
Journal of Machine Learning Research 14 (2013) 629-671 Submitted 3/12; Revised 10/12; Published 2/13

CODA: High Dimensional Copula Discriminant Analysis

Fang Han FHAN@JHSPH.EDU

Department of Biostatistics

Johns Hopkins University

Baltimore, MD 21205, USA

Tuo Zhao TOURZHAO@JHU.EDU

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218, USA

Han Liu HANLIU@PRINCETON.EDU

Department of Operations Research and Financial Engineering

Princeton University

Princeton, NJ 08544, USA

Editor: Tong Zhang

Abstract

We propose a high dimensional classification method, named the Copula Discriminant Analysis

(CODA). The CODA generalizes the normal-based linear discriminant analysis to the larger Gaus-

sian Copula models (or the nonparanormal) as proposed by Liu et al. (2009). To simultaneously

achieve estimation efficiency and robustness, the nonparametric rank-based methods including the

Spearman’s rho and Kendall’s tau are exploited in estimating the covariance matrix. In high dimen-

sional settings, we prove that the sparsity pattern of the discriminant features can be consistently

recovered with the parametric rate, and the expected misclassification error is consistent to the

Bayes risk. Our theory is backed up by careful numerical experiments, which show that the extra

flexibility gained by the CODA method incurs little efficiency loss even when the data are truly

Gaussian. These results suggest that the CODA method can be an alternative choice besides the

normal-based high dimensional linear discriminant analysis.

Keywords: high dimensional statistics, sparse nonlinear discriminant analysis, Gaussian copula,

nonparanormal distribution, rank-based statistics

1. Introduction

High dimensional classification is of great interest to both computer scientists and statisticians.

Bickel and Levina (2004) show that the classical low dimensional normal-based linear discriminant

analysis (LDA) is asymptotically equivalent to random guess when the dimension d increases fast

compared to the sample size n, even if the Gaussian assumption is correct. To handle this problem, a

sparsity condition is commonly added, resulting in many follow-up works in recent years. A variety

of methods in sparse linear discriminant analysis, including the nearest shrunken centroids (Tibshi-

rani et al., 2002; Wang and Zhu, 2007) and feature annealed independence rules (Fan and Fan, 2008),

are based on a working independence assumption. Recently, numerous alternative approaches have

been proposed by taking more complex covariance matrix structures into consideration (Fan et al.,

2010; Shao et al., 2011; Cai and Liu, 2012; Mai et al., 2012).
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A binary classification problem can be formulated as follows: suppose that we have a training

set {(xi,yi), i = 1, ...,n} independently drawn from a joint distribution of (X,Y ), where X ∈ R
d

and Y ∈ {0,1}. The target of the classification is to determine the value of Y given a new data

point x. Let ψ0(x) and ψ1(x) be the density functions of (X|Y = 0) and (X|Y = 1), and the prior

probabilities π0 = P(Y = 0), π1 = P(Y = 1). It is well known that the Bayes rule classifies a new

data point x to the second class if and only if

logψ1(x)− logψ0(x)+ log(π1/π0)> 0. (1)

Specifically, when (X|Y = 0) ∼ N(µ0,Σ), (X|Y = 1) ∼ N(µ1,Σ) and π0 = π1, Equation (1) is

equivalent to the following classifier:

g∗(x) := I((x−µa)
T
Σ

−1µd > 0),

where µa := µ1+µ0

2
, µd :=µ1 −µ0, and I(·) is the indicator function. It is well known then that for

any linear discriminant rule with respect to w ∈ R
d :

gw(X) := I((X−µa)
Tw > 0), (2)

the corresponding misclassification error is

C (gw) = 1−Φ

(
wTµd√
wTΣw

)
, (3)

where Φ(·) is the cumulative distribution function of the standard Gaussian. By simple calculation,

we have

Σ
−1µd ∈ argmin

w∈Rd

C (gw),

and we denote by β∗ := Σ
−1µd . In exploring discriminant rules with a similar form as Equation

(2), both Tibshirani et al. (2002) and Fan and Fan (2008) assume a working independence structure

for Σ. However this assumption is often violated in real applications.

Alternatively, Fan et al. (2010) propose the Regularized Optimal Affine Discriminant (ROAD)

approach. Let Σ̂ and µ̂d be consistent estimators of Σ and µd . To minimize C (gw) in Equation (3),

the ROAD minimizes wT
Σ̂w with wT µ̂d restricted to be a constant value, that is,

min
wT µ̂d=1

{wT
Σ̂w, subject to ||w||1 ≤ c}.

Later, Cai and Liu (2012) propose another version of the sparse LDA, which tries to make w close

to the Bayes rule’s linear term Σ
−1µd in the ℓ∞ norm (detailed definitions are provided in the next

section), that is,

min
w

{||w||1, subject to ||Σ̂w− µ̂d||∞ ≤ λn}. (4)

Equation (4) turns out to be a linear programming problem highly related to the Dantzig selector

(Candes and Tao, 2007; Yuan, 2010; Cai et al., 2011).

Very recently, Mai et al. (2012) propose another version of the sparse linear discriminant anal-

ysis based on an equivalent least square formulation of the LDA. We will explain it in more details

in Section 3. In brief, to avoid the “the curse of dimensionality”, an ℓ1 penalty is added in all three
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methods to encourage a sparsity pattern of w, and hence nice theoretical properties can be obtained

under certain regularity conditions. However, though significant process has been made, all these

methods require the normality assumptions which can be restrictive in applications.

There are three issues with regard to high dimensional linear discriminant analysis: (1) How

to estimate Σ and Σ
−1 accurately and efficiently (Rothman et al., 2008; Friedman et al., 2007;

Ravikumar et al., 2009; Scheinberg et al., 2010); (2) How to incorporate the covariance estimator

to classification (Fan et al., 2010; Shao et al., 2011; Cai and Liu, 2012; Witten and Tibshirani,

2011; Mai et al., 2012); (3) How to deal with non-Gaussian data (Lin and Jeon, 2003; Hastie and

Tibshirani, 1996). In this paper, we propose a high dimensional classification method, named the

Copula Discriminant Analysis (CODA), which addresses all the above three questions.

To handle non-Gaussian data, we extend the underlying conditional distributions of (X|Y = 0)
and (X|Y = 1) from Gaussian to the larger nonparanormal family (Liu et al., 2009). A random

variable X = (X1, ...,Xd)
T belongs to a nonparanormal family if and only if there exists a set of

univariate strictly increasing functions { f j}d
j=1 such that ( f1(X1), ..., fd(Xd))

T is multivariate Gaus-

sian.

To estimate Σ and Σ
−1 robustly and efficiently, instead of estimating the transformation func-

tions { f j}d
j=1 as Liu et al. (2009) did, we exploit the nonparametric rank-based correlation coeffi-

cient estimators including the Spearman’s rho and Kendall’s tau, which are invariant to the strictly

increasing functions f j. They have been shown to enjoy the optimal parametric rate in estimating

the correlation matrix (Liu et al., 2012; Xue and Zou, 2012). Unlike previous analysis, a new con-

tribution of this paper is that we provide an extra condition on the transformation functions which

guarantees the fast rates of convergence of the marginal mean and standard deviation estimators,

such that the covariance matrix can also be estimated with the parametric rate.

To incorporate the estimated covariance matrix into high dimensional classification, we show

that the ROAD (Fan et al., 2010) is connected to the lasso in the sense that if we fix the second tuning

parameter, these two problems are equivalent. Using this connection, we prove that the CODA is

variable selection consistent.

Unlike the parametric cases, one new challenge for the CODA is that the rank-based covariance

matrix estimator may not be positive semidefinite which makes the objective function nonconvex.

To solve this problem, we first project the estimated covariance matrix into the cone of positive

semidefinite matrices (using elementwise sup-norm). It can be proven that the theoretical properties

are preserved in this way.

Finally, to show that the expected misclassification error is consistent to the Bayes risk, we quan-

tify the difference between the CODA classifier ĝnpn and the Bayes rule g∗. To this end, we measure

the convergence rate of the estimated transformation function { f̃ j}d
j=1 to the true transformation

function { f j}d
j=1. Under certain regularity conditions, we show that

sup
In,γ

| f̃ j − f j|= OP

(
n−

γ
2

)
, ∀ j ∈ {1,2, . . . ,d},

over an expanding site In,γ determined by the sample size n and a parameter γ (detailed definitions

will be provided later). In,γ is set to go to (−∞,∞). Using this result, we can show that:

E(C (ĝnpn)) = C (g∗)+o(1).
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A related approach to our method has been proposed by Lin and Jeon (2003). They also consider

the Gaussian copula family. However, their focus is on fixed dimensions. In contrast, this paper

focuses on increasing dimensions and provides a thorough theoretical analysis.

The rest of this paper is organized as follows. In the next section, we briefly review the non-

paranormal estimators (Liu et al., 2009, 2012). In Section 3, we present the CODA method. We

give a theoretical analysis of the CODA estimator in Section 4, with more detailed proofs collected

in the appendix. In Section 5, we present numerical results on both simulated and real data. More

discussions are presented in the last section.

2. Background

We start with notations: for any two real values a,b ∈ R, a∧b := min(a,b). Let M = [M jk] ∈ R
d×d

and v= (v1, ...,vd)
T ∈R

d . Let v− j := (v1, ...,vd−1,v j+1, ...,vd)
T and M− j,−k be the matrix with M’s

j-th row and k-th column removed, M j,−k be M’s j-th row with the k-th column removed, M− j,k be

M’s k-th column with the j-th row removed. Moreover, v’s subvector with entries indexed by I is

denoted by vI , M’s submatrix with rows indexed by I and columns indexed by J is denoted by MIJ ,

M’s submatrix with all rows and columns indexed by J is denoted by M·J , M’s submatrix with all

rows and columns indexed by J is denoted by MJ . For 0 < q < ∞, we define

||v0|| := card(support(v)), ||v||q :=

(
d

∑
i=1

|vi|q
)1/q

, and ||v||∞ := max
1≤i≤d

|vi|.

We define the matrix ℓmax norm as the elementwise maximum value: ||M||max := max{|Mi j|} and

the ℓ∞ norm as ||M||∞ = max
1≤i≤m

n

∑
j=1

|Mi j|. λmin(M) and λmax(M) are the smallest and largest eigen-

values of M. We define the matrix operator norm as ||M||op := λmax(M).

2.1 The nonparanormal

A random variable X = (X1, ...,Xd)
T is said to follow a nonparanormal distribution if and only if

there exists a set of univariate strictly increasing transformations f = { f j}d
j=1 such that:

f (X) = ( f1(X1), ..., fd(Xd))
T :=Z ∼ N(µ,Σ),

where µ = (µ1, ...,µd)
T , Σ = [Σ jk], Ω = Σ

−1, Σ0 = [Σ0
jk] are the mean, covariance, concentra-

tion and correlation matrices of the Gaussian distribution Z. {σ2
j := Σ j j}d

j=1 are the corresponding

marginal variances. To make the model identifiable, we add two constraints on f such that f pre-

serves the population means and standard deviations. In other words, for 1 ≤ j ≤ d,

E(X j) = E( f j(X j)) = µ j; Var(X j) = Var( f j(X j)) = σ2
j .

In summary, we denote by such X ∼ NPN(µ,Σ, f ). Liu et al. (2009) prove that the nonparanormal

is highly related to the Gaussian Copula (Clemen and Reilly, 1999; Klaassen and Wellner, 1997).
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2.2 Correlation Matrix and Transformation Functions Estimations

Liu et al. (2009) suggest a normal-score based correlation coefficient matrix to estimate Σ
0. More

specifically, let x1, ...,xn ∈ R
d be n data point where xi = (xi1, . . . ,xid)

T . We define

F̃j(t;δn,x1, . . . ,xn) := Tδn

(
1

n

n

∑
i=1

I(xi j ≤ t)

)
, (5)

to be the winsorized empirical cumulative distribution function of X j. Here

Tδn
(x) :=





δn, if x < δn,

x, if δn ≤ x ≤ 1−δn,

1−δn, if x > 1−δn.

In particular, the empirical cumulative distribution function F̂j(t;x1, . . . ,xn) := F̃j(t;0,x1, . . . ,xn)
by letting δn = 0. Let Φ−1(·) be the quantile function of standard Gaussian, we define

f̃ j(t) = Φ−1
(
F̃j(t)

)
,

and the corresponding sample correlation estimator R̂ns = [R̂ns
jk] to be:

R̂ns
jk :=

1

n

n

∑
i=1

f̃ j(xi j) f̃k(xik)

√
1

n

n

∑
i=1

f̃ 2
j (xi j) ·

√
1

n

n

∑
i=1

f̃ 2
k (xik)

.

Liu et al. (2009) suggest to use the truncation level δn =
1

4n1/4
√

π logn
and prove that

||R̂ns −Σ
0||max = Op

(√
logd log2 n

n1/2

)
.

In contrast, Liu et al. (2012) propose a different approach for estimating the correlations, called the

Nonparanormal SKEPTIC. The Nonparanormal SKEPTIC exploits the Spearman’s rho and Kendall’s

tau to directly estimate the unknown correlation matrix.

In specific, let ri j be the rank of xi j among x1 j, . . . ,xn j and r̄ j =
1

n

n

∑
i=1

ri j. We consider the

following two statistics:

(Spearman’s rho) ρ̂ jk =
∑n

i=1(ri j − r̄ j)(rik − r̄k)√
∑n

i=1(ri j − r̄ j)2 ·∑n
i=1(rik − r̄k)2

,

(Kendall’s tau) τ̂ jk =
2

n(n−1) ∑
1≤i<i′≤n

sign
(
xi j − xi′ j

)
(xik − xi′k) .

and the correlation matrix estimators:

R̂
ρ
jk =

{
2sin

(π

6
ρ̂ jk

)
j 6= k

1 j = k
and R̂τ

jk =

{
sin
(π

2
τ̂ jk

)
j 6= k

1 j = k
.

Let R̂ρ = [R̂
ρ
jk] and R̂τ = [R̂τ

jk]. Liu et al. (2012) prove the following key result:
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Lemma 1 For any n ≥ 21
logd

+2, with probability at least 1−1/d2, we have

||R̂ρ −Σ
0||max ≤ 8π

√
logd

n
.

For any n > 1, with probability at least 1−1/d, we have

||R̂τ −Σ
0||max ≤ 2.45π

√
logd

n
.

In the following we denote by Ŝρ = [Ŝ
ρ
jk] = [σ̂ jσ̂kR̂

ρ
jk] and Ŝτ = [Ŝτ

jk] = [σ̂ jσ̂kR̂τ
jk], with {σ̂2

j , j =
1, . . . .d} the sample variances, to be the Spearman’s rho and Kendall’s tau covariance matrix es-

timators. As the correlation matrix based on the Spearman’s rho and Kendall’s tau statistics have

similar theoretical performance, in the following sections we omit the superscript ρ and τ and simply

denote the estimated correlation and covariance matrices by R̂ and Ŝ.

The following theorem shows that f̃ j converges to f j uniformly over an expanding interval with

high probability. This theorem will play a key role in analyzing the classification performance of

the CODA method. Here we note that a similar version of this theorem has been shown in Liu et al.

(2012), but our result is stronger in terms of extending the region of In to be optimal (check the

appendix for detailed discussions on it).

Theorem 2 Let g j := f−1
j be the inverse function of f j. In Equation (5), let δn = 1

2n
. For any

0 < γ < 1, we define

In :=
[
g j

(
−
√

2(1− γ) logn
)
,g j

(√
2(1− γ) logn

)]
,

then sup
t∈In

| f̃ j(t)− f j(t)|= OP

(√
log logn

nγ

)
.

3. Methods

Let X0 ∈ R
d and X1 ∈ R

d be two random variables with different means µ0, µ1 and the same

covariance matrix Σ. Here we do not pose extra assumptions on the distributions of X0 and X1. Let

x1, . . . ,xn0
be n0 data points i.i.d drawn from X0, xn0+1, . . . ,xn be n1 data points i.i.d drawn from

X1, n = n0 + n1. Denote by X = (x1, . . . ,xn)
T , y = (y1, ...,yn)

T = (−n1/n, . . . ,−n1/n,n0/n, . . . ,
n0/n)T with the first n0 entries equal to −n1/n and the next n1 entries equal to n0/n. We have

n0 ∼ Binomial(n,π0) and n1 ∼ Binomial(n,π1). In the sequel, without loss of generality, we assume

that π0 = π1 = 1/2. The extension to the case where π0 6= π1 is straightforward (Hastie et al., 2001).

Define

µ̂0 =
1

n0
∑

i:yi=−n1/n

xi, µ̂1 =
1

n1
∑

i:yi=n0/n

xi, µ̂d = µ̂1 − µ̂0, µ̂=
1

n
∑

i

xi,

S0 =
1

n0
∑

i:yi=−n1/n

(xi − µ̂0)(xi − µ̂0)
T , S1 =

1

n1
∑

i:yi=n0/n

(xi − µ̂1)(xi − µ̂1)
T ,

Sb =
1

n

1

∑
i=0

ni(µ̂i − µ̂)(µ̂i − µ̂)T =
n0n1

n2
µ̂dµ̂

T
d , Sw =

n0S0 +n1S1

n
.
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3.1 The Connection between ROAD and Lasso

In this subsection, we first show that in low dimensions, LDA can be formulated as a least square

problem. Motivated by such a relationship, we further show that in high dimensions, the lasso can

be viewed as a special case of the ROAD. Such a connection between the ROAD and lasso will be

further exploited to develop the CODA method.

When d < n, we define the population and sample versions of the LDA classifiers as:

β∗ =Σ
−1µd , β̂∗ = S−1

w µ̂d .

Similarly, a least square estimator has the formulation:

(β̂0, β̂) = argmin
β0,β

||y−β01−Xβ||22, (6)

where 1 := (1,1, . . . ,1)T . The following lemma connects the LDA to simple linear regression. The

proof is elementary, for self-containess, we include the proof here.

Lemma 3 Under the above notations, β̂ ∝ β̂∗. Specifically, when n1 = n0, the linear discriminant

classifier g∗(x) is equivalent to the following classifier

l̂(x) =

{
1, if β̂0 +xT β̂ > 0

0, otherwise.
.

Proof Taking the first derivatives of the right hand side of (6), we have β̂0, β̂ satisfying:

nβ0 +(n0µ̂0 +n1µ̂1)
Tβ = 0, (7)

(n0µ̂0 +n1µ̂1)β0 +(nSw +n1µ̂1µ̂
T
1 +n0µ̂0µ̂

T
0 )β =

n0n1

n
µ̂d . (8)

Combining Equations (7) and (8), we have

(Sw +Sb)β̂ =
n0n1

n2
µ̂d .

Noticing that Sbβ̂ ∝ µ̂d , it must be true that

Swβ̂ =

(
n1n0

n2
µ̂d −Sbβ̂

)
∝ µ̂d .

Therefore, β̂ ∝ S−1
w µ̂d = β̂∗. This completes the proof of the first assertion.

Moreover, noticing that by (7), l̂(x) = 1 is equivalent to

β̂0 +xT β̂ =−
(

n0µ̂0 +n1µ̂1

n

)T

β̂+xT β̂ = (x− n1µ̂1 +n0µ̂0

n
)T β̂ > 0.

because β̂ ∝ β̂∗, n1 = n0 and sign(β̂) = sign(β̂∗) (see Lemma 6 for details), we have g∗(x) = l̂(x).
This proves the second assertion.

In the high dimensional setting, the following lemma shows that the ROAD is connected to the

lasso.
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Lemma 4 We define:

β̂
λn,ν
ROAD = argmin

β

1

2
βT Swβ+λn||β||1 +

ν

2
(βT µ̂d −1)2, (9)

β̂λn
∗ = argmin

βT µ̂d=1

1

2n
||y− X̃β||22 +λn||β||1, (10)

β̂
λn

LASSO = argmin
β

1

2n
||y− X̃β||22 +λn||β||1, (11)

where X̃ = X− 1n×1µ̂
T is the globally centered version of X. We then have β̂

λn∗ = β̂
λn,∞
ROAD and

β̂
λn

LASSO = β̂
λn,ν

∗

ROAD where ν∗ = n1n0

n2 .

Proof Noticing that the right hand side of Equation (11) has the form:

β̂
λn

LASSO = argmin
β

(
1

2n
||y− X̃β||22 +λn||β||1

)

= argmin
β

(
1

2n
yTy− n1n0

n2
βT µ̂d +

1

2
βT (Sw +Sb)β+λn||β||1

)

= argmin
β

(
1

2
βT Swβ+

n1n0

2n2
βT µ̂dµ̂

T
d β− n1n0

n2
βT µ̂d +λn||β||1

)

= argmin
β

(
1

2
βT Swβ+

1

2

n1n0

n2
(βT µ̂d −1)2 +λn||β||1

)
.

And similarly

β̂λn
∗ = argmin

βT µ̂d=1

(
1

2
βT Swβ+

1

2

n1n0

n2
(βT µ̂d −1)2 +λn||β||1

)

= argmin
βT µ̂d=1

(
1

2
βT Swβ+λn||β||1

)
.

This finishes the proof.

Motivated by the above lemma, later we will show that β̂
λn

LASSO is already variable selection

consistent.

3.2 Copula Discriminant Analysis

In this subsection we introduce the Copula Discriminant Analysis (CODA). We assume that

X0 ∼ NPN(µ0,Σ, f ), X1 ∼ NPN(µ1,Σ, f ).

Here the transformation functions are f = { f j}d
j=1. In this setting, the corresponding Bayes rule can

be easily calculated as:

gnpn(x) =

{
1, if ( f (x)−µa)

T
Σ

−1µd > 0,

0, otherwise.
(12)
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By Equation (12) the Bayes rule is the sign of the log odds: ( f (x)−µa)
T
Σ

−1µd . Therefore,

similar to the linear discriminant analysis, if there is a sparsity pattern on β∗ :=Σ
−1µd , a fast rate

is expected.

Inspired by Lemma 3 and Lemma 4, to recover the sparsity pattern, we propose the ℓ1 regular-

ized minimization equation:

β̂npn = argmin
β

(
1

2
βT Ŝβ+

ν

2
(βT µ̂d −1)2 +λn||β||1

)
. (13)

Here Ŝ = n0/n · Ŝ0 + n1/n · Ŝ1, Ŝ0 and Ŝ1 are the Spearman’s rho/Kendall’s tau covariance matrix

estimators of [x1, ...,xn0
]T and [xn0+1, ...,xn]

T , respectively. When ν is set to be n0n1

n2 , β̂npn parallels

the ℓ1 regularization formulation shown in Equation (11); when ν goes to infinity, β̂npn reduces to

β̂
λn∗ shown in Equation (10).

For any new data point x = (x1, . . . ,xd)
T , reminding that the transforms f j preserves the mean

of x j, we assign it to the second class if and only if

( f̂ (x)− µ̂)T β̂npn > 0,

where f̂ (x) = ( f̂1(x1), . . . , f̂d(xd))
T with

f̂ j(x j) =
(

n0 f̂0 j(x j)+n1 f̂1 j(x j)
)
/n, ∀ j ∈ {1, . . . ,d}.

Here f̂0 j and f̂1 j are defined to be:

f̂0 j(t) := µ̂0 + Ŝ
−1/2
j j Φ−1

(
F̃j(t;δn0

,x1, ...,xn0
)

)
,

and

f̂1 j(t) := µ̂1 + Ŝ
−1/2
j j Φ−1

(
F̃j(t;δn1

,xn0+1, ...,xn)

)
.

Here we use the truncation level δn =
1

2n
. The corresponding classifier is named ĝnpn.

3.3 Algorithms

To solve the Equation (13), when ν is set to be n0n1

n2 , Lemma 4 has shown that it can be formulated as

a ℓ1 regularized least square problem and hence popular softwares such as glmnet (Friedman et al.,

2009, 2010) or lars (Efron et al., 2004) can be applied.

When ν goes to infinity, the Equation (13) reduces to the ROAD, which can be efficiently solved

by the augmented Lagrangian method (Nocedal and Wright, 2006). More specifically, we define the

augmented Lagrangian function:

L(β,u) =
1

2
βT Ŝβ+λ‖β‖1 +νu(µ̂Tβ−1)+

ν

2
(µ̂Tβ−1)2,

where u∈R is the rescaled Lagrangian multiplier and ν> 0 is the augmented Lagrangian multiplier.

We can obtain the optimum to Equation (9) using the following iterative procedure. Suppose at the

k-th iteration, we already have the solution β(k), u(k), then at the (k+1)-th iteration,
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• Step.1 Minimize L(β,u) with respect to β. It can be efficiently solved by coordinate descent. We

rearrange

Ŝ =

(
Ŝ j, j Ŝ j,− j

Ŝ− j, j Ŝ− j,− j

)
, µ̂= (µ̂ j, µ̂

T
− j)

T

and β = (β j,β
T
− j)

T . Then we can iteratively update β j by the formula

β
(k+1)
j =

Soft
(

νµ̂ j

(
1−u(k)− µ̂T

− jβ
(k)
− j

)
− Ŝ j,− jβ

(k)
− j , λ

)

Ŝ j, j +νµ̂2
j

,

where Soft(x,λ) := sign(x)(|x| − λ)+. It is observed that a better empirical performance can be

achieved by updating each β j only once.

• Step.2 Update u using the formula

u(k+1) = u(k)+ µ̂Tβ(k+1)−1.

This augmented Lagrangian method has provable global convergence. See Chapter 17 of Nocedal

and Wright (2006) for discussions in details. Our empirical simulations show that this algorithm is

more accurate than Fan et al. (2010)’s method.

To solve Equation (13), we also need to make sure that Ŝ, or equivalently R̂, is positive semidef-

inite. Otherwise, Equation (13) is not a convex optimization problem and the above algorithm may

not even converge. Heuristically, we can truncate all of the negative eigenvalues of R̂ to zero. In

practice, we project R̂ into the cone of the positive semidefinite matrices and find solution R̃ to the

following convex optimization problem:

R̃ = argmin
R�0

‖R̂−R‖max, (14)

where ℓmax norm is chosen such that the theoretical properties in Lemma 1 can be preserved. In

specific, we have the following corollary:

Lemma 5 For all t ≥ 32π
√

logd
n log2

, the minimizer R̃ to Equation (14) satisfies the following expo-

nential inequality:

P(|R̃ jk −Σ0
jk| ≥ t)≤ 2exp

(
− nt2

512π2

)
, ∀ 1 ≤ j,k ≤ d.

Proof Combining Equation (A.23) and Equation (A.28) of Liu et al. (2012), we have

P(|R̂ jk −Σ0
jk|> t)≤ 2exp

(
− nt2

64π2

)
.

Because Σ
0 is feasible to Equation (14), R̃ must satisfy that:

||R̂− R̃||max ≤ ||R̂−Σ
0||max.
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Using Pythagorean Theorem, we then have

P(|R̃ jk −Σ0
jk| ≥ t)≤ P(|R̃ jk − R̂ jk|+ |R̂ jk −Σ0

jk| ≥ t)

≤ P(||R̃− R̂||max + ||R̂−Σ
0||max ≥ t)

≤ P(||R̂−Σ
0||max ≥ t/2)

≤ d2 exp

(
− nt2

256π2

)

≤ 2exp

(
2logd

log2
− nt2

256π2

)
.

Using the fact that t ≥ 32π
√

logd
n log2

, we have the result.

Therefore, the theoretical properties in Lemma 1 also hold for R̃, only with a slight loose on the

constant. In practice, it has been found that the optimization problem in Equation (14) can be

formulated as the dual of a graphical lasso problem with the smallest possible tuning parameter

that still guarantees a feasible solution (Liu et al., 2012). Empirically, we can use a surrogate

projection procedure that computes a singular value decomposition of R̂ and truncates all of the

negative singular values to be zero. And then we define S̃ := [S̃ jk] = [σ̂ jσ̂kR̃ jk] to be the projected

Spearman’s rho/Kendall’s tau covariance matrices, which can be plugged into Equation (13) to

obtain an optimum.

3.4 Computational Cost

Compared to the corresponding parametric methods like the ROAD and the least square formulation

proposed by Mai et al. (2012), one extra cost of the CODA is the computation of R̃, which can be

solved in two steps: (1) computing R̂; (2) projecting R̂ to the cone of the positive semidefinite ma-

trices. In the first step, computing R̂ requires the calculation of d(d−1)/2 pairwise Spearman’s rho

or Kendall’s tau statistics. As shown in Christensen (2005) and Kruskal (1958), R̂ can be computed

with the cost O(d2n logn). In the second step, to obtain R̃ requires estimating a full path of estimates

by implementing the graphical lasso algorithm. This approach shows good scalability to very high

dimensional data sets (Friedman et al., 2007; Zhao et al., 2012). Moreover, in practice we can use

a surrogate projection procedure, which can be solved by implementing the SVD decomposition of

R̂ once.

4. Theoretical Properties

In this section we provide the theoretical properties of the CODA method. We set ν = (n0n1)/n2

in Equation (13). With such a choice of ν, we prove that the CODA method is variable selection

consistent and has an oracle property. We define

C :=Σ+(µ1 −µ0)(µ1 −µ0)
T/4. (15)

To calculate β̂
λn

LASSO in Equation (11), we define Σ̃:

Σ̃ := S̃+
n0n1

n2
· (µ̂1 − µ̂0)(µ̂1 − µ̂0)

T .
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We then replace 1
n
X̃T X̃ with Σ̃ in Equation (11).

It is easy to see that Σ̃ is a consistent estimator of C. We define ⌊c⌋ the greatest integer strictly

less than the real number c. For any subset T ⊆ {1,2, . . . ,d}, let X̃T be the n×|T | matrix with the

vectors {X̃·i, i ∈ T} as columns. We assume that β∗ is sparse and define S := {i ∈ 1, ...,d|β∗
i 6= 0}

with |S|= s, s ≪ n. we denote by

β∗∗ := C−1(µ1 −µ0), where β∗∗
max := max

j∈S
(|β∗∗

j |), and β∗∗
min := min

j∈S
(|β∗∗

j |).

Recalling that β∗ =Σ
−1µd , the next lemma claims that β∗∗ ∝ β∗ and therefore β∗∗ is also sparse,

and hence β∗∗
S = (CSS)

−1(µ1 −µ0)S.

Lemma 6 Let β∗ =Σ
−1µd . β∗∗ is proportional to β∗. Especially, we have

β∗∗ =
4β∗

4+µT
d Σ

−1µd

.

Proof Using the Binomial inverse theorem (Strang, 2003), we have

β∗∗ = (Σ+
1

4
µdµ

T
d )

−1µd =

(
Σ

−1 −
1
4
Σ

−1µdµ
T
d Σ

−1

1+ 1
4
µT

d Σ
−1µd

)
µd =Σ

−1µd −
1
4
Σ

−1µd(µ
T
d Σ

−1µd)

1+ 1
4
µT

d Σ
−1µd

=

(
1− µT

d Σ
−1µd

4+µT
d Σ

−1µd

)
Σ

−1µd =
4β∗

4+µT
d Σ

−1µd

.

This completes the proof.

We want to show that β̂
λn

LASSO recovers the sparsity pattern of the unknown β∗ with high prob-

ability. In the sequel, we use β̂ to denote β̂
λn

LASSO for notational simplicity. We define the variable

selection consistency property as:

Definition 7 (Variable Selection Consistency Property) We say that a procedure has the variable

selection consistency property R (X,β∗∗,λn) if and only if there exists a λn and an optimal solution

β̂ such that β̂S 6= 0 and β̂Sc = 0.

Furthermore, to ensure variable selection consistency, the following condition on the covariance

matrix is imposed:

Definition 8 A positive definite matrix C has the Irrepresentable Conditions (IC) property if

||CScS(CSS)
−1||∞ := ψ < 1.

This assumption is well known to secure the variable selection consistency of the lasso procedure

and we refer to Zou (2006), Meinshausen and Bühlmann (2006), Zhao and Yu (2007) and Wain-

wright (2009) for more thorough discussions.

The key to prove the variable selection consistency is to show that the marginal sample means

and standard deviations converge to the population means and standard deviations in a fast rate for

the nonparanormal. To get this result, we need extra conditions on the transformation functions

{ f j}d
j=1. For this, we define the Subgaussian Transformation Function Class.
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Definition 9 (Subgaussian Transformation Function Class) Let Z ∈R be a random variable fol-

lowing the standard Gaussian distribution. The Subgaussian Transformation Function Class TF(K)
is defined as the set of functions g : R→ R which satisfies:

E|g(Z)|m ≤ m!

2
Km, ∀ m ∈ Z

+.

Remark 10 Here we note that for any function g : R→R, if there exists a constant L < ∞ such that

g(z)≤ L or g′(z)≤ L or g′′(z)≤ L, ∀ z ∈ R, (16)

then g ∈ TF(K) for some constant K. To show that, we have the central absolute moments of the

standard Gaussian distribution satisfying, ∀ m ∈ Z
+:

E|Z|m ≤ (m−1)!! < m!!,

E|Z2|m = (2m−1)!! < m! ·2m. (17)

Because g satisfies the condition in Equation (16), using Taylor expansion, we have for any z ∈ R,

g(z)≤ |g(0)|+L or |g(z)| ≤ |g(0)|+L|z|, or |g(z)| ≤ |g(0)|+ |g′(0)z|+Lz2. (18)

Combining Equations (17) and (18), we have E|g(Z)|m ≤ m!
2

Km for some constant K. This proves

the assertion.

The next theorem provides the variable selection consistency result of the proposed procedure.

It shows that under certain conditions on the covariance matrix Σ and the transformation functions,

the sparsity pattern of β∗∗ can be recovered with a parametric rate.

Theorem 11 (Sparsity Recovery) Let X0 ∼ NPN(µ0,Σ, f ), X1 ∼ NPN(µ1,Σ, f ). We assume

that C in Equation (15) satisfies the IC condition and ||(CSS)
−1||∞ = Dmax for some 0 < Dmax < ∞,

||µ1 −µ0||∞ = ∆max for some 0 < ∆max < ∞ and λmin(CSS) > δ for some constant δ > 0. Then, if

we have the additional conditions:

Condition 1: λn is chosen such that

λn < min

{
3β∗∗

min

64Dmax

,
3∆max

32

}
;

Condition 2: Let σmax be a constant such that

0 < 1/σmax < min
j
{σ j}< max

j
{σ j}< σmax < ∞,max

j
|µ j| ≤ σmax,

and g = {g j := f−1
j }d

j=1 satisfies

g2
j ∈ TF(K), ∀ j ∈ {1, . . .d},

where K < ∞ is a constant,
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then there exist positive constants c0 and c1 only depending on {g j}d
j=1, such that for large enough

n

P(R (X,β∗∗,λn))

≥ 1−
[

2ds · exp

(
−c0nε2

s2

)
+2d · exp

(
−4c1nλ2

n(1−ψ−2εDmax)
2

(1+ψ)2

)]

︸ ︷︷ ︸
A

−
[

2s2 exp

(
−c0nε2

s2

)
+2sexp(−c1nε2)

]

︸ ︷︷ ︸
B

−2s2 exp(−c0nδ2

4s2
)

︸ ︷︷ ︸
C

−2exp
(
−n

8

)

︸ ︷︷ ︸
D

,

and

P

(
|| n2β̂

n0n1

−β∗∗||∞ ≤ 228Dmaxλn

)

≥ 1−
[

2s2 exp

(
−c0nε2

s2

)
+2sexp(−c1nε2)

]

︸ ︷︷ ︸
B

−2exp
(
−n

8

)

︸ ︷︷ ︸
D

, (19)

whenever ε satisfies that, for large enough n,

64π

√
logd

n log2
≤ ε < min

{
1,

1−ψ

2Dmax

,
2λn(1−ψ)

Dmax(4λn +(1+ψ)∆max)
,

ω

(3+ω)Dmax

,
∆maxω

6+2ω
,

4λn

Dmax∆max

,8λ2
n

}
.

Here ω :=
β∗∗

min

∆maxDmax
and δ ≥ 128πs

√
logd

n log2
.

Remark 12 The above Condition 2 requires the transformation functions’ inverse {g j}d
j=1 to be

restricted such that the estimated marginal means and standard deviations converge to their popu-

lation quantities exponentially fast. The exponential term A is set to control P(β̂Sc 6= 0), B is set to

control P(β̂S = 0), C is set to control P(λmin(Σ̃SS) ≤ 0) and D is set to control P( 3
16

≤ n0n1

n2 ≤ 1
4
).

Here we note that the key of the proof is to show that: (i) there exist fast rates for sample means and

standard deviations converging to the population means and standard deviations for the nonpara-

normal; (ii) Σ̃SS is invertible with high probability. ε ≥ 64π
√

logd
n log2

is used to make sure that the

Lemma 5 can be applied here.

The next corollary provides an asymptotic result of the Theorem 11.

Corollary 13 Under the same conditions as in Theorem 11, if we further have the following Con-

ditions 3,4 and 5 hold:

Condition 3: Dmax, ∆max, ψ and δ are constants that do not scale with (n,d,s);
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Condition 4: The triplet (n,d,s) admits the scaling such that

s

√
logd + logs

n
→ 0 and

s

β∗∗
min

√
logd + logs

n
→ 0;

Condition 5: λn scales with (n,d,s) such that

λn

β∗∗
min

→ 0 and
s

λn

√
logd + logs

n
→ 0,

then

P(R (X,β∗∗,λn))→ 1.

Remark 14 Condition 3 is assumed to be true, in order to give an explicit relationship among

(n,d,s) and λn. Condition 4 allows the dimension d to grow in an exponential rate of n, which is

faster than any polynomial of n. Condition 5 requires that λn shrinks towards zero in a slower rate

than s

√
logd+logs

n
.

In the next theorem, we analyze the classification oracle property of the CODA method. Suppose

that there is an oracle, which classifies a new data point x to the second class if and only if

( f (x)−µa)
T
Σ

−1µd > 0. (20)

In contrast, ĝnpn will classify x to the second class if

( f̂ (x)− µ̂)T β̂ > 0,

or equivalently,

( f̂ (x)− µ̂)T · n2β̂

n0n1

> 0. (21)

We try to quantify the difference between the “oracle” in Equation (20) and the empirical classifier

in Equation (21). For this, we define the empirical and population classifiers as

G(x,β, f ) := ( f (x)−µa)
Tβ,

Ĝ(x,β, f ) := ( f (x)− µ̂)Tβ.

With the above definitions, we have the following theorem:

Theorem 15 When the conditions in Theorem 11 hold such that A+B+C → 0, furthermore b is a

positive constant chosen to satisfy

sn−c2·b → 0, where c2 is a constant depending only on the choice of {g j}d
j=1,

then we have
∣∣∣∣∣Ĝ
(
x,

n2β̂

n0n1

, f̂

)
−G(x,β∗∗, f )

∣∣∣∣∣= OP

(
sβ∗∗

max

√
log logn

n1−b/2
+ sDmaxλn

(√
logn+∆max

))
.
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Remark 16 Using n2

n0n1
β̂ instead of β̂ is for the purpose of using the Equation (19) in Theorem 11.

When the conditions in Corollary 13 hold, the rate in Theorem 15 can be written more explicitly:

Corollary 17 When β∗∗
max is a positive constant which does not scale with (n,d,s),

logs

c2 logn
< b <

4logs

logn
,

and the conditions in Corollary 13 hold, we have

∣∣∣∣∣Ĝ
(
x,

n2β̂

n0n1

, f̂

)
−G(x,β∗∗, f )

∣∣∣∣∣= OP

(
s2 logn ·

√
logd + logs

n

)
,

by choosing λn ≍ s

√
logn(logd + logs)

n
.

Remark 18 Here we note that the conditions require that c2 > 1/4, in order to give an explicit rate

of the classifier estimation without including b. Theorem 15 or Corollary 17 can directly lead to

the result on misclassification consistency. The key proof proceeds by showing that f (X) satisfies

a version of the “low noise condition” as proposed by Tsybakov (2004).

Corollary 19 (Misclassification Consistency) Let

C (g∗) := P(Y · sign(G(X,β∗∗, f ))< 0) and C (ĝ) := P(Y · sign(Ĝ(X, β̂, f̂ ))< 0 | β̂, f̂ ),

be the misclassification errors of the Bayes classifier and the CODA classifier. Then if the conditions

in Theorem 15 hold, and we have the addition assumption that

logn ·
(

sβ∗∗
max

√
log logn

n1−b/2
+ sDmaxλn

(√
logn+∆max

))
→ 0;

or if the conditions in Corollary 17 hold, and we have the additional assumption that

s2 log2 n ·
√

logd + logs

n
→ 0,

then we have

E(C (ĝ)) = C (g∗)+o(1).

5. Experiments

In this section we investigate the empirical performance of the CODA method. We compare the

following five methods:

• LS-LDA: the least square formulation for classification proposed by Mai et al. (2012);

• CODA-LS: the CODA using a similar optimization formulation as the LS-LDA;

• ROAD: the Regularized Optimal Affine Discriminant method (Fan et al., 2010);
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• CODA-ROAD: the CODA using a similar optimization formulation as the LS-LDA

• SLR: the sparse logistic regression (Friedman et al., 2010).

We note that the main difference among the top four methods is that the covariance matrix Σ is

estimated in different ways: the ROAD and LS-LDA both assume that data are Gaussian and use

the sample covariance, which introduces estimation bias for non-Gaussian data and the resulting

covariance matrix can be inconsistent to Σ; in contrast, the CODA method exploits the Spearman’s

rho and Kendall’s tau covariance matrices to estimate Σ. It enjoys a O

(√
logd

n

)
convergence rate

in terms of ℓ∞ norm. In the following, the Spearman’s rho estimator is applied. The Kendall’s tau

estimator achieves very similar performance.

The LS-LDA, CODA-LS and SLR are implemented using the R package glmnet (Friedman et al.,

2009). We use the augmented Lagrangian multiplier algorithm to solve ROAD and CODA-ROAD.

Here in computing ROAD and CODA-ROAD, ν is set to be 10.

5.1 Synthetic Data

In the simulation studies, we randomly generate n+ 1000 class labels such that π1 = π2 = 0.5.

Conditioning on the class labels, we generate d dimensional predictors x from nonparanormal dis-

tribution NPN(µ0,Σ, f ) and NPN(µ1,Σ, f ). Without loss of generality, we suppose µ0 = 0 and

βBayes :=Σ
−1µ1 with s := ||βBayes||0. The data are then split to two parts: the first n data points as

the training set and the next 1000 data points as the testing set. We consider twelve different simu-

lation models. The choices of n,d,s,Σ,βBayes are shown in Table 1. Here the first two schemes are

sparse discriminant models with difference Σ and µ1; Model 3 is practically sparse in the sense that

its Bayes rule depends on all variables in theory but can be well approximated by sparse discriminant

functions.

scheme n d s Σ βBayes

Scheme 1 100 400 20 Σi j = 0.5|i− j| 0.342(1, . . . ,1,0, . . . ,0)T

Scheme 2 400 800 20 Σ j j = 1,Σi j = 0.5, i 6= j 0.176(1, . . . ,1,0, . . . ,0)T

Scheme 3 100 200 20 Σi j = 0.6|i− j| 0.198(1, . . . ,1,0.001, . . . ,0.001)T

Table 1: Simulation Models with different n,d,s,Σ and βBayes listed below.

Furthermore, we explore the effects of different transformation functions f by considering the

following four types of the transformation functions:

• Linear transformation: flinear = ( f 0, f 0, . . .), where f 0 is the linear function;

• Gaussian CDF transformation: fCDF = ( f 1, f 1, . . .), where f 1 is the marginal Gaussian

CDF transformation function as defined in Liu et al. (2009);

• Power transformation: fpower = ( f 2, f 2, . . .), where f 2 is the marginal power transformation

function as defined in Liu et al. (2009) with parameter 3;
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• Complex transformation: fcomplex = ( f 1, f 1, . . . , f 1

︸ ︷︷ ︸
s

, f 2, f 2, . . .), where the first s variables

are transformed through f 1, and the rest are transformed through f 2.

Then we obtain twelve models based on all the combinations of the three schemes of n,d,s,Σ,βBayes

and four transformation functions (linear, Gaussian CDF, power and complex). We note that the lin-

ear transformation flinear is equivalent to no transformation. The Gaussian CDF transformation

function is bounded and therefore preserves the theoretical properties of the CODA method. The

power transformation function, on the other hand, is unbounded. We exploit fCDF , fpower and

fcomplex to separately illustrate how the CODA works when the assumptions in Section 4 hold, when

these assumptions are mildly violated and when they are only violated for the variables X j’s with

(Σ−1(µ1 −µ0)) j = 0.

Figures 1 to 3 summarize the simulation results based on 3,000 replications for twelve models

discussed above. Here the means of misclassification errors in percentage are plotted against the

numbers of extracted features to illustrate the performance of different methods across the whole

regularization paths.

To further show quantitative comparisons among different methods, we use two penalty pa-

rameter selection criteria. First, we use an oracle penalty parameter selection criterion. Let S :=
support(βBayes) be the set that contains the s discriminant features. Let Ŝλ be the set of nonzero

values in the estimated parameters using the regularization parameter λ in different methods. In this

way, the number of false positives at λ is defined as FP(λ) := the number of features in Ŝλ but not

in S. The number of false negatives at λ is defined as FN(λ) := the number of features in S but not

in Ŝλ. We further define the false positive rate (FPR) and false negative rate (FNR) as

FPR(λ) := FP(λ)/(d − s), and FNR(λ) := FN(λ)/s.

Let Λ be the set of all regularization parameters used to create the full path. The oracle regularization

parameter λ∗ is defined as

λ∗ := argmin
λ∈Λ

{FPR(λ)+FNR(λ)}.

Using the oracle regularization parameter λ∗, the numerical comparisons of the five methods on

the twelve models are presented in Table 2. Here Bayes is the Bayes risk and in each row the

winning method is in bold. These results manifest how the five methods perform when data are

either Gaussian or non-Gaussian.

Second, in practice, we propose a cross validation based approach in penalty parameter selec-

tion. In detail, for the training set, we randomly separate the data into ten folds with no overlap

between each two parts. Each part has the same case and control data points. Each time we apply

the above five methods to the combination of any nine folds, using a given set of regularization

parameters. The parameters learned are then applied to predict the labels of the left one fold. We

select the penalty parameter λ∗
CV to be the one that minimizes the averaged misclassification error.

λ∗
CV is then applied to the test set. The numerical results are presented in Table 3. Here Bayes is the

Bayes risk and in each row the winning method is in bold.

In the following we provide detailed analysis based on these numeric simulations.

5.1.1 NON-GAUSSIAN DATA

From Tables 2 and 3 and Figures 1 to 3, we observe that for different transformation functions f and

different schemes of {n,d,s,Σ,βBayes}, CODA-ROAD and CODA-LS both significantly outperform
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Figure 1: Misclassification error curves on Scheme 1 with four different transformation functions.

(A) transformation function is flinear; (B) transformation function is fCDF ; (C) transfor-

mation function is fpower; (D) transformation function is fcomplex. The x-axis represents

the numbers of features extracted by different methods; the y-axis represents the aver-

aged misclassification errors in percentage of the methods on the testing data set based

on 3,000 replications.

ROAD and LS-LDA, respectively. Secondly, for different transformation functions f , the differences

between the two CODA methods (CODA-ROAD and CODA-LS) and their corresponding parametric

methods (ROAD and LS-LDA) are comparable. This suggests that the CODA methods can beat the

corresponding parametric methods when the sub-Gaussian assumptions for transformation functions
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Figure 2: Misclassification error curves on Scheme 2 with four different transformation functions.

(A) transformation function is flinear; (B) transformation function is fCDF ; (C) transfor-

mation function is fpower; (D) transformation function is fcomplex. The x-axis represents

the numbers of features extracted by different methods; the y-axis represents the aver-

aged misclassification errors in percentage of the methods on the testing data set based

on 3,000 replications.

shown in Section 4 are mildly violated. Thirdly, the CODA methods CODA-LS and CODA-ROAD

both outperform SLR frequently.
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Figure 3: Misclassification error curves on Scheme 3 with four different transformation functions.

(A) transformation function is flinear; (B) transformation function is fCDF ; (C) transfor-

mation function is fpower; (D) transformation function is fcomplex. The x-axis represents

the numbers of features extracted by different methods; the y-axis represents the aver-

aged misclassification errors in percentage of the methods on the testing data set based

on 3,000 replications.

5.1.2 GAUSSIAN DATA

From Tables 2 and 3 and Figures 1 to 3, we observe that when the transformation function is flinear,

there is no significant differences between CODA-ROAD and ROAD, and between CODA-LS and LS-
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Scheme f Bayes(%) ROAD CODA-ROAD LS-LDA CODA-LS SLR

Scheme 1 flinear 10.00 16.64(0.81) 16.90(0.84) 15.09(0.52) 15.29(0.53) 15.40(0.49)

fCDF 10.00 18.57(0.80) 17.17(0.84) 17.26(0.52) 15.66(0.53) 17.10(0.46)

fpower 10.00 18.80(0.81) 16.51(0.86) 17.76(0.52) 15.45(0.56) 17.99(0.52)

fcomplex 10.00 18.68(0.84) 17.12(0.87) 17.40(0.54) 15.78(0.53) 17.26(0.57)

Scheme 2 flinear 10.00 12.28(0.41) 12.34(0.38) 11.46(0.28) 11.48(0.28) 12.19(0.31)

fcd f 10.00 13.56(0.65) 12.83(0.72) 12.95(1.00) 11.99(0.99) 12.84(0.30)

fpower 10.00 17.85(0.86) 17.38(0.65) 17.10(0.73) 16.65(0.50) 16.50(0.33)

fcomplex 10.00 16.89(1.39) 16.89(0.43) 17.20(2.43) 16.77(0.33) 16.91(0.47)

Scheme 3 flinear 20.00 26.65(0.78) 26.69(0.77) 25.59(0.63) 25.70(0.64) 25.97(0.58)

fcd f 20.00 26.97(0.70) 26.03(0.78) 26.16(0.58) 25.18(0.64) 26.41(0.58)

fpower 20.00 29.78(0.72) 26.07(0.87) 29.03(0.60) 25.14(0.70) 29.34(0.61)

fcomplex 20.00 27.54(0.71) 26.78(0.73) 26.70(0.62) 25.87(0.59) 26.87(0.57)

Table 2: Quantitative comparisons on different models with linear, Gaussian CDF, power, and com-

plex transformations using the oracle penalty parameter selection criterion. The methods

compared here are ROAD,CODA-ROAD,LS-LDA,CODA-LS and SLR. Here Bayes is the

Bayes risk and the winning methods are in bold. The means of misclassification errors

in percentage with their standard deviations in parentheses are presented. The results are

based on 3,000 replications.

LDA. This suggests that the CODA methods can be an alternative choice besides the Gaussian-based

high dimensional classification methods.

In summary, we observe that the CODA methods (CODA-LS in particular) have very good over-

all performance. The simulation results suggest that they can be an alternative choices besides their

corresponding parametric methods. And the results also show that in our experiments the CODA

methods can outperform their corresponding parametric methods when the sub-Gaussian assump-

tions for transformation functions are mildly violated.

5.2 Large-scale Genomic Data

In this section we investigate the performance of the CODA methods compared with the others

using one of the largest microarray data sets (McCall et al., 2010). In summary, we collect in

all 13,182 publicly available microarray samples from Affymetrixs HGU133a platform. The raw

data contain 20,248 probes and 13,182 samples belonging to 2,711 tissue types (e.g., lung cancers,

prostate cancer, brain tumor etc.). There are at most 1599 samples and at least 1 sample belonging to

each tissue type. We merge the probes corresponding to the same gene. There are remaining 12,713

genes and 13,182 samples. The main purpose of this experiment is to compare the performance of

different methods in classifying tissues.

We adopt the same idea of data preprocessing as in Liu et al. (2012). In particular, we remove

the batch effect by applying the surrogate variable analysis proposed by Leek and Storey (2007).

There are, accordingly, 12,713 genes left and the data matrix we are focusing is 12,713×13,182.

We then explore several tissue types with the largest sample size:

• Breast tumor, which has 1599 samples;
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Scheme f Bayes(%) ROAD CODA-ROAD LS-LDA CODA-LS SLR

Scheme 1 flinear 10.00 16.86(0.77) 16.99(0.94) 15.31(0.54) 15.41(0.49) 15.44(0.51)

fCDF 10.00 18.86(0.83) 17.19(0.79) 17.39(0.68) 16.16(0.63) 17.42(0.64)

fpower 10.00 19.13(0.91) 16.84(0.90) 17.91(0.61) 15.92(0.66) 18.13(0.62)

fcomplex 10.00 18.81(0.93) 17.73(0.89) 17.42(0.63) 15.89(0.62) 17.94(0.66)

Scheme 2 flinear 10.00 12.58(0.52) 12.59(0.47) 11.59(0.33) 11.70(0.38) 12.19(0.29)

fcd f 10.00 13.97(0.74) 12.86(0.76) 13.36(1.05) 12.08(1.03) 13.03(0.32)

fpower 10.00 18.23(0.76) 17.48(0.73) 17.11(0.77) 16.85(0.59) 16.86(0.37)

fcomplex 10.00 16.96(1.59) 16.74(0.61) 17.47(1.99) 16.80(0.49) 17.06(0.55)

Scheme 3 flinear 20.00 26.83(0.88) 27.23(0.77) 25.62(0.64) 25.74(0.71) 26.21(0.63)

fcd f 20.00 27.13(0.81) 26.21(0.85) 26.76(0.64) 25.23(0.61) 26.43(0.69)

fpower 20.00 30.17(0.85) 26.79(1.00) 29.03(0.73) 25.15(0.78) 29.85(0.63)

fcomplex 20.00 28.43(0.91) 26.82(0.77) 26.74(0.60) 25.88(0.68) 27.27(0.71)

Table 3: Quantitative comparisons on different models with linear, Gaussian CDF, power, and com-

plex transformations using the cross validation based penalty parameter selection criterion.

The methods compared here are ROAD,CODA-ROAD,LS-LDA,CODA-LS and SLR. Here

Bayes is the Bayes risk and the winning methods are in bold. The means of misclassifica-

tion errors in percentage with their standard deviations in parentheses are presented. The

results are based on 3,000 replications.

• B cell lymphoma, which has 213 samples;

• Prostate tumor, which has 148 samples;

• Wilms tumor, which has 143 samples.

Different tissues have been believed to be associated with different sets of genes and microarray

data have been heavily used to classify tissue types. See for example, Hans et al. (2004), Wang

et al. (2008) and Huang and Chang (2007), among others. For each tissue type listed above, our

target is to classify it from all the other tissue types. To this end, each time we randomly split the

whole data to three parts: (i) the training set with 200 samples (equal size of case and control); (ii)

the testing set with 1000 samples; (iii) the rest. We then run ROAD,CODA-ROAD,LS-LDA,CODA-LS

on the training set and applying the learned parameters on the testing set. We repeat this for 1,000

times. The averaged misclassification errors in percentage versus the numbers of extracted features

are illustrated in Figure 4. Quantitative results, with penalty parameter selected using the cross

validation criterion, are presented in Table 4.

It can be observed that CODA-ROAD and CODA-LS have the best overall performance. Some

biological discoveries have also been verified in this process. For example, the MYC gene has been

discovered to be relevant to the b cell lymphoma (Lovec et al., 1994; Smith and Wickstrom, 1998)

and has recently been found to be associated with the Wilms tumor (Ji et al., 2011). This gene is

also constantly selected by the CODA methods in classifying b cell lymphoma and Wilms tumor

with the rest.
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Figure 4: Misclassification error curves on the GPL96 data set. (A) Breast tumor; (B) B cell lym-

phoma; (C) Prostate tumor; (D) Wilms tumor. The x-axis represents the numbers of fea-

tures extracted by different methods; the y-axis represents the averaged misclassification

errors in percentage of the methods on the testing data set based on 1,000 replications.

5.3 Brain Imaging Data

In this section we investigate the performance of several methods on a brain imaging data set, the

ADHD 200 data set (Eloyan et al., 2012). The ADHD 200 data set is a landmark study compil-

ing over 1,000 functional and structural scans including subjects with and without attention deficit

hyperactive disorder (ADHD). The current releases data are from 776 subjects: 491 controls and

285 children diagnosed with ADHD. Each has structural blood oxygen level dependent (BOLD)
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Figure 5: Misclassification error curves on the ADHD data set. The x-axis represents the num-

bers of features extracted by different methods; the y-axis represents the averaged mis-

classification errors in percentage of the methods on the testing data set based on 1,000

replications.

functional MRI scans. The data also include demographic variables as predictors. These include

age, IQ, gender and handedness. We refer to Eloyan et al. (2012) for detailed data preprocessing

procedures.

We construct our predictors by extracting voxels that broadly cover major functional regions of

the cerebral cortex and cerebellum following Power et al. (2011). We also combine the information

of the demographic variables, resulting to the final data matrix we will use with the dimension

268×776. The target is to differentiate the subjects with ADHD from those without ADHD.

To evaluate the performance of different methods, each time we randomly sample 155 data

points unrepeatedly from the whole data. We then gather them together as the training set. The
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Data ROAD(%) CODA-ROAD LS-LDA CODA-LS SLR

Genomic (A) 0.29(0.17) 0.29(0.17) 0.26(0.16) 0.25(0.15) 0.29(0.18)

Genomic (B) 1.31(0.26) 0.69(0.15) 1.16(0.20) 0.63(0.13) 0.82(0.18)

Genomic (C) 0.56(0.13) 0.39(0.11) 0.55(0.15) 0.37(0.12) 0.62(0.17)

Genomic (D) 0.38(0.16) 0.23(0.08) 0.38(0.09) 0.22(0.10) 0.48(0.12)

ADHD 33.20(0.26) 31.89(0.27) 32.66(0.24) 32.25(0.24) 31.73(0.21)

Table 4: Quantitative comparisons on genomic and brain imaging data using the cross validation

based penalty parameter selection criterion. The methods compared here are ROAD,CODA-

ROAD,LS-LDA,CODA-LS and SLR. Here the winning methods are in bold. The means of

misclassification errors in percentage with their standard deviations in parentheses are pre-

sented. Here “Genomic (A)” to “Genomic (D)” denote the breast tumor, b cell lymphoma,

prostate tumor and Wilms tumor, ’ADHD’ denotes the results in brain imaging data anal-

ysis.

rest are left as the testing set. We then run ROAD,CODA-ROAD,LS-LDA,CODA-LS on the training

set and applying the learned parameters on the testing set. This is repeated for 1,000 times and the

averaged misclassification errors in percentage versus the numbers of extracted features are illus-

trated in Figure 5. Quantitative results, with penalty parameter selected using the cross validation

criterion, are presented in Table 4. In this data set, SLR performs the best, followed by CODA-LS

and CODA-ROAD. Moreover, the CODA methods beat their corresponding parametric methods in

this experiment. It can be observed in Table 4 that there is no significant difference between SLR

and CODA-ROAD.

6. Discussions

In this paper a high dimensional classification method named the CODA (Copula Discriminant

Analysis) is proposed. The main contributions of this paper include: (i) We relax the normality

assumption of linear discriminant analysis through the nonparanormal (or Gaussian copula) model-

ing; (ii) We use the nonparanormal SKEPTIC procedure proposed by Liu et al. (2012) to efficiently

estimate the model parameters; (iii) We build a connection of the ROAD and lasso and provide an

approach to solve the problem that the rank-based covariance matrix may not be positive semidef-

inite; (iv) We provide sufficient conditions to secure the variable selection consistency with the

parametric rate, and the expected misclassification error is consistent to the Bayes risk; (v) Careful

experiments on synthetic and real data sets are conducted to support the theoretical claims.
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Appendix A. Proof of Theorem 2

To show that Theorem 2 holds, we need to provide several important lemmas using results of large

deviation and empirical process. First, define φ(·) and Φ(·) to be the probability density func-

tion and cumulative distribution function of the standard Gaussian distribution. For any x ∈ R,

we denote by x+ = x · I(x > 0) and x− = −x · I(x < 0). By definition, f j(t) = Φ−1(Fj(t)) and

g j(u) := f−1
j (u) = F−1

j (Φ(u)). Here for notation simplicity, let F̃j(t) and F̂j(t) be the abbreviations

of F̃j(t;1/(2n),x1, . . . ,xn) and F̂j(t;x1, . . . ,xn) defined in Section 2.2.

The following lemma quantifies the region of the value F̃j in In and shows that F̃j is not truncated

in In almost surely.

Lemma 20 (Liu et al., 2012) We have for large enough n,

P

(
1

n
≤ F̃j(t)≤ 1− 1

n
, for all t ∈ In

)
= 1.

With Lemma 20, we can now prove the following key lemma, which provides an uniform con-

vergence rate on F̃j(t) to Fj(t). This result is mentioned in Liu et al. (2012), but without proof.

Lemma 21 Consider a sequence of sub-intervals [L
( j)
n ,U

( j)
n ] with both L

( j)
n := g j(

√
α logn) and

U
( j)
n := g j(

√
β logn) ↑ ∞, then for any 0 < α < β < 2, for large enough n,

limsup
n→∞

√
n

2loglogn
sup

L
( j)
n <t<U

( j)
n

∣∣∣∣∣
F̃j(t)−Fj(t)√
Fj(t)(1−Fj(t))

∣∣∣∣∣=C a.s.,

where 0 <C < 2
√

2 is a constant.

Proof By Lemma 20, for large enough n,

F̃j(t) = F̂j(t), for all t ∈ In, almost surely. (22)

Given ξ1, . . . ,ξn a series of i.i.d random variables from Unif(0,1) and define Gn(t) := 1
n ∑ I(ξi < t),

it is easy to see that

F̂j(t) =Gn(Fj(t)) a.s.. (23)

Define

Un(u) :=
Gn(u)−u√

u(1−u)
.

By Equation (22) and (23), it is easy to see that

Un(Fj(t)) =
F̃j(t)−Fj(t)√
Fj(t)(1−Fj(t))

a.s.. (24)

By Theorem 1 in Section 2 (Chapter 16) of Shorack and Wellner (1986), we know that

lim sup
n→∞

√
n

2loglogn
sup

0≤u≤1/2

(Un(u))
− =

√
2 a.s.. (25)
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And by Theorem 2 in Section 3 (Chapter 16) of Shorack and Wellner (1986), for an → 0 such that
log log(1/an)

log logn
→ 1, we have

lim sup
n→∞

√
n

2loglogn
sup

an≤u≤1/2

(Un(u))
+ =

√
2 a.s.. (26)

Combining Equation (25) and (26) together, we have

lim sup
n→∞

√
n

2loglogn
sup

an≤u≤1/2

|Un(u)| ≤ 2
√

2 a.s.. (27)

Furthermore, for any u ∈ [0,1],

Gn(1−u) =
1

n
∑ I(ξi < 1−u) =

1

n
∑ I(1−ξi ≥ u) = 1−Gn(u),

which implies that

Un(1−u) =−Un(u).

Therefore, by Equation (27), for an ↓ 0 such that
log log(1/an)

log logn
→ 1, we have

lim sup
n→∞

√
n

2loglogn
sup

1/2≤u≤1−an

|Un(u)| ≤ 2
√

2 a.s.. (28)

Finally, choosing an = 1−Fj(U
( j)
n ), we have

an = 1−Φ(
√

β logn)≈ n−β/2 and
loglognβ/2

log logn
→ 1,

so taking an = 1−Fj(U
( j)
n ) into Equation (28), the result follows by using Equation (24).

Proof [Proof of the Theorem 2] Finally, we prove the Theorem 2. By symmetry, we only need to

conduct analysis on a sub-interval of Is
n ⊂ In:

Is
n :=

[
g j(0),g j

(√
2(1− γ) logn

)]
.

We define a series 0 < α < 1 < β1 < β2 < .. . < βκ and denote by β0 := α,

I0n :=
[
g j(0),g j(

√
α logn)

]
,

I1n :=
[
g j(
√

α logn),g j(
√

β1 logn)
]
, . . . , Iκn :=

[
g j(
√

βκ−1 logn),g j(
√

βκ logn)
]
.

For i = 0, . . . ,κ, we can rewrite

sup
t∈Iin

∣∣∣ f̃ j(t)− f j(t)
∣∣∣= sup

t∈Iin

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣ .
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By the mean value theorem, for some ξn such that

ξn∈
[
min{F̃j(g j(

√
βi−1logn)),Fj(g j(

√
βi−1logn))},max{F̃j(g j(

√
βilogn)),Fj(g j(

√
βilogn))}

]
,

we have

sup
t∈Iin

∣∣∣Φ−1
(

F̃j(t)
)
−Φ−1 (Fj(t))

∣∣∣= sup
t∈Iin

∣∣∣(Φ−1)′(ξn)
(

F̃j(t)−Fj(t)
)∣∣∣ . (29)

Because Φ and Φ−1 are strictly increasing function, for large enough n, we have

(Φ−1)′(ξn)≤ (Φ−1)′
(

max
{

Fj

(
g j

(√
βi logn

))
, F̃j

(
g j

(√
βi logn

))})
. (30)

From Lemma 21, for large enough n, we have

F̃j(t)≤ Fj(t)+4

√
log logn

n
·
√

1−Fj(t).

In special, using the fact that Fj(g j(t)) = Φ(t), we have

F̃j(g j(
√

βi logn)) ≤ Fj(g j(
√

βi logn))+4

√
log logn

n
·
√

1−Fj(g j(
√

βi logn))

≤ Φ

(
√

βi logn+4

√
log logn

n1−βi/2

)
.

The last inequality holds given Equation (B.4) to (B.12) in Liu et al. (2012).

Therefore,

(Φ−1)′(F̃j(g j(
√

βi logn))) ≤
√

2πexp




(√
βi logn+4

√
log logn

n1−βi/2

)2

2




≍ (Φ−1)′(Fj(g j(
√

βi logn))).

Returning to Equation (30), we have

(Φ−1)′(ξn)≤C(Φ−1)′(Fj(g j(
√

βi logn))) =
C

φ(
√

βi logn)
≤ c1nβi/2, (31)

where C > 1 and c1 are generic constants. Specifically, when i = 0, using the Dvoretzky-Kiefer-

Wolfowitz inequality (Massart, 1990; Dvoretzky et al., 1956), from Equation (29), we have

sup
t∈I0n

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣= OP

(√
log logn

n1−α

)
.

For any i ∈ {1, . . . ,κ}, using Lemma 21, for large enough n,

sup
t∈Iin

∣∣∣F̃j(t)−Fj(t)
∣∣∣ = OP

(√
log logn

n
·
√

1−Fj

(
g j(
√

βi−1 logn)
))

= OP



√

log logn

n
·
√

n−βi−1/2

√
α logn




= OP

(√
log logn

nβi−1/2+1

)
. (32)
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Again, using Equation (31), we have

(Φ−1)′(ξn)≤C(Φ−1)′(Fj(g j(
√

βi logn))) =
C

φ(
√

βi logn)
≤ c1nβi/2,

and applying Equation (32), we have

sup
t∈Iin

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣= OP

(√
log logn

n1+βi−1/2−βi

)
.

Chaining the inequalities together and choose

βi = (2− (1/2)i)(1− γ), i ∈ {0,1, . . . ,κ},

we have for any i ∈ {0,1, . . . ,κ},

1−α = 1− (1− γ) = γ and

1+βi−1/2−βi = 1+

(
1− 1

2i

)
(1− γ)−

(
2− 1

2i

)
(1− γ) = γ.

And therefore, we have

sup
I0n∪...∪Iκn

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣= OP

(√
log logn

nγ

)
,

while

I0n ∪ . . .∪ Iκn =
[
g j(0),g j

(√
(2−2−κ)(1− γ)

)]
.

Taking κ ↑ ∞, we have the result.

Appendix B. Proof of Theorem 11

To prove Theorem 11, we need the following three key lemmas. Lemma 22 claims that, under

certain constraints on the transformation functions, there exist fast rates for the sample means and

projected Spearman’s rho/Kendall’s tau covariance matrices converging to the population means

and covariance matrix for the nonparanormal. Lemma 23 provides exponential inequalities for two

estimators we are most interested in in analyzing the theoretical performance of the CODA. Lemma

25 claims that Σ̃SS is invertible with high probability.

Lemma 22 For any x1, . . . ,xn i.i.d drawn from X , where X ∼ NPN(µ,Σ, f ), 0 < 1/σmax <
min

j
{σ j}< max

j
{σ j}< σmax < ∞, max j |µ j| ≤ σmax and g := f−1 satisfies g2

j ∈ T F(K), j = 1, . . .d

for some constant K < ∞, we have for any t ≥ 32π
√

logd
n log2

,

P

(
|S̃ jk −Σ jk|> t

)
≤ 2exp(−c′0nt2), (33)

P(|µ̂ j −µ j|> t) ≤ 2exp(−c′1nt2), (34)

where c′0 and c′1 are two constants only depending on the choice of {g j}d
j=1.

658



COPULA DISCRIMINANT ANALYSIS

Proof Because σmax is a constant which does not scale with (n,d,s), without loss of generality we

can assume that K ≥ 1, µ = 0 and diag(Σ) = 1. The key is to prove that the high order moments

of each X j and X2
j will not grow very fast.

We only focus on j = 1 and the results can be generalized to j = 2,3, . . . ,d. Define Z :=
f1(X1)∼ N(0,1). We have ∀ m ∈ Z

+, because g2
1 ∈ TF(K) for some constant K,

E|X2
1 |m = E|g2

1(Z)|m ≤ m!

2
Km.

Therefore, by Lemma 5.7 of van de Geer (2000), σ̂2
1 goes to σ2

1 exponentially fast. To show that the

Equation (34) holds, we have

E|X1|m = E|X2
1 |m/2 ≤ (m/2)!

2
Km/2 <

m!

2
Km, if m is even,

E|X1|m ≤ 1+E|X1|mI(|X1| ≥ 1)≤ 1+E(|X1|m+1I(|X1| ≥ 1))

≤ 1+E|X1|m+1 ≤ 1+

(
m+1

2

)
!

2
K

m+1
2 <

m!

2
(2K +2)m, if m is odd.

Therefore, again by Lemma 5.7 of van de Geer (2000), µ̂1 goes to µ1 exponentially fast.

Similarly we can prove that P(|σ̂ j−σ j| ≥ t) =O(exp(−cnt2)) for the generic constant c. There-

fore, to prove that Equation (33) holds, the only thing left is to show that combining σ̂ j, σ̂k with R̃ jk

does not change the rate. Actually, suppose that

P
(∣∣σ̂ j −σ j

∣∣> ε
)

≤ η1 (n,ε) ,

P

(∣∣∣R̃ jk −Σ0
jk

∣∣∣> ε
)

≤ η2 (n,ε) ,

then we have

P

(∣∣∣S̃ jk −Σ jk

∣∣∣> ε
)

= P

(∣∣∣(σ̂ jσ̂k −σ jσk) R̃ jk +σ jσk

(
R̃ jk −Σ0

jk

)∣∣∣> ε
)

≤ P

(∣∣∣(σ̂ jσ̂k −σ jσk) R̃ jk

∣∣∣> ε

2

)
+P

(∣∣∣σ jσk

(
R̃ jk −Σ0

jk

)∣∣∣> ε

2

)

≤ P

(∣∣σ̂ jσ̂k −σ jσk

∣∣> ε

2

)
+P

(∣∣∣R̃ jk −Σ0
jk

∣∣∣> ε

2σ2
max

)

≤ P

(∣∣(σ̂ j −σ j)(σ̂k −σk)+σ j (σ̂k −σk)+σk (σ̂ j −σ j)
∣∣> ε

2

)
+η2

(
n,

ε

2σ2
max

)

≤ P

(∣∣(σ̂ j −σ j)(σ̂k −σk)
∣∣> ε

6

)
+P

(∣∣σ j(σ̂k −σk)
∣∣> ε

6

)

+P

(∣∣σk(σ̂ j −σ j)
∣∣> ε

6

)
+η2

(
n,

ε

2σ2
max

)

≤ P

(∣∣σ̂ j −σ j

∣∣>
√

ε

6

)
+P

(
|σ̂k −σk|>

√
ε

6

)

+P

(
|σ̂k −σk|>

ε

6σmax

)
+P

(∣∣σ̂ j −σ j

∣∣> ε

6σmax

)
+η2

(
n,

ε

2σ2
max

)

≤ 2η1

(
n,

√
ε

6

)
+2η1

(
n,

ε

6σmax

)
+η2

(
n,

ε

2σ2
max

)
.
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Due to Lemma 5, we have for all t ≥ 32π
√

logd
n log2

P(|R̃ jk −Σ0
jk|> t)≤ 2exp(−cnt2),

for some generic constant c. It means that η1 and η2 are both of parametric exponential decay rate.

we complete the proof.

Lemma 23 If n0 and n1 are deterministic, then there exists a constant c0 such that for any ε ≥
32π
√

logd

(n0∧n1) log2
, we have

P

(∣∣∣Σ̃ jk −C jk

∣∣∣> ε
)
≤ 2exp

(
−c0nε2

)
, ∀ j,k = 1, . . . ,d;

P(||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ > ε)≤ 2d exp(−c1nε2).

Proof Using Lemma 22 and the fact that P(|n j − n
2
| ≥ nε)≤ 2exp(−2nε2) for j = 0,1, we have the

result.

Remark 24 Here n0 and n1 are “pretended” to be deterministic but not random variables. Later

we will see that because n0 ∧ n1 >
n
4

with an overwhelming probability, we can easily rewrite the

condition ε ≥ 32π
√

logd

(n0∧n1) log2
to be a deterministic one: ε ≥ 64π

√
logd

n log2
in the final presentation.

Lemma 25 Let λmin(CSS) = δ. If δ ≥ 64πs

√
logd

(n0∧n1) log2
, we have

P(Σ̃SS ≻ 0)≥ 1−2s2 exp

(
−c0nδ2

4s2

)
. (35)

Proof Let ∆̂ = Σ̃SS −CSS. Using Lemma 23, in probability 1− 2s2 exp(−c0nt2), ‖∆̂‖max ≤ t.

Therefore, for any v ∈ R
s,

vT
Σ̃SSv = vT CSSv+vT

∆̂v ≥ δ‖v‖2
2 +λmin(∆̂)‖v‖2

2,

where δ = λmin(CSS). By the norm equivalence, we have

‖∆̂‖op ≤ s‖∆̂‖max ≤ st,

where || · ||op is the matrix operator norm. Since

||−∆̂||op = λmax(−∆̂) = λmax(CSS − Σ̃SS) =−λmin(Σ̃SS −CSS) =−λmin(∆̂),

and

||−∆̂||op ≤ s||−∆̂||max = s||∆̂||max ≤ st,
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we can further have

λmin(∆̂)≥−‖∆̂‖op ≥−st.

Therefore we have

vT
Σ̃SSv ≥ (δ− st)‖v‖2

2, i.e., λmin(Σ̃SS)≥ δ− st.

In other words, for all t < δ/s, we have λmin(Σ̃SS)> 0. In particular, choosing t = δ/(2s), we have

λmin(Σ̃SS) = δ/2 > 0. This proves that Equation (35) holds with high probability.

Using Lemma 22, Lemma 23 and Lemma 25, Theorem 11 can be obtained using a similar proof

structure of Mai et al. (2012). For concreteness and self-containedness, we provide a proof of the

remaining part in the last section of the appendix.

Appendix C. Proof of Theorem 15

To prove Theorem 15, we first need to quantify the convergence rate of f̂ to f , or equivalently,

f̂0 := { f̂0 j}d
j=1 and f̂1 := { f̂1 j}d

j=1’s convergence rates to f . By symmetry, we can focus on f̂0.

Lemma 26 Let g j := f−1
j be the inverse function of f j. We define

In :=
[
g j

(
−
√

2(1− γ) logn
)
,g j

(√
2(1− γ) logn

)]
,

then sup
t∈In

| f̂0 j(t)− f j(t)|= OP

(√
log logn

nγ

)
.

Proof Using Lemma 22, a similar proof as Theorem 2 can be applied.

Then we can proceed to proof of Theorem 15:

Proof We define { j1, . . . , js}= S to be the indices of the s discriminant features, that is,

β∗
jk
6= 0, k = 1, . . . ,s.

In this way, we can further define

Tn =
[
g j1(−

√
b logn),g j1(

√
b logn)

]
× . . . ,×

[
g js(−

√
b logn),g js(

√
b logn)

]
,

for some 0 < b < 1. Moreover, an event Mn is defined as

Mn := {x ∈ R
d : xS ∈ Tn}.

Then we have

P

(
|Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )|> t

)

≤ P

(
|Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )|> t |R (X,β∗,λn),Mn

)

+P(Mc
n)+P(R (X,β∗,λn)

c) .
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Given R (X,β∗,λn) and Mn hold, we have

∣∣∣∣∣Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )

∣∣∣∣∣≤
∣∣∣( f (X)− f̂ (X))Tβ∗∗

∣∣∣+
∣∣∣∣∣ f̂ (X)T

(
β∗∗− n2β̂

n0n1

)∣∣∣∣∣

+

∣∣∣∣∣µ̂
T

(
β∗∗− n2β̂

n0n1

)∣∣∣∣∣+
∣∣(µ̂−µa)

Tβ∗∗∣∣

≤β∗∗
max||( f (X)− f̂ (X))S||1 + ||( f̂ (X))S||1||β∗∗− n2β̂

n0n1

||∞

+ ||µ̂S||1||β∗∗− n2β̂

n0n1

||∞ + ||β∗∗||∞||(µ̂−µa)S||1.

Using Theorem 2,

sup
X∈Mn

||( f (X)− f̂ (X))S||1 = OP

(
s

√
log logn

n1−b/2

)
, (36)

and by Lemma 26,

sup
X∈Mn

||( f̂ (X))S||1 = OP

(
s
√

2logn
)
.

Using the Gaussian tail inequality,

P

(
f j(X j)≥

√
b logn

)
= O

(
n−c2·b

)
,

so P(Mc
n) = O

(
sn−c2·b

)
. Using Lemma 23,

||µ̂S||1 = OP(s∆max) and ||(µ̂−µa)S||1 = OP(sn−1/2).

Using the assumption that A+B+C → 0 and B → 0 in the Theorem 15, we have

||β∗∗− n2β̂

n0n1

||∞ = OP (Dmaxλn) and P(R (X,β∗,λn)
c) = o(1). (37)

Combining Equation (36) to (37), we have

∣∣∣∣∣Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )

∣∣∣∣∣=OP

(
sβ∗∗

max

√
log logn

n1−b/2
+sDmaxλn(

√
logn+∆max)+

sβ∗∗
max√
n

)
.

This completes the proof.
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Appendix D. Proof of Corollary 19

Proof For notation simplicity, we denote by

D = {(x1,y1),(x2,y2), . . . ,(xn,yn)} and G∗ := G(X,β∗∗, f ), G̃ := Ĝ

(
X,

n2β̂

n0n1

, f̂

)
.

Here we note that sign(G̃) = sign
(

Ĝ
(
X, β̂, f̂

))
. Then we have

P

(
Y · sign(G̃)< 0|D

)
= P

(
Y · sign(G∗)+Y · (sign(G̃)− sign(G∗))< 0 | D

)

≤ P(Y · sign(G∗)< 0)+P

(
Y · (sign(G̃)− sign(G∗))< 0 | D

)

≤ P(Y · sign(G∗)< 0)+P

(
sign(G̃) 6= sign(G∗) | D

)
.

Therefore,

E(C (ĝ))−C (g∗) ≤ E

(
P(sign(G̃) 6= sign(G∗) | D)

)

= E

(
E(I(sign(G̃) 6= sign(G∗)) | D)

)

= E

(
I(sign(G̃) 6= sign(G∗))

)

= P

(
sign(G̃) 6= sign(G∗))

)
.

Given tn,d,s a constant depending only on (d,n,s), we have

P

(
sign(G̃) 6= sign(G∗)

)

= P

(
G̃ ·G∗ < 0

)

= P

(
G̃ ·G∗ < 0, |G̃−G∗|< tn,d,s

)
+P

(
G̃ ·G∗ < 0, |G̃−G∗| ≥ tn,d,s

)

≤ P

(
|G̃−G∗|< tn,d,s, G̃ ·G∗ < 0

)
+P

(
|G̃−G∗|> tn,d,s

)

≤ P

(
G̃ ·G∗ < 0 | |G̃−G∗|< tn,d,s

)
P

(
|G̃−G∗|< tn,d,s

)
+P

(
|G̃−G∗|> tn,d,s

)

≤ P

(
|G∗|< tn,d,s | |G̃−G∗|< tn,d,s

)
P

(
|G̃−G∗|< tn,d,s

)
+P

(
|G̃−G∗|> tn,d,s

)

≤ P(|G∗|< tn,d,s)+P

(
|G̃−G∗|> tn,d,s

)
.

Suppose that the conditions in Corollary 3 hold, then choosing

tn,d,s = s2 log2 n ·
√

logd + logs

n
,

using Corollary 17, we know that

P

(∣∣∣∣∣Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )

∣∣∣∣∣> tn,d,s

)
= o(1).
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And using Lemma 6, we have

G(X,β∗∗, f ) = ( f (X)−µa)
T
β∗∗ ∼ N

(
τµT

d Σ
−1µd

2
,τ2µT

d Σ
−1µd

)
,

where τ =
4

4+µT
d Σ

−1µd

> 0. Therefore, by simple calculation, we have

P(|G(X,β∗∗, f )|< tn,d,s) = Φ


 tn,d,s − τµT

d Σ
−1µd

2

τ
√
µT

d Σ
−1µd


−Φ


−tn,d,s − τµT

d Σ
−1µd

2

τ
√
µT

d Σ
−1µd


= o(1),

as long as tn,d,s → 0 because of the continuity of Φ. This proves that P
(

sign(G̃) 6= sign(G∗)
)
= o(1)

and completes the proof. The same argument can be generalized to the case where the conditions in

Theorem 15 hold.

Appendix E. Proof of the Remaining Part of Theorem 11

we now start to prove the remaining part of Theorem 11. In the sequel, all the equalities and

inequalities are element-wise. The main structure of the proof is coming from Mai et al. (2012) and

we include the proof here only for the paper concreteness and self-containedness.

Lemma 27 Given n j ∼ Binomial
(
n, 1

2

)
for j = 0,1, we have

P

(
3

16
≤ n0n1

n2
≤ 1

4

)
≥ 1−2exp

(
−n

8

)
.

Proof Using the Hoeffding’s inequality, we have

P

(
3

16
≤ n0n1

n2
≤ 1

4

)
= P

(∣∣∣n j −
n

2

∣∣∣≤ n

4

)
= P

(∣∣∣∣
n j

n
− 1

2

∣∣∣∣≤
1

4

)
≥ 1−2exp

(
−n

8

)
.

This completes the proof.

Proof [Proof of the Theorem 11] We define the event

E0 :=

{
3

16
≤ n0n1

n2
≤ 1

4

}
.

Under the event E0, we consider the optimization problem in Equation (11). We firstly consider an

intermediate optimum:

β̃S := argmin
βS∈Rs

{
1

2n
||y− X̃SβS||22 +λn||βS||1

}
.

Reminding that X̃T X̃/n has been replaced by Σ̃ in calculating β̂. Using Lemma 25, Σ̃SS is invertible

with high probability. Then, under the event that Σ̃SS is invertible, β̃S exists and is unique, moreover

β̃S = (Σ̃SS)
−1
[n0n1

n2
(µ̂1 − µ̂0)S −λnzS

]
,
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where zS is the subgradient such that z j = sign(β̃ j) 6= 0 and −1 ≤ z j ≤ 1 if β̃ j = 0.

To prove that β̂ = (β̃S,0) with high probability, it suffices to show that ||zSc ||∞ ≤ 1, or equiva-

lently R1(X,β∗∗,λn) holds, where

R1(X,β∗∗,λn) :=
{
||n0n1

n2
(µ̂1 − µ̂0)Sc − Σ̃ScS(Σ̃SS)

−1
[n0n1

n2
(µ̂1 − µ̂0)S −λnzS

]
||∞ ≤ λn

}
. (38)

Then following Equation (38), with high probability, we now can write

P(R1(X,β∗∗,λn)
c)

≤P

(
||n0n1

n2
(µ̂1 − µ̂0)Sc − Σ̃ScS(Σ̃SS)

−1
(n0n1

n2
(µ̂1 − µ̂0)S −λnzS

)
||∞ > λn

)
.

Let λ = 2n2λn

n0n1
and using the matrix norm equivalency, we have

P(R1(X,β∗∗,λn)
c)≤ P

(
||(µ̂1 − µ̂0)Sc − Σ̃ScS(Σ̃SS)

−1

(
(µ̂1 − µ̂0)S −

λ

2
zS)

)
||∞ > λ/2

)

≤ P

(
ζ∆max + ||(µ̂1 − µ̂0)Sc − (µ1 −µ0)Sc ||∞

+(ζ+ψ) ·
(

λ

2
+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞

)
>

λ

2

)
,

where

ζ := ||Σ̃ScS(Σ̃SS)
−1 −CScS(CSS)

−1||∞.
.

The key part of the rest of proof is obtain by using the concentration inequalities for several key

estimators. In Lemma 28, we give such a result:

Lemma 28 There exist constants c0 and c1 such that, under the event E0, for any ε > 64π
√

logd
n log2

,

we have

P

(∣∣∣Σ̃ jk −C jk

∣∣∣> ε
)

≤ 2exp
(
−nc0ε2

)
, ∀ j,k = 1, . . . ,d; (39)

P

(
||Σ̃SS −CSS||∞ > ε

)
≤ 2s2 exp

(
−nc0ε2

s2

)
; (40)

P

(
||Σ̃ScS −CScS||∞ > ε

)
≤ 2(d − s)sexp

(
−nc0ε2

s2

)
; (41)

P(||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ > ε) ≤ 2d exp(−nc1ε2). (42)

And for any ε < 1/Dmax, we have

P
(
ζ > εDmax(ψ+1)(1−Dmaxε)−1

)
≤ 2dsexp

(
−nc0ε2

s2

)
. (43)
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Proof [Proof of the Lemma 28] Given Lemma 23, Equation (39) and Equation (42) are correct and

Equation (40) and (41) are straightforward using Equation (39). To prove that Equation (43) holds,

we have the key observation from Mai et al. (2012):

||Σ̃ScS(Σ̃SS)
−1 −CScS(CSS)

−1||∞ ≤(
ψ||Σ̃SS −CSS||∞ + ||Σ̃ScS −CScS||∞

)(
Dmax + ||(Σ̃SS)

−1 − (CSS)
−1||∞

)
.

We choose

ε ≥ max{||Σ̃SS −CSS||∞, ||Σ̃ScS −CScS||∞},

and substitute ||Σ̃SS −CSS||∞ and ||Σ̃ScS −CScS||∞ with ε, then apply Equation (40) and Equation

(41), we have Equation (43).

Therefore, using the condition that, under the event E0, we have

ε ≤ n2λn(1−ψ)

2Dmax(n2λn +n0n1(1+ψ)∆max)
=

λ(1−ψ)

4Dmax(λ/2+(1+ψ)∆max)
,

we have

∆max ≤
(1−2εDmax −ψ)λ

4(1+ψ)εDmax

.

Noticing that if

ζ ≤ (ψ+1)εDmax

1−Dmaxε
, ||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ ≤ λ(1−ψ−2εDmax)

4(1+ψ)
,

λ < ∆max and ∆max ≤
(1−2εDmax −ψ)λ

4(1+ψ)εDmax

,

then ζ∆max + ||(µ̂1 − µ̂0)Sc − (µ1 −µ0)Sc ||∞ +(ζ+ψ) ·
(

λ
2
+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞

)
≤ λ

2
.

Accordingly, denoting by

E1 =

{
ζ ≥ (ψ+1)εDmax

1−Dmaxε

}
,

E2 =

{
||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ ≥ λ(1−ψ−2εDmax)

4(1+ψ)

}
,

we have

P(R1(X,β∗∗,λn)
c)≤ P(E1)+P(E2).

Using Lemma 28, we have the result that

P(R1(X,β∗∗,λn)
c)≤2ds · exp

(
−c0nε2

s2

)
+2d · exp

(
−4c1nλ2

n(1−ψ−2εDmax)
2

(1+ψ)2

)
. (44)

Then, to prove that |β̃S|> 0 with high probability, we consider the second set:

R2(X,β∗∗,λn) =
{∣∣∣β̃S

∣∣∣> 0
}
=
{∣∣∣(Σ̃SS)

−1
[n0n1

n2
(µ̂1 − µ̂0)S −λnzS

]∣∣∣> 0
}
.
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Again, denoting by λ = 2n2λn

n0n1
, we have

R2(X,β∗∗,λn) =
{∣∣∣(Σ̃SS)

−1 [(µ̂1 − µ̂0)S −λzS/2]
∣∣∣> 0

}
.

Denote by ζ1 := ||Σ̃SS −CSS||∞ and ζ2 := ||(Σ̃SS)
−1 − (CSS)

−1||∞, we have

(Σ̃SS)
−1 [(µ̂1 − µ̂0)S −λzS/2] = β∗∗

S +(Σ̃SS)
−1[(µ̂1 − µ̂0)S − (µ1 −µ0)S]

+ [(Σ̃SS)
−1 − (CSS)

−1](µ1 −µ0)S −λ(Σ̃SS)
−1zS/2, (45)

where we remind that C−1
SS (µ1 −µ0)S = β∗∗

S . Therefore

P(R2(X,β∗∗,λn))≥P

(
β∗∗

min − (ζ2 +Dmax)(λ/2+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞)

−ζ2∆max > 0

)
.

Moreover, when ζ1Dmax < 1, we have

ζ2 ≤ ||(Σ̃SS)
−1||∞ζ1Dmax ≤ (Dmax +ζ2)ζ1Dmax,

and hence ζ2 < D2
maxζ1/(1−ζ1Dmax). Therefore

P(R2(X,β∗∗,λn))

≥ P

(
ω∆maxDmax − (1−ζ1Dmax)

−1(Dmaxλ/2+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞Dmax

+D2
maxζ1∆max)> 0

)
.

Noting that ω ≤ 1 because ∆maxDmax ≥ ||β∗∗||∞, we have λ ≤ β∗∗
min

2Dmax
≤ 2β∗∗

min

(3+ω)Dmax
under event E0.

Therefore, given that ζ1 ≤ ε and ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞ ≤ ε and ε ≤ ω
(3+ω)Dmax

, ε ≤ ∆maxω
2(ω+3) ,

we have

ω∆maxDmax−(1−ζ1Dmax)
−1(Dmaxλ/2+||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞Dmax+D2

maxζ1∆max)>0.

Therefore

P(R2(X,β∗∗,λn)
c)≤ P(ζ1 ≥ ε)+P(||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞ ≥ ε)

≤ 2s2 exp(−c0nε2/s2)+2sexp(−nc1ε2). (46)

Combining Equation (44) and Equation (46), we have that R2(X,β∗∗,λn) holds with high probabil-

ity.

Finally, using Equation (45), given that R1(X,β∗∗,λn) and R2(X,β∗∗,λn) hold, we have

|| n2β̂

n0n1

−β∗∗||∞ = ||n
2β̃S

n0n1

−β∗∗
S ||∞

≤ (1−ζ1Dmax)
−1(Dmaxλ/2+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞Dmax +D2

maxζ1∆max).
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Using the fact that ε ≤ λ
2Dmax∆max

and ε ≤ λ, we have that, under the event ζ1 ≤ ε and ||(µ̂1 − µ̂0)S −
(µ1 −µ0)S||∞ ≤ ε,

|| n2β̂

n0n1

−β∗∗||∞ ≤ (1−ζ1Dmax)
−1(Dmaxλ/2+λDmax +Dmaxλ/2)

≤ 2Dmaxλ

1− λ
2∆max

≤ 4Dmaxλ.

We finalize the proof by using Lemma 27 to show that P(Ec
0) ≤ 2exp(−n/8). This completes the

proof.
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N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the lasso.

Annals of Statistics, 34(3), 2006.

J. Nocedal and S.J. Wright. Numerical optimization (2nd ed.). Springer verlag, 2006.

J.D. Power, A.L. Cohen, S.M. Nelson, G.S. Wig, K.A. Barnes, J.A. Church, A.C. Vogel, T.O.

Laumann, F.M. Miezin, B.L. Schlaggar, et al. Functional network organization of the human

brain. Neuron, 72(4):665–678, 2011.

P. Ravikumar, M. Wainwright, G. Raskutti, and B. Yu. Model selection in Gaussian graphical mod-

els: High-dimensional consistency of ℓ1-regularized MLE. In Advances in Neural Information

Processing Systems 22, Cambridge, MA, 2009. MIT Press.

A.J. Rothman, P.J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant covariance estima-

tion. Electron. J. Statist., 2:494–515, 2008.

K. Scheinberg, S. Ma, , and D. Glodfarb. Sparse inverse covariance selection via alternating lin-

earization methods. In Advances in Neural Information Processing Systems (NIPS), 23,, 2010.

J. Shao, Y. Wang, X. Deng, and S. Wang. Sparse linear discriminant analysis by thresholding for

high dimensional data. Arxiv preprint arXiv:1105.3561, 2011.

G.R. Shorack and J.A. Wellner. Empirical Processes With Applications to Statistics. Wiley, 1986.

J.B. Smith and E. Wickstrom. Antisense c-myc and immunostimulatory oligonucleotide inhibition

of tumorigenesis in a murine b-cell lymphoma transplant model. Journal of the National Cancer

Institute, 90(15):1146–1154, 1998.

G. Strang. Introduction to Linear Algebra. Wellesley Cambridge Pr, 2003.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types by

shrunken centroids of gene expression. Proceedings of the National Academy of Sciences, 99

(10):6567, 2002.

A.B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics,

32(1):135–166, 2004.

S van de Geer. Empirical Processes in M-estimation, volume 105. Cambridge university press

Cambridge, UK, 2000.

M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-

constrained quadratic programming (lasso). IEEE Transactions on Information Theory, 55(5):

2183–2202, May 2009.

670



COPULA DISCRIMINANT ANALYSIS

L. Wang, J. Zhu, and H. Zou. Hybrid huberized support vector machines for microarray classifica-

tion and gene selection. Bioinformatics, 24(3):412–419, 2008.

S. Wang and J. Zhu. Improved centroids estimation for the nearest shrunken centroid classifier.

Bioinformatics, 23(8):972, 2007.

D. Witten and R. Tibshirani. Penalized classification using fishers linear discriminant. Journal of

the Royal Statistical Society, Series B, 2011.

L. Xue and H. Zou. Regularized rank-based estimation of high-dimensional nonparanormal graph-

ical models. Annals of Statistics, 2012.

M. Yuan. High dimensional inverse covariance matrix estimation via linear programming. Journal

of Machine Learning Research, 11:2261–2286, 2010.

P. Zhao and B. Yu. On model selection consistency of lasso. J. of Mach. Learn. Res., 7:2541–2567,

2007.

T. Zhao, H. Liu, K. Roeder, J. Lafferty, and L. Wasserman. The huge package for high-dimensional

undirected graph estimation in r. The Journal of Machine Learning Research, 98888:1059–1062,

2012.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association,

101(476):1418–1429, 2006.

671


