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Abstract

Identification of latent variables that govern a problem and the relationships among them,
given measurements in the observed world, are important for causal discovery. This iden-
tification can be accomplished by analyzing the constraints imposed by the latents in the
measurements. We introduce the concept of pairwise cluster comparison (PCC) to identify
causal relationships from clusters of data points and provide a two-stage algorithm called
learning PCC (LPCC) that learns a latent variable model (LVM) using PCC. First, LPCC
learns exogenous latents and latent colliders, as well as their observed descendants, by
using pairwise comparisons between data clusters in the measurement space that may
explain latent causes. Since in this first stage LPCC cannot distinguish endogenous la-
tent non-colliders from their exogenous ancestors, a second stage is needed to extract
the former, with their observed children, from the latter. If the true graph has no serial
connections, LPCC returns the true graph, and if the true graph has a serial connection,
LPCC returns a pattern of the true graph. LPCC’s most important advantage is that it is
not limited to linear or latent-tree models and makes only mild assumptions about the
distribution. The paper is divided in two parts: Part I (this paper) provides the necessary
preliminaries, theoretical foundation to PCC, and an overview of LPCC; Part II formally
introduces the LPCC algorithm and experimentally evaluates its merit in different syn-
thetic and real domains. The code for the LPCC algorithm and data sets used in the
experiments reported in Part II are available online.

Keywords: causal discovery, clustering, learning latent variable model, multiple indica-
tor model, pure measurement model

1. Introduction

Latent (unmeasured, hidden, unrecorded) variables, as opposed to observed (measured,
manifest, recorded) variables, cannot usually be observed directly in a domain but only
inferred from other observed variables or indicators (Spirtes, 2013). Concepts such as
“quality of life,” “economic stability,” “gravitational fields,” and “psychological stress”
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play a key role in scientific theories and models, and yet such entities are latent (Klee,
1997).

Sometimes, latent variables correspond to aspects of physical reality that could, in
principle, be measured but may not be for practical reasons, for example, “quarks”. In
this situation, the term hidden variables is commonly used, reflecting the fact that the
variables are “really there”, but hidden. On the other hand, latent variables may not be
physically real but instead correspond to abstract concepts such as “psychological stress”
or “mental states”. The terms hypothetical variables or hypothetical constructs may be
used in these situations.

Latent variable models (LVMs) represent latent variables and the causal relationships
among them to explain observed variables that have been measured in the domain. These
models are common and essential in diverse areas, such as in economics, social sciences,
psychology, natural language processing, and machine learning. Thus, they have recently
become the focus of an increasing number of studies. LVMs reduce dimensionality by
aggregating (many) observed variables into a few latent variables, each of which represents
a “concept” explaining some aspects of the domain that can be interpreted from the data.
Latent variable modeling is a century-old enterprise in statistics. It originated with the
work of Spearman (1904), who developed factor analytic models for continuous variables
in the context of intelligence testing.

Learning an LVM exploits values of the measured variables as manifested in the data
to make an inference about the causal relationships among the latent variables and to pre-
dict the value of these variables. Statistical methods for learning an LVM, such as factor
analysis, are most commonly used to reveal the existence and influence of latent variables.
Although these methods effectively reduce dimensionality and may fit the data reasonably
well, the resulting models might not have any correspondence to real causal mechanisms
(Silva et al., 2006). On the other hand, the focus of learning Bayesian networks (BNs) is on
causal relations among observed variables, whereas the detection of latent variables and
the interrelations among themselves and with the observed variables has received little at-
tention. Learning an LVM using Inductive Causation* (IC*) (Pearl, 2000; Pearl and Verma,
1991) and Fast Causal Inference (FCI) (Spirtes et al., 2000) returns partial ancestral graphs,
which indicate for each link whether it is a (potential) manifestation of a hidden common
cause for the two linked variables. The structural EM algorithm (Friedman, 1998) learns
a structure using a fixed set of previously given latents. By searching for “structural sig-
natures” of latents, the FindHidden algorithm (Elidan et al., 2000) detects substructures
that suggest the presence of latents in the form of dense subnetworks. Elidan and Fried-
man (2001) give a fast algorithm for determining the cardinality – the number of possible
states – of latent variables introduced this way. However, Silva et al. (2006) suspected that
FindHidden cannot always find a pure measurement sub-model,1 which is a flaw in causal
analysis. Also, the recovery of latent trees of binary and Gaussian variables has been sug-
gested (Pearl, 2000). Hierarchical latent class (HLC) models, which are rooted trees where
the leaf nodes are observed while all other nodes are latent, were proposed for the clus-
tering of categorical data (Zhang, 2004). Two greedy algorithms are suggested (Harmeling

1A pure measurement model contains all graph variables and all and only edges directed from latent
variables to observed variables, where each observed variable has only one latent parent and no observed
parent.
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and Williams, 2011) to expedite learning of both the structure of a binary HLC and the
cardinalities of the latents. The BIN-G algorithm determines both the structure of the tree
and the cardinality of the latent variables in a bottom-up fashion. The BIN-A algorithm
first determines the tree structure using agglomerative hierarchical clustering and then
determines the cardinality of the latent variables in the same manner as the BIN-G algo-
rithm. Latent-tree models are also used to speed approximate inference in BN, trading the
approximation accuracy with inferential complexity (Wang et al., 2008).

Models in which multiple latents may have multiple indicators (observed children),
also known as multiple indicator models (MIMs) (Bartholomew et al., 2002; Spirtes, 2013),
are a very important subclass of structural equation models (SEM), which are widely used,
together with BNs, in applied and social sciences to analyze causal relations (Pearl, 2000;
Shimizu et al., 2011). For these models, and others that are not tree-constrained, most
of the mentioned algorithms may lead to unsatisfactory results. This is one of the most
difficult problems in machine learning and statistics since, in general, a joint distribution
can be generated by an infinite number of different LVMs. However, an algorithm that
fills the gap between learning latent-tree models and learning MIMs is BuildPureClusters
(BPC; Silva et al., 2006). BPC searches for the set (an equivalence class) of MIMs that best
matches the set of vanishing tetrad differences (Scheines et al., 1995), but is limited to
linear models (Spirtes, 2013).

In this study, we make another attempt in this direction and target the goal of Silva
et al. (2006), but concentrate on the discrete case, rather than on the continuous case dealt
with BPC. Towards this mission, we borrow ideas and principles of clustering and unsu-
pervised learning. Interestingly, the same difficulty in learning MIMs is also faced in the
domain of unsupervised learning that confronts similar questions such as: (1) How many
clusters are there in the observed data? and (2) Which classes do the clusters really repre-
sent? Due to this similarity, our study suggests linking the two domains – learning a causal
graphical model with latent variables and clustering analysis. We propose a concept and
an algorithm that combine learning causal graphical models with clustering. According to
the pairwise cluster comparison (PCC) concept, we compare pairwise clusters of data points
representing instantiations of the observed variables to identify those pairs of clusters that
exhibit major changes in the observed variables due to changes in their ancestor latent
variables. Changes in a latent variable that are manifested in changes in the observed vari-
ables reveal this latent variable and its causal paths of influence in the domain. Using the
learning PCC (LPCC) algorithm, we learn an LVM. We identify PCCs and use them to learn
latent variables – exogenous and endogenous (the latter may be either colliders or non-
colliders) – and their causal interrelationships as well as their children (latent variables
and observed variables) and causal paths from latent variables to observed variables.

This paper is the first of two parts that introduce, describe, and evaluate LPCC. In this
paper (Part I), we provide its foundations and theoretical infrastructure, from preliminar-
ies to a broad overview of the PCC concept and LPCC algorithm. In the second paper (Part
II), we formally introduce the two-stage LPCC algorithm, which implements the PCC con-
cept, and evaluate LPCC, in comparison to state-of-the-art algorithms, using simulated
and real-world data sets. The outline of the two papers is as follows:
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Part I:

• Section 2: Preliminaries to LVM learning describes the assumptions of our ap-
proach and basic definitions of essential concepts of graphical models and SEM;

• Section 3: Preliminaries to LPCC formalizes our ideas and builds the theoretical
basis for LPCC;

• Section 4: Overview of LPCC starts with an illustrative example and a broad de-
scription of the LPCC algorithm and then describes each step of LPCC in detail;

• Section 5: Discussion and future research summarizes and discusses the contribu-
tion of LPCC and suggests several new avenues of research;

• Appendix A provides proofs to all propositions, lemmas, and theorems for which
the proof is either too detailed, lengthy, or impedes the flow of reading. All other
proofs are given in the body of the paper;

• Appendix B sets a method to calculate a threshold in support of Section 4.4; and

• Appendix C supplies a detailed list of assumptions LPCC makes and the meaning
of their violation.

Part II:

• Section 2: The LPCC algorithm introduces and formally describes a two-stage algo-
rithm that implements the PCC concept;

• Section 3: LPCC evaluation evaluates LPCC, in comparison to state-of-the-art algo-
rithms, using simulated and real-world data sets;

• Section 4: Related works compares LPCC to state-of-the-art LVM learning algo-
rithms;

• Section 5: Discussion summarizes the theoretical advantages (from Part I) and the
practical benefits (from this part) of using LPCC;

• Appendix A brings assumptions, definitions, propositions, and theorems from Part
I that are essential to Part II;

• Appendix B supplies additional results for the experiments with the simulated data
sets; and

• Appendix C provides PCC analysis for two example databases.
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2. Preliminaries to LVM learning

The goal of our study is to reconstruct an LVM from i.i.d. data sampled from the observed
variables in an unknown model. To accomplish this, we propose learning from pairwise
cluster comparison using LPCC. First, we present the assumptions that LPCC makes and
the constraints it applies on LVM and compare them to those required by other state-of-
the-art methods.

Assumption 1 The underlying model is a Bayesian network, BN=<G,Θ>, encoding a discrete
joint probability distribution P for a set of random variables V=L∪O, where G=<V,E> is a
directed acyclic graph (DAG) whose nodes V correspond to latents L and observed variables O,
and E is the set of edges between nodes in G. Θ is the set of parameters, i.e., the conditional
probabilities of variables in V given their parents.

Assumption 2 No observed variable in O is an ancestor of any latent variable in L. This prop-
erty is called the measurement assumption (Spirtes et al., 2000).

Before we present additional assumptions about the learned LVM, we need Definitions
1–4 (following Silva et al., 2006), which are specific to LVM:

Definition 1 A model satisfying Assumptions 1 and 2 is a latent variable model.

Definition 2 Given an LVM G with a variable set V, the subgraph containing all variables in
V and all and only those edges directed into variables in O is called the measurement model of
G.

Definition 3 Given an LVM G, the subgraph containing all and only G’s latent nodes and their
respective edges is called the structural model of G.

When each model variable is a linear function of its parents in the graph plus an ad-
ditive error term of positive finite variance, the latent variable model is linear; this is also
known as SEM. Great interest has been shown in linear LVMs and their applications in
social science, econometrics, and psychometrics (Bollen, 1989), as well as in their learning
(Silva et al., 2006). The motivation to use linear models usually comes from social and
related sciences. For example,2 researchers give subjects a questionnaire with questions
like: “On a scale of 1 to 5, how much do you agree with the statement: ‘I feel sad every
day’.” The answer is measured by an observed variable, and the linearity of the influence
of an unknown cause (say depression in this case) on the answer (value) to the question
is assumed. By using other questions, which researchers assume also measure depression,
they expect to discover a latent depression variable that is a parent of several observed
variables (each measuring a question), together indicating depression. It is common to re-
quire several questions/observed variables for the identification of each latent variable and
to consider the information revealed through only a single question as noise, which cannot
guarantee the identification of the latent. Researchers expect that other questions will be
clustered by another latent variable that measures another aspect in the domain, and thus

2P. Spirtes, private communication.
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questions of one cluster will be independent of questions of another cluster conditioned
on the latent variables. They also attribute unconditional independence that is detected
between observed variables of different clusters to errors in the learning algorithm.

Adding the linearity assumption to Assumptions 1 and 2 allows for the transforma-
tion of Definition 1 into that of a linear LVM. Since assuming linearity means linearity is
assumed in the measurement model, a key to learning a linear LVM is learning the mea-
surement model and only then the structural model. In learning the measurement model
of MIM, the linearity assumption entails constraints on the covariance matrix of the ob-
served variables and thereby eliminates learning co-variants (dependences) between pairs
of observed variables that “should” not be connected in the learned model (Silva et al.,
2006; Spirtes, 2013). If, however, the linearity assumption does not hold, the algorithms
suggested in Silva et al. (2006) may not find a model and would output a “can’t tell” an-
swer, which is, nevertheless, a better result than learning an incorrect model.

In this study, we dispense with the linearity assumption and apply the above con-
cepts to learn not necessarily linear MIMs or latent-tree models. Our suggested algorithm,
LPCC, is not limited by the linearity assumption and learns a model as long as it is MIM.
In addition, we are interested in discrete LVMs.

Another important definition we need is:

Definition 4 A pure measurement model is a measurement model in which each observed vari-
able has only one latent parent and no observed parent.

Assumption 3 The measurement model of G is pure.

As a principled way of testing conditional independence among latents, Silva et al.
(2006) focus on MIMs, which are pure measurement models. Practically, these models
have a smaller equivalence class of the latent structure than that of non-pure models and
thus are easier to unambiguously learn. Consider, for example, that we are interested in
learning the topic of a document (e.g., the first page in a newspaper) from anchor word
(key phrase) distributions and that this document may cover several topics (e.g., politics,
sports, and finance). Simplification of this topic modeling problem, following the rep-
resentation of a topic using a latent variable in LVM, can be achieved by assuming and
learning a pure measurement model representing a pure topic model for which each spe-
cific document covers only a single topic, which is reasonable in some cases, such as a
sports or financial newspaper.

LPCC does not assume that the true measurement model is linear (which is a para-
metric assumption that, e.g., BPC makes), but rather assumes that the model is pure (a
structural assumption). When the true causal model is pure, LPCC will identify it cor-
rectly (or find its pattern that represents the equivalence class of the true graph). When
it is not pure, LPCC – similarly to BPC (Silva et al., 2006) – will learn a pure sub-model
of the true model using two indicators for each latent (compared to three indicators per
latent that are required by BPC). Part II of this paper presents several examples of real-
world problems from different domains for which LPCC learns a pure (sometimes sub-)
model, never less accurately than other methods.

That is, LPCC assumes that:
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Assumption 4 The true model G is MIM, in which each latent has at least two observed chil-
dren and may have latent parents.

Causal structure discovery – learning the number of latent variables in the model, their
interconnections and connections to the observed variables, as well as the interconnections
among the observed variables – is very difficult and thus requires making some assump-
tions about the problem. Particularly, MIMs, in which multiple observed variables are
assumed to be affected by latent variables and perhaps by each other (Spirtes, 2013), are
reasonable models but have attracted scant attention in the machine-learning community.
As Silva et al. (2006) pointed out, factor analysis, principal component analysis, and re-
gression analysis adapted to learning LVMs are well understood but have not been proven,
under any general assumptions, to learn the true causal LVM, calling for better learning
methods. By assuming that the true model manifests local influence of each latent variable
on at least a small number of observed variables, Silva et al. (2006) showed that learning
the complete Markov equivalence class of MIM is feasible. Similar to Silva et al. (2006),
we assume that the true model is MIM; thus, this is where we place our focus on learning.
Note also that based on Assumptions 3 and 4, the observed variables in G are d-separated,
given the latents.

3. Preliminaries to LPCC

Figure 1 sketches a range of MIMs, which all exhibit pure measurement models, from ba-
sic to more complex models. Compared to G1, which is a basic MIM of two unconnected
latents, G2 shows a structural model that is characterized by a latent collider. Note that
such an LVM cannot be learned by latent-tree algorithms such as in Zhang (2004). G3 and
G4 demonstrate serial and diverging structural models, respectively, that together with
G2 cover the three basic structural models. G5 and G6 manifest more complex structural
models comprising a latent collider and a combination of serial and diverging connections.
As the structural model becomes more complicated, the learning task becomes more chal-
lenging; hence, G1–G6 present a spectrum of such challenges to an LVM learning algo-
rithm. 3

In Section 3.1, we build the infrastructure to pairwise cluster comparison that relies on
understanding the influence of the exogenous latent variables on the observed variables in
the LVM. This influence is divided into major and minor effects that are introduced and
explained in Section 3.2. In Section 3.3, we link this structural influence to data clustering
and introduce the pairwise cluster comparison concept for learning an LVM.

3.1 The influence of exogenous latents on observed variables is fundamental to
learning an LVM

We distinguish between observed (O) and latent (L) variables and between exogenous (EX)
and endogenous (EN) variables. EX have zero in-degree, are autonomous, and unaffected

3In Part II of the paper, we compare LPCC with BPC and exploratory factor analysis using these six LVMs.
Since BPC requires three indicators per latent to identify a latent, we determined from the beginning three
indicators per latent for all true models to recover. Nevertheless, in Part II, we evaluate the learning algorithms
for increasing numbers of indicators.
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Figure 1: Example LVMs that are all MIMs. Each is based on a pure measurement model
and a structural model of different complexity, posing a different challenge to a
learning algorithm.

by the values of the other variables (e.g., L1 in all graphs but G4 in Figure 1), whereas
EN are all non-exogenous variables in G (e.g., L2 in all graphs but G1 and G4, and X1
in all graphs in Figure 1). We identify three types of variables: (1) Exogenous latents,
EX⊂(L∩NC) [all exogenous variables are latent non-colliders (NC)]; (2) Endogenous la-
tents, EL⊂(L∩EN), which are divided into latent colliders C⊂EL (e.g., L2 in G2 and G5;
note that all latent colliders are endogenous) and latent non-colliders (in serial and di-
verging connections) S⊂(EL∩NC) (e.g., L3 in G3, G4, and G6), thus NC= (EX∪S); and (3)
Observed variables, O⊂EN, which are always endogenous and childless, that are divided
into children of exogenous latents OEX⊂O (e.g., X1 and X9 in G2), children of latent col-
liders OC⊂O (e.g., X4, X5, and X6 in G2), and children of endogenous latent non-colliders
OS⊂O (e.g., X4, X5, and X6 in G3). We denote value configurations of EX, EN (when we
do not know whether the endogenous variables are latent or observed), EL, C, NC (when
we do not know whether the non-collider variables are exogenous or endogenous), S, O,
OEX, OC, and OS by ex, en, el, c, nc, s, o, oex, oc, and os, respectively.

Since the underlying model is a BN, the joint probability over V, which is represented
by the BN, is factored according to the local Markov assumption for G. That is, any variable
in V is independent of its non-descendants in G conditioned on its parents in G:

P (V) =
∏
Vi∈V

P (Vi |Pai) (1)
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where Pai are the parents of Vi . It can be factorized under our assumptions as:

P (V) = P (EX,C,S,OEX,OC,OS) =∏
EXi∈EX

P (EXi)
∏
Cj∈C

P (Cj |Paj )
∏
St∈S

P (St |P at)∏
OEXm∈OEX

P (OEXm|EXm)
∏

OCk∈OC

P (OCk |Ck)
∏

OSv∈OS

P (OSv |Sv) (2)

where Paj are the latent parents of the latent collider Cj , P at is the latent parent of the
latent non-collider St (in other words, Paj , P at⊂NC), Ck∈C and Sv∈S are the latent col-
lider and latent non-collider parents of observed variablesOCk andOSv , respectively, and
EXm∈EX is the exogenous latent parent of observed variable OEXm.

In this paper, we claim and demonstrate that the influence of exogenous (latent) vari-
ables on observed variables is fundamental to learning an LVM and introduce LPCC that
identifies and exploits this influence to learn an MIM. In this section, we prove that changes
in values of the observed variables are due to changes in values of the exogenous variables
and thus the identification of the former indicates the existence of the latter. To do that,
we analyze the propagation of influence along paths connecting both variables, remem-
bering that the paths may contain latent colliders and latent non-colliders. First, however,
we should analyze paths among the latents and only then paths ending in their sinks (i.e.,
the observed variables). To prove that all changes in the graph, and specifically those
measured in the observed variables, are the result of changes in the exogenous latent vari-
ables, we will need to first provide some definitions (following Spirtes et al., 2000; Pearl,
1988, 2000) of paths and some assumptions about the possible paths between latents in
the structural model.

Definition 5 A path between two nodes V1 and Vn in a graph G is a sequence of nodes {V1,
..., Vn}, such that Vi and Vi+1 are adjacent in G, 1≤i<n, i.e., {Vi ,Vi+1} ∈ E.

Note that a unique set of edges is associated with each given path. Paths are assumed to
be simple by definition; in other words, no node appears in a path more than once, and an
empty path consists of a single node.

Definition 6 A collider on a path {V1, ...,Vn} is a node Vi ,1 < i < n, such that Vi−1and Vi+1 are
parents of Vi .

Definition 7 A directed path TVn from V1 to Vn in a graph G is a path between these two nodes,
such that for every pair of consecutive nodes Vi and Vi+1, 1≤i<n on the path, there is an edge
from Vi into Vi+1 in E. V1 is the source, and Vn is the sink of the path. A directed path has no
colliders.

While BPC (Silva et al., 2006) needs to make a parametric assumption about the lin-
earity of the model, LPCC makes assumptions about the model structure (Assumption
3 above and Assumption 5 below). This is also the approach of latent-tree algorithms
(Zhang, 2004; Harmeling and Williams, 2011; Wang et al., 2008) that restrict the learned
structure to a tree (note that LPCC is not limited to a tree because it allows latent variables
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to be colliders). This shows a tradeoff between the structural and parametric assumptions
that an algorithm for learning an LVM usually has to make; the fewer parametric assump-
tions the algorithm makes, the more structural assumptions it has to make and vice versa.

Assumption 5 A latent collider does not have any latent descendants (and thus cannot be a
parent of another latent collider).

To distinguish between latent colliders and latent non-colliders, their observed chil-
dren, and their connectivity patterns to their exogenous variables, we use Lemma 1. La-
tent colliders and their observed children are connected to several exogenous variables via
several directed paths, whereas latent non-colliders and their observed children are con-
nected only to a single exogenous variable via a single directed path. Use of these different
connectivity patterns – from exogenous latents through endogenous latents (both colliders
and non-colliders) to observed variables – simplifies (2) and the analysis of the influence
of latents on observed variables.

Lemma 1
1. Each latent non-collider NCt has only one exogenous latent ancestor EXNCt ,

and there is only one directed path TNCt from EXNCt (source) to NCt (sink).
(Note that we use the notation NCt, rather than St, since the lemma ap-
plies to both exogenous and endogenous latent non-colliders.)

2. Each latent collider Cj is connected to a set of exogenous latent ancestors
EXCj via a set of directed paths TCj from EXCj (sources) to Cj (sink).

Lemma 1 allows us to separate the influence of all exogenous variables to separate paths of
influence, each from exogenous to observed variables. Proposition 1 quantifies the propa-
gation of this influence along the paths through the joint probability distribution.

Proposition 1 The joint probability over V due to value assignment ex to exogenous set EX is
determined only by this assignment and the BN conditional probabilities.

Proof The first product in (2) for assignment ex is of ex’s priors. In the other five prod-
ucts, the probabilities are of endogenous latents or observed variables conditioned on their
parents, which, based on Lemma 1, are either on the directed paths from EX to the la-
tents/observed variables or exogenous themselves. Either way, any assignment of endoge-
nous latents or observed variables is a result of the assignment ex to EX that is mediated
to the endogenous latents/observed variables by the BN probabilities:

P (V|EX = ex) = P (EX,C,S,OEX,OC,OS|EX = ex) =∏
EXi∈EX

P (EXi = exi)
∏
Cj∈C

P (Cj = cj |Paj = pa
exCj
j )

∏
St∈S

P (St = nct |P at = pa
exSt
t ) (3)

∏
OEXm∈OEX

P (OEXm = oexm|EXm = exm)
∏

OCk∈OC

P (OCk = ock |Ck = c
exCk
k )

∏
OSv∈OS

P (OSv = osv |Sv = s
exSv
v )

where

10



Learning by Pairwise Cluster Comparison − Theory & Overview

• exi and exm are the values of EXi and EXm (the latter is the parent of the mth observed
child of the exogenous latents), respectively, in the assignment ex to EX;

• pa
exCj
j is the configuration of Cj ’s parents due to configuration exCj of Cj ’s exogenous

ancestors in ex;

• pa
exSt
t is the value of St’s parent due to the value exSt of St’s exogenous ancestor in ex;

• c
exCk
k is the value ofOCk’s collider parent due to the configuration exCk of Ck’s exoge-

nous ancestors in ex; and

• s
exSv
v is the value of OSv ’s non-collider parent due to the value exSv of Sv ’s exogenous

ancestor in ex.

Proposition 1 along with Lemma 1 are a key in our analysis because they show paths of
hierarchical influence of latents on observed variables – from exogenous latents through
endogenous latents (both colliders and non-colliders) to observed variables. Recognition
and use of these paths of influence guides LPCC in learning LVMs.

To formalize our ideas, we introduce several concepts in Section 3.2. First, we define
local influence on a single EN of its direct parents. Second, we use local influences and the
BN Markov property to generalize the influence of EX on EN. Third, exploiting the connec-
tivity between the exogenous ancestors and their endogenous descendants, as described by
Lemma 1, we focus on the influence of a specific (partial) set of exogenous variables on the
values of their endogenous descendants. Analysis of the influence of all configurations exs
on all ens and that of the configurations of specific exogenous ancestors in these exs on
their endogenous descendants enable learning the structure and parameters of the model
and causal discovery. Finally, in Section 3.3, we show how these concepts can be exploited
to learn an LVM from data clustering.

3.2 Major and minor effects and values

So far, we have analyzed the structural influences (path of hierarchies) of the latents on
the observed variables. In this section, we complement this analysis with the parametric
influences, which we divide into major and minor effects.

Definition 8 A local effect on an endogenous variable EN is the influence of a configuration of
EN’s direct latent parents on any of EN’s values.

1. A major local effect is the largest local effect on ENi , and it is identified by the maximal
conditional probability of a specific value eni of ENi given a configuration pai of EN i ’s
latent parents Pai , which is MAEEN i

(pai) =maxen′iP (ENi = en′i |Pai = pai).

2. A minor local effect is any non-major local effect on ENi , and it is identified by a condi-
tional probability of any other value of EN i given pai that is smaller than MAEEN i

(pai).
The minor local effect set, MIESEN i

(pai), comprises all such probabilities.
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3. A major local value is the eni corresponding toMAEEN i
(pai), i.e., the most probable value

of EN i due to pai , MAVEN i
(pai) = argmaxen′iP (ENi = en′i |Pai = pai).

4. A minor local value is an eni corresponding to a minor local effect, and MIV SEN i
(pai) is

the set of all minor values that correspond to MIESEN i
(pai).

When EN i is an observed variable or an endogenous latent non-collider, and thus
has only a single parent P ai , the configuration pai is actually the value pai of P ai .

So far, we have listed our assumptions about the structure of the model. Following is a
parametric assumption:

Assumption 6 For every endogenous variable EN i in G and every configuration pa′i of EN i ’s
parents Pai , there exists a certain value en′i of EN i , such that P (ENi = en′i |Pai = pa′i) > P (ENi =
en′′i |Pai = pa′i) for every other value en′′ i of EN i . This assumption is related to the most
probable explanation of a hypothesis given the data (Pearl, 1988).

Note that in the case that Assumption 6 is violated, in other words, if more than one value
of EN i gets the maximum probability value given a configuration of parents, LPCC still
learns a model because the implementation will randomly choose a value that maximizes
the probability as the most probable. However, the correctness of the algorithm is guaran-
teed only if all assumptions are valid; in other words, given the assumptions are valid, all
causal claims made by the output graph are correct.

Proposition 2 The major local value MAV EN i

(
pa′i

)
of an endogenous variable EN i given a

certain configuration of its parents pa′i is also certain.

Proof Assumption 6 guarantees that given a certain configuration pa′i of Pai , there exists
a certain value en′i of EN i , such that P (ENi = en′i |Pai = pa′i) > P (ENi = en′′i |Pai = pa′i) for ev-
ery other value en′′i of EN i . From the definition of a major local value,MAV EN i

(
pa′i

)
= en′i .

We need one additional assumption about the model parameters that reflects parent-
child influence in the causal model. Specifically, to identify parent-child relations, LPCC
needs for each observed variable or endogenous latent non-collider to get different MAVs
for different values of their latent parent. Similarly, LPCC needs a collider to get different
values for each of its parents in at least two parent configurations in which this parent
changes, whereas the other parents do not.

Assumption 7 First, for every EN i that is an observed variable or an endogenous latent non-
collider and for every two values pa′i and pa′′i of P ai , MAV EN i

(
pa′i

)
,MAV EN i

(
pa′i

)
. Second,

for every Cj that is a latent collider and for every P aj ∈ Paj , there are at least two configu-
rations pa′j and pa′′j of P aj in which only the value of P aj is different and MAV Cj

(
pa′j

)
,

MAV Cj
(
pa′′j

)
.
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By aggregation over all local influences, we can now generalize these concepts through
the BN parameters and Markov property from local influences on specific endogenous
variables to influence on all endogenous variables in the graph.

Definition 9 An effect on EN is the influence of a configuration ex of EX on EN. The effect
is measured by a value configuration en of EN due to ex. A major effect (MAE) is the largest
effect of ex on EN and a minor effect (MIE) is any non-MAE effect of ex on EN. Also, a major
value configuration (MAV) is the configuration en of EN corresponding to MAE (i.e., the most
probable en due to ex), and a minor value configuration is a configuration en corresponding to
any MIE.

[Note the difference between a major effect, MAE, and a major local effect, MAEEN i
, and

between a major value configuration, MAV, and a major local value, MAV EN i
(and simi-

larly for the “minors”).]

Based on the proof of Proposition 1, we can quantify the effect of ex on EN. For exam-
ple, a major effect of ex on EN can be factorized according to the product of major local
effects on EN (weighted by the product of priors, P (EXi=exi)):

MAE(ex) =
∏

EXi∈EX

P (EXi = exi)
∏
Cj∈C

MAECj (pa
exCj
j )

∏
St∈S

MAESt (pa
exSt
t )

∏
OEXm∈OEX

MAEOEXm(exm)
∏

OCk∈OC

MAEOCk (c
exCk
k )

∏
OSv∈OS

MAEOSv (s
exSv
v ) =

∏
EXi∈EX

P (EXi = exi)
∏
Cj∈C

maxc′jP (Cj = c′j |Paj = pa
exCj
j )

∏
St∈S

maxs′tP (St = s′t |P at = pa
exSt
t )

∏
OEXm∈OEX

maxoex′mP (OEXm = oex′m|EXm = exm)
∏

OCk∈OC

maxoc′kP (OCk = oc′k |Ck = c
exCk
k )∏

OSv∈OS

maxos′vP (OSv = os′v |Sv = s
exSv
v ). (4)

A configuration en of EN in which each variable in EN takes on the major local value
is major or a MAV. Any effect in which at least one EN takes on a minor local effect is
minor, and any configuration in which at least one EN takes on a minor local value is
minor. We denote the set of all minor effects for ex with MIES(ex) (with correspondence
toMIESEN i

) and the set of all minor configurations withMIV S(ex) (with correspondence
to MIV SEN i

).
Motivated by Lemma 1 and Proposition 1, we are interested in representing the influ-

ence on a subset of the endogenous variables of the subset of the exogenous variables that
impact these endogenous variables. This partial representation of MAE will enable LPCC
to recover the relationships between exogenous ancestors and only the descendants that
are affected by these exogenous variables. To achieve this, we first extend the concept of
effect to the concept of partial effect of specific exogenous variables and then quantify it.
Later, we shall formalize all of this in Lemma 2.
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Definition 10 A partial effect on a subset of endogenous variables EN
′⊆EN is the influence of a

configuration ex
′
of EN

′
’s exogenous ancestors EX

′⊆EX on EN
′
. We define a partial major effect

MAEEN
′
(
ex
′)

as the largest partial effect of ex
′
on EN

′
and a partial minor effect MIEEN

′
(
ex
′)

as any non-MAEEN
′
(
ex
′)

partial effect of ex
′

on EN
′
. A partial major value configuration

MAV EN
′
(
ex
′)

is the en
′

of EN
′

corresponding to MAEEN
′
(
ex
′)

; in other words, the most prob-

able en
′

due to ex
′
, and a partial minor value configuration is an en

′
corresponding to any

MIEEN
′
(
ex
′)

.

We are interested in representing the influence of exogenous variables on their ob-
served descendants and all the variables in the directed paths connecting them. To do
this, we separately analyze the (partial) effect of each exogenous variable on each observed
variable for which the exogenous is its ancestor and all the latent variables along the path
connecting these two. We distinguish between two cases (both are represented in Lemma
1): (1) Observed descendants in OEX and OS that are, respectively, children of exogenous
latents and children of latent non-colliders that are linked to their exogenous ancestors,
each via a single directed path; and (2) Observed descendants in OC that are children of
latent colliders and linked to their exogenous ancestors via a set of directed paths through
their latent collider parents. Thus, we are interested in:

1. The partial effect of a value of exogenous ancestor EXNCv to non-collider NCv on
any configuration of the set of variables {T SNCv\EXNCv ,ONCv}, where ONCv is an
observed child of latent non-collider NCv , and T SNCv is the set of variables in the
directed path (recall Definition 7) TNCv from EXNCv to NCv . The corresponding
MAE{T SNCv \EXNCv ,ONCv}

(
exNCv

)
and MAV {T SNCv \EXNCv ,ONCv}

(
exNCv

)
are partial ma-

jor effect and partial major value configuration, respectively. For example, we may
be interested in the partial effect of a value of EXNCv = EXL5 = L3 in G5 (Figure 1)
on {T SNCv\EXNCv ,ONCv}= {T SL5\L3,X13}={L4, L5, X13}. Note that we use here
the notation NCv since we are interested in both exogenous and endogenous latent
non-colliders. When we are interested in the partial effect on an observed variable
in OEX, its exogenous ancestor (which is also its direct parent) is also the latent non-
collider, NCv , and the effect is not measured on any other variable but this observed
variable. This is Case 1, which is analyzed below;

2. The partial effect of a configuration of exogenous variables EXCk to collider Ck on any
configuration of the set of variables {TSCk\EXCk ,OCk}, where OCk is an observed
child of latent collider Ck , 4 and TSCk is the set of variables in the set of directed
paths TCk from EXCk to Ck . The corresponding MAE{TSCk \EXCk

,OCk}
(
exCk

)
and

MAV {TSCk \EXCk
,OCk}

(
exCk

)
are partial major effect and partial major value config-

uration, respectively. For example, we may be interested in the partial effect of
a configuration of EXCk = EXL4 = {L1,L5} in G6 (Figure 1) on {TSCk\EXCk ,OCk}=
{{{L1,L2,L3,L4}\{L1}, {L5}\{L5}},X11}={L2,L3,L4,X11}. This is Case 2, which is ana-
lyzed below.

4Throughout the paper, we use a child index also for its parent, e.g.,OCk ’s parent isCk , although generally,
we use the index j for a collider, such as Cj .

14



Learning by Pairwise Cluster Comparison − Theory & Overview

Following, we provide detailed descriptions for these partial effects and partial val-
ues for observed children of latent non-colliders (Case 1) and observed children of latent
colliders (Case 2) and formalize their properties in Propositions 3–7 to set the stage for
Lemma 2.

Case 1: Observed children of latent non-colliders
If the latent non-collider NCv is exogenous, NCv = EXv and ONCv=OEXv , then,
{T SNCv\EXNCv ,ONCv} =OEXv . Thus, the partial effect is simply the local effect, and the
partial major effect is the major local effect MAEOEXv (exv). If the latent non-collider NCv
is endogenous, then NCv = Sv and ONCv=OSv . Then, all variables in {T SSv\EXSv ,OSv}
are d-separated by EXSv from EX\EXSv . For example, {L4, L5, X13} in G5 (Figure 1) are
d-separated by L3 from L2 and its children. Thus, the effect of ex on the joint probability
distribution (3) can be factored to the: a) joint probability over EX=ex; b) conditional
probabilities of the influenced variables along a specific directed path that ends at OSv on
EXSv = exSv (note that the value exSt for all St∈T SSv is the same because EXSt = EXv is the
same exogenous ancestor of all latent non-colliders on the path to Sv); and c) conditional
probabilities of all the remaining variables in the graph on EX=ex:

P (V|EX = ex) = P (EX = ex)P ({T SSv\EXSv ,OSv}|EXSv = exSv )

P (V\{T SSv\EXSv ,OSv}|EX = ex) (5)

in which the second factor corresponds to the partial effect of EXSv = exSv on T SSv\EXSv
(the latent non-colliders on the path from EXSv to Sv) and Sv ’s observed child,OSv , and the
third factor corresponds to the influence of EX=ex on all the other (latent and observed)
variables in the graph. We can write the second factor describing the partial effect of the
value exSv on the values of the variables T SSv\EXSv in the directed path from EXSv to OSv
(including) as:

P ({T SSv\EXSv ,OSv}|EXSv = exSv ) =∏
St∈{T SSv \EXSv }

P (St = st |P at = pa
exSt
t )P (OSv = osv |Sv = s

exSv
v ) (6)

The partial major effect in (4) for this directed path can be written as (note again that
exSt = exSv ):

MAE{T SSv \EXSv ,OSv}(exSv ) =MAE{T SSv \EXSv }(exSv ) ·MAEOSv (s
exSv
v ) =∏

St∈{T SSv \EXSv }
MAESt (pa

exSv
t ) ·MAEOSv (s

exSv
v ) (7)

Proposition 3 The MAV {T SNCv \EXNCv ,ONCv}
(
exNCv

)
corresponding to

MAE{T SNCv \EXNCv ,ONCv}
(
exNCv

)
is a certain value configuration for each certain value exNCv .

(Note that here we use the notation NCv rather than Sv since the proposition applies to
both exogenous and endogenous latent non-colliders.)
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Proposition 4 All corresponding values in MAV {T SNCv \EXNCv ,ONCv}
(
ex′NCv

)
and

MAV {T SNCv \EXNCv ,ONCv}
(
ex′′NCv

)
, for two values ex′NCv and ex′′NCv of EXNCv , are different.

(Here also we use the notation NCv , since the proposition applies to both exogenous and
endogenous latent non-colliders.)

So far, we have analyzed the impact of an exogenous variable on a latent non-collider
by “propagating” the exogenous (source) impact along the path to the latent non-collider
(sink). Propositions 3 and 4, respectively, guarantee that a certain value of the exogenous
variable is responsible for a certain value of the latent non-collider and different values of
the exogenous are echoed through different values of the latent non-collider. Proposition
4 is based on the correspondence between changes in values of a latent non-collider and
changes in values of its parent; a correspondence that is guaranteed by Assumption 7 (first
part). Propositions 3 and 4, respectively, ensure the existence and uniqueness of the value
a latent non-collider gets under the influence of an exogenous ancestor; one (Proposition
3) and only one (Proposition 4) value of the latent non-collider changes with a change in
the value of the exogenous. We formalize this in the following Proposition 5.

Proposition 5 EXNCv changes values (i.e., has two values ex′NCv and ex′′NCv ) if and only if
NCv changes values in the two corresponding major value configurations:
MAV {T SNCv \EXNCv ,ONCv}

(
ex′NCv

)
and MAV {T SNCv \EXNCv ,ONCv}

(
ex′′NCv

)
.

Case 2: Observed children of latent colliders
In the case of an observed variable OCk that is a child of a latent collider Ck , all variables
in {TSCk\EXCk ,OCk} are d-separated by EXCk from EX\EXCk . Thus, the effect of ex on
the joint probability distribution (3) can be factored (similarly to Case 1) to the: a) joint
probability over EX=ex; b) conditional probabilities of the influenced variables along all
directed paths that end at OCk on EXCk = exCk (note that all variables along each directed
path TCk are influenced by the same exCk ); and c) conditional probabilities of all the re-
maining variables in the graph on EX=ex:

P (V|EX = ex) = P (EX = ex)P ({TSCk\EXCk ,OCk}|EXCk = exCk )

P (V\{TSCk\EXCk ,OCk}|EX = ex) (8)

in which the second factor corresponds to the partial effect on {TSCk\EXCk ,OCk} of EXCk ,
and the third factor corresponds to the partial effect on all variables other than
{TSCk\EXCk ,OCk}. We can decompose the second factor into a product of: a) a product
over all directed paths into Ck of a product of partial effects over all variables (excluding
Ck) in such a path; b) the partial effect on Ck ; and c) the partial effect on its child OCk :

P ({TSCk\EXCk ,OCk}|EXCk = exCk ) =∏
T SCk∈TSCk

∏
St∈T SCk \{EXCk ,Ck}

P (St = st |P at = pa
exCk
t )P (Ck = ck |Pak = pa

exCk
k )P (OCk = ock |Ck = c

exCk
k ).

(9)
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This factor can be rewritten as:

P ({TSCk\EXCk ,OCk}|EXCk = exCk ) =∏
T SCk∈TSCk

P ({T SCk\EXCk ,Ck}|EXCk = exCk )P (Ck = ck |Pak = pa
exCk
k )P (OCk = ock |Ck = c

exCk
k ).

(10)

It reflects the partial effects of a configuration exCk on the values of the variables in {TSCk\EXCk }
and the values Ck and OCk get, and thus the partial major effect of the second factor can
be represented as:

MAE{TSCk \EXCk
,OCk}(exCk ) =

∏
T SCk∈TSCk

MAE{T SCk \EXCk ,Ck}(exCk )MAECk (pa
exCk
k )MAEOCk (c

exCk
k ).

(11)

Proposition 6 The MAV {TSCk \EXCk
,OCk}

(
exCk

)
corresponding to MAE{TSCk \EXCk

,OCk}
(
exCk

)
is

a certain value configuration for each certain value configuration exCk .

We wish to apply the same mechanism as in Case 1 to analyze the impact of more than
a single exogenous ancestor on a latent collider, but here the impact is propagated toward
the collider along more than a single path. To accomplish this, the following Proposition 7
analyzes the effect on a collider of each of its exogenous ancestors by considering the effect
of such an exogenous on the corresponding collider’s parent (using Proposition 5, similar
to Case 1 for a latent non-collider) and then the effect of this parent on the collider itself
(using the second part of Assumption 7).

Proposition 7 For every exogenous ancestor EXCk ∈ EXCk of a latent collider Ck , there are at
least two configurations ex′Ck and ex′′Ck of EXCk in which only EXCkof all EXCk changes values

whenCk changes values in the two corresponding major value configurationsMAV {TSCk \EXCk
,OCk}

(
ex′Ck

)
and MAV {TSCk \EXCk

,OCk}
(
ex′′Ck

)
.

Lemma 2
1. A latent non-collider NCv and its observed child ONCv , both descendants of

an exogenous variable EXNCv , change their values in any two major configu-
rations if and only if EXNCv has changed its value in the corresponding two
configurations of EX.

2. A latent collider Ck and its observed child OCk , both descendants of a set of
exogenous variables EXCk , change their values in any two major configurations
only if at least one of the exogenous variables in EXCk has changed its value in
the corresponding two configurations of EX.

3.3 PCC by clustering observational data

Practically, we use observational data that were generated from an unknown LVM and
measured over the observed variables. Proposition 1 showed us that each configuration
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of observed variables (which is part of a configuration of the endogenous variables) and
their joint probability is a result of the assignment of a configuration ex to the exogenous
variables EX. Therefore, we define:

Definition 11 An observed value configuration, observed major value configuration, and ob-
served minor value configuration due to ex are the parts in en, MAV, and a minor value config-
uration, respectively, that correspond to the observed variables.

The following two propositions formalize the relationships between the observed ma-
jor value configurations and the set of possible ex.

Proposition 8 There is only a single observed major value configuration to each exogenous
configuration ex of EX.

Proof Based on Lemma 2, different observed major value configurations can be obtained
if and only if there is more than a single exogenous configuration ex of EX. Thus, an ex-
ogenous configuration ex can only lead to a single observed major value configuration.

Proposition 9 There are different observed major value configurations to different exogenous
configurations exs.

Proof Assume for the sake of contradiction that two different value configurations ex1 and
ex2 led to the same observed major value configuration. Because the two configurations
are different, there is at least one exogenous variable EX ′ that has different values in ex1
and ex2. Since based on Assumption 4, EX ′ has at least two observed children, then, based
on Assumption 7, each of these children has different values in the two observed major
value configurations due to the different value of EX ′ in ex1 and ex2. This is contrary to
our assumption that there is only one observed major value configuration.

Due to the probabilistic nature of BN, each observed value configuration due to ex may
be represented by several data points. Clustering these data points may produce several
clusters for each ex and each cluster corresponds to another observed value configuration.
Based on Propositions 8 and 9, one and only one of the clusters corresponds to each of the
observed major value configurations, whereas the other clusters correspond to observed
minor value configurations. We distinguish between these clusters using Definition 12.

Definition 12 The single cluster that corresponds to the observed major value configuration,
and thus also represents the major effect MAE (ex) due to configuration ex of EX, is the major
cluster for ex, and all the clusters that correspond to the observed minor value configurations
due to minor effects in MIES (ex) are minor clusters.

To resolve between different types of minor effects/clusters, we make two definitions.

Definition 13 A k-order minor effect is a minor effect in which exactly k endogenous variables
in EN correspond to minor local effects. An en corresponding to a k-order minor effect is a
k-order minor value configuration.
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Definition 14 Minor clusters that correspond to k-order minor effects are k-order minor clus-
ters.

Based on Proposition 9 and Definition 12, the set of all major clusters (corresponding
to all observed major value configurations) reflects the effect of all possible exs, and thus
the number of major clusters is expected to be equal to the number of EX configurations.
Therefore, the identification of all major clusters is a key to the discovery of exogenous
variables and their causal interrelations. For this purpose, we introduce the concept of
pairwise cluster comparison (PCC). PCC measures the differences between two clusters; each
represents the response of LVM to another ex.

Definition 15 Pairwise cluster comparison is a procedure by which pairs of clusters are com-
pared, for example through a comparison of their centroids. The result of PCC between a pair of
cluster centroids of dimension |O|, where O is the set of observed variables, can be represented
by a binary vector of size |O| in which each element is 1 or 0 depending, respectively, on whether
or not there is a difference between the corresponding elements in the compared centroids.

When PCC is between clusters that represent observed major value configurations (i.e.,
PCC between major clusters), an element of 1 identifies an observed variable that has
changed its value between the compared clusters due to a change in ex. Thus, the 1s in a
major–major PCC provide evidence of causal relationships between EX and O. Practically,
LPCC always identifies all observed variables that are represented by 1s together in all
PCCs as the observed descendants of the same exogenous variable (Section 4.1). However,
due to the probabilistic nature of BN and the existence of endogenous latents (mediating
the connections from EX to O), some of the clusters are k-order minor clusters (in differ-
ent orders), representing k-order minor configurations/effects. Minor clusters are more
difficult to identify than major clusters because the latter reflect the major effects of EX
on EN and, therefore, are considerably more populated by data points than the former.
Nevertheless, minor clusters are important in causal discovery by LPCC even though a
major–minor PCC cannot tell the effect of EX on EN because an observed variable in two
compared (major and minor) clusters should not necessarily change its value as a result of
a change in ex. Their importance is because a major cluster, which is a zero-order minor
value configuration and thus has zero minor values, cannot indicate (when compared with
another major cluster) the existence of minor values. On the contrary, PCC between major
and minor clusters shows (through the number of 1s) the number of minor values repre-
sented in the minor cluster, and this is exploited by LPCC for identifying the endogenous
latents and interrelations among them (Section 4.4). That is, PCC is the source to identify
causal relationships in the unknown LVM; major–major PCCs are used for identifying the
exogenous variables and their descendants, and major–minor PCCs are used for identify-
ing the endogenous latents, their interrelations, and their observed children.

4. Overview of the LPCC concept5

Let us demonstrate the relations between clustering results and learning an LVM using
LPCC through an example. G1 in Figure 1 shows a model having two exogenous variables,

5Preliminary versions of the PCC concept and LPCC algorithm are given in Asbeh and Lerner (2012).
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L1 and L2, each having three children X1, X2, X3 and X4, X5, X6, respectively. 6 For the
example, let us assume that all variables are binary, 7 i.e., L1 and L2 have four possible exs
(L1L2= 00, 01, 10, 11). First, we generated a synthetic data set of 1,000 patterns from G1
over the six observed variables. We used a uniform distribution over L1 and L2 and set the
probabilities of an observed child, Xi , i = 1, . . .,6, given its latent parent, Lk , k = 1,2 (only if
Lk is a direct parent of Xi , e.g., L1 and X1), to be P (Xi = v | Lk = v) = 0.8,v = 0,1. Second,
using the self-organizing map (SOM) (Kohonen, 1997), we clustered the data set and found
16 clusters, of which four were major (see Section 4.3 for details on how to identify major
clusters). This meets our expectation of four major clusters corresponding to the four
possible exs. These clusters are presented in Table 1a by their centroids, which are the most
prevalent patterns in the clusters, and in Table 1b by their PCCs. For example, PCC1,2,
comparing clusters C1 and C2, shows that when moving from C1 to C2, only the values
corresponding to variables X1, X2, and X3 have been changed (i.e., δX1 = δX2 = δX3 = 1
in Table 1b). Lemma 2 guarantees that the three variables are descendants of the same EX
that changed its value between two exs represented by C1 and C2. PCC1,4, PCC2,3, and
PCC3,4 reinforce this conclusion. Indeed, we know from the true graph, G1, that this EX
is latent L1. A similar conclusion can be deduced about X4, X5, and X6 as descendants of
an exogenous latent, which we know, based on the true graph, is L2.

Centroid X1 X2 X3 X4 X5 X6
C1 0 0 0 1 1 1
C2 1 1 1 1 1 1
C3 0 0 0 0 0 0
C4 1 1 1 0 0 0

PCC δX1 δX2 δX3 δX4 δX5 δX6
PCC1,2 1 1 1 0 0 0
PCC1,3 0 0 0 1 1 1
PCC1,4 1 1 1 1 1 1
PCC2,3 1 1 1 1 1 1
PCC2,4 0 0 0 1 1 1
PCC3,4 1 1 1 0 0 0

(a) (b)

Table 1: (a) Centroids of major clusters for G1 and (b) PCCs between these major clusters

LPCC is fed by data that is sampled from the observed variables in the unknown model.
LPCC clusters the data using SOM (although any other clustering algorithm is good as
well), and selects an initial set of major clusters (Section 4.3). Then, LPCC learns LVM in
two stages. In the first stage, LPCC first identifies exogenous latent variables and latent
colliders (without distinguishing them yet) and their corresponding observed descendants
(Section 4.1) before distinguishing them (Section 4.2). LPCC iteratively improves the selec-
tion of the major clusters (Section 4.3), and the entire stage is repeated until convergence.
In the second stage, LPCC identifies endogenous latent non-colliders with their children.
Because this stage cannot distinguish from the outset between latent non-colliders and
their latent ancestors, LPCC also needs to apply a mechanism to split these two types of
latent variables from each other and to find the links between them after the split (Section
4.4). A flowchart of the LPCC algorithm is given in Figure 2.

6We remind that we determined three indicators per latent in all true models we demonstrate their learn-
ing (Figure 1) because BPC requires three indicators per latent to identify that latent; which makes the exper-
imental evaluation we did in Part II of the paper fair.

7This is only for demonstration purposes. Part II of the paper shows evaluation results also for ternary
latent variables and observed variables of different dimensions.
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Figure 2: An overview of the LPCC algorithm.
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4.1 Identification of exogenous latent variables and latent colliders and their
descendants

Table 1b shows that PCC1,2 (and PCC3,4) provides evidence that X1, X2, and X3 may be
descendants of the same exogenous latent (L1, as we know) that has changed its value
between the two exs represented by C1 and C2 (and C3 and C4). Relying only on one
PCC may be inadequate when concluding that these variables are descendants of the same
exogenous latent because there may be other exogenous latents that have changed their
values too. Table 1b shows that PCC2,3 (and PCC1,4) provides the same evidence about
X1, X2, and X3. But, PCC2,3 and PCC1,4 also show that the values corresponding to X4,
X5, and X6 have been changed together too, whereas these values did not change in PCC1,2
and PCC3,4. Does this mean that X4, X5, and X6 are also descendants of the same latent
ancestor of X1, X2, and X3? If we combine the two pieces of evidence provided by, e.g.,
PCC1,2 and PCC2,3, we can answer this question with a “no”. This is because X4, X5,
and X6 changed their values only in PCC2,3 but not in PCC1,2, and thus they cannot be
descendants of L1. This insight strengthens the evidence that X1, X2, and X3 are the only
descendants of L1. A similar analysis using PCC1,3 and PCC2,4 will identify that X4, X5,
and X6 are descendants of another latent variable (L2, as we know). Therefore, we define:

Definition 16 A maximal set of observed (MSO) variables is the set of variables that always
changes its values together in each major–major PCC in which at least one of the variables
changes value.

That is, there is a particular interest in identifying the MSOs that always change their
values together in each major–major PCC in which at least one of the variables changes
value. For example, X1 (Table 1) changes its value in PCC1,2, PCC1,4, PCC2,3, and PCC3,4
and always together with X2 and X3 (and vice versa). Thus {X1, X2, X3} (and similarly
{X4, X5, X6}) is an MSO. Each MSO includes descendants of the same exogenous latent
variable L, and after considering all PCCs, LPCC identifies an MSO for each exogenous
latent variable.

Based on any identified MSO, LPCC introduces to the learned graph a new latent vari-
able L together with all the observed variables that are included in this MSO as its children.
At this stage, LPCC cannot yet distinguish between exogenous latents and latent colliders
since the main goal at this stage is to identify latent variables. For now, LPCC focuses
on the identification of the relations between the latents and the observed variables, but
not on the identification of the interrelations between the latents. The latter task that is
needed for distinguishing the latent colliders from the exogenous latents is performed in
a further step (Section 4.2). Note, however, that the identification of endogenous latent
non-colliders needs a different analysis that is based on major–minor PCCs and not on
major–major PCCs, and thus it is described separately in Section 4.4.

The following Theorem 1 helps us formalize this identification step. For this theorem,
we also need Definition 17 of equivalence relation/classes from set theory and Lemma 3,
which is important by itself and for better understanding of LPCC, but also for proving
Theorem 1.

Definition 17 A given binary relation (i.e., between two elements) ∼ on a set A is said to be
an equivalence relation if and only if it is reflexive (a ∼ a), symmetric (if a ∼ b then b ∼ a), and
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transitive (if a ∼ b and b ∼ c, then a ∼ c) for all a, b, and c in A. The equivalence class of a under
∼, denoted [a], is defined as: [a] = {b ∈ A | b z a} (Enderton, 1977).

Note that every two equivalence classes are either equal or disjoint. Therefore, the set
of all equivalence classes of A forms a partition of A; every element of A belongs to one
and only one equivalence class. It follows from the properties of an equivalence relation
that: a ∼ b if and only if [a] = [b]. The following Lemma 3 is important since it shows that
each MSO is an equivalence class, and thus MSOs corresponding to the learned latents are
disjoint. At this stage, LPCC learns a set of at least two observed variables corresponding
to a specific MSO for each latent where none of the observed variables is shared with other
MSOs for other latents; in other words, a pure measurement model.

Lemma 3 The relation “always changes together with” on the set O of all observed variables,
such as “variable Oi∈O always changes together with variable Oj∈O in each PCC in which
either Oi or Oj has changed” is an equivalence relation. Each equivalence class for this relation
comprises an MSO.

Proof All three conditions that are required for a binary relation to become equivalence
are met:

1. Oi always changes with Oi (trivial).

2. If Oi always changes with Oj , then Oj always changes with Oi .

3. IfOi always changes withOj , andOj always changes withOk , thenOi always changes
with Ok .

Thus, the set of observed variables in a model can be represented by a set of equivalence
classes for this relation, where each equivalence class includes all the variables that have
the same equivalence relation, such as an MSO.

Theorem 1 Variables of a particular MSO are children of a particular exogenous latent variable
EX or its latent non-collider descendant or children of a particular latent collider C.

Note that Theorem 1 guarantees that each of multiple latent variables (either an exogenous
or any of its non-collider descendants or a collider) is identified by its own MSO, regardless
of the latent cardinality.

4.2 Distinguishing latent collider variables

After identifying the exogenous latents and latent colliders together (Section 4.1), we need
now to separate them. To demonstrate our concept for distinguishing latent colliders, we
use graph G2 in Figure 1, which shows two exogenous latent variables, L1 and L3, that
collide in one endogenous latent variable, L2. We assume that all latent variables are
binary, 8 and each has three binary observed children X1, X2, and X3 (L1), X4, X5, and X6

8See footnote 7.
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(L2), and X7, X8, and X9 (L3). Having two exogenous binary variables, we expect to find
four major clusters in the data generated from G2. Each cluster will correspond to one of
the four possible exs (L1L3= 00, 01, 10, 11). In this case, as for G1 that was analyzed in
the introduction to Section 4, we expect the values of X1, X2, and X3 to change together
in all the PCCs following a change in the value of L1 , and the values of X7, X8, and X9 to
change together in all the PCCs following a change in the value of L3. However, the values
of X4, X5, and X6 will change together with those of X1, X2, and X3 in part of the PCCs
and together with those of X7, X8, and X9 in the remaining PCCs, but always together in
all of the PCCs. This will be evidence that X4, X5, and X6 are descendants of the same
latent variable (L2, as we know), which is a collider of L1 and L3.

So far, LPCC learned latent variables but could not distinguish between exogenous
latents and latent colliders (learning latent non-colliders will be described in Section 4.4).
To learn that an already learned latent variable L is a collider for a set of other already
learned (exogenous) latent ancestor variables LA⊂EX, LPCC requires that: (1) The values
of the children of L will change with the values of descendants of different latent variables
in LA in different parts of major–major PCCs; and (2) The values of the children of L will
not change in any PCC unless the values of descendants of at least one of the variables in
LA change. This insures that L does not change independently of latents in LA that are L’s
ancestors. We formalize this identification step in Theorem 2:

Theorem 2 A latent variable L is a collider of a set of latent ancestors LA⊂EX only if:

1. The values of the children of L change in different parts of some major–major PCCs each
time with the values of descendants of another latent ancestor in LA; and

2. The values of the children of L do not change in any PCC unless the values of descendants
of at least one of the variables in LA change too.

4.3 Strategy for choosing major clusters

In this problem of unsupervised identification of latent variables given only observational
data, LPCC has to deal with a lack of prior information regarding the distribution of each
latent variable. Therefore, in its first iteration, LPCC assumes a uniform distribution over
the latents and selects the major clusters based only on cluster size, which is the number
of patterns clustered by the cluster. Clusters that are larger than the average cluster size
are selected as majors. However, this initial selection may generate false negative errors
(i.e., deciding a major cluster is minor). This may happen when a latent variable L has a
skewed distribution over its values due to a low probability of L to take on any of its rare
values. Then, the value configuration ex for which L=v, where v is a rare value, will be
represented only by small clusters that could not be chosen as majors, although at least
one of them should be major in representing v.

In addition, the initial selection may perform a false positive error (i.e., deciding a mi-
nor cluster is major), e.g., as a result of a very weak influence of L on any of its children
(observed variables) Xi . In the discrete case, this weak influence can be represented as
(almost) equal conditional probabilities of an observed variable to take on two different
values v1,v2 given the same value v of its latent parent, P (Xi=v1 | L=v)�P (Xi=v2 | L=v).
This may lead to splitting a data cluster that represents a configuration in which L=v into
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two clusters with almost the same size, and, when enough samples exist in both clus-
ters, accepting both as major clusters instead of only one. For example, consider G1 in
Figure 1, where all the variables are binary. Suppose that P (X2 = 0 | L1 = 0) = 0.6 and
P (X2 = 1 | L1 = 0) = 0.4. This may split the cluster representing the configuration L1L2=00
into two clusters; in the first cluster X2 = 0 and in the second cluster X2 = 1. Due to the
similar probabilities, both clusters may have approximately the same size, and if enough
samples exist for L1L2=00 these two clusters may be larger than the average cluster size.
Therefore, both may be accepted as major clusters in the initial selection. Recall that each
ex should be represented by a single major cluster, which is the cluster that reflects the
major effect of ex on the observed variables. In the example, only the cluster in which
X2 = 0 should be a major cluster, but due to the similar probabilities a false positive error
could occur by also accepting the cluster in which X2 = 1 as major.

To avoid these possible errors due to skewed data and circumstances that undermine
identifiability, LPCC decides on major clusters iteratively. After learning a graph based on
the initial selection of major clusters based on their sizes, it becomes possible to learn the
cardinalities of the latent variables and consequently to find all possible exs (Section 4.1).
Then, for each ex, we can select the most probable cluster given the data and use it as an
update to the major cluster that represents this ex. Using an EM-style procedure (Demp-
ster et al., 1977), the set of major clusters can be updated iteratively and probabilistically
and augment LPCC to learn more accurate graphs (see Section 2.1 in Part II for more de-
tails). This process can be repeated until convergence to a final graph (Figure 2). Since the
final graph depends on the initial graph, the iterative approach cannot guarantee finding
the optimal model, but only improving the initial graph.

4.4 Identification of latent non-collider variables

So far (Section 4.1), based on major–major PCCs, all the endogenous latent non-colliders
that are descendants of an exogenous variable EX were temporarily combined with EX,
and all the observed children of these latent non-colliders were temporarily combined
with the direct children of EX. Thus, to identify latent non-colliders, LPCC needs to split
them from their previously learned ancestor together with their observed children. We
suggest that this identification stage be based on major–minor PCCs (recall that latent
colliders were already identified separately, as described in Section 4.2).

To exemplify this need, let us observe G3 in Figure 1, which shows a serial connection
of three latent variables L1, L2, and L3. Assume each of the latents is binary and has three
binary observed children. L1 is the only EX with two possible exs (L1= 0, 1), and L2 and L3
are NCs; L2 is a child of L1 and a parent of L3. We synthetically generated a random data
set of 1,000 patterns from G3 over the nine observed variables. We set the probabilities
of: 1) L1 uniformly; 2) an observed child Xi , i= 1,. . .,9, given its latent parent Lk , k= 1,2,3
(only if Lk is a direct parent ofXi , e.g., L1 and X1), as P (Xi=v | Lk=v)= 0.8,v= 0,1; and 3) an
endogenous latent Lj , j= 2,3, given its latent parent Lk , k= 1,2 (only if Lk is a direct parent

of Lj , e.g., L1 and L2), as P
(
Lj=v

∣∣∣ Lk=v)= 0.8,v= 0,1. Table 2 presents the seventeen largest
clusters using their centroids and sizes, from which C1 and C2 were selected as major
clusters (initially, C1–C6 were selected, because they are larger than the average cluster
size of 21, but then the iterative strategy described in Section 4.3 left only C1 and C2 as
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major clusters). This meets our expectation of two major clusters corresponding to the two
possible exs of L1. However, because all the elements in PCC1,2 are 1s (compare C1 and
C2 in Table 2), the nine observed variables establish a single MSO and by Theorem 1 are
considered descendants of the same exogenous variable. That is, the model G0 learned in
the first phase of LPCC has only one exogenous latent variable (i.e., L1), and all of the nine
observed descendants are learned as its direct children, which is contrary to G3. Since L2
and L3, which are latent non-colliders that are descendants of L1 in G3, were combined in
G0 with L1, LPCC should split them from L1 along with their observed children in order
to learn the true graph.

Thus, in the second phase, LPCC tests the assumption that G0 is true. If the assumption
is rejected, LPCC infers that an exogenous latent EX has latent non-collider descendants,
which were temporarily joined to EX in the first phase, and hence splits them from EX.
To be able to reject the assumption about the correctness of G0, and thereby identify a
possible split of an exogenous latent EX, we first define a first-order minor cluster (1-MC).

Centroid X1 X2 X3 X4 X5 X6 X7 X8 X9 size
C1 1 1 1 1 1 1 1 1 1 49
C2 0 0 0 0 0 0 0 0 0 47
C3 1 1 1 1 1 1 1 1 0 28
C4 0 0 0 0 0 0 0 1 0 24
C5 0 1 0 0 0 0 0 0 0 22
C6 1 1 1 1 1 1 0 0 0 22
C7 0 0 1 0 0 0 0 0 0 21
C8 0 0 0 1 1 1 1 1 1 19
C9 0 0 0 0 0 0 1 1 1 18
C10 1 1 1 0 0 0 0 0 0 16
C11 0 0 0 1 0 0 0 0 0 14
C12 0 0 0 0 0 0 1 0 0 14
C13 1 0 1 1 1 1 1 1 1 14
C14 1 1 1 0 1 1 1 1 1 14
C15 1 0 0 0 0 0 0 0 0 13
C16 1 1 1 1 1 1 0 1 1 12
C17 0 0 0 0 0 1 0 0 0 12

Table 2: The seventeen largest clusters for G3 represented by their centroids and sizes

A 1-MC is a cluster that corresponds to a 1-order minor value configuration (Defini-
tions 13 and 14), which exists when exactly one endogenous variable in EN (either latent
or observed) has a minor local value (Definition 13) as a response to a value ex∈ex that
EX∈EX has obtained. By analyzing, for each exogenous EX, PCCs between 1-MCs and the
major clusters that identified EX, LPCC reveals the existence of the latent non-colliders
that were previously combined with EX (Section 4.1). Following that, LPCC splits these
non-colliders from EX. We will show that if only one observed variable changes in such
PCCs (e.g., X9 in PCC1,3 in Table 3; C1 is major and C3 is 1-MC) as a response to ex, then
the minor value in the 1-MC is of an observed descendant of EX. And, if two or more ob-
served variables change in such PCCs (e.g., X7-X9 in PCC1,6 in Table 4; C1 is major and C6
is 1-MC) as a response to ex, then the minor value in the 1-MC is due to a minor value of a
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latent non-collider descendant of EX. Thus, PCCs between 1-MCs and major clusters that
show a change in the values of two or more observed variables provide evidence of the ex-
istence of an NC that should be split from its exogenous ancestor. Following, we describe
how LPCC finds the set of 1-MCs. Then, we elaborate why and how the analysis of the
PCCs between 1-MCs and major clusters is used to identify and split latent non-colliders
from their exogenous ancestor.

PCC δX1 δX2 δX3 δX4 δX5 δX6 δX7 δX8 δX9
PCC1,3 0 0 0 0 0 0 0 0 1
PCC2,3 1 1 1 1 1 1 1 1 0

Table 3: PCCs for C3 with C1 and C2 (Table 2) in learning G3

PCC δX1 δX2 δX3 δX4 δX5 δX6 δX7 δX8 δX9
PCC1,6 0 0 0 0 0 0 1 1 1
PCC2,6 1 1 1 1 1 1 0 0 0
PCC1,8 1 1 1 0 0 0 0 0 0
PCC2,8 0 0 0 1 1 1 1 1 1
PCC1,9 1 1 1 1 1 1 0 0 0
PCC2,9 0 0 0 0 0 0 1 1 1
PCC1,10 0 0 0 1 1 1 1 1 1
PCC2,10 1 1 1 0 0 0 0 0 0

Table 4: All 2S-PCCs for G3

To find the set of 1-MCs, LPCC first calculates a threshold on the maximal size of
2-order minor clusters (2-MCs). This threshold represents the maximal size of a minor
cluster that corresponds to a 2-order minor value configuration, i.e., a minor cluster that
represents exactly two endogenous variables in EN that have minor values (Definition 13).
This threshold is an approximation for the maximal probability of having minor values as
a response to any ex in exactly two descendants of EX, where all other descendants of EX
in EN have major values. This approximation is derived from the product of the maximal
minor local effects (Definition B.1 in Appendix B) of two observed descendants of EX and
the maximal major local effects (Definition B.1) of the other observed descendants in EN
(Appendix B). Thus, the sizes of all 1-MCs lie between the maximal size of a 2-MC (i.e.,
the threshold) and the minimal size of a major cluster (note that a major cluster is also a
zero-order minor cluster corresponding to a zero-order minor value configuration). For
example, based on the analysis above, C2 is the minimal major cluster in learning G3, and
all the fifteen clusters (Table 2) that are smaller than C2 and larger than the threshold
(calculated as 11), i.e., C3-C17, are 1-MCs. Note that this procedure is separately applied
to each EX∈EX. That is, for each EX, there is a different set of 1-MCs, each representing
a single minor value of a descendant of EX and used to identify this descendant, whereas
the other descendants of EX have major values.

Recall that every 1-MC corresponds to a 1-order minor value configuration that is due
to exactly a single minor value of either an observed variable O or a latent non-collider
NC, where both O and NC are descendants of EX in EN. The main difference between
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these two cases is that in the former, the minor value in O is reflected only in this value,
whereas in the latter, the minor value in NC may affect the values of all descendant la-
tents of NC together with those of all the direct children (observed variables) of NC and
its descendant latents. A minor value in O is identified based on the probability of this
value conditioned on a certain value of O’s direct parent that is smaller than the maximal
probability achieved for another value of O (i.e., the major value) conditioned on the same
value of O’s direct parent. This happens for each value of the direct parent and does not
require a change in EX to happen. From definition, a minor value in O in a 1-order minor
value configuration can only happen when all EX’s descendants, except O, obtain major
values. Although the mechanism of obtaining a minor value in a latent descendant NC
of EX is similar to that in O, the impact of such a minor value is not locally restricted to
NC, as for O, but it simultaneously affects all the descendants (latent and observed) of NC,
which again, from definition, obtain major values.

We are only interested in the second case of minor values of NC, because their identifi-
cation helps split this NC from its ancestor EX to which it was initially combined (Section
4.1). Since the observed variables in both cases are among EX’s descendants, which were
already used to identify EX, it is a challenge to distinguish between them. Following, we
analyze 1-MCs to identify these two cases and concentrate on the second case.

Case 1: A minor value of an observed variable
When comparing, for a specific EX, two centroids – one of a major cluster and the other
of a 1-MC that corresponds to an observed minor value configuration (Definition 11) in
which an observed variable O, which is a descendant of EX, has a minor value – we can
observe that when:

1. EX changes values between two exs that correspond to the compared clusters, all
observed descendants of EX, except O, change values together,

and when

2. EX does not change values between two exs that correspond to the compared clus-
ters, the only observed descendant of EX that changes value is O.

Thus, a PCC – between the centroid of such 1-MC and a centroid of any of the major
clusters – that shows the same value for all but one (i.e., O) of the observed descendants of
EX (i.e., either 1 if EX changes values in the corresponding exs or 0 if it does not) identifies
a minor value in O. For example, in Table 3, PCC1,3 and PCC2,3 of C3, which is a 1-MC,
with the two major clusters C1 and C2 (Table 2) show the set of observed variables X1–X8
that either do or do not change values together, whereas the single observed variable X9
acts contrariwise. This is evidence that C3 is a 1-MC due to exactly a single minor value of
an observed variable descendent (X9) of L1 in G3. Such an analysis helps LPCC ignore, on
the one hand, observed descendants of L1 that cannot reflect minor values in L1’s latent
(non-collider) descendants, and focus, on the other hand, on the latent descendants that
should be split from L1, as part of Case 2.

Case 2: A minor value of a latent non-collider
The minor value of a latent non-collider NC, which is a descendent of EX, can be reflected
only via the values of its observed descendants in an observed minor value configuration
that is represented by a certain 1-MC. By definition, all of these observed descendants
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have major values in this 1-order minor configuration since only NC has a minor value in
this configuration. The major value of each of these observed descendants is certain given
the minor value of NC (Proposition 2) and different from the certain major value it would
have if NC had a major value (Assumption 7) instead of its minor value.

When comparing for a specific EX, two centroids – one of a major cluster and the other
of a 1-MC that corresponds to an observed minor value configuration in which a latent
non-collider NC, which is a descendant of EX, has a minor value – we can observe that
when:

1. EX changes values between two exs that correspond to the compared clusters, all
observed descendants of EX, but not observed descendants of NC, change values
together,

and when

2. EX does not change values between two exs that correspond to the compared clus-
ters, the only observed descendants of EX that change values are those of NC.

Thus, a PCC – between the centroid of such 1-MC and a centroid of any of the major
clusters – that shows two sets of two or more observed variables, each set having a different
value, identifies a minor value in NC. The first set in such a PCC comprises the descendants
of NC (with a value of 0 if EX changes values in the corresponding exs or 1 if it does not),
and the second set comprises all other observed variables that are descendants of EX, but
not NC (with a value of 1 if EX changes values in the corresponding exs or 0 if it does
not). For example, PCC1,6 and PCC2,6 (Table 4) of C6, which is a 1-MC, with the two
major clusters C1 and C2 (Table 2), show two sets of observed variables for G3. The first
set consists of X1–X6 and the second of X7–X9. This is evidence that C6 is a 1-MC due to
a minor value of a latent non-collider descendant of L1, and L1 should be split into two
latents (each is responsible for one of the two sets). One latent (which we know is L3) is a
parent of X7, X8, and X9, and the other latent is a parent of X1–X6 (which we will show is
also split to L1 and L2, each with its three children).

Distinguishing between Case 1 and Case 2 gives us an instrument to identify latent
non-colliders. We are interested in PCCs between 1-MCs and major clusters that show two
sets of two or more elements corresponding to the observed variables. Variables in each
set have the same value, which is different than that of the other set. Following, we infer
that each set is of a different latent than the one that was expected to be sole. We denote
such PCC by 2S-PCC (i.e., PCC of “two sets”) and the corresponding 1-MC by 2S-MC
(Definition 18). Thus, to identify a latent non-collider that was combined to an exogenous
latent EX, we consider only the 2S-PCCs; these PCCs are the result of comparing all the 2S-
MCs among the 1-MCs for EX with the major clusters that revealed EX. Table 4 represents
all 2S-PCCs for G3.

Definition 18 2S-PCC is PCC between 1-MC and a major cluster that shows two sets of two
or more elements corresponding to the observed variables. Elements in each set have the same
value, which is different than that of the other set. Accordingly, this 1-MC is defined as 2S-MC.
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The following Theorem 3 helps formalize this identification step, but to prove this
theorem, we first need Lemma 4. Recall that the challenge here is to identify a latent non-
collider NC that is a descendant of an exogenous latent EX, but was wrongly combined
with this exogenous ancestor. To face this challenge, we need to find a circumstance in
which EX and NC are involved that is different than that which led to the inability to
distinguish between them. NC could not be distinguished from EX when we analyzed
major value configurations. But, although a major value configuration is the most probable
configuration (Definition 9), minor value configurations are possible too – according to the
probability tables of the latents, each given its direct parent – albeit less likely. A minor
value configuration in which only NC takes a minor value (i.e., a first-order minor value
configuration) is exactly what we need.9 This is because all NC’s latent ancestors, in the
first-order minor value configuration, take the same major values they took in the major
value configuration and thus influence their descendants the same. But, the minor value
NC takes influences its (latent and observed) descendants differently than the major value
NC took in the major value configuration. This influence is revealed in the different values
the observed children of NC and its descendants take compared to the values they took
when NC had a major value. Since the two value configurations are represented in two
corresponding clusters – a major cluster and a 2S-MC for NC – the signature of NC can
uniquely be detected by comparing the two clusters using 2S-PCC.10

Lemma 4 shows that it is possible to identify NC because: 1) Even when EX leads to
major values in all NC’s ancestors (and in most cases also in NC), NC can still take a minor
value; and 2) even when EX changes values, leading all NC’s ancestors to change values as
well, NC can still keep the same (minor) value. Thereby, minor value configurations for
NC demonstrate its autonomy, enabling its identification and its split from EX.

Lemma 4 Let a latent non-collider NC be a descendant of an exogenous latent variable EX.
2S-PCC is a PCC between a “two-set” first-order minor cluster 2S-MC due to a minor value in
NC and a major cluster that identified EX. ex′ and ex′′ are two value configurations of EX that
correspond to the compared clusters by 2S-PCC. When:

1. EX does not change values between ex′ and ex′′, all the elements in 2S-PCC corresponding
to the observed descendants of the latent ancestors of NC (including EX) show no change
(i.e., are 0), whereas the elements corresponding to the observed descendants of NC show
a change (i.e., are 1),

and when

2. EX changes values between ex′ and ex′′, all the elements in 2S-PCC corresponding to the
observed descendants of the latent ancestors of NC (including EX) show a change (i.e., are
1), whereas the elements corresponding to the observed descendants of NC show no change
(i.e., are 0).

9All other first-order minor value configurations (due to other latent variables, which are also EX’s de-
scendants) or k-order minor value configurations (Definition 13) due to EX are irrelevant to the identification
of NC, although the former – as will be shown in Theorem 3 – play a role in determining the direct observed
children of NC among its observed descendants.

10Any 2S-PCC, which is detected for EX, will point to the NC that corresponds to the 2S-MC that is com-
pared by this 2S-PCC.
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Before moving to Theorem 3, let us illustrate the two cases discussed in Lemma 4 for
G3. The “EX does not change values between ex′ and ex′′” case can be demonstrated,
for example, when comparing C1 and C6 (Table 2). In response to EX(=L1)=1, NC’s (L3)
parent (L2) takes a major value of 1 in both the value configurations of the latent variables
in response to ex′ = ex′′.11 Also, L3 takes a major value of 1 in the configuration that is
represented by C1, which is one of the two major clusters. But, L3, in response to the
same configuration of its latent ancestors (L1 and L2), takes a minor value of 0 in the
value configuration that is represented by the 2S-MC C6. By comparing C1 and C6, the
corresponding 2S-PCC (i.e., PCC1,6; see Table 4) shows two sets of elements: the first of 0s
that correspond to the observed variables X1–X6, which do not change values between the
clusters, and the second of 1s that correspond to X7–X9, which do change values between
the clusters. This is the evidence we are looking for that is needed to identify L3.

The “EX changes values between ex′ and ex′′” case can be demonstrated, for example,
when comparing C1 and C9 (Table 2). In response to EX(=L1)=1 and EX(=L1)=0, NC’s
(L3) parent (L2) takes a major value of 1 in response to L1=1 and a major value of 0 in
response to L1=0. In the first instance, L3 takes a major value of 1 to create the major
configuration that is represented by C1, and in the second instance, L3 takes a minor
value of 1 in the value configuration that is represented by the 2S-MC C9 (and although
the first value is major and second is minor, they are both 1). By comparing C1 and C9,
the corresponding 2S-PCC shows two sets of elements, the first of 1s that correspond to
the observed variables X1–X6, which changed values between the clusters, and the second
of 0s that correspond to X7–X9, which did not change values between the clusters. This is
additional support of the existence of L3. However, relying only on part of the 2S-PCCs
may be inadequate to conclude on all possible splits. For example, PCC1,8 and PCC2,8
(Table 4) show that X1–X3 and X4–X9 are children of different latents, but do not suggest
the split of X7–X9 as PCC1,6 and PCC2,6 do. Therefore, similarly to the MSO concept
that was introduced for major–major PCCs to identify exogenous latents, it is necessary to
introduce also for 2S-PCCs a maximal set of observed variables (2S-MSO) that always change
their values together in all 2S-PCCs. We define:

Definition 19 A 2S-MSO is the maximal set of observed variables that always change their
values together in all 2S-PCCs.

For example, X1 in Table 4 changes its value in PCC2,6, PCC1,8, PCC1,9, and PCC2,10
and always together with X2 and X3 (and the other way around). Thus, {X1, X2, X3} and
similarly {X4, X5, X6} and {X7, X8, X9} are 2S-MSOs. Each 2S-MSO includes children of
the same latent non-collider, which is a descendant of EX, or EX itself. After computing all
2S-PCCs for EX, LPCC detects 2S-MSOs for all these latent variables and thereby identifies
all possible splits for EX. Note that compared to MSO (Section 4.1), which is identified in
major–major PCCs to reveal exogenous latents, 2S-MSO is identified in PCCs between 2S-
MCs and major clusters to reveal splits of latent non-colliders from the exogenous latent
that was previously learned using these major clusters.

11Note that the values the three latents take in the two-value configurations can only be inferred from the
values their children (X1–X3 for L1, X4–X6 for L2, and X7–X9 for L3) take.
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Theorem 3 Variables of a particular 2S-MSO are children of an exogenous latent variable EX
or any of its descendant latent non-colliders NC.

After splitting the latent non-collider descendants from their exogenous latent ances-
tor EX, we need to identify the links between these latents. To identify these links, LPCC
exploits the following Proposition 10 and Theorem 4. We will see that in the case of a
serial connection, LPCC learns the undirected links among the latents, and in the case of
a diverging connection, LPCC learns the directed links among the latents. That is, LPCC
learns a pattern over the structural model of G, which represents a Markov equivalence
class of models among the latents. In the special case where G has no serial connection,
LPCC learns the true graph.

Proposition 10 In 2S-PCCs in which only the observed children of a single latent change, the
latent is

1. EX or its leaf latent non-collider descendant, if the connection is serial; or

2. EX’s leaf latent non-collider descendant, if the connection is diverging.

Proof We already showed that at least a single 2S-PCC exists in the serial connection case
in which only the observed children of EX change (Theorem 3). In addition, in the proof
of Theorem 3 (Part II), we already showed that for any NC that is a latent non-collider
descendent of EX, NC’s observed children change values in some 2S-PCCs with observed
children of a latent non-collider descendant of NC and in the other 2S-PCCs with ob-
served children of a latent non-collider ancestor of NC, but never alone. A special case in
the proof of Theorem 3 is when NC is a leaf. Then, at least a single 2S-PCC exists in which
only the children of NC change.

We will exemplify Proposition 10 using G3. Table 4 shows all the 2S-PCCs for G3
from which we can identify three 2S-MSOs: {X1,X2,X3}, {X4,X5,X6}, and {X7,X8,X9}. If
we consider only 2S-PCCs due to C1 (the first major cluster), {X1,X2,X3} change alone in
PCC1,8, and {X7,X8,X9} change alone in PCC1,6. By Proposition 10, these two 2S-MSOs
are observed children of an exogenous latent variable EX and its leaf latent non-collider
descendant. From knowing G3, we know that these two latents are L1 and L3. Note that
if more than a single leaf of EX exists (i.e., in the case of a diverging connection emerging
from EX), then for each such leaf, there is a 2S-PCC in which only the observed children
of this leaf change alone. This will help LPCC to identify a diverging connection and
determine EX as the source in all paths leading to the leaves (sinks). As a result, LPCC
could identify the correct direction of the links among the latents.

Proposition 10 guarantees that if the connection is serial, we find the source (EX) and
sink of the path between them (but not who is who). To identify the directionality between
any two latent non-collider variables on the path between the source and sink, we will need
more. To motivate the need, suppose that when learning G3, we already identified L1 as
EX and L3 as EX’s leaf descendant (Proposition 10), and now we have to split L2 from L1
using the two major clusters, C1 and C2 (Table 2), which revealed L1, and identify the
directionality among these three latent variables. Lemma 4 (first part) guarantees that the
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observed children of a latent non-collider NC1, which is a child of another non-collider
NC2 (both are descendants of EX), will change in all 2S-PCCs with the observed children
of NC2 except in a single additional 2S-PCC due to a minor value of NC1. That is, NC1 is
identified as a direct child of NC2 if the observed children of NC1 change in all 2S-PCCs
(due to a specific major cluster and when EX does not change value), in which the children
of NC2 change plus an additional 2S-PCC in which they change without the children of
NC2.12 In our case, this means that the observed children of L3, which is a child of L2, will
change values in all 2S-PCCs in which the observed children of L2 change values, and also
in an additional 2S-PCC, which is due to a minor value in L3. Indeed, PCC1,10 (Table 4),
due to C1, shows that when EX does not change values and the observed children of L3,
{X7,X8,X9}, change values, the observed children of L2, {X4,X5,X6}, also change values. In
addition, PCC1,6, which is the result of comparing C1 and 2-MC C6 due to a minor value
of L3, shows that {X7,X8,X9} change values without {X4,X5,X6} once. PCC2,8 and PCC2,9
demonstrate the same, when using major cluster C2 instead of C1 (and C9 is the 2-MC
that reveals the minor value of L3). This provides an indication that L3 is a child of L2.

But, Proposition 10 cannot guarantee distinguishing between EX and its leaf latent
non-collider descendant (hereby a “leaf”); hence, what if we mistakenly identified them?
In the G3 example, this means we identified L3 as EX and L1 as EX’s leaf. Lemma 4
demonstrates an interplay between EX and NC (and all of its descendants) as presented
in 2S-PCCs due to a minor value in NC; when one of them changes, the other does not
and vice versa. Because the leaf is one of NC’s descendants, Lemma 4 guarantees that
the observed children of the leaf do not change if and only if EX changes value. That
is, by the second part of Lemma 4, if EX changes, then the observed children of the leaf
do not change. Thus, if we find 2S-PCCs that show that the observed children of the
leaf do not change, then we have evidence that EX changed. This guarantees that the
observed children of a latent non-collier NC2 (or EX itself), which is a parent of another
non-collider NC1, will change in all 2S-PCCs with the observed children of NC1, except
in a single additional 2S-PCC due to a minor value of NC2 (or if NC2 is EX). In our case,
this means that the observed children of L1, which is L2’s parent, will change values in all
2S-PCCs in which the observed children of L2 change values, and also in an additional 2S-
PCC. Indeed, PCC1,9 (Table 4), due to C1, shows that when the leaf does not change value
and the observed children of L1, {X1,X2,X3}, change values, the observed children of L2,
{X4,X5,X6}, also change values. In addition, PCC1,8 shows that {X1,X2,X3} change values
without {X4,X5,X6} once. PCC2,6 and PCC2,10 demonstrate the same when using major
cluster C2 instead of C1. This provides an indication that L1 is a child of L2, which is the
opposite direction between the two in G3. That is, the interplay between EX and its leaf
lets LPCC identify the directionality between latent non-colliders on the path between

12Note that Lemma 4 makes a clear distinction between NC’s ancestors (and their observed children) and
NC’s descendants (and their observed children), when NC gets a minor value. That is, all NC’s ancestors follow
EX (and change values or not with it) and all NC’s descendants follow its change of value. This change of NC
“breaks” the influence of EX on the latents on the path emerging from EX and “starts” NC’s own influence on
its latent descendants. And this is what is so important in finding the traces of minor values of endogenous
latents through 2S-PCCs, that these traces identify the existence of the latents. Particularly, when EX does not
change values and all its descendants get major values, the observed children of NC1 and NC2 will change
together, and it is only a minor value that NC1 gets that can make a 2S-PCC in which NC1’s observed children
change without those of NC2, and thereby indicate that NC1 is NC2’s child.
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EX and the leaf, and in both directions. This means that LPCC can identify only the
undirected links between the latents in the serial case.

In the diverging case, the children of EX never change alone, and every latent that its
children change alone in some 2S-PCC is a leaf (Proposition 10). Therefore, by performing
an analysis as for the serial case using 2S-PCCs in which the observed children of the leaf
do not change for each leaf of the branches of the diverging connection, LPCC can identify
the links among the latents in opposite directions on each branch. We formalize this by
Theorem 4.

Theorem 4 A latent non-collider NC1 is a direct child of another latent non-collider NC2 (both
on the same path emerging in EX) only if:

• In all 2S-PCCs for which EX does not change, the observed children of NC1 always change
with those of NC2 and also in a single 2S-PCC without the children of NC2; and

• In all 2S-PCCs for which a latent non-collider leaf descendant of EX does not change, the
observed children of NC2 always change with those of NC1 and also in a single 2S-PCC
without the children of NC1.

LPCC uses Theorem 4 to identify the links between the split latents. In the serial
connection, there are only two latents with observed children that change alone in some
2S-PCCs, that is, EX and its leaf latent non-collider descendant. However, LPCC can-
not distinguish between them and thus finds all the links between these two latents as
undirected. In the diverging connection, the observed children of EX never change alone
(Proposition 10); thus, every latent with children that change alone in some 2S-PCCs can
only be a leaf. Thereby, LPCC can identify the directed links among the latents repeat-
edly on each of the paths from EX to each of the leaves (Theorem 4). Still, LPCC needs to
distinguish between the serial and diverging connections. In the case where the observed
children of three or more latents change alone in some 2S-PCC, it is clear that it is a diverg-
ing connection. Then, LPCC treats these latents as leaves and returns directed paths from
EX to each such leaf. However, in the case in which LPCC identifies that the observed chil-
dren of exactly two latents change alone in some 2S-PCCs, it applies the analysis proposed
in Theorem 4 to each of the latents. If it obtains the same path with opposite directions,
then LPCC considers it as a serial connection and returns the undirected path; otherwise,
it considers it as a diverging connection and returns the two directed paths from EX.

5. Discussion and Future Research

We introduced the PCC concept and LPCC algorithm for learning LVMs:

1. LPCC combines learning graphical models with data clustering by using the PCC
concept to analyze clustering results of discrete variables for learning LVMs;

2. LPCC learns MIM, which is a large subclass of SEM. In MIM, multiple latent vari-
ables may have multiple indicators (observed children), and no observed variable
may be an ancestor of any latent variable;
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3. LPCC is not limited to latent-tree models, which are only a subclass of MIM, and
does not make special assumptions, such as linearity, about the distribution;

4. LPCC assumes that the measurement model of the true graph is pure, but, if the true
graph is not pure, LPCC learns a pure sub-model of the true model, if one exists.
LPCC’s only assumption about the structural model is that a latent collider does not
have any latent descendants (a detailed list of assumptions LPCC makes is given in
Appendix C);

5. LPCC is a two-stage algorithm. First, LPCC learns the exogenous latents and the
latent colliders, as well as their observed descendants, by utilizing pairwise com-
parisons between data clusters in the measurement space that may explain latent
causes. Second, LPCC learns the endogenous latent non-colliders and their children
by splitting these latents from their previously learned latent ancestors;

6. LPCC learns an equivalence class of the structural model of the true graph; and

7. LPCC is formally expressed as an algorithm and evaluated using synthetic and real-
world databases in Part II of the paper.

A number of open problems invite further research including:

1. Extending LPCC to identify observed variables that are effects of other observed vari-
ables;

2. Providing a formal analysis for the conditions of model identification and its sensi-
tivity to parameterization. Learning by LPCC that an observed variable O is a de-
scendent of a latent variable L depends on two factors. The first factor is the “graph
distance”, which means that the more edges that separate O from L, the less likely
O would be grouped with other observed variables, descendants of L. The second
factor is the conditional probabilities of an observed variable given its latent parent,
which means that the stronger the probabilities are, the more likely the link will be
identified by LPCC. Although the iterative strategy for choosing the major clusters
(Section 4.3) improves the identification of observed children with weak associations
with their latent parents, the final graph still depends on the initial graph. That is,
the iterative approach alone cannot guarantee finding the optimal model. Future
analysis should take into account both factors;

3. Analyzing LPCC complexity. Future research should dive into this topic and decom-
pose LPCC complexity to those of clustering, identification of major–major PCCs,
and identification of major–minor PCCs. Assume a set V= (L∪O) with a variable
maximal cardinality, k = max(|Vi |), a number of exogenous variables, |EX|, and a
number of major value configurations (major clusters), |ex| = k|EX|. A preliminary
analysis shows that LPCC complexity in identifying major–major PCCs is O(|ex|2) =
O(k2|EX|). To compute the LPCC’s complexity in identifying major–minor PCCs, we
first have to identify 1-MC minor clusters (values), with complexity of O((|V | − |EX|)
k|EX|(k − 1)) due to (k − 1) minor values for each of k|EX| parent configurations of
(|V | − |EX|) endogenous variables. Then, the complexity in identifying major–minor
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PCCs is O((|V | − |EX|)k2|EX|(k − 1)), and the total complexity in computing PCCs is
O((|V | − |EX|)k2|EX|), which is exponential in |EX|, but in most problems |EX| � |V |.
However, a more elaborated analysis that also includes the complexity of clustering
is desired.

4. Exploring the impact of clustering – as is manifested by the clustering algorithm and
its parameters – on the LPCC results. In Part II, we show a problem in which the data
structure is hierarchical, and a clustering algorithm that is more sophisticated than
SOM, which is suggested in Section 4, is needed to preprocess the data used to learn
an LVM that is meaningful to the domain. Exploring the requirements on clustering
and any guidelines about the best approach to take for clustering is a direction of
further research; and

5. Suggesting ways to use the graphical model to cluster data points. Although we have
established and exploited a link between cluster analysis and learning an LVM, in
this work, we only studied learning (reconstructing) the graphical model by analyz-
ing clusters of observational data. Another very interesting line of future research is
in the opposite direction, extending previous studies such as that in Zhang (2004).
Because MIM models learned by LPCC are richer than HLC models (which are only
a subset of MIM), such a line of research may enable accurate clustering of observa-
tional data generated by a model also having collider nodes.
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Appendix A. Proofs of propositions, lemmas, and theorems

In this appendix, we give proofs of propositions, lemmas, and theorems for which the
proof is too detailed, lengthy, or impedes the flow of reading. All other proofs are given in
the body of the paper.

Lemma 1
1. Each latent non-collider NCt has only one exogenous latent ancestor EXNCt ,

and there is only one directed path TNCt from EXNCt (source) to NCt (sink).

(Note that we use the notation NCt, rather than St, since the Lemma ap-
plies to both exogenous and endogenous latent non-colliders.)

2. Each latent collider Cj is connected to a set of exogenous latent ancestors
EXCj via a set of directed paths TCj from EXCj (sources) to Cj (sink).

Proof

1. If the latent non-collider is exogenous, NCt = EXt, then EXNCt=EXt, and TNCt is
the empty path consisting of EXt. For example, EXL3=L3 and TL3 = L3 in G2 and
G5 in Figure 1. If, however, the latent non-collider is endogenous, NCt = St, and
we assume by contradiction that it has more than one exogenous latent ancestor and
thus more than one directed path from each exogenous ancestor to St (and according
to Assumption 5, none of the paths passes through a collider) that collide at St, then
St is a collider. This is contrary to the assumption that NCt is a non-collider. That is,
EXSt is the only exogenous latent ancestor of St, and TSt is the only directed path from
EXSt through St’s parent P at to St. For example, EXL5=L3 and TL5 = {L3, L4, L5} in
G5 (Figure 1).

[Note that if St has no endogenous latent non-collider ancestors, then P at=EXSt and
TSt equals the ordered sequence {EXSt ,St}, e.g., EXL4=L3 and TL4 = {L3, L4} in G5
(Figure 1).]

2. Under Assumption 5, any parent P aj of latent collider Cj could be either a latent
non-collider or an exogenous latent; in other words, Paj ⊂ (NC ∪ EX). If P aj is a
latent non-collider, then it is on the directed path TCj from EXCj to Cj ; and if P aj is
an exogenous latent EXCj , then it is the source of a directed path TCj (or more than a
single directed path) to Cj . EXCj = ∪EXCj is the set of exogenous ancestors of Cj , and
TCj = ∪TCj is the set of directed paths from EXCj to Cj . For example, EXL4={L1, L5}
and TL4 = { {L1, L2, L3, L4} , {L5, L4}} in G6 (Figure 1).

Proposition 3 The MAV {T SNCv \EXNCv ,ONCv}
(
exNCv

)
corresponding to

MAE{T SNCv \EXNCv ,ONCv}
(
exNCv

)
is a certain value configuration for each certain value exNCv .

(Note that here we use the notation NCv rather than Sv since the proposition applies to
both exogenous and endogenous latent non-colliders.)
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Proof If the latent non-collider NCv is exogenous, NCv = EXv and ONCv=OEXv , then
{T SNCv\EXNCv ,OEXv} =OEXv and the partial major value is the local major value
MAV OEXv (exv), which by Proposition 2 is certain for a certain value exv .

If the latent non-collider NCv is endogenous, NCv = Sv and ONCv=OSv , then we
consider {T SSv\EXSv ,OSv}, which is a set of ordered variables along the directed path TSv
that ends in OSv . The remainder of the proof is by induction:

Basis: Based on Proposition 2, MAV S1
(exSv ), where S1 is the first variable in

{T SSv\EXSv ,OSv} and a direct child of EXSv , given a certain value exSv , is also certain.
Step: If the major value of the ith variable, Si , in the subset {T SSv\EXSv ,OSv} , i.e.,

MAV Si (pa
exSv
i ), is certain for a certain value pa

exSv
i , then the major value of the (i+1)th

variable, Si+1, in the subset (which is Si ’s child), i.e., MAV Si+1
(pa

exSv
i+1 ), is by Proposition 2

certain too for a certain value pa
exSv
i+1 (which is MAV Si (pa

exSv
i )).

Proposition 4 All corresponding values in MAV {T SNCv \EXNCv ,ONCv}
(
ex′NCv

)
and

MAV {T SNCv \EXNCv ,ONCv}
(
ex′′NCv

)
, for two values ex′NCv and ex′′NCv of EXNCv , are different.

(Here also we use the notation NCv , since the proposition applies to both exogenous and
endogenous latent non-colliders.)

Proof If the latent non-collider NCv is exogenous, NCv = EXv and ONCv=OEXv , then
{T SNCv\EXNCv ,OEXv} =OEXv , and, by Assumption 7, the correspondingMAV OEXv (ex

′
v)

and MAV OEXv (ex
′′
v ) are different for two values ex′v and ex′v .

If the latent non-collider NCv is endogenous, NCv = Sv and ONCv=OSv , then we
consider {T SSv\EXSv ,OSv}, which is a set of ordered variables along the directed path TSv
that ends in OSv . The remainder of the proof is by induction:

Basis: The major local values MAV S1
(ex′Sv ) and MAV S1

(ex′′Sv ) of the first variable, S1,
in {T SSv\EXSv ,OSv} (which is also a direct child of EXSv ) and two values ex′Sv and ex′′Sv of
EXSv are different based on Assumption 7.

Step: If the major local values of the ith variable, Si , in {T SSv\EXSv ,OSv} and two val-
ues ex′v and ex′′v of EXSv , i.e., MAV Si (ex

′
Sv

) and MAV Si (ex
′′
Sv

), are different, then the major
local values of Si+1 (Si ’s child), and the two values MAV Si (ex

′
Sv

) and MAV Si (ex
′′
Sv

), i.e.,

MAV Si+1

(
pa

ex′Sv
i+1

)
=MAV Si+1

(
MAV Si (ex

′
Sv

)
)

and MAV Si+1
(pa

ex′′Sv
i+1 ) =

MAV Si+1

(
MAV Si (ex

′′
Sv

)
)

are different too based on Assumption 7.

Proposition 5 EXNCv changes values (i.e., has two values ex′NCv and ex′′NCv ) if and only if
NCv changes values in the two corresponding major value configurations:
MAV {T SNCv \EXNCv ,ONCv}

(
ex′NCv

)
and MAV {T SNCv \EXNCv ,ONCv}

(
ex′′NCv

)
.

Proof (“if”) Proposition 3 guarantees that NCv has a certain value in
MAV {T SNCv \EXNCv ,ONCv}

(
exNCv

)
for a certain value exNCv of EXNCv . Thus, if NCv has
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different values in two MAV {T SNCv \EXNCv ,ONCv}
(
exNCv

)
, then EXNCv should also have two

corresponding values, say ex′NCv and ex′′NCv .
(“only if”) Proposition 4 guarantees that NCv will have different values in
MAV {T SNCv \EXNCv ,ONCv}

(
ex′NCv

)
and MAV {T SNCv \EXNCv ,ONCv}

(
ex′′NCv

)
for two values ex′NCv

and ex′′NCv of EXNCv . Thus, if NCv has only a certain value in two

MAV {T SNCv \EXNCv ,ONCv}
(
exNCv

)
, then EXNCv should have also a certain value in the corre-

sponding two exNCv .

Proposition 6 The MAV {TSCk \EXCk
,OCk}

(
exCk

)
corresponding to MAE{TSCk \EXCk

,OCk}
(
exCk

)
is

a certain value configuration for each certain value configuration exCk .

Proof {TSCk\EXCk ,OCk} comprises sets of variables {T SCk\EXCk ,OCk} along all directed
paths through Ck that end at OCk . We will divide each such set into three subsets
{T SCk\{EXCk ,Ck}}, Ck , and OCk and consider a value configuration for exCk for each sub-
set separately. First, since no latent collider can be a child of a latent collider (Assumption
5), a value configuration for the subset {T SCk\{EXCk ,Ck}} is considered to be identical
to a value configuration for {T SNCv\EXNCv }, and thus according to Proposition 3, is a
certain value configuration for a certain value exCk . Because MAV {T SCk \{EXCk ,Ck}}

(
exCk

)
is a certain value configuration for a certain exCk for each directed path T SCk that is
included in TSCk , the product of these value configurations, which corresponds to the
product of MAE{T SCk \{EXCk ,Ck}}

(
exCk

)
in (11), is also certain. Second, since Ck’s parents

Pak⊂
⋃
T SCk∈TSCk

{T SCk\{EXCk ,Ck}}, pak
exCk are certain value configurations. Thus, based

on Proposition 2, MAV Ck
(
pak

exCk
)

is also a certain value and similarly MAV OCk (C
exCk
k ) is

certain, where C
exCk
k = MAV Ck

(
pak

exCk
)
. Therefore, all variables in {TSCk\EXCk ,OCk} are

certain in the major configuration for a certain value configuration exCk .

Proposition 7 For every exogenous ancestor EXCk ∈ EXCk of a latent collider Ck , there are at
least two configurations ex′Ck and ex′′Ck of EXCk in which only EXCkof all EXCk changes values

whenCk changes values in the two corresponding major value configurationsMAV {TSCk \EXCk
,OCk}

(
ex′Ck

)
and MAV {TSCk \EXCk

,OCk}
(
ex′′Ck

)
.

Proof We divide the proof into two parts. In the first part, we prove that for each exoge-
nous ancestor of a latent collider, there are at least two MAVs in which only the collider’s
parent on the path from the exogenous to the collider (of all collider’s parents) changes
values together with the exogenous. We are aided in this part of the proof by Proposition
5 after considering the collider’s parent as a latent non-collider. In the second part, using
Assumption 7, we show that each such collider’s parent changes values together with the
collider in the same two MAVs in which the parent changes values together with the ex-
ogenous. Thereby, we prove that for each exogenous ancestor of a latent collider, there are
at least two MAVs in which the collider changes values only with this exogenous ancestor.
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For the first part, Proposition 5 guarantees that any exogenous ancestor EXCk of a
parent P ak ∈ Pak of collider Ck (and thus EXP ak = EXCk and P ak is also a latent non-
collider) changes its value if and only if P ak changes its value in two value configurations
MAV {T SP ak \EXP ak ,OP ak}

(
exP ak

)
. By the opposite of Proposition 5, any exogenous ancestor

EX∗Ck of a parent P a∗k ∈ Pak\P ak of Ck is certain if and only if P a∗k is certain in two value

configurations MAV {T SP a∗k \EX
∗
P a∗k
,OP a∗k}

(
ex∗P a∗k

)
.

For the second part, we know by Assumption 7 (second part) that for every Ck that is
a latent collider and for every P ak ∈ Pak , there are at least two configurations pa′k and pa′′k
of Pak in which only the value of P ak is different and MAV Ck

(
pa′k

)
,MAV Ck

(
pa′′k

)
. That

is, the collider (which is the only variable in MAV Ck ) changes values together with each of
its parents in at least two parents’ configurations.

Combining the two parts, we have proven that a collider changes values following a
change in the value of each of its parents in at least two configurations of the parents,
when the change of values of this parent is due to a change of values of its exogenous
ancestor in two exogenous configurations. This means that the collider changes values
with each of its exogenous ancestors in at least two exogenous configurations. That is,
for two configurations ex′Ck and ex′′Ck of EXCk in which only EXCk changes values, there
are at least two configurations pa′k and pa′′k of Pak in which P ak ∈ Pak changes values in

MAV {TSCk \EXCk
,OCk}

(
ex′Ck

)
and MAV {TSCk \EXCk

,OCk}
(
ex′′Ck

)
with EXCk . Since these values of

P ak in pa′k and pa′′k also change with values of Ck , Ck changes values with EXCk in ex′Ck and
ex′′Ck . Therefore, there are at least two configurations ex′Ck and ex′′Ck of EXCk in which only
EXCk has changed values when Ck changes values in the two corresponding major value
configurations MAV {TSCk \EXCk

,OCk}
(
ex′Ck

)
and MAV {TSCk \EXCk

,OCk}
(
ex′′Ck

)
.

Lemma 2
1. A latent non-collider NCv and its observed child ONCv , both descendants of

an exogenous variable EXNCv , change their values in any two major configu-
rations if and only if EXNCv has changed its value in the corresponding two
configurations of EX.

2. A latent collider Ck and its observed child OCk , both descendants of a set of
exogenous variables EXCk , change their values in any two major configurations
only if at least one of the exogenous variables in EXCk has changed its value in
the corresponding two configurations of EX.

Proof

1. First (“only if”), by Proposition 3, the major value configuration of a latent non-
collider NCv and its observed child ONCv , both of which are descendants of an ex-
ogenous variable EXNCv , are certain for any certain exNCv . That is, ifNCv andONCv
changed their values in any two major configurations, it is only because EXNCv has
changed its value in the corresponding two configurations of EX. Second (“if”), by
Proposition 4, the major value configurations of NCv and ONCv are changed if
EXNCv has changed its value between two configurations of EX.
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2. By Proposition 6, the major value configuration of a colliderCk and its observed child
OCk , both of which are descendants of a set of exogenous variables EXCk , are certain
for a certain exCk . That is, if Ck and OCk changed their values in any two major
configurations, it is only because at least one of the variables in EXCk also changed
its value in the corresponding two configurations of EX.

Theorem 1 Variables of a particular MSO are children of a particular exogenous latent variable
EX or its latent non-collider descendant or children of a particular latent collider C.

Proof The proof is divided into two separate cases. In the first case, we show that the
children of a particular exogenous latent variable or its non-collider descendant belong to
the same MSO, and in the second case, we show that the children of a particular collider
latent belong to the same MSO.

Case 1: MSO of observed children of an exogenous latent or its latent non-collider descen-
dants
Let ONCi

13 (in OEX
⋃

OS) be a set of observed variables that are children of an exogenous
variable EXi and any of its latent non-collider descendants (if they exist), and let OCi be
a set of observed variables that are children of latent colliders where each has EXi as an
exogenous ancestor with other exogenous variables. Note that OCi may be empty, if EXi
does not have any collider descendants, but ONCi is never empty because it includes at
least OEXi (Assumption 4). Because no observed child can be included in both OCi and
ONCi , these sets are disjoint. Their union, OVi=ONCi

⋃
OCi , includes all the observed

variables that are affected by EXi and thus should change their values when EXi changes.

• First, by Lemma 2 (first part), any subset of variables in ONCi (and thus also ONCi

itself, which is a maximal set) always changes together in all PCCs that correspond to
a change in EXi and never change together in any other PCC. These variables belong
to the same MSO that represents EXi .

• Second, let subset OCij of OCi contain all variables that (1) have a shared exogenous
ancestor EXj (besides EXi) and (2) change their values together in at least one PCC,
which corresponds to a change only in the value of EXj . By Lemma 2, the other
variables in OVi that are not descendants of EXj do not change in that PCC. Thus,
variables in OCij ∀j do not belong to the same MSO for which variables in ONCi

belong.

Consequently, variables in ONCi will change together only in all PCCs that correspond to
a change in EXi , and therefore, will establish a maximal set of the variables MSOi=ONCi
that corresponds to all and only observed variables that are children of exogenous variable
EXi and its latent non-collider descendants.

13So far, observed variables had their own indices and their parents/ancestors also had these indices. In
Theorem 1, the index is associated with the exogenous variable (Case 1) and the collider latent (Case 2), since
these are the central subjects of interest here.
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Case 2: MSO of observed children of a latent collider
In this case, it is important to note that different colliders and their children are affected
by different sets of exogenous variables. Thus, we assume:

Assumption 8 Latent colliders do not share exactly the same sets of exogenous ancestors.

(In case Assumption 8 is violated, for example, if several latent colliders share exactly the
same set of exogenous ancestors, LPCC does not identify the latent colliders as separate
and learns one collider as the parent of all children of the latent colliders. Nevertheless,
we believe this assumption is very realistic.)

Let OCi be the set of the observed variables that are children of latent collider Ci that
is a descendant of a set of exogenous variables EXCi . By Lemma 2, any variable in OCi

should not change in any PCC unless at least one of its exogenous ancestors changes. The
sets of variables that should change together with variables in OCi if any of the exogenous
variables in EXCi change is represented by:

OV =
⋃

EXt∈EXCi

OVt =
⋃

EXt∈EXCi

{ONCt

⋃
OCt} =

⋃
EXt∈EXCi

{ONCt

⋃
{OCt\OCi}}

⋃
OCi (12)

where the union is over all exogenous ancestors EXt ofCi . We separate the proof to include
three sets of observed variables: 1) OCi , which are children of Ci ; 2) ONCt, which are
children of an exogenous variable EXt and any of its latent non-collider descendants; and
3) {OCt\OCi}, which are children of latent colliders, other than Ci , that are descendants
of EXt.

Figure 3: LVM with two latent colliders.

For example, for latent collider Ci = L2 in Figure 3, EXL2
= {L1,L3}, OCL2={X4,X5,X6},

ONCL1={X1,X2,X3}, ONCL3={X7,X8,X9}, and {OCL4\OCL2} = {X10,X11,X12}.
Following, we analyze the three subsets of OV, specifically, OCi , ONCt, and {OCt\OCi},

and show that only variables in OCi (or any subset of OCi) will always change together,
whereas other variables in OV will not. We analyze the subsets ONCt and {OCt\OCi} for
each exogenous EXt ∈ EXCi ; thus, the analysis is also correct for their union (12).

• OCi : By Lemma 2 (second part), any subset of variables in OCi always changes to-
gether in all PCCs that correspond to a change in at least one exogenous variable in
EXCi . In addition, none of the variables in OCi has an exogenous ancestor that is not
in EXCi ; therefore, no variable in OCi ever changes in any PCC that corresponds to
an exogenous variable that is not in EXCi . These variables belong to the same MSO
that represents Ci .
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• ONCt: We previously showed in Case 1 that each ONCt forms an MSO that corre-
sponds to a single EXt, and this is the only exogenous ancestor for ONCt. By Lemma
3, an MSO is an equivalence class; therefore, no other variable in a subset of OV (in-
cluding OCi) can be added to ONCt, and it will remain an MSO. Similarly, no subset
of variables in ONCt can be added to any subset of OV to obtain an MSO.

• {OCt\OCi}: Any subset of OCt\OCi does not change together with any subset of OCi

because (Assumption 8) for each variable OCj in OCt\OCi , there is an exogenous
ancestor EXj that is not an ancestor of variables in OCi . Thus, by Proposition 7, OCj
changes its value in a PCC that corresponds to a change only in the value of EXj ,
whereas the variables in OCi , which are not descendants of EXj , do not change in
that PCC.

Consequently, all and only variables in OCi (maximal subset of OCi) compose MSOi that
changes together in all PCCs that correspond to a change in EXCi .

Theorem 2 A latent variable L is a collider of a set of latent ancestors LA⊂EX only if:

1. The values of the children of L change in different parts of some major–major PCCs each
time with the values of descendants of another latent ancestor in LA; and

2. The values of the children of L do not change in any PCC unless the values of descendants
of at least one of the variables in LA change too.

Proof Recall that by this point (Section 4.1), latent variables that have already been
learned are either exogenous or colliders. Thus, first, we show that a latent variable L
that satisfies (2) has to be a collider for a set of latent ancestors LA⊂EX by assuming by
contradiction that L is not a collider but an exogenous variable. If L is an exogenous vari-
able, then there exists at least a single major–major P CCL that corresponds to two exs in
which only L changes its value. Thus, in P CCL, only the values of descendants of L change,
whereas descendants of other variables in any sub-set LA⊂EX do not change. This is in
contrast to (2).

Second, we show that if L satisfies (1), then LA is the set of L’s exogenous ancestors that
collide in L. Let ONCi (in OEX

⋃
OS) be the set of observed variables that are children of

LAi ∈ LA or children of its latent non-collider descendants. Let OCi be the set of children
of latent colliders where each has LAi as its ancestor with other exogenous variables in LA
or not. OVi=ONCi

⋃
OCi includes all the observed variables that are affected by LAi and

thus may change their values when LAi changes values. In addition, let OCL be the set of
children of L. We need to show that if L satisfies (1), then OCL⊂OCi for each LAi ∈ LA.
Since LAi is an ancestor of L, (1) ensures that there exists a PCC in which only the values
of descendants of LAi including OCL change, whereas the values of descendants of other
variables in LA\LAi do not change. Thus, OCL ⊂ OVi . However, none of the children in
OCL belongs to ONCi ; otherwise, it would have already been identified (Theorem 1) as a
descendant of LAi . Thus, OCL⊂OCi .
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Lemma 4 Let a latent non-collider NC be a descendant of an exogenous latent variable EX.
2S-PCC is PCC between a “two-set” first-order minor cluster 2S-MC due to a minor value in
NC and a major cluster that identified EX. ex′ and ex′′ are two value configurations of EX that
correspond to the compared clusters by 2S-PCC. When:

1. EX does not change values between ex′ and ex′′, all the elements in 2S-PCC corresponding
to the observed descendants of the latent ancestors of NC (including EX) show no change
(i.e., are 0), whereas the elements corresponding to the observed descendants of NC show
a change (i.e., are 1),

and when

2. EX changes values between ex′ and ex′′, all the elements in 2S-PCC corresponding to the
observed descendants of the latent ancestors of NC (including EX) show a change (i.e., are
1), whereas the elements corresponding to the observed descendants of NC show no change
(i.e., are 0).

Proof 2S-MC represents a 1-order minor configuration of EN in which only NC has a
minor value, and all the other variables in EN have major values. Thus, when

• EX does not change values between ex′ and ex′′ (i.e., ex′ = ex′′), then

1. the major value configuration of the latent ancestors of NC is the same for both
exs (Proposition 3), and for each such latent, each of its observed children has
the same major local value (Proposition 2) for both exs. Thus, all the observed
children of the latent ancestors of NC do not change values in both clusters, and
all the corresponding elements in 2S-PCC are 0; and

2. NC may take either a major or minor value in response to ex′(= ex′′), depending
on the probabilities of NC to take any of its values conditioned on the values
NC’s direct parent takes. The result of the first case is a major cluster (NC
and both its ancestors and descendants have major values) and that of the sec-
ond case is 1-MC. Since all NC’s ancestors and descendants have major values,
whereas NC has a minor value, this 1-MC is 2S-MC by definition. Using these
two clusters, LPCC creates 2S-PCC. Since NC d-separates its descendants (both
latents and observed) from its ancestors, the values of NC’s descendants are de-
termined only by NC in a way similar to that which we used to prove Proposi-
tion 3. Since we are concerned with the case in which NC takes different values
for ex′ and ex′′, its descendants too have different values in the two correspond-
ing configurations, and following Assumption 7, all of their observed children
have different values in the corresponding observed configurations and clus-
ters. Therefore, these children change their values between the clusters, as rep-
resented by 1s in the 2S-PCC.

• EX changes values between ex′ and ex′′, then

1. by Proposition 4, all the latent ancestors of NC have different values for ex′

and ex′′, and by Assumption 7, all the observed children of these latents have
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different values for ex′ and ex′′. Thus, in any 2S-PCC between two clusters
corresponding to ex′ and ex′′, all the elements that correspond to the observed
children of the latent ancestors of NC (including EX) show a change (i.e., are 1);
and

2. NC does not change values between ex′ and ex′′ because if it did, then by Propo-
sition 4, all of its latent descendants have different values for ex′ and ex′′, and
by Assumption 7, all of their observed children have different values in the two
corresponding observed configurations. And following, in any 2S-PCC between
two clusters corresponding to ex′ and ex′′, all the elements that correspond to
NC and its descendants would show a change (i.e., are 1). But, since as we al-
ready showed that all the observed children of the ancestors of NC are equal to 1
in these 2S-PCCs, it is contrary to the definition of a 2S-PCC that needs two sets
of two or more elements of different values. Thus, NC cannot change values be-
tween ex′ and ex′′. Following and by Proposition 3, all the latent descendants of
NC have certain values for this certain value of NC in both configurations, and
by Proposition 2, all the observed children of these latents have certain values
in the corresponding observed configurations. Thus, all the elements in 2S-PCC
that correspond to the observed children of NC and its descendants do not show
a change (i.e., are 0).

Note that the proof implicitly assumes that NC is on a serial connection emerging from
EX. In a diverging connection, all the latent variables that are on the paths other than the
one that includes NC can be considered with NC’s ancestors because both the latents on
the other paths and NC’s ancestors are d-separated (for these 2S-PCCs) by NC from its
descendants. Thus, the analysis proposed above for a serial connection generalizes also to
the diverging connection.

Theorem 3 Variables of a particular 2S-MSO are children of an exogenous latent variable EX
or any of its descendant latent non-colliders NC.

Proof I. Variables of 2S-MSO that are children of EX

We need, first, to prove that the children of EX always change values together and second,
that no other observed child of another latent can always change value with them. First,
Lemma 4 guarantees that the observed children of EX always change values together since
a value change of EX between two exs corresponds to the compared clusters in all 2S-PCCs
of 2S-MCs with the major clusters for EX. The remainder of the proof is divided into two
cases: 1) a serial connection and 2) a diverging connection. In case 1, there exists at least a
single 2S-PCC in which only the observed children of EX change. This 2S-PCC is between
a major cluster for EX and 2S-MC due to a minor value of the direct latent non-collider
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child NC14 of EX (e.g., L2 is the direct latent non-collider child of L1 in G3).15 Thus, only
the elements in 2S-PCC that correspond to the observed children of EX show a change and
are equal to 1 (e.g., PCC2,10 in Table 4), which guarantees that the observed children of
EX establish a 2S-MSO.

In case 2, the same analysis proposed in case 1 is repeated for each of the direct latent
non-collider children of EX in each of the paths that emerges from EX. Let us use the same
notation NC for each such direct child in each path in turn. In this case, not only do the
observed children of EX change each time EX changes, but also the observed descendants
of the other direct latent non-collider children of EX (in all paths except that which in-
cludes NC) change with EX. This shows that the observed children of EX change with the
observed descendants of the direct latent non-collider children of EX (all but the descen-
dants of NC), but never together with all of them (as at each time, another NC is excluded).
This guarantees that the observed children of EX establish a 2S-MSO.

II. Variables of 2S-MSO that are children of EX’s descendant NC
In a serial connection, we identify three possible situations in which either NC, its latent
descendant, or its latent ancestor takes a minor value. In each of these situations, no other
latent or observed variable can take a minor value because we focus the analysis on 2S-MC
through the evaluation of 2S-PCC between this minor cluster and a major cluster for EX.
For each of the three situations, EX may change its value or not, so we have to consider six
cases:

1. 2S-MC is due to a minor value of any of NC’s latent non-collider descendants, NC1,
and EX does not change value between two exs that correspond to the compared
clusters. Then, by Lemma 4 (first part), all of NC1’s observed descendants do change
values, but all the observed children of NC1’s latent ancestors, including those of
NC, do not change values.

2. 2S-MC is due to a minor value of any of NC’s latent non-collider descendants, NC1,
and EX changes value between two exs that correspond to the compared clusters.
Then, by Lemma 4 (second part), all of NC1’s observed descendants do not change
values, but all the observed children of NC1’s latent ancestors, including those of
NC, change values.

3. 2S-MC is due to a minor value of NC, and EX does not change value between two exs
that correspond to the compared clusters. Then, by Lemma 4 (first part), all of NC’s

14A) We focus on the latent non-collider NC that is the direct child of EX since only a minor value that NC
takes can d-separate EX and its observed children from NC’s observed children and the observed children
of the remaining latent non-colliders, and partition the elements in the corresponding 2S-PCC into two sets
in which the first consists of the observed children of EX and the second consists of the observed children
of all EX’s latent descendants. B) In our circumstances, where at least a single latent non-collider has been
combined with EX, the existence of such a latent variable is guaranteed. C) It is also guaranteed that the
1-MC due to the minor value of the direct latent child of EX is 2S-MC because it cannot be due to an observed
variable (see Case 2 above).

15We assume that all possible 1-MCs, including the one corresponding to a minor value of the direct latent
non-collider child NC of EX, are found. Practically, if we err in estimating the threshold on the maximal 2-MC
(as described above and in Appendix B), we may miss this 1-MC, but this is an identification issue that does
not affect the correctness of the theorem.
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observed descendants do change values, but all the observed children of its ancestors
do not.

4. 2S-MC is due to a minor value of NC, and EX changes value between two exs that
correspond to the compared clusters. Then, by Lemma 4 (second part), all of NC’s
observed descendants do not change values, but all the observed children of its an-
cestors do.

5. 2S-MC is due to a minor value of NC’s latent non-collider ancestor, NC1, and EX
does not change value between two exs that correspond to the compared clusters.
Then, by Lemma 4 (first part), all the observed children of NC1 and of its latent
descendants, including those of NC, change values.

6. 2S-MC is due to a minor value of NC’s latent non-collider ancestor, NC1, and EX
changes value between two exs that correspond to the compared clusters. Then, by
Lemma 4 (second part), all the observed children of NC1 and of its latent descen-
dants, including those of NC, do not change values.

That is, in all six cases, NC’s observed children change values together; in some 2S-
PCCs they change values with observed children of a latent non-collider ancestor of NC
and in some other 2S-PCCs with observed children of a latent non-collider descendant of
NC. Thus, not only will the set of all the observed children of NC always change values
together, but also no observed child of any of NC’s latent non-collider ancestors or de-
scendants can be part of this set. This means that the set of observed children of NC is a
maximal set of variables that always change together, i.e., 2S-MSO.

Note that if NC does not have a latent non-collider descendant or ancestor, then Cases
1 and 2 and Cases 5 and 6, respectively, do not exist. In the special case where NC is a
leaf (i.e., does not have a latent descendant), Case 3 guarantees that there exists at least a
single 2S-PCC in which only the observed children of NC change.

In a diverging connection, all the latent variables that are on paths other than the one
that includes NC can be considered with NC’s ancestors because NC d-separates them all
from its descendants. Thus, the same analysis proposed in the serial case also holds in the
diverging case.

Theorem 4 A latent non-collider NC1 is a direct child of another latent non-collider NC2 (both
on the same path emerging in EX) only if:

• In all 2S-PCCs for which EX does not change, the observed children of NC1 always change
with those of NC2 and also in a single 2S-PCC without the children of NC2; and

• In all 2S-PCCs for which a latent non-collider leaf descendant of EX does not change, the
observed children of NC2 always change with those of NC1 and also in a single 2S-PCC
without the children of NC1.

Proof Let NC1 and NC2 be latent non-collider descendants of EX (both on the same path
emerging from EX), and NC1 be a direct child of NC2. A 2S-PCC may result from a 2S-MC
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due to a minor value in: 1) a latent ancestor of NC1 (including NC2 itself), 2) NC1, or 3) a
latent descendent of NC1. In the first type of such 2S-PCC (for which EX does not change),
Lemma 4 (first part) guarantees that the children of NC1 and NC2 change together in (1)
and do not change at all in (3), whereas in (2) only the observed children of NC1 change.
Thus, the children of NC1 always change with the children of NC2, and in addition also in
a single 2S-PCC in which the children of NC2 do not change.

In the second type of such 2S-PCC for which the observed children of the leaf latent
non-collider descendant of EX do not change, Lemma 4 (second part) guarantees that EX
changes value, and the children of NC1 and NC2 do not change at all in (1) and change to-
gether in (3), whereas in (2) only the observed children of NC2 change. Thus, the children
of NC2 always change with the children of NC1, and in addition also in a single 2S-PCC in
which the children of NC1 do not change. The same analysis is true for both a serial and
diverging connection.

Appendix B. Setting a threshold for the maximal size of 2-order minor clusters
(Section 4.4)

In this appendix, we describe the calculation of a 2-order minor cluster threshold (2MCT)
on the maximal size of 2-order minor clusters (2-MCs) that were introduced in Section 4.4.

This threshold represents the maximal size of a minor cluster that corresponds to a
2-order minor value configuration (Definition 13), i.e., a minor cluster that represents
exactly two endogenous variables in EN that have minor values. This threshold is sepa-
rately calculated to each EXi∈EX, when all endogenous variables in EN, except the two
mentioned, have major values. This threshold is an approximation for the maximal prob-
ability of having minor values as a response to any ex in exactly two descendants of EX,
where all other descendants of EX and the other exogenous variables in EX have major
values. This approximation is derived from the product of the maximal minor local ef-
fects (Definition B.1) of two observed descendants of EXi , the maximal major local effects
(Definition B.1) of the other observed descendants of EXi , the maximal major local effects
of the descendants of the other exogenous variables in EX, and the maximal prior of all
exogenous variables in EX. We define:

Definition B.1 A maximal major local effect on an observed child Oi of a latent parent
P ai is the maximal major effect on Oi over all values pa′i of P ai , such that MaxMAEi =
maxpa′iMAEi

(
pa′i

)
. Similarly, a maximal minor local effect is the maximal minor effect over

all values pa′i of P ai , such that MaxMIEi =maxpa′iMIEi
(
pa′i

)
.

First, we find MaxMAEV i and MaxMIEV i , which are the sorted vectors of MaxMAEt
and MaxMIEt (Definition B.1) of all Ot ∈Chi (observed descendants of EXi), respectively.
These vectors include the maximal major local effects and the maximal minor local effects
on the observed descendants of EXi sorted from the highest to the lowest. Note that EXi
replaces the actual direct parent of an observed variable for calculating the maximal major
and minor effects since the direct parent has not been identified and split yet from EXi at
this stage.
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Using these maximal major and minor effects and their sorted vectors for EXi , we can
calculate the approximation of the threshold. First, the maximal probability of exactly two
minor values among the descendants of EXi can be approximated by:

2∏
t=1

MaxMIEV i(t).

Second, the maximal probability of the other descendants of EXi to have major values can
be approximated by:

|Chi |−2∏
t=1

MaxMAEV i(t).

Third, the maximal probability of the other descendants of the other exogenous variables
to have major values can be approximated by:∏

EXj∈EX\EXi

∏
ot∈Chj

MaxMAEt .

Fourth, the maximal prior of all the exogenous variables is represented by:∏
EXk∈EX

maxex′kP (EXi=ex
′
k).

Then, the threshold for the maximal size of 2-order minor clusters (measured by the num-
ber of patterns in such a cluster) for EXi can be approximated by the product of all the
above approximations multiplied by the data size N:

2MCT i =N
2∏
t=1

MaxMIEV i(t)
|Chi |−2∏
t=1

MaxMAEV i(t)

∏
EXj∈EX\EXi

∏
ot∈Chj

MaxMAEt
∏

EXk∈EX
maxex′kP (EXi=ex

′
k).
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Appendix C. Assumptions LPCC makes and the meaning of their violation

Assumption Essential? If violated
Assumption 1 The underlying model is a Bayesian net-
work, BN=<G,Θ>, encoding a discrete joint probabil-
ity distribution P for a set of random variables V=L∪O,
where G=<V,E> is a directed acyclic graph (DAG) whose
nodes V correspond to latents L and observed variables O,
and E is the set of edges between nodes in G. Θ is the set
of parameters, i.e., the conditional probabilities of vari-
ables in V given their parents.
Assumption 2 No observed variable in O is an ancestor
of any latent variable in L (the measurement assumption;
Spirtes et al., 2000).

Yes [made also in
similar algorithms,
e.g., that of Silva
et al. (2006) for con-
tinuous joint proba-
bility distributions].

It neither was investigated theoretically nor stud-
ied experimentally what LPCC returns if the un-
derlying model is not a BN (i.e., there are cycles in
G), no latent variables exist in the domain, or an
observed variable is an ancestor of a latent vari-
able.

Assumption 3 The measurement model of G is pure. No (only needed for
the correctness of
the learned model).

When the true causal model is pure, LPCC will
identify it correctly (or find its pattern). How-
ever, when it is not pure, LPCC – similarly to BPC
(Silva et al., 2006) – will learn a pure sub-model
of the true model using two indicators for each la-
tent (compared to three indicators per latent that
are required by BPC).

Assumption 4 The true model G is MIM, in which each
latent has at least two observed children and may have
latent parents.

Yes [made also
by Silva et al.
(2006), which
requires three indi-
cators per latent].

If a latent has only one observed child, LPCC will
not identify this latent.

Assumption 5 A latent collider does not have any latent
descendants (and thus cannot be a parent of another la-
tent collider).

No (only needed for
the correctness of
the learned model).

If this assumption is violated, and a latent col-
lider has latent descendants, but none of them is
a collider, LPCC does not identify the latent de-
scendants as separate and join them, along with
their observed children, to the learned ancestor
latent collider. The case in which this assump-
tion is violated, and at least one of the latent de-
scendants of the collider is a latent collider itself,
needs further investigation.

Assumption 6 For every endogenous variable EN i in
G and every configuration pa′i of EN i ’s parents Pai ,
there exists a certain value en′i of EN i , such that

P
(
EN i = en′i

∣∣∣ Pai = pa′i
)
> P

(
EN i = en′′i

∣∣∣ Pai = pa′i
)

for
every other value en′′i of EN i . This assumption is related
to the most probable explanation of a hypothesis given
the data (Pearl, 1988).

No (only needed for
the correctness of
the learned model).

If more than one value of EN i gets the maximal
probability value given a configuration of par-
ents, LPCC still learns a model because the im-
plementation will randomly choose one of the
values that maximize the probability as the most
probable. However, the correctness of the algo-
rithm will not be guaranteed.

Assumption 7 First, for every EN i that is an observed
variable or an endogenous latent non-collider and for
every two values pa′i and pa′′i of P ai , MAV EN i

(
pa′ i

)
,

MAV EN i
(
pa′′ i

)
. Second, for every Cj that is a latent col-

lider and for every P aj ∈ Paj , there are at least two con-
figurations pa′j and pa′′j of P aj in which only the value of

P aj is different and MAV Cj
(
pa′ j

)
,MAV Cj

(
pa′′ j

)
.

Not essential but
very reasonable.

Regarding the second part of the assumption
first: if this assumption is violated, and a collider
has the same major value for any value of one of
its parents (while the values of the other parents
are the same), then its correlation to this parent
should be very weak, which challenges the exis-
tence of their connection in the domain, and of
course, the ability of any learning algorithm to
identify this connection.
Although the first part of the assumption may be
considered similarly (based on a parent-child cor-
relation), it also invites further investigation.

Assumption 8 Latent colliders do not share exactly the
same sets of exogenous ancestors.

Not essential but
very reasonable.

If this assumption is violated, and several latent
colliders share exactly the same set of exogenous
ancestors, LPCC does not identify the latent col-
liders as separate and learns a single collider as
the parent of all children of the latent colliders.
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