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Abstract

We present a theoretical analysis for prediction algorithrased on association rules. As part of
this analysis, we introduce a problem for which rules arai@aarly natural, called “sequential
event prediction.” In sequential event prediction, evénta sequence are revealed one by one,
and the goal is to determine which event will next be reveal€de training set is a collection
of past sequences of events. An example application is tigirehich item will next be placed

into a customer's online shopping cart, given his/her pastipases. In the context of this problem,
algorithms based on association rules have distinct adgastover classical statistical and machine
learning methods: they look at correlations based on ssitideto-occurring past events (items a
and b imply item c), they can be applied to the sequentialtgwealiction problem in a natural way,
they can potentially handle the “cold start” problem whére training set is small, and they yield
interpretable predictions. In this work, we present twaalhhms that incorporate association rules.
These algorithms can be used both for sequential eventgpi@dand for supervised classi cation,
and they are simple enough that they can possibly be under&tp users, customers, patients,
managers, etc. We provide generalization guarantees ge tilgorithms based on algorithmic
stability analysis from statistical learning theory. Welirde a discussion of the strict minimum
support threshold often used in association rule mining, iatroduce an “adjusted con dence”
measure that provides a weaker minimum support conditiah ias advantages over the strict
minimum support. The paper brings together ideas fromssizdi learning theory, association rule
mining and Bayesian analysis.

Keywords: statistical learning theory, algorithmic stability, asstion rules, sequence prediction,
associative classi cation
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1. Introduction

Consider the problem of predicting the next event within a current eegnuence, given a “sequence
database” of past event sequences to learn from. We might wish to dothisstance, using data
generated by a customer placing items into the virtual basket of an onlinergrsiore such as
NYC's Fresh Direct, Peapod by Stop & Shop, or Roche Bros. The mestadds items one by one
into the current basket, creating a sequence of events. The custosrideht ed him- or herself,
so that all past orders are known. After each item selection, a con rmaticeen contains a small
list of recommendations for items that are not already in the basket. If the chor nd patterns
within the customer’s past purchases, it may be able to accurately recontineemeixt item that the
customer will add to the basket. Another example is to predict each next syngb@sick patient,
given the patient's past sequence of symptoms and treatments, and asdatblize timelines of
symptoms and treatments for other patients. We call the problem of predictisg skquentially
revealed events based on past sequences of events “sequemtigdredéction.”

In these examples, a subset of past events (for instance, a set ediergs for a particular
recipe) can be useful in predicting the next event. In order to makégticets using subsets of past
events, we emplogssociation rulegAgrawal et al., 1993). An association rule in this setting is an
implicationa! b (such adettuce and carrot$ tomatoe} whereais a subset of items, arxlis a
single item. The association rule approach has the distinct advantage irabégrig directly model
underlying conditional probabilitieB(bja) eschewing the linearity assumptions underlying many
classical supervised classi cation, regression, and ranking methRdges also yield predictive
models that are interpretable, meaning that for the audle b, it is clear thato was recommended
because is satis ed.

The association rules approach makes predictions from subsets afoming past events.
Using subsets may make the estimation problem much easier, because it balpgzalblems with
the curse of dimensionality. For instane@omatoesj lettuce and carrotscould be much easier
to estimate thafP(tomatoeg lettuce carrots, pears potatoes ketchup eggs bread etc.). This is
precisely why learning algorithms created from rules can be helpful &tdbld start” problem in
recommender systems, where predictions need to be made when thereaareugh data available
to accurately compute the full probability of a new item being purchased.

There are two main contributions in this work: a generalization analysis sarcasion-rule-
based algorithms, and a formal de nition of the problem of sequentialtgyeliction. An impor-
tant part of the rule-based analysis is how a fundamental propertyud¢ amamely the “support,”
is incorporated into the generalization bounds. The “support” of an iteim#ee number of times
that the itemset has appeared in the sequence database. For instasapptiré oflettuceis the
number of times lettuce has been purchased in the past. Typically in associdéanining, a
strict minimum support threshold condition is placed on the support of itemstts a rule, so
that rules falling below the minimum support threshold are simply discarded.idga of a con-
dition on the support is not shared with other types of supervised leaatgogithms, since they
do not use subsets in the same way as when using rules. Thus a newagpateralization is
explored in this analysis in that it handles predictions created from subkdegta. In classical
supervised learning paradigms, bounds scale only with the sample sizelaagd sample is neces-
sary to create a generalization guarantee. In the context of associdéenthe minimum support
threshold forces predictions to be made only when there are enoughltiats,. in the association
rules analysis, there are now two mechanisms for generalization: rsga &ample, and second,
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a minimum support. These are separate mechanisms, in the sense that it goggeneralize
with a somewhat small sample size and a large minimum support threshold, aalddt possible to
generalize with a large sample size and no support threshold. We thus thewi types of bounds:
large sample bounds, which scale with the sample size, and small sample bshiutisscale with

the minimum support of rules. Using both large and small sample bounds (tmlaeedmﬂmum

of the two bounds) gives a complete picture. The large sample bound$ amdeoO( 1=m) as

in classical analysis of supervised learning, whardenotes the number of event sequences in the
database, that is, the number of past baskets ordered by the onlieeygstare customer.

Most of our bounds are derived using a speci ¢ notion of algorithmiciktaballed “pointwise
hypothesis stability.” The original notions of algorithmic stability were inventethé11970's and
have been revitalized recently (Devroye and Wagner, 1979; BotiagdeElisseeff, 2002), the main
idea being that algorithms may be better able to generalize if they are insetsgivall changes in
the training data such as the removal or change of one training exampl@oirtteise hypothesis
stability speci cally considers the average change in loss that will occanatof the training ex-
amples if that example is removed from the training set. Our generalizatiorsemases conditions
on the minimum support of rules in order to bound the pointwise hypothesititgtab

There are two algorithms considered in this work. At the core of eachitdgois a method
for rank-ordering association rules where the list of possible rulesisrgéed using the customer's
past purchase history and subsets of items within the current baskeste algorithms build off of
the rule mining literature that has been developing since the early 199Q'ayabet al., 1993) by
using an application-speci c rule mining method as a subroutine. Our algorighensiterpretable
in two different ways: the predictive model coming out of the algorithm is pretable, and the
whole algorithm for producing the predictive model is interpretable. Inrotloeds, the algorithms
are straightforward enough that they can be understood by usetenwmrs, patients, managers,
etc. Further, the rules within the predictive model can provide a simplemdagbe customer why
an item might be relevant, or identify that a key ingredient is missing fromticpkar recipe. The
rules provide “IF,THEN,ELSE” conditions, and yield models of the same fasnthose from the
expert systems literature from the early days of arti cial intelligence (Jatks998). Many authors
have emphasized the importance of interpretability and explanation in predictideling (see, for
example, the work of Madigan et al., 1997).

The rst of the two algorithms considered in this work uses a xed minimum supihreshold
to exclude rules whose itemsets occur rarely. Then the remaining rulesrdwedraccording to the
“con dence,” which for rulea! b is the empirical probability thab will be in the basket given
thata is in the basket. The right-hand sides of the highest ranked rules willdmnmreended by
the algorithm. However, the use of a strict minimum support threshold is pnalbie for several
well-known reasons, for instance it is known that important rules (“etgygwhich are rare but
strong rules) are often excluded by a minimum support threshold condition.

The other algorithm introduced in this work provides an alternative to the minisugport
threshold, in that rules are ranked by an “adjusted” con dence, wikialsimple Bayesian shrinkage
estimator of the probability of a rulé(bja). The right-hand sides of rules with the highest adjusted
con dence are recommended by the algorithm. For this algorithm, the gersiatizyuarantee
is smoothly controlled by a paramet€r which provides only a weak (less restrictive) minimum
support condition. The key bene ts of an algorithm based on the adjestedence are that: 1) it
allows the possibility of choosing very accurate (high con dence) rulastiave appeared very few
times in the training set (low support), and 2) given two rules with the same or sipnédiction
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accuracy on the training set (con dence), the rule that appears megedntly (higher support)
achieves a higher adjusted con dence and is thus preferred ovetttberale.

All of the bounds are tied to the measure of quality (the loss function) usedhvtite analy-
sis. We would like to directly compare the performance of algorithms for varsmttings of the
adjusted con dence'K parameter (and for the minimum support threskg)ldit is problematic to
have the loss de ned using the saidevalue as the algorithm, in that case we would be using a
different method of evaluation for each settingkgfand we would not be able to directly compare
performance across different settingskof To allow a direct comparison, we select one reference
value of the adjusted con dence, call&d (r for “reference”), and the loss depends lgnrather
than onK. The bounds are written generally in termskgf The special cask; = 0 is where the
algorithm is evaluated with respect to the con dence measure. The smalless&ynds for the
adjusted con dence algorithm have two terms: one that generally desr@athK (as the support
increases, there is better generalization) and the other that decre&sgets closer td, (better
generalization as the algorithm is closer to the way it is being measured) Weserms are thus
agreeing ifK; > K and competing iK, < K. In practice, the choice df can be determined in
several waysK can be manually determined (for instance by the customer), it can be sgtidsén
information as considered by McCormick et al. (2012), or it can be setrass-validation on an
extra hold-out set.

The novel elements of the paper include: 1) generalization analysis tluporates the use
of association rules, for both classi cation and sequential event giedj) the algorithm based
on adjusted con dence, where the adjusted con dence is a Bayesaiomeof the con dence,
3) the de nition of a new supervised learning problem, namely sequentaitgwediction. The
work falls in the intersection of several elds that are rarely connectedociation rule mining and
associative classi cation, supervised machine learning and generatizadiands from statistical
learning theory, and Bayesian analysis.

In terms of applications, the de nition of “sequential event prediction” wepired by, but not
restricted to, online grocery stores. Examples are Fresh Direct, Amanogiocery, and netgro-
cer.com. Many supermarket chains with local outlets also offer an onloyeahd-delivery option,
such as Peapod (paired with Stop & Shop and Giant). Other online retai@re@mmendation
engines may benet from ranking algorithms that are transparent to thielise amazon.com's
“customers who purchased this also purchased that” recommender syBtensame techniques
used to solve the sequential event prediction problem could be used inaingidications to pre-
dict, for instance, the winners at each round of a tournament (e.g, timemginf games in a football
season), or the next move of a video game player in order to design a moesiimg game. The
work of McCormick et al. (2012) contains a Bayesian algorithm, basedearthlysis introduced in
this paper, for predicting conditions of medical patients in a clinical trial. Thgkwf Letham et al.
(2013b) uses empirical risk minimization to solve sequential event prediatidrigms dealing with
email recipient recommendation, healthcare, and cooking.

Section 2 describes the two rule-based prediction algorithms, one basebnd thresholding
of the support (min support) and the other based on the soft threshdtijugsted con dence).
Section 3 formally de nes sequential event prediction. Section 4 provltegeneralization anal-
ysis, Section 5 contains proofs, and Section 6 provides experimentadtiatid Section 7 contains
a summary of relevant literature. Appendix A discusses the suitability oéssgm approaches
for solving the sequential event prediction problem. Appendix B provadiestional experimental
results. Appendix C contains an additional proof.
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2. Derivation of Algorithms

We assume an interface similar to that of Fresh Direct, where users add mentyy @ne into the
basket. After each selection, a con rmation screen contains a hafdedemmendations for items
that are not already in the customer's basket. The customer's pas$ @meknown.

The set of items isX, for instanceX=f apples, bananas, pearetq; X is the set of pos-
sible events. The customer has a past history of or8emdich is a collection ofm baskets,
S=fzg=1.-m, Zz  X; Sis the sequence database. The customer's current basket is usually de
noted byB  X; Bis the current sequence. An algorithm ugesndSto nd rulesa! b, where
ais in the basket anf is not in the basket. For instance sélsaandguacamoleare in the basket
B and also ifsalsa, guacamolandtortilla chips were often purchased togetherSnthen the rule
(salsaandguacamol®! tortilla chips might be used to recommemattilla chips.

The support ofa, written Suga) or #a, is the number of times in the past the customer has

ordered itemsed,
m

Sup@):=#a:= d a2
i=1

If a= ?, meaninga contains no items, thena#t= §,1= m. The condence of arula! bis
denoted “Conf” or ‘fgo™

#al b),

Confla! b):= fgo(a;b) := i

the fraction of timed is purchased given thatis purchased. It is an estimate of the conditional
probability of b givena. Ultimately an algorithm should order rules by conditional probability;
however, the rules that possess the highest con dence values afterateft-hand side with small
support, and their con dence values do not yield good estimates for thetnditional probabili-
ties. Note thaa[ bis the union of the sed with itemb (the intersection is empty). In this work we
introduce the “adjusted” con dence as a remedy for this problem: aidjested con dencéor rule

a! bis:

#al b),

fsk(ab) = ot K-

The adjusted con dence fdf = 0 is equivalent to the con dence.
The adjusted con dence is a particular Bayesian estimate of the con deBpeci cally, as-
suming a beta prior distribution for the con dence, the posterior mean isidiye

L+ #a[ b).
L+ K+ #a’

o

whereL andK denote the parameters of the beta prior distribution. The beta distribution is the
“conjugate” prior distribution for a binomial likelihood. For the adjusted cdence we choose
L = 0. This choice yields the bene ts of the lower bounds derived in the remeaimicthis section,
and the stability properties described later. The prior for the adjusteddemce tends to bias rules
towards thébottomof the ranked list. Any rule achieving a high adjusted con dence musicovee
this bias.

Other possible choices farandK are meaningful. For instance we could choose the following:
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Collaborative ltering prior: haveL=(L + K) represent the probability of purchasing itém
given that itema was purchased, calculated over a subset of other customers. Tles bias
estimates of the target user's behavior towards the “average” user.

Revenue management prior: chodsandK based on the item's price, so more expensive
items are more likely to be recommended.

Time dependent prior: use only the customer's most recent orders;hamodel andK to
summarize the user's behavior before this point.

A rule cannot have a high adjusted con dence unless it has a larggkmoon dence and also
a large enough support on the left-hand side. To see this, consideasbevben we takésk (a; b)
large, meaning for somie, we havefsk(a;b) > h, implying:
#a+ K
#a

#(a[ b) . : _ hK
st K > (#a+ K)h; implying Suga) = #a> 1h 1)

And further, expression (1) implies:

Conf(a! b)= fgo(a;b)> h h;

Supa) = #a (#a+ K)

Sufa[ b) = #a[ b) > h(#a+ K) > hK=(1 h):

Thus, rules attaining high values of adjusted con dence have a lowarton con dence, and
a lower bound on support of both the right and left-hand sides, whictsnadetter estimate of
the conditional probability. The bounds clearly do not provide any adggwherk = 0 and the
con dence is used.

As K increases, rules with low support are heavily penalized, so they tertd betat the top
of the list. On the other hand, such rules might be chosen when all othsrrale low con dence.
That is an advantage of having no rm minimum support cutoff: “nuggésit have fairly low
support may lter to the top. Figure 1 illustrates this by showing the supportilek ordered by
adjusted con dence, for two values Kf, using a transactional data set “T25110D10KN200” from
the IBM Quest Market-Basket Synthetic Data Generator (Agrawal aikdr8, 1994) which mimics
a retail data set.We use all rules with either one or no items on the left and one item on the right
(as produced for instance l§yenRulespresented in Algorithm 1). On each scatter plot, each of
the rules is represented by a point. The rules are ordered on the xyaiusted con dence, and
the support of the rule is indicated on the y-axis. Kéncreases, rules with the highest adjusted
con dence are required to achieve a higher support, as can be aeritfe gap in the lower left
corner of the scatter plot for largét.

We now formally state the recommendation algorithms. Both algorithms use a sobrfar
mining association rules to generate a set of candidate r@enRuleqAlgorithm 1) is one of
the simplest such rule mining algorithms, which in practice should be replacadrie mining
algorithm that retrieves rules tailored to the application. There is a vast literatusuch algorithms
since the eld of association rule mining evolved on their developme=gt Apriori (Agrawal et al.,
1993).GenRulesequires a seA which is the set of allowed left-hand sides of rules.

1. The data set generated is T25110D10KN200 that contains 10K tt#mss, 200 items, and where the average length
of transactions is 25 and the average pattern length is 10.
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Figure 1: Support vs. rank in adjusted con denceKor 0;10;50. Rules with the highest adjusted
con dence are on the left.

Algorithm 1: Subroutine GenRules

itemsX
Output: Setof all rulefa;! bjgj whereb; is a single item that is not in the basli&tand
wherea; is either a subset of items in the baskEebr else it is the empty set. Also
the left-hand sida; must be allowed (meaning it is #). That is, output rules
faj! bjgjsuchthab; 2 XnBanda; B Xwitha;2 A oraj= ?.

2.1 Max Con dence, Min Support Algorithm

The max con dence, min support algorithm, shown as Algorithm 2, is basgti@idea of elimi-
nating rules whose itemsets occur rarely, which is commonly done in the rulegniteirature. For
this algorithm, the rules are ranked by con dence, and rules that doati¢\ee a predetermined
xed minimum support threshold are completely omitted. The algorithm recommiredeght-

hand sides from the top ranked rules. Speci cally; ifems are to be recommended to the user, the
algorithm picks the top ranketdistinct items.

It is common that the minimum support threshold is imposed on the right and lefSsida|
b) qg; however, as long as S(g) is large, we can get a reasonable estimatB(bdfa). In that
sense, it is suf cient (and less restrictive) to impose the minimum supp@shiotd on the left side:
Supa) g. Hereqis a number determined beforehand (for instance, the support of thausft
be at least 5 items). In this work, we only have a required minimum suppdheoleft side. As a
technical note, we might worry about the minimum support threshold beihggbdhat there are no
rules that meet the threshold. This is actually not a major concern beckihsensinimum support

being imposed only on the left-hand side: as longras g, all rules? ! b meet the minimum
support threshold.

The thresholded con dence is denoted ty;:

fsq(@b) := fso(a;b) if#a g;and fsq(a;b) := 0 otherwise.
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Algorithm 2: Max Con dence, Min Support Algorithm.

Input: (g; X;S B, GenRulesc), that is, minimum threshold parametgrset of itemsX, past
ordersS= fzgi-1-m z X, currentbaskeB X, GenRulegenerates candidate
rulesGenRulegS B; X) = fa;! bjgj, number of recommendationss 1

Output: Recommendation List, which is a subsetdfems inX

1 Apply GenRulegS; B; X) to get rulef a; !  bjg; wherea, is in the baskeB andb; is not.

2 Compute score for each rug! bj as fsq(aj;b) = fso(aj;bj) = #(E’?T[Jb‘) when support
#a; (, andfgq(aj;bj) = 0 otherwise.

3 Reorder rules by decreasing score.

4 Find the topc rules with distinct right-hand sides, and let Recommendation List be the
right-hand sides of these rules.

Algorithm 3: Adjusted Con dence Algorithm.

Input: (K; X;S B, GenRulesc), that is, parametdf, set of itemsX, past orders
S=fzg-1-m z X, currentbaskeB X, GenRulegenerates candidate rules
GenRule6SB; X) = fa;! bjg;, number of recommendatiogs 1

Output: Recommendation List, which is a subsetafems inX

1 Apply GenRulegS; B; X) to get ruled a; !  bjg; wherea; is in the baskeB andb; is not.

2 Compute adjusted con dence of each rald b; asfgk(aj;bj) = #;2;E?<j).

3 Reorder rules by decreasing adjusted con dence.
4 Find the topc rules with distinct right-hand sides, and let Recommendation List be the
right-hand sides of these rules.

2.2 Adjusted Con dence Algorithm

The adjusted con dence algorithm is shown as Algorithm 3. A chosen vdldas used to compute

the adjusted con dence for each rule, and rules are then rankeddimgao adjusted con dence.
The de nition of the adjusted con dence makes an implicit assumption that tther@n which

items were placed into previous baskets is irrelevant. It is easy to includpemdience on the

order by de ning a “directed” version of the adjusted con dence, aattulations can be adapted

accordingly. The numerator of the adjusted con dence becomes the maijpast orders whera

is placed in the baskdétefore b

#f (a[ b) : bfollowsag.
#a+ K '

f gj[i(rected)( a: b) —

2.3 Rule Selection

In classical supervised machine learning problems, like classi cationegr@éssion, designing fea-
tures is one of the main engineering challenges. In association rule modbéngnalogous chal-
lenge is designing the allowed sets of items for the left and right sides of rht@sinstance, we
can choose to capture only positive correlations, as if customers wearegsing items from several
independent recipes. The present work considers mainly positivelatons, for the purpose of
exposition and to keep things simple. Beyond this, it is easily possible to capggetive corre-
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lations between items by creating “negation” items, suchlasAs an example of using negation
rules in the ice cream category, we impose thatviamilla to be on the right, botlshocolateand
strawberryneed to be on the left, in either their usual form or negated. Of these, ldhé¢hat is
used corresponds to the current basket. In that casecolate: strawberry! vanilla could have
a high score in order to recommenwmdnilla whenchocolateand strawberryare not in the basket,
whereashocolate : strawberry! vanilla might have a low score, conveying that sirtecolate
is already in the basket thaanilla should not be recommended. Alternatively, we could create a
negation item ice_creamindicating that the basket contains no ice cream presentipsokles+
. ice_.cream! vanilla could have a high score.

We can also use negation items on the right, where if there is atule b that receives a higher
score (con dence or adjusted con dence) than any other rulesmawendingb, we can choose not
to recommend. Rules can be designed to capture higher level correlations in spegjimes,
for instance the allowed sétcan contain up to three items in one product category, but only two
items in another. It is not practical in general to exhaustively enumerdtesmall possible rules
in a rule modeling algorithm due to problems with computational complexity. The Key sl a
small but good set of rules, for instance the set of rules containingustirely all subsets of 1, 2,
or 3 items on the left; or perhaps use the top rules that come out of the Agligorithm (Agrawal
etal., 1993). In Section 7 we provide citations to surveys on associatmmining and associative
classi cation that discuss this important issue of rule-construction aneendgneering.

2.4 Modeling Assumption

The general modeling assumption that we make with the two algorithms above waittbn as fol-
lows, where current baskBtis composed of itemisy; : : : b, andX; is the random variable governing
whether itemi will be placed into the basket next:

AYMAXP(X; = 1jXp, = 1%, = L1151 % = 1)

seam

= amgmax. max  P(X = LjXe = LXe = 111
i2B af by;iibrg

This expression states that the most likely item to be added next into the loaskbé identi ed
using a subset of items in the basket, denatetihat subset is restricted to fall into a claswhich

is chosen based on the application at hand and the ease in which thdtcarbbe searched. The
setA determines the hypothesis space for learning, and it would be choseredtffy as we move
from the small sample regime to the large sample regime, so that the right side exphéssion
would eventually look just like the left side when the sample is large.

The choice ofA can help with the problem of “curse of dimensionality” by allowing us to look
at small subsets on the left. A similar example to the one in the introductiBfmschine will
breakj a particular part is oldcould be much easier to estimate accurately than the full probability
P(machine will breal part 1 did poorly at last inspection, part 2 is very old, part 3 is new, par
is ok,..., part 612 is ok, efc. The large dimensionality would likely be a problem when estimating
the full probability. Further, the approximation also could actually be sufiti® estimate the
full probability. We note that there are circumstances in which it is naturahlypansider positive
correlations. In the example of equipment failure, for instance, indivicuaponent failures would
always increase the risk of overall failure. More typically, howevensideration of both positive
and negative correlations will be important.
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Our modeling assumption aligns with sequential event prediction, where artlgfa sequence
is available to make a prediction at timeThis is a case where standard linear modeling approaches
do not naturally apply, since one would need to make a linear combinatiomud,teome of which
are unrealized. We discuss this more in Appendix A.

3. De nition of Sequential Event Prediction

For simplicity in notation, at each time the algorithm recommends only one ¢eml. A basket

z consists of an ordered (permuted) set of item®,2X P, where X is the set of all subsets
of X, andP is the set of permutations over at mgXj elements. We have a training setrof
basketsS= f zg;..m that are the customer's past orders. DeroteD to mean that basketis
drawn randomly (iid) according to distributidd over the space of possible items in baskets and
permutations over those itemst 2 P. Thet™" item added to the basket is writter;, where the
dot is just a placeholder for the generic baskeThet™ element of the'" basket in the training
set is writtenz;. We de ne the number of items in baskeby T,, that is, T, := jZ. We introduce

a generic scoring functiofis: (a;b) 7! R wherea is a subset of items ardlis a single item. The

scoring functionfs comes from an algorithm that takes dataSes input. We can considég to
be parameterized, and the algorithm will learn the parameteisfodm S.

algorithm recommended the wrong item. The loss function below counts therpawpof times
this happens for each basket.

0 1(fs2) =

iTzo o1 fs(fz.1;::1,2409;Z141) Ma¥2Xnfz.1;::52.49 fs(fz,1;:::5z4gb) O
T, 2, O otherwise.

(Note that ifz contains all items irX, then the recommendation for the last item is deterministic,
so we would not count it towards the loss.) The true error for sequesntait prediction is an
expectation of the loss with respectly and is again a random variable since the trainingssst
random.

TrueEr(fs) := E;, p o 1(fs;2):

The empirical risk is the average loss with respe&:to

m
EmpEr( fs) := 1 a o 1(fsz):
Mi-y
The loss is bounded (by 1), the baskets are chosen independenttheaachpirical risk is an
average of iid random variables and the true risk is the expectation. fteugroblem ts into the
traditional scope of statistical learning, and the loss can be used withiremimaton arguments to
obtain generalization bounds.
In the analysis below, we build the full algorithm for constructifiginto the notation. The
algorithms above are simple enough that they can be encoded within the sawienlotation. To
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score. For instance, if we are using the adjusted con dence algorithm,

fs(fz.1;::1,z49;b) = max fsk(ab):
a2Aaf z.a;5z49

The 0-1 loss is not smooth, so we will often use a smooth convex uppedliouthe loss within
the bounds. Speci cally, for the way we have de ned sequential epegdiction, if any item has
a higher score than the next item added, the algorithm incurs an ersan (Ethat item is added
later on, the algorithm incurs an error at this timestep.) To measure the siz efitbr, we can use
the 0-1 loss, indicating whether or not our algorithm gave the highest $odhe next item added.
However, the 0-1 loss does not capture how close our algorithm wasrexty predicting the next
item, though this information might be useful in determining how well the algorithmpeilleralize.
We approximate the 0-1 loss using a modi ed loss that decays linearly nedisttentinuity. This
modi ed loss allows us to consider differences in adjusted con dencgjusbwhether one is larger
than another:

j(adjusted conf. of highest-scoring-correct rule)
(adjusted conf. of highest-scoring-incorrect rile)

However, as discussed in the introduction, if we adjust the loss functiowalue to match the
adjusted con denc& value, then we cannot fairly compare the algorithm'’s performance using two
different values oK. An illustration of this point is that for largk, all adjusted con dence values
are 1, and for smalK, the adjusted con dence can bel,; differences in adjusted con dence
for smallK cannot be directly compared to those for laKyeSince we want to directly compare
performance aK is adjusted, we x an evaluation measure that is separate from the cholCe of
Speci cally, we use the difference in adjusted con dence values witheaetsto a referenck; :

j(f adjusted cong, of highest-scoring-correct ryl¢
(f adjusted congk, of highest-scoring-incorrect rylgj: (2)

The referencel; is a parameter of the loss function, wheréass a parameter of an algorithm.
We setK; = 0 to measure loss using the difference in con dence, lkird 0 for an algorithm that
chooses rules according to the con dence.Kdgets farther fronK;, the algorithm is more distant
from the way it is being evaluated, which leads to worse generalization. tNatéor K, = K, the
0-1 loss is the same as the sign of (2).

A similar loss will be used in classi cation, where we incur an error if the agjdi€on dence
of the incorrect label is higher than that of the correct label.

4. Generalization

Our goal in this section is to provide a foundation for supervised learnitiyagsociation rules,
and also a foundation for sequential event prediction. We will consieral quantities that may
be important in the learning procesg; K or g, the size of the set of possible itemsgig and the
probability of the least probable itemsets and items.

As part of this section, we establish bounds for vanilla supervised bitlasgi cation with
rules. Speci cally we consider “max-score” association rule classi €fsr a given example, a
max-score classi er assigns a score to the label +1 and a score to thelladned chooses the label
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corresponding to the higher of the two scores. Max-score associat®classi ers are a special
type of “associative classi er” (Liu et al., 1998) and are also a typedefiision list” (Rivest, 1987).
The result in 4.2 is a uniform bound based on the VC dimension of the sebesomse classi ers.
This bound does not depend explicitly Knwhich we hypothesize is an important quantity for the
learning process.

In order to understand hot¢ might affect learning, we use algorithmic stability analysis. This
approach originated in the 1970's (Rogers and Wagner, 1978; Pevand Wagner, 1979) and
was revitalized by Bousquet and Elisseeff (2002). Stability boundsrdiepe how the space of
functions is searched by the algorithm (rather than the size of the fungtiare) so it often yields
more insightful bounds. These bounds are still not often directly usleflito large multiplicative
constants (in our case a factor of 6), but they capture more closely &habity relationship of
a particular algorithm with respect to important quantities in the learning psodé®e calculation
required for an algorithmic stability bound is to show that the empirical erromawiiidramatically
change by altering or removing one of the training examples and re-rutimenglgorithm. There
are many different ways to measure the stability of an algorithm; most of thedsqaresented here
use a speci c type of algorithmic stability (pointwise hypothesis stability) so thebthunds scale
correctly with the number of training examples

Section 4.1 presents a basic stability bound for sequential event prediggotion 4.2 presents
a uniform VC bound for classi cation with max-score classi ers. SectioB grovides notation.
Section 4.4 presents another basic stability bound for sequential eeelittn, for a rule-based
loss function. We then focus on stability bounds for the rule-based algwifinovided in Section 2.
Speci cally, Section 4.5 provides stability bounds for the large sample asyimpégime (for both
sequential event prediction and classi cation). Then we consider thesmallmregime in Section
4.6, starting with stability bounds that formally show that minimum support thidstan lead to
better generalization (for both sequential event prediction and clagisifjaFrom there, we present
small sample bounds for the adjusted con dence algorithm, for classi catiah(separately) for
sequential event prediction.

We note that the space of possible baskets (up to a maximum size) is a coniailyatmge,
discrete space. Because the space is discrete, all probability estimatesgecto the true proba-
bilities, which means that an algorithm that is statistically consistent can be abtajrestimating
p(bjB) directly for the current baskd. If mis large, prediction is easy. The dif cult part is when
we have only enough data to well estimate conditionals that are much srRélig);a B. That
is the problem we are concerned with. Consistency does not imply anything generalization
bounds for the nite sample case.

4.1 General Stability Bound for Sequential Event Prediction

In this section we provide a basic stability-based bound for sequential prediction, by analogy
with Theorem 17 of Bousquet and Elisseeff (2002) (B&E).

We de ne a sequential event prediction algorithm produdig¢p havestrong sequential event
prediction stabilityb (by analogy with B&E De nition 15) if the following holds:

8S2D™8i2f1;::;mg
kmax=o;::7, 1Jfs(fz1;0020052501)  fsi(fzaii0 200520 )ike by
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where the¥ -norm is over baskets. A de nition we will use from B&E is as follows: an algon
producing functionfs with uniform stabilityb®obeys:

7, 121 ifD O
N ) = & 8 1 .
(fs2): T So?l gD |.f0 D g
0 ifD g

The empirical error and leave-one-out error de ned for this loss are

m
EmpEry(fs;z) = ao‘g(fs:zi):

i=1

10,
LooErry(fs;z) := —a o fsisz):

Lemma 1 A sequential event prediction algorithm producingwiith strong sequential event pre-
diction stabilityb has uniform stability?2b=g with respect to the loss functiog.

Proof

Jofsi2) “o(fsi:2)]

1511
— = fs(fzg;::5,240;Z4+ 1) max  fg(fz.1;:::;z49;b)
T, =0 nfz.1;::5249
fsi(fz1;::00240:Z2 44 1) max fsi(fz,1,::0249;b)
nfz.1;:5249
1171
——a [0fs(fz;1;::5,240,2:0+1)  fsi(fZ:1500052405Z040)) +
gTZ t=0
ma. fs(fz-1;:::240:b ma fa(fzq;::;240;b
b2anz;1;):(::;z;19 s 1 19 ) nfz.q;:5249 g( Z1 219 )
}2b:
g

The rst inequality uses the Lipschitz property of the loss, as well as aeupound from moving

the absolute values inside the sum. The third inequality uses the strong stabilitgsp#ct tofs.
[ |

The following theorem is analogous to Theorem 17 in B&E, for sequentatteprediction. The

proof is a direct application of Theorem 12 of B&E to the sequential eveatigtion loss, combined
with Lemma 1.
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Theorem 2 Let fsbe a sequential event prediction algorithm with sequential event statilitien
forall g> Oand any m 1and anyd2 (0;1) with probability at leastL  d over the random draw

of sample S, r

4b b In(1=d)
TruekEr(fs) EmpErg(fs)+ E+ 8m§+ 1 o
and with probability at least  d over the random draw of sample S,
r
4b b In(1=d)
TrueEr(fs) LooErry(fs)+ E+ 8m6+ 1 o

As with classi cation algorithms, the type of stability one would need to apply thesmds can
be quite dif cult to achieve, as it requires that the change in the model is goradiny training
set when any example is removed. This is particularly dif cult to achieveruthe sample size is
somewhat small. For the association rule bounds, we know that uniforititgtetnot possible for
many algorithms that perform well. However, there are some algorithms thextdbit stronger
stability, as we will discuss.

4.2 Classi cation with Association Rules: A Uniform Bound

In the classi cation problem, each basket receives a single label thakigbtwo possible labels
f+1; 1g. This contrasts with sequential event prediction where there is a sexjoénabels,
one for each item in the basket as it arrives. For classi cation, weesemit basket as a binary
vector, where entryj is 1 if item j is in the basket. We sample baskets with labels,( x;y),
wherex 2 2X is a set of items (or, equivalently, a binary feature vector) g@d 1;1g is the
corresponding label. Each labeled basket chosen randomly (iid) from a xed (but unknown)
probability distributionD over baskets and labels. Given a trainingSef m labeled baskets, we
wish to construct a classi er that can assign the correct label to ndabeled baskets. We begin
by de ning a scoring functiorg: A f 1;1g! R that assigns a scoiga;y) to a rulea! .
The set of left-hand side& can be any collection of itemsets so long as evwe®y2X contains
at least onea 2 A. We de ne avalid scoring function as one whe@a 2 A; g(a;1) 6 g(a; 1)
and8aj;ap 2 A; maxpr 1.1g9(a1;y) 6 maxyr 1.199(az;y), that is, there are no ties. The validity
requirement will be discussed in the following paragraph. De®é¢o be the class of all valid
scoring functions. We now de ne a class of decision functions that usdid scoring function
g2 Gto provide a label to a baskef fg : 2X1f  1;1g. The decision function assigns the label
corresponding to the highest scoring rule whose left-hand side is cedtmir. Speci cally,

fg(x) = argmax max g(a;y): (3)
y2f 1;1g a2Aa x

We call such a classi er a “max-score association rule classi er” (@cidion list”) because it uses
the association rule with the maximum score to perform the classi cation. Fgkscorebe the
class of all max-score association rule classi dfgaxscore= f fg: 92 Gg. We will bound the VC
dimension of clasEmaxscore By de nition, the VC dimension is the size of the largest set of baskets
to which arbitrary labels can be assigned using sdg# Fmaxscor it is the size of the largest set
that can be shattered.

The argmax in (3) is unique becaugés valid, thus there are no ties. If ties are allowed but
broken randomly, arbitrary labels can be realized with some probabilityeXample by taking
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g(a;y) = 0 for all a andy. In this case the VC dimension can be considered to be in nite, which
motivates our de nition of a valid scoring function. This problem actuallyges with any clas-
si cation problem where functiorf(x) = 0 8x is within the hypothesis space, thereby allowing all
points to sit on the decision boundary. Our de nition of validity is equivatertne in which ties are
allowed but are broken deterministically using a pre-determined orderitigeomules. In practice,
ties are generally broken in a deterministic way by the computer, so the incloistbe function
f = 0 is not problematic.

The true error of the max-score association rule classi er is the expettadassi cation error:

TrueErrClasbfg) = Exy) D [fy08y]" 4)

The empirical error is the average misclassi cation error over a trainingfsa baskets:
_ 13 .
EmpErrClasgfy) := m_al [fg()6 yil-
1=

The main result of this subsection is the following theorem, which indicates thatizle of the
allowed set of left-hand sides may in uence generalization.

Theorem 3 (VC Dimension for Classi cation)
The VC dimension h of the set of max-score classi ers is equal to thefsike allowed set of left
hand sides of rules:

VCdim(Fmaxscord := h:= jAj:

From this theorem, classical results such as those of Vapnik (1999ti&@wm20 and 21) can be
directly applied to obtain a generalization bound:

Corollary 4 (Uniform Generalization Bound for Classi cation)
With probability at least.  d the following holds simultaneously for al} 2 Fmaxscore
I
N 4EmpErrClasfy)

TrueErrClasgfg) EmpErrCIaséfg)+§ 1+ 1 o ;

iA] IanT{'j‘+1 Ind
wheree= 4 :

m

Note 1 (on uniform bounds)The result of Theorem 3 holds generally, well beyond the simple
adjusted con dence or max con dence, min support algorithms. Thoseatgarithms correspond

to speci ¢ choices of the scoring functiogt the adjusted con dence algorithm takgéa;y) =
fsk(a;y), and the max con dence, min support algorithm takés y) = fgq(a;y). We could use
other strategies to choogefor example, choosind; 2 F to minimize an empirical risk (similar to
what we do in Letham et al., 2013c).

Note 2 (on replacing itemsets with general boolean operatok#though in this paper we restrict
our attention to left-hand sides that are sets of iteeng, (‘apples and oranges”), association rules
can be constructed using the boolean operators AND, OR, and HQT“@pples or oranges but
not bananas”). In this case, the left-hand sides of rules are noticedtm x, rather they arérue
with respect to xBy replacing “contained i” with “true with respect to<” in the rst half of the
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proof of Theorem 3 (in Section 5), it can be seen thgt Aj even when A contains general boolean
association rules. Thus the bound in Corollary 4 extends to booleantosera

Note 3 (dependence ¢Aj): We can use a standard argument involving Hoeffding's inequality and
the union bound over elementskef,axscord0 0Obtain that with probability at least 1d, the following
holds for all fg 2 Faxscore

TrueErrClasgfy) EmpErrClasgfy) + %} In(2j Fraxscord) + Ing

The value of Fmaxscord iS at most #Y. This is because there g ways to determine max g(a;y),
a2Aa

and there are 2 ways to determine the argmax pv&he bound then depends onjAj (as classical
VC bounds would also give, using Theorem 3), but notjAjg Note that the bound is meaningful
whenjAj < mso that 2 < 2™,

Note 4 (on reducingAj): It is possible that many of the possible left-hand sidei®\jrare realized
with zero probability. (This depends on the unknown probability distributian tte examples are
drawn from.) Because of this, if we are willing to rede #eto include only realizable left-hand
sides,jAj can be replaced in the bound [#j, whereA = fa2 A: P, (a x)> Og are the itemsets
that have some probability of being chosen.

4.3 Notation for Algorithmic Stability Bounds

We will now introduce the notation that will be used for the algorithmic stability foisurrst for
classi cation and then for sequential event prediction.

4.3.1 NOTATION FOR CLASSIFICATION BOUNDS

Recall that we sample= ( x;y) wherex 2 2X is a set of items ang2 f  1;1g s the corresponding
label. Eacteis sampled randomly (iid) according to a distributiBrover the space’ f  1;1g.
The adjusted con dence algorithm uses the trainingSseft m iid baskets to compute the adjusted
con dencesfsk and nd a rule that will be used to label the basket. We zsg x;y) to refer to a
general labeled basket, agc= ( x;:y;) to refer speci cally to thé'™ labeled basket in the training
set. We de ne ahighest-scoring-correctule for x as a rule with the highest adjusted con dence
that predicts the correct labgl The left-hand side of a highest-scoring-correct rule obeys:

ag, 2 argmaxfsk(ay) = argmax#(a[ Y).
a xa2A

A #Hat+ K’

whereK 0. If more than one rule is tied for the maximum adjusted con dence, one @arbe
chosen randomly. If the true labgis not found in the training set, then the con dence of all rules
with y on the right-hand side will be 0, and we taRe! y as the maximizing rule. We de ne a
highest-scoring incorreatule for x as a rule with the highest adjusted con dence that predicts the
incorrect label y, so the left-hand side obeys:

#al ).
Agyk 2 argmafoK(a y) = 2rg)]<r;12an Tt K
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Again, if the label y is not found in the training set, we take! vy as the maximizing rule.
Otherwise, ties are broken randomly.

A misclassi cation error is made for labeled basketvhen the highest-scoring-correct rule,
as«! Y, has alower adjusted con dence than the highest-scoring incorrectigy), ! y. As
discussed earlier, we will measure this difference in adjusted con dealcees with respect to a
referenceK; in order to allow comparisons with different valueskof We will takeK; 0. This
leads to the de nition of the 0-1 loss for classi cation:

~class P\ e 1 if fSKr(ang;y) fSKr(aéxK; y) 0
o 1k (fskid = 5 ierwise.,

The termfgk, (a5 Y)  fsk (85 Y) is the “margin” of examplez (that is, the gap in score
between the predictions for the two classes, see also Shen and Waidg, 200
We will now de ne the true error which, whek = K, is a speci ¢ case of TrueErrClass de ned
in (4). (The functiong is chosen using the data set, and ifd%.) The true error is an expectation
of a loss function with respect 0, and is a random variable since the training S& random,
s D™
TrueErClaséfsk;Kr) := E, b §°5% (fsk;2):

We approximate the true error using a different I%Sthat is a continuous upper bound on the
0-1loss’ g'ag;sKr. It is de ned with respect t&, and another real-valued parameter 0 as follows:
e tski D) = eyl fsr (B5cY)  fsk(sac W)
wherecg:R! [0;1], 8
< 1 fory O

)=, 1 y=g forO y g
| 0 fory g

As gapproaches 0, logg, approaches the standard 0-1 loss. Af%ﬁi?Kr(sz; 2) ‘&'ﬁfi fsk;2).
We de ne TrueErrClasgusing this loss:

TrueErrClasg fsk;Kr) = E; D‘gﬁfs(sz;Z);

where TrueErrClass TrueErrClasg The generalization bounds for classi cation will bound
TrueErrClass by considering the difference between TrueErrgCHass its empirical counterpart
that we will soon de ne. For training basket, the left-hand side of a highest-scoring-correct rule
obeys:

s 2 argmaxfsk(a:yi);

aS);K o gi;aZA S;K( yl)

and the left-hand side of a highest-scoring-incorrect rule obeys:
a_SXK 2 al’gmaXfSK(a; Yi):
a Xx;a2A
The empirical error is an average of the loss over the baskets:

1.
EmpErrClasg fsk; Kr) = a° S fsk;2):

i=1
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For the max con dence, min support algorithm, we substitpenereK appears in the notation.
For instance, for general labeled basket( x;y), we analogously de ne:

ag,, 2 ar maxfs ay);
a a ?(;aZA _Sq( y)
ac 2 argmaxfgq(a; X
Sxq a%; i\ Sq( y)

~cl e
0°1k, (fsai2)

“clasg £ .
gcpﬁrss(qu:Z)

and TrueErrCIae{sf;q; Kr) and_TrueErrCIa@Ql‘_gq; K;) are de ned analogously as expectations of
the losses, and EmpErrClgéhsq; Kr) is again an average of the loss over the training baskets.

1 if fok (aqy)  fsi (85 ¥) O
0 otherwise

Col fsk, (A y)  fsk (s YD)

4.3.2 NOTATION FOR SEQUENTIAL EVENT PREDICTION BOUNDS

The notation and the bounds for sequential event prediction are similars®e ¢tiglassi cation, the
main differences being an additional indeto denote the different time steps, and a set of possible
incorrect recommendations in the place of the single incorrect lapelAs de ned in Section 3,
a basket consists of an ordered (permuted) set of item®,2X P, where X is the set of all
subsets o, andP is the set of permutations over at m@Xj elements. We have a training set
of mbasketsS= fzg;.., that are the customer's past orders. DeroteD to mean that basket
is drawn randomly (iid) according to distributidn over the space of possible items in baskets and
permutations over those item§<, 2 P. Thet!" item added to the basket is written, where the dot
is just a placeholder for the generic baskeThet!™" element of the'" basket in the training set is
written z 1. We de ne the number of items in baskeby T, that is, T, := jZ.

For sequential event prediction, a highest-scoring-correct rule ighees$t scoring rule that has
the next iteme . 1 on the right. The left-hand sid&_, of a highest-scoring-correct rule obeys:

a’gthZ argmax  fgi(a;z:+1):

If z.++ 1 has never been purchased, the adjusted con dence for allatiles ++ 1 is 0, and we choose
the maximizing ruletob@ ! z..4. Also at time 0 when the basket is empty, the maximizing rule
is? ! Zt+1.

The algorithm incurs an error when it recommends an incorrect item. A $ligioering-
incorrect rule is a highest scoring rule that does not Mg on the right. It is denotedg,, !
bs1 and obeys:

[As 2tk Pszid 2 af ?‘:gryg)a(ZA fsk(a;b):
b2Xnfz.q:52 44 10
If there is more than one highest-scoring rule, one is chosen at randitintife exception that all
incorrect rules are tied at zero adjusted con dence, in which case ftheide is taken a® and
the right side is chosen randomly). At tirhe 0, the left side is agaiff . The adjusted con dence
algorithm determineag,;, as ik, andbg,, Whereas nature chooses 1.

2. Even though we de ne an order for the basket for this discussiqmrediction, we are still using the undirected
adjusted con dence to make recommendations rather than the direegdnvtroduced in Section 2. The results
can be trivially extended to the directed case.
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If the adjusted con dence of the rubg«! bg,«is larger than that ofis,,!  Z.+1, it means
that the algorithm recommended the wrong item. The loss function below, whtbtle isame as
the one in Section 3 but with the algorithm built into it, again counts the proporfitimes this
happens for each basket, and is de ned with respekt to

1% Y 1 if fak(8meZzas) Tk (B Psa) O
0 1k (fsk:2) = T, taO 0 otherwise.

The true error for sequential event prediction is an expectation of tbe los
TrueEr(fsk;Kr) := E; p o 1k (fsk;2):

We create an upper bound for the true error by using a different jgsghat is a continuous
upper bound on the 0-1 losg 1k,. It is de ned analogously to classi cation, with respectKp

andcy:
T 1

. 1 . i
gk (fski2) = = A Cyfsk (BEaiZi+1)  Fsk (B Do) :
Z t=0

Itis true that o 1.k (fsk;2) gk (fsk;2). We de ne TrueErg:
TrueErg(fsk; Kr) := E; p gk (fsk;2);

where TrueErr TrueErg. The rst set of results for sequential event prediction below bound
TrueErr by considering the difference between TrugBnd its empirical counterpart that we will
soon de ne.

For the speci c training baske, the left-hand sidesg,,, of a highest-scoring-correct rule at
timet obeys :

+ . .
al . 2 argmax  fg(a;z:+1);
1 af za::5zp0:82A

similarly, a highest-scoring-incorrect rule fgrat timet has:

I o) 2 argmax  fgy (a;b
[Bszti; bszk] 2 iz Az sk(a;b):
b2Xnfz.q::57:44 19

The empirical error is de ned as:
1 & .
EmpErE;(fSK;Kr) == a gKr(fSK;Zi):
mbaskets’.—l

For the max con dence, min support algorithm, we again substguidereK appears in the
notation. For example, we de ne:

Foo2 argmax  fgq(a zs1);
8521 af 2zaga2A sa(@Z;t+1)
A5z b5y 2 argmax fgq(a b);

af z. 1NZ5tG a2A
b2Xnfz. Azt 10

1% 1 if fSKr(agzq;Z;H 1) fSKr(aézq; b-qu) 0

0 1(fsqid = T S‘o 0 otherwise
_ Tz 1
‘gKr(qu;Z) = a. Cg(fSKr(aquaZHl) fSKr(a-qu;b-qu)):
Zt 0

3459



RUDIN, LETHAM AND MADIGAN

TrueEr( f_g;q; Kr) and TrueEry( f_s-q; K;) are expectations of the losses, and Emg(EErq; K;) is an
average of the loss over the training baskets.

4.4 General Stability Bound for Sequential Event Prediction with RuleBased Loss

This section contains a stability bound for sequential event predictiomdipgy with Theorem 17

of Bousquet and Elisseeff (2002), using the loss we just de ned, wimiolves rules. We need to
de ne what is meant by a rule-based sequential event prediction algoritb keep this de nition
general, we de ne an algorithrAlg to take as input a data s&t basketz, and itemb (where

b is the desired output for baskat and have the algorithm output: (i) the left hand side of the
algorithm's chosen rule to predibt, which we callagZb Alg: (i) the algorithm's chosen rule that

predicts an item other tham, which is calledag,, .aig!  Pgzp alg:
We de neAlg:Szb 7! ag,, Alg 8s2b :Alg Pszb :alg 10 haveuniform rule stabilityb for se-
guential event prediction with respectKp if:
85,82 8b ; we havej fsk, (85,1 aigb ) fSK,(a;;Z;b g D) band

ijKf(aS:Z:b Alg? bSZ;b :Alg) fSKf(aszi;z;b ;Alg; bS:‘;z;b ;Alg)j b:
That is, the algorithm is stable whenever (i) the adjusted con dence ofulles used to predict
both b is not affected much by the removal of one training example, and (ii) wheadhssted

con dence of the rule to predict something other thiars not affected much by the removal of one
training example. We can then show:

Lemma5 A rule-based sequential event prediction algorithm with uniform rule statdilityas
uniform stability2b=g with respect to the loss functiog, .

Proof

‘g (AIG(S 5 )iD gk AlG(ST;; )iz

_1%! " .

= FTadab fS?Kr(aSz-l:::z-t;zHl;Alg’Z;Hl)
Tz 2o e
fSKr(aS;z;l:::z;t;z;Hl;AIg;bS;z;l:::z;t;z;Hl;AIg)
Co fSKf(a+-i;2;1:::2;t;2;t+1;AI9;Z;“l)

fSKf (aSq';z;l:::z;t;Z;H 1;Alg’ bS:i;z;l:::z;t;z;H 1;Alg)

1 Tzo 1 .
Tz.g a. fS;KF(aS;Z;liiiz;t;Z;Hl;Alg;Z;t+ 1)
b t:0

s (as:i;z:l:::z:t;z;ﬁl;Alg; Z+1)
+ fS;Kr (aS;z;l:::z;t;z;H 1;Alg; bS;z;liiiz;t:Z;t+ 1;Alg)
fSKr (as=i;z;1:::z;t;z;t+ 1;Alg; bszi:z;1:::z;t;z;t+ 1;Alg)

}Zb:
g
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In the rstinequality, we used the Lipschitz property of the loss, and erigs of absolute values.
In the second inequality, we used the de nition of uniform rule stability fothbabsolute value
terms withb beingz 14+ 1, and basket beingz.1:::z+. [ |

Adapting the de nitions in the previous subsectiorAlg (rather tharfs), the following theorem
is analogous to Theorem 17 in B&E, for the rule-based lggsfor sequential event prediction. The
proof is an application of Theorem 12 of B&E to the rule-based sequentgit gorediction loss,
combined with Lemma 5.

Theorem 6 Let Alg be a sequential event prediction algorithm with uniform rule stabilifpr
sequential event stability. Then for g 0 and any m 1 and anyd 2 (0; 1) with probability at
leastl doverthe random draw of sample S,

r

4b b In(1=d
TrueEn(Alg;Ky)  EmpErg(Alg Kr) + E+ 8m§+ 1 (2m )
and with probability at least d over the random draw of sample S,
r—
TrueErn(Alg;K;)  LooErry(Alg;K) + 4;+ SmZ +1 In(zlr:d) :

We now focus our attention back to the rule-based algorithms from Sectamd2jerive a variety
of bounds for these algorithms.

4.5 Generalization Analysis for Largem

The choice of minimum support threshajdor the choice of parameté¢ matters mainly in the
regime wherem is small. For the max con dence, min support algorithm, wimeis large, then
all (realizable) itemsets have appeared more times than the minimum suppdnbttinegth high
probability. For the adjusted con dence algorithm, wheis large, prediction ability is guaranteed
as follows.

Theorem 7 (Generalization Bound for Adjusted Con dence Algorithm, Large m)
Forsetofrules A, K 0,K; 0, with probability atleasfL d (with respect to training set S D™M),

s
1 1
TrueEr(fsi;Kr) -~ EmpErg(fsiiK)+ o 5+ 60
2jAj 1 K Kjmig 1
whereb = + +O =
(m 1)pminat K (M 1) pminat+ K me

and whereA = fa2 A:P(a 2) > Ogare the itemsets that have some probability of being chosen.
Out of these, any itemset that is the least likely to be chosen has probagiligy p

Pmina = ;nzi/&]Pz p(a 2:
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As a corollary, the same result holds for classication, replacing TrudEk;K;) with
TrueErrClasgfsk; Kr) and EmpEr( fsk; Kr) with EmpErrClasg( fsk; Kr).

A special case is whell§, = K = 0: the algorithm chooses the rule with maximum con dence,
and accuracy is then judged by the difference in con dence valueseeetthe highest-scoring-
incorrect rule and the highest-scoring-correct rule. The bounacesto:

Corollary 8 (Generalization Bound for Maximum Con dence Setting, Large m)
With probability at leasfL  d (with respectto S D™M),

S

. ) 1 12/A] 1
TrueBn(fso;0) - EmpErg(fsoi0)+ i 5o o pmm T O
Again the result holds for classi cation with appropriate substitutions. af the pointwise

hypothesis stability within this proof is the key to providing a decay of ordéi=m). Now that
this bound is established, we move to the small sample case, where the minimuont $sipipe
force that provides generalization.

4.6 Generalization Analysis for Smallm

The rst small sample result is a general bound for the max con dence,support algorithm,
which holds for both classi cation and sequential event prediction. The eoa dence, min sup-
port algorithm has uniform stability, which is a stronger kind of stability thaimgmise hypothesis
stability. This result strengthens the one in the conference version of this(Rudin et al., 2011),
where we used the bound for pointwise hypothesis stability; uniform stabilityigsipointwise
hypothesis stability, so the result in the conference version follows autathatic

Theorem 9 (Generalization Bound for Max Con dence, Min Support)
Forq 1,K. O, with probability at leastL d (with respectto S D™), m> q,

r

TrueEn( faq: Kr) EmpEr@(fqu;Kr)’f 2b+(4mb+ 1) |n21m:d
whereb= 2 14 Kr ! 1+ =
gq g+ Kr q

Note thatjAj does not appear in the bound. For classication, Trugk;K;) is replaced by
TrueErrClaséfsq; Kr) and EmpErg( fsq; Kr) is replaced by EmpErrClagssq; Kr). Figure 2 shows
b as a function ofy for several different values d&f;. The special case of interest is whién= 0,
so that the loss is judged with respect to differences in con dence Jlas/

Corollary 10 (Generalization Bound for Max Con dence, Min Support,#0)
Forq 1, with probability at leastL.  d (with respectto S D™), m> q,

r

_ — 4 8m In1=d
TrueEr( fgq: 0 EmpErr(fgq;0)+ —+ —+1 :
(fsq;0) PEry(fsq; 0) 9 99 om
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Figure 2: b vs. g from Theorem 9, witlg= 1. The different curves are different valueskgf= 0,
1,5, 10, 50 from bottom to top.

It is common to use a minimum support thgeshold that is a fractiom,dfor instanceq =
0:1 m. In that case, the bound again scales witfil=m). Note that there is no generalization
guarantee wheg = 0; the minimum support threshold enables generalization in the smbke.

Now we discuss the adjusted con dence algorithm for smralietting. We present separate
small sample bounds for classi cation and sequential event prediction.

Theorem 11 (Generalization Bound for Adjusted Con dence Algorithm, Small m, Fos§llaa-
tion Only) For K> 0;K, 0, with probability at leastL d,

S
11
TrueErrClasgfsk;Kr)  EmpErrClasg fsk; Kr) + g Tn+ 6b where
b = g% 1 (m mi—_) pKy,min

g 3

2 1 m 1 z

i i : , 4 = 5.
+ gJKr KIEz Bin(m 1:pymin) " . Tk me K + K 1 T K ;

mK z
where gmin = min(P(y= 1);P(y= 1)) is the probability of the less popular label.

Again,jAj does not appear in the bound, and generalization is providé&d bypd the difference
betweerK andK;; the interpretation will be further discussed after we state the small sampie bou
for sequential event prediction.

In the proof of the following theorem, if we were to use the de nitions estabtisim Section
4.3.2, the bound does not simplify beyond a certain point and is dif cultadl i an intuitive level.
From that bound, it would not be easy to see what are the important quaifditi¢he learning
process, and how they scale. In what follows, we rede ne the losstifum slightly, so that it
approximates a 0-1 loss from below instead of from above. This pro@desicise and intuitive
bound.
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De ne a highest-scoringule ag,,c! bg,k as a rule that achieves the maximum adjusted con-
dence, over all of the possible rules. It will either be equalag, ! Z.+1 Or aguk! byu
depending on which has the larger adjusted con dence:

[aszicbsud 2 ArIMAX fgy (a;b):
a z;l,“.,z;[g,aZA
b2Xnfz.q;::2 g
Note thatbg,x can be equal t@t+1 whereasbg, cannot. The notation foag, andbg,y is
similar, and the new loss is:

*new (fsk;2) = lTZél 1 fSKr(agth;Z;t+ 1) fSKr(aSth; sztK) <0
0 Lk ASOET 3 &0 otherwise.

By de nition, the differencefgk, (a5, Z:+1)  fsk, (Asuk Psz) €N Never be strictly positive.
The continuous approximation is:

T, 1

. 1%
gke(fskid = = a ¢ ( fsk (BsaZit+1)  fsk (AsaiPsaw)); where
Z =0
8
< 1 fory g
g M=. yg for gy O

0 fory O.

As gapproaches 0, thg loss approaches the 0-1 loss. We de ne Trugﬂ’rand EmpErg‘eW using
thisloss: TrueE™(fsk;Kr) := Ez p gk (fsk;2); and EmpEG™(fsk;Kr) = %é{ll‘gi"rv( fsk;z).

The minimum support threshold condition we used in Theorem 9 is replacagvbgker condi-
tion on the support. This weaker condition has the bene t of allowing mdesto be used in order
to achieve a better empirical error; however, it is more dif cult to get aegalivation guarantee.
This support condition is derived from the fact that the adjusted camcdeof the highest-scoring
rule ag, ! bgyi exceeds that of the highest-scoring-correct aflg, ! 1, which exceeds
that of the marginal rul@ ! z41:

#asth #(asth[ bsth) #(agth[ Zit+1) H#Zit+r 1

: 5
#aSth+ K #aSth+ K #agth +K m+ K ( )
This leads to a lower bound on the suppaag # :
#Zix+1
# K —— 6
aSZtK m+ K #Zi;t+1 ( )

This is not a hard minimum support threshold, yet since the supportabnircreases ak in-
creases, the bound will give a better guarantee for |&rgé&lote that in the original notation, we

" . Ha #(aig, [ b o, .
would replace the condition (5) wﬁ@% (ZS;éK[Kf;‘K) i and proceed with analogous
7t at
steps in the proof.

Theorem 12 (Generalization Bound for Adjusted Con dence Algorithm, Small m) For & K;

0, with probability at leastl.  d,
s

TrueErg®(fsi; Kr)  EmpErg®(fsi; Kr) + %%ﬁ 6b where
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% BApprox BApprox
§03 / 1
o
el
g oot/ 7
=N
g B

9 95 10 105 11
Figure 3:b andbapprox Vs. K, whereK; = 10, pmin = 0:3,m= 20,9= 1.

b =
gK m+ K

1 m 1 z

z m+K+R1 m+ K

m-i-Kzl+Kr

2. .
+§JKr KJEZ Bin(m 1;pmin)

and where @ fx2 X : P, p(x2 2) > Og are the items that have some probability of being chosen
by the customer. Out of these, any item that is the least likely to be chosemdiebility pin :=
mineoP;, p(X2 2):

The stabilityb has two main terms. The rst term decreases generally=§s The second term
arises from the error in measuring loss wi¢hrather tharK. In order to interpreb, consider the
following approximation to the expectation in the bound, which assumesrtlstiarge and that
m K 0,andthaz mpmin:

21 (M Dpuin

gK m+ K 0

2. :
+ —jKy Kje—p——:
gJ r J Klpr;lr:in + Kr
Intuitively, if eitherK is close tdK; or pmin is large (close to 1) then this term becomes small. Figure
3 shows an example plot bfand the approximation using (7), which we denotéoRyprox-
One can observe thatlf; > K, then both terms tend to improve (decrease) with incredsing

WhenK; < K, then the two terms can competekagcreases.

4.7 Summary of Bounds

We have provided probabilistic guarantees on performance that shdwllihweing: 1) For large

m, the association rule-based algorithms have a performance guaranieesaime order as other
bounds for supervised learning. 2) For srmalthe minimum support threshold guarantees general-
ization (at the expense of possibly removing important rules). 3) Thetadjesn dence provides

a weaker support threshold, allowing important rules to be used, whileestiljlable to generalize.

4) All generalization guarantees depend on the way the goodness ddtinitham is measured (the
choice ofK; in the loss function). 5) Important quantities in the learning process may edag
orjAj, K or d, Pmina OF Pmin (OF Py;min)-
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5. Proofs

In this section, we prove all results from Section 4.
Proof (Of Theorem 3Jirst we show thah | Aj. To do this, we must show that for any collection

realized by any max-score association rule classi er. For egahke introduce a vectox of length
jAj, where each element corresponds t@&nA. The element ok correspondingtais Lifa X
and 0 otherwise. Each vectsris an element oR/A, so the collection of vectonrg;~::; Xy must
be linearly dependent il > jAj. By linear dependence and the fact that ewerig non-zero and

non-negative, there must exist coef ciemtsand disjoint, non-empty seky andM; such that:

acx=a cx >0 (8)
i2Mg i2Mq

Dene Ap=fa2 A:a x forsomei 2 MpgandA;=fa2 A:a x forsomei2 Mig. Ifa X
for somei 2 My, then the corresponding elementxfwill be 1 and the same element in the left
part of (8) will be strictly positive. Then, (8) implies that x; for somej 2 My. Thus,Ag A,
and the reverse argument shais  Ag, SOAg = A;. There exists a left-hand side with maximum
scorea = argmaxpa, MaXyr 1.190(aY) = argmaxea, MaxXys 1.199(a;y). The label assigned to
X, wherei is in Mg or M1 andx; contains itemsea , isy = argmaxy; 1.1g9(a ;y). Thus for at
least ong 2 Mg and at least ong2 My, fg(x) =y = fy(X;). Sety;= 1foralli2 Mgandy; = 1
for alli 2 M1 and this set of labels cannot be realized, which showdthptAj.

We now show that this upper bound can be achieved by providing a péitlméiskets and nd-
ing elements ofFmaxscorethat can assign them arbitrary labels. Speci cally, we list the elements of
Aasay; i a and takex = a;, fori= 1;:::;jAj. Thus each basket is one of the left-hand sides
from the allowed set. The elements Afare not all the same size, and some elements wiay
contain other elements; this could cause problems when we are construotaegscore classi er
that uniquely assigns a given label to each basket. To get around thisjlMplace the elements

1 < lp<::i:< IL. We arrange the elements Afinto sets based on their size&:= fi :jaj = Ikg,

k= 1;2;:::;L. We are now ready to construct a classifrso that, given an arbitrary set of labels
fyigi, it can label thex's according to they's. For alli 2 S, we setg(a;;y;) = c1, any positive
number, andy(a;; Vi) = 0. Thus, for the corresponding fg(x) = yi. Similarly, for alli 2 S, we
setg(a;;yi) = C2, C2 > ¢p, andg(a;; yi) = 0. Foranyi 2 S, it may be that there exists some S
such tha; x. However, because > ¢, the rule with the maximum score will be"! y;” and

X; is labeled as desired. In general, for aiyS,, we setg(a;;y;) = ck, whereck 1 < ¢ < Ck+1 and
o(a; yi)= Otogetfy(x) = yi. Because this set gp&j examples can be arbitrarily labeled using el-
ements ofmaxscore WE haveh j Aj, which combined with the previous result shows thatjAj. B

The remaining theorems are based on the algorithmic stability bounds of BaaswlElisseeff
(2002) (B&E). Many of the proofs that we provide for classi cation assentially identical to those
for sequential event prediction. In these cases, the proofs ane fgiveequential event prediction,
and afterwards the translation to classi cation is outlined. The proofs fotlog outline: rst,
we show how differences in adjusted con dence values with respeit tan be translated into
differences with respect t§ (Lemma 15). Then we bound the difference in adjusted con dence
values (Lemma 16) in terms of the support. Various lower bounds on thegwgrp used to obtain
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stability for each of the separate cases: larg@heorem 7), smaiin for the max con dence, min
support algorithm (Theorem 9, which uses uniform stability), smetbr classi cation with the
adjusted con dence algorithm (Theorem 11), and smralbr sequential event prediction with the
adjusted con dence algorithm (Theorem 12).

Following notation of Bousquet and Elisseeff (2002), the input spag@atput space ave and

AfromZ™into F  YX which maps a learning s&onto a functionAs from X to Y. The loss is
“(f:2)= o(f(x);y), wherec:Y Y! R..S’ means to exclude thi& examplez. B&E assume that
Y R but we believe this assumption is unnecessary. In any ¥aseempty for sequential event
prediction. An algorithmA haspointwise hypothesis stabilitywith respect to the loss functionif
the following holds:

8i2f 111 mg; Es prli (Asz)  (AssiZ)i] b
An algorithmA hasuniform stabilityb with respect to the loss functionif the following holds:
8S27M™8i2fL::mg i (As ) (Ass) iy b

The empirical error is de ned by:
1q _
RemdA'S) = —a (As;z)
Mi-y

and the true error is:
R(AS = Ef (As; D]
We will use the following results that are based on ideas of Devroye amngmh&V1979).

Theorem 13 (B&E Pointwise Hypothesis Stability Bound)(Bousquet and Elisseeff, 20@2rem

11, rst part)
For any learning algorithm A with pointwise hypothesis stabliitywith respect to a loss function
such that the value ofis at most M, we have with probability d,

r

M2+ 12Mmb
R(A; A, _!
( IS) Rem[( IS)+ Zm

Theorem 14 (B&E Uniform Stability Bound)(Bousquet and Elisseeff, 2002, Theorenmstdart)

For any learning algorithm A with uniform stability with respect to a loss function such that the
value of" is at most M, we have with probability dover a random draw of S,
r

R Rempt 2b+(4mb+ M)

In1=d

Translating B&E's notation to the adjusted con dence setting for sequent@&iteprediction,
Z=x=1z,withz 22X P.Forour problemf(x) is the value of the loss and tlygs are not de-
ned. In other words, (As; z) = ¢(f(x);yi) = f(x) which in our notation is equal tgk, (fsk;z).
For the max con dence, min support settingAs; z) translates togk, ( fsq; z). The adjusted con-
dence is bounded by 1 skl = 1.

The following lemma allows us to convert differences in adjusted con devitlerespect tK;
into differences with respect .
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Lemma 15 (Conversion of Adjusted Con dence) ForKO, K, 0,0 s $,0 &£ S

S1 S St S 1+jKr Kj N jKe K] S
S+K  S+K S+K S+K S+ K S+K,  S$+K

whereS= min(S;S).

Proof
S1 2
S+K St K
1 1
S1 S +( K +K) S1 S
S+K S+K S+K S+K = S+K S+K
. .S 1 1
S g tiK : K O

5+K Sk K Kgik vk $+K S+K

Taking just the second absolute value term:

St 1 S 1
S+K §+K S+K S+K
_ S 1 S 1 + S 1 S 1
S+K S+K S+K S+K S+K §+K S+K S+K
S S 1 N S 1 1
S+K $+K §+K S+K §+K  S+K
Sil S 1 + ) 1

S+K S+K §+K & S+K S+K

Putting this back into (9) yields the statement. |

The next results bound the difference in the highest adjusted conedeadoes when the basket
z is removed fronS. We require some additional notation in order to exclude basknote #a
to be the number of times has appeared 67, that is, #a= & [a2zq- FOr sequential event
prediction, the left-hand side of a highest-scoring-correct rule fareml basketon S obeys:

argma — #_i al zZ-
Sz 2 rgmax  foi(a&z;+1) = argmax M
Asiztk skl Zit+1 =

af zgnzega2A af z.4;z4082A #a+ K

A highest-scoring-incorrect rule for basketn S™ obeys:

#(al b)
S < argmax ) ‘b) = argmax _—_*—t */.
[aS“th’bqutK] 2 g fS:'?K(a’ b) af 2;19::2;t9282A #a+ K’
b2Xnfz.q;:057 14 19 b2Xnfz.q::52 1419

In Lemma 16 below, we bound the difference in adjusted con dence ohargébasket when
z is removed from the training set, in the sequential event prediction setting.
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Lemma 16 (Difference in Adjusted Con dence)

De ne &, = min(#a, i #” a ) andd; := min(#ag,q #7ag

§ith). Then,

. . . _ i . 1
() Jfsk(@saii Psad)  fsiik (Bsiprcs D] A+ K and
Z

. . 1
() ifsk(@smcZite1) fS:i;K(a;:ith;Z;H 1)] 3+ K:
Proof Any itemseta is either inz or not, thus #a #a 1 and #a #a. Also the number of
times we se@[ bis less than or equal to the number of times weaeEhese observations lead to
the following inequalities that will be used throughout the proof:

# (a5l D #agakl bsa 1 (10)
# a5 #as i (11)

#(aj:?ith[ b?sq'th) #:i(a_sq'th[ b:afith); (12)
#a_sith #zia-s=ith+ 1 (13)
#(@g1[ Dgind) #lag (14)
(@5l ze1)  #Esud Zae) L (15)
#alg #""_gth; (16)

#ag [ Zi+1) # (A [ Zite 1) 17)
SOV LSS (18)

# (@ [ Ze1) #al, (19)

To prove (I) we provide upper bounds for botigx (s s ) Fsik (B P N
fsik (@50 Psink)  fsk(@sakiPsa. Using that for basket the adjusted con dence of the

highest-scoring-incorrect rule @, Agink ! Psie €Xceeds that of another incorrect relg, !
b5,k and using inequalities (10) and (11),

#:l(aé:ith[ b-S:ith) #:i(a_Sth[ b_Sth) #(a_Sth[ b_Sth) l:
#:Ia_SthK-F K #:Ia_Sth+ K #a_Sth+ K
Using the inequality above:
fsk(@szii Psz)  Fsi:k (Bgi i P i)
#(a-Sth[ b-Sth) #Zl(a-sq'th[ b:EFith)

#ag it K #Fia‘scith+ K
#asaul Psa)  Hasal bsad 1 _ 1 . (20)
#aéth+ K #a-Sth+ K #a-Sth+ K

Considering the other direction, using that the highest-scoring-indoméx underS has higher

adjusted con dence than the rue,_ ! by, and inequalities (12) and (13):

#(a-Sth[ b-Sth) #(a_Szith[ b_S:ith) #Zl(a_sq'th[ b_S:‘th).
#a-Sth+ K #a-gith-'- K #:ia-S=‘th+ 1+K .
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Using this, and inequality (14),
fsik (i ik Psizk) sk (Bszki Psaw)
#zl(a-S:‘th[ b-Szith) #(a-Sth[ b-Sth)

#=ia'stith+ K #agt K
#zl(ajsjth[ b-S=ith) #zl(_a-sﬂth[ b-sfith)
Hag  + K #lag,y t 1+ K

#:i(a-gith[ b-S=ith)

(#:ia§ZIK+ K)(#:ia-s=ith+ 1+K)
#:Ia—S=ith 1 .
(#:ia-S:‘th-'- K)(#:ia-s=ith+ 1+K) #:ia-S=ith+ K-
Together with (20) this proves (I). The proof of part (Il) is identicaing ag,,« anda;q.ZtK in the
place ofas, andag, .., Z;t+1 in the place obg, andb ., and inequalities (15)-(19). [ |

The following lemma is the backbone for our stability computations. The uppercdm this
lemma depends only on the supports of the relevant rules. Recadl,thatmin(#ag i # agi,,,)

anda; := min(#ag,¢#'ag .\ )-
Lemma 17 (Large Support Implies Stability)
I gk (fsk;2) gk (fsik; D]
11%* 1 1 m 1

il +iKe K]
o, & G+ N EEK mrk T EAK
1 m 1
T 3 +jKr Kj % + <
A+ K A+ K mK &K

Proof

I gk (fski2) gk (fsiki 2]
T, 1

1% i i
= T a S fsk (B5xiZtr1)  Fsk (Bsak s
Zt=0
Cg f-i;Kr(a+-ith;Z;t+1) f§i;Kr(a§th;b§ith)
1171
o . + . - -
*? a JfSKr(aSth’Z;Hl) fSKr(aSZtK’bSZ'[K)
91z =9
f§i;Kr(a+_ith;Z;t+ D)+ fsi (Ogizi Pe ]
T, 1
11%°, o i - :
*? a JfSiKr(aSZtK’ bSZtK) f‘§i;K,(a§ith'b§ith)J
91z -9
*ifsk (s Zir 1) fsin (B Zer )]
11751
= —= termy + term:
gTZ t?O
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The rst inequality above used thay is 1=g-Lipschitz. Consider an upper bound for teras
follows from Lemma 15:

termy = jfsk (BsakiPsan)  fsik (@i 1k Psiped]

ke Kj
#a-Sth+ Ky
jKr Kj #Zl(a_S:‘ZtK[ b_Szith)

+ — — =
min(#ag ye #ag,, ) + Kr - #lag,, + K

ijK(a-Sth;b-Sth) fS:‘;K(a-Sﬂth;b-?ith)j 1+

JKr Kj
a,+ K;

j fSK(a-Sth; b-Sth) fS:‘;K(a-S=‘th; b-Szith)j 1+

+ jKr Kj #zl(a-s:‘th[ b-S=ith) .
a+ K #:ia-szith+ K

; ; #:i(a-‘i K[ b-s=i K) m 1 m
Now incorporating Lemma 16 and that 2 =22 B o,
Lo KK K
a+ K a;+ K, a+ K m+ K

m 1
~ + ~
a+ K m+K &+K

termy

1
= + K, Kj
5+ K JKy J

The same steps can be followed exactly for term |

The following lemma is used for the proof for the large sample bound.
Lemma 18 (Asymptotic Expectation df(#a+ K)) For any itemset 2 A and any K 0,

1 1 1
E +0 = ;
D+ K mpy+ K m2

where p is the probability that a random basket contains a, that iss g, p(a 2).

Since # is binomially distributed, & Binomial(m; p,), the proof of this lemma can be found by
directly applying Lemma 21 in Appendix C.

We now give the proof of pointwise hypothesis stability for the large sampledhoWe are in-
terested in the change in adjusted con dence of speci ¢ bagkethen that same basket is removed
from the training set, that is o&. Because Lemma 17 holds for amyit also holds forz, where

8 1= min(#a gy #ag ) andak, := min(#ag#'ag, -
Proof (Of Theorem 7First, note that:

1 1
az; + K - min(#a;sth;#zia:qutK)-'_ Ke
1 s 1

MIn(# agzy #ag, 4 ) + Ke SA#:ian K
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By the same reasoning, similar upper bounds hold &1+ K), 1=(&; + K;), and (&; + K).
Starting from Lemma 17 using speci ¢ basketind incorporating these bounds on each fraction,

gk (fsk;z) gk (fsi;2)]

_— " ! I##
21 3 . . 1 m 1
24 a4 ——+iK K & + A = (21)
9Tz 2o apa#a+kK A at K m+ K i #a+K
We have also that for arig;, using thatpmina  paforalla2 A, and Lemma 18:
o 1 JA] 1
Es m — +0 = : 22
s b 1§A #at K, (m 1) Pminat Kr e (22)
Thus from (21) and (22), forany 1i m,
Es ij\gKr(fSK;Zi) \gK,(fgi;}ﬂ;Zi)j
T 1
2 1% o 1
*Ezi D+ a Es:i Dm 1 a —
g TIZ. t=0 | a2A#"a+ K "
. . 1 m o 1
+ Ki K 3 - + .
e B ek mek T & Fark
T, 1 .
2 1% jAj 1
-E, p— +0 —
g’ DTZa t?o (m 1pmimat+ K m?
. . JA] m 1
+ + i
K K] (M 1) Pminat Kr m+ K © m?
2 JTAY . .2 jAj m 1
= - + K Kj= +0 = =:b;
g(m 1)pmina+ K I Jg (M 1) Pmina+ K m+ K m2

where in the second inequality, we moved (g, a 1=(#"a+ K;))(& 4 1=(#'a+ K)) terms into
theO # . To see this, one can take a Taylor expansion around the mean for altefths similar
to s+ as follows:

1 1 (a mp), (8 mp)?
#Ha+ K mp+ K (mp+ K2 (mp+ K3

When these terms are multiplied together, the result is al\@yﬁg . Thus, the algorithm has
pointwise hypothesis stability. Usingb within the B&E theorem yields the result. [ |

Proof (Of Theorem 9)

Starting from Lemma 17, we will use the minimum support threshold to providegpertbound
for the reciprocal of the support of rules. All of the steps used tovddtemma 17 are valid
for the max con dence, min support setting, only the notation needs to begebla We de ne
8zq '= Min(#ags,g; #78,,), and now de ne alsay = min(#agq # a;ith). Lemma 17 provides
for fgq and usingK = 0:

i gk (fsqi2) \Q;Kr(f_S:i;q;Z)j
11%% 1 1 1 1 1 1

- —+tK — 1+ — + —+K — 1+
gT; t=0 9zq azqt Ky dzq dzq azqt K azq
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The requirement of a minimum support threshold ensures that for atigupar itemb, the highest
scoring rule withb on the right must have support at leagtthat is: argmax fsq(a' b)

includes only itemsets with support at legstif b has never been ordered, naeigq(a b) = 0and
we choose the maximizing rule to e! b, with supportm>m 1 g. By this reasoning, all
of the r~ules we use havAe support_at Ietaa_tsl;_tasZq . #"astth d, i_q*aszq g, and #'aglth g.
Thus,dzq gandalsezq g. Using this in the previous expression:

j‘gKr(f_Sq;Z) ‘Q'Kr(f_sci;q;z)j

T, 1
gia 1 r 1 1+} :g }"'Kr 1 1+} =-b:
a9tz 2o q g+ Ky q g qg g+ Kr q

This expression holds for éland for allz. It is thus an upper bound on the uniform stability. Using
b within the B&E theorem vyields the result. |

The proofs of Theorems 7 and 9 for classi cation are essentially idertticttiose provided
above for sequential event prediction. The left-hand side of a higitestng-correct rule for general
basketx on S obeys:

#i(al y)
F 2 argmaxfei.(ay)= argma :
Asixk a g>J<;a2A sk (@y) a ga2A #a+ K

And the left-hand side of a highest-scoring-incorrect ruledon S obeys:

- #i(al y)
.2 argmaxfe.. (& = argmax——=:
Bsixk a 9(;a2A S’K(a Y) a E>;<a2A #a+ K

We further de ne(_a;_( = min(#aé)_(K;#:ia's:ixK) andd := min(#ang;#:‘agde), anday anddy as the
analogous quantities for speci ¢ basket Lemma 16, Lemma 17, and the proof of Theorem 7 all
hold for classi cation by making the following substitutions in notatiay:andéy, for &, andéy;
& and&, for & anday; ag,, and 'y for ag,« and by, as.« andy for ag,« andz.+ 1; a‘ng

o T, 1

and yforag, andby, . ag,  foral . ; §Resfor g ; and removing entirelyt 8,2, For

Theorem 9, we again repla¢é with g in the notation to de neayq = mln(#as)q,#"'asqxq) and
axq = mm(#aS)q,#"'aSXq) and then substitute,.q andéyq for &;q andazq in the proof of the
theorem.

The next lemma is speci c to classi cation and is used for the small sample béamthe
adjusted con dence algorithm.
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Lemma 19 (Support Thresholds for Adjusted Con dence, Classi cation)
For speci ¢ basket ¥ it is true that:

1 . . m+ K #( y)
_ ak,; whereag, = - — :
ay + Ky KE( y))+ K(m+ K #7( y))

1 « x 1 #( y)

: wh == 1
5+ K ak; wheredg 7 el
+ =iy,

_ ! ak,; wheredy, = - m+ K_#7y > and,
a + Ky K# i)+ Ke(m+ K #7y;)

1 . .1 #y,
A+ K ak; whereag = % 1 T K

Proof First we use the fact that d§ the adjusted con dence of the highest-scoring-incorrect rule
forx, as,c ! Vi, exceeds that of the rufe ! B

#aéxK ¢KaéxK[ yi) #(yi) — #ﬂ( Yi) .
#ag, + K #ag, + K m+K m+K'’

where in the last step we used that baskeloes not have labely;. Rearranging,
!

#( )
m+ K #( )

#agy S whereS ;= K

Similarly, the adjusted con dence of the highest-scoring-incorrect ratexf with data setS™,
Ak ! Yo exceeds that of the rule ! y;, thus:

e, Flag [ ¥ #(w)  #( y).
#:ia's__iXiK+K #:ia'S:iX_K+K m 1+K m+K’

Rearranging, we nd that?#a‘sq-)qK §. Thus,&a = min(#a‘SxK;#:ia:sq-xiK) S. We can derive a
similar bound foray,, beginning with #gy:

sy Hasu [ Y)  #y _#yi+1_ #y
#ag,y + K #ag tK  m+K  m+K ~ m+K

The rst equality uses that baskethas labely;. Rearranging,

~ ~ #ﬂ
#ag, > S where$ := K S —
% m+ K #7y,
Similarly for #Fia;q.xiK:
#:ia;:ixiK #:i(ag:iXiK[ yl) #:iYi #:i)/i .
#ag (+K #Hag +K m 1+K m+K

3474



LEARNING THEORY ANALYSIS FORASSOCIATIONRULES AND SEQUENTIAL EVENT PREDICTION

Rearranging, we nd #a‘sti « S Thusd = min(#a;xK;#:ia;ix_K) S. These lower bounds on
the supports are now usea to create upper bounds for the reciprocals:

! 1 . ax, and ! 1 . a
& + K S+K O© G +K s+K_°K
The bounds for;;IXi%Kr andaXi%K are obtained in a similar way usirsg [ |

The proof of the small sample bound for classi cation follows directly frois tamma.
Proof (Of Theorem 11)
From Lemma 17, adapted for classi cation,

Pgklfskiz) g Usiki2)i

1 1 . . 1 m 1
i~ + K K] < + <
g & +K a+t K m+K &:+K
. . 1 m 1
+ 3 + K K] + =
a + K a+ K m+K &4 +K

Combining this and Lemma 19, we have:

FERUskiz) R Usi2)]

m . . .A
K +akg +agt K Kjag,

We now provide an upper bound on the expectation of this quantity, beginvith the rst
term:

" ! I#
Lac+a 11 L) #ly,
EZl;ZZZ;me(aK'F aK) - Ezl;:::;zméR 1 m+ K + 1 m+ K
_ 11, (m Jpy (m Dpy
gK m+ K m+ K
21 1 w
gK m+ K

Here we used the fact that the mean of the binomial distributiogrBin1; py,) is (m 1) py,,
and we use a lower bound fpy, andp y,, namelypymin = min(P(y= 1);P(y= 1)) the minimum
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probability of a randomly chosen basket having any particular label. E@abond term,

Enzn—IKe Kj Ak tak + éK’ m+ K Ak
n 3
) 1 m 1 #:i( Yi)
= ik, KiE,.... _ +=- 1 5
JKr 1Bz, #( ) + K m+ K K m+ K
2 m+-K - #( ) I 3
_ 1 m 1 #ly,
+JjK,  KjEg .o . +- 1 5
IR KJBz;02y Ky +k MFK K m+ K
r§+K #yi ! 3
1 1 m 1 z
_ L —— 4 ~ - 5
gJ KI’ KJ Ez Bin(m 1;p yi) K z + K m+ K + K 1 m+ K
mK z r
o
1 . 1 m 1 z
+§JKr KIE; gin(m 1;pyi)9K z Lk MmM+K ¥ K ! m+ K g
mK z r
— 1- 1 it l- i 7 .

Since the functiork(2z) is decreasing asincreases, then an upper bound is produced by using the
distribution Bilm  1; pymin):

] m - R m ~
Eaizn =K Kj Ak, ek Ak tak e tak
2. :
QJKr KJE; Bin(m 1;py,min)F(Z)
2 3

2 1 m 1 z

= 5K KiEs singm 1pmm 2 e >
gJ r JE2 Bin(m  1;pymin) K z + Kr m+ K K m+ K

mK z
|

The following lemma is similar to the previous lemma, but specic to sequential guent
diction. It uses the support guarantee for the adjusted con denceitalgo(6) in order to bound
the terms of Lemma 17, which holds with the same proof when the lggsis changed to the
new |oss‘g$<vy and superscript™ is replaced by “”. We de ne the analogy te; as &, :=
min(#asth;#ziaSq.mK). The result below will immediately yield a proof of Theorem 12.
Lemma 20 (Support Thresholds for Adjusted Con dence, Sequential Evemli¢?ien)

For speci ¢ basket z de ne:

ag = m+ K #zi;Hl and akg = l 1 M
" K#zier D K(Mm+ K #Z11) K m+ K
Itis true that:
! ag.; - ag; ! ag.; and ag:
&, + K " &,+K oA+ K r a; + K '
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Proof Starting with (5), we know thadg,, > s, where
#Zi;t+ 1 1
m+ K #Zt+1

We use the same type of argument as in (5), incorporating the fact tt&it,dhe adjusted con -
dence of the highest scoring rtﬂgtith ' b exceeds that of the highest-scoring-correct rule

SiztK
ag:imK I Z+1, Which exceeds that of the ruke!  z. 1,
B ~ o
g, # (@giyi [ Pgigere) #(a gtk L Zitr 1)
= = ot
gyt K gt K gyt K
#Zig11 Hzpr1 1
’ = — : 23
m 1+K m 1+K (23)
Rearranging, we nd that#a gtk > S Similarly for#agth,
#agth (#agth[ Zit+ l) #Zi;t+l
#a;th"' K #agth"' K m+ K
sotaly K % > s: And again for #ia;imK using (23),
=i ot =i ot
#—IagiatK #—I(a§‘th[ Zit+1) #zige1 1
S > :
#_Ias=im|<+ K #-Ia§ith+ K m 1+K
so #ag,, S. We now havea; = min(#asy#'ag,,) S, and alsoa; =

min(#agth;#zia;mK) s. Sinces is a lower bound on all the supports, it can be used to cre-
ate an upper bound for the reciprocals, as follows, uajngs'an example:

1 1 . and 1 1
a+ K s+K o 4+K s+K

ak -

Proof (Of Theorem 12First, all of the steps in the proof of Lemma 17 hold when we replace the

N 1 2 New 1 new ~ =Y He
loss” gk, with the new loss gk replacecy with Cgo anday by a,, sowe obtain:

g(fskiz) gR(fsii )i

11 1 | m 1

-~ ~ +]Ke K] 3 + <

9T, & & +K 5+K m+K &+K
. . m 1

+ + K K]

+
a;+ K &+ K m+K §;+K
Combining this and Lemma 20, we have:
T, 1

R ) . .. 21 % . . m
gk (fskiz) gk (T 2)] 0T t?.OaKJfJKr Kiak —x

+ ak



RUDIN, LETHAM AND MADIGAN

To calculate the stability, we need an upper bound on the expectation of drisityu Let us rst
create an upper bound for the expectation of the rst te%%’é‘;rjo 1aK:

e 21T g 21771 #me 1
21;:::;ng-|-z| f’o K = zl;:::;zmg.l_Zi a K it K
- E giTgll 1 EBawz vgopmanZen 1
9T, o K m+ K
g2l (m Dby,
B Z.gTZi t§0 K m+ K
T, 1
21" M D 21, (M Dpmo
ZgTZ =0 K m+ K gK m+ K

The rstline above uses the de nition @fk, the second line uses the fact that each basket is chosen
independently, the third line uses ttmt; 1 is always contained ig and also uses the fact that the
mean of the binomial distribution Bim 1;pz,,,) is(m 1)p;,,,. The fourth line uses that,,, ,

has the lower boungmn, which no longer depends an

We repeat this outline for the second term:

2 1%t
E,.. K Kj= +a
i zng r JTZ t@O ——— K
T 1
2. 1% 1 m 1 #z;. 1
A - S kPR Y Tmek
SlLaL K g Kr
T, 1 1
o
= K KiEz— a Ez;uz vzesiiz, P
2 =0 K m"'K’H;'fZi'Hl +Kr
m + 1 1 #Hzigv1 1
m+ K m+ K
T, 1
2. . % 1 m 1 z+1 1
= K KjEz— a E:z Bin(m 1.p,.,,) + —
g TZi =0 z Zit+ 1 K % + K m+ K K m+ K
2 o1t _
= aJKr KJEZa-ITZ So E2 Bin(m 13p2a;t+1)F(Z)'
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Algorithm 4: Subroutine GenRulesimplest version that considers only “marginal” rules.

itemsX
Output: Set of all rules whera; is an item in the baske (or the empty set) anld; is not in
B. Thatis, ruleda; ! bjg; such thab; 2 XnB and eitheia; 2 Bora; = ?.

Since the functiorf is decreasing as increases, then an upper bound is produced by using the
distribution Bilm  1; pmin). Namely,

T3 1

2. 1% m
E, .. Ky Kj=— a +a
2y angl r 11% é?b K m+ K 9K
T, 1
2. . 17
*JKI' KJEzf 3 Ez Bin(m 1;pmin)F(Z)
g Tz 2o
2 . 1 m 1 z
= élKr KJE; Bin(m  1;pmin) oz 4k Mt K * K ! m+ K
mK z 1

In all of the theorems and proofs, the empirical loss and true loss areedenly for the case
where the algorithm only recommends one itee=(1). It is possible to use a vector norm to
generalize to larges.

6. Experiments

All data sets chosen for these experiments are publicly available from tthenid€hine learning
repository (Bache and Lichman, 2013), and from the IBM Quest MaBlasket Synthetic Data
Generator (Agrawal and Srikant, 1994). To obtain formatted markdtebalsita, categorical data
were converted into binary features (one feature per category)h f€ature represents an item,
and each example represents a basket. The feature value (0 or 1)dadie@presence of an item.
Training baskets and test baskets were chosen randomly without neglac&om the full data set.
Since these data do not come naturally with a time ordering, items in the basketaneiomly
permuted to attain an order. At each iteration, rules were formed from aneoit¢he empty item
on the left, and one item on the right (S8enRulesn Figure 4). Recommendations of one item
were made using the following 15 algorithms: highest support, highestente, highest adjusted
con dence for eightK levels, max con dence, min support algorithm for ve support threshold
levelsg. All 15 algorithms were evaluated by the average fraction of correcinnerendations
(AvgCorrect) per basket. As recommendations were made, it was commaavéoties where
multiple items were equally good to recommend, in which case the tie was brokandum;
AvgCorrect is similar too 1.x except for this way of dealing with ties.

The parameters of the experiment are: number of training baskets (20casak), number of
test baskets (100 in all cases), valueKofor the adjusted con dence algorithm (0.0001, 0.001,
0.01, 0.1, 1, 5, 10, 15), and valuesgpfor the max con dence, min support algorithm (1, 2, 3, 5,
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10). Note that two of these algorithms are the same: the max con dence aigasitthe same as
the max con dence, min support algorithm fgrl. Data sets are: Car Evaluation (25 items, 1728
baskets), Chess King-Rook vs. King-Pawn, (75 items, 3196 baskM¥)YK's problems (19 items,
1711 baskets) Mushroom (119 items, 8124 baskets), Nursery (32 @980 baskets), Plants (70
items, 34781 baskets), T20118D10KN22CR50 (22 items, 10000 baskets)

Each experiment (training, test, evaluation for all 15 algorithms) was ipeefd 100 times,
(totaling 100 100 15 = 150,000 test basket evaluations per data set, for each of 7 djtalsets
Figures 4 and 5, the distribution of AvgCorrect values for data setssCémas$ Monk are shown
via boxplot, along with the mean and standard deviation of AvgCorrect vaBeld indicates that
the mean is not signi cantly different from that of the algorithm with the latgesan value; that
is, bold indicates the highest scores. The boxplots and means for thedathesets are shown in
Figures 7 through 11 in Appendix B.

Figure 6 summarizes the results of all of the experiments by totaling the numbletatets
for which each algorithm achieved one of the highest scores. Thebdstming algorithms were
K = 0:01 andK = 0:1, both algorithms achieving one of the top scores for 6 out of 7 of the data
sets. The single data set for which these algorithms did not achieve onestecbres was the very
dense data set T20118D10KN22CR50, where the algorithms requiringhartsupport (the max
support algorithm, and also the adjusted con dence algorithniKfer 5; 10, and 15) achieved the
highest AvgCorrect score. In that case, khe 0:01 andK = 0:1 algorithms still performed better
than the max con dence, min support algorithms for the parameters we tried.

The adjusted con dence algorithm with a very smilis similar to using the max con dence
algorithm, except that whenever there is a tie, the tie is broken in favor afutbewith largest
support. It seems that in most of the data sets we chose, this type of algpetimnmed the best,
which indicates two things. First, that for some data sets, incre&siog much can have the same
effect as a too-large minimum support threshold, in that large valukéscolild potentially remove
the best rules, leading to too much bias, and where the algorithm canriainegpough of the
variance in the data. Second, when comparing rules, it is important no¢ad kies at random as
in the max con dence, min support algorithm, but instead to use the supptbrt oules. Another
observation is that the performance levels of the adjusted con dencethlgorary less than those
of the max con dence, min support algorithm. In other words, our experisi@dicate that a less-
than-perfect choice oK for the adjusted con dence algorithm is likely to perform better than a
less-than-perfect choice gffor the max con dence, min support algorithm.

7. Related Work

We provide background on related works within several elds: assiociaule mining and associa-
tive classi cation, decision lists, recommender systems, and Bayesiarsenaere is also a body

of literature on pattern mining in sequences, but not in the sequential pragtittion setting de-
ned here. This type of work generally considers the order in which iteraseded, and often uses

a Markov assumption (see, for instance, Ayres et al., 2002; BerchtdldRaftery, 2002), whereas

in our work, subsets of items are used to predict the next item, possibly witkgard to the order

in which they occurred, and a Markov assumption can be false. Thelwisvark relating statis-

tics to pattern mining and sequence mining, (e.g., Chernoff bounds for théerwe, Jacquemont

et al., 2009). Our work also relates to multi-class classi cation, since thexenslti-class classi -
cation step at each point in tinhef each sequence. For a recent work on generalization bounds in
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Algorithm | mean standard dev.
A B Support 0.0813 0.0046
009t « Fi i iiig i Condence| 0.0764 0.0053
5 IR A A A A S B U K=0.0001 | 0.0831 0.0045
o H HHHHHHHH H K=0.001 | 0.0832 0.0048
gooslll 4 THY TG : HH K=0.01 | 0.0835 0.0041
z H o HH K=0.1 0.0831 0.0049
R LA K=1 0.0835 0.0043
0.07]- i : P K=5 0.0821 0.0049
i [ K=10 0.0821 0.004
K=15 0.0816 0.0049
$ES &}iﬁ@é’jj’@ g g=1 0.0759 0.0049
SEFLE q=2 0.0767 0.0045
¢ 0=3 0.078 0.0049
q=5 0.0794 0.0052
q=10 0.0813 0.0046

Figure 4: Left Boxplots of AvgCorrect values for Chess data s®ight Means and standard

deviations for Chess data set.

: Algorithm | mean standard dev.
0.14 . . Support 0.0943 0.0126
Condence| 0.1103 0.0145
o2t mr Py K=0.0001 | 0.1108 0.0137
8 HHHHHH HHH K=0.001 | 0.1109 0.0147
& 01 : H i K=0.01 0.1104 0.0149
% H HH H K=0.1 011 0.0151
<oosll it K=1 0.1081 0.0148
' ol K=5 0.0992 0.0138
0.06 b K=10 0.0947 0.0133
g K=15 0.0948 0.012
§§§1§§:€ FEPRE ®’7’®’3’®/§ g=1 0.1098 0.0138
SELLS =2 0.1095 0.0146
© g=3 0.1092 0.0146
g=5 0.1054 0.0143
g=10 0.0944 0.0129

Figure 5: Left: Boxplots of AvgCorrect values for MONK's problems data setght: Means and
standard deviations for MONK's problems data set.

multi-class classi cation see Shen and Wang (2007). Remember that in multiattessi cation,
each example is a feature vector, whereas in sequential event predea@nexample is an event
sequence. Related work on generalization bounds includes those oithahjo stability (Devroye
and Wagner, 1979; Bousquet and Elisseeff, 2002).

7.1 Mining Association Rules

Assaociation rule mining has proven successful for many applicationsdimgjunarket basket anal-
ysis (cross selling, product placement, af nity promotion, see also Kiadtal., 2004), mining gene
expression data (Jiang and Gruenwald, 2005), and weblog analyssgtet al., 2002). The ma-
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Algorithm | Number of data sets
Support
Con dence
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Figure 6: Summary of experiments: For each algorithm, the number of datalsatsit performed
comparably with the best algorithm.

jority of literature on association rule mining concerns the design of ef ciégrithms to address
the time-and-memory-consuming task of mining rules within very large databdissovering
rules is usually a two-step process. First, itemsets are mined that meet tepréded minimum
support threshold. Then using this set, rules are formed and the strafnigh rules is assessed
using “interestingness” measures, such as the con dence. Manyégitegness” measures have
been proposed in the literature (see Tan et al., 2002; Geng and Hamil®#, M0Garry, 2005).

It is clearly possible to use the adjusted con dence as an interestingnessirador database ex-
ploration. In that setting, the adjusted con dence would provide a rankimgles in terms of their
ability to predict, including both “common sense rules” and “nuggets.”

Although association rule mining has proven successful for many appheaitas well-known
that the usefulness of association rules and their impact on even a wider edpractical applica-
tions remains limited due to problems arising from the minimum support threshat:thre large
number of rules mined can be intractable to domain experts who analyze nadesction them,
unless the minimum support threshold is set to a large value; second, thstibhezhoice of the
minimum support threshold tends to over-prune the search space ofadssorules, disregarding
“nuggets” which can be very useful in many applications. Most priorkweties on the strong
requirement of the minimum support threshold; some exceptions include the wbLi et al.
(1999); Koh (2008) and DuMouchel and Pregibon (2001). Somentegork (Cohen et al., 2001,
Wang et al., 2001) attempts to avoid the support measure altogether. Inodkrthe use of the
adjusted con dence eliminates the need for the minimum support threshold.

When a set of rules is used to form a classi er, this is called “associdtasiacation” (see, for
instance, Liu et al., 1998; Thabtah, 2007; Vanhoof and Depaire,)2010

7.2 Decision Lists

A decision list is an ordered set of association rules that forms a clag&tieest, 1987). Usually
decision lists are formed the same way as decision trees are formed, whichrsdalily splitting
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on each nodes to form the tree, and then pruning (as in for instancealj 2001; Yin and Han,
2003; Simon et al., 2011; Marchand and Sokolova, 2005). Howe\srpiassible to mine a set of
rules, and order them to produce a classi er, as in the associative ctdiss literature.

The work of Anthony (2004) contains a generalization bound for detigts, but each rule in
the list requires a linear combination, which is problematic in the sequential Seytihg reasoning
in Appendix A. (Similarly, there are many papers using a set of pre-compules as features for
supervised learning, where a linear combination of rules is construetnrthan a decision list;
one recent example is by Friedman and Popescu 2008.)

In recent work, we have been learning the ordering of rules to foisis lists (Letham et al.,
2013c).

7.3 Recommender Systems

Assaciation rule mining has proven to be particularly useful for ndingégaith” relationships be-
tween items purchased simultaneously. Lin et al. (2002) also construmirmameender system using
rules, having a minimum con dence threshold and then an adjustable minimysosupreshold.
Their scoring system is essentially based on suppodon dence, which is not an estimate of
P(bja) for rulea! b. Lawrence et al. (2001) provide a recommender system for a gretemy,
but the setting differs entirely from ours in that they always recommend itess#ve never been
previously purchased.

In other work, we designed a Bayesian framework that estinkafes the adjusted con dence
by “borrowing strength” across both users and items (McCormick et @l22We are also looking
at different approaches to the sequential event prediction problearewe allow the predictions
to alter the sequence in which items are placed into the basket (Letham et1&lb) 20 his work
uses a supervised learning framework for sequential event prediction

We also note that a recommender system based on a weighted versiondjfigtedicon dence
won third place in the ECML Discovery Challenge in 2013 (Letham, 2013).

Often, item-based collaborative ltering is used for problems that are Bgtsmguential event
prediction problems. There are several problems in applying standardoéeed collaborative
Itering techniques in sequential event prediction, the rst one being statdard item-based col-
laborative Itering requires us to compute a similarity measure between altdtad” items. The
similarity measure is often symmetric between two items, there is no distinguishingamd®(agb)
andP(bja). Even if itemb is alwaysfound whema s found,P(bja) = 1, is it possible fob not to be
recommended wheais present, even with more than suf cient data to see the pattern. Further, f
an incomplete basket, we do not have the ratings for all “co-rated” itentse #iere is no natural
way to differentiate between items that have not yet been purchased irathéaittion, and items
that will not be purchased in this transaction, as both have a “rating” ofitha t. Thus, the only
ratings that are available are ratings of “1” indicating that an item is in thegbabk other words,
where the association rule approach we present here is intrinsicallgraguit is unnatural to
force item-based collaborative ltering into a sequential framework. Imegal, item-based collab-
orative ltering is not based in a typical machine learning setting, in that itivvaseed on either loss
minimization or probabilistic modeling (as the association rule approach is). ©Heof Letham
et al. (2013b) also shows experimentally that item-based collaborativéndtean be worse than
the max-con dence association rule approach.
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7.4 Bayesian Analysis

DuMouchel and Pregibon (2001, “D&P”) present a Bayesian ambroa the identi cation of in-
teresting itemsets. While not a rule mining algorithm per se, the approach cewsténded to
produce rules. D&P consider the ratio of observed itemset frequencieastline frequencies
computed under a particular independence model. A prior distribution ogaraltection of such
ratios results in shrinkage estimates for the true ratios. The amount of apeirdepends on the
observed frequency and tends to be more pronounced for leseffrieitgmsets. Our approach dif-
fers from D&P in several key regards. Most importantly we focus diremtiyBayesian estimation
for rules rather than itemsets. Second, D&P use an empirical Bayes appmahoose the prior
hyperparameters. Since our approach requires just a single hypmagtar K, we instead let the
user choose an appropriate value (the value might be determined bwatiksgion or empirical
Bayes). Finally, D&P perform a strati ed analysis; one interesting futurection for our proposed
approach would be to incorporate strati cation.

Breese et al. (1998) present a number of different algorithms fortmmidive Itering, includ-
ing two Bayesian approaches. One of their Bayesian approachesrslusass while the other
constructs a Bayesian network. Condliff et al. (1999) present arblécal Bayesian approach to
collaborative Itering that “borrows strength” across users. NeithexeBe et al. nor Condliff et al.
focus on repeated purchases but both present ideas and techhajueaay have relevance to future
versions of our approach, especially the borrowing strength ideas.

Our recent work (McCormick et al., 2012; Letham et al., 2013c) usge8an analysis to order
rules into decision lists.

8. Conclusion

This work synthesizes tools from several elds to analyze the use ot&d®n rules in a new su-
pervised learning framework. This analysis is necessarily different that of classical supervised
learning analysis; as we have discussed, association rules provide thamismns for generaliza-
tion: rst a large sample, and second, a minimum support of rules. Weidenesl two simple
algorithms based on association rules: a max con dence, min supporithigpand the Bayesian
adjusted con dence algorithm. Both algorithms have a parameter that ceebtasd on the sup-
port, regulating a tradeoff between accuracy on the training set artajeration ability. We have
also demonstrated that the adjusted con dence introduced here has deamésges over the mini-
mum support threshold that is commonly considered in association rule minadtpwts rare rules
to be used while still encouraging generalization, and among rules with similatertce, it prefers
those with larger support.
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Appendix A. Regression and the Sequential Event Predictioni®blem

By using association rules to model conditional probabilities for the seqliewtat prediction
problem, we make a general assumption about the Markov chains gayeuriapplication, namely
that a subset of knowledge about the current state can be usediit frednost likely future state.
In this section we will address the suitability of two natural regression agpwes that do not make
this assumption. LeX; be an indicator variable that is 1 if itemis in the current basket and 0
otherwise.

A.1l First Regression Method

Apply regression (e.g., logistic regression) to create a model for eactsé@parately. Consider the

.
1+ exp(f)’

wheref = & 11 ix + | o.m, with eachx; 2 f 0;1g.

Because the data are being revealed sequentially, the correct applidatiantechnique is not
straightforward. Only gartial basket is available when predictions need to be made. It is incorrect
to substitute the current state of the basket directly into the formula aboweingtance, if the
current basket contains items 1 and 2Xse 1 andX; = 1, itis incorrect to writdP(Xmj Xy = 1; X =
1= Wip(f); wheref = | 1+ | 2+ | o,;m. This statement would be equivalent to the expression:

which is clearly false in general. It is not that, for instangg= 0, it is simply thatXs is not yet
realized.

On the other hand, it is possible to integrate in order to obtain conditionahpildl estimates:

P(Xm= 1jX1= X = 1) =
a P(Xm= 1% = L;X = L;Xg= Xa::3; Xm 1= ¥m)
x3=f0;1g;::5%m 1= 0;1g

2™ 3 combinations oks;:::Xm 1. Thus, this approach would rely on a large number of uncertain
estimates (given limited data, and even moderately lafgeeach introducing errors into the nal
estimate. This is in contrast to the association rule approaches where afaasslitional proba-
bilities are directly estimated. Further, the regression method provided almmtd not be able to

be explained easily to customers or managers. In most circumstances|dtalsmrequire a large
amount of computation between recommendations. Finally, it is not clear howdgprate the
order in which items are placed into the basket within this type of model, wheréeatiitial to
incorporate this into the association rule techniques as discussed in Section 2.2
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A.2 Second Regression Method

Apply regression methods (e.g., logistic regression) for each item anachttenestep, in total

m T regression models, whefk is the size of the largest possible basket. This would give a
direct way to incorporate time into the predictions. If the current basketaawst items, one would
use only the models constructed using the triems in each basket to predict the next item to be
added. However, this would be making an entirely different assumptionthigaone given by the
rule-mining approach. The rule-mining approach uses time only implicitly, anchpse patterns
are counted the same regardless of the exact time within the transaction whmattdrn occurred.

In contrast, this regression approach would ignore all items added aftet timprevious baskets.

If apples were always followed by oranges, but in the past apples@mdjes were always added
after timestep, then this approach would fail to recommend oranges when apples a&e befibre
timestep. Further, the models for each timestapust be constructed from baskets at least as large
ast. This means that for very large baskets, there would only be a few pakéets that could be
used to construct the models. Further, if the current basket is largeattyeof the past baskets, the
models would be trivial, since none of the past baskets can be used toucbitizem.

It may indeed be possible to use regression approaches for the sabexant prediction prob-
lem, but given the discussion above, it is not clear how this should bergidishied. We explore
other ways to solve the sequential event prediction problem using sseemnanking techniques in
another work (Letham et al., 2013b).

Appendix B. Additional Experimental Results

See Figures 7 - 11.

Algorithm | mean standard dev.
Support 0.115 0.0176
Conf. 0.1125 0.0143
K=0.0001 0.1173 0.0127
K=0.001 0.1163 0.0122
K=0.01 0.1176 0.0117
K=0.1 0.1177 0.0109
K=1 0.1176 0.0116
K=5 0.1204 0.015
K=10 0.1199 0.0172
K=15 0.1192 0.0174
g=1 0.1133 0.0134
g=2 0.1119 0.0131
g=3 0.114 0.0118
g=5 0.1161 0.0143
g=10 0.1205 0.0191

Figure 7: Left Boxplots of AvgCorrect values for Cars data $eight Means and standard devia-
tions for Cars data set.
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Algorithm | mean standard dev.
Support 0.0996 0.0051

Con dence 0.0902 0.0075
K=0.0001 0.1164 0.0061
K=0.001 0.1158 0.0062

K=0.01 0.1161 0.0061
K=0.1 0.116 0.0058
K=1 0.1142 0.0062
K=5 0.1069 0.0052
K=10 0.1044 0.0054
K=15 0.1024 0.0053
g=1 0.0909 0.007
0=2 0.0986 0.0077
g=3 0.1048 0.0064
g=5 0.1088 0.0069
g=10 0.1042 0.0057

Figure 8: Left: Boxplots of AvgCorrect values for Mushroom data fRight: Means and standard
deviations for Mushroom data set.

Algorithm | mean standard dev.
Support 0.0619 0.0098
Con dence 0.081 0.0094
K=0.0001 0.0898 0.0091
K=0.001 0.0902 0.0093
K=0.01 0.0902 0.0085
K=0.1 0.0903 0.0095
K=1 0.0909 0.0096
K=5 0.0869 0.0139
K=10 0.0804 0.0154
K=15 0.0747 0.0154
o=1 0.0811 0.0088
g=2 0.0819 0.0094
g=3 0.0858 0.0095
g=5 0.0883 0.0137
g=10 0.0654 0.0111

Figure 9: Left: Boxplots of AvgCorrect values for Nursery data s&ight: Means and standard
deviations for Nursery data set.

Appendix C. Lemma 21
Lemma 21 Fort Binomialm;p) and K 0,

1o 1 o
K+t K+mp m?

The proof of this lemma foK = 0 is provided by Rempala (2003). The proof of this lemma for
K > 0 comes from Letham et al. (2013a), which we provide here for com@ss$eriThe proof of
the lemma uses the following result.
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Algorithm | mean standard dev.
Algorithm | mean pm standard dev.
Support 0.0983 0.0494
Con dence 0.1187 0.0465
K=0.0001 0.1271 0.0448
K=0.001 0.1251 0.0454
K=0.01 0.1255 0.0446
K=0.1 0.1251 0.0464
K=1 0.1235 0.0454
K=5 0.1205 0.0466
K=10 0.1141 0.0464
K=15 0.1093 0.0498
g=1 0.1182 0.0457
g=2 0.1182 0.0466
g=3 0.118 0.047
g=5 0.11 0.0511
=10 0.0981 0.0496

Figure 10: Left: Boxplots of AvgCorrect values for Plants data s&ight. Means and standard
deviations for Plants data set.

Algorithm | mean standard dev.
Support 0.1874 0.0115
Con dence 0.1728 0.0118
K=0.0001 0.1817 0.012
K=0.001 0.1827 0.0121
K=0.01 0.1821 0.0124
K=0.1 0.183 0.0125
K=1 0.1843 0.0117
K=5 0.1857 0.0119
K=10 0.1871 0.0115
K=15 0.1867 0.0116
o=1 0.1722 0.0126
g=2 0.1716 0.0128
g=3 0.1748 0.0131
g=5 0.1742 0.0125
g=10 0.182 0.0125

Figure 11: Left: Boxplots of AvgCorrect values for T20118D10KN22CR50 data Béght: Means
and standard deviations for T20118D10KN22CR50 data set.

Lemma 22 Let X Binomialm; p) and let k= E (X E[X])¥ be the K' central moment. For
integer k 1, pox and s 1 are O mk .

Proof We will use induction. Fok = 1, the central moments are well known (e.g., Johnson et al.,
2005):p2= mp(1 p)anduyz= mpl p)(1 2p), which are botfO(m). We rely on the following
recursion formula (Johnson et al., 2005; Romanovsky, 1923):

dis

Hst1= p(1 p) (Tp+ msj4 1 (24)
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Becauseax, and s are polynomials inp, their derivatives will also be polynomials ip. This
recursion makes it clear that for &l s is a polynomial inp whose coef cients include terms
involving m.

For the inductive step, suppose that the result holdk fois. That is, s andpps: 1 are O(nF).
Then, by (24),
diost 1

Mo+ 1) = P(1 p) +(2s+ 1)Mpps
Differentiatingps: 1 With respect tq yields a term that i©(m®). The term(2s+ 1) mpbs is O(m™ 1),
and thuslys. 1y is O(m™* ). Also,

dho(st 1)

dp + 2(s+ 1)Mpbss 1

Hos+1)+1= P(1  p)

Hereduz(: Y is O(m™* 1) and Zs+ 1)Mibs: 1 is O(m™ 1), and thusguy(se 1)+ 1 is O(M*1).
This shows that if the result holds fke= sthen it must also hold fdk= s+ 1 which completes
the proof. |

We can now prove Lemma 21.
Proof (Of Lemma 21) We expangiy atX = mp

" #
1 g . (X mp'
= kex “F a0 Vicimpr
£ E (X mp)
— 8 i
—atd R+
_ 1 M
“Kemp' ,a( V' &+ mp (29)
wherey is thei" central moment and we recognize that 0. By Lemma 22,
. O mpz |
Hi , = ; =0 mblic i1 :
(K+ mp)|+1 O(m'*l)
The alternating sum in (25) can be split into two sums:
¥ ¥ ¥
o i 9 o 1 o 1
H-— N —3o0mril =30 = +80 =
A a° w Ta°% m
These are, fomlarge enough, bounded by a geometric series that convergbsﬁ%p . |
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