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Abstract
In the paper, we consider the problem of link prediction in time-evolving graphs. We assume
that certain graph features, such as the node degree, follow a vector autoregressive (VAR)
model and we propose to use this information to improve the accuracy of prediction. Our
strategy involves a joint optimization procedure over the space of adjacency matrices and
VAR matrices. On the adjacency matrix it takes into account both sparsity and low rank
properties and on the VAR it encodes the sparsity. The analysis involves oracle inequalities
that illustrate the trade-offs in the choice of smoothing parameters when modeling the
joint effect of sparsity and low rank. The estimate is computed efficiently using proximal
methods, and evaluated through numerical experiments.
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1. Introduction

Forecasting systems behavior with multiple responses has been a challenging issue in many
contexts of applications such as collaborative filtering, financial markets, or bioinformat-
ics, where responses can be, respectively, movie ratings, stock prices, or activity of genes
within a cell. Statistical modeling techniques have been widely investigated in the context
of multivariate time series either in the multiple linear regression setup by Breiman and
Friedman (1997) or with autoregressive models by Tsay (2005). More recently, kernel-based
regularized methods have been developed for multitask learning by Evgeniou et al. (2005)
and Andreas et al. (2007). These approaches share the use of the correlation structure
among input variables to enrich the prediction on every single output. Often, the correla-
tion structure is assumed to be given or it is estimated separately. A discrete encoding of
correlations between variables can be modeled as a graph so that learning the dependence
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structure amounts to performing graph inference through the discovery of uncovered edges
on the graph. The latter problem is interesting per se and it is known as the problem of
link prediction where it is assumed that only a part of the graph is actually observed, see
the paper by Liben-Nowell and Kleinberg (2007) and Kolar and Xing (2011). This situation
occurs in various applications such as recommender systems, social networks, or proteomics,
and the appropriate tools can be found among matrix completion techniques, see for in-
stance the papers by Srebro et al. (2005), Candès and Tao (2009) and Abernethy et al.
(2009). In the realistic setup of a time-evolving graph, matrix completion was also used and
adapted by Richard et al. (2010) to take into account the dynamics of the features of the
graph. The estimation of a VAR model for node degrees (that are linear graph features) has
been considered by Zhang et al. (2011) and successfully applied to customer valuation, and
to measure network effect in user generated content market places. Note also that sparse
autoregressive models are also considered by Davis et al. (2012) and Nardi and Rinaldo
(2011).

In this paper, we study the prediction problem where the observation is a sequence of
graphs represented through their adjacency matrices (At)0≤t≤T and the goal is to predict
AT+1. This prediction problem arises in recommender systems, where the purchases or
preference declarations are registered over time. In this context, users and products can be
modeled as the nodes of a bipartite graph, while purchases or clicks are modeled as edges. In
functional genomics and systems biology, estimating regulatory networks in gene expression
can be performed by modeling the data as graphs. In this setting, fitting predictive models
is a natural way for estimating evolving networks in these contexts, see the paper by Shojaie
et al. (2011). A large variety of methods for link prediction only consider prediction from
a single instantaneous snapshot of the graph. This includes heuristics: measures of node
neighbourhoods are considered by Liben-Nowell and Kleinberg (2007), Lü and Zhou (2011)
and Sarkar et al. (2010), matrix factorization by Koren (2008), diffusion by see Myers and
Leskovec (2010) and probabilistic methods by Taskar et al. (2003). More recently, some
works have investigated the use of sequences of observations of the graph to improve the
prediction, such as regression on features extracted from the graphs by Richard et al. (2010),
matrix factorization by Koren (2010), continuous-time regression by Vu et al. (2011) or non-
parametric models by Sarkar et al. (2012). An hybrid approach to dynamic link prediction
is considered by Huang and Lin (2009), based on a mixture of the static approach by Liben-
Nowell and Kleinberg (2007) and an individual ARIMA modeling of the links evolution.

The framework of the current paper is somehow related to compressed sensing introduced
by Donoho (2006) and Candès and Wakin (2008). In fact, due to stationarity assumptions,
the amount of available information is very small compared to the task of predicting the
quadratically many potential edges of the graph. Therefore penalization terms that en-
courage both sparsity and low-rank of related matrices are used to recover the edges of the
graph. In the static setup, these two effects have been previously combined by Richard
et al. (2012b) for the estimation of sparse and low-rank matrices, the rationale being that
graphs containing cliques have block-diagonal adjacency matrices that are simultaneously
sparse and low-rank. Key elements in deriving theoretical results are tools from the theory of
compressed sensing, developed by Candès and Tao (2005), Bickel et al. (2009), Koltchinskii
et al. (2011) and in particular the Restricted Eigenvalue of Koltchinskii (2009a), Koltchinskii
(2009b) and Bickel et al. (2009). Our main results are oracle inequalities under the general

566



Link Prediction in Graphs with Autoregressive Features

assumption that the innovation process of the VAR is a martingale increment sequence with
sub-gaussian tails. These oracle inequalities prove that our procedure achieves a trade-off
in the calibration of smoothing parameters that balances the sparsity and the rank of the
adjacency matrix. A preliminary version of this work can be found in a previous work by
Richard et al. (2012a).

The rest of this paper is organized as follows. In Section 2, we describe the general
setup of this study with the main assumptions. In Section 2.3, we formulate a regularized
optimization problem which aims at jointly estimating the autoregression parameters and
predicting the graph. In Section 3, we provide theoretical guarantees for the joint estimation-
prediction by providing oracle inequalities. In Section 4 we provide an efficient algorithm for
solving the optimization problem and show empirical results that illustrate our approach.
The proofs are provided in Appendix.

2. Modeling Low-Rank Graphs Dynamics with Autoregressive Features

We first introduce the main notations used in the paper.
Matrix norms and entrywise matrix operations. Denote by A a matrix. In the sequel, the
notations ‖A‖F , ‖A‖p, ‖A‖∞, ‖A‖∗ and ‖A‖op stand, respectively, for the Frobenius norm
of A, the entry-wise `p norm, the entry-wise `∞ norm, the trace-norm (or nuclear norm,
given by the sum of the singular values) and operator norm (the largest singular value) of
A. Given matrices A and B, we denote by 〈A,B〉 = tr(A>B) the Euclidean matrix product.
A vector in Rd is always understood as a d× 1 matrix. We denote by ‖A‖0 the number of
non-zero elements of A. The product A◦B between two matrices with matching dimensions
stands for the entry-wise product between A and B (also called Hadamard product). The
matrix |A| contains the absolute values of entries of A. The matrix (M)+ is the entry-wise
positive part of the matrix M, and sign(M) is the sign matrix associated to M with the
convention sign(0) = 0.
SVD and projections. If A is a n × n matrix with rank r, we write its Singular Value
Decomposition (SVD) as A = UΣV > =

∑r
j=1 σjujv

>
j where Σ = diag(σ1, . . . , σr) is a

r × r diagonal matrix containing the non-zero singular values of A in decreasing order, and
U = [u1, . . . , ur], V = [v1, . . . , vr] are n×r matrices with columns given by the left and right
singular vectors of A. The projection matrix onto the space spanned by the columns (resp.
rows) of A is given by PU = UU> (resp. PV = V V >). The operator PA : Rn×n → Rn×n
given by PA(B) = PUB +BPV −PUBPV is the projector onto the linear space spanned by
the matrices ukx> and yv>k for 1 ≤ j, k ≤ r and x, y ∈ Rn. The projector onto the orthogonal
space is given by P⊥A (B) = (I −PU )B(I −PV ). We also use the notation a∨ b = max(a, b).

2.1 Working Assumptions

Our approach is based on a number of beliefs which we translate into mathematical assump-
tions:

• Low-rank of adjacency matrices At
This reflects the presence of highly connected groups of nodes such as communities in
social networks, or product categories and groups of loyal/fanatic users in a market
place data, and is sometimes motivated by the small number of factors that explain
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nodes interactions. We will not make an explicit assumption in the paper but the
results we obtain will be meaningful in the specific case where rank is small compared
to the dimension.

• Autoregressive linear features (VAR models)

We assume that intrinsic features of the graph can explain most of the information
contained in the graph, and that these features are evolving with time. Our approach
considers the simplest assumption on the dynamics over time of these features and we
assume a Vector Autoregressive Linear Regression model that is described in the next
subsection.

• Sub-gaussian noise process

A probabilistic framework is considered in order to describe performance under the
form of oracle inequalities and we propose to specify the distribution of the discrep-
ancy between the VAR model and the actual observations with a a sub-gaussian tail
behavior. This assumption will be formulated below in Section 3.

The first two items correspond to modeling assumptions which partly capture observa-
tions made on real-life data. The third item is a technical assumption used in the proofs.

2.2 An Autoregressive Linear Model for Graph Features

Feature map. We consider a list of graph features encoded through a linear map of the
adjacency matrix with ω : Rn×n → Rd defined by:

ω(A) =
[
〈Ω1, A〉, · · · , 〈Ωd, A〉

]>
, (1)

where {Ωi}1≤i≤d is a set of n× n matrices. These matrices could be either deterministic or
random in our theoretical analysis, but we take them deterministic for the sake of simplicity.
An example of linear features is the vector of node degrees, that is, the number of edges
connected to each node. The degree can be computed from the adjacency matrix using
the linear function ω : A 7→ A1 or ω : A 7→ A>1 respectively for the right and left
nodes degrees, where 1 denotes the vector with all coordinates equal to 1 of the appropriate
length. Other (linear) measures of popularity are considered in social and e-commerce
networks, such as the sum of the weights of incident edges if there is some graduation in
the strength of connection between nodes. Note that nonlinear features, such as the count
of the number of cycles of length k (k = 3, 4, · · · ) through each node, may be relevant in
real world applications. Such features involve, for instance, the diagonal elements of Ak. An
extensive study of this very interesting case is beyond the scope of the present paper.
VAR model. We consider a linear model for the evolution of ω(A) over time.

Assumption 1 The vector time series {ω(At)}t≥0 has autoregressive dynamics, given by a
VAR (Vector Auto-Regressive) model:

ω(At+1) = W>0 ω(At) +Nt+1,

where W0 ∈ Rd×d is an unknown sparse matrix and {Nt}t≥0 is a sequence of noise vectors
in Rd.

568



Link Prediction in Graphs with Autoregressive Features

In the sequel, we shall use the following compact notations:

XT−1 =
[
ω(A0), . . . , ω(AT−1)

]> and XT =
[
ω(A1), . . . , ω(AT )

]>
,

which are both T × d matrices, we can write this model in matrix form:

XT = XT−1W0 + NT ,

where NT = [N1, . . . , NT ]>.

2.3 Simultaneous Prediction and Estimation through Regularized Optimization

Optimization problem formulation. We now introduce the optimization problem which will
account for both the prediction task (anticipate the appearance of new edges in the graph)
and the modeling choices which are supposed to reflect phenomena observed on real data
(smooth evolution of graph features). We consider that snapshots of the graph (and therefore
also the corresponding features) are available at times 1, . . . , T and we want to predict links
which will appear at the next instant T + 1. In order to fulfill this double objective, we
combine two regularized problems in an additive fashion based on two terms:

1. First objective - data-fitting term for weight vector W with sparsity-enforcing penalty

J1(W ) =
1

T
‖XT −XT−1W‖2F + κ‖W‖1, (2)

where κ > 0 is a smoothing parameter.

2. Second objective - data-fitting term for the features of the adjacency matrix A with
mixed penalty enforcing both sparsity and low-rank

J2(A,W ) =
1

d
‖ω(A)−W>ω(AT )‖22 + τ‖A‖∗ + γ‖A‖1,

where τ, γ > 0 are smoothing parameters.

The resulting penalized criterion will be the main topic of the present paper. It is the sum
of the two partial objectives J1 and J2, and is jointly convex with respect to A and W :

L(A,W )
.
=

1

T
‖XT −XT−1W‖2F + κ‖W‖1 +

1

d
‖ω(A)−W>ω(AT )‖22 + τ‖A‖∗+ γ‖A‖1. (3)

Rationale. As shown by the introduction of the two functionals, our approach pursues
a double goal. On the one hand, the data-fitting term on W in J1 aims at an estimate
on the past data of the weight factor in the autoregressive modeling setup according to
Assumption 1 and under a sparsity constraint. On the other hand, the link prediction
goes through the estimation of a matrix A = AT+1 which should be sparse and low-rank
simultaneously. Hence, the second functional J2 involves a mixed penalty of the form A 7→
τ‖A‖∗+ γ‖A‖1, with τ , γ smoothing parameters. Such a combination of `1 and trace-norm
was already studied by Gaïffas and Lecué (2011) for the matrix regression model, and by
Richard et al. (2012b) for the prediction of an adjacency matrix. This mixed norm combines
the benefits of each of the two norms and is well suited for estimating simultaneously sparse
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Figure 1: Unit balls for the trace norm (left), `1 (middle) and the mixed X 7→ ‖X‖∗+‖X‖1
norm (right). The norms where computed on the set of 2× 2 symmetric matrices
that can be identified to R3.

and low-rank matrices. In Figure 1 we illustrated the unit balls for the three norms `1,
trace-norm and the `1 + trace norm. The key observation is that the ball of the mixed
norm has singularities at the points where each of the two other balls are singular, but the
singularities get sharper at points where both norms are singular, namely on the matrices
that are sparse and low-rank at the same time.

The set of sparse and low-rank matrices obtained by minimizing an objective including
this mixed norm contains matrices that can be written in a block-diagonal or overlapping
block-diagonal form, up to permutations of rows and columns. These matrices can be
interpreted as adjacency matrices of networks containing highly connected groups of nodes
and therefore are of particular interest for prediction and denoising applications in graph
data and in covariance matrix estimation. Here we extend the approach developed by
Richard et al. (2012b) for the time-dependent setting by considering data-fitting measures
which ensure that the features of the next graph ω(AT+1) are close to W>ω(AT ).
Search space and general scheme of the estimation procedure. We shall consider the case
where the optimization domain consists of the cartesian product of convex cones A and W
such that A ⊂ Rn×n and W ⊂ Rd×d. The joint estimation-prediction procedure is then
defined by

(Â, Ŵ ) ∈ arg min
(A,W )∈A×W

L(A,W ). (4)

It is natural to take W = Rd×d and A = (R+)n×n since there is no a priori on the values
of the true VAR model matrix W0, while the entries of the matrix AT+1 must be positive.
Table 1 summarizes the methodology in a scheme where the symbols ↓ω represent the feature
extraction procedure through the map ω : Rn×n → Rd. The prediction in the feature space is
represented by→W , and is handled in practice by the least squares regression onW . Finally,
the symbol ↑ that maps the predicted feature vector ̂ω(AT+1) to ÂT+1 represents the inverse
problem that is solved through the regression penalized by the mixed penalization.

2.4 An Overview of Main Results

The central contribution of our work is to provide bounds on the prediction error under
a Restricted Eigenvalue (RE) assumption on the feature map. The main result can be
summarized as follows: the prediction error and the estimation error can be simultaneously
bounded by the sum of three terms that involve homogeneously (a) the sparsity, (b) the
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A0 A1 · · · AT ÂT+1 Observed adjacency matrices ∈ Rn×n
↓ω ↓ω ↓ω ↑

ω(A0) ω(A1) · · · ω(AT ) →
W

̂ω(AT+1) Features vectors ∈ Rd

Table 1: General scheme of our method for prediction in dynamic graph sequences through
a feature map ω.

rank of the true adjacency matrix AT+1, and (c) the sparsity of the true VAR model matrix
W0.

Namely, we prove oracle inequalities for the mixed prediction-estimation error which is
given, for any A ∈ Rn×n and W ∈ Rd×d, by

E(A,W )2 .
=

1

d
‖(W −W0)>ω(AT )− ω(A−AT+1)‖22 +

1

T
‖XT−1(W −W0)‖2F .

We point out that an upper-bound on E implies upper-bounds on each of its two components.
It entails in particular an upper-bound on the feature estimation error ‖XT−1(Ŵ −W0)‖F
that makes ‖(Ŵ −W0)>ω(AT )‖2 smaller and consequently controls the prediction error over
the graph edges through ‖ω(Â−AT+1)‖2.

We obtain upper bounds that are reminiscent of the bounds obtained for the Lasso by
Bickel et al. (2009) for instance, and that are of the following order:

log d

T
‖W0‖0 +

log n

d
‖AT+1‖0 +

log n

d
rankAT+1.

This upper bound, formalized in Theorem 3, exhibits the dependence of the accuracy of
estimation and prediction on the number of features d, the number of edges n and the
number T of observed graphs in the sequence. It indicates, in particular, that an optimal
choice for the number d of features is of order T log n. The positive constants C1, C2, C3

are proportional to the noise level σ. The interplay between the rank and the sparsity
constraints on AT+1 are reflected in the observation that the values of C2 and C3 can be
changed as long as their sum remains constant. The precise formulation of these results is
given in the next section.

3. Oracle Inequalities

This section contains the main theoretical results ot the paper. Complete proofs and tech-
nical details are provided in the Appendix section at the end of the paper.

3.1 A General Oracle Inequality

We recall from subsection 2.2 that the noise sequence in the VAR model is denoted by
{Nt}t≥0. We now introduce the noise processes as

M = −1

d

d∑
j=1

(NT+1)jΩj and Ξ =
1

T

T∑
t=1

ω(At−1)N>t +
1

d
ω(AT )N>T+1,
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which are, respectively, n× n and d× d random matrices. The source of randomness comes
from the noise sequence {Nt}t≥0.

Now, if these noise processes are controlled, we can prove oracle inequalities for proce-
dure (4). The first result is an oracle inequality of slow type, that holds in full generality.

Theorem 1 Under Assumption 1, let (Â, Ŵ ) be given by (4) and suppose that

τ ≥ 2α‖M‖op, γ ≥ 2(1− α)‖M‖∞ and κ ≥ 2‖Ξ‖∞ (5)

for some α ∈ (0, 1). Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 + 2τ‖A‖∗ + 2γ‖A‖1 + 2κ‖W‖1

}
.

3.2 Restricted Eigenvalue Condition and Fast Oracle Inequalities

For the proof of oracle inequalities, the restricted eigenvalue (RE) condition introduced by
Bickel et al. (2009) and Koltchinskii (2009a,b) is of importance. As explained by van de Geer
and Bühlmann (2009), this condition is acknowledged to be one of the weakest to derive
fast rates for the Lasso. Matrix version of these assumptions are introduced by Koltchinskii
et al. (2011). Below is a version of the RE assumption that fits in our context. First, we
need to introduce the two restriction cones.

The first cone is related to the ‖W‖1 term used in procedure (4). IfW ∈ Rd×d, we denote
by ΘW = sign(W ) ∈ {0,±1}d×d the signed sparsity pattern of W and by Θ⊥W ∈ {0, 1}d×d
the complementary sparsity pattern. For a fixed matrix W ∈ Rd×d and c > 0, we introduce
the cone

C1(W, c)
.
=
{
W ′ ∈ W : ‖Θ⊥W ◦W ′‖1 ≤ c‖ΘW ◦W ′‖1

}
.

This cone contains the matrices W ′ that have their largest entries in the sparsity pattern
of W .

The second cone is related to the mixture of the terms ‖A‖∗ and ‖A‖1 in procedure (4).
For a fixed A ∈ Rn×n and c, β > 0, we introduce

C2(A, c, β)
.
=
{
A′ ∈ A : ‖P⊥A (A′)‖∗ + β‖Θ⊥A ◦A′‖1 ≤ c

(
‖PA(A′)‖∗ + β‖ΘA ◦A′‖1

)}
.

This cone consist of the matrices A′ with large entries close to that of A and that are “almost
aligned” with the row and column spaces of A. The parameter β quantifies the interplay
between these two notions.

Assumption 2 (Restricted Eigenvalue (RE) condition) For W ∈ W and c > 0, we
have

µ1(W, c) = inf
{
µ > 0 : ‖ΘW ◦W ′‖F ≤

µ√
T
‖XT−1W

′‖F , ∀W ′ ∈ C1(W, c)
}
< +∞ .

For A ∈ A and c, β > 0, we introduce

µ2(A,W, c, β) = inf
{
µ > 0 : ‖PA(A′)‖F ∨ ‖ΘA ◦A′‖F ≤

µ√
d
‖W ′>ω(AT )− ω(A′)‖2

∀W ′ ∈ C1(W, c), ∀A′ ∈ C2(A, c, β)
}
< +∞ .
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Under this assumption, we can obtain refined oracle inequalities as shown in the next
theorem.

Theorem 2 Under Assumption 1 and Assumption 2, let (Â, Ŵ ) be given by (4) and suppose
that

τ ≥ 3α‖M‖op, γ ≥ 3(1− α)‖M‖∞ and κ ≥ 3‖Ξ‖∞ (6)
for some α ∈ (0, 1). Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 +

25

18
µ2(A,W )2

(
τ2 rankA+ γ2‖A‖0) +

25

36
κ2µ1(W )2‖W‖0

}
,

where µ1(W ) = µ1(W, 5) and µ2(A,W ) = µ2(A,W, 5, γ/τ) (see Assumption 2).

The proofs of Theorems 1 and 2 use tools introduced by Koltchinskii et al. (2011) and
Bickel et al. (2009). Note that the residual term from this oracle inequality combines the
sparsity of A and W via the terms rankA, ‖A‖0 and ‖W‖0. It says that our mixed pe-
nalization procedure provides an optimal trade-off between fitting the data and complexity,
measured by both sparsity and low-rank. To our knowledge, this is the first result of this
nature to be found in literature.

3.3 Probabilistic Versions

We introduce the following natural hypothesis on the noise process.

Assumption 3 We assume that {Nt}t≥0 satisfies E[Nt|Ft−1] = 0 for any t ≥ 1 and that
there is σ > 0 such that for any λ ∈ R and j = 1, . . . , d and t ≥ 0:

E[eλ(Nt)j |Ft−1] ≤ eσ2λ2/2.

Moreover, we assume that for each t ≥ 0, the coordinates (Nt)1, . . . , (Nt)d are independent.

The latter statement assumes that the noise is driven by time-series dynamics (a martingale
increment), where the coordinates are independent (meaning that features are independently
corrupted by noise), with a sub-gaussian tail and variance uniformly bounded by a constant
σ2. In particular, no independence assumption between the Nt is required here.

In the next result (Theorem 3), we obtain convergence rates for the procedure (4) by
combining Theorem 2 with controls on the noise processes. We introduce the following
quantities:

v2
Ω,op =

∥∥∥1

d

d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥1

d

d∑
j=1

ΩjΩ
>
j

∥∥∥
op
, v2

Ω,∞ =
∥∥∥1

d

d∑
j=1

Ωj ◦ Ωj

∥∥∥
∞
, (7)

σ2
ω = max

j=1,...,d
σ2
ω,j , where σ2

ω,j =
( 1

T

T∑
t=1

ωj(At−1)2 + ωj(AT )2
)
,

which are the (observable) variance terms that naturally appear in the upper bounds of the
noise processes. We also introduce :

`T = 2 max
j=1,...,d

log log

(
σ2
ω,j ∨

1

σ2
ω,j

∨ e
)
, (8)
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which is a small (observable) technical term that comes out of our analysis of the noise
process Ξ. This term is a small price to pay for the fact that no independence assumption
is required on the noise sequence {Nt}t≥0, but only a martingale increment structure with
sub-gaussian tails.

We consider the following calibration of smoothing parameters as a function of noise
process parameters:

τ = 3
√

2ασvΩ,op

√
x+ log(2n)

d
,

γ = 3(1− α)σvΩ,∞

√
2(x+ 2 log n)

d
,

κ = 6σσω

{√
2e(x+ 2 log d+ `T )

T
+

√
2e(x+ 2 log d+ `T )

d

}
.

In the next Theorem 3 and Corollary 4, we fix the smoothing parameters to the latter
values. These two results convey the main message of the paper as it was announced in
Section 2.4.

Theorem 3 Under Assumption 1, Assumption 2 and Assumption 3, consider the procedure
(Â, Ŵ ) given by (4) applied with the calibration of smoothing parameters shown above for
some α ∈ (0, 1) and a fixed confidence level x > 0. Then, we have, with probability larger
than 1− 17e−x:

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 + C1‖W‖0(x+ 2 log d+ `T )

( 1

T
+

1

d2

)
+ C2‖A‖0

x+ 2 log n

d
+ C3 rankA

x+ log(2n)

d

}
where

C1 = 100eµ1(W )2σ2σ2
ω, C2 = 50µ2(A,W )2(1−α)2σ2v2

Ω,∞, C3 = 50µ2(A,W )2α2σ2v2
Ω,op,

and RE constants µ1(W ) and µ2(A,W ) are taken as in Theorem 2.

The proof of Theorem 3 follows directly from Theorem 2 together with noise control as-
sumptions. In the next result, we propose more explicit upper bounds for both the individual
estimation of W0 and the prediction of AT+1.

Corollary 4 Under the same assumptions as in Theorem 3 and the same choice of smooth-
ing parameters, for any x > 0 the following inequalities hold with probability larger than
1− 17e−x:

• Feature prediction error:

1

T
‖XT (Ŵ −W0)‖2F ≤

25

36
κ2µ1(W0)2‖W0‖0

+ inf
A∈A

{1

d
‖ω(A)− ω(AT+1)‖22 +

25

18
µ2(A,W0)2

(
τ2 rankA+ γ2‖A‖0)

}
(9)
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• VAR parameter estimation error:

‖Ŵ −W0‖1 ≤ 5κµ1(W0)2‖W0‖0

+6
√
‖W0‖0µ1(W0) inf

A∈A

√
1

d
‖ω(A)− ω(AT+1)‖22 +

25

18
µ2(A,W0)2

(
τ2 rankA+ γ2‖A‖0)

(10)

• Link prediction error:

‖Â−AT+1‖∗ ≤ 5κµ1(W0)2‖W0‖0 + µ2(AT+1,W0)(6
√

rankAT+1 + 5
γ

τ

√
‖AT+1‖0)

× inf
A∈A

√
1

d
‖ω(A)− ω(AT+1)‖22 +

25

18
µ2(A,W0)2

(
τ2 rankA+ γ2‖A‖0) . (11)

4. Algorithms and Data Modeling

In this section, we explore how the proposed strategy of regularized optimization for si-
multaneously estimating the feature dynamics and predicting the forthcoming links can be
implemented in practice.

4.1 Incremental Proximal-Gradient Algorithm for Minimizing L

The objective to be minimized in our problem can be written as:

L = `+R ,

where we have set the loss function `:

` : (A,W ) 7→ 1

T
‖XT −XT−1W‖2F +

1

d
‖ω(A)−W>ω(AT )‖22 ,

and the regularizer R:

R : (A,W ) 7→ κ ‖W‖1 + τ‖A‖∗ + γ‖A‖1 .

We propose to develop an algorithm for solving this optimization problem based on
proximal gradient methods. Proximal algorithms (Beck and Teboulle, 2009; Combettes
and Pesquet, 2011) have been designed for solving convex optimization problems where
functionals have the following structure : L = `+R , where ` is convex, differentiable with
a Lipschitz gradient and R is convex and not differentiable. This is exactly our case. In the
classical setup, it is assumed that R has an explicit (or fast to compute) proximal operator,
defined by:

proxR(X) = arg min
Y

{1

2
‖X − Y ‖2F +R(Y )

}
.

It has been proved by Beck and Teboulle (2009) that the sequence

Xk+1 = proxθR(Xk − θ∇`(Xk))
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converges after O(1/ε) steps to a ball of radius ε of the minimizer of L. The step size θ is
usually taken of the order of magnitude of the inverse of the Lipschitz constant L of ∇`. An
accelerated algorithm (FISTA) that reaches the optimal convergence rate O(1/

√
ε) in the

sense of Nesterov (2005) can be written using an auxiliary sequence, are described by Beck
and Teboulle (2009) and Tseng (2008). The intuition behind the design of these algorithms
relies on the linear expansion of ` around the point Xk and the quadratic term L

2 ‖X−Xk‖2F
that controls the closeness of the next step point Xk+1 from Xk. Namely, we can write

L(X) ≈ `(Xk) +∇`(Xk)
>(X −Xk) +R(X) +

L

2
‖X −Xk‖2F

= L

{
1

2

∥∥∥(X −Xk) +
1

L
∇`(Xk)

∥∥∥2

F
− 1

2L2
‖∇`(Xk)‖2F +

1

L
`(Xk) +

1

L
R(X)

}
= L

{
1

2

∥∥∥X − (Xk −
1

L
∇`(Xk))

∥∥∥2

F
+

1

L
R(X)

}
+ constant.

It follows that the point Xk+1 = prox 1
L
R(Xk − 1

L∇`(Xk)) is a fair approximation of the
minimizer of L around Xk. The detailed analysis and extensions can be found in the paper
by Tseng (2008).

In our case, the presence of the sum of two simple regularizers (`1 and trace norm)
applied to the same object A makes the situation slightly more complicated, since the
proximal operator of this sum is non-explicit. We propose to use an incremental algorithm
to address this complication. Indeed, the proximal operators of each term are available.
First, it is known that the proximal operator of the trace norm is given by the spectral
shrinkage operator: if X = U diag(σ1, · · · , σn)V > is the singular value decomposition of X,
we have

proxτ‖·‖∗(X) = U diag((σi − τ)+)V >.

For the `1-norm, the proximal operator is the entrywise soft-thresholding defined by

proxγ‖·‖1(X) = sgn(X) ◦ (|X| − γ)+,

where we recall that ◦ denotes the entry-wise product. The algorithm converges under very
mild conditions when the step size θ is smaller than 2/L, where L is the operator norm of
the joint quadratic loss.

The algorithm is described below (see Algorithm 1). It is inspired from the method
proposed by Bertsekas (2011) Section 2 and conducts to the minimization our objective
function. The order in which proximal mappings are performed is chosen in order to compute
the SVD on a sparse matrix Z, for computational efficiency. If a sparse output is desired,
an extra soft-thresholding step can be performed at the end. Note that this algorithm
is preferable to the method previously introduced by Richard et al. (2010) as it directly
minimizes L jointly in (A,W ) rather than alternately minimizing in W and A.

4.2 A Generative Model for Graphs with Linearly Autoregressive Features

In order to prepare the setup for empirical evaluation of the algorithm, we now explain how
synthetic data can be generated from the statistical model with linear autoregressive features.
Let V0 ∈ Rn×r be a sparse matrix, V †0 its pseudo-inverse such that V †0 V0 = V >0 V

>†
0 = Ir.
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Algorithm 1 Incremental Proximal-Gradient to Minimize L
Initialize A,Z1, Z2,W
repeat
Compute (GA, GW ) = ∇A,W `(A,W ).
Compute Z = proxθγ‖·‖1(A− θGA)
Compute A = proxθτ‖·‖∗(Z)
Set W = proxθκ‖·‖1(W − θGW )

until convergence
return (A,W ) minimizing L

Fix two sparse matrices K0 ∈ Rr×r and U0 ∈ Rn×r. Now define the sequence of matrices
{At}t≥0 for t = 1, 2, · · · by

Ut = Ut−1K0 +Nt

and
At = UtV

>
0

for a sequence of i.i.d sparse noise matrices {Nt}t≥0, which means that for any pair of indices
(i, j), we have (Nt)i,j = 0 with a high probability. We consider the vectorization operator
A 7→ vec(A) that stacks the columns of A into a single column, and define the linear feature
map

ω(A)
.
= vec(AΨ),

where we set for short Ψ = (V >0 )†, so that V >0 Ψ = Ir. Let us notice that

1. The sequence {ω(At)}t = {vec(Ut)}t follows the linear autoregressive relation

ω(At) = (K>0 ⊗ In)ω(At−1) + vec(Nt),

where vec(Nt) is a zero-mean noise process and ⊗ is the Kronecker product.

2. For any time index t, the matrix At is close to UtV >0 that has rank at most r

3. The matrices At and Ut are both sparse by construction.

4. The dimension of the feature space is d = nr � n2, so W0 = K>0 ⊗ In ∈ Rnr×nr. The
feature map can be written in standard form, see Equation (1), after vectorization by
using the design matrices

Ω(l−1)n+i = ei(Ψ
>)l,·

for 1 ≤ l ≤ r, 1 ≤ i ≤ n, where the n × n design matrix ei(Ψ>)l,· contains a copy of
the l-th column of Ψ at its i-th row and zeros elsewhere. The standard form of the
feature map is then given by the vector

ω(A) = [〈A,Ω(l−1)n+i〉 : 1 ≤ l ≤ r, 1 ≤ i ≤ n]>.

As a consequence, we can compute the variance terms vΩ,∞ and vΩ,op from Equation (7)
as functions of Ψ. By using

ei(Ψ
>)l,·Ψ·,le

>
i = ‖Ψ·,l‖22eie>i and Ψ·,le

>
i ei(Ψ

>)l,· = Ψ·,l(Ψ
>)l,·,
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we get respectively by summation over indices i and l,

r∑
l=1

n∑
i=1

eiΨ
>
l,·Ψl,·e

>
i =

( r∑
l=1

‖Ψ>l,·‖22
)( n∑

i=1

eie
>
i

)
= ‖Ψ‖2F In

and Equation (7) gives us the values of the variance terms

vΩ,op =
1

nr

(∥∥∥ r∑
l=1

Ψ·,l(Ψ·,l)
>
∥∥∥
op
∨ ‖Ψ‖2F

)
and vΩ,∞ =

1

n
‖Ψ‖2∞,2,

where the (∞, 2)-norm is defined by the maximum `2-norm of the columns, ‖X‖∞,2
.
=

maxj ‖X·,j‖2.

4.3 Beyond the First-Order Autoregressive Model

The theory developed in Sections 2 and 4 considers the VAR model of order p = 1 for the
sake of simplicity. However, our approach is flexible, since we may use any other time-series
modelling. To give a simple illustration of this fact, we consider below an extension to the
second-order VAR model. Indeed, we don’t want the VAR order p to be too large, since
the number of parameters scales as d2 × p (forgetting about sparsity assumptions). In our
experiments (see Section 5 below), we consider and compare both first order and second
order VAR models.

Let us define the (T − 1)× d time-series matrices

XT =
[
ω(A2), . . . , ω(AT )

]>
, XT−1 =

[
ω(A1), . . . , ω(AT−1)

]>
,

XT−2 =
[
ω(A0), . . . , ω(AT−2)

]>
.

We consider the following order 2 extension of the features VAR model:

XT = XT−1W1 + XT−2W2 + NT ,

where NT = [N2, . . . , NT ]> denotes the centered noise vector, and W1,W2 are VAR model
parameters. In this case the Lasso objective is

J1(W1,W2) =
1

T

∥∥∥XT −
[
XT−1 XT−2

] [W1

W2

] ∥∥∥2

F
+ κ

∥∥∥ [W1

W2

] ∥∥∥
1

and the Lasso estimator is defined by

(Ŵ1, Ŵ2) = arg min
W1,W2

J1(W1,W2).

In the same spirit as in Section 2.3 we define the objective

L(A,W1,W2) = J1(W1,W2) +
1

d
‖ω(A)> − ω(AT )>W1 − ω(AT−1)>W2‖22 + τ‖A‖∗ + γ‖A‖1.
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The gradients of the quadratic loss are given by

1

2

[
∇W1`
∇W2`

]
=

1

T

[
X>T−1

X>T−2

]{ [
XT−1 XT−2

] [W1

W2

]
−XT

}
+

1

d

[
ω(AT )
ω(AT−1)

]{ [
ω(AT )> ω(AT−1)>

] [W1

W2

]
− ω(A)>

}
,

and
1

2
∇A`> =

1

d

d∑
j=1

{
ω(A)j − (ω(AT )>W1 + ω(AT−1)>W2)j

}
Ωj ,

where Ωj ∈ Rn×n is the j-th design matrix. We implemented the second order autoregressive
model with three different types of penalties. We used:

1. Ridge Regression using κ‖W1‖2F + κ‖W2‖2F as the penalty term

2. the Lasso estimator, that is, the minimizer of J1

3. the estimator suggested in this work.

5. Empirical Evaluation

In Section 5.1 we assess our algorithms on synthetic data, generated as described in Sec-
tion 4.2. In Section 5.2 we use our algorithm for the prediction of sales volume for web-
marketing data

5.1 Experiments with Synthetic Data

Data generator. In our experiments, the noise matrices Mt are built by soft-thresholding
i.i.d. noise N (0, σ2). We took as input T = 10 successive graph snapshots on n = 50 nodes
graphs of rank r = 5. We used d = 10 linear features, and finally the noise level was set to
σ = .5. Since the matrix V0 defining the linear map ω is unknown we consider the feature
map ω(A) = vec(AV ) where ÃT = UΣV > is the SVD of ÃT .
Competitors. The competing methods for our problem, as considered in this paper, are:

• Nearest Neighbors, that scores pairs of nodes with the number of common friends
between them, which is given by A2 where A is the cumulative graph adjacency matrix
ÃT =

∑T
t=0At;

• Static sparse and low-rank, that is the link prediction algorithm suggested by Richard
et al. (2012b), which is obtained by minimizing the objective ‖X − ÃT ‖2F + τ‖X‖∗ +
γ‖X‖1. It is the closest static version of our method;

• Autoregressive low-rank and Static low-rank, that are regularized using only by the
trace-norm (corresponding to γ = 0);

• Katz scores pairs of nodes i and j by the sum of number of paths of length l connecting
i and j, weighted by an exponentially decreasing coefficient βl:

∑∞
l=1 β

l
(
Al
)
i,j
;
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Figure 2: Left: performance of algorithms in terms of Area Under the ROC Curve, average
and confidence intervals over 50 runs. Right: Phase transition diagram.

• Adamic Adar is the score
∑

ν∈N(i)∩N(j) 1/ log(dν), where dν is the degree of the node
ν which is a common neighbor of i and j;

• Preferential attachment only takes popularity into account and scores an edge ij by
the product of their degrees didj . See the papers by Liben-Nowell and Kleinberg
(2007) and Lü and Zhou (2011) for details on Katz, Adamic-Adar and Preferential
Attachment.

We also point out that other methods could possibly be adapted for the problem of link
prediction as stated in the present paper. We mainly refer to the works by Liben-Nowell
and Kleinberg (2007), Lü and Zhou (2011), Sarkar et al. (2012), Huang and Lin (2009),
Nardi and Rinaldo (2011) and Davis et al. (2012). However, they were introduced either
in a different setup, such as the one where multiple observations of a given edge occur, as
described by Liben-Nowell and Kleinberg (2007) and Lü and Zhou (2011), or in the feature
prediction problem of Nardi and Rinaldo (2011) and Davis et al. (2012), or they would
involve tuning complex subroutines, such as the ones of Huang and Lin (2009), leading us
far beyond the scope of the present work.
Performance assessment for validation and test. We compare our methods to standard
baselines in link prediction by comparing predictions Â to the adjacency matrix AT+1 = A,
which is binary, at step T + 1. Since the score matrix Â outputs scalar values, we use a
threshold parameter t to build a link predictor I{Âi,j > t} on the edge (i, j). The quality of
our estimation is then measured by considering all possible values of the threshold parameter
t which leads to the ROC curve as the plot of the proportion of hits (pairs (i, j) such
that Aij · I{Âi,j > t} = 1) versus the proportion of false detection (pairs (i, j) such that
Aij · I{Âi,j > t} = 0). Our criterion is the AUC for this particular definition of the ROC
curve. In this approach of assessment, the size of the coefficients of Â accounts for the
strength of the prediction. We report empirical results averaged over 50 runs with confidence
intervals in Figure 2. The parameters τ and γ are chosen by a 10-fold cross validation for
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Figure 3: Sales volumes of 20 top-sold items weekly sales over the year.

each of the methods separately. The validation set is the upwards sliding time window
when learning from the past. The right-hand side of Figure 2 is a phase transition diagram
showing the impact of both rank and time on the accuracy of estimation of the adjacency
matrix. The results are clearly better as we gain historical depth and the lower the rank of
the adjacency matrix.
Comparison with the baselines. This experiment shows the benefits of using a temporal
approach when one can handle the feature extraction task. The left-hand plot shows that if
few snapshots are available (T ≤ 4 in these experiments), then static approaches are to be
preferred, whereas feature autoregressive approaches outperform them as soon as a sufficient
number T of graph snapshots are available (see the Phase transition diagram from Figure 2).
The decreasing performance of static algorithms can be explained by the fact that they use
as input a mixture of different graphs observed at different time steps, whereas they require
a single simple graph as input.

5.2 Experiments with Real Data: Predicting Sales Volumes

Motivations. Predicting the popularity of products is of major interest for marketers and
product managers as it allows to anticipate or even create trends that diffuse in networks.
A useful observation when dealing with sales volumes is that when modeling purchases by
edges in the bipartite graph of users and products, the sales volumes can be seen as the
degrees of the product nodes. We use two VAR models of order 1 and 2, as described in
Section 4.3, in order to show the flexibility of our approach. We consider the linear feature
map ω(A) = A>1 that computes the columns degree vector. The dimension of the feature
space d equals the number of columns of the matrix in this case. If the input matrix At is
the users × products matrix of sales at time period t then the degree of each product equals
the sales volume of the product during that period, and it can be used as a fair popularity
indicator for the product. It is in addition common to consider a regular evolution of such
features, see the paper by Rogers (1962). Note that the suggested approach is valid for a
similar activity indicator in any other network, such as users activity on a social network
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AR(1) AR(2)
Error Ridge Lasso Our Ridge Lasso Our
T = 10 0.9524 1.1344 0.9730 1.0037 1.0110 0.9416
T = 15 0.6394 0.5389 0.5336 0.6010 0.5304 0.5401
T = 20 0.3419 0.3111 0.4878 0.3310 0.2972 0.3086
T = 25 0.3777 0.6238 0.5689 0.3356 0.3286 0.3279

Table 2: Relative quadratic error of the prediction of sales volume for three regularized VAR
models: one based on ridge regression penalty, one base don LASSO penalty, and
one based on our strategy with both sparse and low-rank regularizers.

or protein activity on a protein-protein interaction network. A last remark is that the prior
knowledge in the case of e-commerce data suggests that groups of highly related items exist,
which makes the adjacency matrix low-rank in addition to be sparse. In fact the adjacency
matrix of a fully clustered graph would be block-diagonal, and we expect the matrix of
interest to be close to such a matrix.
Protocol and description of data sets. We performed our experiments on the sales volumes
time series of the n = 200 top sold books over T = 25 consecutive weeks excluding the
Christmas period in 2009 of 31972 users.1 The weekly sales of each book corresponds to the
degree of the corresponding node. The books catalogue contains several book categories,
which motivates the low-rank matrix assumption. In Figure 3 we plot the time series of the
top 20 items from the catalogue. From this observation, the stationary assumption seems
plausible. More precisely, we observed that the time window allowing accurate predictions
(a window in which the data is stationary) is, among the range of values we used in our
experiments, equal to 20 weeks.
Comparison with other methods and performance metric. We compare estimators of the
degrees based on Ridge and Lasso penalization using the objective J1 only, see Equation (2),
with our procedure based on joint minimization of (3). For choosing the tuning parameters
κ, τ, γ we use the data collected from the same market a year before the test set to form the
training and validation sets. For testing the quality of our predictor, we used the parameters
performing the best predictions over the validation set. As data are abundant we can collect
past data easily for this step. On the other hand, as seasonality effects may harm the
method if cross-validation is performed on data taken from a different period of the year,
this is the best way to proceed for splitting the data onto training validation and test sets.
We evaluated the results in terms of relative quadratic error

Relative quadratic error =
‖ω(Â)− ω(AT+1)‖2
‖ω(AT+1)‖2

over the prediction of the sales volumes. The results are reported in Table 2.
Comments on the results. From this experiment we conclude the following. The order of
the VAR is an important factor. We provided theoretical results for the VAR of order 1,

1. The data was provided by the company 1000mercis.

582



Link Prediction in Graphs with Autoregressive Features

but fitting a higher order VAR in practice may result in better performance. This is also a
parameter that should ideally be chosen using the past data in a cross-validation process.
Moreover, the size of the time window T should be chosen according to the data. A small
value of T leads to poor result due to absence of enough signal. As opposite, a too large value
of T harms the quality of prediction due to the nonstationary trends in too large windows
of time. Note that in our synthetic data experiments only the first effect was observed: the
performance is increasing as the time parameter T increases. This is due to the stationarity
in synthetically generated data.

5.3 Discussion

Trading convexity for scalability. In the numerical experiments, for better scalability, one
can replace the penalty on A by a sparsity inducing penalty on the factors of A. Namely if
A = UV > is a factorization of A, one can replace the term τ‖A‖∗ + γ‖A‖1 by λ‖U‖1‖V ‖1.
This penalty leads to a non-convex problem, nevertheless it allows better scalability than
the convex penalty both in terms of memory requirement and computational complexity,
when evaluating the proximal. Another practical advantage of this change of variable is that
we need to tune only one real parameter λ instead of two (γ and τ). The maximum rank of
A = UV > (number of columns of U and V ) replaces the low-rank inducing effect of τ .
Generalization of the regression method. In this paper, we consider only an autoregressive
process of order 1 and 2. For better prediction accuracy, one could consider more general
models, such as vector ARMA models, and use model-selection techniques for the choice of
the orders of the model. A general modelling based on state-space model could be developed
as well.
Choice of the feature map ω. In this work, we have used the projection onto the vector space
of the top-r singular vectors of the cumulative adjacency matrix as the linear map ω, and this
choice has shown empirical superiority to other choices. The question of choosing the best
measurement / representation to summarize graph information as in compress sensing seems
to have both theoretical and application potential. In our work the map ω was applied to
a single matrix At. One can consider a mapping taking as input several successive matrices
At, At+1, At+2. This idea has been used by Zhang et al. (2011) in order to distinguish the
effect of new and returning customers in a marketplace. Moreover, a deeper understanding of
the connections of our problem with compressed sensing, for the construction and theoretical
validation of the feature map, is an important point that needs several developments. An
extension to nonlinear graph features such as the distribution of triangles or other nonlinear
patterns of interest is also to be considered.

6. Conclusion

In this work, we studied the link prediction problem under structural hypotheses on the
graph generation process (sparse low-rank adjacency and autoregressive features). Our
work establishes a connection between the link prediction problem and compressed sens-
ing through the use of common tools in the model and in the theoretical analysis. Empirical
experiments show the benefit of adopting such a point of view. In fact, compared to the
existing heuristics, this approach offers a principled search method in the hypothesis space
through the regularization and convex optimization formulation. The flexibility of our ap-
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proach and its connections with several active areas of research makes it very attractive and
reveals several interesting directions of investigation for future work.

Appendix A. Proofs of the Main Results

From now on, we use the notation ‖(A, a)‖2F = ‖A‖2F + ‖a‖22 and 〈(A, a), (B, b)〉 = 〈A,B〉+
〈a, b〉 for any A,B ∈ RT×d and a, b ∈ Rd.

Let us introduce the linear mapping Φ : Rn×n × Rd×d → RT×d × Rd given by

Φ(A,W ) =
( 1√

T
XT−1W,

1√
d

(ω(A)−W>ω(AT ))
)
.

Using this mapping, the objective (3) can be written in the following reduced way:

L(A,W ) =
∥∥∥( 1√

T
XT , 0

)
− Φ(A,W )

∥∥∥2

F
+ γ‖A‖1 + τ‖A‖∗ + κ‖W‖1.

Recalling that the error writes, for any A and W :

E(A,W )2 =
1

d
‖(W −W0)>ω(AT )− ω(A−AT+1)‖22 +

1

T
‖XT−1(W −W0)‖2F ,

we have
E(A,W )2 =

∥∥Φ(A−AT+1,W −W0)‖2F .
Let us introduce also the empirical risk

Rn(A,W ) =
∥∥∥( 1√

T
XT , 0

)
− Φ(A,W )

∥∥∥2

F
.

The proofs of Theorem 1 and 2 are based on tools developed by Koltchinskii et al. (2011)
and Bickel et al. (2009). However, the context considered here is very different from the
setting considered in these papers, so our proofs require a different scheme.

A.1 Proof of Theorem 1

First, note that

Rn(Â, Ŵ )−Rn(A,W )

= ‖Φ(Â, Ŵ )‖2F − ‖Φ(A,W )‖2F − 2〈( 1√
T
XT , 0),Φ(Â−A, Ŵ −W )〉.

Since

‖Φ(Â, Ŵ )‖2F − ‖Φ(A,W )‖2F
= E(Â, Ŵ )2 − E(A,W )2 + 2〈Φ(Â−A, Ŵ −W ),Φ(AT+1,W0)〉,

we have

Rn(Â, Ŵ )−Rn(A,W )

= E(Â, Ŵ )2 − E(A,W )2 + 2〈Φ(Â−A, Ŵ −W ),Φ(AT+1,W0)− (
1√
T
XT , 0)〉

= E(Â, Ŵ )2 − E(A,W )2 + 2〈Φ(Â−A, Ŵ −W ), (− 1√
T
NT ,

1√
d
NT+1)〉.

The next Lemma will come in handy several times in the proofs.
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Lemma 5 For any A ∈ Rn×n and W ∈ Rd×d we have

〈( 1√
T
NT ,−

1√
d
NT+1),Φ(A,W )〉 = 〈(M,Ξ), (A,W )〉 = 〈W,Ξ〉+ 〈A,M〉.

This Lemma follows from a direct computation, and the proof is thus omitted. This Lemma
entails, together with (4), that

E(Â, Ŵ )2 ≤ E(A,W )2 + 2〈Ŵ −W,Ξ〉+ 2〈Â−A,M〉

+ τ(‖A‖∗ − ‖Â‖∗) + γ(‖A‖1 − ‖Â‖1) + κ(‖W‖1 − ‖Ŵ‖1).

Now, using Hölder’s inequality and the triangle inequality, and introducing α ∈ (0, 1), we
obtain

E(Â, Ŵ )2 ≤ E(A,W )2 +
(

2α‖M‖op − τ
)
‖Â‖∗ +

(
2α‖M‖op + τ

)
‖A‖∗

+
(

2(1− α)‖M‖∞ − γ
)
‖Â‖1 +

(
2(1− α)‖M‖∞ + γ

)
‖A‖1

+
(

2‖Ξ‖∞ − κ
)
‖Ŵ‖1 +

(
2‖Ξ‖∞ + κ

)
‖W‖1,

which concludes the proof of Theorem 1, using (5). �

A.2 Proof of Theorem 2

Let A ∈ Rn×n and W ∈ Rd×d be fixed, and let A = U diag(σ1, . . . , σr)V
> be the SVD

of A. Recalling that ◦ is the entry-wise product, we have A = ΘA ◦ |A| + Θ⊥A ◦ A, where
ΘA ∈ {0,±1}n×n is the entry-wise sign matrix of A and Θ⊥A ∈ {0, 1}n×n is the orthogonal
sparsity pattern of A.

The definition (4) of (Â, Ŵ ) is equivalent to the fact that one can find Ĝ ∈ ∂L(Â, Ŵ )
(an element of the subgradient of L at (Â, Ŵ )) that belongs to the normal cone of A×W
at (Â, Ŵ ). This means that for such a Ĝ, and any A ∈ A and W ∈ W, we have

〈Ĝ, (Â−A, Ŵ −W )〉 ≤ 0. (12)

Any subgradient of the function g(A) = τ‖A‖∗ + γ‖A‖1 writes

Z = τZ∗ + γZ1 = τ
(
UV > + P⊥A (G∗)

)
+ γ
(

ΘA +G1 ◦Θ⊥A

)
for some ‖G∗‖op ≤ 1 and ‖G1‖∞ ≤ 1 (see for instance the paper by Lewis (1995)). So, if
Ẑ ∈ ∂g(Â), we have, by monotonicity of the sub-differential, that for any Z ∈ ∂g(A)

〈Ẑ, Â−A〉 = 〈Ẑ − Z, Â−A〉+ 〈Z, Â−A〉 ≥ 〈Z, Â−A〉,

and, by duality, we can find Z such that

〈Z, Â−A〉 = τ〈UV >, Â−A〉+ τ‖P⊥A (Â)‖∗ + γ〈ΘA, Â−A〉+ γ‖Θ⊥A ◦ Â‖1.
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By using the same argument with the function W 7→ ‖W‖1 and by computing the gradient
of the empirical risk (A,W ) 7→ Rn(A,W ), Equation (12) entails that

2〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W )〉

≤ 2〈( 1√
T
NT ,−

1√
d
NT+1),Φ(Â−A, Ŵ −W )〉 − τ〈UV >, Â−A〉 − τ‖P⊥A (Â)‖∗

− γ〈ΘA, Â−A〉 − γ‖Θ⊥A ◦ Â‖1 − κ〈ΘW , Ŵ −W 〉 − κ‖Θ⊥W ◦ Ŵ‖1.
(13)

Using Pythagora’s theorem, we have

2〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W )〉

= ‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22.
(14)

It shows that if 〈Φ(Â− AT+1,W −W0),Φ(Â− A, Ŵ −W )〉 ≤ 0, then Theorem 2 trivially
holds. Let us assume that

〈Φ(Â−AT+1,W −W0),Φ(Â−A, Ŵ −W )〉 > 0. (15)

Using Hölder’s inequality, we obtain

|〈UV >, Â−A〉| = |〈UV >,PA(Â−A)〉| ≤ ‖UV >‖op‖PA(Â−A)‖∗ = ‖PA(Â−A)‖∗,
|〈ΘA, Â−A〉| = |〈ΘA,ΘA ◦ (Â−A)〉| ≤ ‖ΘA‖∞‖ΘA ◦ (Â−A)‖1 = ‖ΘA ◦ (Â−A)‖1,

and the same is done for |〈ΘW , Ŵ −W 〉| ≤ ‖ΘW ◦ (Ŵ −W )‖1. So, when (15) holds, we
obtain by rearranging the terms of (13):

τ‖P⊥A (Â−A)‖∗ + γ‖Θ⊥A ◦ (Â−A)‖1 + κ‖Θ⊥W ◦ (Ŵ −W )‖1
≤ τ‖PA(Â−A)‖∗ + γ‖ΘA ◦ (Â−A)‖1 + κ‖ΘW ◦ (Ŵ −W )‖1

+ 2〈( 1√
T
NT ,−

1√
d
NT+1),Φ(Â−A, Ŵ −W )〉.

(16)

Using Lemma 5, together with Hölder’s inequality, we have for any α ∈ (0, 1):

〈( 1√
T
NT ,−

1√
d
NT+1),Φ(Â−A, Ŵ −W )〉 = 〈M, Â−A〉+ 〈Ξ, Ŵ −W 〉

≤ α‖M‖op‖PA(Â−A)‖∗ + α‖M‖op‖P⊥A (Â−A)‖∗
+ (1− α)‖M‖∞‖ΘA ◦ (Â−A)‖1 + (1− α)‖M‖∞‖Θ⊥A ◦ (Â−A)‖1
+ ‖Ξ‖∞(‖ΘW ◦ (Ŵ −W )‖1 + ‖Θ⊥W ◦ (Ŵ −W )‖1) .

(17)

Now, using (16) together with (17), we obtain(
τ − 2α‖M‖op

)
‖P⊥A (Â−A)‖∗ +

(
γ − 2(1− α)‖M‖∞

)
‖Θ⊥A ◦ (Â−A)‖1

+
(
κ− 2‖Ξ‖∞

)
‖Θ⊥W ◦ (Ŵ −W )‖1

≤
(
τ + 2α‖M‖op

)
‖PA(Â−A)‖∗ +

(
γ + 2(1− α)‖M‖∞

)
‖ΘA ◦ (Â−A)‖1

+
(
κ+ 2‖Ξ‖∞

)
‖ΘW ◦ (Ŵ −W )‖1
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which proves, using (6), that

τ‖P⊥A (Â−A)‖∗ + γ‖Θ⊥A ◦ (Â−A)‖1 ≤ 5τ‖PA(Â−A)‖∗ + 5γ‖ΘA ◦ (Â−A)‖1.

This proves that Â − A ∈ C2(A, 5, γ/τ). In the same way, using (16) with A = Â together
with (17), we obtain that Ŵ −W ∈ C1(W, 5).

Now, using together (13), (14) and (17) , and the fact that the Cauchy-Schwarz inequal-
ity entails

‖PA(Â−A)‖∗ ≤
√

rankA‖PA(Â−A)‖F , |〈UV >, Â−A〉| ≤
√

rankA‖PA(Â−A)‖F ,

‖ΘA ◦ (Â−A)‖1 ≤
√
‖A‖0‖ΘA ◦ (Â−A)‖F , |〈ΘA, Â−A〉| ≤

√
‖A‖0‖ΘA ◦ (Â−A)‖F .

and similarly for Ŵ −W , we arrive at

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22
≤
(
2α‖M‖op + τ

)√
rankA‖PA(Â−A)‖F +

(
2α‖M‖op − τ

)
‖P⊥A (Â−A)‖∗

+
(
2α‖M‖∞ + γ

)√
‖A‖0‖ΘA ◦ (Â−A)‖F +

(
2α‖M‖∞ − γ

)
‖Θ⊥A ◦ (Â−A)‖1

+
(
2α‖Ξ‖∞ + κ

)√
‖W‖0‖ΘW ◦ (Ŵ −W )‖F +

(
2α‖Ξ‖∞ − κ

)
‖Θ⊥W ◦ (Ŵ −W )‖1,

which leads, using (6), to

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22

≤ 5τ

3

√
rankA‖PA(Â−A)‖F +

5γ

3

√
‖A‖0‖ΘA ◦ (Â−A)‖F +

5κ

3

√
‖W‖0‖ΘW ◦ (Ŵ −W )‖F .

Since Â − A ∈ C2(A, 5, γ/τ) and Ŵ −W ∈ C1(W, 5), we obtain using Assumption 2 and
ab ≤ (a2 + b2)/2:

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22

≤ ‖Φ(A−AT+1,W −W0)‖22 +
25

18
µ2(A,W )2

(
rankAτ2 + ‖A‖0γ2)

+
25

36
µ1(W )2‖W‖0κ2 + ‖Φ(Â−A, Ŵ −W )‖22,

which concludes the proof of Theorem 2. �

A.3 Proof of Corollary 4

For the proof of (9), we simply use the fact that 1
T ‖XT−1(Ŵ −W0)‖2F ≤ E(Â, Ŵ )2 and use

Theorem 3. Then we take W = W0 in the infimum over A,W .
For (10), we use the fact that since Ŵ − W0 ∈ C1(W0, 5), we have (see the Proof of

Theorem 2),

‖Ŵ −W0‖1 ≤ 6
√
‖W0‖0‖ΘW ◦ (Ŵ −W0)‖F

≤ 6
√
‖W0‖0‖XT−1(Ŵ −W0)‖F /

√
T

≤ 6
√
‖W0‖0E(Â, Ŵ ),

and then use again Theorem 3. The proof of (11) follows exactly the same scheme. �
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A.4 Concentration Inequalities for the Noise Processes

The control of the noise terms M and Ξ is based on recent results on concentration in-
equalities for random matrices, developed by Tropp (2012). Moreover, the assumption on
the dynamics of the features’ noise vector {Nt}t≥0 is quite general, since we only assumed
that this process is a martingale increment. Therefore, our control of the noise Ξ rely in
particular on martingale theory.

Proposition 6 Under Assumption 3, the following inequalities hold for any x > 0. We
have ∥∥∥1

d

d∑
j=1

(NT+1)jΩj

∥∥∥
op
≤ σvΩ,op

√
2(x+ log(2n))

d
(18)

with a probability larger than 1− e−x. We have∥∥∥1

d

d∑
j=1

(NT+1)jΩj

∥∥∥
∞
≤ σvΩ,∞

√
2(x+ 2 log n)

d
(19)

with a probability larger than 1− 2e−x, and finally∥∥∥ 1

T

T∑
t=1

ω(At−1)N>t +
1

d
ω(AT )N>T+1

∥∥∥
∞
≤ σσω

√
2e(x+ 2 log d+ `T )

( 1√
T

+
1

d

)
(20)

with a probability larger than 1− 15e−x, where we recall that `T is given by (8).

Proof For the proofs of Inequalities (18) and (19), we use the fact that (NT+1)1, . . . , (NT+1)d
are independent (scalar) sub-gaussian random variables.

From Assumption 3, we have for any n × n deterministic self-adjoint matrices Xj that
E[exp(λ(NT+1)jXj)] � exp(σ2λ2X2

j /2), where � stands for the semidefinite order on self-
adjoint matrices. Using Corollary 3.7 by Tropp (2012), this leads for any x > 0 to

P
[
λmax

( d∑
j=1

(NT+1)jXj

)
≥ x

]
≤ n exp

(
− x2

2v2

)
, where v2 = σ2

∥∥∥ d∑
j=1

X2
j

∥∥∥
op
. (21)

Then, following Tropp (2012), we consider the dilation operator ∆ : Rn×n → R2n×2n given
by

∆(Ω) =

(
0 Ω

Ω∗ 0

)
.

We have∥∥∥ d∑
j=1

(NT+1)jΩj

∥∥∥
op

= λmax

(
∆
( d∑
j=1

(NT+1)jΩj

))
= λmax

( d∑
j=1

(NT+1)j∆(Ωj)
)

and an easy computation gives∥∥∥ d∑
j=1

∆(Ωj)
2
∥∥∥

op
=
∥∥∥ d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥ d∑
j=1

ΩjΩ
>
j

∥∥∥
op
.
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So, using (21) with the self-adjoint Xj = ∆(Ωj) gives

P
[∥∥∥ d∑

j=1

(NT+1)jΩj

∥∥∥
op
≥ x

]
≤ 2n exp

(
− x2

2v2

)
where v2 = σ2

∥∥∥ d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥ d∑
j=1

ΩjΩ
>
j

∥∥∥
op
,

which leads easily to (18).
Inequality (19) comes from the following standard bound on the sum of independent

sub-gaussian random variables:

P
[∣∣∣1
d

d∑
j=1

(NT+1)j(Ωj)k,l

∣∣∣ ≥ x] ≤ 2 exp
(
− x2

2σ2(Ωj)2
k,l

)

together with an union bound on 1 ≤ k, l ≤ n.
Inequality (20) is based on a classical martingale exponential argument together with a

peeling argument. We denote by ωj(At) the coordinates of ω(At) ∈ Rd and by Nt,k those of
Nt, so that ( T∑

t=1

ω(At−1)N>t

)
j,k

=

T∑
t=1

ωj(At−1)Nt,k.

We fix j, k and denote for short εt = Nt,k and xt = ωj(At). Since E[exp(λεt)|Ft−1] ≤ eσ2λ2/2

for any λ ∈ R, we obtain by a recursive conditioning with respect to FT−1, FT−2, . . . ,F0,
that

E
[

exp
(
θ

T∑
t=1

εtxt−1 −
σ2θ2

2

T∑
t=1

x2
t−1

)]
≤ 1.

Hence, using Markov’s inequality, we obtain for any v > 0:

P
[ T∑
t=1

εtxt−1 ≥ x,
T∑
t=1

x2
t−1 ≤ v

]
≤ inf

θ>0
exp(−θx+ σ2θ2v/2) = exp

(
− x2

2σ2v

)
,

that we rewrite in the following way:

P
[ T∑
t=1

εtxt−1 ≥ σ
√

2vx,
T∑
t=1

x2
t−1 ≤ v

]
≤ e−x.

Let us denote for short VT =
∑T

t=1 x
2
t−1 and ST =

∑T
t=1 εtxt−1. We want to replace v by

VT from the previous deviation inequality, and to remove the event {VT ≤ v}. To do so, we
use a peeling argument. We take v = T and introduce vk = vek so that the event {VT > v}
is decomposed into the union of the disjoint sets {vk < VT ≤ vk+1}. We introduce also

`T = 2 log log
(∑T

t=1 x
2
t−1

T ∨ T∑T
t=1 x

2
t−1

∨ e
)
.
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This leads to

P
[
ST ≥ σ

√
2eVT (x+ `T ), VT > v

]
=
∑
k≥0

P
[
ST ≥ σ

√
2eVT (x+ `T ), vk < VT ≤ vk+1

]
=
∑
k≥0

P
[
ST ≥ σ

√
2vk+1(x+ 2 log log(ek ∨ e)), vk < VT ≤ vk+1

]
≤ e−x(1 +

∑
k≥1

k−2) ≤ 3.47e−x.

On {VT ≤ v} the proof is the same: we decompose onto the disjoint sets {vk+1 < VT ≤ vk}
where this time vk = ve−k, and we arrive at

P
[
ST ≥ σ

√
2eVT (x+ `T ), VT ≤ v

]
≤ 3.47e−x.

This leads to

P
[ T∑
t=1

ωj(At−1)Nt,k ≥ σ
(

2e
T∑
t=1

ωj(At−1)2(x+ `T,j)
)1/2

]
≤ 7e−x

for any 1 ≤ j, k ≤ d, where we introduced

`T,j = 2 log log
(∑T

t=1 ωj(At−1)2

T
∨ T∑T

t=1 ωj(At−1)2
∨ e
)
.

The conclusion follows from an union bound on 1 ≤ j, k ≤ d, and from the use of the same
argument for the term ω(AT )N>T+1. This concludes the proof of Proposition 6.
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