowable splits. Accordingly
nodeτ is split intoτL andτR usings⋆. Subsequently, a similar procedure is applied to split either of
τL andτR. We repeat the procedure until some mild stopping rules are satisfied. This process results
in a large initial tree, denoted asT0.

The final tree model is a subtree ofT0. Nevertheless, it is practically infeasible to examine
every subtree because the number of subtrees increases rapidly as thenumber of terminal nodes
in T0 increases. The idea of pruning is to provide a subset of candidate subtrees by iteratively
truncating off the ‘weakest link’ ofT0. There are several pruning algorithms available, including the
cost-complexity pruning of CART (Breiman et al., 1984) for trees that are built upon minimizing
within-node impurity, the split-complexity pruning of LeBlanc and Crowley (1993) for trees that
are built upon maximizing between-node differences, and the AIC pruningof Su, Wang, and Fan
(2004) for trees that are built within the maximum likelihood framework. Since CIT is essentially
likelihood based, the AIC pruning is adopted for direct use. We shall keep our descriptions concise
by referring the reader to appropriate references for greater details.
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In the AIC pruning algorithm, the performance of a given treeT is measured by the Akaike
(1974) information criterion:

AICT =−2· l̂T +λ× (4· |T̃ |)

where the associated maximized log-likelihood ofT is

l̂T = ∑
τ∈ T̃

l̂τ; (10)

λ = 2 is the penalty parameter for tree complexity; and|T̃ | denotes the number of terminal nodes in
T , with T̃ being the set of all terminal nodes inT and| · | for cardinality when the argument is a set.
Note that each added terminal introduces four more new parameters{πτ,µτ0,µτ1,στ}. Thus the total
number of parameters in treeT is 4· |T̃ |. A tree with a smaller AIC is preferable. Alternatively, the
Bayesian information criterion (BIC; Schwarz 1978) withλ = ln(n) is another choice in common
use. At each step, the algorithm examines all available internal nodes or linksin the present tree and
truncates the link that results in the subtree with the smallest AIC. The pruning procedure yields a
nested sequence of subtreesT0 ≻ T1 ≻ ·· ·TM, whereTM is the null tree structure with root node
only and “≻” is read as “has subtree”.

The final step of tree size selection entails identifying the optimal treeT⋆ from the subtree
sequence. The same AIC or BIC measure can be used for this purpose.However, cross validation
is needed to validatêlT in Equation (10), which can be done via either the test sample method or
resampling methods (V-fold cross-validation or bootstrapping), depending on the available sample
size. Again, we refer readers to Su, Wang, and Fan (2004) for details.
Remark Using the parametric approach in Section 2.3, an alternative splitting statistic canbe
obtained by maximizing the between-node difference. To split nodeτ, let Is denote the indicator
function corresponding to a permissible splits of τ. Consider model

log
Pr(T = 1|x)
Pr(T = 0|x) = β0+β1Is and

y= γ0+ γ1T + γ2 Is+ γ3T · Is+σε with ε∼N (0,1). (11)

In view of Proposition 4, the Wald test statistic for testingH0 : β1 = γ3= 0 can be used as the splitting
statistic. Since the log-likelihood function is separable forβ andγ as shown in (7), cov(β̂, γ̂) = 0.
After some algebraic simplification, the Wald test statistic is given by

(
1

nτL0
+

1
nτL1

+
1

nτR0
+

1
nτR1

)−1
[(

log
nτL0nτR1

nτL1nτR0

)2

+
{(ȳτL1− ȳτL0)− (ȳτR1− ȳτR0)}

2

σ̂2

]
,

whereσ̂2 =
{

∑n
i=1y2

i −
(
nτL0ȳ2

τL0+nτL1ȳ2
τL1+nτR0ȳ2

τR0+nτR1ȳ2
τR1

)}
/n is the MLE of σ2 in model

(11).

3.2 Aggregated Grouping

Despite easy interpretability, one single tree model is notoriously unstable in thesense that a minor
perturbation of the data could result in substantial changes in the final treestructure. In order to
get around this problem, we propose an aggregated grouping method to integrate the stratification
results from a number of competitive tree models. The key idea of this method is toobtain ann×n
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distance or dissimilarity matrixD with entries that measure how likely each pair of observations is
assigned to different strata. Cluster analysis can then be applied for final grouping.

The procedure is described as follows. LetL denote the whole data set. At each iterationb for
b= 1, . . . ,B, generate bootstrap sampleL (b) from L . Divide L (b) into two parts at random with a
ratio of 2:1, the learning sampleL (b)

1 and the test sampleL (b)
2 . UsingL (b)

1 , a large initial CITT (b)
0

is grown and pruned. With the aid of the test sampleL
(b)
2 , a best-sized treeT (b)

⋆ is selected. Let

Kb = |T̃
(b)
⋆ | be the number of terminal nodes inT (b)

⋆ . Then we applyT (b)
⋆ to the whole dataL so

that each observation inL falls into one and only one terminal node ofT (b)
⋆ . Next, we define an

n×n pairwise distance matrixDb = {dii ′} such that

dii ′ =

{
0 if observations{i, i′} fall into the same terminal node ofT (b)

⋆ ;
1 otherwise,

for i, i′ = 1, . . .n. To computeDb, first obtain ann×Kb matrixZb = (zik) such that

zik =

{
1 if observationi falls into thek-th terminal node,
0 otherwise,

(12)

for i = 1, . . . ,n andk= 1, . . . ,Kb. It follows that

Db = ZbZt
b. (13)

Next, the distance matrices are integrated by averaging overB iterations:D = ∑B
b=1Db/B. It can

be seen that the entries inD satisfy the triangle inequality and other properties that are required for
being a legitimate distance measures. Finally, we can apply a clustering algorithmon D in order
to obtain the final data stratification. The number of clustersK can be either determined by the
clustering algorithm itself or preset as the mode ofKb’s. Other techniques for exploring distance or
proximity matrices can also be applied, such as multidimensional scaling (MDS; Torgerson 1958).
The whole procedure is outlined in Algorithm 1.

Algorithm 1 Pseudo-Codes for Aggregated Grouping
SetB← number of repetitions.
for b= 1 toB do

— Generate bootstrap sampleL (b).
— Randomly divide dataL (b) into {L (b)

1 ,L
(b)
2 } with a ratio of 2:1.

— Grow a large CITT (b)
0 usingL (b)

1 and prune.

— Select the best treeT (b)
⋆ usingL (b)

2 . Let Kb = |T̃
(b)
⋆ |.

— Apply T (b)
⋆ to dataL and compute distance matrixDb = (dii ′) such thatdii ′ = 1

if observation pair{i, i′} falls into different nodes ofT (b)
⋆ and 0 otherwise.

end for
ObtainD← 1/B·∑B

b=1Db;
ObtainK←mode{Kb : b= 1, . . . ,B}.
Apply a clustering algorithm onD with K clusters.

We also suggest an optional alternative for computing the distance matrixDb, which is moti-
vated by the amalgamation or node merging idea of Ciampi et al. (1988). It is common that non-
neighboring terminal nodes in a final tree structure do not show much differences from each other.
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This is because similar patterns in treatment assignment and effect may occurto sub-populations
with different characteristics. By taking this issue into consideration of the distance matrixDb in
Algorithm 1, a more effective way of grouping data may be achieved.

To do so, we first obtain aKb×Kb pairwise distance matrixKb = {κ} for all the terminal nodes

in T
(b)
⋆ , the best-sized tree obtained in theb-th iteration. Here,κ = κ(τ,τ′)≥ 0 denotes the distance

between two terminal nodesτ,τ′ ∈ T̃ (b)
⋆ , which can be defined as the logworth (i.e., the negative

logarithm with base 10) of the p-value obtained from a likelihood ratio test in (9) that comparesτ
with τ′. That is,

κ(τ,τ′) =− log10(p-value).

The likelihood ratio test can be conducted using all data inL . The smaller the p-value, the larger
the difference betweenτ andτ′ is, as reflected by a larger value ofκ(τ,τ′). Elements in matrixDb

are then defined by

dii ′ = κ(τ(i),τ(i′)),

whereτ(i) denotes the terminal node into which thei-th observation falls. In matrix form,Db can
be computed as

Db = ZbKbZt
b, (14)

whereZb is given by (12). TheDb in (13) can be viewed as a special case of (14) withKb = Ib.

With modifiedDb in (14), there are two immediate consequences: first, the distancesdii ′ in D
may not necessarily satisfy the triangle inequality; secondly, the number of final clustersK can no
longer be suggested by the best tree sizes. Instead, it has to be determined by the clustering algo-
rithm itself. Recent work on automatic determination of the optimal number of clusters is exempli-
fied by Tibshirani, Walther, and Hastie (2001) and Wang (2010). Both methods are computationally
demanding.

Compared to one single CIT, the aggregated grouping produces a more accurate and stable
grouping of data. Its results can help evaluate the instability of CIT. However, one drawback is loss
of interpretability of the stratification rules.

3.3 Summarizing Strata and ACE Estimation

To summarize the finalK strata obtained from either one single CIT or the aggregated grouping
method, estimated propensity rate ˆek and the treatment effect̂∆k can be obtained for each stratum.
Such information helps delineate the heterogeneity structures in both assignment mechanisms and
effects of the treatment. Strata with extremely low or high propensities may be excluded from
causal inference due to lack of comparison basis. One may take a liberal approach when inspecting
differential causal effects acrossK strata. The use of ACE to summarize treatment effects can be
tentatively justified unless strong evidence for qualitative interaction exists.This is similar to the
common practice in multi-center trials. While the quantitative treatment-by-center interaction is
commonly seen, the overall efficacy of an investigational drug can still be established as long as
there is no significant directional change in the comparison. An estimate of ACE, ∆̂ is given by

∆̂ =
K

∑
k=1

nk

n
· (ȳk1− ȳk0) (15)
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with sampling variance approximated by

K

∑
k=1

n2
k

n2 ·

(
s2
k1

nk1
+

s2
k0

nk0

)
, (16)

where(ȳk1,s2
k1) are the sample mean and variance of observedY’s in the treated group of thek-th

stratum and similar definitions apply to other quantities. Additional covariate adjustment within
each terminal node can be made and alternative stratification estimates of ACE are available, as
summarized and discussed in Lunceford and Davidian (2004).

Propensity score stratification or subclassification seeks subpopulationsof form Ωe = {ω :
e(X) = e}, in which homogeneity of treatment effects, however, can not be guaranteed. Direct
comparison of the mean responses could give a distorted estimate of the causal effect inΩe. Com-
paratively, CIT and aggregating grouping offer refined stratification so that the causal effect within
each resultant stratumΩa can be correctly captured, which consequently offers improved estima-
tion of ACE. Alternatively, one may try to correct the problem with propensityscore stratification
by applying additional ANCOVA-typed adjustment within each stratum. It is important to note
that ANCOVA does no help with this correction, unless effect modification is incorporated into the
model by allowing for treatment-by-covariate interaction terms. This approach would consist of
two steps. In the first step, a number of strata are obtained by stratifying propensity scores. In the
second step, an extended ANCOVA model that allows for interactions is fit within each stratum. We
may adopt an approach explained by Aiken and West (1991) in order to make the overall causal
effect inΩe appear as a regression coefficient. This approach fits a linear model ofform

E(Yi |Ti ,X i) = β0+δeTi +βtx′i +Ti · γtx′i . (17)

wherex′i = xi −E(X|Ωe) for i ∈ Ωe denotes the centered covariate vector. Then the parameterδe

in (17) coincides with the overall causal effect inΩe. Finally, the ACE is estimated by combining
δ̂e’s via (15). The CIT stratification roughly resembles this two-step approach described above, yet
with additional advantages. First, the facilitating score offers a unified setting where these two steps
are naturally combined. Secondly, how to specify interaction terms in (17) remains a dazzling task,
which, however, can be efficiently handled with recursive partitioning in CIT.

3.4 Predicting Individual Causal Effects (ICE)

With the advent of research with biobanks, molecular profiling technologies have been greatly ad-
vanced to allow for collection of a patient’s proteomic, genetic, and metabolic information. Given
various information collected on a patient, how to customize treatments to the individual’s best
needs has posed great challenges to players in the field of personalizedmedicine, including statisti-
cians. A fine delineation of treatment effects plays a critical role in such endeavors.

For this purpose, we define “individual causal effect” (ICE) as a conditional expectationE(Y1−
Y0|x), given a subject withX = x. ICE is conceptually different from the unit level causal effect
Y1(ω)−Y0(w). Strictly speaking, ICE makes conditional causal inference at the subpopulation level
{ω : X(ω) = x}. On the other hand, ICE is the best that one could practically do with available infor-
mation in order to approximate the unit level causal effect. Especially whenX is high-dimensional
and has many continuous components, it is likely that each valuex corresponds uniquely to unitω
with X(ω) = x. In what follows, we devise a powerful method via ensemble CITs to predictICE by
borrowing ideas from random forests (Breiman, 2001).

2968



FACILITATING SCORE AND CAUSAL INFERENCETREES

To proceed, we first randomly divide dataL into V folds. To ensure similar proportions of
individuals in the treatment groups across all folds, stratified sampling with stratification onT can
be used. LetLv denote thev-th fold andL(v) = L−Lv for the remaining data.

Algorithm 2 Pseudo-Codes for Predicting Personal Causal Effects (ICE)
SetV, B, andm.
Randomly split dataL into V sets{L1, . . . ,LV}, with stratification onT.
for v= 1 toV do

SetL(v) = L−Lv.
for b= 1 toB do

— Generate bootstrap sampleL (b)
(v) fromL(v).

— Grow a CITT (b)
(v) usingL (b)

(v) without pruning. At each split, onlym randomly selected
variables are used.
— Estimate causal effectŝ∆τ and propensity ˆeτ for eachτ ∈ T̃ (b)

(v) based onL(v).

— Apply T (b)
(v) to dataLv.

— Compute∆̂(b)
i andê(b)i for eachi ∈ Lv∩ τ, via ∆̂τ andêτ.

end for
Obtain{∆̂i , êi} as averages of{(∆̂(b)

i , ê(b)i ) : b= 1, . . . ,B}, for eachi ∈ Lv.
end for
Merge estimated{∆̂i , êi} into dataL using ID key.
return L .

We drawB bootstrap samples fromL(v). With each bootstrap sampleL (b)
(v) , grow a moderately-

sized CITT (b)
(v) without pruning. When constructingT (b)

(v) , we adapt the approach in random forests
(Breiman, 2001), where onlym randomly selected variables and their associated cutoff points are
evaluated at each split. This tactic helps improve the predictive performanceby de-correlating the
tree models in the random forests. For each terminal nodeτ ∈ T̃ (b)

(v) , estimates of the causal effect
and propensity,

∆̂τ = ȳτ1− ȳτ0 and êτ = nτ1/nτ,

are computed using data inL(v). Then we applỹT (b)
(v) toL(v) and predict the ICÊ∆(b)

i and propensity

scoreê(b)i for each individuali ∈ Lv. Specifically,

∆̂(b)
i = ∆̂τ and ê(b)i = êτ,

if the i-th individual falls into the terminal nodeτ. The final predicted ICE and propensity for thei
individual are

∆̂i =
1
B

B

∑
b=1

∆̂(b)
i and êi =

1
B

B

∑
b=1

ê(b)i .

Their standard errors can also be obtained from the bootstrap repetitions.
The same procedure is repeated for each fold to estimate ICE and propensity scores for all

individuals inL . The whole method is described in Algorithm 2. Further exploration can be done
with the estimated ICE and propensity scores and some illustrations are given inSection 5. While
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we have used aV-fold cross-validation approach in Algorithm 2, the method can be directly applied
to an independent future sample for predicting ICE. Other features in random forests such as variable
importance ranking and partial dependence plots could also be adopted for causal inference.

Some alternative ways of predicting ICE are discussed below. First of all,the standard method
for modeling treatment-by-covariates interaction in many application fields is to fita linear model
with first-order cross-product terms, that is,

y = β0+β1T +βt
2x+T ·βt

3x+ ε
= β0+βt

2x+(β1+βt
3x) ·T + ε. (18)

The ICE is formulated as(β1+βt
3x), which is also linear inx. While this parametric approach is

readily available, it relies heavily on linearity and is subject to a greater risk of model misspecifica-
tion.

Another convenient way for predicting ICE is to use the ‘regression estimation’ approach, as
described in Schafer and Kang (2008). In this approach, we separately fit a predictive model (pos-
sibly using machine learning techniques) forY1 using data in the treated group only and a predic-
tive model forY0 using data in the untreated group only. Then we apply these models to obtain
predicted values(ŷi1, ŷi0) for the potential outcomes for every subject in the data. ICE can be esti-
mated aŝ∆i = ŷi1− ŷi0. Alternatively, the observed response can be used in the calculation so that
∆̂i = yi− ŷi0 for the treated group and̂∆i = ŷi1−yi for the untreated group. Note that this regression
estimation method solely involves the outcome models. The underlying rationale is based on the
fact thatE(Yt |X = x) = E(Y|X = x,T = t) for t = 0,1, given strong ignorability and other condi-
tions. However, the prediction across treatment groups heavily involves extrapolation, again due to
the imbalance in covariates. When used for ACE estimation, Schafer and Kang (2008) found that
it is not among the top performers, but may be possibly improved by incorporating the propensity
score into the model.

Estimating ICE also emerges as one intermediate step in some ACE inference procedures in-
cluding structural nested models introduced by Robins (1989), marginal structural models (see,
e.g., Robins 1999), and the targeted maximum likelihood method (see, e.g., van der Laan and Rubin
2006). These procedures are particularly advantageous in dealing withlongitudinal observational
data where both treatment and covariates are time-varying, but they are also applicable to cross-
sectional or ‘point treatment’ data. Two estimation methods are commonly used in these proce-
dures: the g-computation and the inverse probability of treatment weighting (IPTW). Model (18)
is often embedded in either method, for handling effect moderators in IPTW or being used as the
Q-model in g-computation (see, e.g., Snowden, Rose, and Mortimer 2011) ortargeted maximum
likelihood (see, e.g., Rosenblum and van der Laan 2011) to model and predict potential outcomes.
With g-computation, it is clear that other semiparametric or nonparametric data adaptive methods
(as in ‘the ‘regression estimation’ approach) can be flexibly used for predicting potential outcomes
for each observation under each possible treatment regimen. See van der Laan, Polley, and Hubbard
(2007) and Austin (2012) for examples.

Yet another method for estimate ICEE(Y1−Y0|X = x) directly is to relaxX = x to a neigh-
borhood ofx, N (x). Such a neighborhood ofx can be facilitated using eitherK-nearest neighbor
(KNN) or, more generally, kernel smoothing. If KNN is used, letNK(x) denote the corresponding
neighborhood ofx. A natural estimate of ICE is given by

∑i: xi∈NK(x) yiTi

∑i: xi∈NK(x)Ti
−

∑i: xi∈NK(x) yi(1−Ti)

∑i: xi∈NK(x)(1−Ti)
.
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This KNN approach assigns weight 1 toK observations withinNK(x) and weight 0 to others. More
generally, we may use kernel smoothing to have weights depending on‖ xi−x ‖ for all data points.
To make it more robust to non-random treatment assignment mechanism, it mightbe possible to
incorporate propensity score into the weights as well. While this implementation hasnot been seen
in the literature, it has some promising potentials for its nonparametric nature anddeserves further
research. On the other hand, a neighborhood defined with high-dimensional data could have poor
performance and the computation could be demanding. In addition, interpretation with respect to
covariates becomes obscure with nearest neighbor approaches.

Comparatively, the essential ingredient in our ensemble CIT approach is stratified causal esti-
mates within subpopuations{x : a(x) = a}, which is intermediary in-between ACE and ICE. We
have the convenience to either move forward for ICE with ensemble models or move backward for
ACE by integrating stratified results. It is natural to use tree methods for extracting strata. Tree-
structured methods are nonparametric in nature and hence more robust to model misspecification.
Recursive partitioning excels in efficiently handling interactions and categorical variables and pro-
vides meaningful interpretations. Besides, ensemble models usually performs better in predictive
modeling. With that being said, a comprehensive comparison study of these alternative approaches
in predicting ICE would be interesting for future research.

3.5 Consistency

In terms of asymptotic properties of recursive partitioning based estimators,Breiman et al. (1984)
provided detailed developments of convergence inrth mean and uniform convergence on compacts.
Gordon and Olshen (1984) established the almost sure convergence under certain constraints. In
this section, consistency of the CIT based causal effect estimator is provided in the light of Breiman
et al. (1984).

Let the predictor spaceX ∈ R
p be Euclidean. A tree structureT partitionsX into a number of

disjoint sets or terminal nodes{τ : τ ∈ T̃ }. Again,τ(x) denotes the terminal node wherex falls into.
Let d(·) be the diameter of a set, that is,dn(τ) = supx,x′∈τ ‖ x− x′ ‖, where‖ · ‖ is the Euclidean
norm. With the observed data of sizen, let kn be nonnegative constants such that, with probability
one,

nτ ≥ kn logn for anyτ ∈ T̃ ,

where, same as before,nτ1 is used to denote the number of subjects in nodeτ that are assigned
to the treated group, that is,nτ1 = ∑i∈τ Ti , andnτ0 for the control group. Suppose thata(·) is a
weak facilitating score and̄aτ = ∑i∈τ a(xi) denotes its mean vector in nodeτ. Let (Y1,Y0,Y,T,x) ∈
τ represent a new observation that is independent of current data{(yi ,Ti ,xi) : i = 1, . . . ,n}. The
following theorem establishes the mean square risk consistency for(ȳτ1− ȳτ0), the causal effect
estimate based on direct comparison of sample means in the terminal nodeτ = τ(x).

Theorem 5 Suppose that

max
{

E|Y1|
2+ε, E|Y0|

2+ε}≤M < ∞ for someε > 0 and M> 0, (19)

0< e(x)< 1, and treatment assignment is strongly ignorable. Assume that E(Y1|a) and E(Y0|a) are
continuous ina anda(x) is continuous inx. Further assume that

lim
n→∞

kn = ∞. (20)
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and
lim
n→∞

dn(τ) = 0 (21)

in probability. Then
lim
n→∞

E |(ȳτ1− ȳτ0)−E{Y1−Y0 |a(x) = āτ}|
2 = 0. (22)

The results in Theorem 5 can be improved toLr convergence for anyr ≥ 1 if we change the as-
sumption (19) to

E|Y1|
r+ε ≤M < ∞ and E|Y0|

r+ε ≤M < ∞.

This can be immediately seen from the proof provided in Appendix C, where all the arguments
we have used hold inLr spaces. Toth and Eltinge (2010) has recently proved asymptotic design
L2 consistency of tree-based estimator when applied to complex survey data, following similar
arguments in Gordon and Olshen (1978, 1980). It is worth noting that the Horvitz-Thompson ( 1952)
typed estimator via inverse probability weighting has fundamental use in both causal inference with
observational data and in estimation the superpopulation mean with stratified survey data.

These convergence results for recursive partitioning are obtained without dependence on the
specifics of the algorithm. Unfortunately, no theoretical justifications have been obtained so far
for the splitting rules and pruning algorithms (p. 327; Breiman et al. 1984). Moreover, one of key
assumptions for consistency requires that the mesh size ofτ goes to 0 when the sample size gets
large, as implied by assumption (21). This is an unappealing constrain to practical applications.

4. Simulated Experiments

In this section, simulation experiments are performed to first understand andassess CIT and make
comparisons with other methods and then investigate how CIT performs undermisspecification.

4.1 Performance of CIT

In terms of applications of tree methods relevant to treatment effect assessment, there have been two
major developments serving different purposes: 1) propensity trees (PT) that estimate the propen-
sity scoree(X), as studied by McCaffrey, Ridgeway, and Morral (2004) and Lee, Lessler, and Stuart
(2010); and 2) interaction trees (IT) for subgroup analysis (Su et al.,2009). An interaction tree ex-
plicitly models the treatment-by-covariates interactions for detecting differential treatment effects.
However, this method was developed for experimental data and does not take the non-randomized
treatment assignment into account. As we shall demonstrate, failure or inadequacy to account for
propensity information may lead to misleading interaction results, in that the superficial difference
in treatment effects might have been caused merely by heterogenous treatment selection mecha-
nisms.

We generate data with the following steps.

1. GenerateX1, . . .X5 independently from Unif(0,1) and create threshold variablesZ j = 1{Xj≤0.5}

for j = 1, . . . ,5.

2. Set logit(π) = a0+a1Z1+a2Z2 with logit(π) = log{π/(1−π)}. GenerateT ∼ Bernoulli(π).

3. Setµ= b0+b1T +b2Z2+b3Z3+b4Z4+b5T ·Z4 and generateY ∼N (µ, σ2) with σ = 1.
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In addition to the response variableY and treatment indicatorT, each data set involves five covari-
ates. In the above simulation strategy, covariateX1 is an exposure or treatment predictor involved
in the propensity model only,X2 is a confounder that relates to bothT andY, X3 is a response pre-
dictor or prognostic factor,X4 is an effect-modifier, andX5 is a totally irrelevant covariate. All the
covariate values are rounded at the second decimal place.

By applying different values for the coefficientsai , i = 0,1,2, andb j , j = 0, . . .5, we can obtain
different model configurations, for example, containing either interactionor confounding terms,
both, or neither. We can also investigate how these tree methods handle covariates that play different
types of roles in the causal pathway betweenT andY. Specifically we consider the following five
model configurations:

Model A. a= {a j}= (2,0,0)′, b = {b j}= (2,2,0,0,0,0)′;

Model B. a= {a j}= (2,2,−4)′, b = {b j}= (2,2,2,2,2,2)′;

Model C. a= {a j}= (2,0,−4)′, b = {b j}= (2,2,2,0,2,2)′;

Model D. a= {a j}= (2,2,−4)′, b = {b j}= (2,2,2,0,0,0)′;

Model E. a= {a j}= (2,2,−4)′, b = {b j}= (2,2,0,0,2,2)′.

Model A is a null model, where the covariates have no influence on the treatment effect. This model
helps investigate the size issue or the type I error rate. Model B is equippedwith all structures.
Nevertheless, a massive tree with 16 terminal nodes is needed in order to fully represent the model
structure. Model C also contains both confounding effect ofX2 and interacting effect ofX4, while
neitherX1 nor X3 is involved. In this case, a tree with four terminal nodes is expected. ModelD
mainly involves the confounderX2, plus the exposure predictorX1. Lastly, the active components
in Model E are the effect modifierX4 and the prognostic factorX3.

For each simulated data set, all three tree methods, CIT, IT, and PT, are applied. Only one
sample size is reported and the test sample method is used to select the optimal treesize, with 600
observations for the training sample and 400 observations for the test sample. Both AIC and BIC
are used for the tree model selection. For each final tree selected, we record the optimal tree size and
the splitting variables involved in the final tree structure. Table 1 presents thesummarized results
over 200 simulation runs.

We first examine the results from the null Model A. When BIC is used, all three tree methods
seem rather conservative in committing Type I errors, implying that unsolicitedsignals are unlikely
to be identified. With AIC, the empirical size, that is, the rate of giving false tree signals, is(100−
90.5)%= 9.5% for CIT,(100−88.5)%= 11.4% for IT, and(100−98.5)%= 1.5% for PT.

Next, Model B contains all the components that are related to the treatment andthe response.
Experimenting with this model provides an overall picture of what patterns each tree method tends
to recognize. It can be seen that CIT yields the largest tree models by mostlycatching the effects of
X2, X3, andX4. The treatment predictorX1 is completely missed out by BIC and occasionally (32%
of the time) selected by AIC. Note thatX1 is neither a confounder nor a modifier to the treatment
effect. Due to the smaller penalty for mode complexity, AIC tends to select larger trees than BIC.
As expected, the final propensity trees are split by bothX1 andX2. The average final tree size of IT
is 2.92, compared to its expected value 2. It is interesting to note that IT frequently gets confused
by the confounding effect ofX2.

Model C contains only the components that actively influence the causal effects, namely, the
confounderX2 and the effect-modifierX4. Both are perfectly identified by CIT. PT performs well
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Selection Final Tree Size Splitting Variables
Model Method Criterion 1 2 3 4 5 6 ≥ 7 X1 X2 X3 X4 X5

A CIT AIC 90.5 5.5 1.5 1.5 1.0 0.0 0.0 4.5 2.0 2.5 2.0 2.0
BIC 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IT AIC 88.5 6.0 4.5 1.0 0.0 0.0 0.0 2.5 4.0 3.5 3.0 3.0
BIC 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PT AIC 98.5 0.5 1.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 1.0 0.0
BIC 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B CIT AIC 0.0 4.0 0.0 19.5 5.5 39.5 31.5 32.0 96.0 96.0 100.0 1.5
BIC 0.0 4.0 0.0 26.0 0.0 61.5 8.5 0.0 96.0 96.0 100.0 0.0

IT AIC 0.0 6.5 25.0 50.5 13.0 3.0 2.0 7.0 93.5 6.0 100.0 8.0
BIC 0.0 40.5 28.5 27.0 3.5 0.5 0.0 1.0 59.5 0.5 100.0 1.0

PT AIC 0.0 0.5 33.5 61.5 4.0 0.5 0.0 99.5 100.0 0.5 2.0 1.5
BIC 0.0 1.0 51.5 46.5 1.0 0.0 0.0 99.0 100.0 0.0 0.5 0.0

C CIT AIC 0.0 0.0 4.5 90.5 5.0 0.0 0.0 1.0 100.0 2.0 100.0 0.5
BIC 0.0 0.0 4.5 95.5 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0

IT AIC 0.0 47.0 35.5 14.0 1.5 1.5 0.5 0.5 52.5 0.5 100.0 2.5
BIC 0.0 55.5 33.0 100.0 1.0 0.5 0.0 0.0 44.5 0.0 100.0 0.0

PT AIC 0.0 97.5 1.0 1.5 0.0 0.0 0.0 1.0 100.0 1.0 0.5 0.5
BIC 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

D CIT AIC 0.0 1.0 83.5 11.0 2.0 1.5 1.0 99.0 100.0 2.0 2.5 4.5
BIC 0.0 10.5 89.5 0.0 0.0 0.0 0.0 89.5 100.0 0.0 0.0 0.0

IT AIC 1.5 43.0 31.5 18.0 4.5 1.0 0.5 5.5 98.5 3.0 4.5 2.0
BIC 0.2 54.5 28.0 14.0 1.5 0.0 0.0 1.0 98.0 0.5 1.5 0.0

PT AIC 0.0 0.0 33.5 62.0 2.5 1.5 0.5 100.0 100.0 2.0 2.5 1.0
BIC 0.0 1.0 49.5 49.0 0.5 0.0 0.0 99.0 100.0 0.0 0.0 0.0

E CIT AIC 0.0 0.0 2.5 89.0 8.5 0.0 0.0 1.5 3.0 100.0 100.0 2.0
BIC 0.0 0.0 2.5 97.5 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0

IT AIC 0.0 90.0 9.0 1.0 0.0 0.0 0.0 2.5 1.5 2.5 100.0 3.5
BIC 1.5 97.5 1.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 98.5 0.5

PT AIC 96.5 3.5 0.0 0.0 0.0 0.0 0.0 1.5 0.5 1.0 0.5 0.0
BIC 98.5 1.5 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0

Table 1: Simulation Results Based on the Test Sample Method: Relative frequencies (in percent-
ages) of the final tree sizes in 200 runs identified by the causal inference tree (CIT), inter-
action tree (IT), and propensity tree (PT). Only one set of sample sizes isreported, with
600 observations forming the learning sample and 400 observations for thetest sample.

in identifying the confounderX2 while IT succeeds in recognizing the effect-modifierX4. The same
interesting phenomenon as with Model B occurs again: IT wrongly selectsX2 quite often. This will
further be elaborated in Model D.

Model D is basically a propensity model, involving both the exposure predictor X1 and the
confounderX2 only. In this case, CIT and PT provide equivalent results. Aiming at differential
treatment effects, IT is supposed to have a null tree structure. However, we can see that most of
time IT ends up with one or more splits onX2. To gain insight, Figure 1 plots the splitting statistic
used in both IT and CIT versus each cutoff point forX2 in a single split of the data. The splitting
statistic used in IT is a squaredt test statistic for interaction; thus the best cutoff point corresponds
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Figure 1: Plot of splitting statistic versus cutoff point on the confounderX2: (a) t test statistic
(squared) for interaction used in IT; (b) likelihood ratio test statistic (up to some constant)
used in CIT. Data were generated from Model D in Section 4.

to the maximum of splitting statistics. It is interesting to note in Figure 1(a) that the splitting
statistic actually reaches its minimum atX2 = 0.5, the only place where the treatment comparison
is unbiased. At other cutoff points, the splitting statistic as a measure of interaction misleadingly
inflates due to lack of adjustment for propensity. On the contrary, this doesnot cause a problem for
CIT, which correctly selects the right cutoff point 0.5 as shown in Figure 1(b). Therefore, in order
to identify differential causal effects correctly, it is critical to take confounders into consideration;
otherwise, the estimation bias owing to imbalance of confounders between treatment groups may
become overwhelming and eventually lead to misleading conclusions about the differential causal
effects.

Finally, Model E is essentially an outcome regression model, in which both the prognostic
factorX3 and the effect-modifierX4 are involved. It can be seen that CIT functions similarly to IT in
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Effect Propensity Case I Case II Case III Case IV
Group ∆k ek ∆̂k êk ∆̂k êk ∆̂k êk ∆̂k êk

1 −1.940 0.156 −2.077 0.189 −3.246 0.502 −2.005 0.171 −2.106 0.201
2 2.067 0.866 1.924 0.861 1.925 0.861−0.098 0.857 1.916 0.860
3 −1.938 0.843 −1.987 0.829 −2.629 0.676 −1.016 0.840 −2.006 0.824

Table 2: Simulation Results for Assessing Sensitivity of CIT to Misspecification. Four scenarios
are considered. In Case I, variables{X1,X2,X3,X4} are used; In Case II, the confounder
X2 is omitted; In Case III, the effect-modifierX3 is omitted; In Case IV, the colliderX5

is included. The estimated treatment effect and propensity for each groupwere averaged
over 100 runs.

detecting treatment-by-covariate interactions. CIT also identifies splits on the prognostic factorX3.
It comes as no surprise that PT, concerning propensity only, gives a null tree for most of the time.

4.2 Sensitivity under Misspecification

We next investigate how CIT performs under misspecified scenarios where an important confounder
or effect-modifier is omitted or when a collider is included. We design an experiment with the
following data generation scheme:

1. GenerateX1, . . . ,X4 independently from Unif(0,1) and create threshold variablesZ j = 1{Xj≤0.5}

for j = 1, . . . ,4.

2. GenerateW1 andW2 independently from Bernoulli(0.5) and hence simulateX5 ∼ N (2W1+
2W2, 1).

3. Set logit(π) = 0.5−Z1Z2+W1. GenerateT ∼ Bernoulli(π).

4. Setµ= 2+2Z1Z2−2T +4Z1Z3T +W2 and generatey∼N (µ,1).

The observed data consist of repetitions of{Y,X1, . . . ,X4}. With the above configuration,X1 is both
a confounder and an effect-moderator;X2 is a confounder;X3 is a moderator;X4 is irrelevant; and
X5 is a collider with theM diagram model (see, e.g., Figure 2(a) in Greenland 2003). The data
essentially involve three groups with either different propensities or treatment effects. Observations
in Group 1 satisfiesZ1Z2 = 1; Group 2 is characterized by(1−Z1)Z3 = 1; and Group 3 contains the
others.

In order to assess sensitivity, an independent validation set with 5,000 observations is first gen-
erated. Based on true grouping, the causal effect and propensity for each group are computed and
presented in Table 2. Next, a total of 100 simulation runs are considered. For each simulation run, a
training set with 600 observations and a test set with 400 observations aregenerated, on which basis
CITs are constructed using different sets of variables. In Case I, variables{X1,X2,X3,X4} are used;
Case II uses{X1,X3,X4} with confounderX2 omitted; In Case III,{X1,X2,X4} are used by omitting
the moderatorX3; In Case IV,{X1,X2,X3,X4,X5} are used by including the colliderX5. Each final
CIT (based on BIC) is applied to the validation set to compute the individual causal effect̂∆i and
propensity ˆei for each observation in the validation set. The predicted ICEs and propensities are
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aggregated for each group, based on the true grouping. The grouped causal effect and propensity
estimates are then averaged over 100 simulation runs. The results are also presented in Table 2. It
can be seen that, in Case I, CIT does very well in estimating treatment effectsand propensities. In
both Case II and Case III, substantial bias is present in estimating the treatment effects. The results
for Case IV suggest that the colliderX5 also introduces bias. However, compared to the bias from
omitting a confounder or moderator, the bias from including a collider is much smaller. This is
consistent with the conclusions in Greenland (2003).

5. Analysis of NSW Data

As an illustration, we revisit the NSW data set extensively analyzed by LaLonde (1986) and Dehejia
and Wahba (1999), where the objective is to assess the impact of the National Supported Work
(NSW) Demonstration on post-intervention income levels. The NSW demonstration was a labor
training program implemented in the mid-1970s to provide work experiences for a period of 6-
18 months to individuals facing economic and social difficulties. NSW itself wasdesigned as a
randomized controlled study where subjects were randomly assigned to two treatment groups: the
NSW-exposed group and the unexposed group.

With a rather innovative approach that later on became influential, LaLonde(1986) compiled
a composite data set by taking subjects in the NSW-exposed group only and then obtaining the
nonexperimental control group from other sources, including the Panel Study of Income Dynamics
(PSID) and the Current Population Survey (CPS) databases. His aim was to examine the extent to
which nonexperimental estimators can replicate the unbiased experimental estimate of the treatment
impact. He concluded that nonexperimental estimators are either inaccurate relative to the experi-
mental benchmark or sensitive to model specification. Since then, the mixed NSW data have been
analyzed by various authors with alternative approaches. Among others, Dehejia and Wahba (1999)
obtained estimates of the treatment effect that are close to the experimental benchmark estimate or
the ‘gold’ standard using propensity score matching and stratification.

Most of these previous works are focused on estimating the ACE of NSW. Here we shall apply
the CIT methods to explore the variabilities of its effects, in addition to dealing with the nonrandom
treatment assignments. There are several versions of the data with varying sources for obtaining the
control or unexposed group, available fromhttp://www.nber.org/ ˜ rdehejia/nswdata.html .
The data set we use is the one available in the R packageMatchIt contributed by Ho et al. (2007,
2011). This is a subset restricted to males who had 1974 earnings available, for the reasons explained
in Dehejia and Wahba (1999). There are 614 observations (185 treatedand 429 control) and 10
variables in the data, which include the treatment assignment indicator. A briefdescription and
some summary statistics of these variables are provided in Table 3. The outcomevariable isre78 ,
the 1978 earnings. All covariates buteduc are severely unbalanced between the participants actively
exposed to NSW and those in the unexposed group selected from other survey databases.
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(a) Propensity Tree (b) Interaction Tree
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Figure 2: Final Tree Models for the NSW Data: (a) Propensity Tree; (b)Interaction Tree; (c) Causal
Inference Tree.
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(a) Continuous Variables

Variable All NSW Exposed Unexposed P-value
Name Description mean sd mean sd mean sd two-samplet Wilcoxon
age Age in years 27.36 9.88 25.82 7.16 28.03 10.79 0.0107 0.5195
educ Schooling years 10.27 2.63 10.35 2.01 10.24 2.86 0.6330 0.7920
re74 1974 earnings 4,557.55 6,477.96 2,095.57 4,886.62 5,619.24 6,788.75 0.0000 0.0000
re75 1975 earnings 2,184.94 3,295.68 1,532.06 3,219.25 2,466.48 3,292.00 0.0012 0.0000
re78 1978 earnings 6,792.83 7,470.73 6,349.14 7,867.40 6,984.17 7,294.16 0.3342 0.2818

(b) Discrete Variables

Variable Frequency P-value
Name Description NSW Exposed Unexposed χ2 Fisher’s Exact
black 0 - No 29 342 0.0000 0.0000

1 - African-American 156 87
hispan 0 - No 174 368 0.0053 0.0026

1 - of Hispanic origin 11 61
married 0 - No 150 209 0.0000 0.0000

1 - Yes 35 220
nodegree 0 - No 54 173 0.0113 0.0106

1 - Has a high school degree. 131 256

Table 3: Variable description and summary statistics for the NSW data set. All earnings are expressed in U.S. dollars.
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(a) Propensity Tree

NSW Group Unexposed Group Estimated
Node size mean sd size mean sd Propensity

I 20 8.1423 6.6646 75 5.2302 6.3981 21.05%
II 9 6.0534 4.9218 267 8.1712 7.6170 3.26%
III 156 6.1363 8.1435 87 4.8534 6.2017 64.20%

(b) Interaction Tree

NSW Group Unexposed Group Treatment Effect
Node size mean sd size mean sd estimate s.e.

I 83 5.0392 5.1160 152 5.2804 5.5401 −0.2412 0.7192
II 66 8.4894 10.3819 69 3.4528 5.8233 5.0366 1.4576
III 36 5.4455 7.0965 208 9.4007 8.0201 −3.9552 1.3070

(c) Causal Inference Tree

NSW Group Unexposed Group Estimated Treatment Effect
Node size mean sd size mean sd Propensity estimate s.e.

I 22 8.1431 6.3676 156 4.8438 5.6728 12.35% 3.2993 1.3118
II 7 5.4539 5.3997 186 9.7759 8.0259 3.62% −4.3221 3.0634
III 71 4.6987 4.8043 55 4.8545 5.9303 56.35%−0.1558 0.9564
IV 15 3.8662 3.9130 10 1.0999 2.8541 60.00% 2.7663 1.4438
V 70 8.0809 10.7408 22 6.5570 7.3371 76.09% 1.5239 2.4565

Table 4: Summary statistics for the terminal nodes: (a) the final propensity tree (PT); (b) the final
interaction tree (IT); and (c) the final causal inference tree (CIT). The means and standard
deviations are given in thousand dollars.

We applied three tree procedures to the data: PT, IT, and CIT. The finaltree structures, all
selected by BIC, are plotted in Figure 2. Considering the moderate sample size, a bootstrap method
was used for final tree selection. In Figure 2, the internal nodes are denoted by circles. The splitting
rule is given under each internal node. Observations satisfying the rulego to the left child node
and observations not satisfying go to the right child node. The terminal nodes are denoted by
rectangles and renamed by Roman numerals inside. Underneath each terminal node is the number of
exposed subjects versus the number of unexposed subjects within the terminal node. Some summary
statistics for the terminal nodes in each final tree are provided in Table 4.

Figure 2(a) gives the final PT structure, which delineates a meaningful heterogeneity in propen-
sity. It is clear that African Americans were more likely to participate in this laborprogram. PT
also identifies a group, terminal node II, with extremely low propensity (3.26%). This group is
characterized by people who were not African Americans and had some income in 1974. However,
this PT model tells nothing about differential treatment effects.

Figure 2(b) displays the final IT structure. Variablesre74 andage stand out as determinants
of differential causal effects. Apparently remarkable differential treatment effects seem to exist
across the three terminal nodes based on Table 4(b). However, since the method does not adjust
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Figure 3: Aggregated Grouping for the NSW Data: (a) Multidimensional scaling (MDS) plot; (b)
Dendrogram for hierarchical clustering with average linkage. The distance matrix was
computed by aggregating 100 bootstrap samples.
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for heterogeneous propensity, the results are not reliable. Hence we make no further attempt in
interpreting.

Figure 2(c) presents the final CIT model, which has a more comprehensive structure. It is
interesting to see that the left-half of the tree resembles the PT tree in Figure 2(a). In particular, the
CIT comes up with a similar terminal node II, which contains non-African Americans with income
higher than $2,721 in 1974. Since CIT accounts for both propensity and differential causal effects,
it is valid to estimate the NSW effect via direct comparison of sample means within each terminal
node. Table 4(c) provides the relevant quantities. CIT also identifies someinteresting patterns
of differential treatment effects. The surprising comparison occurs to terminal node II, where the
NSW-exposed group had a lower average income than the unexposed group with a mean difference
of $4,322. However, this should not be a point of great concern due toits very low propensity
3.62%.
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Figure 4: Plot of the Estimated Personal Causal Effects vs. Propensity Scores for the NSW Data.
Referring to Algorithm 2,B = 1000 bootstrap samples were used in a three-fold cross
validation procedure and the parametermwas set as 3.

If it is agreed that terminal node II be excluded from consideration due tolack of comparison
basis and the minor negative effect of NSW in terminal node III be ignored, then one may tentatively
conclude the absence of qualitative interactions. Using Equations (15)-(16) and information in Table
4(c), the ACE is estimated as $1,845± $809, which is very close to the benchmark randomized
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experiment estimate of $1,794± $633. As a comparison, the unadjusted estimate is $635± $677
and the ANCOVA estimate is $1,548± $781 after adjusting for all covariates. It is worth mentioning
that the ANCOVA estimate varies dramatically when different sets of variablesare included in
the model. Using nonparametric matching method (Ho et al., 2007) implemented in theMatchIt
package, the subclassification estimate (with 5 subclasses) is $1,237± $1,196 and the optimal
matching (Rosenbaum, 1989) based estimate is $1,366± $720.

Next, we applied the aggregated grouping method described in Algorithm 1. Weobtained an
averaged distance matrix from 100 bootstrap samples. The modal number ofoptimal tree sizes
is 5. The classical MDS (Gower, 1966) was used to explore the the distance matrix. Figure 3(a)
provides the resultant plot when the data are represented in a two-dimensional space. Agglomerative
hierarchical clustering with average linkage was then used to determine the final clusters. See Figure
3(b) for the dendrogram. The cluster membership specification was also added to the MDS plot in
Figure 3(a). It can be seen that Cluster 2 and Cluster 5 are distant fromother three clusters. Table
5(a) shows the correspondence between the five clusters and the five CIT terminal nodes. It can
be seen that overall they match well, except for minor inconsistency between clusters 4 & 5 and
terminal nodes IV & V. This indicates that the CIT structure is relatively stable. The summary
statistics for the five clusters are outlined in Table 5(b), showing a pattern similar to Table 4(c).
After removing Cluster 2, the estimate of ACE is $1,897± $807. We would like to emphasize that
the excluded Group II in CIT can be explained by the fact that people whowere not black and had
some income in 1974 seemed unlikely (with estimated propensity 3.62%) to participatethe NSW
intervention program. This easy interpretation is no longer available with Cluster 2 obtained from
the aggregated grouping procedure.

Finally, ensemble CITs were used to estimate the ICE and propensity score for each individual.
Referring to Algorithm 2, three-fold (V = 3) cross-validation withB = 1,000 bootstrap samples
(with stratification on treatment) was used in the analysis; and at each split,m= 3 variables were
randomly selected as candidate splitting variables. Figure 4 plots the estimated ICE vs. propensity
scores. The interpretation for ICE is the difference between what an individual would have earned
in 1978 if he had attended NSW, compared to the 1978 earnings if he had notattended. It can be
seen that the area with low propensity (below .10) is dominated by subjects in thecontrol and their
associated personal effects of NSW are quite mixed. Other than that, the intervention program seem
to have an overall positive effect. Figure 5 summarizes the results for each treatment-by-stratum
combination, in which the five strata obtained from aggregated grouping areused. It can be seen
that both propensity and individual causal effects are reasonably homogeneous within each stratum,
even though the individuals were from different treatment groups.

6. Extension to Ordinal/Continuous Treatments

The concept and properties of the facilitating score can be extended to scenarios where the treatment
variable is nominal (Lechner, 1999) or ordinal (Imbens, 2000). Suppose that the treatment variable
T is allowed to range withinℑ, whereℑ is a discrete set with ordered or unordered values. Let
Yt =Yt(ω) denote the potential outcome if unitω was assigned to the treatment levelt. Let et(X) =
Pr{T = t|X} be the generalized propensity score (GPS). A generalized weak facilitating score can
be defined as below.

Definition 6 A generalized weak facilitating scorea(X) is a q-dimensional (0< q≤ p) function of
X such that (i)X ⊥⊥ T |a(X) and (ii) E(Yt −Yt ′ |a(X)) = E(Yt −Yt ′ |X) for any t, t ′ ∈ ℑ.

2983



SU, KANG, FAN , LEVINE AND YAN

0.1 1.1 0.2 1.2 0.3 1.3 0.4 1.4 0.5 1.5

0.
2

0.
4

0.
6

0.
8

(a)

Treatment by Group

pr
op

en
si

ty
 s

co
re

0.1 1.1 0.2 1.2 0.3 1.3 0.4 1.4 0.5 1.5

−
4

−
2

0
2

4
6

(b)

Treatment by Group

pe
rs

on
al

 c
au

sa
l e

ffe
ct

Figure 5: Parallel Box-Plots of (a) the Propensity Scores and (b) the Estimated ICE for Each of
the Treatment×Stratum Combinations. The ‘0.k’ combination corresponds to individuals
in Stratumk who did not attend the NSW program while ‘1.k’ corresponds to those in
Stratumk who did, fork = 1, . . . ,5. The width of each box has been made proportional
to the sample size in each combination.

Condition (ii) is equivalent to saying thatE(Yt −Yt ′ |a(X) = a) is independent ofX. The following
theorem provides a basis for its usage. It shows that, if the joint distributionof (Y,T) can be modeled
through a vector-valued functionh(X), thenh(X) is a generalized weak facilitating score and direct
estimates of causal effects can be obtained by conditioning onh(X) = h.
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(a) Correspondence

Cluster
1 2 3 4 5

I 178 0 0 0 0
II 0 193 0 0 0
III 0 0 126 0 0
IV 0 0 0 22 3
V 0 0 0 11 81

(b) Summary of Five Groups

NSW Group Unexposed Group Estimated Treatment Effect
Node size mean sd size mean sd Propensity estimate s.e.

1 22 8.1431 6.3676 156 4.8438 5.6728 12.36% 3.2993 1.3118
2 7 5.4539 5.3997 186 9.7759 8.0259 3.63%−4.3221 3.0634
3 71 4.6987 4.8043 55 4.8545 5.9303 56.35%−0.1558 0.9564
4 21 4.1514 4.3182 12 2.4027 5.5116 63.64% 1.7487 1.7283
5 64 8.3825 11.0826 20 6.3210 7.1054 76.19% 2.0614 2.6383

Table 5: Results for the five groups obtained from aggregated grouping:(a) correspondence be-
tween the obtained groups and the five CIT terminal nodes; (b) summary statistics. The
distance matrix was computed from 100 bootstrap samples and hierarchical clustering with
average linkage was used for determining the final groups.

Theorem 7 Assume that the conditional joint density of(Y,T) given X, fY,T|X(Y,T|X), can be
written as fY,T|X(Y,T|X) = g(Y,T,h(X)) for some function g(·). In other words,(Y,T)⊥⊥X |h(X).
Further assume that treatment assignment is strongly ignorable so that Yt ⊥⊥ 1{T=t} |X for any
t ∈ ℑ. When0< et(X)< 1, we have

(1). h(X) is a generalized weak facilitating score.

(2). Concerning the causal effect in subpopulationΩh = {ω : h(X(ω)) = h},

E(Yt −Yt ′ |h(X) = h) = E{Yt |T = t,h(X) = h}−E{Yt ′ |T = t ′,h(X) = h}

= E{Y|T = t,h(X) = h}−E{Y|T = t ′,h(X) = h}

is independent ofX.

The proof of Theorem 7 is deferred to Appendix A. As stressed by Lechner (1999) and Imbens
(2000), GPSet(X) does not have a causal interpretation. However, the reinforced assumption
fY,T|X(Y,T|X) = g(Y,T,h(X)) implies thatet(X) can be fully characterized byh(X) or its com-
ponents. This is analogous to the assumption ofuniquely parameterized propensity functionin Imai
and van Dyk (2004), where a parametric form is prescribed foret(X). To estimateh(X), a multi-
nomial or cumulative logit model can be used for propensity and the outcome can be modeled with
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multiple linear regression. The above results also can be extended to continuous treatment variables
with arguments similar to Hirano and Imbens (2005).

7. Discussion

Embedded in Rubin’s causal model, we have introduced a new concept, thefacilitating score, to
help tackle the heterogeneity in both propensity and causal effects. The facilitating score is a finer
balancing score of Rosenbaum and Rubin (1983), plus additional conditions for dealing with dif-
ferential causal effects. It supplies a framework that promotes joint modeling of (Y,T) for a better
understanding of causal effects. Accordingly we have devised recursive partitioning methods to aid
in causal inference at different levels.

The facilitating score concept and the CIT methods can be useful in personalized medicine and
other similar applications. Medical treatment is traditionally centered on standards of care on the ba-
sis of large epidemiological cohort studies or randomized trials that are powered for assessing ACE.
These studies however do not account for variabilities of individuals in reacting to the treatments
and drug-to-drug interactions. The new medical model of personalized medicine or treatments
seeks flexible ways that allow for treatment decisions or practices being tailored to individual by
integrating post-trial clinical data and new developments in biotechnology to improve healthcare.
The collected covariates are often expanded to a more comprehensive consideration of the patient,
including medical measurements, family history, social circumstances, environment and behaviors,
and biological variables. As a result, the data are often observational and high-dimensional in na-
ture. As demonstrated in the NSW data example, causal inference in observational studies could be
very complex, owing to the confounding and interacting effects complicated by covariates. While
personalized medicine is the ultimate goal, stratified medicine has been the current approach. Strat-
ified medicine aims to select the best therapy for groups of patients who share common biological
characteristics. The proposed CIT method and aggregated grouping can be used seeking strategies
for deploying stratified medicines. Insight into a greater degree of personalized treatment can be
gained by studying the personal treatment effects with ensemble CITs.

Some limitations of the proposed methods are listed below. First, despite the usefulness of
ICE, assessing ICE entails larger data than assessment of ACE in order tohave the same level of
precision (or variance). There are many trials in research practice thatare only powered to detect
ACE. For this reason, the proposed methods are best suitable for moderately-sized or large follow-
up data collected in post trial periods or extracted from Medicare or Medicaid databases, in which
randomization is not available. Secondly, the recursive partitioning methods are highly adaptive or
data-driven in nature and often regarded as exploratory or hypothesis-generating. It is important to
interpret the results with caution. In addition, the validity of Theorem 7 relies on the assumption of
strong ignorability. Like other methods, CIT performance is vulnerable to violated assumptions and
model misspecification. Shpitser and Pearl (2008) examines possibly milder conditions to ensure
identifiability and facilitate estimation in causal inference. It would be interestingto investigate how
to extend the proposed methods under mild conditions.

In terms of future research, Theorem 7 is readily applied to data with binaryoutcomes. With
further research efforts, both the facilitating score and CIT may be extended to other types of out-
comes such as censored survival times or longitudinal measurements. It would also be interesting to
extend the proposed methods to scenarios when both treatment and confounders are time-varying, as
studied in marginal structural models and structural nested models (Robins,1999), and when some
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confounders are unmeasured but there exist some instrumental variables (IV; Angrist, Imbens, and
Rubin 1996) that satisfy the strong ignorability and other conditions. In addition, Robins, Rotnitzky,
and Zhao (1994) proposed doubly robust (DB) estimation methods to dealwith mis-specification in
either the response model or the propensity model. Along similar lines, the targeted maximum like-
lihood (TML; van der Laan and Rubin 2006) is another newly developed causal inference method
that enjoys a favorable theoretical property for being doubly robust and locally efficient, meaning
that if at least one of the propensity and outcome models is correctly specified, then the TML es-
timator is consistent and asymptotically normal; if both models are correctly specified it is also
efficient. Similar work with facilitating score modeling could be another avenue for future research.
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Appendix A. Proof of Theorem 7.

We sketch the proof whenT is ordinal or nominal. Theorem 3 follows as a special case when
ℑ = {0,1}. Some steps are standard arguments in propensity score theories. We include them for
the sake of completeness.

First of all, the conditional probability density function ofT|X is

fT|X(T|X) =
∫

Y
fY,T|X(Y,T|X)dY=

∫
Y

g(Y,T,h(X))dY.

Thus the GPSet(X) = P(T = t|X) = g1(h(X)) for some functiong1(·). Namely,h(X) is a finer
function ofet(X). For this reason, we denoteet(X) = et(h(X)).

Next, sinceh(X) is measurable with respect to,σ(X), theσ-algebra generated byX,

Pr{T = t|X,h(X)}= Pr{T = t|X,}= et(X).

Let δt = I{T = t} be the indicator function of whetherT = t. By iterated expectation,

Pr{T = t|h(X)} = E(δt |h(X)) = E{E(δt |X,h(X))|h(X)}

= E{E(δt |X)|h(X)}= E{et(X)|h(X)}= et(X).

Namely, Pr{T = t|X,h(X)}= et(X) = Pr{T = t|h(X)}, which impliesT ⊥⊥ X|h(X).

Further assuming the treatment assignment is strongly ignorable givenX, it follows that the
treatment assignment is ignorable givenh(X), that is,T ⊥⊥ Yt |h(X), which can be established by
showing

Pr{T = t ′|Yt ,h(X)} = E{δt ′ |Yt ,h(X)}= E{E(δt ′ |X,Yt ,h(X))|Yt ,h(X)}

= E{E(δt ′ |X)|Yt ,h(X)} due to strong ignorability

= E{et ′(X)|Yt ,h(X)}= et ′(X) = Pr{T = t ′|h(X)}.
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To check condition (ii) in Definition 6, considerE{Yt |h(X)}. SinceY = ∑t Ytδt andδtδt ′ = 0 for
t 6= t ′, we haveYδt =Ytδt . Consider

E{Yt |h(X)} = E{Yt |h(X)} ·E{δt |h(X)}/E{δt |h(X)}

= E{Ytδt |h(X)}/E{δt |h(X)} by strong ignorability

= E{Yδt |h(X)}/et(X).

It can be seen thath(x) is a finer function of both the numerate and denominator in the above
expression. ThusE{Yt |h(X) = h} is fully determined byh and no longer relies on the value ofX.

Finally, in order to have available causal inference, it is important to note that, for givent and
t ′, h(x) = h fully determines bothet(h) andet ′(h). Therefore,

E{Yt −Yt ′ |h(X) = h} = E{Yt |h(X) = h,T = t,et(h)}−E{Yt ′ |h(X) = h,T = t ′,et ′(h)}

= E{Y|h(X) = h,T = t}−E{Y|h(X) = h,T = t ′}

is independent ofX. This justifies the direct use of mean response comparison for causal inference
in subpopulationΩh.

Appendix B. Proof of Proposition 4.

First of all, condition (i) in Definition 2 holds asX ⊥⊥ T|h3(X). Assuming(Y1,Y0) ⊥⊥ T |X, it
follows that(Y1,Y0)⊥⊥ T |h3(X) under strong ignorability.

Now it suffices to verify condition (ii). Consider

E{Y1 |h2(X),h3(X)} = E{Y1 |T = 1,h2(X),h3(X)}

= E{Y |T = 1,h2(X),h3(X)}

= E{E(Y|X,T = 1) |h2(X),h3(X)}

= E{γ0+ γ1+h1(X)+h2(X) |h2(X),h3(X)}

= γ0+ γ1+h2(X)+E{h1(X) |h2(X),h3(X)}

Similarly, it can be found that

E{Y0 |h2(X),h3(X)}= γ0+E(h1(X)|h2(X),h3(X)}.

Thus,
E{Y1−Y0 |h2(X) = h2, h3(X) = h3}= γ1+h2,

which is independent ofX.

Appendix C. Proof of Theorem 5.

The following lemma (see, e.g., Chapter 9 of Lin and Bai 2011), derived directly fromCr inequality,
will be used in the proof.

Lemma 8 Given a sequence X1, . . . ,Xn of random variables,̄Xn = ∑n
i=1Xi/n. Then

E|X̄n|
r ≤

1
n
·

n

∑
i=1

E|Xi |
r for r > 1.
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By condition (ii) in Definition 2 ofa(x),

(ȳτ1− ȳτ0)−E(Y1−Y0 | āτ) = (ȳτ1− ȳτ0)−E(Y1−Y0 |x)

+E(Y1−Y0|a(x))−E(Y1−Y0 | āτ)

= {ȳτ1−E(Y1|x)+E(Y1 |a(x))−E(Y1|āτ)}−

{ȳτ0−E(Y0|x)+E(Y0 |a(x))−E(Y0|āτ)}

= ζ1−ζ0

For convenience, we have usedāτ as shorthand for the conditioning event{a(x) = āτ}. To prove
(22), it suffices, by Minkowski’s inequality, to verify the mean square orL2 consistency forζ1 and
ζ0 separately.

Consider
ζ1 = {ȳτ1−E(Y1|x)}+{E(Y1 |a(x))−E(Y1|āτ)},

which has two terms. We examine the second term{E(Y1 |a(x))−E(Y1|āτ)} first. If assumptions
(19), (20), and (21) hold, then̄aτ

p
→ a(x) by Theorem 12.7 of Breiman et al. (1984, p. 322). Since

E(Y1|a) is assumed continuous ina,

E(Y1|āτ)
p
→ E(Y1|a(x))

by the continuous mapping theorem. Moreover, since|E(Y1|āτ)| ≤ E(|Y1||āτ) ≤ E(|Y1|) < ∞, it
follows that

lim
n

E |E(Y1|āτ)−E(Y1|a(x))|
2 = 0

by the dominated (or bounded) convergence theorem.
Next, consider the first term inζ1, {ȳτ1−E(Y1|x)}. Rewriteȳτ1 as

ȳτ1 =

∑
i∈τ

YiTi

∑
i∈τ

Ti
=

∑
i∈τ

YiTi/nτ

∑
i∈τ

Ti/nτ
=

ξn

ρn
.

which is a ratio estimator. The convergence of ratio estimators in the general form was studied by
Craḿer (1946). Using Theorem 12.7 of Breiman et al. (1984) again, we haveξn

p
→ E(YT|x) and

ρn
p
→ e(x) in probability. Thus

ξn

ρn

p
→

E(YT|x)
e(x)

= E(Y1|x)

in probability as well ife(x) 6= 0, under the assumption of strong ignorability. To establish its mean
square risk consistency, the necessary and sufficient condition is thatthe random sequence{ȳ2

τ1}n is
uniformly integrable, that is,

lim
c0→∞

sup
n

E{ȳ2
τ1 I(ȳτ1 > c0)}= 0.

A sufficient condition for uniform integrability (?) is that

sup
n

E|ȳτ1|
2+ε < ∞
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for someε > 0. This can be verified because

sup
n

E|ȳτ1|
2+ε ≤ sup

n

1
nτ1

∑
{i∈τ: Ti=1}

E|Y|2+ε ≤M < ∞

following from (19) and Lemma 8.
Therefore, limnE|ζ1|

2 = 0 using Minkowski’s inequality again. Similar arguments can be used
to show limnE|ζ0|

2 = 0. This completes the proof of Theorem 5.
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