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Abstract

Supervised learning from high-dimensional data, for eXammultimedia data, is a challenging
task. We propose an extension of slow feature analysis (BfAupervisedlimensionality reduc-
tion called graph-based SFA (GSFA). The algorithm extrad¢ébel-predictive low-dimensional set
of features that can be post-processed by typical supéraig@rithms to generate the nal label
or class estimation. GSFA is trained with a so-called trgjrgraph, in which the vertices are the
samples and the edges represent similarities of the comedgyy labels. A new weighted SFA op-
timization problem is introduced, generalizing the notadrslowness from sequences of samples
to such training graphs. We show that GSFA computes an opsiohation to this problem in the
considered function space and propose several types wiftgagraphs. For classi cation, the most
straightforward graph yields features equivalent to thafsgnonlinear) Fisher discriminant anal-
ysis. Emphasis is on regression, where four different ggapére evaluated experimentally with
a subproblem of face detection on photographs. The methaubped is promising particularly
when linear models are insuf cient as well as when featutecdsn is dif cult.

Keywords: slow feature analysis, feature extraction, classi caticegression, pattern recogni-
tion, training graphs, nonlinear dimensionality reduatisupervised learning, implicitly super-
vised, high-dimensional data, image analysis

1. Introduction

Supervised learning from high-dimensional data has important applicati@meas such as multi-
media processing, human-computer interfaces, industrial quality conteachk processing, robotics,
bioinformatics, image understanding, and medicine. Despite constant impeat®in computa-
tional resources and learning algorithms, supervised processirexdomle, for regression or clas-
si cation, of high-dimensional data is still a challenge largely due to insufitidata and several
phenomena referred to as the curse of dimensionality. This limits the pragtigitability of
supervised learning.

Unsupervised dimensionality reduction, including algorithms such as prirmcipgonent anal-
ysis (PCA) or locality preserving projections (LPP, He and Niyogi, 2068) be used to attenuate
these problems. After dimensionality reduction, typical supervised leaatgagithms can be ap-
plied. Frequent bene ts include a lower computational cost and bettastoéss against over tting.
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However, since the nal goal is to solve a supervised learning problesmagiproach is inherently
suboptimal.

Supervised dimensionality reduction is more appropriate in this case. Itssgmatompute a
low-dimensional set of features from the high-dimensional input sampégsctimtains predictive
information about the labels (Rish et al., 2008). One advantage is that dansriselevant for
the label estimation can be discarded, resulting in a more compact reptieseatad more accu-
rate label estimations. Different supervised algorithms can then be appliee kowv-dimensional
data. A widely known algorithm for supervised dimensionality reduction iséfisliscriminant
analysis (FDA) (Fisher, 1936). Sugiyama (2006) proposed local AIA), an adaptation of
FDA with a discriminative objective function that also preserves the locatstre of the input
data. Later, Sugiyama et al. (2010) proposed semi-supervised LFBEH)Sridging LFDA and
PCA and allowing the combination of labeled and unlabeled data. Tang ambZ4B607) in-
troduced pairwise constraints-guided feature projection (PCGFPYevitve types of constraints
are allowed. Must-link constraints denote that a pair of samples should bgechafosely in the
low-dimensional space, while cannot-link constraints require that the sasgenapped far apart.
Later, Zhang et al. (2007) proposed semi-supervised dimensionalifigtied (SSDR), which is
similar to PCGFP and also supports semi-supervised learning.

Slow feature analysis (SFA) (Wiskott, 1998; Wiskott and Sejnowski, 2&)2n unsupervised
learning algorithm inspired by the visual system and based on the slopmiesiple. SFA has been
applied to classi cation in various ways. Franzius et al. (2008) extrattteddentity of animated
sh invariant to pose (including a rotation angle and the sh position) with SikAong sequence of
sh images was rendered from 3D models in which the pose of the sh aidfalowing a Brown-
ian motion, and in which the probability of randomly changing the sh identity vedetively small,
making identity a feature that changes slowly. This result con rms that SEApable of extracting
categorical information. Klamp and Maass (2010) introduced a partidularkov chain to gen-
erate a sequence used to train SFA for classi cation. The transition Ipifitpdetween samples
from different object identities was proportional to a small parameterhe authors showed that
in the limita! O (i.e., only intra-class transitions), the features learned by SFA argadei to
the features learned by Fisher discriminant analysis (FDA). The dgoz@ of the discrimination
capability of SFA and FDA in some setups was already known (compare8e2R05a, and Berkes,
2005b) but had not been rigorously shown before. In the two pdyyeBerkes, hand-written digits
from the MNIST database were recognized. Several mini-sequehtgs samples from the same
digit were used to train SFA. The same approach was also applied monglygoehuman gesture
recognition by Koch et al. (2010) and a similar approach to monocularseghentation by Kuhnl
et al. (2011). Zhang and Tao (2012) proposed an elaborate systdmrhan action recognition, in
which the difference between delta values of different training signhassamapli ed and used for
discrimination.

SFA has been used to solve regression problems as well. Franzius28Q4) (sed standard
SFA to learn the position of animated sh from images with homogeneous bagkdr The same
training sequence used for learning sh identities was used, thus theostign changed continu-
ously over time. However, a different supervised post-processipgise employed consisting of
linear regression coupled with a nonlinear transformation.

In this article, we introduce a supervised extension of SFA called grapbebSFA (GSFA)
speci cally designed for supervised dimensionality reduction. We show@ISFA computes the
slowest features possible according to the GSFA optimization problem, ategigkiension of the
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SFA problem, generalizing the concept of signal slowness. The olgefttivction of the GSFA
problem is a weighted sum of squared output differences and is themgfilar to the underlying
objective functions of, for example, FDA, LFDA, SELF, PCGFP, an@BSHowever, in general
the optimization problem solved by GSFA differs at least in one of the followiegents: a) the
concrete coef cients of the objective function, b) the constraints, dhe)feature space consid-
ered. Although nonlinear or kernelized versions of the algorithms abawde de ned, one has
to overcome the dif culty of nding a good nonlinearity or kernel. In corgtaSFA (and GSFA)
was conceived from the beginning as a nonlinear algorithm withouttiegdo kernels (although
there exist versions with a kernel: Bray and Martinez, 2003; Vollgrdf@bermayer, 2006; @mer
etal., 2012), with linear SFA being just a less used special case. Ardiffezence to various algo-
rithms above is that SFA (and GSFA) does not explicitly attempt to presenapé#tial structure of
the input data. Instead, it preserves the similarity structure providedhidawes room for better
optimization towards the labels.

Besides the similarities and differences outlined above, GSFA is stronghectd to some
algorithms in speci c cases. For instance, features equivalent to tHddefcan be obtained if a
particular training graph is given to GSFA. There is also a close relatiordleet®FA and Laplacian
eigenmaps (LE), which has been studied by Sprekeler (2011). GS#ARrbasically have the
same objective function, but in general GSFA uses different edgghiv@adjacency) matrices, has
different normalization constraints, supports hode-weights, and usesdn spaces.

There is also a strong connection between GSFA and LPP. In Section 7shomehow to
use GSFA to extract LPP features aride versa This is a remarkable connection because GSFA
and LPP originate from different backgrounds and are typically usedefated but different goals.
Generalized SFA (Sprekeler, 2011; Rehn, 2013), being basicallyohP®nlinearly expanded data,
is also closely connected to GSFA.

One advantage of GSFA over many algorithms for supervised dimensiormalitgtion is that it
is designed for both classi cation and regression (using appropriatengegraphs), whereas other
algorithms typically focus on classi cation only.

Given a large number of high-dimensional labeled data, supervisedrigaafyorithms can
often not be applied due to prohibitive computational requirements. Incasds we propose the
following general scheme based on GSFA/SFA, illustrated in Figure 1 (left):

1. Transform the labeled data to structured data, where the label informstimplicitly en-
coded in the connections between the data points (samples). This permitsnsiqgrvised
learning algorithms, such as SFA, or its extension GSFA.

2. Use hierarchical processing to reduce the dimensionality, resulting hdiloensional data
with component similarities strongly dependent on the graph connectivitice $ie label
information is encoded in the graph connectivity, the low-dimensional dathighly pre-
dictive of the labels. Hierarchical processing (Section 2.4) is an efta@nde-and-conquer
approach for high-dimensional data with SFA and GSFA.

3. Convert the (low-dimensional) data back to labeled data by combining thditoensional
data points with the original labels or classes. This now constitutes a dataitséles for
standard supervised learning methods, because the dimensionality baselraanageable.

3685



ESCALANTE-B. AND WISKOTT

4. Use standard supervised learning methods on the low-dimensionaldalzteto estimate
the labels. The unsupervised hierarchical network plus the supediisat method together
constitute the classi er or regression architecture.

In the case of GSFA, the structured training data is called training grapleighted graph
that has vertices representing the samples, node weights spedfyirigri sample probabilities,
and edge weights indicating desired output similarities, as derived from Itie¢sla Details are
given in Section 3. This structure permits us to extend SFA to extract fedtora the data points
that tend to re ect similarity relationships between their labels without the neeeptmduce the
labels themselves. A concrete example of the application of the method to asiegrproblem is
illustrated in Figure 2. Various important advantages of GSFA are inheribed $FA:

It allows hierarchical processing, which has various remarkableeptiep, as described in
Section 2.4. One of them, illustrated in Figure 1 (right), is that the local applicatio
SFA/GSFA to lower-dimensional data chunks typically results in less over ttiivagn non-

hierarchical SFA/GSFA.

SFA has a complexity dB(N) in the number of samplds andO(13) in the number of dimen-
sionsl (possibly after a nonlinear expansion). Hierarchical processirajlgmeduces the lat-

ter complexity down tdX1). In practice, processing 100,000 samples of 10,000-dimensional
input data can be done in less than three hours by using hierarchicaGSFA without
resorting to parallelization or GPU computing.

Typically no expensive parameter search is required. The SFA and @l§6rithms them-
selves are almost parameter free. Only the nonlinear expansion hasembd.din hierar-

chical SFA, the structure of the network has several parameters,ebahtiice is usually not
critical.

In the next sections, we rst recall the standard SFA optimization probledreégorithm. Then,
we introduce the GSFA optimization problem, which incorporates the informatotaimed in
a training graph, and propose the GSFA algorithm, which solves this optimizatidrlem. We
recall how classi cation problems have been addressed with SFA amubgeoa training graph
for doing this task with GSFA. Afterwards, we propose various grapicires for regression
problems offering great computational ef ciency and good accur@logreafter, we experimentally
evaluate and compare the performance of four training graphs to otmenao supervised methods
(e.g., PCA+SVM) w.r.t. a particular regression problem closely relatedcedatection using real
photographs. A discussion section concludes the article.

2. Standard SFA

In this section, we begin by introducing the slowness principle, which hps@&isSFA. Afterwards,
we recall the SFA optimization problem and the algorithm itself. We concludeetttos with a
brief introduction to hierarchical processing with SFA.

2.1 The Slowness Principle and SFA

Perception plays a crucial role in the interaction of animals or humans with théitoement.
Although processing of sensory information appears to be done staghtflly by the nervous
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Figure 1: (Left) Transformation of a supervised learning problem oh-Hignensional data into a
supervised learning problem on low-dimensional data by means of unsgukhierar-
chical processing on structured data, that is, without labels. This catistt allows the
solution of supervised learning problems on high-dimensional data whefinteasion-
ality and number of samples make the direct application of many conventiqgreihvssed
algorithms infeasible. (Right) Example of how hierarchical SFA (HSFA) isemobust
against over tting than standard SFA. Useless data consisting of 25mandd. samples
is processed by linear SFA and linear HSFA. Both algorithms reduce the siionetity
from 24 to 3 dimensions. Even though the training data is random, the dirplitap
tion of SFA extracts the slowest features theoretically possible (optimatégonses),

which is possible due to the number of dimensions and samples, permitting owvgr ttin

However, it fails to provide consistent features for test data (e.g., atdrdkviations

Straining = 1:0 VS. Stest= 6:5), indicating lack of generalization. Several points even fall

outside the plotted area. In contrast, HSFA extracts much more consisienefe(e.g.,
standard deviationSiraining= 1:0 VS. Stest= 1:18) resulting in less over tting. Counter-
intuitively, this result holds even though the HSFA network used haé 7 3= 126 free
parameters, many more than the 28= 72 free parameters of direct SFA.

system, it is a complex computational task. As an example, consider the vixeapgon of a
driver watching pedestrians walking on the street. As the car advahisesgceptor responses
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(a) Input samples and their labels (c) Slow feature domain

-

(b) Linear training graph (d) Regression on two slow features

Figure 2: lllustration of the application of GSFA to solve a regression pnob{a) The input sam-
ples are 128 128-pixel images with labels indicating the horizontal position of the center
of the face. (b) A training graph is constructed using the label informatiorhis ex-
ample, only images with most similar labels are connected resulting in a linear. graph
(c) The data dimensionality is reduced with GSFA, yielding in this case 3-dimeailsio
feature vectors plotted in the rst two dimensions. (d) The application ofistahregres-
sion methods to the slow features (e.g., linear regression) generateseahedtmates.

In theory, the labels can be estimated frgiralone. In practice, performance is usually
improved by using not one, but a few slow features.

typically change quite quickly, and are especially sensitive to the eye movemeéno variations
in the position or pose of the pedestrians. However, a lot of informatiofydimg the position
and identity of the pedestrians, can still be distinguished. Relevant absti@enation derived
from the perception of the environment typically changes on a time scale nmehrghan the
individual sensory inputs. This observation inspires the slownesspignerhich explicitly requires
the extraction of slow features. This principle has probably rst beemédated by Hinton (1989),
and online learning rules were developed shortly after bidigk (1991) and Mitchison (1991).
The rst closed-form algorithm has been developed by Wiskott andfesned to as Slow feature
analysis (SFA, Wiskott, 1998; Wiskott and Sejnowski, 2002). The cerfoisnulation of the SFA
optimization problem also permits an extended mathematical treatment so that @gtigsoare well
understood analytically (Wiskott, 2003; Franzius et al., 2007; Sprekel@nViskott, 2011). SFA
has the advantage that it is guaranteed to nd an optimal solution within thédemed function
space. It was initially developed for learning invariances in a model of timeape visual system
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(Wiskott and Sejnowski, 2002; Franzius et al., 2011). Berkes and dtigR005) subsequently
used it for learning complex-cell receptive elds and Franzius et &072 for place cells in the

hippocampus. Recently, researchers have begun using SFA fousaeichnical applications (see
Escalante-B. and Wiskott, 2012, for a review).

2.2 Standard SFA Optimization Problem

The SFA optimization problem can be stated as follows (Wiskott, 1998; WiskdtiSsnowski,
wheret 2 R, nd an instantaneous vectorial functigrt R' ! R? within a function spacé , that
is, g(X(1)) = ( ga(x(t));:::;95(x(t))) T, such that for each componen(t) d=efgj(x(t)) of the output
signaly(t) d='3fg(X(t)), forl j J,the objective function

D(y;) £'ty;(t)%  is minimal (delta value) 1)

under the constraints

hyj(t)i = O (zero mean), (2)
hyj(t)%i¢ = 1 (unit variance), (3)
hy;(t)yjo(t)ic = 0:8j%< j (decorrelation and order): 4)

The delta valud)y;) is de ned as the time averade i;) of the squared derivative gf and is
therefore a measure of the slowness (or rather fastness) of the Sidpeatonstraints (2—4) assure
that the output signals are normalized, not constant, and represemediffeatures of the input
signal. The problem can be solved iteratively beginning witfthe slowest feature extracted) and

nishing with y; (an algorithm is described in the next section). Due to constraint (4),eha d
values are ordered, that B(y1) D(y2) D(y;). See Figure 3 for an illustrative example.

Input Signal x(t)

ime (sample) Time (sample)

Figure 3: lllustrative example of feature extraction from a 10-dimensi¢diatrete time) input
signal. Four arbitrary components of the input (left) and the four sloaetgiuts (right)
are shown. Notice that feature extraction is an instantaneous operatmtheugh the
outputs are slow over time. This example was designed such that the feattraged
are the slowest ones theoretically possible.

In practice, the functioy is usually restricted to a nite-dimensional spakee for example,
to all quadratic or linear functions. Highly complex function spaeeshould be avoided because
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they result in over tting. In extreme cases one obtains features sucloas th Figure 3 (right)
even when the hidden parameters of the input data lack such a precisirstruThe problem
is then evident when one extracts unstructured features from testsaatdigure 1 (right). An
unrestricted function space is, however, useful for various theateti@alyses (e.g., Wiskott, 2003)
because of its generality and mathematical convenience.

2.3 Standard Linear SFA Algorithm

The SFA algorithm is typically nonlinear. Even though kernelized versi@ve been proposed
(Bray and Martinez, 2003; Vollgraf and Obermayer, 2006hBier et al., 2012), it is usually im-
plemented more directly with a nonlinear expansion of the input data followdohésr SFA in

the expanded space. In this section, we recall the standard linear Seiktatg (Wiskott and Se-
jnowski, 2002), in whicH- is the space of all linear functions. Discrete tih@,N, is used for the
application of the algorithm to real data. Also the objective function and thstrints are adapted
to discrete time. The inputis then a single training signal (i.e., a sequehtsarhplesk(t), where

1 t N, and the time derivative of(t) is usually approximated by a sequence of differences of

. def
consecutive sampleg(t) © x(t+1) x(t),forl t N 1.

The output components take the fogp{x) = w] (x X), wherex ' L&l x(t) is the average

sample, which is subtracted, so that the output has zero-mean to confirr(2)v Thus, in the
linear case, the SFA problem reduces to nding an optimal set of weigttoxef wjg under the
constraints above, and it can be solved by linear algebra methods,leee be

The covariance matrix is approximated by the sample covariance matrix

1

C=
N 1

N
A N N7

t=1

and the derivative second-moment matrix'i; is approximated as

C= Néll(x(tJr D x@)x(t+ 1) x(®):
N 1.5

Then, a sphered signalldzef STx is computed, such th&'CS= | for a sphering matrixS,
Afterwards, thel directions of least variance in the derivative signare found and represented

by anl J rotation matrixR, such thatRTC,R = , whereC, ©p7Ti, and  is a diagonal
matrix with diagonal elements; | » | 5. Finally the algorithm returns the weight matrix
W = (wq;:::;w;), de ned asW = SR, the features extractgd= WT(x X), andD(y;) = | j, for

1 j J. The linear SFA algorithm is guaranteed to nd an optimal solution to the optimization
problem (1-4) in the linear function space, for example, the rst compbestracted is the slowest
possible linear feature. A more detailed description of the linear SFA algoighmnovided by
Wiskott and Sejnowski (2002).

The complexity of the linear SFA algorithm described abov©§slI? + 13) whereN is the
number of samples ards the input dimensionality (possibly after a nonlinear expansion), thus for
high-dimensional data standard SFA is not feasttie practice, it has a speed comparable to PCA,
even though SFA also takes into account the temporal structure of the data.

1. The problem is still feasible i is small enough so that one might apply singular value decomposition dgetho
However, a small number of samplNs< | usually results in pronounced over tting.
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2.4 Hierarchical SFA

To reduce the complexity of SFA, a divide-and-conquer strategy toaaiaw features is usually
effective (e.g., Franzius et al., 2011). For instance, one can spatiaitiedhe data into lower-
dimensional blocks of dimensiol? | and extractl®< 19 local slow features separately with
different instances of SFA, the so-called SFA nodes. Then, oneamgker SFA node in a next
layer to extract global slow features from the local slow features. Stach SFA node performs
dimensionality reduction, the input dimension of the top SFA node is much lesk.tihis strategy
can be repeated iteratively until the input dimensionality at each node is smoalyjle, resulting in
a multi-layer hierarchical network. Due to information loss before the topntus does not
guarantee optimal global slow features anymore. However it has shotva éffective in many
practical experiments, in part because low-level features are spatiedlyzed in most real data.

Interestingly, hierarchical processing can also be seen as a regtitarimethod, as shown in
Figure 1 (right), leading to better generalization. An additional advantati&ighe nonlinearity
accumulates across layers, so that even when using simple expansioe$ibek as a whole can
realize a complex nonlinearity (Escalante-B. and Wiskott, 2011).

3. Graph-Based SFA (GSFA)

In this section, we rst present a generalized representation of thergaitata used by SFA called
training graph. Afterwards, we propose the GSFA optimization problem,hwikide ned in terms
of the nodes, edges and weights of such a graph. Then, we prese@iStRA algorithm and a
probabilistic model for the generation of training data, connecting SFA S8RAG

3.1 Organization of the Training Samples in a Graph

Learning from a single (multi-dimensional) time series (i.e., a sequence of sgngden standard
SFA, is motivated from biology, because the input data is assumed to orifliaatesensory per-
ception. In a more technical and supervised learning setting, the trainiaghdad not be a time
series but may be a set of independent samples. However, one dae ledgels to induce structure.
For instance, face images may come from different persons and diffeperces but can still be
ordered by, say, age. If one arranges these images in a sequenceasing age, they would form
a linear structure that could be used for training much like a regular time series

The central contribution of this work is the consideration of a more complegtsire for train-
ing SFA called training graph. In the example above, one can then intrauesighted edge
between any pair of face images according to some similarity measure baagd (or other crite-
ria such as gender, race, or mimic expression), with high similarity resultingga &dge weights.
The original SFA objective then needs to be adapted such that samplescteh by large edge
weights yield similar output values.

In mathematical terms, the training data is represented as a training@rap¥; E) (illustrated
in Figure 4) with a seV of verticesx(n) (each vertex/node being a sample), and eset edges
(x(n);x(nY), which are pairs of samples, with 1n;n® N. The indexn (or n9 substitutes the time
variablet. The edges are undirected and have symmetric weights

Gh;no = Ghon (%)
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that indicate the similarity between the connected vertices; also each xémédxas an associated
weightv, > 0, which can be used to re ect its importance, frequency, or reliability. iffstance,
a sample occurring frequently in an observed phenomenon should teggeaweight than a rare
sample. This representation includes the standard time series as a speeial waich the graph
has a linear structure and all node and edge weights are identical (BignyreHow exactly edge
weights are derived from label values will be elaborated later.

(b)

x(1) x(2) x(3) x(4) x(5) x(6)
v, =1, for1 <n <6

Tnn+l = 17 for 1 <n<5

Figure 4: (a) Example of a training graph with= 7 vertices. (b) A regular sample sequence
(time-series) represented as a linear graph suitable for GSFA.

3.2 GSFA Optimization Problem

We extend the concept of slowness, originally conceived for segsaricamples, to data structured
in a training graph making use of its associated edge weights. The gengglirmization problem
can then be formalized as follows. For 1j J, nd featuresy;(n), where 1 n N, such that
the objective function

def 1

D; R

& gunely; (N yi(n))? is minimal (weighted delta value) (6)

n;n®

under the constraints

1 a Vayj(n) = 0 (weighted zero mean) (7)
n

1 é vn(yj(n))2 = 1 (weighted unit variance), and (8)

n
lé_ vayj(N)yjo(n) = 0; for j°< j (weighted decorrelation) (9)

n
with
RE 3 guo (10)
n;n0

Q¥ & v (11)

n
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Compared to the original SFA problem, the vertex weights generalize the liwatita con-
straints, whereas the edge weights extend the objective function to pethaliddference between
the outputs of arbitrary pairs of samples. Of course, the factBriid the objective function is not
essential for the minimization problem. Likewise, the facte@Xan be dropped from (7-9). These
factors, however, provide invariance to the scale of the edge weightslhas to the scale of the
node weights, and serve a normalization purpose.

By de nition (see Section 3.1), training graphs are undirected and hemmetric edge weights.
This does not cause any loss of generality and is justi ed by the GSFA optimtigaroblem above.
Its objective function (6) is insensitive to the direction of an edge bectnessign of the output
difference cancels out during the computatiorDof It therefore makes no difference whether we
chooseg.no= 2 andgpen = 0 Oorgyno= gen = 1, for instance. We note also th@t, multiplies with
zeroin (6) and only enters into the calculatiorRofThe variablesy,., are kept only for mathematical
convenience.

3.3 Linear Graph-Based SFA Algorithm (Linear GSFA)

Similarly to the standard linear SFA algorithm, which solves the standard SHAgpnan the lin-
ear function space, here we propose an extension that computes anl gptinian to the GSFA
problem within the same space. Let the vertives fx(1);:::;x(N)g be the input samples with
weightsfvy;:::;vwg and the edgek be the set of edge(s<(n) x(n‘)) with edge weightgh.o. To
simplify notation we introduce zero edge weightge= 0 for non-existing edge(n); x(n%) 2 E.
The linear GSFA algorithm differs from the standard version only in the eatipn of the matrices
C andC, which now take into account the neighbourhood structure (sampless ealigd weights)
speci ed by the training graph.

The sample covariance mati@ is de ned as:

Co d-efclga a(x(n)  R)(x(n) %)= 6a vax(m(x(m)"T - R&T; (12)

where

g oo 1 a VaX(n) (13)

is the weighted average of all samples. The derivative second-moment @gtis de ned as:

def 1 o T
Ce = fa Gy X(N) x(n) x(nY x(n) (14)
nn0
Given these matrices, the computationWfis the same as in the standard algorithm (Sec-
tion 2.3). Thus, a sphering matr&and a rotation matriR are computed with

S'CsS= I; and (15)

RTSTCgSR= (16)

where is a diagonal matrix with diagonal elements | | 3. Finally the algorithm
returnsD(y1);:::; D(y;), W andy(n), where

W = SR; and @an

y(n) = WT(x(n) %): (18)
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3.4 Correctness of the Graph-Based SFA Algorithm

We now prove that the GSFA algorithm indeed solves the optimization proble®).(&his proof

is similar to the optimality proof of the standard SFA algorithm (Wiskott and Sejkip@802). For
simplicity, assume thaf g andCg have full rank.

The weighted zero mean constraint (7) holds trivially for svybecause

& vy & vWT(x(n) %)
n n |

= W' dvx(n) § X
n no
PEDWT Q% Q%) = o

We also nd

I = RTIR (sinceR is a rotation matrix)

L RT(STCEYR:

S wrcew;

WL vxn) 9 %)W

19 1

a vay(n(y(m)";

which is equivalent to the normalization constraints (8) and (9).
Now, let us consider the objective function

D & do Vi(MY yi(n) °

n;n®

e 1
' R

@ w] Cow;
)

=" r]STCgSr;
(16

l;

3.5 Probabilistic Interpretation of Training Graphs

In this section, we give an intuition for the relationship between GSFA andatdrSFA. Readers
less interested in this theoretical excursion can safely skip it. This sectiospised in part by the
Markov chain introduced by Klamp and Maass (2010).

Given a training graph, we construct below a Markov cHdirfor the generation of input data
such that training standard SFA with such data yields the same featuresFAsde&s with the
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graph. Contrary to the graph introduced by Klamp and Maass (2018){dimulation here is not
restricted to classi cation, accounting for any training graph irrespeativits purpose, and there
is one state per sample rather than one state per class. In order for ivalestpe of GSFA and
SFA to hold, the vertex weightg, and edge weightg,.o of the graph must ful | the following
normalization restrictions

av =1 (19)
n
& Gevn = 1 8n; (20)
nO
0® & Gon=h= 1 8n; (21)
nO
0 ~ 20,19
& e 20 1 (22)
n;n®

Restrictions (19) and (22) can always be assumed without loss ofaligydvecause they can be
achieved by a constant scaling of the weights (., V,=Q, thno  Gh:n=R) without affecting the
outputs generated by GSFA. Restriction (20) is fundamental because it limgsahh connectivity,
and indicates (after multiplying witl,) that each vertex weight should be equal to the sum of the
weights of all edges originating from such a vertex.

The Markov chain is then a sequerieg Z,;Z3;::: of random variables that can assume states
that correspond to different input samples; is drawn from the initial distributiorp1, which is
equal to the stationary distribution, where

pn = pa(n) £ PH(Z1= x(n) &' (23)
and the transition probabilities are given by
Pue & PrZes = (0120 X(M) £ (1 9Fureot o = G (24)
e 0
L?)3) _ P _ ~ X
= Pr(Zis1= x(nY;Z¢ = x(n)) = (1 €) Ghno+ eVnVn"“m— Ch;no; (25)
e 0

(for Z; stationary) with < e 1. Due to thee-term all states of the Markov chain can transition to
all other states including themselves, which makes the Markov chain irréeacild aperiodic, and
therefore ergodic. Thus, the stationary distribution is unique and thedMathkain converges to it.
The normalization restrictions (19), (20), and (22) ensure the normalizafti@8), (24), and (25),
respectively.

Itis easy to see that = fV,gl\. , is indeed a stationary distribution, since fatn) = ¥,

Pt+1(N) = Pr(Zy+ 1= X(n)) = éOPT(ZHl = x(n)jZy = x(nY) PU(Z; = x(nY)

23,24 ~ ~ ~ N o~
PV (1 O (Gon=ho) + ) o

no

21;19 o ~ ~
CEI 1 U+ ey = o = pi(n): (26)
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The time average of the input sequence is

=X (27)
and the covariance matrix is

f

o
g

c¥nze 2z 2T

@z sz 2T (sinceM is ergodic)

@ 2 0.(x(m) NxM) KT

1

@ Ce;

whereas the derivative covariance matrix is

C d:ef thZtTlt
= hzz"i  (sinceM is ergodic)
281 et T (X0 X)X X)) (28)

wherez; ¥'z.,1  Z,. Notice that limy oC 29 Ghro(x(n9  x(M)(x(n9  x(n)) T & Cg. There-
fore, if a graph ful Is the normalization restrictions (19)—(22), GSFA ygettle same features as
standard SFA on the sequence generated by the Markov chain, in the lintx

3.6 Construction of Training Graphs

One can, in principle, construct training graphs with arbitrary connextiol weights. However,
when the goal is to solve a supervised learning task, the graph createld shplicitly integrate
the label information. An appropriate structure of the training graphsrabpen whether the goal
is classi cation or regression. In the next sections, we describe essshseparately. We have pre-
viously implemented the proposed training graphs, and we have testedraad tleeir usefulness
on real-world data (Escalante-B. and Wiskott, 2010; Mohamed and M20#Q; Stallkamp et al.,
2011; Escalante-B. and Wiskott, 2012).

4. Classi cation with SFA

In this section, we show how to use GSFA to pro t from the label informatiod solve classi ca-
tion tasks more ef ciently and accurately than with standard SFA.
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4.1 Clustered Training Graph

To generate features useful for classi cation, we propose the usecbfstered training graph
presented below (Figure 5). Assume there @i@entities/classes, and for each particular identity

identity are connected, while samples of different identity are not conthedt®de weights are
identical and equal to one, that Bs;n: v; = 1. In contrast, edge weightg o= 1=Ns 8n; n°
depend on the cluster sizedtherwise identities with a largés would be over-represented because
the number of edges in the complete subgraph for idestgyows quadratically witiNs. These
weights directly ful | the normalization restriction (20). As usual, a triviabBng of the node and
edge weights suf ces to ful | restrictions (19) and (22), allowing the Ipabilistic interpretation of
the graph. The optimization problem associated to this graph explicitly demaatdsathples from
the same object identity should be typically mapped to similar outputs.

N1 =6

s=1

Figure 5: lllustration of &lusteredraining graph used for a classi cation problem. All samples be-
longing to the same object identity form fully connected subgraphs. TouSjdentities
there ares complete subgraphs. Self-loops not shown.

4.2 Ef cient Learning Using the Clustered Training Graph

At rst sight, the large number of edged,sNs(Ns+ 1)=2, seems to introduce a computational
burden. Here we show that this is not the case if one exploits the symmetry cimtered training
graph. From (12), the sample covariance matrix of this graph using the wetjhtsvi = 1 is
(notice the de nition ofP s andX%):

def

. zNg}Tsi{ . i
Cous 2 (12 8 Mo’ Q & & x(n) éé x| (29)
S r:l 7 } | S r{:Zl } S n=1
tips N
— 1 5 s oronT -
= 5 &P T (30)

2. These node and edge weights assume that the classi cation of alesasypqually important. In the alternative case
that classi cation over every cluster is equally important, one can$set1=Ns and8n; n®: 0= ( 1=Ns)2 instead.
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11
WhereQ(:) °S°r':'3 1=34asNs= N.
From (14), the derivative covariance matrix of the clustered trainingtgtsing edge weights

o= 1Nsis:

Caws™ 28 ¢ & 6D XA X (3D
Snn=1

=28 o & x0T+ mOm)T x0T xmOcn)T

Nsnno-l
|

291, 1 oS ,SIS ~ ~

B o8 L NA MO+ N A )T NKNE)T
s ''s n=1 n=1

@24

= ps NS)A(S()’ZS)T : (32)

S

WhereR(—) asannoqsmoz Asdnnl=Ns= 8s(Ns)?=Ns= & Ns= N.

The complexity of computingqys using (29) or (30) is the same, namél}& ;Ns) (vector)
operations. However, the complexity of computiBgys can be reduced fror®(& sN2) operations
directly using (31) toQ(&Ns) operations using (32). This algebraic simpli cation allows us to
computeCgys With a complexity linear inN (and Ng), which constitutes an important speedup
since, depending on the applicatidf, might be larger than 100 and sometimes eMer 1000.

Interestingly, one can show that the features learned by GSFA on thgh gra equivalent to
those learned by FDA (see Section 7).

4.3 Supervised Step for Classi cation Problems

Consistent with FDA, the theory of SFA using an unrestricted functionesgjaptimal free re-
sponses) predicts that, for this type of problem, the Sst1 slow features extracted are orthogonal
step functions, and are piece-wise constant for samples from the samigyigBerkes, 2005a).
This closely approximates what has been observed empirically, whichecanidomally described
as features that are approximately constant for samples of the same ideithitjoderate noise.

When the features extracted are close to the theoretical predictions (eig.DWalues are
small), their structure is simple enough that one can use even a modestiseghatep after SFA,
such as a nearest centroid or a Gaussian classi er (in which a Gausstigbution is tted to each
class) orS 1 slow features or less. We suggest the use of a Gaussian classiardeein practice
we have obtained better robustness when enough training data is availdille.a more powerful
classi cation method, such as an SVM, might also be used, we have foupédemall increase in
performance at the cost of longer training times.

5. Regression with SFA

The objective in regression problems is to learn a mapping from samples te fabeiding the
best estimation as measured by a loss function, for example, the root meardegrror (RMSE)
between the estimated Iabefs,and their ground-truth values, We assume here that the loss
function is an increasing function ¢f j (e.g., contrary to periodic functions useful to compare
angular values, or arbitrary functions %and‘).
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Regression problems can be address with SFA through multiple methods.nbaerfantal idea
is to treat labels as the value of a hidden slow parameter that we want to leageneral, SFA
will not extract the label values exactly. However, optimization for slownewplies that samples
with similar label values are typically mapped to similar output values. After SEuaes the
dimensionality of the data, a complementary explicit regression step on a &wde solves the
original regression problem.

In this section, we propose four SFA-based methods that explicitly udalaiedabels. The rst
method is calledample reorderingind employs standard SFA, whereas the remaining ones employ
GSFA with three different training graphs calleliding window serial, andmixed(Sections 5.1-
5.4). The selection of the explicit regression step for post-processihigagssed in Section 5.5.

5.1 Sample Reordering

are” =(1;:: n) with ) T4 1. Afterwards the sequencgis used to train standard SFA using
the regular single-sequence method (Figure 6).
Original labeled data X', ¢/ Reordered labeled data X, ¢

6

U5

¥(1) ¥(2) ¥X@) ¥4 x(5) x(6) x(7) x(1)  x(2) x(B3) x(@) =x(5) x(6) x(7)

¢ Reordered unlabeled data X

Extracted features

Standard SFA —> y(1),..., y(7)

Figure 6: Sample reordering approach. Standard SFA is trained withidered sample sequence,
in which the hidden labels are increasing.

Since the ordered label values only increase, they change very slodlgteuld be found by
SFA (or actually some increasing/decreasing function of the labels thdtalsdhe normalization
conditions). Clearly, SFA could only extract this information if the samplesdddatrinsically
contain information about the labels such that it is possible to extract the fafy@lshem. Due to
limitations of the feature space considered, insuf cient data, noise, ete typically obtains noisy
and distorted versions of the predicted signals.

In this basic approach, the computation of the covariance matrices@kgperations. Since
this method only requires standard SFA and is the most straightforward to immulewerecom-
mend its use for rst experiments. If more robust outputs are desirednéibods below based on
GSFA are more appropriate.
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5.2 Sliding Window Training Graph

This is an improvement over the method above in which GSFA facilitates the evasah of
more connections. Starting from the reordered sequ&nas de ned above, a training graph is
constructed, in which each samptén) is connected to itsl closest samples to the left and to

and the edge weights typically depend on the distance of the samples inwbked,8n; n%: g, 0=
f(jn® nj), for some functiorf () that speci es the shape of a “weight window”. The simplest case
is a square weight window de ned by,o= 1 if jn® nj d andg,o= O otherwise. For the
experiments in this article, we employarrored sliding window with edge weights

8
> 2 if n+n® d+lorn+n® 2N 1;

2
Guro= | 1, if jn° nj d,n+n% d+1andn+n’< 2N 1;
"0 otherwise

These weights compensate the limited connectivity of the few rst and lastlsarfyhich are
connected byl to 2d 1 edges) in contrast to intermediate samples (connected egg@es). Pre-
liminary experiments suggest that such compensation slightly improves the apfdlity extracted
features, as explained below.

Tn,n' Yn,n’
® o (o © 17
1 1 1 1 1 0 I_ 1 0 I 1 0
x(l)2 X(Z)l x(3)1 x(4)1 X(5)1 x(6)2 x(7) n—d n n+d d-mn+d n

Figure 7: (a) A mirrored square sliding window training graph with a halftiviof d = 2. Each
vertex is thus adjacent to at most 4 other vertices. (b) lllustration of the wegghts of
an intermediate node(n) for an arbitrary window half-widthd. (c) Edge weights for a
nodex(n) close to the left extremen(< d). Notice that the sum of the edge weights is
also approximately @for extreme nodes.

GSFA is guaranteed to nd functions that minimize (6) within the function spacesidered.
However, whether such a solution is suitable for regression largelyndspa how one has de ned
the weights of the training graph. For instance, if there is a sample with a ladgeweight that
has only weak connections to the other samples, an optimal but undedinédrsmight assign a
high positive value to that single sample and negative small values to all athgrless. This can
satisfy the zero mean and unit variance constraint while yielding a $mallue, because the large
differences in output value only occur at the weak connections. Thigss a good solution in terms
of the optimization problem but not a good one to solve the regression praiil&éand, because
the samples with small values are hard to discriminate. We refer to such solasigraghological.
Pathological solutions have certain similarities to the features obtained fsr cd®n, which are
approximately constant for each cluster (class) but discontinuous atineimg
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The occurrence of pathological solutions depends on the concreteatatdes, feature space,
and training graph. A necessary condition is that the graph is conneetedide, as discussed in
Section 4, for disconnected graphs GSFA has a strong tendency tacpradepresentation suitable
for classi cation rather than regression. After various experimentd)ave found useful to enforce
the normalization restriction (20) at least approximately (after node anel wdgghts have been
normalized). This ensures that the samples are connected suf cienthghktrim the other ones,
relative to their own node weight. Of course, one should not resortfttosps g,., 6 0 to trivially
ful | the restriction.

The improved continuity of the features appears to also bene t perfarenafter the supervised
step. This is the reason why we make the node weights of the rst and mgpgof samples in the
serial training graph weaker, the intra-group connections of the mdtlast groups of samples in
the mixed graph stronger, and introduced mirroring for the square slidimdpw graph.

In the sliding window training graph with arbitrary window, the computatiorCef and Cg
requiresO(dN) operations. If the window is square (mirrored or not), the computation ean b
improved toO(N) operations by using accumulators for sums and products and reusingediate
results. While larged implies more connections, connecting too distant samples is undesired. The
selection ofd is non-crucial and done empirically.

5.3 Serial Training Graph

Theserialtraining graph is similar to the clustered training graph used for classi catiterins of

construction and ef ciency. It results from discretizing the original labeinto a relatively small
set of discrete labels of size namelyf “1;:::;7Lg, where’ 1 <~ 5 < < L. As described below,
faster training is achieved if is small, for example, 3 L  N.

In this graph, the vertices are grouped according to their discrete |abeésy sample in the
group with label’| is connected to every sample in the groups with label and™| 1 (except the
samples in the rst and last groups, which can only be connected to dglebmeiring group). The
only existing connections are inter-group connections, no intra-gronpections are present.

The samples used for training are denotedify), where the index (1 | L) denotes the
group (discrete label) amil(1 n N)) denotes the sample within such a group. For simplicity,
we assume here that all groups have the same nuNypeir samples8l : N, = Ng. Thus the total
number of samples isl = LNy. The vertex weight ok!(n) is denoted by, wherev}, = 1 for
| 2f1;LgandVv,, = 2 for 1< | < L. The edge weight of the edd&'(n);x'**(n9) is denoted by
dn'r:'ol and we use the same edge weight for all connecti@nsn’| : dn'r:'ol = 1. Thus, all edges
have a weight of 1, and all samples are assigned a weight of 2 excepefsamples in the rst and
last groups, which have a weight of 1 (Figure 8). The reason foriffezeht weights in the rstand
last groups is to improve feature quality by enforcing the normalization rastri€20) (after node
and edge weight normalization). Notice that since any two vertices of the ganap are adjacent

to exactly the same neighbours, they are likely to be mapped to similar outputsH#y. GS
The sum of vertex weights I® (b Ng+ 2Ng(L  2)+ Ng= 2Ng(L 1) and the sum of edge

weights isR (éo)( L 1)(Ng)2, which is also the number of connections considered. Unsurprisingly,
the structure of the graph can be exploited to train GSFA ef ciently. Similarly & dlustered
training graph, de ne the average of the samples from the grasgx' OI=e'(z§1nx'(n):Ng, the sum of

the products of samples from groupsP' = 8 ,X(n)(X'(n)) T, and the weighted sample average
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U}L:L for1<n <N,
v,%z?, for1<n <N,

’Uﬁ’l =2, for 1<n <N,
vﬁ:l, for 1 <n < N,

Li+1 _
5 =1, for 1 <n,n <N

n,n’

(inter-group connections)

Figure 8: lllustration of a serial training graph withdiscrete labels. Even though the original
labels of two samples might differ, they will be grouped together if they haweséime
discrete label. In the gure, a bigger node represents a sample with a laejght, and
the ovals represent the groups.

as: ! !

f 1o 1 L Lol| 1 ~1 ., ol I_01,\|
—a x(+x(n+2g x(n = 2L 1) X+X-+2g X (33)
n 1=2 =2

o de
X =

From (12), the sample covariance matrix accounting for the weights the serial training
graph is:
|

. L1 .
1z (1? A xXMOEM)T+ 28 XXM T+ & xE)(XEM) T Qx(R)T
n =2 n n
1 L1 !
= = Pl+PL+23 P x¥x9T
Q 1=2

From (14), the matrixCg using the edgedj;'gol de ned above is:

cor = FlaLélé(x'”(n‘) X (M)(X*HNY X ()T (34)
I=1mn0
=;Lélé XYY T+ X (M )T XK(HEDT KK ()T
I=1nn0
1%t o i1, pl o o +1,0 T 8 J+1 o e T
- R4 g P*iep anx(n) & x (9 ax (n ar}x(n)
N9L°l 1+1 | Slrol+ )\ T Sl+1rc\T .
:ﬁa P+ PY NG (X5 NgXT (X)) (35)

=1

By using (35) instead of (34), the slowest step in the computation of theiaoga matrices,
which is the computation o€, can be reduced in complexity fro@(L(Ng)z) to only O(N)
operations Nl = LNg), which is of the same order as the computatiorCed,. Thus, for the same
number of samplehl, we obtain a larger speed-up for larger group sizes.
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Discretization introduces some type of quantization error. While a large nuafiliscrete
labelsL results in a smaller quantization error, having too many of them is undesiced$efewer
edges would be considered, which would increase the number of sang@dechto reduce the
overall error. For example, in the extreme casblpf 1 andL = N, this method does not bring any
bene t because it is almost equivalent to the sample reordering agp(ddfering only due to the
smaller weights of the rst and last samples).

5.4 Mixed Training Graph

The serial training graph does not have intra-group connectionsharefore the output differences
of samples with the same label are not explicitly being minimized. One argumeinstagdra-
group connections is that if two vertices are adjacent to the same setioésetheir corresponding
samples are already likely to be mapped to similar outputs. However, in sorse pasticularly
for small numbers of training samples, additional intra-group connectionBtrimigeed improve
robustness. We thus conceived thixedtraining graph (Figure 9), which is a combination of the
serial and clustered training graph and ful Is the consistency restricBoh (n the mixed training
graph, all nodes and edges have a weight of 1, except for the irdtgp-g@dges in the rst and last
groups, which have a weight of 2. As expected, the computation of tregieoze matrices can also
be done ef ciently for this training graph (details omitted).

4 £ - 192 vl =1, for1<n< Ngand 1 <1< L

A A

1,1
Tt = 2

intra-grou
W for2 << — 1 ntrasrouw
o connections)
Vror = 2

Wil:l =1, for 1 <I<L-—1 (inter-group connections)

(1<n,n < N.q)

Figure 9: lllustration of the mixed training graph. Samples having the same daddully con-
nected (intra-group connections, represented with vertical edgdsjlesamples of ad-
jacent groups are connected (inter-group connections). All vertdxedge weights are
equal to 1 except for the intra-group edge weights of the rst and lemtmgs, which are
equal to 2 as represented by thick lines.

5.5 Supervised Step for Regression Problems

There are at least three approaches to implement the supervised stgp @nSBA to learn a
mapplng from slow features to the Iabels The rst one istousea methodasdn‘rear or nonllnear

(which mlght be different from the discrete set used by the training gadthe discrete labels are
then treated as classes, and a classi er is trained to predict them frortothéestures. One can
then output the predicted class as the estimated label. Of course, anwgrior tthe discretization
of the labels is unavoidable. The third approach improves on the secenyomsing a classi er
that also estimates class membership probabilities P(@tjy) be the estimated class probability
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that the input sample with slow featurey = g(x) belongs to the group with (discretized) label
Class probabilities can be used to provide a more robust estimation of @awofiniious) label,
better suited to the particular loss function. For instance, one can use

’
o

I: ~
& P(Cy) (36)
1=1

if the loss function is the RMSE, where the slow featwresight be extracted using any of the four
SFA-based methods for regression above. Other loss functionsasutie Mean Average Error
(MAE), can be addressed in a similar way.

We have tested these three approaches in combination with supervisathalg@uch as lin-
ear regression, and classi ers such as nearest neighboursheargroid, Gaussian classi er, and
SVMs. We recommend using the soft labels computed from the class probalsbtienated by a
Gaussian classi er because in most of our experiments this method hadqurdest performance
and robustness. Of course, other classi ers providing class pilghesbcould also be used.

6. Experimental Evaluation of the Methods Proposed

In this section, we evaluate the performance of the supervised learningdsdiased on SFA pre-
sented above. We consider two concrete image analysis problems udipgoegraph databases,
the rst one for classi cation and the second one for regression.

6.1 Classi cation

For classi cation, we have proposed the clustered training graph. Adionexd in Section 4.2,
when this graph is used, the outputs of GSFA are equivalent to thoseff&ibce FDA has been
used and evaluated exhaustively, here we only verify that our implement#ti@ SFA generates
the expected results when trained with such a graph.

The German Traf ¢ Sign Recognition Benchmark (Stallkamp et al., 2011)clhasen for the
experimental test. This was a competition with the goal of classifying photbgraip43 different
traf c signs taken on German roads under uncontrolled conditions witlatiams in lighting, sign
size, and distance. No detection step was necessary because thesitiom @b the signs was
included as annotations, making this a pure classi cation task and idealifbest. We participated
in the online version of the competition, where 26,640 labeled images wergedofor training
and 12,569 images without label for evaluation (classi cation rate was ctedfy the organisers,
who had ground-truth data).

Two-layer nonlinear cascaded (non-hierarchical) SFA was employedchieve good perfor-
mance, the choice of the nonlinear expansion function is crucial. If it is ifopls (e.g., low-
dimensional), it does not solve the problem; if it is too complex (e.g., high-diimeal3, it might
over t to the training data and not generalize well to test data. In all themxgnts done here, a
compact expansion that only doubles the data dimension was empidy@tx"; (jxj%8)T, where
the absolute value and exponer8 @re computed component-wise. We refer to this expansion as
0:8Exp. Previously, Escalante-B. and Wiskott (2011) have reported thateitsofjood generaliza-
tion and competitive performance in SFA networks, presumably due to itstredss to outliers and
certain properties regarding the approximation of higher frequencydracs.
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Our method, complemented by a Gaussian classi er on 42 slow featurésyedla recognition
rate of 964% on test datd. This, as expected, was similar to the reported performance of various
methods based on FDA participating in the same competition. For comparisom penfiarmance
was 9881%, and a convolutional neural network gave top performance with@8%8recognition
rate.

6.2 Regression

The remaining training graphs have all been designed for regressibleprs and were evaluated
with the problem of estimating the horizontal position of a face in frontal fdu@qgraphs, an
important regression problem because it can be used as a comporsefaocef detection system,
as we proposed previously (see Mohamed and Mahdi, 2010). In ctersy face detection is
decomposed into the problems of the estimation of the horizontal position ofaifaosertical
position, and its size. Afterwards, face detection is re ned by locatindp @xe more accurately
with the same approach applied now to the eyes instead of to the face c@&aknw, we explain
this regression problem, the algorithms evaluated, and the results in more detail.

6.2.1 FROBLEM AND DATA SET DESCRIPTION

To increase image variability and improve generalization, face images freemnadelatabases were
used, namely 1,521 images from BiolD (Jesorsky et al., 2001), 9,080@AS-PEAL (Gao et al.,
2008), 5,479 from Caltech (Fink et al.), 9,113 from FaceTracer (Kwrhat., 2008), and 39,328
from FRGC (Phillips et al., 2005) making a total of 64,471 images, which wenzatically pre-
processed through a pose-normalization and a pose-reintroductiofrstiep rst step, each image
was converted to greyscale and pose-normalized using annotategfsnialso that the face is cen-
tered* has a xed eye-mouth-triangle area, and the resulting pose-normalizeé imaag resolution
of 256 192 pixels. In the second step, horizontal and vertical displacemengsresmtroduced,
as well as scalings, so that the center of the face deviates horizontallysat @ pixels from the
center of the image. The vertical position and the size of the face werermared, so that ver-
tically the face center deviates at mos20 pixels, and the smallest faces are half the size of the
largest faces (a ratio of at most 1 to 4 in area). Interpolation (e.g., ddedscaling and sub-pixel
displacements) was done using bicubic interpolation. At last, the images vpmed to 128 128
pixels.

Given a pre-processed input image, as described above, with atfpositon(x;y) w.r.t. the
image center and size the regression problem is then to estimatexfwmordinate of the center
of the face. The range of the variabbey andz is bounded to a box, so that one does not have
to consider extremely small faces, for example. To assure a robust estinf@tioew images,
invariance to a large number of factors is needed, including the vertisalgroof the face, its size,
the expression and identity of the subject, his or her accessories, clotiaimgtyle, the lighting
conditions, and the background.

3. Interestingly, GSFA did not provide best performance directly opikel data, but on precomputed HOG features.
Ideally, pre-processing is not needed if SFA has an unrestrictedréespace. In practice, knowing a good low-
dimensional set of features for the particular data is bene cial. ApplgRé to such features, as commonly done
with other machine learning algorithms, can reduce over tting.

4. The center of a face was de ned here}laf + %RE + %M , whereLE, RE andM are the coordinates of the centers
of the left eye, right eye and mouth, respectively. Thus, the faceecenthe midpoint between the mouth and the
midpoint of the eyes.
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Figure 10: Example of a pose-normalized image (left), and various imagepafie was reintro-
duced illustrating the nal range of vertical and horizontal displacemestsyell as the
face sizes (right).

The pose-normalized images were randomly split in three data setsGff(320 000 and 9000
images. The rst data set was used to train the dimensionality reduction metedecond one
to train the supervised post-processing step, and the last one for testinfurtffer exploit the
images available, the pose-normalized images of each data set were ddplieatdting in two
pose-reintroduced images per input image, that is, a single input imageiggthbelongs to one
of the three data sets, appearing twice in it with two different poses. Heémeaal size of the data
sets is 60000, 40000 and 18000 pre-processed images, respectively.

6.2.2 DMENSIONALITY-REDUCTION METHODS EVALUATED

The resolution of the images and their number make it less practical to direplly 8BA and the
majority of supervised methods, such as an SVM, and unsupervised methodsis PCA/ICA/LLE,
to the raw images. We circumvent this by using three ef cient dimensionalityatéeh methods,
and by applying supervised processing on the lower-dimensional ésatutracted. The rst two
methods are ef cient hierarchical implementations of SFA and GSFA fieddo as HSFA without
distinction). The nodes in the HSFA networks rst expand the data usin@:Btexp expansion
function (see Section 6.1) and then apply SFA/GSFA to it, except for thesniodhe rst layer in
which additionally PCA is applied before the expansion preserving 13fdlé principal compo-
nents. For comparison, we use a third method, a hierarchical implementa®R@ 0{HPCA), in
which all nodes do pure PCA. The structure of the hierarchies for tHeAH®d PCA networks is
described in Table 1. In contrast to other works (e.g., Franzius et 8I7) 2@eight-sharing was not
used at all, improving feature speci city at the lowest layers. The inputeéamtides (fan-in) comes
mostly from two nodes in the previous layer. This small fan-in reduces thgpetational cost be-
cause the input dimensionality is minimized. This also results in networks with arlargber of
layers potentiating the accumulation of non-linearity across the network-oMerapping receptive
elds were used because in previous experiments with similar data they drgweel performance
at a smaller computational cost.

The following dimensionality-reduction methods were evaluated (one bas88A, four based
on GSFA, and one based on PCA).

SFA using sample reordering (reordering).

GSFA with a mirrored sliding window graph with= 32 (MSW32).
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Layer size node output dim. output dim.
fan-in || per HSFA node|| per HPCA node
0 (input image)| 128 128 pixels| — — —
1 32 32nodes | 4 4 13 13
2 16 32nodes | 2 1 20 20
3 16 16nodes | 1 2 35 35
4 8 16nodes | 2 1 60 60
5 8 8nodes 12 60 100
6 4 8 nodes 21 60 120
7 4 4 nodes 12 60 120
8 2 4 nodes 21 60 120
9 2 2nodes 12 60 120
10 1 2nodes 21 60 120
11 (top node) 1 1nodes 12 60 120

Table 1: Structure of the SFA and PCA deep hierarchical networks.n&tvworks only differ in
the type of processing done by each node and in the number of feateses\ed. For
HSFA an upper bound of 60 features was set, whereas for HPCA dtIf0deatures
were preserved. A node with a fan-inaf bis driven by a rectangular array of nodes (or

pixels for the rst layer) with such a shape, located in the preceding layer.

GSFA with a mirrored sliding window graph with= 64 (MSW64).

GSFA with a serial training graph with= 50 groups ofNg = 600 images (serial).

GSFA with a mixed graph and the same number of groups and images (mixed).

A hierarchical implementation of PCA (HPCA).

Itis impossible to compare GSFA against all the dimensionality reduction amdasged learn-
ing algorithms available, and therefore we made a small selection thereof.hé§e €IPCA for
ef ciency reasons and because it is likely to be a good dimensionality tiedualgorithm for the
problem at hand since principal components code well the coarse s&raétthe image including
the silhouette of the subjects, allowing for a good estimation of the position oatlee Thus, we
believe that HPCA (combined with various supervised algorithms) is a faitt pbicomparison,
and a good representative among generic machine learning algorithmssf@rablem. For the
data employed, 120 HPCA features at the top node explain 88% of the d&ace suggesting

that HPCA is indeed a good approximation to PCA in this case.

The evolution across the hierarchical network of the two slowest featxteacted by HSFA is

illustrated in Figure 11.

6.2.3 SUPERVISEDPOST-PROCESSINGALGORITHMS CONSIDERED

On top of the dimensionality reduction methods, we employed the following sigperpost-

processing algorithms.
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Layer 11 (top node)

Figure 11: Evolution of the slow features extracted from test data afterdal, 4, 7 and 11 of a
GSFA network trained with the serial training graph. A central node wasteel from
each layer, and three plots are provided, thakissy:, nvsys, andy, vsn. Hierarchical
processing results in progressively slower features as one movestfeorst to the top
layer. The solid line in the plots of the top node represents the optimal frpensss,
which are the slowest possible features one can obtain using an urtegsiriapping,
as predicted theoretically (Wiskott, 2003). Notice how the features evoive being
mostly unstructured in the rst layer to being similar to the free responseseaith
node, indicating success at nding the hidden parameter changing magy $tw these
data (i.e., the horizontal position of the faces).

A nearest centroid classi er (NCC).

Labels estimated using (36) and the class membership probabilities givendaysaién clas-
si er (Soft GC).

A multi-class (one-versus-one) SVM (Chang and Lin, 2011) with a Gansadial basis
kernel, and grid search for model selection.

Linear regression (LR).
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To train the classi ers, the images of the second data set were group@deigually large classes
according to their horizontal displacement 45 x 45.

6.2.4 RESULTS

We evaluated all the combinations of a dimensionality reduction method (readéli8w32,
MSW64, serial, mixed and HPCA) and a supervised post-processingtlgdNCC, Soft GC,
SVM, LR). Their performance was measured on test data and reportedria of the RMSE. The
labels estimated depend on three parameters: the number of featurektpabsesupervised post-
processing algorithm, and the parametérandgin the case of the SVM. These parameters were
determined for each combination of algorithms using a single trial, but the RV&iested here
were averaged over 5 trials.

The results are presented in Table 2, and analyzed focusing on freatasthe dimensionality-
reduction method, the number of features used, the supervised methddsesatraining graphs.
For any choice of the post-processing algorithm and training graphA@&3filted in an RMSE 5%
to 13% smaller than when using the basic reordering of samples employinguste8igA. In turn,
reordering resulted in an RMSE at least 10% better for this data set themwging HPCA.

Dim. reduction NCC # of | Soft GC # of SVM # of LR # of
method (RMSE) feat.| (RMSE) feat.| (RMSE) feat.| (RMSE) feat.

Reordering/SFA| 6.16 6 5.63 4 6.00 14 | 10.23 60
MSW32 (GSFA)| 5.78 5 5.25 4 5.52 18 9.74 60
MSW64 (GSFA)| 5.69 5 5.15 4 5.38 18 9.69 60
Serial (GSFA) 5.58 4 5.03 5 5.23 15 9.68 60

Mixed (GSFA) 5.63 4 5.12 4 5.40 19 9.54 60
HPCA 29.68 118| 6.17 54 8.09 50 | 19.24 120

Table 2: Performance (RMSE) of the dimensionality reduction algorithms mezhgu pixels in
combination with various supervised algorithms for the post-processing BigpRMSE
at chance level is 288 pixels. Each entry reports the best performance achievable using a
different number of features and parameters in the post-processng-stgest standard
deviation of 021 pixels. Clearly, linear regression bene ted from all the SFA and PCA
features available.

Taking a look at the number of features used by each supervisednpestsping algorithm, one
can observe that considerably fewer HSFA-features are used tA@AHeatures (e.g., 5 vs. 54
for Soft GC). This can be explained because PCA is sensitive to matorsabat are irrelevant
to solve the regression problem, such as the vertical position of the fasealés the background,
lighting, etc. Thus, the information that encodes the horizontal positionamfeai$ mixed with other
information and distributed over many principal components, whereas it is cooicentrated in the
slowest components of SFA.

If one focuses on the post-processing methods, one can obserledhategression performed
poorly con rming that a linear supervised step is too weak, particularlynnthe dimensionality
reduction is also linear (e.g., HPCA). The nearest centroid classi er didestty for HSFA, but
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even worse than the chance level for HPCA. The SVMs were consistagttiyr, but the error can
be further reduced by 4% to 23% by using Soft GC, the soft labels etbfrom the Gaussian
classi er.

Regarding the training graphs, we expected that the sliding window grisi8\4/32 and MSW64,
would be more accurate than the serial and mixed graphs, even wherausiugre window, be-
cause the labels are not discretized. Surprisingly, the mixed and seqidigwere the most accurate
ones. This might be explained in part by the larger number of connectichese graphs. Still,
MSW32 and MSW64 were better than the reordering approach, the widdow being superior.
The RMSE of the serial graph was smaller than the one of the mixed grapbdihbn 2% (for Soft
GC), making it uncertain for statistical reasons which one of these graplester for this problem.
A larger number of trials, or even better, a more detailed mathematical andlyisesgraphs might
be necessary to determine which one is better.

7. Discussion

In this paper, we propose the graph-based SFA (GSFA) optimizatioepnoln extension of the
standard SFA optimization problem that takes into account the informationicedta a structure
called training graph, in which the vertices are the training samples and tke exfyesent connec-
tions between samples. Edge weights allow the speci cation of desired aitpildrities and can
be derived from label or class information. The GSFA optimization problenegalizes the notion
of slowness de ned originally for a plain sequence of samples to such@hgr

We also propose the GSFA algorithm, an implicitly supervised extension of tisefervised)
SFA algorithm, and prove that GSFA solves the new optimization problem in tiwidm space
considered. The main goal of GSFA is to solve supervised learning pnsbtyy reducing the
dimensionality of the data to a few very label-predictive features.

We call GSFA implicitly supervised because the labels themselves are nevataaf to it, but
only the training graphs, which encode the labels through their structutgle Wie construction
of the graph is a supervised operation, GSFA works in an unsuperfasbkithn on structured data.
Hence, GSFA does not search for a t to the labels explicitly but insteliyl dancentrates on the
generation of slow features according to the topology de ned by thengrap

Several training graphs for classi cation or regression are introdlucehis paper. We have
designed them aiming at a balance between speed and accuracy. Tamse affer a signi cant
advantage in terms of speed, for example, over other similarity matrices typirsaty with LPP.
Conceptually, such a speed-up can be traced back to two factorsigiatir from the highly reg-
ular structure of the graphs (Sections 4 and 5). First, determining the edgeedge weights is a
trivial operation because they are derived from the labels in a simple manneontrast, this op-
eration can be quite expensive if the connections are computed usirggheaighbour algorithms.
Second, as we have shown, linear algebra can be used to optimize thetattompof C, which is
needed during the training phase. The resulting complexity for training isrlinghe number of
samples, even though the number of connections considered is qua@lngtiexperimental results
demonstrate that the larger number of connections considered by GSéédimiovides a more
robust learning than standard SFA, making it superior to SFA in superigsening settings.

When solving a concrete supervised learning problem, the featurestextiay unsupervised
dimensionality reduction algorithms are often suboptimal. For instance, PCArae/ield good
features for age estimation from adult face photographs becausecteatvealing age (e.g., skin
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textures) have higher spatial frequencies and do not belong to the niraéippt components. Su-
pervised dimensionality reduction algorithms, including GSFA, are specialyiging when one
does not know a good set of features for the particular data and pratlband, and one wants to
improve performance by generating features adapted to the speci crthtalzels.

One central idea of this paper, shown in Figure 1 (left), is the followingonk has a large
number of high-dimensional labeled data, supervised learning algorithmafteasn not be applied
due to high computational requirements. In such cases we suggest formatise labeled data to
structured data, where the label information is implicitly encoded in the connsdtietween data
points. Then, unsupervised learning algorithms, such as SFA, or its impligfireised extension
GSFA, can be used. This permits hierarchical processing for dimetigjaeauction, an operation
that is frequently more dif cult with supervised learning algorithms. Theltésy low-dimensional
data has an intrinsic structure that re ects the graph topology. Theseaatien be transformed
back to labeled data by adding the labels, and standard superviseddesgarithms can be applied
to solve the original supervised learning problem.

7.1 Related Optimization Problems and Algorithms

Recently, Bhmer et al. (2012) introduced regularized sparse kernel SFA.Igjbetam was applied
to solve a classi cation problem by reducing the data dimensionality. In theisksen section, var-
ious extensions similar to the GSFA optimization problem were brie y preseniiidut empirical
evaluation. For classi cation, the authors propose an objective funetioivalent to (6), with edge
weightsgyno= de,c 0, Wherec, andcro are the classes of the respective samplesgdggdis the Kro-

equivalent to those speci ed by the clustered graph. Howevéls i§ not the same for all classes,
the binary edge weights (either 1 or 0, as given by the Kronecker de#d¢ss appropriate in our
view because larger classes are overrepresented by the quadnatiemaf edge®s(Ns+ 1)=2 for
classs. The authors also consider transitions with variable weights. For this geyploey use an
importance measung(X:+1;X;) 0 with high values for transitions within the desired subspace and
propose the objective function

gy et 1 Tot(yi(t+ 1) yi(1)?
minsty) = n 18 phenx)

with y;(t) def i(x(t)). This accounts for arbitrary edge weiglgs,+ 1 in a linear graph, which could

be easily generalized to arbitrary graphs. Itis not clear to us why the tanr measurp has been
introduced as a quotient instead of as a factor. The authors also prapasportance measunéx)
for the samples, which plays exactly the same role as the node weights The unit variance and
decorrelation constraints are adapted to accourd(forand become fully equivalent to constraints
(8-9) of GSFA. The remaining zero-mean constraint was not explicitiptada

Zhang et al. (2009) propose a framework for the systematic analysevefa dimensionality
reduction algorithms, such as LLE, LE, LPP, PCA and LDA, to name jusiva3eich a framework
is useful for comparing linear SFA and GSFA to other algorithms from a matiheahaoint of
view, regardless of their typical usage and application areas.

The authors show that LPP is a linearization of LE. In turn, linear SFA easeen as a spe-
cial case of LPP, where the weight matrix has a special form (see @preR011). Consider the
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following LPP optimization problem (He and Niyogi, 2003):

.1,
argymlnéa(yi Y))PW; = y'Ly;
yoy=1 "

whereW is a symmetric weight matribD is a diagonal matrix with diagon&l; d:efé j Wi, L =)

W is the Laplacian matrix, and the output featwedsEf a'x are linear in the input. The equivalence
to linear SFA is achieved if one sat$ asW; = %(di;ldj;l'i' di:ndj:n+ dj;i+ 1+ d;;j+ 1). The objective
function then becomes the same as in SFA, Briiecomes the identity matrix, yielding the same
restrictions as in SFA. The zero-mean constraint is implicit and achieveisbgrding a constant
solution with eigenvalue zero. Notice that leaving out the tedmsj;1 + di;ndj;n results inD =
diag(1=2;1;1;:::;1;1=2) being slightly different from the identity and the equivalence would only
be approximate.

Sprekeler (2011) studied the relation between SFA and LE and proplosesbmbination of
the neighbourhood relation used by LE and the functional nature of B resulting algorithm,
called generalized SFA, computes a functional approximation to LE with aréegpace spanned
by a set of basis functions. Linear generalized SFA is equivalent taliriea (Rehn, 2013), and in
general it can be regarded as LPP on the data expanded by sucfubes@ns.

Also the strong connection between LPP and linear GSFA is evident froroptwmization
problem above. In this case, the elemdd{splay the role of the node weights, and the elements
Wi play the role of the edge weighgs;. One difference between LPP and GSFA is that the addi-
tional normalization factor® andR of GSFA provide invariance to the scale of the edge and node
weights specifying a particular feature and objective function normalizaiosecond difference
is that for GSFA the node weights, fundamental for feature normalizatéonbe chosen indepen-
dently from the edge weights (unless one explicitly enforces (20)), edseior LPP the diagonal

elementd;; dzeféjvv.j are derived from the edge weights.
We show now how one can easily compute LPP features using GSFA. &sierilarity matrix

W; and diagonal matri® with diagonal elementS; dzefé jWij, one solves a GSFA problem de ned
over a training graph with the same samples, edge wegghts W, and node weightg = D;;. The
optimization problem solved by GSFA is then equivalent to the LPP problerapéfar the scale of
the objective function and the features. If the features extracted frartigular sample are denoted

asygsea One can match the feature scales of LPP simply by applying a scan® ™2ygsra,

whereQ @ aivi

It is also possible to use LPP to compute GSFA features. Given a trainipy grith edge
weightsg:; and node weights;, we can de ne the following similarity matrix:

(
W = 29:;=R; fori & j, with Ras de nedin (10)
1] =

Vi=Q & jei Wijo; fori= j, withQas de nedin (11)

The similarity matriXW above ensures the same objective function as in GSFA, and alslbiitﬁ%{t
& W = vi=Q, resulting in the same constraints. In practice, using self-l9gp8 0 is unusual for
LPP, but they are useful in this case.
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7.2 Remarks on Classi cation with GSFA

Both classi cation and regression tasks can be solved with GSFA. We staiwa few slow features
allow for an accurate solution to the supervised learning problem, requinhga small post-
processing step that maps the features to labels or classes.

For classi cation problems, we propose a clustered training graph, widths features having
the discrimination capability of FDA. The results of the implementation of this graphrm the
expectations from theory. Training with the clustered graph is equiviédecdnsidering all tran-
sitions between samples of the same identity and no transition between diffégatities. The
computation, however, is more ef cient than the direct method of Berk@85&), where a large
number of transitions have to be considered explicitly.

The Markov chain generated through the probabilistic interpretation of thphgs equal to the
Markov chain de ned by Klamp and Maass (2010). These Markoviokare parameterized by
vanishing parameteesanda, respectively. The parametain uences the probability?; = aN;=N
of transitioning from a class; to a different clasg;j, whereN; is the number of samples of class
c¢j andN is the total number of samples. Thus, in the limit 0 all transitions lie within the
same class. However, the Markov chain @wte introduced here for analytical purposes only. In
practice, GSFA directly uses the graph structure, which is deterministiccaaafe. This avoids
the less ef cient training of SFA with a very long sequence of samplesrgéea with the Markov
chain, as done by Klamp and Maass (2010). (Even though the setroplsa is nite, as the
parameter approaches 0, an in nite sequence is required to properly captureathesthtistics of
all identities).

Klamp and Maass (2010) have proven thagif 0 the features learned by SFA from the data
generated are equivalent to the features learned by FDA. From thétggdithe two Markov chains
above, the features extracted by GSFA turn out to be also equivaleis® ofi FDA. Thus, the fea-
tures extracted with GSFA from the clustered graph are not better oewtas those extracted with
FDA. However, this equivalence is an interesting result because it alaifgerent interpretation of
FDA from the point of view of the generation of slow signals. Moreovdvgaces in generic meth-
ods for SFA, such as hierarchical network architectures or rolmminearities, result in improved
classi cation rates over standard FDA.

It is possible to design other training graphs for classi cation without thévadence to FDA,
for example, by using non-constant sample weights, or by incorporatmg similarity informa-
tion or other criteria in the edge-weight matrix. This idea has been exploré&by (2013) using
generalized SFA, where various adjacency graphs (i.e., edge wergtns)proposed for classi -
cation inspired by the theory of manifold learning. Instead of using fullscasnectivity, only
samples within the same class among the rst nearest neighbours aretmhrieess susceptibility
to outliers and better performance have been reported.

7.3 Remarks on Regression with GSFA

To solve regression problems, we propose three training graphs fek 8t resulted in a reduction
of the RMSE of up to 11% over the basic reordering approach usingast@&dFA, an improvement
caused by the higher number of similarity relations considered even thoagtathe number of
training samples is used.

First extensions of SFA for regression (i.e., GSFA) were employed bgl&ste-B. and Wiskott
(2010) to estimate age and gender from frontal static face images of drsutigects, created with
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special software for 3D face modelling and rendering. Gender estimatistreated as a regression
problem, because the software represents gender as a continuabsev@.g., 1:.0=typical mas-
culine face, @M=neutral, 10=typical feminine face). Early, undocumented versions of the mixed
and serial training graphs were employed. Only three features extnaetedpassed to an explicit
regression step based on a Gaussian classi er (Section 5.5). In Iz#h, gpod performance was
achieved, with an RMSE of 3.8 years for age and 0.33 units for gendesbdata, compared to a
chance level of 13.8 years and 1.73 units, respectively.

With a system similar to the one presented here, we participated in a face detextipetition
successfully (Mohamed and Mahdi, 2010). We estimatedkipesition, y-position and scale of
a face within an image. Using three separate SFA networks, one for eaamgter, faces can
be pose-normalized. A fourth network can be trained to estimate the qualitg obtimalization,
again as a continuous parameter, and to indicate whether a face is tesdenthese four networks
together were used to detect faces. Performance of the resultingdtemion system on various
image databases was competitive and yielded a detection rate on greysitatrgbhs within the
range from 715% to 995% depending on the dif culty of the testimages. Anincrease in the image
variability in the training data can be expected to result in further improvements.

The serial and mixed training graphs have provided the best accunatyefexperiments in this
article, with the serial one being slightly more accurate but not to a signi lesel. These graphs
have the advantage over the sliding window graph that they are also sutalgases in which
the labels are discrete from the beginning, which occurs frequently dile taite resolution in
measurements or due to discrete phenomena (e.g., when learning the ntirebddslood cells in a
sample, or a distance in pixels).

Since the edge weights supported by GSFA are arbitrary, it is tempting tocose@ete weight

. . _ 2
matrix continuous in the labels (e.gyn0= ﬁ fork> 0, orgyno= exp( (”0572))). However,
this might affect the training time markedly. Moreover, one should be awaterttbalances in
the connectivity of the samples might result in pathological solutions or lefalugsatures than

expected.

In this work, we have focused on supervised dimensionality reductiorrdisvibe estimation
of a single label. However, one can estimate two or more labels simultaneoursyappropri-
ate training graphs. In general, using such graphs might reduce tfeerpance of the method
compared to the separate estimation of the labels. However, if the labels arsicgalty related,
performance might actually improve. For instance, using another algoritienestimation of age
from face images has been reported to improve when also gender ardbals are estimated (Guo
and Mu, 2011). This is justi ed because gender and race are two &ittat strongly in uence the
aging process.

The features extracted by GSFA strongly depend on the labels, eveghthaduel information
is only provided implicitly by the graph connectivity. Ideally, the slowest featextracted is a
monotonic function of the hidden label, and the remaining features are hasrdrincreasing fre-
guency of the rst one. In practice, noisy and distorted versions cfdtieatures are found, but still
providing an approximate, redundant, and concentrated coding of taks.labheir simple struc-
ture permits the use of simple supervised algorithms for the post-processpgaving time and
computer resources. For the estimation ofstiposition of faces, all the nonlinear post-processing
algorithms, including the nearest centroid classi er, provided goodracguAlthough a Gaussian
classi er is a less powerful classi er than an SVM, the estimation based erlttss membership
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probabilities of the Gaussian classi er (Soft GC) is more accurate bedauvsduces the effect of
miss-classi cations.

7.4 Other Considerations

Locality preserving projections and GSFA come from very differenkbemunds. On the one hand,
LPP is motivated from unsupervised learning and was conceived as adilgeaithm. The sim-
ilarity matrices used are typically derived from the training samples, for ebmiging a heat
kernel function. Later, weight matrices accounting for label informatiawvetbeen proposed, par-
ticularly for classi cation. On the other hand GSFA is motivated from sujsex learning, and
was conceived as an extension of SFA designed for superviselineamn-dimensionality reduction
speci cally targeting regression and classi cation problems. Although thévaiion behind LPP
and GSFA, as well as their typical applications, are different, theseithlgwr are strongly con-
nected. Therefore, it might be worth not only to unify their formalism, but tie conceptual roots
that have inspired them.

Although supervised learning is less biologically plausible, GSFA being implicighesrised
is still closely connected to feasible unsupervised biological models thribkegbrobabilistic inter-
pretation of the graph. If we ensure that the graph ful Is the normalizagsirictions, the Markov
chain described in Section 3.5 can be constructed, and learning with G8FAleh graph becomes
equivalent to learning with standard (unsupervised) SFA as long asaithing sequence originates
from the Markov chain. From this perspective, GSFA uses the graphniaition to simplify a
learning procedure that could also be done unsupervised.

We do not claim that GSFA is better or worse than other supervised lealtogthms, it is
actually equivalent to other algorithms under speci ¢ conditions. We ontyvsthat it is better for
supervised learning than SFA, and believe that it is a very interestingrandging algorithm. Of
course, specialized algorithms might outperform GSFA for particular t&ksnstance, algorithms
for face detection can outperform the system presented here, lulaniental advantage of GSFA
is that it is general purpose. Moreover, various improvements to GSéAdfacussed here) are
under development, which will increase its performance and narrow theogapecial-purpose
algorithms.

One limitation of hierarchical processing with GSFA or SFA (i.e., HSFA) is thatféfatures
should be spatially localized in the input data. For instance, if one randomfiestthe pixels in
the input image, performance would decrease considerably. This limits pieadplity of HSFA
for scenarios with heterogeneous independent sources of dataakes it well suited, for example,
for images.

Although GSFA makes a more ef cient use of the samples available than S&#y #till over-

t in part because these algorithms lack an explicit regularization paramelence, for a small
number of samples data randomization techniques are useful. Interestingdyn expansions and
hierarchical processing can be seen as implicit regularization meabufast, less over tting com-
pared to standard SFA is one of the central advantages of using HS§#&cohd central advantage
of HSFA is that HSFA networks can be trained in a feed-forward manger lay layer, resulting in
a very ef cient training. Due to accumulation of nonlinearities across theond, the features at
the top node can be highly nonlinear w.r.t. the input, potentially spanning agéttre space.

Most of this work was originally motivated by the need to improve generalizafionr learning
system. Of course, if the amount of training data and computation time werstiicted, over t-
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ting would be negligible, and all SFA training methods would approximately egev® the same
features and provide similar performance. For nite data and resouteesesults demonstrate that
GSFA does provide better performance than SFA (reordering method) e same amount of
training data. Another interpretation is that GSFA demands less training dathiev@ the same
performance, thus, indeed contributing to our pursuit of generalization.
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