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Abstract
This paper studies the construction of arefinementkernel for a given operator-valued reproducing
kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel con-
tains that of the given kernel as a subspace. The study is motivated from the need of updating the
current operator-valued reproducing kernel in multi-tasklearning when underfitting or overfitting
occurs. Numerical simulations confirm that the establishedrefinement kernel method is able to
meet this need. Various characterizations are provided based on feature maps and vector-valued
integral representations of operator-valued reproducingkernels. Concrete examples of refining
translation invariant and finite Hilbert-Schmidt operator-valued reproducing kernels are provided.
Other examples include refinement of Hessian of scalar-valued translation-invariant kernels and
transformation kernels. Existence and properties of operator-valued reproducing kernels preserved
during the refinement process are also investigated.
Keywords: vector-valued reproducing kernel Hilbert spaces, operator-valued reproducing kernels,
refinement, embedding, translation invariant kernels, Hessian of Gaussian kernels, Hilbert-Schmidt
kernels, numerical experiments

1. Introduction

Machine learning designs algorithms for the purpose of inferring from finiteempirical data a func-
tion dependency which can then be used to understand or predict generation of new data. Past
research has mainly focused on single task learning problems where the function to be learned is
scalar-valued. Built upon the theory of scalar-valued reproducing kernels (Aronszajn, 1950), kernel
methods have proven useful in single task learning (Schölkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Vapnik, 1998). The approach might be justified in three ways. Firstly, as inputs for
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learning algorithms are sample data, requiring the sampling process to be stableseems inevitable.
Thanks to the existence of an inner product, Hilbert spaces are the classof normed vector spaces
that we can handle best. These two considerations lead immediately to the notion of reproducing
kernel Hilbert spaces (RKHS). Secondly, a reasonable learning scheme is expected to make use of
the similarity between a new input and the existing inputs for prediction. Inner products provide
a natural measurement of similarities. It is well-known that a bivariate function is a scalar-valued
reproducing kernel if and only if it is representable as some inner product of the feature of inputs
(Scḧolkopf and Smola, 2002). Finally, finding a feature map and taking the inner product of the
feature of two inputs are equivalent to choosing a scalar-valued reproducing kernel and performing
function evaluations of it. This brings computational efficiency and gives birth to the important “ker-
nel trick” (Scḧolkopf and Smola, 2002) in machine learning. For references on single task learning
and scalar-valued RKHS, we recommend Aronszajn (1950), Cucker and Smale (2002), Cucker and
Zhou (2007), Evgeniou et al. (2000), Schölkopf and Smola (2002), Shawe-Taylor and Cristianini
(2004) and Vapnik (1998); Zhang et al. (2009).

In this paper, we are concerned with multi-task learning where the function tobe reconstructed
from finite sample data takes range in a finite-dimensional Euclidean space, or more generally, a
Hilbert space. Motivated by the success of kernel methods in single task learning, it was proposed
in Evgeniou et al. (2005) and Micchelli and Pontil (2005) to develop algorithms for multi-task
learning in the framework of vector-valued RKHS. We attempt to contribute to the theory of vector-
valued RKHS by studying a special embedding relationship between two vector-valued RKHS.
We shall briefly review existing work on vector-valued RKHS and the associated operator-valued
reproducing kernels. The study of vector-valued RKHS dates back to Pedrick (1957). The notion
of matrix-valued or operator-valued reproducing kernels was also obtained in Burbea and Masani
(1984). References Mukherjee and Wu (2006), Mukherjee and Zhou (2006) and Ying and Campbell
(2008) were devoted to learning a multi-variate function and its gradient simultaneously. Reference
Carmeli et al. (2006) established the Mercer theorem for vector-valuedRKHS and characterized
those spaces with elements beingp-integrable vector-valued functions. Various characterizations
and examples of universal operator-valued reproducing kernels were provided in Caponnetto et al.
(2008) and Carmeli et al. (2010). The latter (Carmeli et al., 2010) also examined basic operations
of operator-valued reproducing kernels and extended the Bochner characterization of translation
invariant reproducing kernels to the operator-valued case.

The purpose of this paper is to study the refinement relationship of two vector-valued reproduc-
ing kernels. We say that a vector-valued reproducing kernel is a refinement of another kernel of
such type if the RKHS of the first kernel contains that of the latter one as a linear subspace and their
norms coincide on the smaller space. The precise definition will be given in thenext section after
we provide necessary preliminaries on vector-valued RKHS. The study ismotivated by the need of
updating a vector-valued reproducing kernel for multi-task machine learning when underfitting or
overfitting occurs. Detailed explanations of this motivation will be presented inthe next section.
Mathematically, a thorough understanding of the refinement relationship is essential to the estab-
lishment of a multi-scale decomposition of vector-valued RKHS, which in turn is the foundation
for extending multi-scale analysis (Daubechies, 1992; Mallat, 1989) to kernel methods. In fact, a
special refinement method by a bijective mapping from the input space to itselfprovides such a
decomposition. As the procedure is similar to the scalar-valued case, we refer interested authors to
Xu and Zhang (2007) for the details. The notion of refinement of scalar-valued kernels was initiated
and extensively investigated by the first two authors (Xu and Zhang, 2007, 2009). Therefore, a gen-
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eral principle we shall follow is to briefly mention or even completely omit arguments that are not
essentially different from the scalar-valued case. As we proceed with the study, it will become clear
that nontrivial obstacles in extending the scalar-valued theory to vector-valued RKHS are mainly
caused by the complexity in the vector-valued integral representation of theoperator-valued repro-
ducing kernels under investigation, by the complicated form of the feature map involved, which is
also operator-valued, and by the infinite-dimensionality of the output spacein some occasions.

To be more specific, we would personally regard the following results to be mathematically
nontrivial: Theorem 11 of characterizing the refinement of kernels defined by the integral of scalar-
valued kernels with respect to an operator-valued measure, Proposition10 of studying the refinement
of positive operators, Lemma 13 of proving the disjointness of the RKHS of translation-invariant
kernels of different types, and Theorem 21 about the refinement of finite Hilbert-Schmidt kernels.
Besides, compared to the scalar-valued case in Xu and Zhang (2009), Sections 5.2 and 5.3 about the
refinement of Hessian kernels and transformation kernels are unique, and Section 7 of numerical ex-
periments is novel. By contrast, the discussion of general characterizations and finite-dimensional
RKHS in Section 3, refinement of kernels defined by the integral of operator-value kernels with
respect to a scalar-valued measure in Section 4.1, and Section 6 about theexistence of refinement
and properties preserved by the refinement process can be viewed aseither trivial extensions or
not of sufficient mathematical depth. We also remark that every vector-valued RKHS is isometri-
cally isomorphic to a scalar-valued RKHS on an extended input space (seeProposition 6 below).
However, this does not mean that the question of studying refinement of operator-valued kernels
can be trivially reduced to that about scalar-valued kernels. The isometry procedure will usually
make the resulting scalar-valued kernel and extended input space complex and difficult to analyze.
Moreover, favorable properties such as translation invariance and Hilbert-Schmidt structure of the
original kernels are generally lost in the process. Therefore, an independent study of the refinement
of operator-valued kernels is necessary and challenging.

This paper is organized as follows. We shall introduce necessary preliminaries on vector-valued
RKHS and motivate our study from multi-tasking learning in the next section. InSection 3, we
shall present three general characterizations of the refinement relationship by examining the differ-
ence of two given kernels, the feature map representation of kernels, and the associated kernels on
the extended input space. Recall that most scalar-valued reproducingkernels are represented by
integrals. In the operator-valued case, we have two types of integral representations: the integral
of operator-valued reproducing kernels with respect to a scalar-valued measure, and the integral
of scalar-valued reproducing kernels with respect to an operator-valued measure. As a key part of
this paper, we shall investigate in Section 4 specifications of the general characterizations when
the operator-valued reproducing kernels are given by such integrals. In Section 5, we present con-
crete examples of refinement by looking into translation-invariant operator-valued kernels, Hessian
of a scalar-valued kernels, Hilbert-Schmidt kernels, etc. Section 6 treatsspecially the existence of
nontrivial refinements and desirable properties of operator-valued reproducing kernels that can be
preserved during the refinement process. In Section 7, we perform three numerical simulations to
show the effect of the refinement kernel method in updating operator-valued reproducing kernels
for multi-task learning. Finally, we conclude the paper in Section 8.
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2. Kernel Refinement

To explain our motivation from multi-task learning in details, we first recall the definition of operator-
valued reproducing kernels. Throughout the paper, we letX andΛ denote a prescribed set and a
separable Hilbert space, respectively. We shall callX the input space andΛ the output space. To
avoid confusion, elements inX andΛ will be denoted byx,y, andξ,η, respectively. Unless specifi-
cally mentioned, all the normed vector spaces in the paper are over the fieldC of complex numbers.
Let L(Λ) be the set of all the bounded linear operators fromΛ to Λ, andL+(Λ) its subset of those
linear operatorsA that are self-adjoint and positive, namely,

(Aξ,ξ)Λ ≥ 0 for all ξ ∈ Λ,

where(·, ·)Λ is the inner product onΛ. The adjoint ofA∈ L(Λ) is denoted byA∗. An L(Λ)-valued
reproducing kernelonX is a functionK : X×X →L(Λ) such thatK(x,y) =K(y,x)∗ for all x,y∈X,
and such that for allx j ∈ X, ξ j ∈ Λ, j ∈ Nn := {1,2, . . . ,n}, n∈ N,

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ ≥ 0. (1)

For eachL(Λ)-valued reproducing kernelK on X, there exists a unique Hilbert space, denoted by
HK , consisting ofΛ-valued functions onX such that

K(x, ·)ξ ∈HK for all x∈ X andξ ∈ Λ (2)

and

( f (x),ξ)Λ = ( f ,K(x, ·)ξ)HK
for all f ∈HK , x∈ X, andξ ∈ Λ. (3)

It is implied by the above two properties that the point evaluation at eachx∈ X:

δx( f ) := f (x), f ∈HK

is continuous fromHK to Λ. In other words,HK is aΛ-valued RKHS. We call it the RKHS ofK.
Conversely, for eachΛ-valued RKHS onX, there exists a uniqueL(Λ)-valued reproducing kernel
K onX that satisfies (2) and (3). For this reason, we also callK the reproducing kernel (or kernel for
short) ofHK . The bijective correspondence betweenL(Λ)-valued reproducing kernels andΛ-valued
RKHS is central to the theory of vector-valued RKHS.

Given twoL(Λ)-valued reproducing kernelsK,G on X, we shall investigate in this paper the
fundamental embedding relationshipHK � HG in the sense thatHK ⊆ HG and for all f ∈ HK ,
‖ f‖HK

= ‖ f‖HG
. Here,‖·‖W denotes the norm of a normed vector spaceW . We callG arefinement

of K if there does holdHK �HG. Such a refinement is said to be nontrivial ifG 6= K.
We motivate this study from the kernel methods for multi-task learning and fromthe multi-scale

decomposition of vector-valued RKHS. Letz := {(x j ,ξ j) : j ∈ Nn} ⊆ X×Λ be given sample data.
A typical kernel method infers fromz the minimizerfz of

min
f∈HK

1
n

n

∑
j=1

C(x j ,ξ j , f (x j))+σφ(‖ f‖HK
), (4)
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whereK is a selectedL(Λ)-valued reproducing kernel onX, C a prescribed loss function,σ a
positive regularization parameter, andφ a regularizer. The ideal predictorf0 : X → Λ that we are
pursuing is the one that minimizes

E( f ) :=
∫

X×Λ
C(x,ξ, f (ξ))dP

among all possible functionsf from X to Λ. HereP is an unknown probability measure onX×Λ
that dominates the generation of data fromX×Λ. We wish thatE( fz)−E( f0) can converge to zero
in probability as the numbern of sampling points tends to infinity. Whether this will happen depends
heavily on the choice of the kernelK. The errorE( fz)−E( f0) can be decomposed into the sum
of the approximation errorandsampling error(Scḧolkopf and Smola, 2002; Vapnik, 1998). The
approximation error occurs as we search the minimizer in a restricted set of candidate functions,
namely,HK . It becomes smaller asHK enlarges. The sampling error is caused by replacing the
expectationE( f ) of the loss functionC(x,ξ, f (ξ)) with the sample mean

1
n

n

∑
j=1

C(x j ,ξ j , f (x j)).

By the law of large numbers, the sample mean converges to the expectation in probability asn→ ∞
for a fixed f ∈ HK . However, asfz varies according to changes in the sample dataz, we need
a uniform version of the law of large number onHK in order to well control the sampling error.
Therefore, the sampling error usually increases asHK enlarges, or to be more precisely, as the
capacityof HK increases.

By the above analysis, we might encounter two situations after the choice of an L(Λ)-valued
reproducing kernelK:

— overfitting, which occurs when the capacity ofHK is too large, forcing the minimizer obtained
from (4) to imitate artificial function dependency in the sample data, and thus causing the
sampling error to be out of control;

— underfitting, which occurs whenHK is too small for the minimizer of (4) to describe the de-
sired function dependency implied in the data, and thus failing in bounding the approximation
error.

When one of the above situations happens, a remedy is to modify the reproducing kernel. Specifi-
cally, one might want to find anotherL(Λ)-valued reproducing kernelG such thatHK � HG when
there is underfitting, or such thatHG �HK when there is overfitting. We see that in either case, we
need to make use of the refinement relationship. We shall verify in the last section through extensive
numerical simulations that the refinement kernel method is indeed able to provide an appropriate
update of an operator-valued reproducing kernel when underfitting or overfitting occurs.

Before moving on to the characterization of refinement of operator-valued reproducing kernels,
we collect here notations that will be frequently used in the rest of the paper. They will also be (or
have been) defined when first used.

– X: a general input space,

– Λ: a Hilbert space, serving as the output space,
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– ‖ · ‖Λ: the norm on a Hilbert or Banach spaceΛ,

– W : a Hilbert space, usually serving as the feature space of reproducingkernels,

– L(Λ): the space of bounded linear operators fromΛ to Λ,

– L+(Λ): the set of self-adjoint and positive bounded linear operators fromΛ to Λ,

– L(Λ,W ): the space of bounded linear operators fromΛ toW ,

– K,G: L(Λ)-valued reproducing kernels,

– HK ,HG: the RKHS of kernelsK,G, respectively,

– HK �HG: G is a refinement ofK, namely,HK ⊆HG and‖ f‖HK
= ‖ f‖HG

for all f ∈HK ,

– X̃: the extended input spaceX×Λ,

– K̃: the scalar-valued kernel (11) associated with anL(Λ)-valued kernelK,

– µ,ν: scalar-valued or operator-valued measures,

– |µ|: the variation (19) of a measureµ,

– (Ω,F ,µ): a measure space,

– µ� ν: means thatµ is the restriction ofν on some measurable set,

– L2(Ω,B,dµ): the Hilbert space (16) of square integrableB-valued functions onΩ with re-
spect to the measureµ,

– L2(Ω,dµ): the Hilbert space of scalar-valued square integrable functions onΩ with respect
to the measureµ,

– L∞(Ω,dµ): the Banach space of essentially bounded measurable functions onΩ with respect
to the measureµ,

– A� B: see (29) for this refinement relation of two positive operators,

– B(Rd,Λ): the set of all theL+(Λ)-valued measures of bounded variation on theσ-algebra of
Borel subsets inRd,

– γc,γs: the continuous partγc and singular partγs in the Lebesgue decomposition (38) of a
Borel measureγ,

– Lc,Ls: the continuous and singular parts (39) of a translation-invariant kernel,

– Λ⊗W : the tensor product of two Hilbert spacesΛ andW ,

–
√

A: the square root of a positive bounded linear operatorA.
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3. General Characterizations

The relationship between the RKHS of the sum of two operator-valued reproducing kernels and
those of the summand kernels has been made clear in Theorem 1 on page 44 of Pedrick (1957). Our
first characterization of refinement is a direct consequence of this result.

Proposition 1 Let K,G be twoL(Λ)-valued reproducing kernels on X. ThenHK �HG if and only
if G−K is anL(Λ)-valued reproducing kernel on X andHK ∩HG−K = {0}. If HK �HG thenHG−K

is the orthogonal complement ofHK in HG.

Every reproducing kernel has a feature map representation. Specifically, K is anL(Λ)-valued
reproducing kernel onX if and only if there exists a Hilbert spaceW and a mappingΦ : X →
L(Λ,W ) such that

K(x,y) = Φ(y)∗Φ(x), x,y∈ X, (5)

whereL(Λ,W ) denotes the set of bounded linear operators fromΛ toW , andΦ(y)∗ is the adjoint
operator ofΦ(y). We callΦ a feature mapof K. The following lemma is useful in identifying the
RKHS of a reproducing kernel given by a feature map representation (5).

Lemma 2 If K is anL(Λ)-valued reproducing kernel on X given by (5) then

HK = {Φ(·)∗u : u∈W }

with inner product
(Φ(·)∗u,Φ(·)∗v)HK

:= (PΦu,PΦv)W , u,v∈W ,

where PΦ is the orthogonal projection ofW onto

WΦ := span{Φ(x)ξ : x∈ X, ξ ∈ Λ}.

The second characterization can be proved using Lemma 2 and the same arguments with those
for the scalar-valued case (Xu and Zhang, 2007).

Theorem 3 Suppose thatL(Λ)-valued reproducing kernels K and G are given by the feature maps
Φ : X → L(Λ,W ) andΦ′ : X → L(Λ,W ′), respectively. Assume thatWΦ =W andW ′

Φ′ =W ′.
ThenHK �HG if and only if there exists a bounded linear operator T fromW ′ toW such that

TΦ′(x) = Φ(x) for all x ∈ X,

and the adjoint operator T∗ : W →W ′ is isometric. In this case, G is a nontrivial refinement of K
if and only if T is not injective.

To illustrate the above useful results, we shall present a concrete example aiming at refining
L(Λ)-valued reproducing kernelsK with a finite-dimensional RKHS. A simple observation is made
regarding such a kernel.

Proposition 4 A Λ-valued RKHSHK is of finite dimension n∈N if and only if there exists an n×n
hermitian and strictly positive-definite matrix A and n linearly independent functions φ j : X → Λ,
j ∈ Nn such that

K(x,y)ξ =
n

∑
j=1

n

∑
k=1

A jk(ξ,φ j(x))Λφk(y), x,y∈ X, ξ ∈ Λ. (6)
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Proof Assume thatHK is n dimensional with orthogonal basis{φ j : j ∈ Nn}. As K(x, ·)ξ ∈HK for
all x∈ X, ξ ∈ Λ, there exist functionsc j : X×Λ → C such that

K(x,y)ξ =
n

∑
j=1

c j(ξ,x)φ j(y), x, y∈ X, ξ ∈ Λ.

Since{φ j : j ∈ Nn} is a basis forHK , each functionf ∈HK has the form

f =
n

∑
j=1

d jφ j , d j ∈ C, j ∈ Nn.

Clearly, ‖ f‖ := (∑n
j=1 |d j |2)1/2 is a norm onHK . It is equivalent to the original one onHK as

dimHK < ∞. It is implied that there exists someC> 0 such that

n

∑
j=1

|c j(ξ,x)|2 ≤C‖K(x, ·)ξ‖2
HK

=C(K(x,x)ξ,ξ)Λ ≤C‖ξ‖2
Λ‖K(x,x)‖. (7)

Obviously, for eachx ∈ X and j ∈ Nn, c j(·,x) is a linear functional onΛ. This together with (7)
implies thatc j(·,x) are bounded linear functionals onΛ. By the Riesz representation theorem, there
existsψ j : X → Λ, j ∈ Nn such that

c j(ξ,x) = (ξ,ψ j(x))Λ.

We conclude thatK has the form

K(x,y)ξ =
n

∑
j=1

(ξ,ψ j(x))Λφ j(y), x, y∈ X, ξ ∈ Λ. (8)

Since{φ j : j ∈ Nn} is an orthogonal basis forHK , by (3),

(ξ,ψ j(x))Λ = (K(x, ·)ξ,φ j)HK
= (ξ,φ j(x))Λ, ξ ∈ Λ, x∈ X.

It follows thatψ j = φ j , j ∈ Nn. Substituting this into (8) yields that

K(x,y)ξ =
n

∑
j=1

(ξ,φ j(x))Λφ j(y), x, y∈ X, ξ ∈ Λ,

which indeed is a special form of (6).
Conversely, assume thatK has the form (6). We setWA := I2

A(Nn) := {c= (c j : j ∈ Nn) ∈ Cn}
with inner product

(c,d)I2
A(Nn)

:=
n

∑
j=1

n

∑
k=1

c j d̄kA jk.

IntroduceΦ : X → L(Λ,WA) by settingΦ(x)ξ := ((ξ,φ j(x))Λ : j ∈Nn). Direct computations show
that

Φ∗(x)u=
n

∑
j=1

n

∑
k=1

φ j(x)ukA jk, u= (u j : j ∈ Nn) ∈WA.
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Thus, we see thatK(x,y) = Φ(y)∗Φ(x), x, y ∈ X, implying thatK is anL(Λ)-valued reproducing
kernel. By the linear independence ofφ j , j ∈ Nn, span{Φ(x)ξ : x ∈ X, ξ ∈ Λ} = WA. We hence
apply Lemma 2 to get that

HK = {Φ(·)∗u : u∈WA}= span{φ j : j ∈ Nn},

which is of dimensionn.

By the above proposition, we letφ j , j ∈ Nm be linearly independent functions fromX to Λ,
wherem≥ n are fixed positive integers. LetA andB be n× n andm×m hermitian and strictly
positive-definite matrices, respectively. We defineK by (6) in terms of matrixA andG by

G(x,y)ξ :=
m

∑
j=1

m

∑
k=1

B jk(ξ,φ j(x))Λφk(y), x, y∈ X (9)

and shall investigate conditions forG to be a refinement ofK.

Proposition 5 Let K, G be defined by (6) and (9), respectively. ThenHK �HG if and only if B−1 is
an augmentation of A−1, namely, B−1

jk = A−1
jk , j, k∈ Nn. In particular, if K, G have the form

K(x,y)ξ = ∑
j∈Nn

a j(ξ,φ j(x))Λφ j(y), G(x,y)ξ = ∑
k∈Nm

bk(ξ,φk(x))Λφk(y)

for some positive constants aj , bk, thenHK � HG if and only if aj = b j , j ∈ Nn. In both cases if
HK �HG then G is a nontrivial refinement of K if and only if m> n.

Proof It suffices to prove the first claim. We observe thatK, G have the feature spacesW = I2
A(Nn)

andW ′ = I2
B(Nm), respectively, with feature maps

Φ(x)ξ := ((ξ,φ j(x))Λ : j ∈ Nn), Φ′(x)ξ := ((ξ,φk(x))Λ : k∈ Nm), x∈ X, ξ ∈ Λ.

Suppose thatHK � HG, then by Theorem 3, there exists a bounded linear operatorT : W ′ →W
with properties as described there. It can be represented by ann×mmatrixD as

(TΦ′(x)ξ) j =
m

∑
k=1

D jk(ξ,φk(x))Λ = (ξ,φ j(x))Λ, x∈ X,ξ ∈ Λ, (10)

which implies thatD = [In,0], whereIn denotes then×n identity matrix. The adjoint operatorT∗

of T is then represented by

T∗u= B−1
[

A
0

]

u, u∈ Cn.

SinceT∗ is isometric, we get that

(T∗u,T∗v)W ′ = (u,v)W ,

which has the form

v∗[A,0]B−1BB−1
[

A
0

]

u= v∗Au, u, v∈ Cn.
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We derive from the above equation that

[A,0]B−1
[

A
0

]

= A.

Therefore,B−1 is an augmentation ofA−1. Conversely, if this is true thenT : W ′ →W defined by

Tu′ := [In,0]u
′, u′ ∈ Cm

satisfies the two properties in Theorem 3. As a result,HK �HG.

It is worthwhile to point out that the above characterization is independentof the Hilbert space
Λ.

Unlike the previous two characterizations, the third one comes as a surprise, telling us that
theoretically we are able to reduce our consideration to the scalar-valued case.

Introduce for eachL(Λ)-valued reproducing kernelK on X a scalar-valued reproducing kernel
K̃ on theextended input spacẽX := X×Λ by setting

K̃((x,ξ),(y,η)) := (K(x,y)ξ,η)Λ, x,y∈ X, ξ,η ∈ Λ. (11)

By (1), K̃ is indeed positive-definite.

Proposition 6 There holdsHK � HG if and only if HK̃ � HG̃. Furthermore, G is a nontrivial
refinement of K on X if and only if̃G is a nontrivial refinement of̃K on X̃.

Proof We first explore the close relationship betweenHK andHK̃ . By (3),

K̃((x,ξ),(y,η)) = (K(x,y)ξ,η)Λ = (K(x, ·)ξ,K(y, ·)η)HK
,

which provides a natural feature mapΦ : X̃ →HK of K̃

Φ((x,ξ)) := K(x, ·)ξ, x∈ X, ξ ∈ Λ.

The density conditionWΦ = HK is clearly satisfied by (3). We hence obtain by (2) that every
function f̃ in HK̃ is of the form

f̃ (x,ξ) := ( f (x),ξ)Λ for somef ∈HK

with
‖ f̃‖HK̃

= ‖ f‖HK
.

Similar observations can be made aboutHG̃.
It follows immediately thatHK̃ � HG̃ if HK � HG. On the other hand, suppose thatHK̃ � HG̃.

Then for eachf ∈HK there exists someg∈HG such that

( f (x),ξ)Λ = f̃ (x,ξ) = g̃(x,ξ) = (g(x),ξ)Λ for all x∈ X, ξ ∈ Λ (12)

and
‖ f‖HK

= ‖ f̃‖HK̃
= ‖g̃‖HG̃

= ‖g‖HG
.
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Equation (12) implies thatf = g. Therefore,HK �HG.

It appears by Proposition 6 that we do not have to bother studying refinement of operator-valued
reproducing kernels. Although the strategy sometimes does simplify the problem, the difficulty is
generally not reduced significantly. Instead, the result might be viewed as transferring the complex-
ity to the input space. Moreover, desirable properties such as translationinvariance of the original
kernels might be lost in the process. As a result, an independent study ofthe operator-valued case
remains necessary and challenging.

4. Integral Representations

We shall characterize in this section the refinement of operator-valued kernels defined by two kinds
of integral representations: the integral of operator-valued kernels with respect to a scalar-valued
measure, and the integral of scalar-valued kernels with respect to an operator-valued measure. The
characterizations to be established are crucial to the study of this paper asmany useful operator-
valued kernels are of an integral representation. Typical examples include the important translation-
invariant operator-valued kernels and hessian kernels to be considered in the next section. We
also point out in advance the difference in the refinement for the two kindsof integral represen-
tations. Firstly, the first refinement corresponds to the same feature map and different measures,
while the other when the Radon-Nikodym property is engaged has different feature maps and the
same measure. The arguments of the proofs and the obtained results are essential different. The
characterization of the first kind of refinement can be viewed as a straightforward generalization of
that obtained in Xu and Zhang (2009), while the other one is mathematically nontrivial.

This section will be built on the theory of vector-valued measures and integrals (Berberian,
1966; Diestel and Uhl, 1977). Necessary preliminaries on the subjects willbe explained in sufficient
details.

4.1 Operator-valued Kernels With Respect to Scalar-valued Measures

Let us first introduce integration of a vector-valued function with respect to a scalar-valued measure.
Let F be aσ-algebra of subsets of a fixed setΩ, µ a finite nonnegative measure onF , andB a
Banach space. We are concerned withB-valued functions onΩ. A function f : Ω → B is said to be
simpleif

f =
n

∑
j=1

a jχE j (13)

for some finitely manya j ∈ B and pairwise disjoint subsetsE j ∈ F , j ∈ Nn. A function f : Ω → B
is calledµ-measurableif there exists a sequence ofB-valued simple functionsfn on Ω such that

lim
n→∞

‖ fn(t)− f (t)‖B = 0 for µ−a.e.t ∈ Ω,

whereµ− a.e. stands for “everywhere except for a set of zeroµ measure”. Finally, aB-valued
function f on Ω is calledµ-Bochner integrableif there exists a sequence of simple functionsfn :
Ω → B such that

lim
n→∞

∫
Ω
‖ fn(t)− f (t)‖B dµ(t) = 0. (14)
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The integral of a simple functionf of the form (13) on anyE ∈ F with respect toµ is defined by

∫
E

f dµ :=
n

∑
j=1

a j µ(E j ∩E).

In general, suppose thatf is aµ-Bochner integrable function fromΩ to B, that is, (14) holds true.
Then it is obvious that for eachE ∈ F ,

∫
E fndµ, n∈ N form a Cauchy sequence inB. Therefore,

∫
E

f dµ := lim
n→∞

∫
E

fndµ.

The resulting integral
∫

E f dµ is an element inB.
It is known that aµ-measurable functionf : Ω → B is Bochner integrable if and only if

∫
Ω
‖ f (t)‖Bdµ(t)<+∞.

This provides a way for us to comprehend the integral
∫

E f dµ in the most needed case whenf is
L(Λ)-valued. IfB = L(Λ) then we have for eachE ∈ F that

(∫
E

f dµξ,η
)

Λ
=

∫
E
( f (t)ξ,η)Λdµ(t), ξ,η ∈ Λ. (15)

Clearly, the right hand side above defines a sesquilinear form onΛ×Λ which is bounded as
∣

∣

∣

∣

∫
E
( f (t)ξ,η)Λdµ(t)

∣

∣

∣

∣

≤
∫

E
‖ f (t)‖L(Λ)dµ(t) ‖ξ‖Λ‖η‖Λ,

where‖ · ‖L(Λ) is the operator norm onL(Λ). As a result, (15) gives an equivalent way of defining
the integral

∫
E f dµas a bounded linear operator onΛ (Conway, 1990).

We introduce another notation before returning to reproducing kernels.Denote byL2(Ω,B,dµ)
the Banach space of all theµ-measurable functionsf : Ω → B such that

‖ f‖L2(Ω,B,dµ) :=

(∫
Ω
‖ f (t)‖2

Bdµ(t)

)1/2

<+∞. (16)

WhenB =C, L2(Ω,C,dµ)will be abbreviated asL2(Ω,dµ). WhenB is a Hilbert space,L2(Ω,B,dµ)
is also a Hilbert space with the inner product

( f ,g)L2(Ω,B,dµ) :=
∫

Ω
( f (t),g(t))Bdµ(t), f ,g∈ L2(Ω,B,dµ).

The discussion in this section by far can be found in Diestel and Uhl (1977).
Let µ,ν be two finite nonnegative measures on aσ-algebraF of subsets ofΩ. To intro-

duce ourL(Λ)-valued reproducing kernels, we also letW be a Hilbert space andφ a mapping
from X×Ω to L(Λ,W ) such that for eachx∈ X, φ(x, ·) belongs to bothL2(Ω,L(Λ,W ),dµ) and
L2(Ω,L(Λ,W ),dν). We shall investigate conditions that ensureHK �HG where

K(x,y) =
∫

Ω
φ(y, t)∗φ(x, t)dµ(t), x,y∈ X (17)
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and

G(x,y) =
∫

Ω
φ(y, t)∗φ(x, t)dν(t), x,y∈ X, (18)

whereφ(y, t)∗ is the adjoint operator ofφ(y, t). Note thatK,G are well-defined as the integrand is
Bochner integrable with respect to bothµ andν. For instance, we observe by the Cauchy-Schwartz
inequality for allx,y∈ X that

∫
Ω
‖φ(y, t)∗φ(x, t)‖L(Λ)dµ(t) ≤

∫
Ω
‖φ(y, t)∗‖L(W ,Λ)‖φ(x, t)‖L(Λ,W )dµ(t)

=
∫

Ω
‖φ(y, t)‖L(Λ,W )‖φ(x, t)‖L(Λ,W )dµ(t)

≤ ‖φ(y, ·)‖L2(Ω,L(Λ,W ),dµ)‖φ(x, ·)‖L2(Ω,L(Λ,W ),dµ).

An alternative of expressingK,G is for all x,y∈ X, ξ,η ∈ Λ that

K̃((x,ξ),(y,η)) = (K(x,y)ξ,η)Λ =
∫

Ω
(φ(x, t)ξ,φ(y, t)η)W dµ(t)

and

G̃((x,ξ),(y,η)) = (G(x,y)ξ,η)Λ =
∫

Ω
(φ(x, t)ξ,φ(y, t)η)W dν(t).

When Λ = W = C, a characterization ofHK � HG in terms ofµ,ν has been established in
Xu and Zhang (2009). The relation, between the two measures, which we shall need is absolute
continuity. We say thatµ is absolutely continuouswith respect toν if for all E ∈ F , ν(E) = 0
implies µ(E) = 0. In this case, by the Radon-Nikodym theorem (see, Rudin, 1987, page 121) for
scalar-valued measures, there exists a nonnegativeν-integrable function, denoted bydµ/dν, such
that

µ(E) =
∫

E

dµ
dν

(t)dν(t) for all E ∈ F .

We writeµ� ν if µ is absolutely continuous with respect toν anddµ/dν ∈ {0,1} ν−a.e. Thus,
µ� ν if and only if µ is the restriction ofν on some measurable set inF .

WhenΛ =W = C, it was proved in Theorem 8 of Xu and Zhang (2009) that if span{φ(x, ·) :
x∈ X} is dense in bothL2(Ω,dµ) andL2(Ω,dν) thenG is a refinement ofK if and only if µ� ν. If
µ� ν thenG is a nontrivial refinement ofK if and only if ν(Ω)> µ(Ω).

Theorem 7 Let K,G be given by (17) and (18). Ifspan{φ(x, ·)ξ : x ∈ X, ξ ∈ Λ} is dense in both
L2(Ω,W ,dµ) and L2(Ω,W ,dν) thenHK � HG if and only if µ� ν. In this case, the refinement G
of K is nontrivial if and only ifν(Ω)−µ(Ω)> 0.

Proof WhenW = C, as a direct consequence of Theorem 8 in Xu and Zhang (2009),HK̃ �HG̃ if
and only ifµ� ν. The result hence follows from Proposition 6. WhenW is a general Hilbert space,
it can be proved by arguments similar to those in Xu and Zhang (2009).
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4.2 Scalar-valued Kernels with Respect to Operator-valued Measures

Again,B is a Banach space andF denotes aσ-algebra consisting of subsets of a fixed setΩ. A
B-valued measure onF is a function fromF to B that is countably additive in the sense that for
every sequence of pairwise disjoint setsE j ∈ F , j ∈ N

µ

( ∞⋃
j=1

E j

)

=
∞

∑
j=1

µ(E j),

where the series converges in the norm ofB. EveryB-valued measureµ onF comes with a scalar-
valued measure|µ| onF defined by

|µ|(E) := sup
P

∑
F∈P

‖µ(F)‖B , E ∈ F , (19)

where the supremum is taken over all partitionsP of E into countably many pairwise disjoint mem-
bers ofF . We call |µ| the variation of µ and shall only work with these vector-valued measures
µ that are ofbounded variation, that is,|µ|(Ω) < +∞. We note thatµ vanishes on sets of zero|µ|
measure. It implies thatµ is absolutely continuous with respect to|µ| in the sense that

lim
|µ(E)|→0

µ(E) = 0.

The only type of integration that we shall need is to integrate a boundedF -measurable scalar-
valued function with respect to aB-valued measure of bounded variation. Denote byL∞(Ω,d|µ|)
the Banach space of essentially boundedF -measurable functions onΩ with the norm

‖ f‖L∞(Ω,d|µ|) := inf {a≥ 0 : |µ|({| f |> a}) = 0} .
For a simple functionf : Ω → C of the form

f =
n

∑
j=1

α jχE j ,

whereα j ∈ C andE j are pairwise disjoint members inF , we define
∫

E
f dµ :=

n

∑
j=1

α jµ(E j ∩E), E ∈ F .

Clearly,
∥

∥

∥

∥

∫
E

f dµ

∥

∥

∥

∥

B

≤ ‖ f‖L∞(Ω,d|µ|)|µ|(E).

Therefore, the map sending a simple functionf to
∫

E f dµ can be uniquely extended to a bounded
linear operator fromL∞(Ω,d|µ|) to B. The outcome of the application of the resulting operator on
a generalf ∈ L∞(Ω,d|µ|) is still denoted by

∫
E f dµ. This is how theB-valued integral is defined.

It is time to present the second type of reproducing kernels defined by integration:

K(x,y) :=
∫

Ω
Ψ(x,y, t)dµ(t), x,y∈ X, (20)

whereµ is anL+(Λ)-valued measure onF of bounded variation, andΨ is a scalar-valued func-
tion such thatΨ(·, ·, t) is a scalar-valued reproducing kernel onX for all t ∈ Ω and for allx,y∈ X,
Ψ(x,y, ·) is bounded andF -measurable. We verify that (20) indeed defines anL(Λ)-valued repro-
ducing kernel.
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Proposition 8 With the above assumptions onΨ and µ, the function K defined by (20) is anL(Λ)-
valued reproducing kernel on X.

Proof Fix finite x j ∈ X andξ j ∈ Λ, j ∈ Nn. For anyε > 0, there exist simple functions

f j,k :=
m

∑
l=1

α j,k,l χEl , j,k∈ Nn

such that
‖Ψ(x j ,xk, ·)− f j,k‖L∞(Ω,d|µ|) < ε, j,k∈ Nn. (21)

Here,α j,k,l ∈ C andEl are pairwise disjoint sets inF with |µ|(El ) > 0, l ∈ Nm. By (21) and the
definition of integration in this section,

∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ −
n

∑
j=1

n

∑
k=1

((∫
Ω

f j,kdµ

)

ξ j ,ξk

)

Λ

∣

∣

∣

∣

∣

≤ ε|µ|(Ω)

( n

∑
j=1

‖ξ j‖Λ

)2

. (22)

We may choose by (21) for eachl ∈ Nm sometl ∈ El such that
∣

∣Ψ(x j ,xk, tl )−α j,k,l
∣

∣≤ ε.

Letting

S:=
n

∑
j=1

n

∑
k=1

m

∑
l=1

Ψ(x j ,xk, tl )(µ(El )ξ j ,ξk)Λ,

we get by the above equation that
∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

((∫
Ω

f j,kdµ

)

ξ j ,ξk

)

Λ
−S

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

m

∑
l=1

|α j,k,l −Ψ(x j ,xk, tl )|(µ(El )ξ j ,ξk)Λ

∣

∣

∣

∣

∣

≤ ε
n

∑
j=1

n

∑
k=1

m

∑
l=1

‖µ(El )‖L(Λ)‖ξ j‖Λ‖ξk‖Λ ≤ ε|µ|(Ω)

( n

∑
j=1

‖ξ j‖Λ

)2

.

(23)

Combining (22) and (23) yields that
∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ −S

∣

∣

∣

∣

∣

≤ 2ε|µ|(Ω)

( n

∑
j=1

‖ξ j‖Λ

)2

. (24)

SinceΨ(·, ·, tl ) is a scalar-valued reproducing kernel onX, [Ψ(x j ,xk, tl ) : j,k ∈ Nn] is a positive
semi-definite matrix for eachl ∈ Nm. So are[(µ(El )ξ j ,ξk)Λ : j,k ∈ Nn], l ∈ Nm asµ(El ) ∈ L+(Λ).
By the Schur product theorem (see, for example, Horn and Johnson,1991, page 309), the Hadamard
product of two positive semi-definite matrices remains positive semi-definite. We obtain by this fact
thatS> 0, which together with (24), and the fact thatε can be arbitrarily small, proves (1).

To investigate the refinement relationship, we shall consider a simplified version of (20) that
covers a large class of operator-valued reproducing kernels. Letφ : X×Ω → C be such thatφ(x, ·)
is a boundedF -measurable function for everyx∈ X and such that

span{φ(x, ·) : x∈ X}= L2(Ω,dγ) for any finite nonnegative measureγ onF . (25)
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We shall see by the concrete examples in the next section that the denseness requirement (25) is not
too restricted in applications. The kernels we shall consider are

K(x,y) :=
∫

Ω
φ(x, t)φ(y, t)dµ(t), x,y∈ X (26)

and
G(x,y) :=

∫
Ω

φ(x, t)φ(y, t)dν(t), x,y∈ X, (27)

whereµ,ν are twoL+(Λ)-valued measures onF of bounded variation. By Proposition 8,K,G
areL(Λ)-valued reproducing kernels onX. Our idea is to use the Radon-Nikodym property of
vector-valued measures to study the refinement property.

Let B be a Banach space andγ a finite nonnegative measure onF . We say that aB-valued
measureρ onF of bounded variation has theRadon-Nikodym propertywith respect toγ if there is
a γ-Bochner integrable functionΓ : Ω → L+(Λ) such that for allE ∈ F

ρ(E) =
∫

E
Γdγ.

Apparently, this could only be true whenρ is absolutely continuous with respect toγ. For this reason,
we also say that the spaceB has the Radon-Nikodym property with respect toγ if everyB-valued
measure of bounded variation that is absolutely continuous with respect toγ has the Radon-Nikodym
property with respect toγ. Moreover,B is said to have the Radon-Nikodym property if it has it with
respect to any finite nonnegative measure on any measure spaceF .

Strikingly different from the scalar-valued case, a Banach spaceB may not have the Radon-
Nikodym property. For instance, the Banach spacec0 of all sequencesα := (α j ∈ C : j ∈ N) with

lim
j→∞

|α j |= 0

under the norm‖α‖c0 := sup{|α j | : j ∈ N} does not have the property with respect to the Lebesgue
measure (see, Diestel and Uhl, 1977, page 60). Consequently, the spaceL(Λ) does not have the
Radon-Nikodym property whenΛ is infinite-dimensional. To see this, sinceΛ is separable we let
{ej : j ∈ N} be an orthonormal basis forΛ. Denote byL0(Λ) the set of all the operatorsT ∈ L(Λ)
such that

Tej = α jej , j ∈ N

for someα ∈ c0. One sees that‖T‖L(Λ) = ‖α‖c0 (Conway, 1990). As a result,L0(Λ) is a closed
subspace ofL(Λ) that is isometrically isomorphic toc0. Sincec0 does not have the Radon-Nikodym
property, neither doesL0(Λ). A Banach space has the Radon-Nikodym property if and only if each
of its closed linear subspaces does (Diestel and Uhl, 1977). By this fact,L(Λ) does not have Radon-
Nikodym property.

We shall focus on the situation where this desired property holds. For example, reflexive Banach
spaces have the Radon-Nikodym property (Diestel and Uhl, 1977). Inapplications,Λ is usually
finite-dimensional. In this case,L(Λ) is of finite dimension as well. Any two norms on a finite-
dimensional Banach space are equivalent and a finite-dimensionalL(Λ) can be endowed with a
norm that makes it a Hilbert space. It yields thatL(Λ) is reflexive. The conclusion is that whenΛ
is finite-dimensional,L(Λ) does have the Radon-Nikodym property. Another way of overcoming
the difficulty is to confine to a subclass ofL(Λ), for example, to the Schatten class (Birman and
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Solomjak, 1987). Denote for each compact operatorT ∈ L(Λ) by sj(T), j ∈ N, the nonnegative
square root of thej-th largest eigenvalue ofT∗T. It is called thej-th singular numberof T. For
p ∈ (1,+∞), the p-th Schatten classSp(Λ) consists of all the compact linear operatorsT ∈ L(Λ)
with the norm

‖T‖Sp(Λ) :=

( ∞

∑
j=1

(sj(T))
p
)1/p

<+∞.

The p-th Schatten classSp(Λ) is a reflexive Banach space and hence has the Radon-Nikodym prop-
erty. Whenp= 2, S2(Λ) is the class of Hilbert-Schmidt operators and

‖T‖S2(Λ) =

( ∞

∑
j=1

‖Tej‖Λ

)1/2

.

We shall not go into further details about the Radon-Nikodym property. Interested readers are
referred to Chapter III of Diestel and Uhl (1977) and the references therein.

The assumption we shall need is that there exists a finite nonnegative measure γ on F such
that bothµ andν have the Radon-Nikodym property with respect toγ. In other words, there exist
γ-Bochner integrable functionsΓµ,Γν : Ω → L+(Λ) such that

µ(E) =
∫

E
Γµdγ and ν(E) =

∫
E

Γνdγ for all E ∈ F . (28)

Such two functions exist ifγ := |µ|+ |ν| andµ,ν take values in thep-th Schatten class ofL(Λ),
1< p<+∞.

Suppose thatK,G are given by (26) and (27), whereφ,µ,ν satisfy (25) and (28). Our purpose is
to investigateHK � HG. To this end, let us first identifyHK̃ andHG̃. We shall only present results
for HK̃ as those forHG̃ have a similar form.

Lemma 9 The RKHSHK̃ consists of functions Ff of the form

Ff (x,ξ) :=
∫

Ω
(Γµ(t) f (t),ξ)Λφ(x, t)dγ(t), x∈ X, ξ ∈ Λ,

where f can be an arbitrary element from the Hilbert spaceWµ of γ-measurable functions fromΩ
to Λ such that

‖ f‖Wµ
:=

(∫
Ω
(Γµ(t) f (t), f (t))Λdγ(t)

)1/2

<+∞.

Moreover,‖Ff ‖HK̃
= ‖ f‖Wµ

for all f ∈Wµ.

Proof We observe for allx,y∈ X andξ,η ∈ Λ that

K̃((x,ξ),(y,η)) =
∫

Ω
φ(x, t)φ(y, t)(Γµ(t)ξ,η)Λdγ(t).

Thus, we may chooseWµ as a feature space for̃K. The associated feature mapΦµ : X×Λ →Wµ is
then selected as

Φµ(x,ξ)(t) := φ(x, t)ξ, t ∈ Ω.
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We next verify the denseness condition thatspan{Φµ(x,ξ) : x ∈ X, ξ ∈ Λ} =Wµ. Suppose that
f ∈Wµ is orthogonal toΦµ(x,ξ) for all x∈ X andξ ∈ Λ, that is,

∫
Ω
(Γµ f (t),ξ)Λφ(x, t)dγ(t) = 0 for all x∈ X, ξ ∈ Λ.

By (25),
(Γµ(t) f (t),ξ)Λ = 0 γ−a.e.

As this holds for an arbitraryξ ∈ Λ, Γµ(t) f (t) = 0 γ−a.e. It implies that‖ f‖Wµ
= 0. The result

now follows immediately from Lemma 2.

For two operatorsA,B∈ L+(Λ), we writeA� B if for all ξ ∈ Λ there exists someη ∈ Λ such
that

Aξ = Bη and(Aξ,ξ)Λ = (Bη,η)Λ. (29)

We make a simple observation about this special relationship between two linearoperators.
Let ker(A) and ran(A) be the kernel and range ofA, respectively. If ran(A) is closed then asA

is self-adjoint, there holds the direct sum decomposition

Λ = ker(A)⊕ ran(A). (30)

Thus,A is bijective and bounded from ran(A) to ran(A). By the open mapping theorem, it has a
bounded inverse on ran(A), which we denote byA−1.

Proposition 10 Suppose that A,B∈ L+(Λ) have closed range. Then A� B if and only if

ran(A)⊆ ran(B) (31)

and
PB,AB−1 = A−1 on ran(A), (32)

where PB,A denotes the orthogonal projection fromran(B) to ran(A). Particularly, if A is onto then
A� B if and only if A= B.

Proof Let A,B have closed range. Suppose first thatA� B. Then (31) clearly holds true. Set for
eachξ ∈ ran(A)

ηξ := B−1Aξ.

Clearly, the mappingξ → ηξ is linear from ran(A) to ran(B). Thus, we have for arbitraryξ,ξ′ ∈ Λ
that

(Aξ′+Aξ,ξ′+ξ)Λ = (Bηξ′+ξ,ηξ′+ξ)Λ = (Bηξ′ +Bηξ,ηξ′ +ηξ)Λ,

which implies that
Re(Aξ′,ξ)Λ = Re(Bηξ′ ,ηξ)Λ.

A textbook trick yields that for allξ,ξ′ ∈ ran(A),

(Aξ′,ξ)Λ = (Bηξ′ ,ηξ)Λ = (Aξ′,ηξ)Λ.
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We hence obtain thatξ−ηξ ∈ ker(A) for all ξ ∈ ran(A). Consequently,

Aξ−AB−1Aξ = Aξ−Aηξ = 0 for all ξ ∈ ran(A),

from which (32) follows.
On the other hand, suppose that (31) and (32) hold true. Then we choose for eachξ ∈ Λ

η := B−1Aξ

and verify thatBη = Aξ and

(Bη,η)Λ = (Aξ,B−1Aξ)Λ = (Aξ,PB,AB−1Aξ)Λ = (Aξ,A−1Aξ)Λ = (Aξ,ξ)Λ.

Finally, if A is onto then by (31), ran(A) = ran(B) = Λ. According to (30), bothA andB are in-
jective. Therefore, they possess a bounded inverse onΛ. It implies thatPB,A is the identity operator
on Λ. By Equation (32),A= B. The proof is complete.

We are ready to present the main result of this section.

Theorem 11 Let K,G be given by (26) and (27), whereφ,µ,ν satisfy (25) and (28). ThenHK �HG

if and only ifΓµ � Γν γ−a.e.

Proof By Proposition 6 and Lemma 9,HK � HG if and only if for all f ∈Wµ, there exists some
g∈Wν such that

∫
Ω
(Γµ(t) f (t),ξ)Λφ(x, t)dγ(t) =

∫
Ω
(Γν(t)g(t),ξ)Λφ(x, t)dγ(t) for all x∈ X, ξ ∈ Λ (33)

and ∫
Ω
(Γµ(t) f (t), f (t))Λdγ(t) =

∫
Ω
(Γν(t)g(t),g(t))Λdγ(t). (34)

By the denseness condition (25), (33) holds true if and only if

(Γµ(t) f (t),ξ)Λ = (Γν(t)g(t),ξ)Λ for γ−a.e.t ∈ Ω and allξ ∈ Λ,

which is equivalent to
Γµ(t) f (t) = Γν(t)g(t) for γ−a.e.t ∈ Ω. (35)

We conclude thatHK � HG if and only if for every f ∈Wµ, there exists someg ∈Wν such that
Equations (34) and (35) hold true.

Suppose thatΓµ � Γν γ−a.e. Then clearly, for eachf ∈Wµ, we can find a functiong : Ω → Λ
which is definedγ-almost everywhere and satisfies (35) and

(Γµ(t) f (t), f (t))Λ = (Γν(t)g(t),g(t))Λ for γ−a.e.t ∈ Ω.

The above equation implies (34). Therefore,HK �HG.
On the other hand, suppose that we can find for everyf ∈Wµ somegf ∈Wν satisfying (34) and

(35). The functiongf can be chosen so thatf → gf is linear fromWµ toWν. A trick similar to that
used in Lemma 9 enables us to obtain from (34) and (35) that

∫
Ω
(Γµ(t) f ′(t), f (t)−gf (t))Λdγ(t) = 0 for all f ′ ∈Wµ.
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Letting f ′ := φ(x, ·)ξ for arbitraryx∈ X andξ ∈ Λ in the above equation and invoking (25), we have
that

Γµ(t)( f (t)−gf (t)) = 0 for γ−a.e.t ∈ Ω.

By the above equation and (35), we get forγ-almost everyt ∈ Ω that

(Γν(t)gf (t),gf (t))Λ = (Γµ(t) f (t),gf (t))Λ = ( f (t),Γµ(t)gf (t))Λ = ( f (t),Γµ(t) f (t))Λ = (Γµ(t) f (t), f (t))Λ.

Since (35) and the above equation are true for an arbitraryf ∈Wµ, Γµ � Γν γ−a.e.

5. Examples

We present in this section several concrete examples of refinement of operator-valued reproducing
kernels. They are built on the general characterizations established in the last two sections.

5.1 Translation Invariant Reproducing Kernels

Let d∈N andK be anL(Λ)-valued reproducing kernel onRd. We say thatK is translation invariant
if for all x,y,a∈ Rd

K(x−a,y−a) = K(x,y).

A celebrated characterization due to Bochner (1959) states that every continuous scalar-valued
translation invariant reproducing kernel onRd must be the Fourier transform of a finite nonneg-
ative Borel measure onRd, and vice versa. This result has been generalized to the operator-valued
case (Berberian, 1966; Carmeli et al., 2010; Fillmore, 1970). Specifically, a continuous functionK
fromRd ×Rd toL(Λ) is a translation invariant reproducing kernel if and only if it has the form

K(x,y) =
∫
Rd

ei(x−y)·tdµ(t), x,y∈ Rd, (36)

for someµ∈ B(Rd,Λ), the set of all theL+(Λ)-valued measures of bounded variation on theσ-
algebra of Borel subsets inRd. Let G be the kernel given by

G(x,y) =
∫
Rd

ei(x−y)·tdν(t), x,y∈ Rd, (37)

whereν ∈ B(Rd,Λ). The purpose of this subsection is to characterizeHK � HG in terms ofµ,ν.
To this end, we first investigate the structure of the RKHS of a translation invariant L(Λ)-valued
reproducing kernel.

Let γ be an arbitrary measure inB(Rd,Λ) andL the associated translation invariant reproducing
kernel defined by

L(x,y) =
∫
Rd

ei(x−y)·tdγ(t), x,y∈ Rd.

There exists a decomposition ofγ with respect to the Lebesgue measuredxonRd (Diestel and Uhl,
1977) as follows:

γ = γc+ γs, (38)
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whereγc,γs are the unique measures inB(Rd,Λ) such thatγc is absolutely continuous with respect
to dx, and for each continuous linear functionalλ onL(Λ), the scalar-valued measureλγs anddx
are mutually singular. It follows from this decomposition of measures a decomposition ofL:

L = Lc+Ls,

where

Lc(x,y) =
∫
Rd

ei(x−y)·tdγc(t), Ls(x,y) =
∫
Rd

ei(x−y)·tdγs(t), x,y∈ Rd. (39)

Our first observation is thatHL is the orthogonal direct sum ofHLc andHLs. Two lemmas are needed
to prove this useful fact.

Lemma 12 Let Lc,Ls be given by (39). Then for allξ ∈ Λ and x,y∈ Rd

(La(x,y)ξ,ξ)Λ =
∫
Rd

ei(x−y)·tdγa,ξ(t), a= c or s, (40)

whereγa,ξ is a scalar-valued Borel measure onRd defined for each Borel set E⊆ Rd by

γa,ξ(E) := (γa(E)ξ,ξ)Λ, a= c or s.

Proof Let a∈ {c,s}, ξ∈Λ, x,y∈Rd, andsn be a sequence of simple functions onRd that converges
to ei(x−y)·t in L∞(Rd,dx). Then

lim
n→∞

((∫
Rd

sndγa

)

ξ,ξ
)

Λ
= (La(x,y)ξ,ξ)Λ.

By definition, we have for eachn∈ N that

lim
n→∞

((∫
Rd

sndγa

)

ξ,ξ
)

Λ
=

∫
Rd

sndγa,ξ.

As

lim
n→∞

∫
Rd

sndγa,ξ =
∫
Rd

ei(x−y)·tdγa,ξ(t),

we conclude from the previous two equations that (40) holds true.

Lemma 13 There holdsHLc ∩HLs = {0}.

Proof We introduce for eachξ ∈ Λ two scalar-valued translation invariant reproducing kernels on
Rd by setting

Aa(x,y) := (La(x,y)ξ,ξ)Λ, x,y∈ Rd, a∈ {c,s}.

By Lemma 12, we have the alternative representations forAc andAs

Aa(x,y) =
∫
Rd

ei(x−y)·tdγa,ξ(t), x,y∈ Rd, a= c or s.
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By the Lebesgue decomposition ofγ, γc,ξ is absolutely continuous with respect todx while γs,ξ
anddx are mutually singular. As a consequence,HAc ∩HAs = {0} by Lemma 17 in Xu and Zhang
(2009).

Let a∈ {c,s}. By (3),

Aa(x,y) = (La(x, ·)ξ,La(y, ·)ξ)HLa
, x,y∈ Rd.

A feature map forAa may hence be chosen as

Φa(x) := La(x, ·)ξ, x∈ Rd

with the feature space beingHLa. We identify by Lemma 2 that

HAa = {( f̃ (·),ξ)Λ : f̃ ∈HLa}. (41)

Assume thatHLc ∩HLs 6= {0}. Then there exist nontrivial functions̃f ∈ HLc andg̃∈ HLs such
that f̃ = g̃. As a result, there exists someξ ∈ Λ such that( f̃ (·),ξ)Λ is not the trivial function. By
equation (41)

( f̃ (·),ξ)Λ = (g̃(·),ξ)Λ ∈HAc ∩HAs,

contradicting the fact thatHAc ∩HAs = {0}.

Theorem 14 The spaceHL is the orthogonal direct sum ofHLc andHLs, namely,HL =HLc

⊕
HLs.

Proof The result follows directly from Lemma 13 and Proposition 1.

We are now in a position to study the refinement relationshipHK �HG, whereK,G are defined
by (36) and (37). Firstly, the task can be separated into two related ones according to the Lebesgue
decomposition of measuresµ,ν.

Proposition 15 There holdsHK �HG if and only ifHKc �HGc andHKs �HGs.

Proof By Theorem 14,HK = HKc

⊕
HKs andHG = HGc

⊕
HGs. Therefore, ifHKc � HGc and

HKs �HGs thenHK �HG.
On the other hand, suppose thatHK � HG. Let f ∈ HKc. Then f ∈ HK and‖ f‖HKc

= ‖ f‖HK
.

SinceHK �HG, there existsg∈HGc andh∈HGs such that

f = g+h

and
‖ f‖2

HKc
= ‖ f‖2

HK
= ‖g+h‖2

HG
= ‖g‖2

HGc
+‖h‖2

HGs
.

Therefore, to show thatHKc � HGc it suffices to show thath = 0. Assume thath 6= 0. Note that
f −g∈HKc+Gc (Pedrick, 1957), we get that

HKc+Gc ∩HGs 6= {0}. (42)
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However,

(Kc+Gc)(x,y) =
∫
Rd

ei(x−y)·td(µc+νc)(t), x,y∈ Rd

andµc+νc is absolutely continuous with respect todx. Thus, Equation (42) contradicts Lemma 13.
The contradiction proves thatHKc �HGc. Likewise, one can prove thatHKs �HGs.

By Proposition 15, we shall studyHKc � HGc andHKs � HGs separately. We shall restrict
ourselves to the case when the measures corresponding toKc and Gc have the Radon-Nikodym
property with respect to the Lebesgue measure and the measures corresponding toKs andGs are
discrete. Specifically, the kernels to be considered are of the following special forms:

Kc(x,y) :=
∫
Rd

ei(x−y)·tϕ1(t)dt, Gc(x,y) :=
∫
Rd

ei(x−y)·tϕ2(t)dt, x,y∈ Rd (43)

and
Ks(x,y) := ∑

j∈J1

ei(x−y)·t j A j , Gs(x,y) := ∑
k∈J2

ei(x−y)·tkBk, x,y∈ Rd.

Here,ϕ1,ϕ2 are twodx-Bochner integrable functions fromRd to L+(Λ), {t j : j ∈ J1} and{tk : k∈
J2} are countable sets of pairwise distinct points inRd, andA j ,B j are nonzero operators inL+(Λ)
such that

∑
j∈J1

‖A j‖L(Λ) <+∞, ∑
k∈J2

‖Bk‖L(Λ) <+∞.

The following characterization is a direct consequence of Theorem 11.

Proposition 16 Let Kc,Gc be given by (43). ThenHKc �HGc if and only ifϕ1(t)� ϕ2(t) for almost
every t∈ Rd except for a subset inRd of zero Lebesgue measure.

Proof As ϕ1,ϕ2 aredx-Bochner integrable,
∫
Rd

‖ϕ j(t)‖L(Λ)dt <+∞, j = 1,2.

Define a finite nonnegative Borel measureγ onRd by setting for each Borel subsetE in Rd

γ(E) :=
∫

E
‖ϕ1(t)‖L(Λ)+‖ϕ2(t)‖L(Λ)dt.

Evidently,Kc,Gc have the form

Kc(x,y) =
∫
Rd

ei(x−y)·tΓ1(t)dγ(t), Gc(x,y) =
∫
Rd

ei(x−y)·tΓ2(t)dγ(t), x,y∈ Rd,

where for j = 1,2,

Γ j(t) :=







ϕ j(t)

‖ϕ1(t)‖L(Λ)+‖ϕ2(t)‖L(Λ)
, if ‖ϕ1(t)‖L(Λ)+‖ϕ2(t)‖L(Λ) > 0,

0, otherwise.

It is also clear that span{eix·t : x∈ Rd} is dense inL2(Rd,dγ). By Theorem 11,HKc � HGc if and
only if Γ1 �Γ2 γ−a.e. Note thatΓ1(t)�Γ2(t) if and only if ϕ1(t)�ϕ2(t). If ϕ1 �ϕ2 dx−a.e. then
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Γ1 � Γ2 γ−a.e. asγ is absolutely continuous with respect to the Lebesgue measure. On the other
hand, suppose thatΓ1 � Γ2 γ−a.e. Set

E := {t ∈ Rd : ‖ϕ1(t)‖L(Λ)+‖ϕ2(t)‖L(Λ) > 0}.

For t ∈ Ec, ϕ1(t) = ϕ2(t) = 0, and thus,ϕ1(t) � ϕ2(t). Assume that there exists a Borel subset
F ⊆ Rd with a positive Lebesgue measure on whichϕ1(t) � ϕ2(t). ThenF ⊆ E. We reach that
γ(F)> 0 andΓ1(t)� Γ2(t) for t ∈ F , contradicting the fact thatΓ1 � Γ2 γ−a.e.

ForKs,Gs, we have the following result.

Proposition 17 There holdsHKs �HGs if and only if

(1) {t j : j ∈ J1} ⊆ {tk : k∈ J2};

(2) for each j∈ J1, Aj � B j . Here, re-indexing by condition (1) if necessary, we may assume that
J1 ⊆ J2.

Proof Introduce a discrete scalar-valued Borel measureγ that is supported on{t j : j ∈ J1}∪{tk :
k∈ J2} by setting

γ({tk}) :=







‖Ak‖L(Λ)+‖Bk‖L(Λ), k∈ J1∩J2,
‖Bk‖L(Λ), k∈ J2\J1,
‖Ak‖L(Λ), k∈ J1\J2.

We also let

ΓA(t j) :=
A j

γ({t j})
, j ∈ J1 andΓA(tk) :=

Bk

γ({tk})
, k∈ J2.

They are discreteL(Λ)-valued functions supported on{t j : j ∈ J1} and{tk : k ∈ J2}, respectively.
We reach the following integral representation:

Ks(x,y) =
∫
Rd

ei(x−y)·tΓA(t)dγ(t) andGs(x,y) =
∫
Rd

ei(x−y)·tΓB(t)dγ(t), x,y∈ Rd.

By Theorem 11,HKs � HGs if and only if ΓA � ΓB γ−a.e. It is straightforward to verify that the
latter is equivalent to conditions (1)-(2).

5.2 Hessian of Scalar-valued Reproducing Kernels

Propositions 16 and 17 were established based on Theorem 11. In this subsection, we shall consider
special translation invariant reproducing kernels and establish the characterization of refinement
using Theorem 7.

Let k be a continuously differentiable translation invariant reproducing kernel on Rd. We con-
sider the following matrix-valued functions

K(x,y) := ∇2
xyk(x,y) :=

[

∂2k
∂x j ∂yk

(x,y) : j,k∈ Nd

]

, x,y∈ Rd. (44)
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To ensure thatK is anL(Cd)-valued reproducing kernels onRd, we make use of the Bochner
theorem to get some finite nonnegative Borel measureµ onRd such that

k(x,y) =
∫
Rd

ei(x−y)·tdµ(t), x,y∈ Rd (45)

and impose the requirement that ∫
Rd

ttTdµ(t)<+∞. (46)

One sees by the Lebesgue dominated convergence theorem that

K(x,y) =
∫
Rd

ei(x−y)·tttTdµ(t), x,y∈ Rd, (47)

where we viewt ∈ Rd as ad×1 vector andtT denotes its transpose[t1, t2, . . . , td]. By the general
integral representation (17) of operator-valued reproducing kernels, K defined by (44) is anL(Cd)-
valued reproducing kernel onRd. Matrix-valued translation invariant reproducing kernels of the
form (44) are useful for the development of divergence-free kernel methods for solving some spe-
cial partial differential equations (see, for example, Lowitzsh, 2003; Wendland, 2009, and the refer-
ences therein). Another class of kernels constructed from the Hessianof a scalar-valued translation
invariant reproducing kernel is widely applied to the learning of a multivariate function together
with its gradient simultaneously (Mukherjee and Wu, 2006; Mukherjee and Zhou, 2006; Ying and
Campbell, 2008). Such applications make use of kernels of the form

K(x,y) :=

[

k(x,y) (∇yk(x,y))∗

∇xk(x,y) ∇2
xyk(x,y)

]

. (48)

One sees that under condition (46)

K(x,y) =
∫
Rd

ei(x−y)·tρ(t)ρ(t)∗dµ(t), x,y∈ Rd,

where
ρ(t) = [1, it1, it2, . . . , itd]

T , t ∈ Rd.

We aim at refining matrix-valued reproducing kernels of the forms (44) and (48) in this subsection.
Specifically, we letν be another finite nonnegative Borel measure onRd satisfying

∫
Rd

ttTdν(t)<+∞ (49)

and define forx,y∈ Rd

g(x,y) :=
∫
Rd

ei(x−y)·tdν(t), G(x,y) := ∇2
xyg(x,y), G(x,y) :=

[

g(x,y) (∇yg(x,y))∗

∇xg(x,y) ∇2
xyg(x,y)

]

. (50)

Our purpose is to characterizeHK �HG andHK �HG in terms ofk,g andµ,ν.

Theorem 18 Let µ,ν be finite nonnegative Borel measures onRd satisfying (46) and (49), and
k,g defined by (45) and (50). Then K,G,K,G are matrix-valued translation invariant reproducing
kernels onRd. The four relationshipsHK �HG, HK �HG, Hk �Hg, and µ� ν are equivalent.
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Proof By Theorem 7 or a result in Xu and Zhang (2009),Hk � Hg if and only if µ� ν. We shall
show by Theorem 7 thatHK �HG if and only if µ� ν. The equivalence ofHK �HG andµ� ν can
be proved similarly. Set

φ(x, t) := eix·ttT , x, t ∈ Rd.

Then for eachx, t ∈Rd, φ(x, t) is a linear functional fromCd toC. We observe by (47) that (17) holds
true. So does (18). To apply Theorem 7, it remains to verify that span{φ(x, ·)ξ : x∈ Rd, ξ ∈ Cd}
is dense in the Hilbert spaceL2(Rd,dµ), which is straightforward. The claim follows immediately
from Theorem 7.

5.3 Transformation Reproducing Kernels

Let us consider a particular class of matrix-valued reproducing kernelswhose universality was stud-
ied in Caponnetto et al. (2008). The kernels we shall construct are from an input spaceX to output
spaceΛ = Cn, wheren ∈ N. To this end, we letk,g be two scalar-valued reproducing kernels on
another input spaceY andTp be mappings fromX to Y, p∈ Nn. Set

K(x,y) := [k(Tpx,Tqy) : p,q∈ Nn], G(x,y) := [g(Tpx,Tqy) : p,q∈ Nn], x,y∈ X. (51)

It is known thatK,G defined above are indeedL(Cn)-valued reproducing kernels (Caponnetto et al.,
2008). This also becomes clear in the proof below. We are interested in the conditions forHK �HG

to hold.

Proposition 19 Let K,G be defined by (51). ThenHK � HG if and only ifHk �Hg, wherek̄, ḡ are
the restriction of k,g on∪n

p=1Tp(X). In particular, if

n⋃
p=1

Tp(X) =Y (52)

thenHK �HG if and only ifHk �Hg.

Proof It is legitimate to assume that (52) holds true as otherwise, we may replaceY by∪n
p=1Tp(X),

andk,g by k̄, ḡ, respectively.
Choose arbitrary feature maps and feature spacesΦ1 : Y →W1 for k andΦ2 : Y →W2 for g

such that
spanΦ j(Y) =W j , j = 1,2. (53)

By Proposition 6,HK �HG if and only ifHK̃ �HG̃. We observe for allx,y∈ X andξ,η ∈ Cn that

K̃((x,ξ),(y,η)) = (K(x,y)ξ,η)Cn =
n

∑
p=1

n

∑
q=1

ξpηqk(Tpx,Tqy)

=
n

∑
p=1

n

∑
q=1

ξpηq(Φ1(Tpx),Φ1(Tqy))W1

=

( n

∑
p=1

ξpΦ1(Tpx),
n

∑
q=1

ηqΦ1(Tqy)

)

W1

.
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Thus,Φ̃1 : X×Cn →W1 defined by

Φ̃1(x,ξ) :=
n

∑
p=1

ξpΦ1(Tpx), x∈ X, ξ ∈ Cn

is a feature map for̃K. We next verify that span{Φ̃1(x,ξ) : x∈ X, ξ ∈Cn} is dense inW1. Assume
thatu∈W1 is orthogonal to this linear span, that is,

(

u,
n

∑
p=1

ξpΦ1(Tpx)

)

W1

= 0 for all x∈ X, ξ ∈ Cn.

Then we have(u,Φ1(Tpx))W1
= 0 for all x∈ X andp∈Nn. It follows from (52) and (53) thatu= 0.

Similar facts hold forG̃.
By Lemma 2,HK̃ �HG̃ if and only if for everyu∈W1, there existsv∈W2 such that

(

u,
n

∑
p=1

ξpΦ1(Tpx)

)

W1

=

(

v,
n

∑
p=1

ξpΦ2(Tpx)

)

W2

for all x∈ X (54)

and

‖u‖W1
= ‖v‖W2

. (55)

Recall also thatHk �Hg if and only if for all u∈W1 there exists somev∈W2 satisfying (55) and

(u,Φ1(y))W1
= (v,Φ2(y))W2

for all y∈Y. (56)

Clearly, (56) implies (54). Conversely, if (54) holds true then we get that

(u,Φ1(Tpx))W1
= (v,Φ2(Tpx))W2

for all x∈ X andp∈ Nn,

which together with (52) implies (56). We conclude thatHK̃ �HG̃ if and only ifHk �Hg.

A more general case of refinement of transformation reproducing kernels is discussed below. It
can be proved by arguments similar to those for the previous proposition.

Proposition 20 Let Tp,Sp be mappings from X to Y and k,g be scalar-valued reproducing kernels
on Y. Define

K(x,y) := [k(Tpx,Tqy) : p,q∈ Nn], G(x,y) := [g(Spx,Sqy) : p,q∈ Nn], x,y∈ X.

Suppose that for all p∈ Nn, span{k(Tpx, ·) : x ∈ X} and span{g(Spx, ·) : x ∈ X} are dense inHk

andHg, respectively. ThenHK �HG if and only ifHkp �Hgp for all p ∈ Nn, where

kp(x,y) := k(Tpx,Tpy), gp(x,y) := g(Spx,Spy), x,y∈ X.

117



ZHANG, XU AND ZHANG

5.4 Finite Hilbert-Schmidt Reproducing Kernels

We consider refinement of finite Hilbert-Schmidt reproducing kernels in thissubsection. LetB j ,Cj

be invertible operators inL+(Λ), n≤ m∈ N, andΨ j , j ∈ Nm, be scalar-valued reproducing kernels
on the input spaceX. Define

K(x,y) :=
n

∑
j=1

B jΨ j(x,y), G(x,y) =
m

∑
j=1

CjΨ j(x,y), x,y∈ X. (57)

By the general integral representation (20) and Proposition 8,K,G above areL(Λ)-valued repro-
ducing kernels onX. To ensure that representation (57) can not be further simplified, we shall work
under the assumption that

HΨ j ∩HΨ j
= {0} for all j ∈ Nm, (58)

where
Ψ j := ∑

k∈Nm\{ j}
Ψk.

Theorem 21 Let K,G be defined by (57), where Bj ,Cj ∈ L+(Λ) are invertible andΨ j , j ∈ Nm,
are scalar-valued reproducing kernels on X satisfying (58). ThenHK � HG if and only if Bj =Cj ,
j ∈ Nn.

Proof We first find a feature map for̃K andG̃. Let φ j : X →W j be an arbitrary feature map forΨ j

such that spanφ j(X) is dense inW j , and denote byΛ⊗W j the tensor product of Hilbert spacesΛ
andW j , j ∈ Nm. The spaceΛ⊗W j is a Hilbert space with the inner product

(ξ⊗u,η⊗v)Λ⊗W j
:= (ξ,η)Λ(u,v)W j

, ξ,η ∈ Λ, u,v∈W j .

SetW the orthogonal direct sum ofΛ⊗W j , j ∈ Nn, whose inner product is defined by

((ξ j ⊗u j : j ∈Nn),(η j ⊗v j : j ∈Nn))W :=
n

∑
j=1

(ξ j ,η j)Λ(u j ,v j)W j
, ξ j ,η j ∈ Λ, u j ,v j ∈W j , j ∈Nn.

We claim thatΦ : X×Λ →W defined by

Φ(x,ξ) := (
√

B jξ⊗φ j(x) : j ∈ Nn), x∈ X, ξ ∈ Λ

is a feature map for̃K. Here,
√

B j , the square root ofB j , is the the unique operatorA in L+(Λ) such
thatA2 = B j . We verify for allx,y∈ X andξ,η ∈ Λ that

(Φ(x,ξ),Φ(y,η))W =
n

∑
j=1

(
√

B jξ,
√

B jη)Λ(φ j(x),φ j(y))W j
=

n

∑
j=1

(B jξ,η)ΛΨ j(x,y)

= (K(x,y)ξ,η) = K̃((x,ξ),(y,η)).

We next show that the denseness condition

span{Φ(x,ξ) : x∈ X, ξ ∈ Λ}=W (59)
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is satisfied. To this end, suppose that we havew j ∈ Λ⊗W j , j ∈ Nn such that

((w j : j ∈ Nn),Φ(x,ξ))W =
n

∑
j=1

(w j ,
√

B jξ⊗φ j(x))Λ⊗W j
= 0 for all x∈ X andξ ∈ Λ. (60)

Let {ei : i ∈ I} and{ fk : k∈ J j} be an orthonormal basis forΛ andW j , respectively. Then{ei ⊗ fk :
i ∈ I,k∈ J j} is an orthonormal basis forΛ⊗W j . Note that althoughI or J j might be uncountable,
for eachξ ∈ Λ, u∈W j andw∈ Λ⊗W j , the sets{i ∈ I : (ξ,ei)λ 6= 0}, {k∈ I j : (u, fk)W j

6= 0} and
{(i, j) ∈ I× J j : (w,ei ⊗ fk)Λ⊗W j

6= 0} are all countable. By resorting to these orthonormal bases,
we see that

(w j ,
√

B jξ⊗φ j(x))Λ⊗W j
= ∑

k∈J j

∑
i∈I
(w j ,ei ⊗ fk)Λ⊗W j

(ei ,
√

B jξ)Λ( fk,φ j(x))W j
.

One verifies by the Cauchy-Schwartz inequality that

∑
k∈J j

∑
i∈I
(w j ,ei ⊗ fk)Λ⊗W j

(ei ,
√

B jξ)Λ fk

converges inW j . As a consequence,(w j ,
√

B jξ ⊗ φ j(·))Λ⊗W j
∈ HΨ j . This together with (60)

implies by the assumption (58) that

(w j ,
√

B jξ⊗φ j(x))Λ⊗W j
= 0 for all j ∈ Nn, x∈ X andξ ∈ Λ.

The above equation can be equivalently formulated as
(

∑
k∈J j

∑
i∈I
(w j ,ei ⊗ fk)Λ⊗W j

(ei ,
√

B jξ)Λ fk,φ j(x)

)

W j

= 0

By the denseness ofφ j(X) in W j ,

∑
i∈I
(w j ,ei ⊗ fk)Λ⊗W j

(ei ,
√

B jξ)Λ = 0 for all j ∈ Nn, k∈ J j andξ ∈ Λ.

We thus have for allj ∈ Nn andk∈ J j that∑i∈I(w j ,ei ⊗ fk)Λ⊗W j
ei = 0, which implies

(w j ,ei ⊗ fk)Λ⊗W j
= 0 for all j ∈ Nn, k∈ J j , i ∈ I.

Therefore,w j = 0 for all j ∈ Nn. Equation (59) hence holds true. Similar facts hold forG̃.
By Proposition 6,HK � HG is equivalent toHK̃ � HG̃, which by the above discussion and

Lemma 2 holds true if and only if for allw j ∈ Λ⊗W j , j ∈ Nn there exist unique ˜w j ∈ Λ⊗W j ,
j ∈ Nm such that

n

∑
j=1

(w j ,
√

B jξ⊗φ j(x))Λ⊗W j
=

m

∑
j=1

(w̃ j ,
√

Cjξ⊗φ j(x))Λ⊗W j
for all ξ ∈ Λ andx∈ X (61)

and
n

∑
j=1

(w j ,w j)Λ⊗W j
=

m

∑
j=1

(w̃ j , w̃ j)Λ⊗W j
. (62)
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Let w j ∈ Λ⊗W j , j ∈Nn be given. IfB j =Cj for j ∈Nn then we set ˜w j :=w j for j ∈Nn, andw̃ j = 0
for n+1≤ j ≤ m. Clearly, such a choice satisfies Equations (61) and (62). Therefore, HK � HG.
Conversely, suppose thatHK � HG. Then for the special choicew j := ξ j ⊗u j , ξ j ∈ Λ, u j ∈W j ,
j ∈Nn, there exists ˜w j ∈ Λ⊗W j , j ∈Nm satisfying (61) and (62). As ˜w j is unique by the denseness

of the feature map for̃G, we must havew j = (
√

Cj
−1√

B jξ j)⊗ u j for j ∈ Nn, andw̃ j = 0 for
n+1≤ j ≤ m. This together with (62) yields that

n

∑
j=1

(ξ j ,ξ j)Λ(u j ,u j)W j
=

n

∑
j=1

(
√

B jC
−1
j

√

B jξ j ,ξ j)Λ(u j ,u j)W j
.

By successively makingξ j ⊗u j 6= 0 andξk⊗uk = 0 for k∈ Nn\{ j}, for j ∈ Nn, we reach that

(ξ j ,ξ j)Λ = (
√

B jC
−1
j

√

B jξ j ,ξ j)Λ for all ξ j ∈ Λ and j ∈ Nn.

As
√

B jC
−1
j

√

B j is hermitian, it equals the identity operator onΛ. It follows thatB j = Cj for all
j ∈ Nn. The proof is complete.

As a corollary of Theorem 21, we obtain an orthogonal decomposition ofHK .

Corollary 22 Let K be defined by (57), where Bj are invertible andΨ j , j ∈ Nn satisfy (58). Then

HK =
n⊕

j=1

HB j Ψ j

and
H∑k

j=1 B j Ψ j
�H∑k+1

j=1 B j Ψ j
for k∈ Nn−1.

A simplest case of (57) occurs whenHΨ j is of dimension 1 forj ∈Nm, which is covered below.

Corollary 23 Let Bj ,Ck ∈ L+(Λ) be invertible for j∈Nn and k∈Nm, andψk : X →C, k∈Nm, be
linearly independent. Set

K(x,y) :=
n

∑
j=1

B jψ j(x)ψ j(y), G(x,y) :=
m

∑
k=1

Ckψk(x)ψk(y), x,y∈ X.

ThenHK �HG if and only if Bj =Cj for all j ∈ Nn.

More generally, we might considerK,G defined by two distinct classes of linearly independent
functions fromX toC. The result below can be proved using arguments similar to those for Theorem
21.

Proposition 24 Let n≤ m∈Nn, Bj ,Ck ∈ L+(Λ) be invertible for j∈Nn and k∈Nm, and{ψ j : j ∈
Nn} and{ϕk : k∈ Nm} be two classes of linearly independent functions from X toC. Set

K(x,y) :=
n

∑
j=1

B jψ j(x)ψ j(y), G(x,y) :=
m

∑
k=1

Ckϕk(x)ϕk(y), x,y∈ X.

ThenHK �HG if and only if
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(1) ψ j ∈ span{ϕk : k∈ Nm} for all j ∈ Nn;

(2) the coefficientsλ jl ∈ C in the linear span

ψ j =
m

∑
l=1

λ jl ϕl , j ∈ Nn

satisfy
m

∑
l=1

λ jl λklC
−1
l = δ j,kB

−1
j for all j ,k∈ Nn.

We close this section with several concrete examples of finite Hilbert-Schmidt reproducing ker-
nels of the form described in Corollary 23 and Proposition 24:

• polynomial kernels:

K(x,y) :=
n

∑
j=1

xα j ·yα j B j , x,y∈ Rd

whereα j are multi-indices andB j are invertible operators inL+(Λ), or

K(x,y) :=
n

∑
j=1

(x ·y)β j B j , x,y∈ Rd

whereβ j are nonnegative integers.

• exponential kernels:

K(x,y) :=
n

∑
j=1

ei(x−y)·t j B j , x,y∈ Rd

wheret j ∈ Rd.

6. Existence

This section is devoted to the existence of nontrivial refinement of operator-valued reproducing
kernels. Most of the results to be presented here are straightforward extensions of those in the
scalar-valued case (Xu and Zhang, 2009).

Let X be the input space andΛ be a Hilbert space. The reproducing kernels under consideration
areL(Λ)-valued.

Proposition 25 There does not exist a nontrivial refinement of anL(Λ)-valued reproducing kernel
K on X if and only ifHK = ΛX, the set of all the functions from X toΛ. If the cardinality of X is
infinite then everyL(Λ)-valued reproducing kernel on X has a nontrivial refinement.

Surprisingly, nontrivial results about the existence appear whenX is of finite cardinality.

Proposition 26 Let X consist of finitely many points xj , j ∈ Nn for some n∈ Nn. A necessary
condition for anL(Λ)-valued reproducing kernel on X to have no nontrivial refinements is that

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ > 0 for all ξ j ∈ Λ, j ∈ Nn with
n

∑
j=1

‖ξ j‖Λ > 0. (63)
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A sufficient condition for K to have no nontrivial refinements is that

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ ≥ λ
n

∑
j=1

‖ξ j‖2
Λ for all ξ j ∈ Λ, j ∈ Nn (64)

for some constantλ > 0. Consequently, ifΛ is finite-dimensional then K does not have a nontrivial
refinement if and only if (63) holds true.

Proof Suppose that there existξ j ∈ Λ, j ∈ Nn, at least one of which is nonzero, such that

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ = 0.

This implies that
n

∑
j=1

K(x j , ·)ξ j = 0.

We get by (3) that for allf ∈HK

n

∑
j=1

( f (x j),ξ j)Λ =

(

f ,
n

∑
j=1

K(x j , ·)ξ j

)

HK

= 0.

As a consequence,HK does not contain the functionf : X → Λ taking valuesf (x j) = ξ j for j ∈Nn.
By Proposition 25, there exist nontrivial refinements forK onX.

Suppose that (64) holds true for some positive constantλ. Assume thatHK is a proper subset of
ΛX. Then there exists some nonzero vector(ξk : k∈ Nn) ∈ Λn orthogonal to( f (xk) : k∈ Nn) in Λn

for all f ∈HK . Letting f = ∑n
j=1K(x j , ·)ξ j yields that

n

∑
j=1

n

∑
k=1

(K(x j ,xk)ξ j ,ξk)Λ =
n

∑
k=1

( f (xk),ξk)Λ = 0,

contradicting (64).
We complete the proof by pointing out that whenΛ is finite-dimensional, (63) and (64) are

equivalent.

It is worthwhile to note that whenΛ is infinite-dimensional, condition (63) might not be suffi-
cient forK to not have a nontrivial refinement. We give a concrete example to illustrate this.

Let X be a singleton{x}, Λ := ℓ2(N) consisting of square-summable sequences indexed byN,
andK(x1,x1) be the operatorT on ℓ2(N) defined by

Ta :=

(

a j

j
: j ∈ N

)

, a∈ ℓ2(N).

Apparently,T ∈L+(ℓ
2(N)) and condition (63) is satisfied. Letf ∈HK . Then there existan ∈ ℓ2(N),

n∈N such thatK(x, ·)an converges tof in HK . Being a Cauchy sequence inHK , {K(x, ·)an : n∈N}
satisfies

lim
n,m→∞

‖K(x, ·)an−K(x, ·)am‖2
HK

= 0.
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By (3),

‖K(x, ·)an−K(x, ·)am‖2
HK

= (K(x, ·)(an−am),K(x, ·)(an−am))HK

= (K(x,x)(an−am),an−am)ℓ2(N) = (T(an−am),an−am)ℓ2(N)

= ‖
√

Tan−
√

Tam‖2
ℓ2(N).

Combining the above two equations yields
√

Tan converges to someb∈ ℓ2(Nn). We now have for
eachc∈ ℓ2(N) that

( f (x),c)ℓ2(N) = ( f ,K(x, ·)c)HK
= lim

n→∞
(K(x, ·)an,K(x, ·)c)HK

= lim
n→∞

(K(x,x)an,c)ℓ2(N) = lim
n→∞

(Tan,c)ℓ2(N)

= lim
n→∞

(
√

Tan,
√

Tc)ℓ2(N) = (b,
√

Tc)ℓ2(N)

= (
√

Tb,c)ℓ2(N),

which implies thatf (x) =
√

Tb. Since this is true for an arbitrary functionf ∈ HK , the function
g : X → Λ defined by

g(x) :=

(

1
j

: j ∈ N

)

is not inHK . Thus,K has a nontrivial refinement onX.
In the process of refining an operator-valued reproducing kernel, itis usually desirable to pre-

serve favorable properties of the original kernel. We shall show that this is feasible as far as continu-
ity and universality of operator-valued reproducing kernels are concerned. LetX be a metric space
andK anL(Λ)-valued reproducing kernel that is continuous fromX×X toL(Λ) when the latter is
equipped with the operator norm. Then one sees thatHK consists of continuous functions fromX
to Λ. For each compact subsetZ ⊆ X, denote byC (Z,Λ) the Banach space of all the continuous
functions fromZ to Λ with the norm

‖ f‖C (Z,Λ) := max
x∈Z

‖ f (x)‖Λ, f ∈ C (Z,Λ).

Following Micchelli et al. (2006) and Caponnetto et al. (2008), we callK auniversal kernelonX if
for all compact setsZ ⊆ X and all continuous functionsf : X → Λ there exist

fn ∈ span{K(x, ·)ξ : x∈ Z, ξ ∈ Λ}, n∈ N,

such that
lim
n→∞

‖ fn− f‖C (Z,Λ) = 0.

In other words,K is universal if for all compact subsetsZ ⊆ X, the closure of span{K(x, ·)ξ : x∈
Z, ξ ∈ Λ} in C (Z,Λ) equals the whose spaceC (Z,Λ).

For the preservation of continuity, we have the following affirmative result,whose proof is
similar to the scalar-valued case (Xu and Zhang, 2009).

Proposition 27 Let X be a metric space with infinite cardinality. Then every continuousL(Λ)-
valued reproducing kernel on X has a nontrivial continuous refinement.

The following lemma about universality has been proved in Caponnetto et al.(2008), and in
Micchelli et al. (2006) in the scalar-valued case. We provide a simplified proof here.
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Lemma 28 Let K be a continuousL(Λ)-valued reproducing kernel on X with the feature map
representation (5), whereΦ : X → L(Λ,W ) is continuous. Then for each compact subsetZ ⊆ X,

span{K(x, ·)ξ : x∈ Z, ξ ∈ Λ}= {Φ(·)∗u : u∈W },

where the closures are relative to the norm inC (Z,Λ).

Proof All the closures to appear in the proof are relative to the norm inC (Z,Λ). Let KZ be the
restriction ofK onZ. Then the restriction ofΦ onZ remains a feature map forKZ . By Lemma 2,

HKZ = {Φ(·)∗u : u∈W }. (65)

It hence suffices to show that

span{K(x, ·)ξ : x∈ Z, ξ ∈ Λ}= span{KZ(x, ·)ξ : x∈ Z, ξ ∈ Λ}=HKZ .

As span{KZ(x, ·)ξ : x∈ Z, ξ ∈ Λ} ⊆HKZ ,

span{KZ(x, ·)ξ : x∈ Z, ξ ∈ Λ} ⊆HKZ . (66)

On the other hand, for eachf ∈ HKZ there existfn ∈ span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}, n ∈ N that
converges tof in the norm ofHKZ . It follows that fn converges tof in the norm ofC (Z,Λ).
Therefore,f ∈ span{KZ(x, ·)ξ : x∈ Z, ξ ∈ Λ}, implying that

HKZ ⊆ span{KZ(x, ·)ξ : x∈ Z, ξ ∈ Λ}. (67)

Combining Equations (65), (66), and (67) proves the result.

The following positive result about universality can be proved by Lemma 28 and arguments
similar to those used in Proposition 14 of Xu and Zhang (2009).

Proposition 29 Let X be a metric space and K a continuousL(Λ)-valued reproducing kernel on
X. Then every continuous refinement of K on X remains universal.

7. Numerical Experiments

We present in this final section three numerical experiments on the applicationof refinement of
operator-valued reproducing kernels to multi-task learning. Suppose that f0 is a function from the
input spaceX to the output spaceΛ that we desire to learn from its finite sample data{(x j ,ξ j) : j ∈
Nm} ⊆ X×Λ. Herem is the number of sampling points and

ξ j = f0(x j)+δ j , j ∈ Nm

whereδ j ∈ Λ is the noise dominated by some unknown probability measure. To deal with the noise
and have an acceptable generalization error, we use the following regularization network

min
f∈HK

1
m

m

∑
j=1

‖ f (x j)−ξ j‖2
Λ +σ‖ f‖2

HK
, (68)
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whereK is a chosenΛ-valued reproducing kernel onX. Our experiments will be designed so that
underfitting and overfitting both have the chance to occur. To echo with the motivations in Section
2, when underfitting happens in the first experiment, we shall find a refinement G of K aiming
at improving the performance of the minimizer of (68) in prediction. On the otherhand, when
overfitting appears in the second experiment, we shall then find aΛ-valued reproducing kernelL on
X such thatHL �HK with the same purpose.

Before moving on to the experiments, we make a remark on how (68) can be solved. The
issue has been understood in the work by Micchelli and Pontil (2005). Wesay thatK is strictly
positive-definiteif for all finite y j ∈ X, j ∈ Np, and for allη j ∈ Λ, j ∈ Np all of which are not zero

p

∑
j=1

p

∑
k=1

(K(y j ,yk)η j ,ηk)Λ > 0.

If K is strictly positive-definite then the minimizerfK of (68) has the form

fK =
m

∑
j=1

K(x j , ·)η j (69)

whereη j ’s satisfy
m

∑
k=1

K(xk,x j)ηk+mση j = ξ j , j ∈ Nm. (70)

7.1 Experiment 1: Underfitting

The vector-valued function to be learned from finite examples is from the input spaceX = [−1,1]
to output spaceΛ = Rn, wheren∈ N. Specifically, it has the form

f0(x) :=
[

ak|x−bk|+cke
−dkx : k∈ Nn

]

, x∈ [−1,1], (71)

wherea,b,c,d are constant vectors to be randomly generated. TheL+(Rn)-valued reproducing
kernel that we shall use in the regularization network (68) is a Gaussian kernel

K(x,y) := Sexp

(

−(x−y)2

2

)

, x,y∈ R,

whereS∈ L+(Rn) is strictly positive-definite. It can be identified by Lemma 2 that functions inHK

are of the form
√

Sv, wherev is anRn-valued function whose components come from the RKHS
HG of the scalar-valued Gaussian kernel

G(x,y) := exp

(

−(x−y)2

2

)

, x,y∈ R. (72)

Thus, each component of
√

Svis fromHG . The functionf0 to be approximated is defined by (71).
As |x−bk| is not even continuously differentiable, functions from the RKHS of the Gaussian kernel
(72) with a fixed variance may not well approximatef0. Underfitting is hence expected. If this is
indeed observed then a remedy is to use the refinement ofK given by

G(x,y) := Sexp

(

−(x−y)2

2

)

+T(1+xy)3, x,y∈ R,
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whereT ∈ L+(Rn) is also strictly positive-definite. The RKHS of the scalar-valued polynomial
kernel(1+xy)3 clearly does not have a nontrivial intersection with the RKHS of the scalar-valued
Gaussian kernel. Thus, by Corollary 22,HK � HG, namely,G is a nontrivial refinement ofK.
Furthermore, as low order polynomials are added, the ability for functions inHG to approximate
the function|x− bk| is expected to be superior to those inHK . We perform extensive numerical
simulations to confirm these conjectures.

The dimensionn will be chosen from{2,4,8,16}. The numberm of sampling points will be
set to be 30. The sampling pointsx j , j ∈Nm will be randomly sampled from[−1,1] by the uniform
distribution and the outputsξ j are generated by

ξ j = f0(x j)+δ j , j ∈ Nm, (73)

whereδ j are vectors whose components will be randomly generated by the uniform distribution on
[−δ,δ]with δ being the noise level selected from{0.1,0.3,0.5}. For each dimensionn∈{2,4,8,16}
and noise levelδ ∈ {0.1,0.3,0.5}, we run 50 simulations. In each of the simulations, we do the
followings:

1. the components of the coefficient vectorsa,b,c,d in the function f0 given by (71) are ran-
domly generated by the uniform distribution on[1,3], [−1,1], [−2,2], and[0,3], respectively;

2. the sampling points are randomly sampled from[−1,1] by the uniform distribution and the
outputsξ j are then generated by (73);

3. the matricesS andT are given byS= A′A andT = B′B whereA,B aren×n real matrices
whose components are randomly sampled from[1,3] by the uniform distribution;

4. we then solve the minimizerfK of (68) by (69) and (70);

5. for the refinement kernelG, we also obtainfG as the minimizer of

min
f∈HG

1
m

m

∑
j=1

‖ f (x j)−ξ j‖2
Λ +σ‖ f‖2

HG
, (74)

6. the regularization parameters in (68) and (74) are optimally chosen so that the relative square
approximation errors

EK :=

∫ 1
−1‖ fK(t)− f0(t)‖2dt∫ 1

−1‖ f0(t)‖2dt
, EG :=

∫ 1
−1‖ fG(t)− f0(t)‖2dt∫ 1

−1‖ f0(t)‖2dt
. (75)

are minimized, respectively.

We call (EK ,EG) obtained in each simulation an instance of approximation errors. Hence, we
have 50 instances for each pair of(n,δ). They are said to form a group. There are 12 groups
of instances of approximation errors. For each(n,δ), we shall calculate the mean and standard
deviation of the differenceEK −EG in the corresponding group as a measurement of the difference
in the performance of learning schemes (68) and (74). Before that, outliers of instances should be
excluded. Although we do not know the distributions ofEK andEG, we shall use the three-sigma
rule in statistics. In other words, we regard an instance(EK ,EG) as an outlier if the deviation ofEK
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n=2 n=4 n=8 n=16

δ = 0.1

(0.1024,0.0084) (0.0215,0.0182) (0.0230,0.0070) (0.0712,0.0015)
(0.0091,0.0081) (0.4095,0.0034) (0.0513,0.0091) (0.0364,0.0124)
(0.4128,0.0006) (0.1554,0.0011)
(0.6783,0.0025) (0.1464,0.0026)

δ = 0.3
(0.0286,0.0228) (0.0663,0.0321) (0.0407,0.0194) (0.1592,0.0018)
(0.4811,0.0020) (0.1892,0.0041) (0.1809,0.0023) (0.0309,0.0127)

(0.1674,0.0095) (0.0229,0.0099)

δ = 0.5
(0.2053,0.0020) (0.0377,0.0376) (0.2445,0.0028) (0.1612,0.0043)
(0.1267,0.0034) (0.3547,0.0033) (0.2762,0.0020) (0.0541,0.0081)
(0.0669,0.0465) (0.0119,0.0264)

Table 1: Outliers of instances of approximation errors(EK ,EG). An instance(EK ,EL) is consid-
ered to be an outlier if the deviation of one of its components to the respective mean in the
group is more than three times the standard deviation of the group. Outliers arelisted in an
independent table because they should be excluded from the calculation of the mean and
standard deviation of the approximation errors. Another reason is that adding them will
make the plot of the approximation errors highly disproportional.

orEG to their respective mean in the group exceeds three times their respective standard deviation.
There are 32 outliers among the entire 600 instances, which are listed below inTable 1.

We make a few observations from Table 1. Firstly,EG is smaller thanEK except for only one
instance. For a large portion of the outliers, the approximation errorEK is considerably large (larger
than 10%), a sign of underfitting of the kernelK. Those instances are of the greatest interest to us
as we desire to see if the refinement kernelG can make a remedy when underfitting does happen.
We see from Table 1 that for all of those outliers, the refinement kernelG always brings down the
relative approximation error to be less than 1%. The improvement brought by G for other instances
is also significant. The observations indicate that (74) performs significantly better in learning the
function (71) from finite examples than (68). For further comparison, wecompute the mean and
standard deviation of the differenceEK −EG of the approximation errors after excluding the above
outliers. The results are tabulated in Table 2 below. Note that a positive valueof the mean implies
that (74) performs better than (68). It is worthwhile to point out that amongall the rest 568 instances
excluding the outliers, there are only 33 whereEG is larger thanEK . The largest value ofEG−EK

is 0.0020. Therefore, we conclude that for all the(n,δ), (74) is superior to (68), and the larger the
standard deviation in Table 2 is, the greater improvement the refinement kernel G brings.

We shall also plot the 12 groups of approximation errorsEK ,EG for a visual comparison. To
this end, we take out the instances for whichEK is too large to have an appropriate range in the
vertical axes in the figures. Therefore, Figures 1 and 2 are not full embodiment of the improvement
of (74) over (68). Nevertheless, one sees that the improvement brought by the refinement kernelG
in these relatively well-behaved instances is still dramatic.

127



ZHANG, XU AND ZHANG

n=2 n=4 n=8 n=16

δ = 0.1
0.0098 0.0139 0.0160 0.0108

(0.0182) (0.0335) (0.0241) (0.0135)

δ = 0.3
0.0076 0.0141 0.0143 0.0188

(0.0144) (0.0245) (0.0208) (0.0259)

δ = 0.5
0.0054 0.0127 0.0103 0.0091

(0.0121) (0.0307) (0.0186) (0.0102)

Table 2: The mean and standard deviation (in parentheses) ofEK −EG. The outliers of instances
listed in Table 1 are not counted toward these calculations. If they were added, the im-
provement brought by the refinement kernelG would have been more dramatic.
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Figure 1: Relative approximation errorsEK ,EG for n= 2,4 andδ= 0.1,0.3,0.5. The outliers listed
in Table 1 are not plotted here as they would make the figure highly disproportional.

7.2 Experiment 2: Overfitting

The target function we consider in the second experiment is

f0(x) =

[

ak

1+25(x−bk)2 +cke
−dkx : k∈ Nn

]

, x∈ [−1,1], (76)

where the components of the vectorsa,b,c,d ∈Rn will be randomly sampled by the uniform distri-
bution from[1,4], [0, 1

2], [−2,2], and[0,2] respectively in the numerical simulations. The dimension
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Figure 2: Relative approximation errorsEK ,EG for n = 8,16 andδ = 0.1,0.3,0.5. The outliers
listed in Table 1 are not plotted in the figure here.

n will be chosen from{2,4,8,16}. We fix m := 20 and shall sample the inputsx j , j ∈Nm randomly
by the uniform distribution from[−1,1]. Similarly, the outputsξ j ∈ Rn, j ∈ Nm will be generated
by (73) where the noise level is to be selected from{0.1,0.3,0.5}.

In the first step, we substitute the sample data{(x j ,ξ j) : j ∈Nm} into the regularization network
(68) with the following kernel

K(x,y) := Sexp

(

−(x−y)2

2

)

+T(1+xy)18, x,y∈ [−1,1], (77)

whereS=A′A andT =B′B with A,B beingn×n real-matrices whose components will be randomly
sampled by the uniform distribution from[1,2]. The target function (76) contains translations of the
Runge function

1
1+25x2 , x∈ [−1,1].

It is well-known that approximating the Runge function by high order polynomial interpolations
leads to overfitting. One sees by (70) that the regulation network (68) mightbe regarded as a
regularized interpolation. Note also that the order of the polynomial kernelin (77) is 18, which is
close to the numberm= 20 of sampling points. Overfitting is hence expected. When this occurs,
we propose to reduce the order of the polynomial kernel by considering

L(x,y) := Sexp

(

−(x−y)2

2

)

+T
10

∑
k=0

(

18
k

)

(xy)k, x,y∈ [−1,1].
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δ = 0.1 δ = 0.3 δ = 0.5

n=2
(0.9000, 0.7843) (2.9906,1.3509) (1.8065, 0.8044),(1.1332, 0.3213)

(19.6416, 7.6578)

n=4

(8.2450,5.8717) (1.1760,0.1354) (4.6316,7.0497),(2.0850,1.3204)
(1.6654,2.0466) ( 0.4591, 0.7845) (2.4657,1.1386)

(18.9615,12.0513) (5.7967,0.6122)
(0.9536, 1.0998) (5.1196,2.6692)

n=8

(0.9102,1.3862) (1.3517, 1.8339) (0.6369, 0.3698),(0.6945,0.2878)
(1.2233,0.9489) (0.8450,0.2605) (2.2371, 2.4008)
(0.6711,0.2249) (0.3571, 0.7221) (1.0738,0.4172)

(2.2403, 2.0108) (1.0561,0.3067)
(5.6153,5.0954) (0.6791,1.0980)
(2.0763,1.3718) (3.6689,3.9566)
(2.2567,1.4024) (1.1238,0.2467)

n=16

(4.4905, 5.8886) (26.0758,7.6125) (73.0854,42.6904),(1.6070, 1.4224)
(7.9187, 4.3445) (1.2255, 0.3181) (3.2674, 2.2622),(2.1632, 1.7059)
(2.1619, 0.5061) (0.5140, 0.1817) (2.8067, 0.5791),(9.0120, 3.5443)

(17.5145, 13.7894) (2.4289, 1.9022) (0.6064, 0.3365),(4.0484 , 0.4220)
(1.0064, 0.8287)

Table 3: Outliers of instances of relative approximation errors(EK ,EL).

By Corollary 22,HL � HK , namely,K is a refinement ofL. We shall demonstrate by numerical
simulations that

min
f∈HL

1
m

m

∑
j=1

‖ f (x j)−ξ j‖2+σ‖ f‖2
HL

(78)

outperforms (68) with the kernel (77). To this end, we shall conduct numerical experiments similar
to those in the last subsection. LetfK and fL be the minimizer of (68) and (78), respectively. We shall
measure the performance by the relative square approximation errorsEK andEL, which are defined
in the same way as (75). For each pair of(n,δ), wheren∈ {2,4,8,16} andδ ∈ {0.1,0.3,0.5}, we
run 20 numerical simulations where the regularization parametersσ are to be chosen so thatEK and
EL are minimized, respectively. As in the first experiment, we shall calculate the mean and standard
deviation ofEK andEL in each group after taking out some outliers. We shall also plot the relative
errors for comparison. The results are shown below in the form of tablesand figures.

We have more outliers compared to the first experiment. Using fewer sampling points and
approximating the Runge function by polynomials both contributes to this. We observe that for
the majority of these outliers,EL is significantly smaller thanEK , showing improvement of learn-
ing scheme (78) over (68). For further comparison, we shall compute themean and variances of
EK −EL and plot the relative approximation errorsEK andEL for the rest of instances.

A positive value of the mean in Table 4 implies that (78) performs better than (68). It is observed
that kernelL brings improvement for all the choices ofn ∈ {2,4,8,16} and δ ∈ {0.1,0.3,0.5}.
We also remark that among all the 188 instances counted in Table 4, there areonly 32 for which
EL > EK . The mean and standard deviation ofEL −EK for these 32 instances are 0.0264 and
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n=2 n=4 n=8 n=16

δ = 0.1
0.0289 0.0511 0.0173 0.0157

(0.0846) (0.0587) (0.0779) (0.0146)

δ = 0.3
0.0404 0.0661 0.0671 0.0657

(0.0922) (0.0705) (0.0929) (0.0918)

δ = 0.5
0.0629 0.0130 0.0484 0.0625

(0.1098) (0.0233) (0.0758) (0.0821)

Table 4: The mean and standard deviation (in parentheses) ofEK −EL. The outliers of instances
listed in Table 3 are not counted toward these calculations. If they were added, the im-
provement brought by the refinement kernelG would have been more dramatic.
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Figure 3: Relative approximation errorsEK ,EL for n= 2,4 andδ = 0.1,0.3,0.5. The outliers listed
in Table 3 are not plotted here as they will make the figure highly disproportional.

0.0306. We conclude that compared to (68), (78) improves the performanceconsiderably in learn-
ing the function (76).

7.3 Experiment 3: Impact of Irrelevant Signals

Suggested by one of the anonymous reviewers, we shall examine the impactof irrelevant signals
in the refinement kernel method. More specifically, we plan to apply the refinement kernel method
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Figure 4: Relative approximation errorsEK ,EL for n = 8,16 andδ = 0.1,0.3,0.5. The outliers
listed in Table 3 are not plotted here.

δ = 0.1 δ = 0.3 δ = 0.5

n= 4
(0.0164, 0.0083) (0.1760,0.0074) (0.1550, 0.0049)
(0.2930, 0.0044) ( 0.0415, 0.0189) (0.0837, 0.0302)
(0.0074, 0.0076) (0.1464, 0.0254)

Table 5: Outliers of instances of relative approximation errors(EK ,EG).

to the learning a vector-valued function whose components might be irrelevant. To avoid repetition
and save space, we shall consider the underfitting case only and limit ourself to dimensionn= 4.
The instance investigated here is the functionf0 of the form (71), where we shall seta3 = a4 = c1 =
c2 = 0. Thus, the first two components are irrelevant with the last two componentsof f0. We then
proceed with the same simulation procedures as those in experiment 1.

We obtain 3 groups of relative approximation error(EK ,EG) corresponding to the noise level
δ = 0.1,0.3,0.5. As in experiment 1, we first list all the outliers by the three-sigma rule in Table 5
below.

We observe from Table 5 that under the impact of irrelevant signals, among the above outliers,
EG is smaller thanEK except for only one instance(0.0074,0.0076). In 4 instances of the outliers,
EK is larger than 14%, while the refinement kernelG always brings down the relative approximation
error to be less than 3%. In the overall 150 instances of relative approximation errors computed,
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δ = 0.1 δ = 0.3 δ = 0.5

n= 4
0.0077 0.0114 0.0117

(0.0131) (0.0257) (0.0205)

Table 6: The mean and standard deviation (in parentheses) ofEK −EG. The outliers of instances
listed in Table 5 are not counted toward these calculations. If they were added, the im-
provement brought by the refinement kernelG would have been more dramatic.
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Figure 5: Relative approximation errorsEK ,EG for n= 4 andδ = 0.1,0.3,0.5. The outliers listed
in Table 5 are not plotted here as they would make the figure highly disproportional.

there are only 13 instances whereEK is smaller thanEG. For all these instances,EG are of the same
magnitude level withEK , showing competitive performance. For further comparison, we compute
the mean and standard deviation of the differenceEK −EG after the above outliers are excluded.
The results are shown in Table 6 below.

Finally, we plot the 3 groups of relative approximation errorsEK ,EG for a visual comparison
after the outliers in Table 5 are excluded.

We conclude from Tables 5, 6 and Figure 5 that for the learning problem considered in this
subsection, the refinement kernel method works well under the impact of irrelevant signals.
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8. Conclusion and Discussion

The refinement relationship between two operator-valued reproducing kernels provides a promising
way of updating kernels for multi-task machine learning when overfitting or underfitting occurs.
We establish several general characterizations of the refinement relationship. Particular attention
has been paid to the case when the kernels under investigation have a vector-valued integral repre-
sentation, the most general form of operator-valued reproducing kernels. By the characterizations,
we present concrete examples of refining the translation invariant operator-valued reproducing ker-
nels, Hessian of the scalar-valued Gaussian kernel, and finite Hilbert-Schmidt operator-valued re-
producing kernels. Three numerical experiments confirm the potential usefulness of the proposed
refinement method in updating kernels for multi-task learning. We plan to investigate the effect of
the method by real application data in another occasion.

We discuss three issues that might deserve future research attention. The first one concerns
about the computational saving brought by the refinement kernel method.Suppose a minimizer in
an RKHS resulting from a particular learning algorithm is already computed but turns out to be
unsatisfactory due to underfitting. When the kernel corresponding to theRKHS is refined, instead
of running the algorithm from the scratch in the updated RKHS, we are wondering if the original
minimizer can be made use of in order to reduce computational costs. In the scalar-valued case,
it has been shown that this can be done for the classical regularization networks (Xu and Zhang,
2009). For the vector-valued case, one would need to carefully handlethe complexity brought
by the high dimension of the output space in order to establish a similar analysis.The second
question is whether a multi-resolution analysis for vector-valued RKHS can be achieved by using
the refinement kernel method. Our initial thinking and impression is that the approach in Xu and
Zhang (2007) of using a bijective self-mapping of the input space can becarried over without much
difficulty. Finally, we look at the requirement in the definition of refinement that the norm on the
RKHS of the refinement kernel should coincide with that in the RKHS of the original kernel. As
seen by the results in Section 5 and those in Xu and Zhang (2009), this strong condition poses a
serious restriction in searching for refinement kernels. A remedy is to askthe two norms to be
equivalent in the smaller space or to even just focus on the inclusion relation. Study along this
direction has been done for scalar-valued kernels (Zhang and Zhao,2011). It is shown there that
this relaxation brings more freedom and choices in choosing kernels for refinement. Vector-valued
counterparts are yet to be investigated. This approach also connects to apopular way of updating
kernels pointed out by one of the reviewers, which is to tune a parameter (for example, the variance
in the Gaussian kernel, the degree in a polynomial kernel, etc.) in the kernel.Although this practice
seldom corresponds to a refinement, it does sometimes fall into the approachconsidered in Zhang
and Zhao (2011). Examples include the exponential kernels, the inversemultiquadrics, the B-spline
kernels, and the polynomial kernels (Zhang and Zhao, 2011).
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