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Abstract

We present a theoretical analysis for prediction algorithms based on association rules. As part of
this analysis, we introduce a problem for which rules are particularly natural, called “sequential
event prediction.” In sequential event prediction, eventsin a sequence are revealed one by one,
and the goal is to determine which event will next be revealed. The training set is a collection
of past sequences of events. An example application is to predict which item will next be placed
into a customer's online shopping cart, given his/her past purchases. In the context of this problem,
algorithms based on association rules have distinct advantages over classical statistical and machine
learning methods: they look at correlations based on subsets of co-occurring past events (items a
and b imply item c), they can be applied to the sequential event prediction problem in a natural way,
they can potentially handle the “cold start” problem where the training set is small, and they yield
interpretable predictions. In this work, we present two algorithms that incorporate association rules.
These algorithms can be used both for sequential event prediction and for supervised classi�cation,
and they are simple enough that they can possibly be understood by users, customers, patients,
managers, etc. We provide generalization guarantees on these algorithms based on algorithmic
stability analysis from statistical learning theory. We include a discussion of the strict minimum
support threshold often used in association rule mining, and introduce an “adjusted con�dence”
measure that provides a weaker minimum support condition that has advantages over the strict
minimum support. The paper brings together ideas from statistical learning theory, association rule
mining and Bayesian analysis.
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associative classi�cation
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1. Introduction

Consider the problem of predicting the next event within a current eventsequence, given a “sequence
database” of past event sequences to learn from. We might wish to do this,for instance, using data
generated by a customer placing items into the virtual basket of an online grocery store such as
NYC's Fresh Direct, Peapod by Stop & Shop, or Roche Bros. The customer adds items one by one
into the current basket, creating a sequence of events. The customer has identi�ed him- or herself,
so that all past orders are known. After each item selection, a con�rmation screen contains a small
list of recommendations for items that are not already in the basket. If the store can �nd patterns
within the customer's past purchases, it may be able to accurately recommendthe next item that the
customer will add to the basket. Another example is to predict each next symptom of a sick patient,
given the patient's past sequence of symptoms and treatments, and a database of the timelines of
symptoms and treatments for other patients. We call the problem of predicting these sequentially
revealed events based on past sequences of events “sequential event prediction.”

In these examples, a subset of past events (for instance, a set of ingredients for a particular
recipe) can be useful in predicting the next event. In order to make predictions using subsets of past
events, we employassociation rules(Agrawal et al., 1993). An association rule in this setting is an
implicationa ! b (such aslettuce and carrots! tomatoes), wherea is a subset of items, andb is a
single item. The association rule approach has the distinct advantage in beingable to directly model
underlying conditional probabilitiesP(bja) eschewing the linearity assumptions underlying many
classical supervised classi�cation, regression, and ranking methods.Rules also yield predictive
models that are interpretable, meaning that for the rulea ! b, it is clear thatb was recommended
becausea is satis�ed.

The association rules approach makes predictions from subsets of co-occurring past events.
Using subsets may make the estimation problem much easier, because it helps avoid problems with
the curse of dimensionality. For instanceP(tomatoesj lettuce and carrots) could be much easier
to estimate thanP(tomatoesj lettuce, carrots, pears, potatoes, ketchup, eggs, bread, etc.). This is
precisely why learning algorithms created from rules can be helpful for the “cold start” problem in
recommender systems, where predictions need to be made when there are not enough data available
to accurately compute the full probability of a new item being purchased.

There are two main contributions in this work: a generalization analysis for association-rule-
based algorithms, and a formal de�nition of the problem of sequential event prediction. An impor-
tant part of the rule-based analysis is how a fundamental property of a rule, namely the “support,”
is incorporated into the generalization bounds. The “support” of an itemsetis the number of times
that the itemset has appeared in the sequence database. For instance, thesupport oflettuceis the
number of times lettuce has been purchased in the past. Typically in associationrule mining, a
strict minimum support threshold condition is placed on the support of itemsets within a rule, so
that rules falling below the minimum support threshold are simply discarded. The idea of a con-
dition on the support is not shared with other types of supervised learningalgorithms, since they
do not use subsets in the same way as when using rules. Thus a new aspect of generalization is
explored in this analysis in that it handles predictions created from subsetsof data. In classical
supervised learning paradigms, bounds scale only with the sample size, anda large sample is neces-
sary to create a generalization guarantee. In the context of association rules, the minimum support
threshold forces predictions to be made only when there are enough data.Thus, in the association
rules analysis, there are now two mechanisms for generalization: �rst a large sample, and second,

3442



LEARNING THEORY ANALYSIS FOR ASSOCIATIONRULES AND SEQUENTIAL EVENT PREDICTION

a minimum support. These are separate mechanisms, in the sense that it is possible to generalize
with a somewhat small sample size and a large minimum support threshold, and it isalso possible to
generalize with a large sample size and no support threshold. We thus derive two types of bounds:
large sample bounds, which scale with the sample size, and small sample bounds, which scale with
the minimum support of rules. Using both large and small sample bounds (that is,the minimum
of the two bounds) gives a complete picture. The large sample bounds are of orderO(

p
1=m) as

in classical analysis of supervised learning, wherem denotes the number of event sequences in the
database, that is, the number of past baskets ordered by the online grocery store customer.

Most of our bounds are derived using a speci�c notion of algorithmic stability called “pointwise
hypothesis stability.” The original notions of algorithmic stability were invented inthe 1970's and
have been revitalized recently (Devroye and Wagner, 1979; Bousquet and Elisseeff, 2002), the main
idea being that algorithms may be better able to generalize if they are insensitiveto small changes in
the training data such as the removal or change of one training example. Thepointwise hypothesis
stability speci�cally considers the average change in loss that will occur atone of the training ex-
amples if that example is removed from the training set. Our generalization analysis uses conditions
on the minimum support of rules in order to bound the pointwise hypothesis stability.

There are two algorithms considered in this work. At the core of each algorithm is a method
for rank-ordering association rules where the list of possible rules is generated using the customer's
past purchase history and subsets of items within the current basket. These algorithms build off of
the rule mining literature that has been developing since the early 1990's (Agrawal et al., 1993) by
using an application-speci�c rule mining method as a subroutine. Our algorithmsare interpretable
in two different ways: the predictive model coming out of the algorithm is interpretable, and the
whole algorithm for producing the predictive model is interpretable. In other words, the algorithms
are straightforward enough that they can be understood by users, customers, patients, managers,
etc. Further, the rules within the predictive model can provide a simple reason to the customer why
an item might be relevant, or identify that a key ingredient is missing from a particular recipe. The
rules provide “IF,THEN,ELSE” conditions, and yield models of the same formas those from the
expert systems literature from the early days of arti�cial intelligence (Jackson, 1998). Many authors
have emphasized the importance of interpretability and explanation in predictive modeling (see, for
example, the work of Madigan et al., 1997).

The �rst of the two algorithms considered in this work uses a �xed minimum support threshold
to exclude rules whose itemsets occur rarely. Then the remaining rules are ranked according to the
“con�dence,” which for rulea ! b is the empirical probability thatb will be in the basket given
that a is in the basket. The right-hand sides of the highest ranked rules will be recommended by
the algorithm. However, the use of a strict minimum support threshold is problematic for several
well-known reasons, for instance it is known that important rules (“nuggets,” which are rare but
strong rules) are often excluded by a minimum support threshold condition.

The other algorithm introduced in this work provides an alternative to the minimumsupport
threshold, in that rules are ranked by an “adjusted” con�dence, whichis a simple Bayesian shrinkage
estimator of the probability of a ruleP(bja). The right-hand sides of rules with the highest adjusted
con�dence are recommended by the algorithm. For this algorithm, the generalization guarantee
is smoothly controlled by a parameterK, which provides only a weak (less restrictive) minimum
support condition. The key bene�ts of an algorithm based on the adjustedcon�dence are that: 1) it
allows the possibility of choosing very accurate (high con�dence) rules that have appeared very few
times in the training set (low support), and 2) given two rules with the same or similar prediction

3443



RUDIN , LETHAM AND MADIGAN

accuracy on the training set (con�dence), the rule that appears more frequently (higher support)
achieves a higher adjusted con�dence and is thus preferred over the other rule.

All of the bounds are tied to the measure of quality (the loss function) used within the analy-
sis. We would like to directly compare the performance of algorithms for various settings of the
adjusted con�dence'sK parameter (and for the minimum support thresholdq). It is problematic to
have the loss de�ned using the sameK value as the algorithm, in that case we would be using a
different method of evaluation for each setting ofK, and we would not be able to directly compare
performance across different settings ofK. To allow a direct comparison, we select one reference
value of the adjusted con�dence, calledKr (r for “reference”), and the loss depends onKr rather
than onK. The bounds are written generally in terms ofKr . The special caseKr = 0 is where the
algorithm is evaluated with respect to the con�dence measure. The small sample bounds for the
adjusted con�dence algorithm have two terms: one that generally decreases withK (as the support
increases, there is better generalization) and the other that decreases as K gets closer toKr (better
generalization as the algorithm is closer to the way it is being measured). These two terms are thus
agreeing ifKr > K and competing ifKr < K. In practice, the choice ofK can be determined in
several ways:K can be manually determined (for instance by the customer), it can be set using side
information as considered by McCormick et al. (2012), or it can be set viacross-validation on an
extra hold-out set.

The novel elements of the paper include: 1) generalization analysis that incorporates the use
of association rules, for both classi�cation and sequential event prediction, 2) the algorithm based
on adjusted con�dence, where the adjusted con�dence is a Bayesian version of the con�dence,
3) the de�nition of a new supervised learning problem, namely sequential event prediction. The
work falls in the intersection of several �elds that are rarely connected:association rule mining and
associative classi�cation, supervised machine learning and generalization bounds from statistical
learning theory, and Bayesian analysis.

In terms of applications, the de�nition of “sequential event prediction” wasinspired by, but not
restricted to, online grocery stores. Examples are Fresh Direct, Amazon.com grocery, and netgro-
cer.com. Many supermarket chains with local outlets also offer an online shop-and-delivery option,
such as Peapod (paired with Stop & Shop and Giant). Other online retailers and recommendation
engines may bene�t from ranking algorithms that are transparent to the user like amazon.com's
“customers who purchased this also purchased that” recommender system.The same techniques
used to solve the sequential event prediction problem could be used in medical applications to pre-
dict, for instance, the winners at each round of a tournament (e.g, the winners of games in a football
season), or the next move of a video game player in order to design a more interesting game. The
work of McCormick et al. (2012) contains a Bayesian algorithm, based on the analysis introduced in
this paper, for predicting conditions of medical patients in a clinical trial. The work of Letham et al.
(2013b) uses empirical risk minimization to solve sequential event prediction problems dealing with
email recipient recommendation, healthcare, and cooking.

Section 2 describes the two rule-based prediction algorithms, one based ona hard thresholding
of the support (min support) and the other based on the soft thresholding(adjusted con�dence).
Section 3 formally de�nes sequential event prediction. Section 4 providesthe generalization anal-
ysis, Section 5 contains proofs, and Section 6 provides experimental validation. Section 7 contains
a summary of relevant literature. Appendix A discusses the suitability of regression approaches
for solving the sequential event prediction problem. Appendix B providesadditional experimental
results. Appendix C contains an additional proof.
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2. Derivation of Algorithms

We assume an interface similar to that of Fresh Direct, where users add items one by one into the
basket. After each selection, a con�rmation screen contains a handful of recommendations for items
that are not already in the customer's basket. The customer's past orders are known.

The set of items isX, for instanceX=f apples, bananas, pears, etcg; X is the set of pos-
sible events. The customer has a past history of ordersS which is a collection ofm baskets,
S= f zigi= 1;:::;m, zi � X; S is the sequence database. The customer's current basket is usually de-
noted byB � X; B is the current sequence. An algorithm usesB andSto �nd rules a ! b, where
a is in the basket andb is not in the basket. For instance, ifsalsaandguacamoleare in the basket
B and also ifsalsa, guacamoleandtortilla chips were often purchased together inS, then the rule
(salsaandguacamole) ! tortilla chips might be used to recommendtortilla chips.

The support ofa, written Sup(a) or #a, is the number of times in the past the customer has
ordered itemseta,

Sup(a) := #a :=
m

å
i= 1

1 [a� zi ]:

If a = ? , meaninga contains no items, then #a := å i 1 = m. The con�dence of a rulea ! b is
denoted “Conf” or “fS;0”:

Conf(a ! b) := fS;0(a;b) :=
#(a[ b)

#a
;

the fraction of timesb is purchased given thata is purchased. It is an estimate of the conditional
probability of b given a. Ultimately an algorithm should order rules by conditional probability;
however, the rules that possess the highest con�dence values often have a left-hand side with small
support, and their con�dence values do not yield good estimates for the true conditional probabili-
ties. Note thata[ b is the union of the seta with itemb (the intersection is empty). In this work we
introduce the “adjusted” con�dence as a remedy for this problem: Theadjusted con�dencefor rule
a ! b is:

fS;K(a;b) :=
#(a[ b)
#a+ K

:

The adjusted con�dence forK = 0 is equivalent to the con�dence.
The adjusted con�dence is a particular Bayesian estimate of the con�dence. Speci�cally, as-

suming a beta prior distribution for the con�dence, the posterior mean is given by:

p̂ =
L + #(a[ b)
L + K + #a

;

whereL andK denote the parameters of the beta prior distribution. The beta distribution is the
“conjugate” prior distribution for a binomial likelihood. For the adjusted con�dence we choose
L = 0. This choice yields the bene�ts of the lower bounds derived in the remainder of this section,
and the stability properties described later. The prior for the adjusted con�dence tends to bias rules
towards thebottomof the ranked list. Any rule achieving a high adjusted con�dence must overcome
this bias.

Other possible choices forL andK are meaningful. For instance we could choose the following:
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� Collaborative �ltering prior: haveL=(L + K) represent the probability of purchasing itemb
given that itema was purchased, calculated over a subset of other customers. This biases
estimates of the target user's behavior towards the “average” user.

� Revenue management prior: chooseL andK based on the item's price, so more expensive
items are more likely to be recommended.

� Time dependent prior: use only the customer's most recent orders, andchooseL andK to
summarize the user's behavior before this point.

A rule cannot have a high adjusted con�dence unless it has a large enough con�dence and also
a large enough support on the left-hand side. To see this, consider the case when we takefS;K(a;b)
large, meaning for someh, we havefS;K(a;b) > h, implying:

Conf(a ! b) = fS;0(a;b) > h
#a+ K

#a
� h;

Sup(a) = #a � (#a+ K)
�

#(a[ b)
#a+ K

�
> (#a+ K)h; implying Sup(a) = #a >

hK
1� h

: (1)

And further, expression (1) implies:

Sup(a[ b) = #(a[ b) > h(#a+ K) > hK=(1� h):

Thus, rules attaining high values of adjusted con�dence have a lower bound on con�dence, and
a lower bound on support of both the right and left-hand sides, which means a better estimate of
the conditional probability. The bounds clearly do not provide any advantage whenK = 0 and the
con�dence is used.

As K increases, rules with low support are heavily penalized, so they tend notto be at the top
of the list. On the other hand, such rules might be chosen when all other rules have low con�dence.
That is an advantage of having no �rm minimum support cutoff: “nuggets”that have fairly low
support may �lter to the top. Figure 1 illustrates this by showing the support ofrules ordered by
adjusted con�dence, for two values ofK, using a transactional data set “T25I10D10KN200” from
the IBM Quest Market-Basket Synthetic Data Generator (Agrawal and Srikant, 1994) which mimics
a retail data set.1 We use all rules with either one or no items on the left and one item on the right
(as produced for instance byGenRules, presented in Algorithm 1). On each scatter plot, each of
the rules is represented by a point. The rules are ordered on the x-axis by adjusted con�dence, and
the support of the rule is indicated on the y-axis. AsK increases, rules with the highest adjusted
con�dence are required to achieve a higher support, as can be seen from the gap in the lower left
corner of the scatter plot for largerK.

We now formally state the recommendation algorithms. Both algorithms use a subroutine for
mining association rules to generate a set of candidate rules.GenRules(Algorithm 1) is one of
the simplest such rule mining algorithms, which in practice should be replaced bya rule mining
algorithm that retrieves rules tailored to the application. There is a vast literature on such algorithms
since the �eld of association rule mining evolved on their development,e.g.Apriori (Agrawal et al.,
1993).GenRulesrequires a setA which is the set of allowed left-hand sides of rules.

1. The data set generated is T25I10D10KN200 that contains 10K transactions, 200 items, and where the average length
of transactions is 25 and the average pattern length is 10.
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K = 0 K = 10 K = 50

Figure 1: Support vs. rank in adjusted con�dence forK = 0;10;50. Rules with the highest adjusted
con�dence are on the left.

Algorithm 1: Subroutine GenRules.
Input : (S;B;X), that is, past ordersS= f zigi= 1;:::;m, zi � X, current basketB � X, set of

itemsX
Output : Set of all rulesf a j ! b jg j whereb j is a single item that is not in the basketB, and

wherea j is either a subset of items in the basketB, or else it is the empty set. Also
the left-hand sidea j must be allowed (meaning it is inA). That is, output rules
f a j ! b jg j such thatb j 2 XnB anda j � B � X with a j 2 A, or a j = ? .

2.1 Max Con�dence, Min Support Algorithm

The max con�dence, min support algorithm, shown as Algorithm 2, is based on the idea of elimi-
nating rules whose itemsets occur rarely, which is commonly done in the rule-mining literature. For
this algorithm, the rules are ranked by con�dence, and rules that do not achieve a predetermined
�xed minimum support threshold are completely omitted. The algorithm recommendsthe right-
hand sides from the top ranked rules. Speci�cally, ifc items are to be recommended to the user, the
algorithm picks the top rankedc distinct items.

It is common that the minimum support threshold is imposed on the right and left side Sup(a[
b) � q; however, as long as Sup(a) is large, we can get a reasonable estimate ofP(bja). In that
sense, it is suf�cient (and less restrictive) to impose the minimum support threshold on the left side:
Sup(a) � q. Hereq is a number determined beforehand (for instance, the support of the leftmust
be at least 5 items). In this work, we only have a required minimum support onthe left side. As a
technical note, we might worry about the minimum support threshold being sohigh that there are no
rules that meet the threshold. This is actually not a major concern because of the minimum support
being imposed only on the left-hand side: as long asm � q, all rules? ! b meet the minimum
support threshold.

The thresholded con�dence is denoted byf̄S;q:

f̄S;q(a;b) := fS;0(a;b) if #a � q;and f̄S;q(a;b) := 0 otherwise.
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Algorithm 2: Max Con�dence, Min Support Algorithm.
Input : (q;X;S;B, GenRules, c), that is, minimum threshold parameterq, set of itemsX, past

ordersS= f zigi= 1;:::;m, zi � X, current basketB � X, GenRulesgenerates candidate
rulesGenRules(S;B;X) = f a j ! b jg j , number of recommendationsc � 1

Output : Recommendation List, which is a subset ofc items inX
1 Apply GenRules(S;B;X) to get rulesf a j ! b jg j wherea j is in the basketB andb j is not.

2 Compute score for each rulea j ! b j as f̄S;q(a j ;b j ) = fS;0(a j ;b j ) = #(a j [ b j )
#a j

when support

#a j � q, and f̄S;q(a j ;b j ) = 0 otherwise.
3 Reorder rules by decreasing score.
4 Find the topc rules with distinct right-hand sides, and let Recommendation List be the

right-hand sides of these rules.

Algorithm 3: Adjusted Con�dence Algorithm.
Input : (K;X;S;B, GenRules, c), that is, parameterK, set of itemsX, past orders

S= f zigi= 1;:::;m, zi � X, current basketB � X, GenRulesgenerates candidate rules
GenRules(S;B;X) = f a j ! b jg j , number of recommendationsc � 1

Output : Recommendation List, which is a subset ofc items inX
1 Apply GenRules(S;B;X) to get rulesf a j ! b jg j wherea j is in the basketB andb j is not.

2 Compute adjusted con�dence of each rulea j ! b j as fS;K(a j ;b j ) = #(a j [ b j )
#a j + K .

3 Reorder rules by decreasing adjusted con�dence.
4 Find the topc rules with distinct right-hand sides, and let Recommendation List be the

right-hand sides of these rules.

2.2 Adjusted Con�dence Algorithm

The adjusted con�dence algorithm is shown as Algorithm 3. A chosen valueof K is used to compute
the adjusted con�dence for each rule, and rules are then ranked according to adjusted con�dence.

The de�nition of the adjusted con�dence makes an implicit assumption that the order in which
items were placed into previous baskets is irrelevant. It is easy to include a dependence on the
order by de�ning a “directed” version of the adjusted con�dence, andcalculations can be adapted
accordingly. The numerator of the adjusted con�dence becomes the number of past orders wherea
is placed in the basketbefore b.

f (directed)
S;K (a;b) =

#f (a[ b) : b follows ag
#a+ K

:

2.3 Rule Selection

In classical supervised machine learning problems, like classi�cation and regression, designing fea-
tures is one of the main engineering challenges. In association rule modeling,the analogous chal-
lenge is designing the allowed sets of items for the left and right sides of rules. For instance, we
can choose to capture only positive correlations, as if customers were purchasing items from several
independent recipes. The present work considers mainly positive correlations, for the purpose of
exposition and to keep things simple. Beyond this, it is easily possible to capturenegative corre-
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lations between items by creating “negation” items, such as: b. As an example of using negation
rules in the ice cream category, we impose that forvanilla to be on the right, bothchocolateand
strawberryneed to be on the left, in either their usual form or negated. Of these, the rule that is
used corresponds to the current basket. In that case,: chocolate, : strawberry! vanilla could have
a high score in order to recommendvanilla whenchocolateandstrawberryare not in the basket,
whereaschocolate, : strawberry! vanilla might have a low score, conveying that sincechocolate
is already in the basket thatvanilla should not be recommended. Alternatively, we could create a
negation item: ice creamindicating that the basket contains no ice cream presently, sosprinkles+
: ice cream! vanilla could have a high score.

We can also use negation items on the right, where if there is a rulea ! : b that receives a higher
score (con�dence or adjusted con�dence) than any other rules recommendingb, we can choose not
to recommendb. Rules can be designed to capture higher level correlations in speci�c regimes,
for instance the allowed setA can contain up to three items in one product category, but only two
items in another. It is not practical in general to exhaustively enumerate and use all possible rules
in a rule modeling algorithm due to problems with computational complexity. The key isto �nd a
small but good set of rules, for instance the set of rules containing exhaustively all subsets of 1, 2,
or 3 items on the left; or perhaps use the top rules that come out of the Apriorialgorithm (Agrawal
et al., 1993). In Section 7 we provide citations to surveys on association rule mining and associative
classi�cation that discuss this important issue of rule-construction and rule-engineering.

2.4 Modeling Assumption

The general modeling assumption that we make with the two algorithms above can be written as fol-
lows, where current basketB is composed of itemsb1; : : :bt , andXi is the random variable governing
whether itemi will be placed into the basket next:

argmax
i= 1;:::;m

i =2B

P(Xi = 1jXb1 = 1;Xb2 = 1; : : : ;Xbt = 1)

= argmax
i= 1;:::;m

i =2B

max
a2A

a�f b1;:::;bt g

P(Xi = 1jXa1 = 1;Xa2 = 1; : : :):

This expression states that the most likely item to be added next into the basketcan be identi�ed
using a subset of items in the basket, denoteda. That subset is restricted to fall into a classA which
is chosen based on the application at hand and the ease in which that subset can be searched. The
setA determines the hypothesis space for learning, and it would be chosen differently as we move
from the small sample regime to the large sample regime, so that the right side of thisexpression
would eventually look just like the left side when the sample is large.

The choice ofA can help with the problem of “curse of dimensionality” by allowing us to look
at small subsets on the left. A similar example to the one in the introduction isP(machine will
breakj a particular part is old) could be much easier to estimate accurately than the full probability
P(machine will breakj part 1 did poorly at last inspection, part 2 is very old, part 3 is new, part 4
is ok,..., part 612 is ok, etc.). The large dimensionality would likely be a problem when estimating
the full probability. Further, the approximation also could actually be suf�cient to estimate the
full probability. We note that there are circumstances in which it is natural to only consider positive
correlations. In the example of equipment failure, for instance, individual component failures would
always increase the risk of overall failure. More typically, however, consideration of both positive
and negative correlations will be important.
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Our modeling assumption aligns with sequential event prediction, where only part of a sequence
is available to make a prediction at timet. This is a case where standard linear modeling approaches
do not naturally apply, since one would need to make a linear combination of terms, some of which
are unrealized. We discuss this more in Appendix A.

3. De�nition of Sequential Event Prediction

For simplicity in notation, at each time the algorithm recommends only one item,c = 1. A basket
z consists of an ordered (permuted) set of items,z 2 2X � P, where 2X is the set of all subsets
of X, andP is the set of permutations over at mostjXj elements. We have a training set ofm
basketsS= f zig1:::m that are the customer's past orders. Denotez� D to mean that basketz is
drawn randomly (iid) according to distributionD over the space of possible items in baskets and
permutations over those items, 2X � P. Thetth item added to the basket is writtenz�;t , where the
dot is just a placeholder for the generic basketz. Thetth element of theith basket in the training
set is writtenzi;t . We de�ne the number of items in basketz by Tz, that is,Tz := jzj. We introduce
a generic scoring functionfS : (a;b) 7! R wherea is a subset of items andb is a single item. The
input a to the score isf z�;1; : : : ;z�;tg or is a subset off z�;1; : : : ;z�;tg. For now we leta be the full set
f z�;1; : : : ;z�;tg. The inputb is an item that is not already in the basket,b 2 Xnf z�;1; : : : ;z�;tg. The
scoring functionfS comes from an algorithm that takes data setSas input. We can considerfS to
be parameterized, and the algorithm will learn the parameters offS from S.

If the scorefS(f z�;1; : : : ;z�;tg;b) is larger than that offS(f z�;1; : : : ;z�;tg;z�;t+ 1), it means that the
algorithm recommended the wrong item. The loss function below counts the proportion of times
this happens for each basket.

`0� 1( fS;z) :=

1
Tz

Tz� 1

å
t= 0

�
1 if fS(f z�;1; : : : ;z�;tg;z�;t+ 1) � maxb2Xnf z�;1;:::;z�;tg fS(f z�;1; : : : ;z�;tg;b) � 0
0 otherwise.

(Note that ifz contains all items inX, then the recommendation for the last item is deterministic,
so we would not count it towards the loss.) The true error for sequentialevent prediction is an
expectation of the loss with respect toD, and is again a random variable since the training setS is
random.

TrueErr( fS) := Ez� D`0� 1( fS;z):

The empirical risk is the average loss with respect toS:

EmpErr( fS) :=
1
m

m

å
i= 1

`0� 1( fS;zi):

The loss is bounded (by 1), the baskets are chosen independently, andthe empirical risk is an
average of iid random variables and the true risk is the expectation. Thus,the problem �ts into the
traditional scope of statistical learning, and the loss can be used within concentration arguments to
obtain generalization bounds.

In the analysis below, we build the full algorithm for constructingfS into the notation. The
algorithms above are simple enough that they can be encoded within the same lineof notation. To
do this we will say thatfS acts on the the subset off z�;1; : : : ;z�;tg within A that has the maximum
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score. For instance, if we are using the adjusted con�dence algorithm,

fS(f z�;1; : : : ;z�;tg;b) := max
a2A;a�f z�;1;:::;z�;tg

fS;K(a;b):

The 0-1 loss is not smooth, so we will often use a smooth convex upper bound for the loss within
the bounds. Speci�cally, for the way we have de�ned sequential eventprediction, if any item has
a higher score than the next item added, the algorithm incurs an error. (Even if that item is added
later on, the algorithm incurs an error at this timestep.) To measure the size of that error, we can use
the 0-1 loss, indicating whether or not our algorithm gave the highest score to the next item added.
However, the 0-1 loss does not capture how close our algorithm was to correctly predicting the next
item, though this information might be useful in determining how well the algorithm willgeneralize.
We approximate the 0-1 loss using a modi�ed loss that decays linearly near thediscontinuity. This
modi�ed loss allows us to consider differences in adjusted con�dence, not just whether one is larger
than another:

j(adjusted conf. of highest-scoring-correct rule)

� (adjusted conf. of highest-scoring-incorrect rule)j:

However, as discussed in the introduction, if we adjust the loss function'sK value to match the
adjusted con�denceK value, then we cannot fairly compare the algorithm's performance using two
different values ofK. An illustration of this point is that for largeK, all adjusted con�dence values
are� 1, and for smallK, the adjusted con�dence can be� 1; differences in adjusted con�dence
for smallK cannot be directly compared to those for largeK. Since we want to directly compare
performance asK is adjusted, we �x an evaluation measure that is separate from the choice ofK.
Speci�cally, we use the difference in adjusted con�dence values with respect to a referenceKr :

j(f adjusted conf.gKr of highest-scoring-correct ruleK)

� (f adjusted conf.gKr of highest-scoring-incorrect ruleK)j: (2)

The referenceKr is a parameter of the loss function, whereasK is a parameter of an algorithm.
We setKr = 0 to measure loss using the difference in con�dence, andK = 0 for an algorithm that
chooses rules according to the con�dence. AsK gets farther fromKr , the algorithm is more distant
from the way it is being evaluated, which leads to worse generalization. Notethat forKr = K, the
0-1 loss is the same as the sign of (2).

A similar loss will be used in classi�cation, where we incur an error if the adjusted con�dence
of the incorrect label is higher than that of the correct label.

4. Generalization

Our goal in this section is to provide a foundation for supervised learning with association rules,
and also a foundation for sequential event prediction. We will consider several quantities that may
be important in the learning process:m, K or q, the size of the set of possible itemsetsjAj, and the
probability of the least probable itemsets and items.

As part of this section, we establish bounds for vanilla supervised binaryclassi�cation with
rules. Speci�cally we consider “max-score” association rule classi�ers. For a given example, a
max-score classi�er assigns a score to the label +1 and a score to the label -1, and chooses the label
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corresponding to the higher of the two scores. Max-score association rule classi�ers are a special
type of “associative classi�er” (Liu et al., 1998) and are also a type of “decision list” (Rivest, 1987).
The result in 4.2 is a uniform bound based on the VC dimension of the set of max-score classi�ers.
This bound does not depend explicitly onK, which we hypothesize is an important quantity for the
learning process.

In order to understand howK might affect learning, we use algorithmic stability analysis. This
approach originated in the 1970's (Rogers and Wagner, 1978; Devroye and Wagner, 1979) and
was revitalized by Bousquet and Elisseeff (2002). Stability bounds depend on how the space of
functions is searched by the algorithm (rather than the size of the function space), so it often yields
more insightful bounds. These bounds are still not often directly usefuldue to large multiplicative
constants (in our case a factor of 6), but they capture more closely the scalability relationship of
a particular algorithm with respect to important quantities in the learning process. The calculation
required for an algorithmic stability bound is to show that the empirical error willnot dramatically
change by altering or removing one of the training examples and re-runningthe algorithm. There
are many different ways to measure the stability of an algorithm; most of the bounds presented here
use a speci�c type of algorithmic stability (pointwise hypothesis stability) so that the bounds scale
correctly with the number of training examplesm.

Section 4.1 presents a basic stability bound for sequential event prediction. Section 4.2 presents
a uniform VC bound for classi�cation with max-score classi�ers. Section 4.3 provides notation.
Section 4.4 presents another basic stability bound for sequential event prediction, for a rule-based
loss function. We then focus on stability bounds for the rule-based algorithms provided in Section 2.
Speci�cally, Section 4.5 provides stability bounds for the large sample asymptotic regime (for both
sequential event prediction and classi�cation). Then we consider the new smallmregime in Section
4.6, starting with stability bounds that formally show that minimum support thresholds can lead to
better generalization (for both sequential event prediction and classi�cation). From there, we present
small sample bounds for the adjusted con�dence algorithm, for classi�cationand (separately) for
sequential event prediction.

We note that the space of possible baskets (up to a maximum size) is a combinatorially large,
discrete space. Because the space is discrete, all probability estimates converge to the true proba-
bilities, which means that an algorithm that is statistically consistent can be obtained by estimating
p(bjB) directly for the current basketB. If m is large, prediction is easy. The dif�cult part is when
we have only enough data to well estimate conditionals that are much smaller,P(bja);a � B. That
is the problem we are concerned with. Consistency does not imply anything about generalization
bounds for the �nite sample case.

4.1 General Stability Bound for Sequential Event Prediction

In this section we provide a basic stability-based bound for sequential event prediction, by analogy
with Theorem 17 of Bousquet and Elisseeff (2002) (B&E).

We de�ne a sequential event prediction algorithm producingfS to havestrong sequential event
prediction stabilityb (by analogy with B&E De�nition 15) if the following holds:

8S2 Dm;8i 2 f 1; :::;mg

kmaxt= 0;:::;Tz� 1 j fS(f z�;1; : : : ;z�;tg;z�;t+ 1) � fS=i (f z�;1; : : : ;z�;tg;z�;t+ 1)jk¥ � b;
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where the¥ -norm is over baskets. A de�nition we will use from B&E is as follows: an algorithm
producing functionfS with uniform stabilityb0obeys:

8S;8i 2 f 1; :::;mg;k`( fS; �) � `( fS=i ; �)k¥ � b0:

Let us de�ne a modi�ed loss function. Let symbolD temporarily denotefS(f z�;1; : : : ;z�;tg;z�;t+ 1) �
maxb2Xnf z�;1;:::;z�;tg fS(f z�;1; : : : ;z�;tg;b) in the expression below. The loss is:

`g( fS;z) :=
1
Tz

Tz� 1

å
t= 0

8
><

>:

1 if D� 0

1� 1
gD if 0 � D� g

0 if D� g:

The empirical error and leave-one-out error de�ned for this loss are:

EmpErrg( fS;zi) :=
1
m

m

å
i= 1

`g( fS;zi);

LooErrg( fS;zi) :=
1
m

m

å
i= 1

`g( fS=i ;zi):

Lemma 1 A sequential event prediction algorithm producing fS with strong sequential event pre-
diction stabilityb has uniform stability2b=gwith respect to the loss function`g.

Proof

j`g( fS;z) � `g( fS=i ;z)j

�
1
Tz

Tz� 1

å
t= 0

1
g

�
�
�
�

�
fS(f z�;1; : : : ;z�;tg;z�;t+ 1) � max

b2Xnf z�;1;:::;z�;tg
fS(f z�;1; : : : ;z�;tg;b)

�

�
�

fS=i (f z�;1; : : : ;z�;tg;z�;t+ 1) � max
b2Xnf z�;1;:::;z�;tg

fS=i (f z�;1; : : : ;z�;tg;b)
� �
�
�
�

�
1
g

1
Tz

Tz� 1

å
t= 0

[j fS(f z�;1; : : : ;z�;tg;z�;t+ 1) � fS=i (f z�;1; : : : ;z�;tg;z�;t+ 1)j +

�
�
�
� max
b2Xnf z�;1;:::;z�;tg

fS(f z�;1; : : : ;z�;tg;b) � max
b2Xnf z�;1;:::;z�;tg

fS=i (f z�;1; : : : ;z�;tg;b)

�
�
�
�

�

�
1
g

2b:

The �rst inequality uses the Lipschitz property of the loss, as well as an upper bound from moving
the absolute values inside the sum. The third inequality uses the strong stability withrespect tofS.

The following theorem is analogous to Theorem 17 in B&E, for sequential event prediction. The
proof is a direct application of Theorem 12 of B&E to the sequential event prediction loss, combined
with Lemma 1.
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Theorem 2 Let fS be a sequential event prediction algorithm with sequential event stabilityb. Then
for all g> 0 and any m� 1 and anyd 2 (0;1) with probability at least1� d over the random draw
of sample S,

TrueErr( fS) � EmpErrg( fS) +
4b
g

+
�

8m
b
g

+ 1
� r

ln(1=d)
2m

and with probability at least1� d over the random draw of sample S,

TrueErr( fS) � LooErrg( fS) +
4b
g

+
�

8m
b
g

+ 1
� r

ln(1=d)
2m

:

As with classi�cation algorithms, the type of stability one would need to apply thesebounds can
be quite dif�cult to achieve, as it requires that the change in the model is smallfor any training
set when any example is removed. This is particularly dif�cult to achieve when the sample size is
somewhat small. For the association rule bounds, we know that uniform stability is not possible for
many algorithms that perform well. However, there are some algorithms that doexhibit stronger
stability, as we will discuss.

4.2 Classi�cation with Association Rules: A Uniform Bound

In the classi�cation problem, each basket receives a single label that is one of two possible labels
f + 1; � 1g. This contrasts with sequential event prediction where there is a sequence of labels,
one for each item in the basket as it arrives. For classi�cation, we represent basketx as a binary
vector, where entryj is 1 if item j is in the basket. We sample baskets with labels,z = ( x;y),
wherex 2 2X is a set of items (or, equivalently, a binary feature vector) andy 2 f� 1;1g is the
corresponding label. Each labeled basketz is chosen randomly (iid) from a �xed (but unknown)
probability distributionD over baskets and labels. Given a training setSof m labeled baskets, we
wish to construct a classi�er that can assign the correct label to new, unlabeled baskets. We begin
by de�ning a scoring functiong : A � f� 1;1g ! R that assigns a scoreg(a;y) to a rulea ! y.
The set of left-hand sidesA can be any collection of itemsets so long as everyx 2 2X contains
at least onea 2 A. We de�ne avalid scoring function as one where8a 2 A; g(a;1) 6= g(a; � 1)
and8a1;a2 2 A; maxy2f� 1;1gg(a1;y) 6= maxy2f� 1;1gg(a2;y), that is, there are no ties. The validity
requirement will be discussed in the following paragraph. De�neG to be the class of all valid
scoring functions. We now de�ne a class of decision functions that use avalid scoring function
g 2 G to provide a label to a basketx, fg : 2X ! f� 1;1g. The decision function assigns the label
corresponding to the highest scoring rule whose left-hand side is contained inx. Speci�cally,

fg(x) = argmax
y2f� 1;1g

max
a2A;a� x

g(a;y): (3)

We call such a classi�er a “max-score association rule classi�er” (or “decision list”) because it uses
the association rule with the maximum score to perform the classi�cation. LetFmaxscorebe the
class of all max-score association rule classi�ers:Fmaxscore:= f fg : g 2 Gg. We will bound the VC
dimension of classFmaxscore. By de�nition, the VC dimension is the size of the largest set of baskets
to which arbitrary labels can be assigned using somefg 2 Fmaxscore; it is the size of the largest set
that can be shattered.

The argmax in (3) is unique becauseg is valid, thus there are no ties. If ties are allowed but
broken randomly, arbitrary labels can be realized with some probability, forexample by taking
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g(a;y) = 0 for all a andy. In this case the VC dimension can be considered to be in�nite, which
motivates our de�nition of a valid scoring function. This problem actually happens with any clas-
si�cation problem where functionf (x) = 0 8x is within the hypothesis space, thereby allowing all
points to sit on the decision boundary. Our de�nition of validity is equivalentto one in which ties are
allowed but are broken deterministically using a pre-determined ordering onthe rules. In practice,
ties are generally broken in a deterministic way by the computer, so the inclusionof the function
f = 0 is not problematic.

The true error of the max-score association rule classi�er is the expectedmisclassi�cation error:

TrueErrClass( fg) := E(x;y)� D 1 [ fg(x)6= y]: (4)

The empirical error is the average misclassi�cation error over a training set of mbaskets:

EmpErrClass( fg) :=
1
m

m

å
i= 1

1 [ fg(xi )6= yi ]:

The main result of this subsection is the following theorem, which indicates that the size of the
allowed set of left-hand sides may in�uence generalization.

Theorem 3 (VC Dimension for Classi�cation)
The VC dimension h of the set of max-score classi�ers is equal to the sizeof the allowed set of left
hand sides of rules:

VCdim(Fmaxscore) := h := jAj:

From this theorem, classical results such as those of Vapnik (1999, Equations 20 and 21) can be
directly applied to obtain a generalization bound:

Corollary 4 (Uniform Generalization Bound for Classi�cation)
With probability at least1� d the following holds simultaneously for all fg 2 Fmaxscore:

TrueErrClass( fg) � EmpErrClass( fg) +
e
2

 

1+

r

1+
4EmpErrClass( fg)

e

!

;

wheree= 4
jAj

�
ln 2m

jAj + 1
�

� lnd

m
:

Note 1 (on uniform bounds):The result of Theorem 3 holds generally, well beyond the simple
adjusted con�dence or max con�dence, min support algorithms. Those twoalgorithms correspond
to speci�c choices of the scoring functiong: the adjusted con�dence algorithm takesg(a;y) =
fS;K(a;y), and the max con�dence, min support algorithm takesg(a;y) = f̄S;q(a;y). We could use
other strategies to chooseg, for example, choosingfg 2 F to minimize an empirical risk (similar to
what we do in Letham et al., 2013c).

Note 2 (on replacing itemsets with general boolean operators):Although in this paper we restrict
our attention to left-hand sides that are sets of items (e.g., “apples and oranges”), association rules
can be constructed using the boolean operators AND, OR, and NOT (e.g., “apples or oranges but
not bananas”). In this case, the left-hand sides of rules are not contained inx, rather they aretrue
with respect to x. By replacing “contained inx” with “true with respect tox” in the �rst half of the
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proof of Theorem 3 (in Section 5), it can be seen thath � j Aj even when A contains general boolean
association rules. Thus the bound in Corollary 4 extends to boolean operators.

Note 3 (dependence onjAj): We can use a standard argument involving Hoeffding's inequality and
the union bound over elements ofFmaxscoreto obtain that with probability at least 1� d, the following
holds for all fg 2 Fmaxscore:

TrueErrClass( fg) � EmpErrClass( fg) +

s
1

2m

�
ln(2jFmaxscorej) + ln

1
d

�
:

The value ofjFmaxscorej is at most 2jAj . This is because there arejAj ways to determine max
a2A;a� x

g(a;y),

and there are 2 ways to determine the argmax overy. The bound then depends on
p

jAj (as classical
VC bounds would also give, using Theorem 3), but not logjAj. Note that the bound is meaningful
whenjAj < mso that 2jAj < 2m.

Note 4 (on reducingjAj): It is possible that many of the possible left-hand sides injAj are realized
with zero probability. (This depends on the unknown probability distribution that the examples are
drawn from.) Because of this, if we are willing to rede�neA to include only realizable left-hand
sides,jAj can be replaced in the bound byjAj, whereA = f a 2 A : Pz(a � x) > 0g are the itemsets
that have some probability of being chosen.

4.3 Notation for Algorithmic Stability Bounds

We will now introduce the notation that will be used for the algorithmic stability bounds, �rst for
classi�cation and then for sequential event prediction.

4.3.1 NOTATION FOR CLASSIFICATION BOUNDS

Recall that we samplez= ( x;y) wherex 2 2X is a set of items andy 2 f� 1;1g is the corresponding
label. Eachz is sampled randomly (iid) according to a distributionD over the space 2X � f� 1;1g.
The adjusted con�dence algorithm uses the training setSof m iid baskets to compute the adjusted
con�dencesfS;K and �nd a rule that will be used to label the basket. We usez= ( x;y) to refer to a
general labeled basket, andzi = ( xi ;yi) to refer speci�cally to theith labeled basket in the training
set. We de�ne ahighest-scoring-correctrule for x as a rule with the highest adjusted con�dence
that predicts the correct labely. The left-hand side of a highest-scoring-correct rule obeys:

a+
SxK 2 argmax

a� x;a2A
fS;K(a;y) = argmax

a� x;a2A

#(a[ y)
#a+ K

;

whereK � 0. If more than one rule is tied for the maximum adjusted con�dence, one can now be
chosen randomly. If the true labely is not found in the training set, then the con�dence of all rules
with y on the right-hand side will be 0, and we take? ! y as the maximizing rule. We de�ne a
highest-scoring incorrectrule for x as a rule with the highest adjusted con�dence that predicts the
incorrect label� y, so the left-hand side obeys:

a-
SxK 2 argmax

a� x;a2A
fS;K(a; � y) = argmax

a� x;a2A

#(a[ � y)
#a+ K

:
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Again, if the label� y is not found in the training set, we take? ! � y as the maximizing rule.
Otherwise, ties are broken randomly.

A misclassi�cation error is made for labeled basketz when the highest-scoring-correct rule,
a+

SxK ! y, has a lower adjusted con�dence than the highest-scoring incorrect rule a-
SxK ! � y. As

discussed earlier, we will measure this difference in adjusted con�dencevalues with respect to a
referenceKr in order to allow comparisons with different values ofK. We will takeKr � 0. This
leads to the de�nition of the 0-1 loss for classi�cation:

`class
0� 1;Kr

( fS;K ;z) :=
�

1 if fS;Kr (a
+
SxK;y) � fS;Kr (a

-
SxK; � y) � 0

0 otherwise.

The term fS;Kr (a
+
SxK;y) � fS;Kr (a

-
SxK; � y) is the “margin” of examplez (that is, the gap in score

between the predictions for the two classes, see also Shen and Wang, 2007).
We will now de�ne the true error which, whenK = Kr , is a speci�c case of TrueErrClass de�ned

in (4). (The functiong is chosen using the data set, and it isfS;K .) The true error is an expectation
of a loss function with respect toD, and is a random variable since the training setS is random,
S� Dm.

TrueErrClass( fS;K ;Kr ) := Ez� D`class
0� 1;Kr

( fS;K ;z):

We approximate the true error using a different loss`class
g;Kr

that is a continuous upper bound on the
0-1 loss̀ class

0� 1;Kr
. It is de�ned with respect toKr and another real-valued parameterg> 0 as follows:

`class
g;Kr

( fS;K ;z) := cg( fS;Kr (a
+
SxK;y) � fS;Kr (a

-
SxK; � y)) ;

wherecg : R ! [0;1],

cg(y) =

8
<

:

1 for y � 0
1� y=g for 0 � y � g

0 for y � g.

As g approaches 0, losscg approaches the standard 0-1 loss. Also,`class
0� 1;Kr

( fS;K ;z) � `class
g;Kr

( fS;K ;z).
We de�ne TrueErrClassg using this loss:

TrueErrClassg( fS;K ;Kr ) = Ez� D`class
g;Kr

( fS;K ;z);

where TrueErrClass� TrueErrClassg. The generalization bounds for classi�cation will bound
TrueErrClass by considering the difference between TrueErrClassg and its empirical counterpart
that we will soon de�ne. For training basketxi , the left-hand side of a highest-scoring-correct rule
obeys:

a+
SxiK 2 argmax

a� xi ;a2A
fS;K(a;yi);

and the left-hand side of a highest-scoring-incorrect rule obeys:

a-
SxiK 2 argmax

a� xi ;a2A
fS;K(a; � yi):

The empirical error is an average of the loss over the baskets:

EmpErrClassg( fS;K ;Kr ) :=
1
m

m

å
i= 1

`class
g;Kr

( fS;K ;zi):
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For the max con�dence, min support algorithm, we substituteq whereK appears in the notation.
For instance, for general labeled basketz= ( x;y), we analogously de�ne:

a+
Sxq 2 argmax

a� x;a2A
f̄S;q(a;y);

a-
Sxq 2 argmax

a� x;a2A
f̄S;q(a; � y);

`class
0� 1;Kr

( f̄S;q;z) =
�

1 if fS;Kr (a
+
Sxq;y) � fS;Kr (a

-
Sxq; � y) � 0

0 otherwise;

`class
g;Kr

( f̄S;q;z) = cg( fS;Kr (a
+
Sxq;y) � fS;Kr (a

-
Sxq; � y)) ;

and TrueErrClass( f̄S;q;Kr ) and TrueErrClassg( f̄S;q;Kr ) are de�ned analogously as expectations of
the losses, and EmpErrClassg( f̄S;q;Kr ) is again an average of the loss over the training baskets.

4.3.2 NOTATION FOR SEQUENTIAL EVENT PREDICTION BOUNDS

The notation and the bounds for sequential event prediction are similar to those of classi�cation, the
main differences being an additional indext to denote the different time steps, and a set of possible
incorrect recommendations in the place of the single incorrect label� y. As de�ned in Section 3,
a basketz consists of an ordered (permuted) set of items,z 2 2X � P, where 2X is the set of all
subsets ofX, andP is the set of permutations over at mostjXj elements.2 We have a training set
of m basketsS= f zig1:::m that are the customer's past orders. Denotez� D to mean that basketz
is drawn randomly (iid) according to distributionD over the space of possible items in baskets and
permutations over those items, 2X � P. Thetth item added to the basket is writtenz�;t , where the dot
is just a placeholder for the generic basketz. Thetth element of theith basket in the training set is
writtenzi;t . We de�ne the number of items in basketzby Tz, that is,Tz := jzj.

For sequential event prediction, a highest-scoring-correct rule is a highest scoring rule that has
the next itemz�;t+ 1 on the right. The left-hand sidea+

SztK of a highest-scoring-correct rule obeys:

a+
SztK2 argmax

a�f z�;1;:::;z�;tg;a2A
fS;K(a;z�;t+ 1):

If z�;t+ 1 has never been purchased, the adjusted con�dence for all rulesa ! z�;t+ 1 is 0, and we choose
the maximizing rule to be? ! z�;t+ 1. Also at time 0 when the basket is empty, the maximizing rule
is ? ! z�;t+ 1.

The algorithm incurs an error when it recommends an incorrect item. A highest-scoring-
incorrect rule is a highest scoring rule that does not havez�;t+ 1 on the right. It is denoteda-

SztK !
b-

SztK, and obeys:
[a-

SztK;b
-
SztK] 2 argmax

a�f z�;1;:::;z�;t g;a2A
b2Xnf z�;1;:::;z�;t+ 1g

fS;K(a;b):

If there is more than one highest-scoring rule, one is chosen at random (with the exception that all
incorrect rules are tied at zero adjusted con�dence, in which case the left side is taken as? and
the right side is chosen randomly). At timet = 0, the left side is again? . The adjusted con�dence
algorithm determinesa+

SztK, a-
SztK, andb-

SztK, whereas nature choosesz�;t+ 1.

2. Even though we de�ne an order for the basket for this discussion ofprediction, we are still using the undirected
adjusted con�dence to make recommendations rather than the directed version introduced in Section 2. The results
can be trivially extended to the directed case.
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If the adjusted con�dence of the rulea-
SztK ! b-

SztK is larger than that ofa+
SztK ! z�;t+ 1, it means

that the algorithm recommended the wrong item. The loss function below, which isthe same as
the one in Section 3 but with the algorithm built into it, again counts the proportion of times this
happens for each basket, and is de�ned with respect toKr .

`0� 1;Kr ( fS;K ;z) :=
1
Tz

Tz� 1

å
t= 0

�
1 if fS;Kr (a

+
SztK;z�;t+ 1) � fS;Kr (a

-
SztK;b

-
SztK) � 0

0 otherwise.

The true error for sequential event prediction is an expectation of the loss:

TrueErr( fS;K ;Kr ) := Ez� D`0� 1;Kr ( fS;K ;z):

We create an upper bound for the true error by using a different loss`g;Kr that is a continuous
upper bound on the 0-1 loss`0� 1;Kr . It is de�ned analogously to classi�cation, with respect toKr

andcg:

`g;Kr ( fS;K ;z) :=
1
Tz

Tz� 1

å
t= 0

cg( fS;Kr (a
+
SztK;z�;t+ 1) � fS;Kr (a

-
SztK;b

-
SztK)) :

It is true that̀ 0� 1;Kr ( fS;K ;z) � `g;Kr ( fS;K ;z). We de�ne TrueErrg:

TrueErrg( fS;K ;Kr ) := Ez� D`g;Kr ( fS;K ;z);

where TrueErr� TrueErrg. The �rst set of results for sequential event prediction below bound
TrueErr by considering the difference between TrueErrg and its empirical counterpart that we will
soon de�ne.

For the speci�c training basketzi , the left-hand sidea+
SzitK of a highest-scoring-correct rule at

timet obeys :
a+

SzitK 2 argmax
a�f zi;1;:::;zi;tg;a2A

fS;K(a;zi;t+ 1);

similarly, a highest-scoring-incorrect rule forzi at timet has:

[a-
SzitK ;b-

SzitK ] 2 argmax
a�f zi;1;:::;zi;t g;a2A
b2Xnf zi;1;:::;zi;t+ 1g

fS;K(a;b):

The empirical error is de�ned as:

EmpErrg( fS;K ;Kr ) :=
1
m

m

å
basketsi= 1

`g;Kr ( fS;K ;zi):

For the max con�dence, min support algorithm, we again substituteq whereK appears in the
notation. For example, we de�ne:

a+
Sztq 2 argmax

a�f z�;1;:::;z�;tg;a2A
f̄S;q(a;z�;t+ 1);

�
a-

Sztq;b-
Sztq

�
2 argmax

a�f z�;1;:::;z�;t g;a2A
b2Xnf z�;1;:::;z�;t+ 1g

f̄S;q(a;b);

`0� 1;Kr ( f̄S;q;z) :=
1
Tz

Tz� 1

å
t= 0

�
1 if fS;Kr (a

+
Sztq;z�;t+ 1) � fS;Kr (a

-
Sztq;b-

Sztq) � 0
0 otherwise;

`g;Kr ( f̄S;q;z) :=
1
Tz

Tz� 1

å
t= 0

cg( fS;Kr (a
+
Sztq;z�;t+ 1) � fS;Kr (a

-
Sztq;b-

Sztq)) :
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TrueErr( f̄S;q;Kr ) and TrueErrg( f̄S;q;Kr ) are expectations of the losses, and EmpErrg( f̄S;q;Kr ) is an
average of the loss over the training baskets.

4.4 General Stability Bound for Sequential Event Prediction with Rule-Based Loss

This section contains a stability bound for sequential event prediction, by analogy with Theorem 17
of Bousquet and Elisseeff (2002), using the loss we just de�ned, which involves rules. We need to
de�ne what is meant by a rule-based sequential event prediction algorithm. To keep this de�nition
general, we de�ne an algorithmAlg to take as input a data setS, basketz, and itemb� (where
b� is the desired output for basketz), and have the algorithm output: (i) the left hand side of the
algorithm's chosen rule to predictb� , which we calla+

S;z;b� ;Alg, (ii) the algorithm's chosen rule that
predicts an item other thanb� , which is calleda�

S;z;b� ;Alg ! b�
S;z;b� ;Alg.

We de�ne Alg : S;z;b� 7! a+
S;z;b� ;Alg;a�

S;z;b� ;Alg;b�
S;z;b� ;Alg to haveuniform rule stabilityb for se-

quential event prediction with respect toKr if:

8S;8z;8b� ; we havej fS;Kr (a
+
S;z;b� ;Alg;b� ) � fS;Kr (a

+
S=i ;z;b� ;Alg

;b� )j � b and

j fS;Kr (a
�
S;z;b� ;Alg;b�

S;z;b� ;Alg) � fS;Kr (a
�
S=i ;z;b� ;Alg

;b�
S=i ;z;b� ;Alg

)j � b:

That is, the algorithm is stable whenever (i) the adjusted con�dence of the rules used to predict
both b� is not affected much by the removal of one training example, and (ii) when theadjusted
con�dence of the rule to predict something other thanb� is not affected much by the removal of one
training example. We can then show:

Lemma 5 A rule-based sequential event prediction algorithm with uniform rule stabilityb has
uniform stability2b=gwith respect to the loss function`g;Kr .

Proof
�
�
�`g;Kr (Alg(S; �; �);z) � `g;Kr

�
Alg(S=i ; �; �);z

� �
�
�

=

�
�
�
�
�

1
Tz

Tz� 1

å
t= 0

cg

�
fS;Kr (a

+
S;z�;1:::z�;t ;z�;t+ 1;Alg;z�;t+ 1)

� fS;Kr (a
�
S;z�;1:::z�;t ;z�;t+ 1;Alg;b�

S;z�;1:::z�;t ;z�;t+ 1;Alg)
�

� cg

�
fS;Kr (a

+
S=i ;z�;1:::z�;t ;z�;t+ 1;Alg

;z�;t+ 1)

� fS;Kr (a
�
S=i ;z�;1:::z�;t ;z�;t+ 1;Alg

;b�
S=i ;z�;1:::z�;t ;z�;t+ 1;Alg

)
� �

�
�

�
1

Tz;g

Tz� 1

å
t= 0

�
�
� fS;Kr (a

+
S;z�;1:::z�;t ;z�;t+ 1;Alg;z�;t+ 1)

� fS;Kr (a
�
S=i ;z�;1:::z�;t ;z�;t+ 1;Alg

;z�;t+ 1)
�
�
�

+
�
�
� fS;Kr (a

�
S;z�;1:::z�;t ;z�;t+ 1;Alg;b�

S;z�;1:::z�;t ;z�;t+ 1;Alg)

� fS;Kr (a
�
S=i ;z�;1:::z�;t ;z�;t+ 1;Alg

;b�
S=i ;z�;1:::z�;t ;z�;t+ 1;Alg

)
�
�
�

�
1
g

2b:
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In the �rst inequality, we used the Lipschitz property of the loss, and properties of absolute values.
In the second inequality, we used the de�nition of uniform rule stability for both absolute value
terms withb� beingz�;t+ 1, and basketzbeingz�;1:::z�;t .

Adapting the de�nitions in the previous subsection toAlg (rather thanfS), the following theorem
is analogous to Theorem 17 in B&E, for the rule-based loss`g;Kr for sequential event prediction. The
proof is an application of Theorem 12 of B&E to the rule-based sequential event prediction loss,
combined with Lemma 5.

Theorem 6 Let Alg be a sequential event prediction algorithm with uniform rule stabilityb for
sequential event stability. Then for allg> 0 and any m� 1 and anyd 2 (0;1) with probability at
least1� d over the random draw of sample S,

TrueErr(Alg;Kr ) � EmpErrg(Alg;Kr ) +
4b
g

+
�

8m
b
g

+ 1
� r

ln(1=d)
2m

and with probability at least1� d over the random draw of sample S,

TrueErr(Alg;Kr ) � LooErrg(Alg;Kr ) +
4b
g

+
�

8m
b
g

+ 1
� r

ln(1=d)
2m

:

We now focus our attention back to the rule-based algorithms from Section 2,and derive a variety
of bounds for these algorithms.

4.5 Generalization Analysis for Largem

The choice of minimum support thresholdq or the choice of parameterK matters mainly in the
regime wherem is small. For the max con�dence, min support algorithm, whenm is large, then
all (realizable) itemsets have appeared more times than the minimum support threshold with high
probability. For the adjusted con�dence algorithm, whenmis large, prediction ability is guaranteed
as follows.

Theorem 7 (Generalization Bound for Adjusted Con�dence Algorithm, Large m)
For set of rules A, K� 0, Kr � 0, with probability at least1� d (with respect to training set S� Dm),

TrueErr( fS;K ;Kr ) � EmpErrg( fS;K ;Kr ) +

s
1
d

�
1

2m
+ 6b

�

whereb =
2jAj

g

�
1

(m� 1)pminA + K
+

jKr � Kj m
m+ K

(m� 1)pminA + Kr

�
+ O

�
1

m2

�
;

and whereA = f a 2 A : Pz(a � z) > 0g are the itemsets that have some probability of being chosen.
Out of these, any itemset that is the least likely to be chosen has probability pminA:

pminA := min
a2A

Pz� D(a � z):
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As a corollary, the same result holds for classi�cation, replacing TrueErr( fS;K ;Kr ) with
TrueErrClass( fS;K ;Kr ) and EmpErrg( fS;K ;Kr ) with EmpErrClassg( fS;K ;Kr ).

A special case is whereKr = K = 0: the algorithm chooses the rule with maximum con�dence,
and accuracy is then judged by the difference in con�dence values between the highest-scoring-
incorrect rule and the highest-scoring-correct rule. The bound reduces to:

Corollary 8 (Generalization Bound for Maximum Con�dence Setting, Large m)
With probability at least1� d (with respect to S� Dm),

TrueErr( fS;0;0) � EmpErrg( fS;0;0) +

s
1
d

�
1

2m
+

12jAj
g(m� 1)pminA

�
+ O

�
1

m2

�
:

Again the result holds for classi�cation with appropriate substitutions. The use of the pointwise
hypothesis stability within this proof is the key to providing a decay of order

p
(1=m). Now that

this bound is established, we move to the small sample case, where the minimum support is the
force that provides generalization.

4.6 Generalization Analysis for Smallm

The �rst small sample result is a general bound for the max con�dence, minsupport algorithm,
which holds for both classi�cation and sequential event prediction. The max con�dence, min sup-
port algorithm has uniform stability, which is a stronger kind of stability than pointwise hypothesis
stability. This result strengthens the one in the conference version of this work (Rudin et al., 2011),
where we used the bound for pointwise hypothesis stability; uniform stability implies pointwise
hypothesis stability, so the result in the conference version follows automatically.

Theorem 9 (Generalization Bound for Max Con�dence, Min Support)
For q � 1, Kr � 0, with probability at least1� d (with respect to S� Dm), m> q,

TrueErr( f̄S;q;Kr ) � EmpErrg( f̄S;q;Kr ) + 2b+ ( 4mb+ 1)

r
ln1=d

2m

whereb =
2
g

�
1
q

+ Kr

�
1

q+ Kr

� �
1+

1
q

��
:

Note thatjAj does not appear in the bound. For classi�cation, TrueErr( f̄S;q;Kr ) is replaced by
TrueErrClass( f̄S;q;Kr ) and EmpErrg( f̄S;q;Kr ) is replaced by EmpErrClassg( f̄S;q;Kr ). Figure 2 shows
b as a function ofq for several different values ofKr . The special case of interest is whenKr = 0,
so that the loss is judged with respect to differences in con�dence, as follows:

Corollary 10 (Generalization Bound for Max Con�dence, Min Support, Kr = 0)
For q � 1, with probability at least1� d (with respect to S� Dm), m> q,

TrueErr( f̄S;q;0) � EmpErrg( f̄S;q;0) +
4
gq

+
�

8m
gq

+ 1
� r

ln1=d
2m

:
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Figure 2: b vs. q from Theorem 9, withg= 1. The different curves are different values ofKr = 0,
1, 5, 10, 50 from bottom to top.

It is common to use a minimum support threshold that is a fraction ofm, for instance,q =
0:1 � m. In that case, the bound again scales with

p
(1=m). Note that there is no generalization

guarantee whenq = 0; the minimum support threshold enables generalization in the smallmcase.
Now we discuss the adjusted con�dence algorithm for smallm setting. We present separate

small sample bounds for classi�cation and sequential event prediction.

Theorem 11 (Generalization Bound for Adjusted Con�dence Algorithm, Small m, For Classi�ca-
tion Only) For K> 0;Kr � 0, with probability at least1� d,

TrueErrClass( fS;K ;Kr ) � EmpErrClassg( fS;K ;Kr ) +

s
1
d

�
1

2m
+ 6b

�
where

b =
2
g

1
K

�
1�

(m� 1)py;min

m+ K

�

+
2
g

jKr � KjEz� Bin(m� 1;py;min)

2

4 1

K
�

z
m+ K� z

�
+ Kr

�
m

m+ K
+

1
K

�
1�

z
m+ K

��
3

5 ;

where py;min = min(P(y = 1);P(y = � 1)) is the probability of the less popular label.

Again, jAj does not appear in the bound, and generalization is provided byK, and the difference
betweenK andKr ; the interpretation will be further discussed after we state the small sample bound
for sequential event prediction.

In the proof of the following theorem, if we were to use the de�nitions established in Section
4.3.2, the bound does not simplify beyond a certain point and is dif�cult to read at an intuitive level.
From that bound, it would not be easy to see what are the important quantities for the learning
process, and how they scale. In what follows, we rede�ne the loss function slightly, so that it
approximates a 0-1 loss from below instead of from above. This providesa concise and intuitive
bound.
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De�ne a highest-scoringrule a�
SztK ! b�

SztK as a rule that achieves the maximum adjusted con-
�dence, over all of the possible rules. It will either be equal toa+

SztK ! z�;t+ 1 or a-
SztK ! b-

SztK,
depending on which has the larger adjusted con�dence:

[a�
SztK;b

�
SztK] 2 argmax

a�f z�;1;:::;z�;t g;a2A
b2Xnf z�;1;:::;z�;t g

fS;K(a;b):

Note thatb�
SztK can be equal toz�;t+ 1 whereasb-

SztK cannot. The notation fora�
SzitK andb�

SzitK is
similar, and the new loss is:

`new
0� 1;Kr

( fS;K ;z) :=
1
Tz

Tz� 1

å
t= 0

�
1 if fS;Kr (a

+
SztK;z�;t+ 1) � fS;Kr (a

�
SztK;b

�
SztK) < 0

0 otherwise.

By de�nition, the differencefS;Kr (a
+
SztK;z�;t+ 1) � fS;Kr (a

�
SztK;b

�
SztK) can never be strictly positive.

The continuous approximation is:

`new
g;Kr

( fS;K ;z) :=
1
Tz

Tz� 1

å
t= 0

cnew
g ( fS;Kr (a

+
SztK;z�;t+ 1) � fS;Kr (a

�
SztK;b

�
SztK)) ; where

cnew
g (y) =

8
<

:

1 for y � � g
� y=g for � g� y � 0

0 for y � 0.

As gapproaches 0, thecg loss approaches the 0-1 loss. We de�ne TrueErrnew
g and EmpErrnew

g using
this loss: TrueErrnew

g ( fS;K ;Kr ) := Ez� D`new
g;Kr

( fS;K ;z); and EmpErrnew
g ( fS;K ;Kr ) := 1

m å m
i= 1 `new

g;Kr
( fS;K ;zi).

The minimum support threshold condition we used in Theorem 9 is replaced bya weaker condi-
tion on the support. This weaker condition has the bene�t of allowing more rules to be used in order
to achieve a better empirical error; however, it is more dif�cult to get a generalization guarantee.
This support condition is derived from the fact that the adjusted con�dence of the highest-scoring
rule a�

SzitK ! b�
SzitK exceeds that of the highest-scoring-correct rulea+

SzitK ! zi;t+ 1, which exceeds
that of the marginal rule? ! zi;t+ 1:

#a�
SzitK

#a�
SzitK + K

�
#(a�

SzitK [ b�
SzitK)

#a�
SzitK + K

�
#(a+

SzitK [ zi;t+ 1)

#a+
SzitK + K

�
#zi;t+ 1

m+ K
: (5)

This leads to a lower bound on the support #a�
SzitK :

#a�
SzitK � K

�
#zi;t+ 1

m+ K � #zi;t+ 1

�
: (6)

This is not a hard minimum support threshold, yet since the support generally increases asK in-
creases, the bound will give a better guarantee for largeK. Note that in the original notation, we

would replace the condition (5) with
#a-

Szi tK

#a-
Szi tK

+ K �
#(a-

Szi tK
[ b-

Szi tK
)

#a-
Szi tK

+ K �
#b-

Szi tK

m+ K and proceed with analogous

steps in the proof.

Theorem 12 (Generalization Bound for Adjusted Con�dence Algorithm, Small m) For K> 0;Kr �
0, with probability at least1� d,

TrueErrnew
g ( fS;K ;Kr ) � EmpErrnew

g ( fS;K ;Kr ) +

s
1
d

�
1

2m
+ 6b

�
where
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Figure 3:b andbApprox vs. K, whereKr = 10, pmin = 0:3, m= 20,g= 1.

b =
2
g

1
K

�
1�

(m� 1)pmin

m+ K

�

+
2
g

jKr � KjEz� Bin(m� 1;pmin)
1

K
�

z
m+ K� z� 1

�
+ Kr

�
m

m+ K
+

1
K

�
1�

z
m+ K

��
;

and where Q= f x 2 X : Pz� D(x 2 z) > 0g are the items that have some probability of being chosen
by the customer. Out of these, any item that is the least likely to be chosen has probability pmin :=
minx2QPz� D(x 2 z):

The stabilityb has two main terms. The �rst term decreases generally as 1=K. The second term
arises from the error in measuring loss withKr rather thanK. In order to interpretb, consider the
following approximation to the expectation in the bound, which assumes thatm is large and that
m� K � 0, and thatz � mpmin:

b �
2
g

1
K

�
1�

(m� 1)pmin

m+ K

�
+

2
g

jKr � Kj
1

K pmin
1� pmin

+ Kr
: (7)

Intuitively, if eitherK is close toKr or pmin is large (close to 1) then this term becomes small. Figure
3 shows an example plot ofb and the approximation using (7), which we denote bybApprox.

One can observe that ifKr > K, then both terms tend to improve (decrease) with increasingK.
WhenKr < K, then the two terms can compete asK increases.

4.7 Summary of Bounds

We have provided probabilistic guarantees on performance that show thefollowing: 1) For large
m, the association rule-based algorithms have a performance guarantee ofthe same order as other
bounds for supervised learning. 2) For smallm, the minimum support threshold guarantees general-
ization (at the expense of possibly removing important rules). 3) The adjusted con�dence provides
a weaker support threshold, allowing important rules to be used, while still being able to generalize.
4) All generalization guarantees depend on the way the goodness of the algorithm is measured (the
choice ofKr in the loss function). 5) Important quantities in the learning process may include: jAj
or jAj, K or q, pminA or pmin (or py;min).
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5. Proofs

In this section, we prove all results from Section 4.
Proof (Of Theorem 3)First we show thath � j Aj. To do this, we must show that for any collection
of basketsx1; : : : ;xN, N > jAj, there exists a corresponding set of labelsy1; : : : ;yN that cannot be
realized by any max-score association rule classi�er. For eachxi , we introduce a vector ¯xi of length
jAj, where each element corresponds to ana 2 A. The element of ¯xi corresponding toa is 1 if a � xi

and 0 otherwise. Each vector ¯xi is an element ofRjAj , so the collection of vectors ¯x1; : : : ; x̄N must
be linearly dependent ifN > jAj. By linear dependence and the fact that every ¯xi is non-zero and
non-negative, there must exist coef�cientsci and disjoint, non-empty setsM0 andM1 such that:

å
i2M0

ci x̄i = å
i2M1

ci x̄i ; ci > 0: (8)

De�ne A0 = f a 2 A : a � xi for somei 2 M0g andA1 = f a 2 A : a � xi for somei 2 M1g. If a � xi

for somei 2 M0, then the corresponding element of ¯xi will be 1 and the same element in the left
part of (8) will be strictly positive. Then, (8) implies thata � x j for somej 2 M1. Thus,A0 � A1,
and the reverse argument showsA1 � A0, soA0 = A1. There exists a left-hand side with maximum
score,a� = argmaxa2A0 maxy2f� 1;1gg(a;y) = argmaxa2A1 maxy2f� 1;1gg(a;y). The label assigned to
xi , wherei is in M0 or M1 andxi contains itemseta� , is y� = argmaxy2f� 1;1gg(a� ;y). Thus for at
least onei 2 M0 and at least onej 2 M1, fg(xi) = y� = fg(x j ). Setyi = � 1 for all i 2 M0 andyi = 1
for all i 2 M1 and this set of labels cannot be realized, which shows thath � j Aj.

We now show that this upper bound can be achieved by providing a set ofjAj baskets and �nd-
ing elements ofFmaxscorethat can assign them arbitrary labels. Speci�cally, we list the elements of
A asa1; : : : ;ajAj and takexi = ai , for i = 1; : : : ; jAj. Thus each basket is one of the left-hand sides
from the allowed set. The elements ofA are not all the same size, and some elements ofA may
contain other elements; this could cause problems when we are constructing amax-score classi�er
that uniquely assigns a given label to each basket. To get around this, we will place the elements
of A in order of increasing size. The possible sizes of elements ofA are denotedl1; : : : ; lL, so that
l1 < l2 < : : : < lL. We arrange the elements ofA into sets based on their sizes:Sk = f i : jai j = lkg,
k = 1;2; : : : ;L. We are now ready to construct a classi�erfg so that, given an arbitrary set of labels
f yigi , it can label thexi 's according to theyi 's. For all i 2 S1, we setg(ai ;yi) = c1, any positive
number, andg(ai ; � yi) = 0. Thus, for the correspondingxi , fg(xi) = yi . Similarly, for all i 2 S2, we
setg(ai ;yi) = c2, c2 > c1, andg(ai ; � yi) = 0. For anyi 2 S2, it may be that there exists somej 2 S1

such thata j � xi . However, becausec2 > c1, the rule with the maximum score will be “ai ! yi” and
xi is labeled as desired. In general, for anyi 2 Sk, we setg(ai ;yi) = ck, whereck� 1 < ck < ck+ 1 and
g(ai ; � yi) = 0 to getfg(xi) = yi . Because this set ofjAj examples can be arbitrarily labeled using el-
ements ofFmaxscore, we haveh � j Aj, which combined with the previous result shows thath= jAj.

The remaining theorems are based on the algorithmic stability bounds of Bousquet and Elisseeff
(2002) (B&E). Many of the proofs that we provide for classi�cation areessentially identical to those
for sequential event prediction. In these cases, the proofs are given for sequential event prediction,
and afterwards the translation to classi�cation is outlined. The proofs followthis outline: �rst,
we show how differences in adjusted con�dence values with respect toKr can be translated into
differences with respect toK (Lemma 15). Then we bound the difference in adjusted con�dence
values (Lemma 16) in terms of the support. Various lower bounds on the support are used to obtain
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stability for each of the separate cases: largem (Theorem 7), smallm for the max con�dence, min
support algorithm (Theorem 9, which uses uniform stability), smallm for classi�cation with the
adjusted con�dence algorithm (Theorem 11), and smallm for sequential event prediction with the
adjusted con�dence algorithm (Theorem 12).

Following notation of Bousquet and Elisseeff (2002), the input space and output space areX and
Y. Their training set isS2 Z̄m, S= f z̄1 = ( x1;y1); : : : ; z̄m = ( xm;ym)g: An algorithm is a function
A from Z̄m into F � YX which maps a learning setSonto a functionAS from X to Y. The loss is
`( f ; z̄) = c( f (x);y), wherec :Y� Y ! R+ . S=i means to exclude theith example ¯zi . B&E assume that
Y � R but we believe this assumption is unnecessary. In any case,Y is empty for sequential event
prediction. An algorithmA haspointwise hypothesis stabilityb with respect to the loss function` if
the following holds:

8 i 2 f 1; : : : ;mg; ES� Dm[j`(AS; z̄i) � `(AS=i ; z̄i)j] � b:

An algorithmA hasuniform stabilityb with respect to the loss function` if the following holds:

8 S2 Z̄m;8 i 2 f 1; : : : ;mg; jj `(AS; �) � `(AS=i; �)jj¥ � b:

The empirical error is de�ned by:

Remp(A;S) :=
1
m

m

å
i= 1

`(AS; z̄i)

and the true error is:
R(A;S) := Ez̄[`(AS; z̄)]:

We will use the following results that are based on ideas of Devroye and Wagner (1979).

Theorem 13 (B&E Pointwise Hypothesis Stability Bound)(Bousquet and Elisseeff, 2002,Theorem

11, �rst part)
For any learning algorithm A with pointwise hypothesis stabilityb with respect to a loss functioǹ,
such that the value of` is at most M, we have with probability1� d,

R(A;S) � Remp(A;S) +

r
M2 + 12Mmb

2md
:

Theorem 14 (B&E Uniform Stability Bound)(Bousquet and Elisseeff, 2002, Theorem 12, �rst part)

For any learning algorithm A with uniform stabilityb with respect to a loss functioǹ, such that the
value of` is at most M, we have with probability1� d over a random draw of S,

R� Remp+ 2b+ ( 4mb+ M)

r
ln1=d

2m
:

Translating B&E's notation to the adjusted con�dence setting for sequential event prediction,
z̄i = xi = zi , with zi 2 2X � P. For our problem,f (xi) is the value of the loss and theyi 's are not de-
�ned. In other words,̀ (AS; z̄i) = c( f (xi);yi) = f (xi) which in our notation is equal tòg;Kr ( fS;K ;zi).
For the max con�dence, min support setting,`(AS; z̄i) translates tòg;Kr ( f̄S;q;zi). The adjusted con-
�dence is bounded by 1 soM = 1.

The following lemma allows us to convert differences in adjusted con�dencewith respect toKr

into differences with respect toK.
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Lemma 15 (Conversion of Adjusted Con�dence) For K� 0, Kr � 0, 0 � s1 � S1, 0 � s2 � S2

�
�
�
�

s1

S1 + Kr
�

s2

S2 + Kr

�
�
�
� �

�
�
�
�

s1

S1 + K
�

s2

S2 + K

�
�
�
�

�
1+

jKr � Kj
S1 + Kr

�
+

�
jKr � Kj
S̃+ Kr

� �
s2

S2 + K

�

whereS̃= min(S1;S2).
Proof

�
�
�
�

s1

S1 + Kr
�

s2

S2 + Kr

�
�
�
�

=

�
�
�
�

s1

S1 + K
�

s2

S2 + K
+ ( � Kr + K)

�
s1

S1 + K

�
1

S1 + Kr

�
�

s2

S2 + K

�
1

S2 + Kr

�� �
�
�
�

�

�
�
�
�

s1

S1 + K
�

s2

S2 + K

�
�
�
� + jKr � Kj

�
�
�
�

s1

S1 + K

�
1

S1 + Kr

�
�

s2

S2 + K

�
1

S2 + Kr

� �
�
�
� : (9)

Taking just the second absolute value term:

�
�
�
�

s1

S1 + K

�
1

S1 + Kr

�
�

s2

S2 + K

�
1

S2 + Kr

� �
�
�
�

=

�
�
�
�

s1

S1 + K

�
1

S1 + Kr

�
�

s2

S2 + K

�
1

S1 + Kr

�
+

s2

S2 + K

�
1

S1 + Kr

�
�

s2

S2 + K

�
1

S2 + Kr

� �
�
�
�

�

�
�
�
�

s1

S1 + K
�

s2

S2 + K

�
�
�
�

1
S1 + Kr

+
s2

S2 + K

�
�
�
�

1
S1 + Kr

�
1

S2 + Kr

�
�
�
�

�

�
�
�
�

s1

S1 + K
�

s2

S2 + K

�
�
�
�

1
S1 + Kr

+
s2

S2 + K

�
�
�
�

1
S̃+ Kr

�
�
�
� :

Putting this back into (9) yields the statement.

The next results bound the difference in the highest adjusted con�dence values when the basket
zi is removed fromS. We require some additional notation in order to exclude basketi. Denote #=ia
to be the number of timesa has appeared inS=i , that is, #=ia = å i06= i 1 [a2zi0]. For sequential event
prediction, the left-hand side of a highest-scoring-correct rule for a general basketzonS=i obeys:

a+
S=iztK

2 argmax
a�f z�;1;:::;z�;tg;a2A

fS=i ;K(a;z�;t+ 1) = argmax
a�f z�;1;:::;z�;tg;a2A

#=i(a[ z�;t+ 1)
#=ia+ K

:

A highest-scoring-incorrect rule for basketzonS=i obeys:

[a-
S=iztK;b-

S=iztK] 2 argmax
a�f z�;1;:::;z�;t g;a2A
b2Xnf z�;1;:::;z�;t+ 1g

fS=i ;K(a;b) = argmax
a�f z�;1;:::;z�;t g;a2A
b2Xnf z�;1;:::;z�;t+ 1g

#=i(a[ b)
#=ia+ K

:

In Lemma 16 below, we bound the difference in adjusted con�dence of a general basketzwhen
zi is removed from the training set, in the sequential event prediction setting.
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Lemma 16 (Difference in Adjusted Con�dence)
De�ne ãz := min(#a-

SztK;#
=ia-

S=iztK) andâz := min(#a+
SztK;#

=ia+
S=iztK

). Then,

(I) j fS;K(a-
SztK;b

-
SztK) � fS=i ;K(a-

S=iztK;b-
S=iztK)j �

1
ãz+ K

; and

(II) j fS;K(a+
SztK;z�;t+ 1) � fS=i ;K(a+

S=iztK
;z�;t+ 1)j �

1
âz+ K

:

Proof Any itemseta is either inzi or not, thus #=ia � #a� 1 and #=ia � #a. Also the number of
times we seea[ b is less than or equal to the number of times we seea. These observations lead to
the following inequalities that will be used throughout the proof:

#=i(a-
SztK[ b-

SztK) � #(a-
SztK[ b-

SztK) � 1; (10)

#=ia-
SztK � #a-

SztK; (11)

#(a-
S=iztK [ b-

S=iztK) � #=i(a-
S=iztK [ b-

S=iztK); (12)

#a-
S=iztK � #=ia-

S=iztK + 1; (13)

#=i(a-
S=iztK [ b-

S=iztK) � #=ia-
S=iztK; (14)

#=i(a+
SztK[ z�;t+ 1) � #(a+

SztK[ z�;t+ 1) � 1; (15)

#=ia+
SztK � #a+

SztK; (16)

#(a+
S=iztK

[ z�;t+ 1) � #=i(a+
S=iztK

[ z�;t+ 1); (17)

#a+
S=iztK

� #=ia+
S=iztK

+ 1; (18)

#=i(a+
S=iztK

[ z�;t+ 1) � #=ia+
S=iztK

: (19)

To prove (I) we provide upper bounds for bothfS;K(a-
SztK;b

-
SztK) � fS=i ;K(a-

S=iztK;b-
S=iztK) and

fS=i ;K(a-
S=iztK;b-

S=iztK) � fS;K(a-
SztK;b

-
SztK). Using that for basketz the adjusted con�dence of the

highest-scoring-incorrect rule onS=i , a-
S=iztK

! b-
S=iztK

, exceeds that of another incorrect rulea-
SztK!

b-
SztK, and using inequalities (10) and (11),

#=i(a-
S=iztK

[ b-
S=iztK

)

#=ia-
S=iztK

+ K
�

#=i(a-
SztK[ b-

SztK)

#=ia-
SztK+ K

�
#(a-

SztK[ b-
SztK) � 1

#a-
SztK+ K

:

Using the inequality above:

fS;K(a-
SztK;b

-
SztK) � fS=i ;K(a-

S=iztK;b-
S=iztK)

=
#(a-

SztK[ b-
SztK)

#a-
SztK+ K

�
#=i(a-

S=iztK
[ b-

S=iztK
)

#=ia-
S=iztK

+ K

�
#(a-

SztK[ b-
SztK)

#a-
SztK+ K

�
#(a-

SztK[ b-
SztK) � 1

#a-
SztK+ K

=
1

#a-
SztK+ K

: (20)

Considering the other direction, using that the highest-scoring-incorrect rule underS has higher
adjusted con�dence than the rulea-

S=iztK
! b-

S=iztK
and inequalities (12) and (13):

#(a-
SztK[ b-

SztK)
#a-

SztK+ K
�

#(a-
S=iztK

[ b-
S=iztK

)

#a-
S=iztK

+ K
�

#=i(a-
S=iztK

[ b-
S=iztK

)

#=ia-
S=iztK

+ 1+ K
:

3469



RUDIN , LETHAM AND MADIGAN

Using this, and inequality (14),

fS=i ;K(a-
S=iztK;b-

S=iztK) � fS;K(a-
SztK;b

-
SztK)

=
#=i(a-

S=iztK [ b-
S=iztK)

#=ia-
S=iztK

+ K
�

#(a-
SztK[ b-

SztK)
#a-

SztK+ K

�
#=i(a-

S=iztK
[ b-

S=iztK
)

#=ia-
S=iztK

+ K
�

#=i(a-
S=iztK

[ b-
S=iztK

)

#=ia-
S=iztK

+ 1+ K

=
#=i(a-

S=iztK
[ b-

S=iztK
)

(#=ia-
S=iztK

+ K)(#=ia-
S=iztK

+ 1+ K)

�
#=ia-

S=iztK

(#=ia-
S=iztK

+ K)(#=ia-
S=iztK

+ 1+ K)
�

1
#=ia-

S=iztK
+ K

:

Together with (20) this proves (I). The proof of part (II) is identical, usinga+
SztK anda+

S=iztK
in the

place ofa-
SztK anda-

S=iztK, z�;t+ 1 in the place ofb-
SztK andb-

S=iztK, and inequalities (15)-(19).

The following lemma is the backbone for our stability computations. The upper bound in this
lemma depends only on the supports of the relevant rules. Recall that ˜az := min(#a-

SztK;#
=ia-

S=iztK
)

andâz := min(#a+
SztK;#

=ia+
S=iztK

).

Lemma 17 (Large Support Implies Stability)

j`g;Kr ( fS;K ;z) � `g;Kr ( fS=i ;K ;z)j

�
1
g

1
Tz

Tz� 1

å
t= 0

�
1

ãz+ K
+ jKr � Kj

�
1

ãz+ Kr

�
m

m+ K
+

1
ãz+ K

��

+
1

âz+ K
+ jKr � Kj

�
1

âz+ Kr

�
m

m+ K
+

1
âz+ K

���
:

Proof

j`g;Kr ( fS;K ;z) � `g;Kr ( fS=i ;K ;z)j

=

�
�
�
�
�

1
Tz

Tz� 1

å
t= 0

cg
�

fS;Kr (a
+
SztK;z�;t+ 1) � fS;Kr (a

-
SztK;b

-
SztK)

�

� cg

�
fS=i ;Kr

(a+
S=iztK

;z�;t+ 1) � fS=i ;Kr
(a-

S=iztK;b-
S=iztK)

� �
�
�

�
1
g

1
Tz

Tz� 1

å
t= 0

j fS;Kr (a
+
SztK;z�;t+ 1) � fS;Kr (a

-
SztK;b

-
SztK)

� fS=i ;Kr
(a+

S=iztK
;z�;t+ 1) + fS=i ;Kr

(a-
S=iztK;b-

S=iztK)j

�
1
g

1
Tz

Tz� 1

å
t= 0

j fS;Kr (a
-
SztK;b

-
SztK) � fS=i ;Kr

(a-
S=iztK;b-

S=iztK)j

+ j fS;Kr (a
+
SztK;z�;t+ 1) � fS=i ;Kr

(a+
S=iztK

;z�;t+ 1)j

= :
1
g

1
Tz

Tz� 1

å
t= 0

term1 + term2:
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The �rst inequality above used thatcg is 1=g-Lipschitz. Consider an upper bound for term1 as
follows from Lemma 15:

term1 = j fS;Kr (a
-
SztK;b

-
SztK) � fS=i ;Kr

(a-
S=iztK;b-

S=iztK)j

� j fS;K(a-
SztK;b

-
SztK) � fS=i ;K(a-

S=iztK;b-
S=iztK)j

�
1+

jKr � Kj
#a-

SztK+ Kr

�

+
jKr � Kj

min(#a-
SztK;#

=ia-
S=iztK

) + Kr

#=i(a-
S=iztK [ b-

S=iztK)

#=ia-
S=iztK

+ K

� j fS;K(a-
SztK;b

-
SztK) � fS=i ;K(a-

S=iztK;b-
S=iztK)j

�
1+

jKr � Kj
ãz+ Kr

�

+
jKr � Kj
ãz+ Kr

#=i(a-
S=iztK [ b-

S=iztK)

#=ia-
S=iztK

+ K
:

Now incorporating Lemma 16 and that
#=i (a-

S=i ztK
[ b-

S=i ztK
)

#=ia-
S=i ztK

+ K
� m� 1

m� 1+ K � m
m+ K ,

term1 �
1

ãz+ K

�
1+

jKr � Kj
ãz+ Kr

�
+

jKr � Kj
ãz+ Kr

m
m+ K

=
1

ãz+ K
+ jKr � Kj

�
1

ãz+ Kr

�
m

m+ K
+

1
ãz+ K

��
:

The same steps can be followed exactly for term2.

The following lemma is used for the proof for the large sample bound.

Lemma 18 (Asymptotic Expectation of1=(#a+ K)) For any itemset a2 A and any K� 0,

ES� D
1

#a+ K
�

1
mpa + K

+ O
�

1
m2

�
;

where pa is the probability that a random basket contains a, that is, pa = Pz� D(a � z).

Since #a is binomially distributed, #a � Binomial(m; pa), the proof of this lemma can be found by
directly applying Lemma 21 in Appendix C.

We now give the proof of pointwise hypothesis stability for the large sample bound. We are in-
terested in the change in adjusted con�dence of speci�c basketzi when that same basket is removed
from the training set, that is onS=i . Because Lemma 17 holds for anyz, it also holds forzi , where
ãzi := min(#a-

SzitK ;#=ia-
S=izitK

) andâzi := min(#a+
SzitK ;#=ia+

S=izitK
).

Proof (Of Theorem 7)First, note that:

1
ãzi + Kr

=
1

min(#a-
SzitK ;#=ia-

S=izitK
) + Kr

�
1

min(#=ia-
SzitK ;#=ia-

S=izitK
) + Kr

� å
a2A

1
#=ia+ Kr

:
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By the same reasoning, similar upper bounds hold for 1=(ãzi + K), 1=(âzi + Kr ), and 1=(âzi + K).
Starting from Lemma 17 using speci�c basketzi and incorporating these bounds on each fraction,

j`g;Kr ( fS;K ;zi) � `g;Kr ( fS=i ;K ;zi)j

�
2
g

1
Tzi

Tzi � 1

å
t= 0

"

å
a2A

1
#=ia+ K

+ jKr � Kj

" 

å
a2A

1
#=ia+ Kr

!  
m

m+ K
+ å

a2A

1
#=ia+ K

!##

: (21)

We have also that for anyKr , using thatpminA � pa for all a 2 A, and Lemma 18:

ES=i � Dm� 1 å
a2A

1
#=ia+ Kr

�
jAj

(m� 1)pminA + Kr
+ O

�
1

m2

�
: (22)

Thus from (21) and (22), for any 1� i � m,

ES� Dmj`g;Kr ( fS;K ;zi) � `g;Kr ( fS=i ;K ;zi)j

�
2
g

Ezi � D
1
Tzi

Tzi � 1

å
t= 0

ES=i � Dm� 1

"

å
a2A

1
#=ia+ K

+ jKr � Kj

" 

å
a2A

1
#=ia+ Kr

!  
m

m+ K
+ å

a2A

1
#=ia+ K

!##

�
2
g

Ezi � D
1
Tzi

Tzi � 1

å
t= 0

jAj
(m� 1)pminA + K

+ O
�

1
m2

�

+ jKr � Kj
��

jAj
(m� 1)pminA + Kr

� �
m

m+ K

�
+ O

�
1

m2

��

=
2
g

jAj
(m� 1)pminA + K

+ jKr � Kj
2
g

�
jAj

(m� 1)pminA + Kr

� �
m

m+ K

�
+ O

�
1

m2

�
= : b;

where in the second inequality, we moved the(å a2A 1=(#=ia+ Kr ))( å a2A 1=(#=ia+ K)) terms into
theO

� 1
m2

�
. To see this, one can take a Taylor expansion around the mean for all of the terms similar

to 1
#a+ K as follows:

1
#a+ K

�
1

mpa + K
�

(#a� mpa)
(mpa + K)2 +

(#a� mpa)2

(mpa + K)3 + : : : :

When these terms are multiplied together, the result is alwaysO
� 1

m2

�
. Thus, the algorithm has

pointwise hypothesis stabilityb. Usingb within the B&E theorem yields the result.

Proof (Of Theorem 9)
Starting from Lemma 17, we will use the minimum support threshold to provide the upper bound
for the reciprocal of the support of rules. All of the steps used to derive Lemma 17 are valid
for the max con�dence, min support setting, only the notation needs to be changed. We de�ne
ãz;q := min(#a-

Sztq;#=ia-
S=iztq

), and now de�ne also ˆaz;q := min(#a+
Sztq;#=ia+

S=iztq
). Lemma 17 provides

for f̄S;q and usingK = 0:

j`g;Kr ( f̄S;q;z) � `g;Kr ( f̄S=i ;q;z)j

�
1
g

1
Tz

Tz� 1

å
t= 0

�
1

ãz;q
+ Kr

�
1

ãz;q + Kr

�
1+

1
ãz;q

��
+

1
âz;q

+ Kr

�
1

âz;q + Kr

�
1+

1
âz;q

���
:
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The requirement of a minimum support threshold ensures that for any particular itemb, the highest
scoring rule withb on the right must have support at leastq, that is: argmax

a�f z�;1;:::;z�;tg;a2A
f̄S;q(a;b)

includes only itemsets with support at leastq. If b has never been ordered, maxa f̄S;q(a;b) = 0 and
we choose the maximizing rule to be? ! b, with supportm > m� 1 � q. By this reasoning, all
of the rules we use have support at leastq: #a-

Sztq � q, #=ia-
S=iztq � q, #a+

Sztq � q, and #=ia+
S=iztq

� q.
Thus,ãz;q � q and also ˆaz;q � q. Using this in the previous expression:

j`g;Kr ( f̄S;q;z) � `g;Kr ( f̄S=i ;q;z)j

�
2
g

1
Tz

Tz� 1

å
t= 0

�
1
q

+ Kr

��
1

q+ Kr

� �
1+

1
q

���
=

2
g

�
1
q

+ Kr

�
1

q+ Kr

� �
1+

1
q

��
= : b:

This expression holds for allSand for allz. It is thus an upper bound on the uniform stability. Using
b within the B&E theorem yields the result.

The proofs of Theorems 7 and 9 for classi�cation are essentially identicalto those provided
above for sequential event prediction. The left-hand side of a highest-scoring-correct rule for general
basketx onS=i obeys:

a+
S=ixK

2 argmax
a� x;a2A

fS=i ;K(a;y) = argmax
a� x;a2A

#=i(a[ y)
#=ia+ K

:

And the left-hand side of a highest-scoring-incorrect rule forx onS=i obeys:

a-
S=ixK 2 argmax

a� x;a2A
fS=i ;K(a; � y) = argmax

a� x;a2A

#=i(a[ � y)
#=ia+ K

:

We further de�neãx = min(#a-
SxK;#=ia-

S=ixK
) andâx := min(#a+

SxK;#=ia+
S=ixK

), andãxi andâxi as the
analogous quantities for speci�c basketxi . Lemma 16, Lemma 17, and the proof of Theorem 7 all
hold for classi�cation by making the following substitutions in notation: ˜ax andãxi for ãz andãzi ;
âx andâxi for âz andâzi ; a-

SxK and � y for a-
SztK andb-

SztK; a+
SxK andy for a+

SztK andz�;t+ 1; a-
S=ixK

and� y for a-
S=iztK andb-

S=iztK; a+
S=ixK

for a+
S=iztK

; `class
g;Kr

for `g;Kr ; and removing entirely1
Tz

å
Tz� 1
t= 0 . For

Theorem 9, we again replaceK with q in the notation to de�ne ˜ax;q = min(#a-
Sxq;#=ia-

S=ixq
) and

âx;q := min(#a+
Sxq;#=ia+

S=ixq
), and then substitute ˜ax;q andâx;q for ãz;q andâz;q in the proof of the

theorem.

The next lemma is speci�c to classi�cation and is used for the small sample boundfor the
adjusted con�dence algorithm.
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Lemma 19 (Support Thresholds for Adjusted Con�dence, Classi�cation)
For speci�c basket xi , it is true that:

1
ãxi + Kr

� ãKr ; whereãKr =
m+ K � #=i(� yi)

K(#=i(� yi)) + Kr (m+ K � #=i(� yi))
;

1
ãxi + K

� ãK ; whereãK =
1
K

 

1�
#=i(� yi)
m+ K

!

;

1
âxi + Kr

� âKr ; whereâKr =
m+ K � #=iyi

K(#=iyi) + Kr (m+ K � #=iyi)
; and,

1
âxi + K

� âK ; whereâK =
1
K

 

1�
#=iyi

m+ K

!

:

Proof First we use the fact that onS, the adjusted con�dence of the highest-scoring-incorrect rule
for xi , a-

SxiK ! � yi , exceeds that of the rule? ! � yi :

#a-
SxiK

#a-
SxiK + K

�
#(a-

SxiK [ � yi)

#a-
SxiK + K

�
#(� yi)
m+ K

=
#=i(� yi)
m+ K

;

where in the last step we used that basketxi does not have label� yi . Rearranging,

#a-
SxiK � s̃ wheres̃ := K

 
#=i(� yi)

m+ K � #=i(� yi)

!

:

Similarly, the adjusted con�dence of the highest-scoring-incorrect rule for xi with data setS=i ,
a-

S=ixiK
! � yi , exceeds that of the rule? ! � yi , thus:

#=ia-
S=ixiK

#=ia-
S=ixiK

+ K
�

#=i(a-
S=ixiK

[ � yi)

#=ia-
S=ixiK

+ K
�

#=i(� yi)
m� 1+ K

�
#=i(� yi)
m+ K

:

Rearranging, we �nd that #=ia-
S=ixiK

� s̃ . Thus,ãxi = min(#a-
SxiK ;#=ia-

S=ixiK
) � s̃ . We can derive a

similar bound for ˆaxi , beginning with #a+
SxiK :

#a+
SxiK

#a+
SxiK + K

�
#(a+

SxiK [ yi)

#a+
SxiK + K

�
#yi

m+ K
=

#=iyi + 1
m+ K

>
#=iyi

m+ K
:

The �rst equality uses that basketxi has labelyi . Rearranging,

#a+
SxiK > ŝ whereŝ := K

 
#=iyi

m+ K � #=iyi

!

:

Similarly for #=ia+
S=ixiK

:

#=ia+
S=ixiK

#=ia+
S=ixiK

+ K
�

#=i(a+
S=ixiK

[ yi)

#=ia+
S=ixiK

+ K
�

#=iyi

m� 1+ K
�

#=iyi

m+ K
:
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Rearranging, we �nd #=ia-
S=ixiK

� ŝ . Thusâxi = min(#a+
SxiK ;#=ia+

S=ixiK
) � ŝ . These lower bounds on

the supports are now used to create upper bounds for the reciprocals:

1
ãxi + Kr

�
1

s̃ + Kr
= ãKr and

1
ãxi + K

�
1

s̃ + K
= ãK :

The bounds for 1
âxi + Kr

and 1
âxi + K are obtained in a similar way usinĝs.

The proof of the small sample bound for classi�cation follows directly from this lemma.

Proof (Of Theorem 11)
From Lemma 17, adapted for classi�cation,

j`class
g;Kr

( fS;K ;zi) � `class
g;Kr

( fS=i ;K ;zi)j

�
1
g

�
1

ãxi + K
+ jKr � Kj

�
1

ãxi + Kr

�
m

m+ K
+

1
ãxi + K

��

+
1

âxi + K
+ jKr � Kj

�
1

âxi + Kr

�
m

m+ K
+

1
âxi + K

���
:

Combining this and Lemma 19, we have:

j`class
g;Kr

( fS;K ;zi) � `class
g;Kr

( fS=i ;K ;zi)j

�
1
g

�
ãK + jKr � KjãKr

�
m

m+ K
+ ãK

�
+ âK + jKr � KjâKr

�
m

m+ K
+ âK

��

=
1
g

(ãK + âK) +
1
g

jKr � Kj
�
ãKr

�
m

m+ K
+ ãK

�
+ âKr

�
m

m+ K
+ âK

��
:

We now provide an upper bound on the expectation of this quantity, beginning with the �rst
term:

Ez1;:::;zm

1
g

(ãK + âK) = Ez1;:::;zm

1
g

1
K

" 

1�
#=i(� yi)
m+ K

!

+

 

1�
#=iyi

m+ K

!#

=
1
g

1
K

�
2�

(m� 1)p� yi

m+ K
�

(m� 1)pyi

m+ K

�

�
2
g

1
K

�
1�

(m� 1)py;min

m+ K

�
:

Here we used the fact that the mean of the binomial distribution Bin(m� 1; pyi ) is (m� 1)pyi ,
and we use a lower bound forpyi andp� yi , namelypy;min = min(P(y= 1);P(y= � 1)) the minimum
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probability of a randomly chosen basket having any particular label. For the second term,

Ez1;:::;zm

1
g

jKr � Kj
�
ãKr

�
m

m+ K
+ ãK

�
+ âKr

�
m

m+ K
+ âK

��

=
1
g

jKr � KjEz1;:::;zm

2

4 1

K
�

#=i (� yi )
m+ K� #=i (� yi )

�
+ Kr

 
m

m+ K
+

1
K

 

1�
#=i(� yi)
m+ K

!! 3

5

+
1
g

jKr � KjEz1;:::;zm

2

4 1

K
�

#=iyi
m+ K� #=iyi

�
+ Kr

 
m

m+ K
+

1
K

 

1�
#=iyi

m+ K

!! 3

5

=
1
g

jKr � KjEz̃� Bin(m� 1;p� yi )

2

4 1

K
�

z̃
m+ K� z̃

�
+ Kr

 
m

m+ K
+

1
K

 

1�
z̃

m+ K

!! 3

5

+
1
g

jKr � KjEẑ� Bin(m� 1;pyi )

2

6
4

1

K
�

ẑ
m+ K� ẑ

�
+ Kr

 
m

m+ K
+

1
K

 

1�
ẑ

m+ K

!!
3

7
5

= :
1
g

jKr � KjEz̃� Bin(m� 1;p� yi )
F(z̃) +

1
g

jKr � KjEẑ� Bin(m� 1;pyi )
F(ẑ):

Since the functionF(z) is decreasing asz increases, then an upper bound is produced by using the
distribution Bin(m� 1; py;min):

Ez1;:::;zm

1
g

jKr � Kj
�
ãKr

�
m

m+ K
+ ãK

�
+ âKr

�
m

m+ K
+ âK

��

�
2
g

jKr � KjEz� Bin(m� 1;py;min)F(z)

=
2
g

jKr � KjEz� Bin(m� 1;py;min)

2

4 1

K
�

z
m+ K� z

�
+ Kr

�
m

m+ K
+

1
K

�
1�

z
m+ K

��
3

5 :

The following lemma is similar to the previous lemma, but speci�c to sequential eventpre-
diction. It uses the support guarantee for the adjusted con�dence algorithm (6) in order to bound
the terms of Lemma 17, which holds with the same proof when the loss`g;Kr is changed to the
new loss`new

g;Kr
and superscript “-” is replaced by “� ”. We de�ne the analogy to ˜azi as ã�

zi
:=

min(#a�
SzitK ;#=ia�

S=izitK
). The result below will immediately yield a proof of Theorem 12.

Lemma 20 (Support Thresholds for Adjusted Con�dence, Sequential Event Prediction)
For speci�c basket zi , de�ne:

aKr :=
m+ K � #zi;t+ 1

K(#zi;t+ 1 � 1) + Kr (m+ K � #zi;t+ 1)
and aK :=

1
K

�
1�

#zi;t+ 1 � 1
m+ K

�
:

It is true that:
1

ã�
zi

+ Kr
� aKr ;

1
ã�

zi
+ K

� aK ;
1

âzi + Kr
� aKr ; and

1
âzi + K

� aK :
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Proof Starting with (5), we know thata�
SzitK > s, where

s := K
�

#zi;t+ 1 � 1
m+ K � #zi;t+ 1

�
:

We use the same type of argument as in (5), incorporating the fact that onS=i , the adjusted con�-
dence of the highest scoring rulea�

S=izitK
! b�

S=izitK
exceeds that of the highest-scoring-correct rule

a+
S=izitK

! zi;t+ 1, which exceeds that of the rule? ! zi;t+ 1,

#=ia�
S=izitK

#=ia�
S=izitK

+ K
�

#=i(a�
S=izitK

[ b�
S=izitK

)

#=ia�
S=izitK

+ K
�

#=i(a+
S=izitK

[ zi;t+ 1)

#=ia+
S=izitK

+ K

�
#=izi;t+ 1

m� 1+ K
=

#zi;t+ 1 � 1
m� 1+ K

: (23)

Rearranging, we �nd that #=ia�
S=izitK

> s: Similarly for #a+
SzitK ,

#a+
SzitK

#a+
SzitK + K

�
(#a+

SzitK [ zi;t+ 1)

#a+
SzitK + K

�
#zi;t+ 1

m+ K

so #a+
SzitK � K

�
#zi;t+ 1

m+ K� #zi;t+ 1

�
> s: And again for #=ia+

S=izitK
using (23),

#=ia+
S=izitK

#=ia+
S=izitK

+ K
�

#=i(a+
S=izitK

[ zi;t+ 1)

#=ia+
S=izitK

+ K
�

#zi;t+ 1 � 1
m� 1+ K

:

so #=ia+
S=izitK

� s . We now have ˜a�
zi

= min(#a�
SzitK ;#=ia�

S=izitK
) � s , and also ˆazi =

min(#a+
SzitK ;#=ia+

S=izitK
) � s . Sinces is a lower bound on all the supports, it can be used to cre-

ate an upper bound for the reciprocals, as follows, using ˜a�
zi

as an example:

1
ã�

zi
+ Kr

�
1

s + Kr
= aKr and

1
ã�

zi
+ K

�
1

s + K
= aK :

Proof (Of Theorem 12)First, all of the steps in the proof of Lemma 17 hold when we replace the
loss`g;Kr with the new loss̀new

g;Kr
, replacecg with cnew

g , andãzi by ã�
zi
, so we obtain:

j`new
g;Kr

( fS;K ;zi) � `new
g;Kr

( fS=i ;K ;zi)j

�
1
g

1
Tzi

Tzi � 1

å
t= 0

�
1

ã�
zi

+ K
+ jKr � Kj

�
1

ã�
zi

+ Kr

�
m

m+ K
+

1
ã�

zi
+ K

��

+
1

âzi + K
+ jKr � Kj

�
1

âzi + Kr

�
m

m+ K
+

1
âzi + K

���
:

Combining this and Lemma 20, we have:

j`new
g;Kr

( fS;K ;zi) � `new
g;Kr

( fS=i ;K ;zi)j �
2
g

1
Tzi

Tzi � 1

å
t= 0

aK + jKr � KjaKr

�
m

m+ K
+ aK

�
:
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To calculate the stability, we need an upper bound on the expectation of this quantity. Let us �rst
create an upper bound for the expectation of the �rst term,2

g
1

Tzi
å

Tzi � 1
t= 0 aK :

Ez1;:::;zm

2
g

1
Tzi

Tzi � 1

å
t= 0

aK = Ez1;:::;zm

2
g

1
Tzi

Tzi � 1

å
t= 0

1
K

�
1�

#zi;t+ 1 � 1
m+ K

�

= Ezi

2
g

1
Tzi

Tzi � 1

å
t= 0

1
K

�
1�

Ez1;:::;zi� 1;zi+ 1;:::;zm#zi;t+ 1 � 1
m+ K

�

= Ezi

2
g

1
Tzi

Tzi � 1

å
t= 0

1
K

�
1�

(m� 1)pzi;t+ 1

m+ K

�

� Ezi

2
g

1
Tzi

Tzi � 1

å
t= 0

1
K

�
1�

(m� 1)pmin

m+ K

�
=

2
g

1
K

�
1�

(m� 1)pmin

m+ K

�
:

The �rst line above uses the de�nition ofaK , the second line uses the fact that each basket is chosen
independently, the third line uses thatzi;t+ 1 is always contained inzi and also uses the fact that the
mean of the binomial distribution Bin(m� 1; pzi;t+ 1) is (m� 1)pzi;t+ 1. The fourth line uses thatpzi;t+ 1

has the lower boundpmin, which no longer depends onzi .

We repeat this outline for the second term:

Ez1;:::;zm

2
g

jKr � Kj
1
Tzi

Tzi � 1

å
t= 0

aKr

�
m

m+ K
+ aK

�

= Ez1;:::;zm

2
g

jKr � Kj
1
Tzi

Tzi � 1

å
t= 0

1

K
�

#zi;t+ 1� 1
m+ K� #zi;t+ 1

�
+ Kr

�
m

m+ K
+

1
K

�
1�

#zi;t+ 1 � 1
m+ K

��

=
2
g

jKr � KjEzi

1
Tzi

Tzi � 1

å
t= 0

Ez1;:::;zi� 1;zi+ 1;:::;zm

2

4 1

K
�

#zi;t+ 1� 1
m+ K� #zi;t+ 1

�
+ Kr

�

�
m

m+ K
+

1
K

�
1�

#zi;t+ 1 � 1
m+ K

���

=
2
g

jKr � KjEzi

1
Tzi

Tzi � 1

å
t= 0

Ez� Bin(m� 1;pzi;t+ 1)
1

K
�

z+ 1� 1
m+ K� z� 1

�
+ Kr

�
m

m+ K
+

1
K

�
1�

z+ 1� 1
m+ K

��

= :
2
g

jKr � KjEzi

1
Tzi

Tzi � 1

å
t= 0

Ez� Bin(m� 1;pzi;t+ 1)F(z):
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Algorithm 4: Subroutine GenRules, simplest version that considers only “marginal” rules.
Input : (S;B;X), that is, past ordersS= f zigi= 1;:::;m, zi � X, current basketB � X, set of

itemsX
Output : Set of all rules wherea j is an item in the basketB (or the empty set) andb j is not in

B. That is, rulesf a j ! b jg j such thatb j 2 XnB and eithera j 2 B or a j = ? .

Since the functionF is decreasing asz increases, then an upper bound is produced by using the
distribution Bin(m� 1; pmin). Namely,

Ez1;:::;zm

2
g

jKr � Kj
1
Tzi

Tzi � 1

å
t= 0

aKr

�
m

m+ K
+ aK

�

�
2
g

jKr � KjEzi

1
Tzi

Tzi � 1

å
t= 0

Ez� Bin(m� 1;pmin)F(z)

=
2
g

jKr � KjEz� Bin(m� 1;pmin)
1

K
�

z
m+ K� z� 1

�
+ Kr

�
m

m+ K
+

1
K

�
1�

z
m+ K

��
:

In all of the theorems and proofs, the empirical loss and true loss are de�ned only for the case
where the algorithm only recommends one item (c = 1). It is possible to use a vector norm to
generalize to largerc.

6. Experiments

All data sets chosen for these experiments are publicly available from the UCI machine learning
repository (Bache and Lichman, 2013), and from the IBM Quest Market-Basket Synthetic Data
Generator (Agrawal and Srikant, 1994). To obtain formatted market-basket data, categorical data
were converted into binary features (one feature per category). Each feature represents an item,
and each example represents a basket. The feature value (0 or 1) indicates the presence of an item.
Training baskets and test baskets were chosen randomly without replacement from the full data set.
Since these data do not come naturally with a time ordering, items in the basket were randomly
permuted to attain an order. At each iteration, rules were formed from one item or the empty item
on the left, and one item on the right (SeeGenRulesin Figure 4). Recommendations of one item
were made using the following 15 algorithms: highest support, highest con�dence, highest adjusted
con�dence for eightK levels, max con�dence, min support algorithm for �ve support threshold
levels q. All 15 algorithms were evaluated by the average fraction of correct recommendations
(AvgCorrect) per basket. As recommendations were made, it was common to have ties where
multiple items were equally good to recommend, in which case the tie was broken at random;
AvgCorrect is similar tò 0� 1;K except for this way of dealing with ties.

The parameters of the experiment are: number of training baskets (20 in allcases), number of
test baskets (100 in all cases), values ofK for the adjusted con�dence algorithm (0.0001, 0.001,
0.01, 0.1, 1, 5, 10, 15), and values ofq for the max con�dence, min support algorithm (1, 2, 3, 5,
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10). Note that two of these algorithms are the same: the max con�dence algorithm is the same as
the max con�dence, min support algorithm forq=1. Data sets are: Car Evaluation (25 items, 1728
baskets), Chess King-Rook vs. King-Pawn, (75 items, 3196 baskets),MONK's problems (19 items,
1711 baskets) Mushroom (119 items, 8124 baskets), Nursery (32 items,12960 baskets), Plants (70
items, 34781 baskets), T20I18D10KN22CR50 (22 items, 10000 baskets).

Each experiment (training, test, evaluation for all 15 algorithms) was performed 100 times,
(totaling 100� 100� 15 = 150,000 test basket evaluations per data set, for each of 7 data sets). In
Figures 4 and 5, the distribution of AvgCorrect values for data sets Chess and Monk are shown
via boxplot, along with the mean and standard deviation of AvgCorrect values. Bold indicates that
the mean is not signi�cantly different from that of the algorithm with the largest mean value; that
is, bold indicates the highest scores. The boxplots and means for the otherdata sets are shown in
Figures 7 through 11 in Appendix B.

Figure 6 summarizes the results of all of the experiments by totaling the number ofdata sets
for which each algorithm achieved one of the highest scores. The bestperforming algorithms were
K = 0:01 andK = 0:1, both algorithms achieving one of the top scores for 6 out of 7 of the data
sets. The single data set for which these algorithms did not achieve one the best scores was the very
dense data set T20I18D10KN22CR50, where the algorithms requiring a higher support (the max
support algorithm, and also the adjusted con�dence algorithm forK = 5;10, and 15) achieved the
highest AvgCorrect score. In that case, theK = 0:01 andK = 0:1 algorithms still performed better
than the max con�dence, min support algorithms for the parameters we tried.

The adjusted con�dence algorithm with a very smallK is similar to using the max con�dence
algorithm, except that whenever there is a tie, the tie is broken in favor of therule with largest
support. It seems that in most of the data sets we chose, this type of algorithmperformed the best,
which indicates two things. First, that for some data sets, increasingK too much can have the same
effect as a too-large minimum support threshold, in that large values ofK could potentially remove
the best rules, leading to too much bias, and where the algorithm cannot explain enough of the
variance in the data. Second, when comparing rules, it is important not to break ties at random as
in the max con�dence, min support algorithm, but instead to use the support of the rules. Another
observation is that the performance levels of the adjusted con�dence algorithm vary less than those
of the max con�dence, min support algorithm. In other words, our experiments indicate that a less-
than-perfect choice ofK for the adjusted con�dence algorithm is likely to perform better than a
less-than-perfect choice ofq for the max con�dence, min support algorithm.

7. Related Work

We provide background on related works within several �elds: association rule mining and associa-
tive classi�cation, decision lists, recommender systems, and Bayesian analysis. There is also a body
of literature on pattern mining in sequences, but not in the sequential eventprediction setting de-
�ned here. This type of work generally considers the order in which items are added, and often uses
a Markov assumption (see, for instance, Ayres et al., 2002; Berchtold and Raftery, 2002), whereas
in our work, subsets of items are used to predict the next item, possibly without regard to the order
in which they occurred, and a Markov assumption can be false. There is also work relating statis-
tics to pattern mining and sequence mining, (e.g., Chernoff bounds for the con�dence, Jacquemont
et al., 2009). Our work also relates to multi-class classi�cation, since there isa multi-class classi�-
cation step at each point in timet of each sequence. For a recent work on generalization bounds in
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Algorithm mean� standard dev.
Support 0.0813� 0.0046

Con�dence 0.0764� 0.0053
K=0.0001 0.0831� 0.0045
K=0.001 0.0832� 0.0048
K=0.01 0.0835� 0.0041
K=0.1 0.0831� 0.0049
K=1 0.0835� 0.0043
K=5 0.0821� 0.0049
K=10 0.0821� 0.004
K=15 0.0816� 0.0049
q=1 0.0759� 0.0049
q=2 0.0767� 0.0045
q=3 0.078� 0.0049
q=5 0.0794� 0.0052
q=10 0.0813� 0.0046

Figure 4: Left: Boxplots of AvgCorrect values for Chess data set.Right: Means and standard
deviations for Chess data set.

Algorithm mean� standard dev.
Support 0.0943� 0.0126

Con�dence 0.1103� 0.0145
K=0.0001 0.1108� 0.0137
K=0.001 0.1109� 0.0147
K=0.01 0.1104� 0.0149
K=0.1 0.11� 0.0151
K=1 0.1081� 0.0148
K=5 0.0992� 0.0138
K=10 0.0947� 0.0133
K=15 0.0948� 0.012
q=1 0.1098� 0.0138
q=2 0.1095� 0.0146
q=3 0.1092� 0.0146
q=5 0.1054� 0.0143
q=10 0.0944� 0.0129

Figure 5: Left: Boxplots of AvgCorrect values for MONK's problems data set.Right: Means and
standard deviations for MONK's problems data set.

multi-class classi�cation see Shen and Wang (2007). Remember that in multi-class classi�cation,
each example is a feature vector, whereas in sequential event prediction, each example is an event
sequence. Related work on generalization bounds includes those on algorithmic stability (Devroye
and Wagner, 1979; Bousquet and Elisseeff, 2002).

7.1 Mining Association Rules

Association rule mining has proven successful for many applications, including market basket anal-
ysis (cross selling, product placement, af�nity promotion, see also Kohavi et al., 2004), mining gene
expression data (Jiang and Gruenwald, 2005), and weblog analysis (Huang et al., 2002). The ma-
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Algorithm Number of data sets
Support 1

Con�dence 1
K=0.0001 4
K=0.001 5
K=0.01 6
K=0.1 6
K=1 2
K=5 2
K=10 2
K=15 2
q=1 1
q=2 1
q=3 1
q=5 0
q=10 1

Figure 6: Summary of experiments: For each algorithm, the number of data setswhere it performed
comparably with the best algorithm.

jority of literature on association rule mining concerns the design of ef�cientalgorithms to address
the time-and-memory-consuming task of mining rules within very large databases. Discovering
rules is usually a two-step process. First, itemsets are mined that meet a predetermined minimum
support threshold. Then using this set, rules are formed and the strengthof the rules is assessed
using “interestingness” measures, such as the con�dence. Many “interestingness” measures have
been proposed in the literature (see Tan et al., 2002; Geng and Hamilton, 2007; McGarry, 2005).
It is clearly possible to use the adjusted con�dence as an interestingness measure for database ex-
ploration. In that setting, the adjusted con�dence would provide a rankingof rules in terms of their
ability to predict, including both “common sense rules” and “nuggets.”

Although association rule mining has proven successful for many applications, it is well-known
that the usefulness of association rules and their impact on even a wider range of practical applica-
tions remains limited due to problems arising from the minimum support threshold: �rst, the large
number of rules mined can be intractable to domain experts who analyze rules and act on them,
unless the minimum support threshold is set to a large value; second, the heuristic choice of the
minimum support threshold tends to over-prune the search space of association rules, disregarding
“nuggets” which can be very useful in many applications. Most prior work relies on the strong
requirement of the minimum support threshold; some exceptions include the works of Li et al.
(1999); Koh (2008) and DuMouchel and Pregibon (2001). Some recent work (Cohen et al., 2001;
Wang et al., 2001) attempts to avoid the support measure altogether. In our work, the use of the
adjusted con�dence eliminates the need for the minimum support threshold.

When a set of rules is used to form a classi�er, this is called “associative classi�cation” (see, for
instance, Liu et al., 1998; Thabtah, 2007; Vanhoof and Depaire, 2010).

7.2 Decision Lists

A decision list is an ordered set of association rules that forms a classi�er(Rivest, 1987). Usually
decision lists are formed the same way as decision trees are formed, which is by greedily splitting
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on each nodes to form the tree, and then pruning (as in for instance, Li et al., 2001; Yin and Han,
2003; Simon et al., 2011; Marchand and Sokolova, 2005). However, itis possible to mine a set of
rules, and order them to produce a classi�er, as in the associative classi�cation literature.

The work of Anthony (2004) contains a generalization bound for decision lists, but each rule in
the list requires a linear combination, which is problematic in the sequential settingby the reasoning
in Appendix A. (Similarly, there are many papers using a set of pre-computed rules as features for
supervised learning, where a linear combination of rules is constructed, rather than a decision list;
one recent example is by Friedman and Popescu 2008.)

In recent work, we have been learning the ordering of rules to form decision lists (Letham et al.,
2013c).

7.3 Recommender Systems

Association rule mining has proven to be particularly useful for �nding “goes with” relationships be-
tween items purchased simultaneously. Lin et al. (2002) also construct a recommender system using
rules, having a minimum con�dence threshold and then an adjustable minimum support threshold.
Their scoring system is essentially based on support� con�dence, which is not an estimate of
P(bja) for rule a ! b. Lawrence et al. (2001) provide a recommender system for a grocerystore,
but the setting differs entirely from ours in that they always recommend items that have never been
previously purchased.

In other work, we designed a Bayesian framework that estimatesK for the adjusted con�dence
by “borrowing strength” across both users and items (McCormick et al., 2012). We are also looking
at different approaches to the sequential event prediction problem, where we allow the predictions
to alter the sequence in which items are placed into the basket (Letham et al., 2013b). This work
uses a supervised learning framework for sequential event prediction.

We also note that a recommender system based on a weighted version of the adjusted con�dence
won third place in the ECML Discovery Challenge in 2013 (Letham, 2013).

Often, item-based collaborative �ltering is used for problems that are actually sequential event
prediction problems. There are several problems in applying standard item-based collaborative
�ltering techniques in sequential event prediction, the �rst one being thatstandard item-based col-
laborative �ltering requires us to compute a similarity measure between all “co-rated” items. The
similarity measure is often symmetric between two items, there is no distinguishing betweenP(ajb)
andP(bja). Even if itemb is alwaysfound whena is found,P(bja) = 1, is it possible forb not to be
recommended whena is present, even with more than suf�cient data to see the pattern. Further, for
an incomplete basket, we do not have the ratings for all “co-rated” items, since there is no natural
way to differentiate between items that have not yet been purchased in this transaction, and items
that will not be purchased in this transaction, as both have a “rating” of 0 at time t. Thus, the only
ratings that are available are ratings of “1” indicating that an item is in the basket. In other words,
where the association rule approach we present here is intrinsically sequential, it is unnatural to
force item-based collaborative �ltering into a sequential framework. In general, item-based collab-
orative �ltering is not based in a typical machine learning setting, in that it is not based on either loss
minimization or probabilistic modeling (as the association rule approach is). The work of Letham
et al. (2013b) also shows experimentally that item-based collaborative �ltering can be worse than
the max-con�dence association rule approach.
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7.4 Bayesian Analysis

DuMouchel and Pregibon (2001, “D&P”) present a Bayesian approach to the identi�cation of in-
teresting itemsets. While not a rule mining algorithm per se, the approach could be extended to
produce rules. D&P consider the ratio of observed itemset frequencies tobaseline frequencies
computed under a particular independence model. A prior distribution over the collection of such
ratios results in shrinkage estimates for the true ratios. The amount of shrinkage depends on the
observed frequency and tends to be more pronounced for less frequent itemsets. Our approach dif-
fers from D&P in several key regards. Most importantly we focus directlyon Bayesian estimation
for rules rather than itemsets. Second, D&P use an empirical Bayes approach to choose the prior
hyperparameters. Since our approach requires just a single hyperparameter,K, we instead let the
user choose an appropriate value (the value might be determined by crossvalidation or empirical
Bayes). Finally, D&P perform a strati�ed analysis; one interesting future direction for our proposed
approach would be to incorporate strati�cation.

Breese et al. (1998) present a number of different algorithms for collaborative �ltering, includ-
ing two Bayesian approaches. One of their Bayesian approaches clusters users while the other
constructs a Bayesian network. Condliff et al. (1999) present a hierarchical Bayesian approach to
collaborative �ltering that “borrows strength” across users. Neither Breese et al. nor Condliff et al.
focus on repeated purchases but both present ideas and techniquesthat may have relevance to future
versions of our approach, especially the borrowing strength ideas.

Our recent work (McCormick et al., 2012; Letham et al., 2013c) uses Bayesian analysis to order
rules into decision lists.

8. Conclusion

This work synthesizes tools from several �elds to analyze the use of association rules in a new su-
pervised learning framework. This analysis is necessarily different from that of classical supervised
learning analysis; as we have discussed, association rules provide two mechanisms for generaliza-
tion: �rst a large sample, and second, a minimum support of rules. We considered two simple
algorithms based on association rules: a max con�dence, min support algorithm, and the Bayesian
adjusted con�dence algorithm. Both algorithms have a parameter that createsa bound on the sup-
port, regulating a tradeoff between accuracy on the training set and generalization ability. We have
also demonstrated that the adjusted con�dence introduced here has some advantages over the mini-
mum support threshold that is commonly considered in association rule mining: itallows rare rules
to be used while still encouraging generalization, and among rules with similar con�dence, it prefers
those with larger support.
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Appendix A. Regression and the Sequential Event Prediction Problem

By using association rules to model conditional probabilities for the sequential event prediction
problem, we make a general assumption about the Markov chains governing our application, namely
that a subset of knowledge about the current state can be used to predict the most likely future state.
In this section we will address the suitability of two natural regression approaches that do not make
this assumption. LetXi be an indicator variable that is 1 if itemi is in the current basket and 0
otherwise.

A.1 First Regression Method

Apply regression (e.g., logistic regression) to create a model for each itemseparately. Consider the
model for the last item (itemm), where the predictor variables will beXi for i 2 f 1; : : : ;m� 1g, and
Xm will be the response variable. This model would provide:

P(Xm = 1jX1 = x1; : : : ;Xm� 1 = xm� 1) =
1

1+ exp( f )
;

where f = å m� 1
i= 1 l ixi + l 0;m, with eachxi 2 f 0;1g.

Because the data are being revealed sequentially, the correct application of this technique is not
straightforward. Only apartial basket is available when predictions need to be made. It is incorrect
to substitute the current state of the basket directly into the formula above. For instance, if the
current basket contains items 1 and 2, soX1 = 1 andX2 = 1, it is incorrect to writeP(XmjX1 = 1;X2 =
1) = 1

1+ exp( f ) ; where f = l 1 + l 2 + l 0;m. This statement would be equivalent to the expression:

P(Xm = 1jX1 = 1;X2 = 1) = P(Xm = 1jX1 = 1;X2 = 1;X3 = 0; : : : ;Xm� 1 = 0);

which is clearly false in general. It is not that, for instance,X3 = 0, it is simply thatX3 is not yet
realized.

On the other hand, it is possible to integrate in order to obtain conditional probability estimates:

P(Xm = 1jX1 = 1;X2 = 1) =

å
x3= f 0;1g;:::;xm� 1= f 0;1g

P(Xm = 1jX1 = 1;X2 = 1;X3 = x3 : : : ;Xm� 1 = xm) �

P(X3 = x3; : : : ;Xm� 1 = xm);

where estimates ofP(X3 = x3; : : : ;Xm� 1 = xm) would need to be made also for every one of the
2m� 3 combinations ofx3; : : :xm� 1. Thus, this approach would rely on a large number of uncertain
estimates (given limited data, and even moderately largem), each introducing errors into the �nal
estimate. This is in contrast to the association rule approaches where a classof conditional proba-
bilities are directly estimated. Further, the regression method provided abovewould not be able to
be explained easily to customers or managers. In most circumstances, it would also require a large
amount of computation between recommendations. Finally, it is not clear how to incorporate the
order in which items are placed into the basket within this type of model, whereas itis trivial to
incorporate this into the association rule techniques as discussed in Section 2.2.
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A.2 Second Regression Method

Apply regression methods (e.g., logistic regression) for each item and at each timestep, in total
m� T regression models, whereT is the size of the largest possible basket. This would give a
direct way to incorporate time into the predictions. If the current basket containst items, one would
use only the models constructed using the �rstt items in each basket to predict the next item to be
added. However, this would be making an entirely different assumption thanthe one given by the
rule-mining approach. The rule-mining approach uses time only implicitly, and purchase patterns
are counted the same regardless of the exact time within the transaction when the pattern occurred.
In contrast, this regression approach would ignore all items added after timet in previous baskets.
If apples were always followed by oranges, but in the past apples andoranges were always added
after timestept, then this approach would fail to recommend oranges when apples are added before
timestept. Further, the models for each timestept must be constructed from baskets at least as large
ast. This means that for very large baskets, there would only be a few past baskets that could be
used to construct the models. Further, if the current basket is larger than any of the past baskets, the
models would be trivial, since none of the past baskets can be used to construct them.

It may indeed be possible to use regression approaches for the sequential event prediction prob-
lem, but given the discussion above, it is not clear how this should be accomplished. We explore
other ways to solve the sequential event prediction problem using supervised ranking techniques in
another work (Letham et al., 2013b).

Appendix B. Additional Experimental Results

See Figures 7 - 11.

Algorithm mean� standard dev.
Support 0.115� 0.0176
Conf. 0.1125� 0.0143

K=0.0001 0.1173� 0.0127
K=0.001 0.1163� 0.0122
K=0.01 0.1176� 0.0117
K=0.1 0.1177� 0.0109
K=1 0.1176� 0.0116
K=5 0.1204� 0.015
K=10 0.1199� 0.0172
K=15 0.1192� 0.0174
q=1 0.1133� 0.0134
q=2 0.1119� 0.0131
q=3 0.114� 0.0118
q=5 0.1161� 0.0143
q=10 0.1205� 0.0191

Figure 7: Left: Boxplots of AvgCorrect values for Cars data set.Right: Means and standard devia-
tions for Cars data set.
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Algorithm mean� standard dev.
Support 0.0996� 0.0051

Con�dence 0.0902� 0.0075
K=0.0001 0.1164� 0.0061
K=0.001 0.1158� 0.0062
K=0.01 0.1161� 0.0061
K=0.1 0.116� 0.0058
K=1 0.1142� 0.0062
K=5 0.1069� 0.0052
K=10 0.1044� 0.0054
K=15 0.1024� 0.0053
q=1 0.0909� 0.007
q=2 0.0986� 0.0077
q=3 0.1048� 0.0064
q=5 0.1088� 0.0069
q=10 0.1042� 0.0057

Figure 8: Left: Boxplots of AvgCorrect values for Mushroom data set.Right: Means and standard
deviations for Mushroom data set.

Algorithm mean� standard dev.
Support 0.0619� 0.0098

Con�dence 0.081� 0.0094
K=0.0001 0.0898� 0.0091
K=0.001 0.0902� 0.0093
K=0.01 0.0902� 0.0085
K=0.1 0.0903� 0.0095
K=1 0.0909� 0.0096
K=5 0.0869� 0.0139
K=10 0.0804� 0.0154
K=15 0.0747� 0.0154
q=1 0.0811� 0.0088
q=2 0.0819� 0.0094
q=3 0.0858� 0.0095
q=5 0.0883� 0.0137
q=10 0.0654� 0.0111

Figure 9: Left: Boxplots of AvgCorrect values for Nursery data set.Right: Means and standard
deviations for Nursery data set.

Appendix C. Lemma 21

Lemma 21 For t � Binomial(m; p) and K� 0,

E
�

1
K + t

�
=

1
K + mp

+ O
�

1
m2

�
:

The proof of this lemma forK = 0 is provided by Rempala (2003). The proof of this lemma for
K > 0 comes from Letham et al. (2013a), which we provide here for completeness. The proof of
the lemma uses the following result.
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Algorithm mean� standard dev.
Algorithm mean pm standard dev.
Support 0.0983� 0.0494

Con�dence 0.1187� 0.0465
K=0.0001 0.1271� 0.0448
K=0.001 0.1251� 0.0454
K=0.01 0.1255� 0.0446
K=0.1 0.1251� 0.0464
K=1 0.1235� 0.0454
K=5 0.1205� 0.0466
K=10 0.1141� 0.0464
K=15 0.1093� 0.0498
q=1 0.1182� 0.0457
q=2 0.1182� 0.0466
q=3 0.118� 0.047
q=5 0.11� 0.0511
q=10 0.0981� 0.0496

Figure 10: Left: Boxplots of AvgCorrect values for Plants data set.Right: Means and standard
deviations for Plants data set.

Algorithm mean� standard dev.
Support 0.1874� 0.0115

Con�dence 0.1728� 0.0118
K=0.0001 0.1817� 0.012
K=0.001 0.1827� 0.0121
K=0.01 0.1821� 0.0124
K=0.1 0.183� 0.0125
K=1 0.1843� 0.0117
K=5 0.1857� 0.0119
K=10 0.1871� 0.0115
K=15 0.1867� 0.0116
q=1 0.1722� 0.0126
q=2 0.1716� 0.0128
q=3 0.1748� 0.0131
q=5 0.1742� 0.0125
q=10 0.182� 0.0125

Figure 11: Left: Boxplots of AvgCorrect values for T20I18D10KN22CR50 data set.Right: Means
and standard deviations for T20I18D10KN22CR50 data set.

Lemma 22 Let X � Binomial(m; p) and let µk = E
�
(X � E[X])k

�
be the kth central moment. For

integer k� 1, µ2k and µ2k+ 1 are O
�
mk

�
.

Proof We will use induction. Fork = 1, the central moments are well known (e.g., Johnson et al.,
2005):µ2 = mp(1� p) andµ3 = mp(1� p)(1� 2p), which are bothO(m). We rely on the following
recursion formula (Johnson et al., 2005; Romanovsky, 1923):

µs+ 1 = p(1� p)
�

dµs

dp
+ msµs� 1

�
: (24)
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Becauseµ2 and µ3 are polynomials inp, their derivatives will also be polynomials inp. This
recursion makes it clear that for alls, µs is a polynomial inp whose coef�cients include terms
involving m.

For the inductive step, suppose that the result holds fork = s. That is,µ2s andµ2s+ 1 areO(ms).
Then, by (24),

µ2(s+ 1) = p(1� p)
�

dµ2s+ 1

dp
+ ( 2s+ 1)mµ2s

�
:

Differentiatingµ2s+ 1 with respect topyields a term that isO(ms). The term(2s+ 1)mµ2s isO(ms+ 1),
and thusµ2(s+ 1) is O(ms+ 1). Also,

µ2(s+ 1)+ 1 = p(1� p)
�

dµ2(s+ 1)

dp
+ 2(s+ 1)mµ2s+ 1

�
:

Here
dµ2(s+ 1)

dp is O(ms+ 1) and 2(s+ 1)mµ2s+ 1 is O(ms+ 1), and thusµ2(s+ 1)+ 1 is O(ms+ 1).
This shows that if the result holds fork = s then it must also hold fork = s+ 1 which completes

the proof.

We can now prove Lemma 21.
Proof (Of Lemma 21) We expand1

K+ X atX = mp:

E
�

1
K + X

�
= E

"
¥

å
i= 0

(� 1) i (X � mp) i

(K + mp) i+ 1

#

=
¥

å
i= 0

(� 1) i E
�
(X � mp) i

�

(K + mp) i+ 1

=
1

K + mp
+

¥

å
i= 2

(� 1) i µi

(K + mp) i+ 1 (25)

whereµi is theith central moment and we recognize thatµ1 = 0. By Lemma 22,

µi

(K + mp) i+ 1 =
O

�
mb i

2c
�

O(mi+ 1)
= O

�
mb i

2c� i� 1
�

:

The alternating sum in (25) can be split into two sums:

¥

å
i= 2

(� 1) i µi

(K + mp) i+ 1 =
¥

å
i= 2

O
�

mb i
2c� i� 1

�
=

¥

å
i= 2

O
�

1
mi

�
+

¥

å
i= 3

O
�

1
mi

�
:

These are, form large enough, bounded by a geometric series that converges toO
� 1

m2

�
.
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