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Abstract

For one-shot learning gesture recognition, two importéiailenges are: how to extract distinctive
features and how to learn a discriminative model from onlg training sample per gesture class.
For feature extraction, a new spatio-temporal featureesmmtation called 3D enhanced motion
scale-invariant feature transform (3D EMoSIFT) is proghsehich fuses RGB-D data. Compared
with other features, the new feature set is invariant toeseald rotation, and has more compact
and richer visual representations. For learning a disa@athie model, all features extracted from
training samples are clustered with the k-means algorithi@arn a visual codebook. Then, unlike
the traditional bag of feature (BoF) models using vectomgization (VQ) to map each feature into
a certain visual codeword, a sparse coding method namedagioruorthogonal matching pursuit
(SOMP) is applied and thus each feature can be representahiy linear combination of a small
number of codewords. Compared with VQ, SOMP leads to a muekrleeconstruction error
and achieves better performance. The proposed approatieéagvaluated on Chalearn gesture
database and the result has been ranked amongst the togetesting techniques on ChalLearn
gesture challenge (round 2).

Keywords: gesture recognition, bag of features (BoF) model, one-&awhing, 3D enhanced
motion scale invariant feature transform (3D EMoSIFT), Gation Orthogonal Matching Pursuit
(SOMP)

1. Introduction

Human gestures frequently provide a natural and intuitive communicationlityoidiadaily life,

and the techniques of gesture recognition can be widely applied in marsy aveh as human com-

puter interaction (HCI) (Pavlovic et al., 1997; Zhu et al., 2002), robotio| (Malima et al., 2006;

Shan et al., 2007), sign language recognition (Gao et al., 2004; TeStamd Pentland, 1998) and
augmented reality (Rei nger et al., 2007). To model gesture signals dridwecacceptable recog-

nition performance, the most common approaches are to use Hidden Madktals (HMMs) or its

variants (Kim et al., 2007) which are a powerful model that includes midti#te structure. Yamato
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et al. (1992) used image preprocessing operations (backgroutrdcidn, image blurring) to ex-
tract low-level features and used HMM to recognize tennis motions. Beaal (1997) suggested
a coupled HMM that combined two HMMs with causal possibly asymmetric links ¢ogmize
gestures. Vogler (2003) presented a parallel HMM algorithm to modéligesomponents and can
recognize continuous gestures in sentences. Then a more gendrabifistic model named dy-
namic Bayesian network (DBN) is proposed. DBN includes HMMs and Kalritars as special
cases (Suk et al., 2010). Youtian et al. (2006) de ned ve classegestures for HCI and devel-
oped a DBN-based model which used local features (contour, moméghj)hend global features
(velocity, orientation, distance) as observations. Suk et al. (201@opeal a DBN-based system
to control media player or slide presentation. They used local featuresi@io, velocity) by skin
extraction and motion tracking to design the DBN inference.

However, both HMM and DBN models assume that observations given the nmagtss la-
bels are conditional independent. This restriction makes it dif cult or imisbs$o accommodate
long-range dependencies among observations or multiple overlappiogefeaf the observations
(Sminchisescu et al., 2005). Therefore, Sminchisescu et al. (200pdged conditional random
elds (CRF) which can avoid the independence assumption betweenvalisas and allow non-
local dependencies between state and observations. Wang et al) {@@06ncorporated hidden
state variables into the CRF model, namely, hidden conditional random eldRICThey used
HCREF to recognize gesture recognition and proved that HCRF can tiet performance. Later,
the latent-dynamic conditional eld (LDCRF) model (Morency et al., 200&svwproposed, which
combines the strengths of CRFs and HCRFs by capturing both extrinsieniggiand intrinsic
sub-structure. The detailed comparisons are evaluated by Morenicy20@v).

Another important approach is dynamic time warping (DTW) widely used in gestcog-
nition. Early DTW-based methods were applied to isolated gesture recogf@anadini, 2001;
Lichtenauer et al., 2008). Then Ruiduo et al. (2007) proposed asneed Level-Building DTW
method. This method can handle the movement epenthesis problem and sinudblasegment
and match signs to continuous sign language sentences. Besides thesdsnmtier approaches
are also widely used for gesture recognition, such as linguistic sub-@utspér et al., 2012) and
topology-preserving self-organizing networksdfdz et al., 2002). Although the mentioned meth-
ods have delivered promising results, most of them assume that the lattakfe (shape, velocity,
orientation, position or trajectory) are detected well. However, the priresses of hand detection
and tracking are major challenging problems in complex surroundings.dvereas shown in Ta-
ble 1, most of the mentioned methods need dozens or hundreds of trainiptesdo achieve high
recognition rates. For example, in Yamato et al. (1992), the authors tisealsa 50 samples for
each class to train HMM and got the average recognition rate 96%. Be¥amleato et al. (1992)
suggested that the recognition rate will be unstable if the number of samphaalis ¥hen there
is only one training sample per class, those methods are dif cult to satisfetferement of high
performance application systems.

In recent years, BoF-based methods derived from object cated&®e Fei and Perona, 2005)
and action recognition (Wang et al., 2009) have become an importantibf@ngesture recogni-
tion. Dardas and Georganas (2011) proposed a method for real-tidgblsature recognition based
on standard BoF model, but they rst needed to detect and track hawdhat would be dif cult
in a clutter background. For example, when the hand and face are myedar the background
is similar to skin color, hand detection may fail. Shen et al. (2012) extractethmaxstable ex-
tremal regions (MSER) features (Forssen and Lowe, 2007) from thiemuivergence elds which
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paper/method | Kimetal., | Yamato etal.,| Youtian et al., Suk etal., Sminchisescu et al],
2007/HMM | 1992/HMM 1992/DBN 2010/DBN 2005/CRF
training samples
per class 150 50 15 42 NA
paper/method | Wang et al. | Morency etal.| Corradini Lichtenauer et al Ruiduo et al.
2006/HCRF| 2007/LDCRF| 2001/DTW 2008/DTW 2007/DTW

training samples
per class 45 269 45 60 NA

Table 1: This tables shows the training samples pre class needed in somertahditithods. "NA”
means the training samples are not clearly mentioned.

were calculated by optical ow (Lowe, 2004), and learned a codehwsitkg hierarchical k-means
algorithm, then matched the test gesture sequence with the database usim@rageency-inverse
document frequency (tf-idf) weighting scheme. These methods neeshsloz hundreds of train-
ing samples. However, in this paper, we explore one-shot learningrgesttognition (Malgireddy
et al., 2012), that is, using one training sample per each class. Some imphianging issues
for one-shot learning gesture recognition are the following:

1. How to extract distinctive features? Different people have different speeds, trajectories and
spatial positions to perform the same gesture. Even when a single performys the gestures, the
trajectories are not identical. Therefore, the extracted spatio-tempatalrés should be invariant
to image-plane rotation, scale and spatial position. Simple descriptors, Sunebt@n trajectories
(Yang et al., 2002) and spatio-temporal gradients (Freeman and Rd&#h), Iiay not meet the
invariant conditions. Therefore, we propose a new spatio-tempatlriewhich is scale, image-
plane rotation and space invariant and can capture more compact agdviglnal representations.
The new feature will be introduced in Section 3.1.

2. How to select a suitable model?Here, we select BoF-based model to recognize gestures
because it reveals promising results for one-shot learning @éreez-\Vela et al., 2012) and has a
number of attractive properties. First, in our BoF representation, weotineed the prior success
of hand detection and tracking. Second, BoF is a modular system with tares pamely, i)
spatio-temporal feature extraction, ii) codebook learning and descrptting, iii) classi er, each
of which can be easily replaced with different methods. For instanceawaply various methods,
such as Cuboid (Ddr et al., 2005) or Harris3D (Laptev, 2005) for the local spatio-tenmpeasure
extraction while leaving the rest of the system unchanged.

In this paper, we focus on solving these two challenging issues ands@@aew approach
to achieve good performance for one-shot learning gesture recagnifiar experimental results
reveal that our method is competitive to the state-of-the-art methods. Vmoké&ibutions of the
proposed method are summarized as follows:

A new framework derived from the BoF model is proposed.
A new spatio-temporal feature (3D EMOoSIFT) is proposed.
The new feature is invariant to scale and rotation.

The new feature is not sensitive to slight motion.

Using SOMP instead of VQ in the coding stage.
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Obtained high ranking results on ChalLearn gesture challenge.

The rest of paper is organized as follows: Section 2 reviews the bawkdrincluding BoF
model and some local spatio-temporal features. In Section 3, we dewipeoposed approach in
detail. Section 4 presents the experimental results. In Section 5, we cernbiidaper and discuss
future work.

The Traditional BoF Model Our Model for One-shot Learning Recognition
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Figure 1: (a) An overview of the traditional BoF model (the left greettiamgle); (b) An overview
of our model (the right blue rectangle).

2. Background
In this section, we rst introduce the traditional BoF framework for remitign and then review the
local spatio-temporal features which are widely used in BoF model.

2.1 Traditional Bag of Feature (BoF) Model

Figure 1(a) illustrates the traditional BoF approach for gesture (or @egongnition. In the training
part, after extracting local features from training videos, the visuatloodk is learned with the k-
means algorithm. Then each feature is mapped to a certain visual codewmrgttihe clustering
process and the video can be represented by the histogram of visleavawls. The histograms
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representing training videos are treated as input vectors for a swgatot machine (SVM) (Chang
and Lin, 2011) to build a classi er. In the testing stage, the features @raoted from a new input
video, and then those features are mapped into a histogram vector bystgtte coding method
(e.g., VQ) using the pre-trained codebook. Then, the histogram vectwalig fed into an SVM
classi er to get the recognition result.

However, as shown in Figure 1(b), we list at least three differenetgden our model and the
traditional BoF model. First, there is only one training sample per gesture alhde dozens or
hundreds of training samples per class are provided in the traditional BdElm®econd, we use
SOMP to replace VQ in the coding stage. That is because SOMP can gepleettemance. Third,
in the recognition stage, we just use the simple nearest neighbor (NNj)eddsstead of SVM to
recognize gestures.

2.2 Spatio-Temporal Features

We describe some spatio-temporal features which represent the statant techniques on object
recognition tasks. Those features are commonly used to detect saliestablallocal batches from
videos.

The Cuboid detector depends on a set of linear Iters for computing thmnse function of a
video clip. The response function has the form of a 2D Gaussian smodtimiotion (applied in the
spatial domain) and a quadrature pair of 1D Gabor Iters (applied in the temhgivection). Then
the keypoints are detected at the local maxima of the response functionidEleebatches extracted
at each of the keypoints are converted to a descriptor. There are aenwftyays to compute
descriptors from video batches as discussed bydbet al. (2005). Among those, gradient-based
descriptors such as histograms of oriented gradients (HOG) and coatateyradient vectors are
the most reliable ones. For more details about the Cuboid feature, plesBel& et al. (2005).

The Harris3D detector (Laptev, 2005) is an extension of the Harrisscaietector (Harris and
Stephens, 1988). The author computes a spatio-temporal second-nmatexat each video point
using independent spatial and temporal scale values, a separabkaBausoothing function, and
space-time gradients. The nal locations of space-time interest pointsvane lgy the local positive
spatio-temporal maxima. Then, at each keypoint, two types of descriptocaiulated, which are
HOG and histograms of optical ow (HOF) descriptors.

The MoSIFT (Chen and Hauptmann, 2009) is derived from scale imtaigature transform
(SIFT) (Lowe, 2004) and optical ow (Lucas et al., 1981). First, arp# Gaussian pyramids
are built from two successive frames, respectively. Then, optioal pgramids are calculated by
each layer of the pair of Gaussian pyramids. Next, a local extreme detectedlifference of
Gaussian pyramids (DoG) can only become an interest point if it hasienf motion in the optical
ow pyramid. Finally, as the process of the SIFT descriptor calculation M&IFT descriptors
are respectively computed from Gaussian pyramid and optical ow pyramithat each MoSIFT
descriptor now has 256 dimensions.

Ming et al. (2012) propose a new feature called 3D MoSIFT that is ddrivom MoSIFT.
Compared with MoSIFT, 3D MoSIFT fuses the RGB data and depth informattorthe feature
descriptors. First, Ming et al. (2012) adopt the same strategy using tBed@(@ to detect interest
points. Then, for each interest point, 3D gradient space and 3D motawe sge constructed by
using RGB data and depth information. In 3D gradient (motion) space, thpy3Daspace into
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three 2D planes: xy plane, yz plane and xz plane. Next, for each glaeused SIFT algorithm
to calculate the descriptors. Therefore, each 3D MoSIFT descripsorétdimensions.

(b)

t t+1

Figure 2: Results of interest point detection (marked with the red crosspindwsecutive frames.
(a) 3D MoSIFT; (b) 3D EMoSIFT. We can see that some redundantpaie detected
in some slight motion regions (i.e., background regions) which shows 3DIMoB
sensitive to slight movement. However, 3D EMoSIFT can detect inter@sisgoom the
regions with large motion (i.e., hand and arm regions), which shows 3D EMGaS not
sensitive to slight motion.

3. The Proposed Approach for One-Shot Learning Gesture Recogfion

We propose a new spatio-temporal feature called 3D EMoSIFT. The eaturé is invariant to
scale and image-plane rotation. Then we use kmeans algorithm to learroo&detd apply SOMP
algorithm to achieve descriptor coding. Besides, we adopt a methodobspdinn DTW and
motion energy for temporal segmentation. Below, we describe each stagiih d

3.1 Spatio-Temporal Feature Extraction: 3D EMoSIFT

The rst stage is to extract rich spatio-temporal representations fronvitteo clips. To obtain
such representations, there are many ways to selectjDetllal., 2005; Laptev, 2005; Chen and
Hauptmann, 2009). However, those approaches only rely on RGB ddtdanot consider the
depth information, which may lead to acquire insuf cient information. Altho@ghMoSIFT can
fuse the RGB-D data to calculate descriptors, it still cannot accuratelgtdaterest points. For
instance, as shown in Figure 2(a), 3D MoSIFT capture some reduimdardgst points when some
slight motion happens (e.g., slight motion in the background), showing thm@BIFT is sensitive
to slight movement. Besides, 3D MoSIFT (Ming et al., 2012) is a little sketchy.solee the
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mentioned problems, we propose a new spatio-temporal feature andkgivples to explain how
to extract the new feature step by step.

3.1.1 FEATURE POINTS DETECTION FROMRGB-D DATA

Although the 3D MoSIFT feature has achieved good results in human aag#dgbgnition, it still
cannot eliminate some in uences from the slight motion as shown in Figure Z{erefore, we
fuse depth information to detect robust interest points. We know that &tferithm (Lowe, 2004)
uses the Gaussian function as the scale-space kernel to produée spsca of an inputimage. The
whole scale space is divided into a sequence of octaves and each cataigs of a sequence of
intervals, where each interval is a scaled image.

Building Gaussian PyramidGiven a gesture sample including two videos (one for RGB video
and the other for depth vided)a Gaussian pyramid for every grayscale frame (converted from RGB
frame) and a depth Gaussian pyramid for every depth frame can be budguition (1).

Li06Y) = G yiks) Lig(xy); 0 i<nm0 j<s+3; W
Li'?j(x;y)z G(xykis) L%(xy); 0 i<m0 j<s+3
where(x;y) is the coordinate in an image;is the number of octaves arsds the number of in-
tervals;L{.; andLP; denote the blurred image of tif¢+ 1) image in the(i + 1) octave;L,, (or
LD,) denotes the rst grayscale (or depth) image in ¢he 1)™" octave; Foii = 0, L{,, (or L3,) is
calculated from the original grayscale (depth) frame via bilinear interpolatial the size olt{);o is
twice the size of the original frame; For 1, L{,, (or L) is down-sampled frorh] ¢ (or LP 1)
by taking every second pixel in each row and column. In Figure 3(ajltreearrow shows that the
rstimage L} .4 in the second octave is down-sampled from the third imdgein the rst octave.

is the convolution operatiorG(x;y; kis) = les)ze 0+y)=2(Ks)?) is a Gaussian function with

variable-scale values is the initial smoothing parameter in Gaussian function lead2'= (Lowe,
2004). Then, the difference of Gaussian (DoG) imadiEfs, are calculated from the difference of
two nearby scales in Equation (2).

Dfi;j = I—il;j+1 Li

;0 i<m0 j<s+2 (2)

We give an example to intuitively understand the Gaussian pyramid and Dae@joly Figure
3 shows two Gaussian pyramids'y( L'=1) built from two consecutive grayscale frames and two
depth Gaussian pyramidsQt, LPt+1) built from the corresponding depth frames. In this example,
the number of octaves is= 4 and the number of intervals &&= 2; Therefore, for each frame,
we can build ve images for each octave. And we can see that l&fgeresults in a more blurred
image (see the enlarged portion of the red rectangle in Figure 3). Tharsetbe Gaussian pyramid
shown in Figure 3(a) to build the DoG pyramid via Equation (2), which is shoviigure 4.

Building Optical Flow Pyramid. First, we brie y review the Lucas-Kanade method (Lucas
et al., 1981) which is widely used in computer vision. The method assumes ¢hdisfilacement
of two consecutive frames is small and approximately constant within a regigbdd of the point
r. The two consecutive frames are denotedHdyandF2 at timet andt + 1, respectively. Then

1. The depth values are normalized to [0 255] in depth videos.
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Figure 3: Building Gaussian pyramids and depth Gaussian pyramids foramsecutive frames.
(a) the gaussian pyramld: at timet; (b) the gaussian pyramid1 at timet + 1; (c) the
depth gaussian pyramid at timet; (d) the depth gaussian pyramif1 at timet + 1.
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Figure 4: Building the difference of Gaussian pyrarbiélt from Figure 3(a) at timé.

the optical ow vector {") of the pointr can be solved by the least squares principle (Lucas et al.,
1981). Namely, it solves:

AV = Db;
2 3 2 3
F1«(q1) Fly(a) FL(qu)
Fl(g2) Fly(dp) y Fli(g)
whereA = j j V= Vi‘ , andb = j , 1, Op; ;0 are the
. . y .
Fl«(an) Fly(an) F1:(an)

pixels inside the window around the pomtF 1,(q;) andF1y(q;) calculated by different operators
(e.g., Scharr operator, Sobel operator) are the partial derivativiee imagd-1 along the horizontal
and vertical directions, ard1;(q) = F2(q) F21(qg) calculated by two consecutive frames is the
partial derivatives along time. Besideé,(v{,) denotes the horizontal (vertical) velocity of the point
r. So we can know the optical oW =[Vx\,]" of all the points in the imagE 1 via Equation (3).

- ..
MW" =" M 3)
i=1
wherez is the number of points in the imagel, Vi (\fyi) denotes the horizontal (vertical) velocity
of the pointr j, andVy (Vy) denotes the horizontal (vertical) component of the estimated optical ow

for all the points in an image. In order to facilitate the following description, ewerite Equation
(3), so as to de n@pticalFlowKL(F1;F2), as follow:

M W]™ = OpticalFlowKL(F1;F2) d:ef[ [V V{,']T:

i=1

Next, once two Gaussian pyramidst(andL'+1) shown in Figure 3(a) and (b) are obtained at
timet andt + 1, respectively, we can calculate the optical ow at each interval ofi@amtave via
Equation (4). That is say,
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Vi iy Vyiop]” = OpticalFlowKL(L{; L), 0 <m0 j<s+3 (4)
whereL" denotes the blurred image of thg+ 1) interval in the(i + 1) octave at time, n and
sare de ned the same as Equation (1).

So the horizontal and vertical optical ow pyramids at tiftnare the union setsI JV):‘(I ) and

i:jV;L‘(i;j)i respectively. For example, we use the Gaussian pyramids in Figuredgdafb) to
compute the optical ow pyramid via Equation (4). And the results are illustriam&igure 5(a) and
(b) where we can see that the highlighted parts occur around the motisn par

Local Extrema DetectionHere, we describe three different methods (SIFT, 3D MoSIFT, 3D
EMOoSIFT) for interest point detection and show the similarities and diftremmong these meth-
ods.

(1) Local Extrema Detection: SIFT

In order to detect the local maxima and minima in the DoG pyrdbﬂ;i-, each point is com-
pared to its eight neighbors in the current image and nine neighbors indkie abd below images
of each octave, which is illustrated in Figure 6(a). A point is selected onlysflérger than all of
these neighbors or smaller than all of them. In Figure 4, the DoG pyr@rﬁ'ﬁj has four octaves
and each octave has four images at ttm8o we can nd the local extrema points in the middle of

two images at each octave, name?])yf,I o 8i2[0;3];j 2 [1;2]. For example, in the rst octave, we
detect the local extrema points at the second in[ad)él (via comparing the point to his 8 neighbor
points in the current image f0 1, 9 neighbor points in the |magfef0 \o» and 9 neighbor points in the
|mageDf ») and the third |mag®f0;2 (via comparing the point to his 8 neighbor points in the cur-
rent |mageDf02, 9 neighbor points in the imagbf(')‘;l, and 9 neighbor points in the ima@a\‘(';;3
So we can detect the local extrema points in other octaves similar to the rsteoctae detected
points (marked with red points) are shown in Figure 7(a), which showsrthay redundant points
are detected in the background and torso regions.

(2) Local Extrema Detection: 3D MoSIET

3D MoSIFT rst detect the local extrema like SIFT algorithm. Then thosellegrema can
only become interest points when those points have suf cient motion in theabptio pyramid.
That is say, if a point is treated as an interest point, the velocity of this pbould satisfy the
following condition:

S

Ve b1 ww by h (5)

wherevy () is the horizontal (vertical) velocity of a point from the horizontal (vemjicptical
ow pyramid Vy (Vy); by is a pre-de ned thresholdy andh are the width and height of the blurred
image in the scale space.

As shown in Figure 5(a) and (b), we can see that only the local extreragetbi the highlighted
parts of the optical ow pyramids\ andV)}t) will become interest points. Because only the points
in the highlighted parts have large motions, which may satisfy the condition intiegua). Other
extrema will be eliminated, because they have no suf cient motion in the optivapyramids. The
nal results (marked with red points) are shown in Figure AlJomparing with SIFT algorithm,
we can see that if the points are still, they will be Itered out via the conditionsgondgon (5).

2. MoSIFT and ® MoSIFT have the same strategy to detect interest points.
3. Here,b1 = 0:005 according to the reference (Ming et al., 2012).
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Figure 5: The horizontal and vertical optical ow pyramids are calculdtech Figure 3(a) and
(b). (a) The horizontal component of the estimated optical ow pyrawjicht timet; (b)
The vertical component of the estimated optical ow pyrarvljdat timet; (c) The depth
changing componeM® at timet.

However, in Figure 7(b), some useless points (from the backgrouddaaso regions) are still
detected, which indicate that 3D MoSIFT is sensitive to the slight motion.

(3) Local Extrema Detection: 3D EMoSIFT

To eliminate the effect of the slight motion, we introduce a new condition to Itertbe de-
tected points by the SIFT algorithm. According to the above mentioned desnripteohave ob-
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Figure 6: (a) The SIFT algorithm for interest points detection. Maxima andmaiof the DoG
images are detected by comparing a pixel (marked with a red triangle) to itsgtthnes
in 3 3 regions at the current and adjacent scales (marked with black cjr{i@gshe
point prediction via the optical ow vector.

Figure 7: After interest point detection, the SIFT-based descriptersaculated by three methods:
SIFT, 3D MoSIFT and 3D EMoSIFT. The detected points are marked witkireles and
the green arrows show the direction of movements. The gure shows tRaté&hd 3D
MoSIFT detect many useless points in the background and torso regiolestie result
by 3D EMOSIFT is more accurate. (a) SIFT; (b) 3D MoSIFT; (c) 3D ElfeT.

tained the pyramids®:; LP+1; Vi Ve, For a given poinp; from an image in different scale spaces
at timet, we can easily know the horizontal and vertical velocitigsy by the corresponding image
of the pyramids/'t;VJI. Then the predicted poirg; at timet + 1 can be calculated by the poipt

at timet according to Figure 6(b). Therefore, we can know the depth chamgimgponent at timé
as:

V(PO = LR LR 0 i< im0 j<s+3 (6)

Figure 5(c) shows the depth changing pyramid via Equation (6). We eathaethe highlighted
parts accurately occur in the gesture motion region. Therefore, thedriraina shown in Figure
7(a) by SIFT algorithm will become interest points when those points notlaanbg suf cient mo-
tion which is satis ed with the condition of 3D MoSIFT in Equation (5) but alsgdanough depth
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changing which is shown in the highlighted regions of Figure 5(c). Thaysthe interest point
detection must simultaneously satisfy the condition in Equation (5) and a nalitioorde ned as:

P
v; by w2+ h?; (7)

wherev, is the depth changing value of a point from the depth changing pyr&gnioh is a pre-
de ned threshold. The nal results is shown in Figure 7¢{c)Ve can see that 3D EMoSIFT can
Iter out the still points and the points with slight motion.

3.1.2 FEATURE DESCRIPTORS

The previous operations assigned an image location and scale to eachtipténé. That is say

we can use the interest point to select the Gaussian images from diffgmambids. Here, we
give an example to illustrate how to compute the feature descriptor vector vghsimilar to the
process in Ming et al. (2012). We assume that a detected point (markedne&h dot) is found

in DoG pyramide(';;1 at timet in Figure 4, which indicates that the detected point locates at the
second image of the rst octave. Then the corresponding points (mariledreen dot) in different
pyramids are shown in Figure 3 and Figure 5 at ttm&o calculate the feature descriptors, we rst
extract the local patche§(s Gs) around the detected point in ve pyramids'¢L;V,t; Vyt and

: I D [ |
VZ'Et)), whereG, is extracted from_(;;l, G from Lo G from Vx;t(O;l)’ G, from Vyf(o;l) and G from
V t

2(011)" These ve patches are labeled as green rectangles in Figure 3 ana Bigurhe local
patches5;s G are of the same size 1616 pixels and are shown in Figure 8. We rst consider the
appearance properties to construct the 3D gradient space via lachép@ andG,. Then we use
the rest of local patche&; &, andGs) to construct 3D motion space.

Feature Descriptors in 3D Gradient Spadeor a given poinp with its coordinat€i; j), we can
simply calculate its horizontal and vertical gradients from RGB-D dataa(dG,) as follow:

Ix(i;1)= Gu(i;j+ 1) G j);
y(i; )= Gu(i+ 1))  Gi(is ));
Dy(i;))= G(i;j+ 1) G ]);
DI(i;))= G(i+ 1)) Gu(is]);

wherel,(i; j) andly(i; j) are the horizontal and vertical gradients calculated f@&nD} andDi(i; j)
are the horizontal and vertical gradients fr@n We can calculate four gradients;(y; D} andDY)
for each point. Because the local patch@&sdndG;) are of size 16 16, there are 256 points and
each point has four gradient values.

Then, as shown in Figure 8(a), for each pginthe 3D gradient space can be constructed by
Ix(i; ); 1y(i; §); D3(is §) andD¥(i: j). Now we use thetyplane to illustrate how to calculate the feature
descriptor in the 3D gradieBt space. For each ppiwith its coordinat€i; j), we compute the gra-
dient magnitudemad(i; j)=  Ix(i; j)?+ 1y(i; j)?, and orientationori(i; j) = tan 1(Iy(i; NEN)
in thexy plane. Then, irxy plane, we can generate a new pa@&hwhich is the left image in the
rst row of Figure 8(c). The size 06,y is 16 16. For each point with its coordinatg j) from Gy,
it has two values: the gradient magnituded(i; j) and orientatiorori(i; j). G, can be divided into

4, Here, by = by = 0:005.
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Figure 8: Computing the feature descriptor in two parts: (a) 3D Gradieat&sb) 3D Motion
Space, (c) Feature descriptor calculation

16 (4 4)grids. For each grid with 4 4 points, we calculate its orientation histogram with 8 bins,
which means the orientation is grouped into 8 directions which is represewntds bight image
in the rst row of Figure 8(c). This leads to a descriptor vector with 128 @ 8) dimensions in
Xy plane. Here, each sample added to the histogram is weighed by its gradgmtudea and by a
Gaussian weighting function (Lowe, 2004). Similarly, we can calculate therigi#ors inxzandyz
planes. Therefore, the descriptor vector of the 3D gradient spacgd4a(128 3) dimensions.
Feature Descriptors in 3D Motion SpacEor a given poinip with coordinategi; j);80 i
15,0 | 15, we can easily know the velocities according to the local patGes,, andGs.
Thatis sayvu(i; [) = G(i; ]), w(i; J) = Ga(i; J) andv(i; j) = Gs(i; ).
Thus, we can construct the 3D motion space as shown in Figure 8(b). Similse descriptor
calculation in 3D gradient space, we can compute the magnitude and orier{tegiog vy; vy; V)
for the local patch around the detected points in three planes. The ordyediffe is thav; is the
same in bothkxzandyzplanes. Therefore, we obtain the descriptors with 384 dimensions in the 3D
motion space. Finally, we integrate these two descriptor vectors into a longpies vector with
768 dimensions.

3.1.3 OveRVIEW THE 3D EMOSIFT FEATURES

In this section, we propose a new spatio-temporal feature called 3D EMoBach 3D EMoSIFT
feature descriptor has 768 dimensions. Since the 3D EMoSIFT featueeived from SIFT algo-
rithm, the features are invariant to scale and rotation. Besides, compao#uktosimilar features
(SIFT, MoSIFT, 3D MoSIFT), the new features can capture more cotrpation patterns and are
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not sensitive to the slight motion (see the Figure 7). For a given sample inglad RGB video

and a depth video, we can calculate feature descriptors between twecative frames. Then the
sample can be represented by the set of all the feature descriptorstesktfilom the video clips.
Algorithm 1 illustrates how to calculate the proposed features.

Now each sample is denoted by the set of descriptor vectors, and weonsd those vectors
for BoF representation. To do that, we will create histograms counting how titaes a descriptor
vector (representing a feature) appears at interest points anyvwhtre video clip representing
the gesture. There is a need to rst replace the descriptor vectorsd®s¢o limit the number of
features, otherwise there would be too many entries in the histogram areptiesentation would
be too sparse. So, we will describe the means of creating a codebooknexih®ection 3.2.

Algorithm 1 The algorithm for the 3D EMoSIFT feature

Input:
A sample with two videosV, = [11;12;::;;1g] (RGB data)Vy = [D1;Dy;:::; Dg] (depth
data)
Number of frames Q

Output:

The set of feature descriptor:
1: Initialization: X =[]
2: fori=1toQ 1do
3:  Obtain the framed; andli: ; fromV;; Dj andDj 1 from Vy

4:  Build the Gaussian Pyramidk!; L'+1; P andLP+1 via Equation (1)

5. Build the different of Gaussian (DoG) Pyramidf'i via Equation (2)

6:  Build the Optical Flow Pyramids,’ andV,' via Equation (4)

7. Build the depth changing Pyramigt®' via Equation (6)

8: Find the set of interest point® = p1;:::; pm] via Figure 6(a), Equation (5) and (7)
9: for j=1tomdo

10: Get the information of the interest point from the Betp;

11: Compute feature descriptor from the local patch aropgna 2 A 78 via Figure 8
12: X=[XX

13:  end for

14: end for

15: return X

3.2 Codebook Learning and Coding Descriptors
Suppose the matriX is the set of all descriptor vectors for an entire video clip representing a
codebookB with M entries is denoted witB = [by; by;:::;by] 2 A9 M. The coding methods map

each descriptor into El-dimensional code to generate the video representation. We rst inteoduc
how to learn a codebodB, then review VQ and introduce SOMP for code descriptors.
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3.2.1 GODEBOOKLEARNING

Let h denote the number of gesture classes (that means theheteaiming samples for one-shot
learning),W=[X1; X2 :::;X"]; W2 A9 L js the set of all the descriptor vectors extracted from alll
the training samplesx' 2 A9 N with N; descriptor vectors is the set extracted from itAelass,
and Ly = aI 1N is the number of features extracted from all the training samples. Then we lea
the codeboolB2 A4 M (M < a. 1 Ni) with M entries by applying the k-means algorithm (Wang
et al., 2010) over all the descriptdfgin our work. However, unlike traditional BoF models, we use
a new parameteg2 (0;1) instead of the codebook sia¢ (The way we seleaj will be discussed

in Section 4.)gis expressed as a fraction &f;. Therefore, the codebook six&can be calculated
below:

M=Lly o (8)

3.2.2 GODING DESCRIPTORS BWQ

In the traditional VQ method, we can calculate the Euclidean distance betwgieanadescriptor
x 2 A9 and every codewort) 2 A9 of the codeboolB and nd the closest codeword. The VQ
method can be formulated as:

minkX BCkZ: st:kciko = 1;kciks = 1;¢ > O; 8i; (9)

wherek kg is the Frobenius normC =[cy;Cp; i en] 2 AM N is the set of codes foX, k ko
is the o norm that counts the number of nonzero elemekts; is the ; norm; The conditions
kciko = 1;kcik: = 1;¢ > 0; mean that only one element is equal to 1 and the others are zero in each
codec; 2 AM.

This formulation in Equation (9) allows us to compare more easily with sparseg¢ske the
Section 3.2.3). In Equation (9), the conditions may be too restrictive, wies gise to usually a
coarse reconstruction &f. Therefore, we use a sparse coding method instead of VQ.

3.2.3 GODING DESCRIPTORS BYSOMP

Inspired by image classi cation (Yang et al., 2009) and robust facegeition (Wright et al., 2009)
via sparse coding, we relax the restricted conditions in Equation (9) gpubseX has a sparse
representatio® = [c1;¢;::::en, 6 2 AM that means eacdy containsk (kM) or fewer nonzero
elements. Then, the problem can be stated as the following optimization problem:

mCinkX BCkZ; st:kciko k; 8i: (10)

Solving Equation (10) accurately is an NP-hard problem (Wright et al92Guo et al., 2013).
Nevertheless, approximate solutions are provided by greedy algorithomeex relaxation, such
as SOMP (Tropp et al., 2006; Rakotomamonjy, 2011). To the best ofrmawlkdge, we are the
rst to use SOMP in BoF model for gesture recognition, especially for-simat learning gesture
recognition.

Then we give a brief introduction about the SOMP algorithm and analyzedimputational
complexity. SOMP is a greedy algorithm which is based on the idea of selectielgment of the
codebook and building all signal approximations as the projection of thalsigatrix X on the span
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of these selected codewords. This algorithm (Tropp et al., 2006; Ralkotonjy, 2011) is shown in
Algorithm 2. Regarding the computational complexity, we note that the most a&nggpart of the
SOMP is the correlatioe computation which has the complexi@®dMN). And the complexity

of the linear system to be solved for obtaini@gt each iteration i©(jLj) . So the complexity for

k iterations is abou©(dkMN) + O(kjLj). Although the complexity of SOMP is more expensive
than VQ which ha®©®(dMN) (Linde et al., 1980). SOMP has several merits which will be discussed
later.

Algorithm 2 The SOMP algorithm

Input:
A signal matrix (the feature setf = [ xy;Xo; ;i xn] 2 Ad N
A learned codeboolB = [by; by;:::;by] 2 Ad M
the sparsityk

Output:

The sparse representatidb:
1: Initialization: the residual matrilks = X, the index set. =[];
2: fori= 1tokdo
3. E= BTR;, whereE = [ pql€pql

4:  Find the indeX = argmaxa pjepi
50 L=[LI]

6 C=(B[B.) 'B[X

77 R=X BC

8: end for

9: return C

When the codebooB 2 A9 M and a descriptor sét 2 A9 N are given, the set of cod€s2
AM N can be calculated by the coding methods (VQ or SOMP). Then the mearstemion error
(MRE) for X is de ned as:

N
evre = Q &=N;
i=1
whereg = kx; Bg k% is the reconstruction error of th#® descriptor.

To compare theMRE sfor both the VQ and SOMP methods, a mat¥x2 A84 2000 s ran-
domly generated based on the standard normal distribution. Then the Madrsplit into two parts
(Xp 2 AB4 1000 gndx, 2 A64 1000  The matrixX; is used to build a codebodk by the k-means
algorithm. Then we usk; to calculate the codé&s, o andCsompVia Equation (9) and (10), respec-
tively. Finally we calculate thdMREsunder varied cluster numbers and different sparsity values
k= f5;10;,15g. Figure 9 shows the results of both coding methods. We can see thdREsof
the SOMP method is much lower than thii&RE sof the VQ method.

Compared with the VQ method, SOMP has several advantages. First, #tgoodd is usually
overcomplete (i.e.M > d). Overcomplete codings smoothly interpolate between input vectors
and are robust under input noise (Olshausen et al., 1997). SeSGMP achieves a much lower
reconstruction error. Although there is no direct relationship betweearlogconstruction error
and good recognition results, some authors (Yang et al., 2009; Wan 2082) have shown that
oftentimes better reconstruction leads to better performance. Third, tr&tgpaior allows the
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Figure 9: ComparisoMRE susing both VQ and SOMP methods.

learned representation to capture salient patterns of local descrifptm@rding to our experimental
results in Section 4, although VQ can produce satisfactory accuradyiPS€an achieve better
performance.

3.3 Coef cient Histogram Calculation and Classi cation

The matrixX contains the descriptors obtained from a test samplé€Cagwhtains their correspond-
ing sparse representations over the learned codeBodke sparse coef cients of the vectgr2 C
present the contribution of all the entries in approximating the descrniptiX. The sparse co-
ef cients associated with all the descriptors of the test sample thus collgctieenonstrate the
contribution of the entries toward the representation of that sample. Dinerefe use the coef -
cient histogram to denote the representation of each individual samplejuéti&n (11).

h= 13 (11)
1 (K]

NiZ1
wherec; 2 AM is theith descriptor ofc 2 AM N andN is the total number of descriptors extracted

from a sample and 2 AM.

Because we have only one sample per class for training, multi-class S\@visoattrivially
applicable because they require in principle a large number of training éesnfo we select the
NN classi cation for gesture recognition.

In the above discussion, we assume that every video has one gedtthis lssumption is not
suitable for continuous gesture recognition system. Therefore, waply DTW to achieve tem-
poral gesture segmentation, which splits the multiple gestures to be recaghizetse the sample
code about DTW provided in ChalLearn gesture challenge welhsipg/¢esture.chalearn.
org/data/sample-code ). The detailed description of how to use DTW in one-shot learning can
be found in Guyon et al. (2013). We brie y introduce the process foneral gesture segmentation
by DTW so as to make this paper more self-contained.
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3.4 Temporal Gesture Segmentation based on DTW

LetV =[Iy;:::;1n] be a video withN frames, wheré, is theit" frame (grayscale image) in the video.
Avideo is represented by a set of motion features obtained from differiemages as follows. First,
the difference image is computed by subtracting consecutive frames in@ thaeisg; = li+1 |j,
i=1;::::N 1. The difference image is shown in Figure 10(b). Then a grid of equpdlged cells
is de ned over the difference image. The default size of the grid is33as shown in Figure 10(c).
For each cell, we calculate the average value in the difference image, s@ anatrix is generated.
Finally, we atten this matrix into a vector which is called motion feature. TheeefarvideoV
with N frames is represented by a matrix (the set of motion featugeg)A® (N 1.

Figure 10: An example for the calculation of motion feature vector.

The reference sequence withtraining videos is denoted &, = [ fytr,; 5 fuir ), fvir is the
set of motion features of a training video. A test sequence is denotdg. by fyie (the set of
motion features for the test video). We calculate the negative Euclideamaisketween each
entry (a motion feature) frorR, and each entry (a motion feature) frdga. Then we calculate the
DTW distance and apply the Viterbi algorithm (Viterbi, 1967) to nd the tempsegmentation (an
optimal warping path). In Figure 11, the left gray image shows the set of mtgatures Ig,) as
the reference sequence calculated from training videos. A motion fg&tras the test sequence
is computed from a new input video. The optimal path is shown in the top righecdgthe green
line is the optimal path; the short red lines are the boundary of two neiglpgestures). We can
see that the testing video is splitted into ve gestures.

3.5 Overview of the Proposed Approach

In this section, we describe the proposed approach based on bageW8BIFT features for one-
shot learning gesture recognition in detail. In the recognition stage, it asteps: temporal
gesture segmentation by DTW, feature descriptor extraction using 3D ENIp&ding descriptor
via SOMP, coef cient histogram calculation and the recognition results \Nadkassi er. The
overall process is summarized in Algorithm 3.
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Figure 11: Temporal gesture segmentation by DTW.

4. Experimental Results

This section summarizes our results and demonstrates the proposed methibdlftatde for one-
shot learning gesture recognition. We rst discuss the parameters girtpmsed method. We
further extend our method to compare with other state-of-the-art methagsxperiments reveal
that the proposed method gives superior recognition performance thgnaxiating approaches.

4.1 Database

We evaluate the proposed method on development batdbeslils devel0), validation batches
(validOls valid20) and nal batchesfiinal21s final40) which contain in total 6000 gestures.
The sixty batches are from Chalearn gesture challenge. Each batcheésaindd gesture videos
and split into a training set and a test set. The training set includes a snwdl/setbulary spanning
from 8 to 15 gestures. Every test video contains 1 to 5 gestures. Deta8edptions of the gesture
data can be found in Guyon et al. (2012). All the samples are recoriflecWlicrosoftKinect™™
camera which provides both RGB and depth video clips. Some examplescave shFigure 12
where the rst row is RGB images and the corresponding depth imagesavensn the second
row.

4.2 Metric of Evaluation

We adopt the metric of evaluation that was used by the challenge orga(&gysn et al., 2012)
to rank the entries. To evaluate performance, we use Levenshtein digtanalculate the score
between the predicted labels and the truth labels. This distance betweenihge &rde ned as
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Algorithm 3 The proposed approach for one-shot learning gesture recognition
The condition for one-shot learning: givirtraining samples (RGB-D data) f&rclass (one sample
per gesture class).

Input:
Training samples (RGB-D data); = [t1;::5; trk]
A learned codeboolB (computed from training stage)
Coef cient histograms of training sampledd; = [hy1;hy2; 5 hk] via Equation (11)
(computed from training stage)
A test sample (RGB-D datal
Output:
The recognition resultxlass
1: Initialization: class=1]
2: Temporal gesture segmentatidty;;te,; ::5;te,] = DTW(T;;te), N 1
3: fori= 1toN do
4:  Spatio-temporal feature extractio;, = 3D_EMoSIFT(tg)
5. ForX,, calculate its sparse representaiidaver the pre-trained codeboé&k

minckX, BCk2 st: kcjko k; 8]
6:  Calculate the coef cient histograim, via Equation (11)
7. Recognitiontmpcalss= nn.classifyH;;h,)
8: class=[classtmpcalsg
9: end for
10: return class

Figure 12: Some samples from ChalLearn gesture database.

the minimum number of operations (insertions, substitutions or deletions) shéettansform one
string into the other. In our case, the strings contain the gesture labelsedetecach sample.
For all comparisons, we compute the mean Levenshtein distance (MLDgatwadeo clips and

batches. MLD score is analogous to an error rate (although it canédyee

4.3 Parameters Discussion

This part gives the discussion of the parameters of the proposed metirst. we analysis the
parameters of 3D EMoSIFT. Then, two parameters from the BoF moddismassed.
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4.3.1 RARAMETERS OF3D EMOSIFT

There are ve parameters for constructing 3D EMoSIFT featuresedlparameters;n andsin
Equation (1) are derived from SIFT algorithm. We set 1:6 ands= 3. Because Lowe (2004)
suggest that whes = 1:6 ands= 3, they can provide the optimal repeatability according to their
experimental results. Besides, the number of octavesn be calculated according to the original
image size, such ast(logz(min(width; heigh®)) (Vedaldi and Fulkerson, 2008).

The rest of parameters alg in Equation (5) and, in Equation (7). b1 andb, determine
the detection of interest points based on motion and depth change. Wl b, are smaller,
more interest points will be detected. We nd that when2 [0:003 Q008]; b, 2 [0:003 Q00§,
the performances are very stable as shown in Figure 13 where the @suttalculated from two
batches. We can see that MLD scores vary from 0.075 to 0.098dweeD1 batch, from 0.089
to 0.134 fordeveD2 batch. Thereforey, = b, = 0:005 is used throughout this paper based on
empirical results.

Figure 13: Parameters. = 1.6, s= 3,g= 0.2 andk = 10. The MLD scores are calculated with
different valued; b,. (a) ondeveD1 batch (b) ordeveD2 batch

4.3.2 RARAMETERS OF THEBOF MODEL

There are two parameters in the BoF modgin Equation (8) and in Equation (10) . Unlike
traditional BoF models, we use a new paramgt(0; 1) to replace the codebook sikementioned

in Section 3.2. We rst explain the reasons for choosgnhglable 2 shows some information on
different batchesfiinal21s final40), such as the number of training samples and the number of
features extracted from training samples. We can see that the numbatwefevaries on different
batches. If a given codebook sikk is too large, it may cause over-clustering on some batches
where the number of features is relatively fewer (efgnal25 andfinal36). Therefore, the over-
clustering will effect the nal MLD score. For instance, we evaluatessedifferent codebook sizes:

f 800, 1000, 1500, 2000, 2500, 3000, 3§0The corresponding results are shown in Table 3 where
the best performance is 0.18242. Then we evaluate different vBu#s0.2, 0.8 for g, and the
results are shown in Table 4. We can see that even thgeg:1, the corresponding MLD score

is 0:17415 which can easily beat the best performance in Table 3. AdditiomddBng= 0:1, the

2570



ONE-SHOTLEARNING GESTURERECOGNITION FROMRGB-D DATA USING BAG OF FEATURES

corresponding mean codebook size 1440 is much smaller than the givelmooddsize 3500 which
is from the best result in Table 3.

The theory of sparse coding and the codebook learning are in a dexgkipge and the prob-
lems for selecting optimal parameters (eq.sparsityk) are still open issues (Guha and Ward,
2012). In this paper, we use a simple strategy to decide these two paranfterst, we keep
k= 10 and seg with different values (ranging from 0.1 to 0.5), then determirigy the lowest
MLD score. Figure 14(a) shows the results. It reveals wipen0:5, we can get a higher perfor-
mance and the corresponding MLD score is 0.13145. Then we setdiffeslues ok with g= 0:5
and the results are shown in Figure 14(b). We can see that MLD s@&nesir stable. Wheg= 0.5
andk = 12, the proposed method gets the lowest MLD score (the correspondiregis@1259).

batch | number of train-| number of features number of features| decrease in
names | ing sampledtk, | (3D MoSIFT)L1, | (3D EMoSIFT)L2;, | ratio:1 '[i]{‘:
nal21 10 18116 13183 27.23%
nal22 11 19034 15957 16.17%
nal23 12 11168 7900 29.26%
nal24 9 10544 7147 32.22%
nal25 11 8547 6180 27.69%
nal26 9 9852 7675 22.10%
nal27 10 29999 20606 31.31%
nal28 11 16156 10947 32.24%
nal29 8 30782 22692 26.28%
nal30 10 20357 14580 28.38%
nal31 12 22149 17091 22.84%
nal32 9 12717 10817 14.94%
nal33 9 42273 29034 31.32%
nal34 8 24099 16011 33.56%
nal35 8 39409 27013 31.45%
nal36 9 9206 6914 24.90%
nal37 8 22142 14181 35.95%
nal38 11 26160 18785 28.19%
nal39 10 16543 11322 31.56%
nal40 12 11800 10128 14.17%
Average 9.85 20052.65 14408.15 28.15%

Table 2: This table shows some information for every batch. The last roeal® the average
number. Although the average number of 3D EMoSIFT features hasatemt by 28.15%,
3D EMOoSIFT has a higher performance than 3D MoSIFT in our experirheesalts.
Besides, compared 3D MoSIFT features, the process time of 3D EMo&liDe faster
to build the cookbook.

4.4 Comparisons

In order to compare with other methods, we rst use the standard BoF nodghluate different
spatio-temporal features. Then the performances of VQ and SOMPeB.dg8esides, we evaluate
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codebook sizé/ 800 1000 1500 2000 2500 3000 3500
MLD score 0.21448| 0.21504| 0.19514| 0.18961| 0.18684| 0.18574| 0.18242

Table 3: Parametery; = b, = 0:005,s = 1:6,s= 3andk= 10 (final21ls final40). MLD scores
with different codebook sized.

g 0.1 0.2 0.3
MLD score 0.17415| 0.14753| 0.14032
Mean codebook sizeé 1440 2881 4322

Table 4. Parameterg; = by = 0:005,s = 1:6,s= 3andk= 10 (final21s final40). MLD scores
with different values fog.

Figure 14: (a) Parameters; = b, = 0:005,s = 1:6,s= 3 andk= 10 (final21s final40). MLD
scores with different values @f (b) Parametersb; = b, = 0:005,s = 1.6, s= 3 and
g= 0:5 (final21s final40). MLD scores with different values of sparsky

the performances of both the gradient-based and motion-based fedtimaly, we compare the
proposed approach with some popular sequence matching methods.

4.4.1 GOMPARISON WITH OTHER SPATIO-TEMPORAL FEATURES

In our experiments, we use the standard BoF model to evaluate diffgratin-¢éemporal features,
which means VQ is used for coding descriptors. As shown in Figure liéh@yesults are relatively
stable when sparsitl has different values. Therefore, we evaluate different vail@ek, 0.2, 0.3,
0.4, 0.5y for gand sek = 10. The results are shown in Table 5, where we can draw the following
conclusions.

First, the results of 3D EMoSIFT and 3D MoSIFT consistently exceed traditieatures (e.g.,
Cuboid, Harris3D and MoSIFT). More speci cally, the least MLD seofeorresponding to the best
recognition rate) for 3D EMoSIFT is 0.13311, compared to 0.14476 foMRI3IFT, 0.28064 for
Cuboid, 0.18192 for Harris3D, and 0.335 for MoSIFT.
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I\:e't)hgofgp . ni 0.1 0.2 0.3 0.4 0.5

Cuboid(R) 0.36717 0.36495 0.34332 0.33111 0.31392
Cuboid(R+D) 0.33666 0.31559 0.30948 0.30782 0.28064
Harris3D hog(R) 0.30061 0.26012 0.25014 0.23516 0.23461
Harris3D hog(R+D) | 0.24903 0.22795 0.22407 0.22795 0.22684
Harris3D hof(R) 0.34831 0.32668 0.31281 0.29895 0.29063

Harris3D hof(R+D) 0.32169 0.29174 0.28508 0.27898 0.27121
Harris3D hoghof(R) 0.24237 0.21963 0.20022 0.19468 0.18857
Harris3D hoghof(R+D) 0.20965 0.18802 0.18303 0.18747 0.18192

MoSIFT(R) 0.41653 0.39601 0.35885 0.36606 0.33500
MoSIFT(R+D) 0.44426 0.44260 0.43594 0.42318 0.40488
3D MoSIFT(R+D) 0.19135 0.16694 0.161950.14476 0.14642

3D EMoSIFT(R+D) 0.16528 0.15419 0.14753 0.13977 0.13311

Table 5: Parameterdl; = b, = 0:005,s = 1:6,s= 3 andk = 10 (final21s final40). It shows
MLD scores by different spatio-temporal features with different valokg, where (R)
means the features are extracted from RGB video, (R+D) means thesfeaterextracted
from the RGB and depth videos. The values shown in bold indicate superifarmance,
with MLD scores below 0.16.

Second, from the previous works, we know that traditional featuree hahieved promising
results (Dolar et al., 2005; Laptev, 2005; Chen and Hauptmann, 2009). Howthnaese features
may be not suf cient to capture the distinctive motion pattern only from RGI dacause there is
only one training sample per class.

Third, although 3D MoSIFT and 3D EMoSIFT are derived from the SdiR@ MoSIFT features,
MoSIFT still cannot achieve satisfactory outcomes. That is becauseewiptors captured by
MoSIFT are simply calculated from RGB data while 3D MoSIFT and 3D EMdSibnstruct ®
gradient and B motion space from the local patch around each interest point by fusirig+RG
data.

To show the distinctive views for both 3D MoSIFT and 3D EMoSIFT feaguvee record three
gesture classes: clapping, pointing and waving. The samples are shévguie 15, where the
training samples are shown in the rst three rows (of the rst two colummg) #he testing sam-
ples are shown in the last three rows (of the rst two columns). We rdtast 3D MoSIFT and
3D EMOSIFT features from the six samples. Then we use 3D MoSIFT BridNoSIFT features
extracted from the three training samples to generate a codebook whi@® h@sual words, re-
spectively. Each descriptor is mapped into a certain visual word with V@.splatial distribution
of visual words for each sample are shown in Figure 15 where differsmal words are represented
by different colors. It shows that 3D EMoSIFT is more compact. A more @ahfeature leads
to a better performance (see Table 5) and can effectively reducedhedant features (see Table
2). Besides, a compact feature should encourage the signals frorartteectass to have similar
representations. In other words, the signals from the same class aribddby similar histograms
(or visual words). From the Figure 15, we can see that the sampledtimsame class have sim-
ilar histograms (e.qg., clapping gesture) when we use 3D EMoSIFT. How@eMoSIFT cannot
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Figure 15: The rst two columns are the samples used for training and tesfiing third and
fth columns reveal the spatial distribution of the visual words for the sas)phMhich
show 3D EMOSIFT is more compact. We superimpose the interest points i
into one image. Different visual words are represented by differglors. The fourth
and sixth columns are shown the histograms for each sample. The histogcton ig
> normalization. It shows each class has some dominating visual words. Aacomp
feature encourages gestures from the same class to be described biytdstolgrams
(or visual words), especially the dominating visual words. The histogfaoms the
same class learned by 3D EMoSIFT are similar (i.e., clapping gesture).

get good similar histograms. From the above discussions, we see that 8BIEMis suitable for
one-shot learning gesture recognition. Interestingly, 3D EMoSIFT & misre sparsity than 3D
MoSIFT (see the histograms in Figure 15)
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Figure 16: Parametery; = b, = 0:005,s = 1:6,s= 3,k= 10 andg= 0:3 (deveD1ls devePR0).
The results with different coding methods (VQ, SOMP).

4.4.2 GOMPARISON BETWEENVQ AND SOMP

We then evaluate different coding methods (VQ, SOMP) on developnadavieD1l s develO0)
batches. Figure 16 shows the results. The minimum MLD by SOMP is 0.004] ésedi 3), while
0.008 (seadeveD1) for VQ. And most of the performances by SOMP are much better than VQ
Later, we test 3D MoSIFT and 3D EMoSIFT featuresfanal21s final40 batches. MLD scores
are given in Table 6. It can be seen that in most cases, SOMP leadgsfier@ence whenever 3D
MoSIFT or 3D EMoSIFT is used. We also provide the results by 3D EM®34F every batch in
Figure 17 which shows that SOMP is better than VQ in most cases. In a emrghared with VQ,
SOMP not only has lower reconstruction errors (see Figure 9) butalseves better performance.
We note that 3D EMoSIFT does not work well deveD3 batch as shown in Figure 16. That is
because there are static gestures (posturedewab3 batch, while 3D EMoSIFT can only capture
distinctive features when the gestures are in motion.

PPo
P g
Methocrs Pp P 0.1 0.2 0.3 0.4 05
3D MoSIFTVQ 0.19135 0.16694 0.16195 0.14476 0.14642

3D MoSIFT.SOMP | 0.18303 0.16251 0.159180.15086 0.14088
3D EMoSIFTVQ 0.16528 0.15419 0.14753 0.13977 0.13311
3D EMoSIFT.SOMP | 0.17415 0.14753 0.14032 0.13478 0.13145

Table 6: Parametersb; = b, = 0:005,s = 1.6, s= 3, k= 10, andg varies from 0.1 to 0.5
(final21s final40). MLD scores are calculated by different coding methods.
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Figure 17: Parametery; = by = 0:005,s = 1:6,s= 3,k= 10 andg= 0:3 (final21s final40).
The results with different coding methods (VQ, SOMP).

4.4.3 (OMPARISON BETWEENGRADIENT-BASED AND MOTION-BASED FEATURES

We know that 3D EMoSIFT feature includes two basic components, nanrelgiegt-based fea-
tures and motion-based features. And each component is of size 384sabmenin this section,
we separately evaluate these two components and determinate which cotripanere essential
to gesture recognition. The results evaluated on development batcresparately shown in Fig-
ure 18 where the integrated feature consists of the gradient-based and-vexied features. The
average MLD scores are 0.1945 for the integrated feature, 0.216dayrédient-based features,
and 0.313 for the motion-based features. It can be seen that therpanice of the gradient-based
features, which are comparative to the results of the integrated feateirapah better than the per-
formance of the motion-based features. In addition, our method outperfiovo published papers
ondeveDls deveRO batches, that is say, our method: 0.1945, Lui (2012): 0.2873, Mdldyr
et al. (2012): 0.2409.

As mentioned in Section 3.1, 3D EMoSIFT is constructed in two stages (infmiggtdetection
and descriptor calculation). So whenever the gradient-based or matgmtfeatures are calculated,
we should rst detect the interest points. We randomly select a sample @batearn gesture
database and test the average time with c++ programs and OpenCV libradskB 2000) on a
standard personal computer (CPU: 3.3GHz, RAM: 8GB). Table 7 slizatghe main processing
time occurs in the stage of interest point detection. The remaining partddataiang the gradient-
base and motion-based descriptor is small compared with the time for intehestiptection. In
our future work, we will focus on how to ef ciently detect interest points.

4.4.4 @OMPARISON WITHOTHER METHODS

Here, we compare the proposed approach with some popular sequetatenganethods such
as HMM, DTW, CRF, HCRF and LDCRF, and also give the nal results @f tontestants. The
results are reported in Table 8 where the principal motion method (Escalahtwyon, 2012) is
the baseline method and DTW is an optional method on Chalearn gesture ghdlieand 2).
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Figure 18: Results for parametels:= b, = 0:005,s = 1:6,s= 3,k= 10, andg= 0:3 (deveD1s
deveRO0).

interest point detection gradient-based descriptormotion-based descriptq
average time (ms/f) average time (ms/f) average time (ms/f)
887 2.1 14

—

Table 7: The average computation time for different parts in 3D EMoSI&fufe.

method validation set(05 20) | nal set(21s 40) | team name
motion signature analysis 0.0995 0.0710 Alfnie
HMM+HOGHOF 0.2084 0.1098 Turtle Tamers
BoF+3D MoSIFT 0.1824 0.1448 Joewan
principle motion 0.3418 0.3172 -
DTW 0.4616 0.3899 -
CRF 0.6365 0.528 -
HCRF 0.64 0.6 —
LDCRF 0.608 0.5145 -
our method 0.1595 0.1259 -

Table 8: Results of different methods on Chalearn gesture data set.

The top ranking results in the competition are from three teams (Al ne, Turtteefa and
Joewan), which are provided in the technical report (Guyon et al3)20¥e use the code provided
by Morency et al. (2007) to train the CRF-based classi ers, becaiseade was well developed
and can be easily used. Every frame is represented by a vector of metitme mentioned in
Section 3.4. Those motion features extracted from training videos aretoaitesin CRF-based
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models. For the CRF model, every class has a corresponding labelrégiedtel). CRF predicts a
label for each frame in a video. During evaluation, the video label is pestlizased on the most
frequently occurring label per frame (Morency et al., 2007). For ti&R (or LDCRF) model, we
train a single HCRF (or LDCRF) model with different number of hidden stftes 2 to 6 states)
and select the lowest MLD scores as the nal results which are showalileB. We can see that the
proposed method is competitive to the state-of-the-art methods. Besid€dRbased methods
get poor performances. That is because the simple motion features maglistenguishable to
represent the gesture pattern.

5. Conclusion

In this paper, we propose a uni ed framework based on bag of feaforeone-shot learning ges-
ture recognition. The proposed method gives superior recognitionrpeafice than many existing
approaches. A new feature, named 3D EMoSIFT, fuses RGB-D datetéotdnterest points and
constructs 3D gradient and motion space to calculate SIFT descriptorapated with existing
features such as Cuboid (Datlet al., 2005), Harri3D (Laptev, 2005), MoSIFT (Chen and Haupt-
mann, 2009) and 3D MoSIFT (Ming et al., 2012), it gets competitive perémce. Additionally,
3D EMOSIFT features are scale and rotation invariant and can captue compact and richer
video representations even though there is only one training sample foigeature class. This
paper also introduces SOMP to replace VQ in the descriptor coding stdge. €ach feature can
be represented by some linear combination of a small number of visual codleviCompared with
VQ, SOMP leads to a much lower reconstruction error and achieves bettermpance.

Although the proposed method has achieved promising results, therevaral s&enues which
can be explored. At rst, most of the existing local spatio-temporal festare extracted from a
static background or a simple dynamic background. In our featureroseme will focus on ex-
tending 3D EMOoSIFT to extract features from complex backgrounda:@alby for one-shot learning
gesture recognition. Next, to speed up processing time, we can aché¢yedaure extraction on a
Graphics Processing Unit (GPU) (Chen et al., 2003). Also, we will eeploe techniques required
to optimize the parameters, such as the codebook size and sparsity.
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