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Abstract

We introduce the term semiparametric mean field variational Bayes to describe the relax-
ation of mean field variational Bayes in which some density functions in the product density
restriction are pre-specified to be members of convenient parametric families. This notion
has appeared in various guises in the mean field variational Bayes literature during its his-
tory and we endeavor to unify this important topic. We lay down a general framework and
explain how previous relevant methodologies fall within this framework. A major contri-
bution is elucidation of numerical issues that impact semiparametric mean field variational
Bayes in practice.

Keywords: Bayesian Computing, Factor Graph, Fixed-form Variational Bayes, Fixed-
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1. Introduction

We expound semiparametric mean field variational Bayes, a powerful combination of the
notions of minimum Kullback-Leibler divergence and mean field restriction, that allows fast
and often accurate approximate Bayesian inference for a wide range of scenarios. Most of its
foundational literature and applications are in Machine Learning. However, semiparametric
mean field variational Bayes is also an important paradigm for Statistics in the age of very
big sample sizes and models.

Several articles concerned with deterministic approximate Bayesian inference, such as
Barber and Bishop (1997), Honkela et al. (2010), Knowles and Minka (2011), Tan and Nott
(2013), Wand (2014) and Menictas and Wand (2015), have demonstrated that modification
of mean field variational Bayes (e.g. Wainwright and Jordan, 2008) to include pre-specified
parametric families in the product density posterior approximation can have great practical
benefits. For example, Barber and Bishop (1997) used a pre-specified Multivariate Normal
distribution for the posterior density of the vector of adaptive parameters in multilayer
neural networks while Tan and Nott (2013) derived a closed form variational approximate
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algorithm for Bayesian Poisson mixed models by pre-specifying the fixed and random effects
parameters to have Multivariate Normal distributions. Knowles and Minka (2011) took a
message passing approach to mean field variational Bayes and explain how their approach
to inclusion of pre-specified parametric families allows modular inference algorithms for ar-
bitrary factors. Some recent articles on this topic have used the terms fixed-form variational
Bayes (Honkela et al., 2010) and non-conjugate variational message passing (Knowles &
Minka, 2011), to describe this modification of mean field variational Bayes. However, in
this article we argue for adoption of the term semiparametric mean field variational Bayes.

Although we give a precise mathematical description of semiparametric mean field vari-
ational Bayes in Section 2, it simply refers to the relaxation of ordinary mean field varia-
tional Bayes in which some of the density functions in the postulated product density form
are pre-specified to be particular parametric density functions, often chosen for reasons of
tractability. This is a ‘halfway house’ between fully parametric approximation of the joint
posterior density function of the model parameters with minimum Kullback-Leibler diver-
gence used for parameter choice and pure mean field variational Bayes in which there is
no parametric specification at all – only the product restriction. The following comments
apply to our general framework:

• Semiparametric mean field variational Bayes is a modification of mean field variational
Bayes that could be carried out via a message passing approach, as done by Knowles
and Minka (2011), or by using the more common q-density approach used in, for
example, Bishop (2006) and Ormerod and Wand (2010).

• The notion of conjugacy is not intrinsic to semiparametric mean field variational
Bayes. The principle may be applied regardless of conjugacy relationships amongst
the messages and/or q-densities. Therefore, the ‘non-conjugacy’ label used in recent
articles for semiparametric relaxations of mean field variational Bayes is somewhat
misleading.

• Contributions such as Knowles and Minka (2011) and Tan and Nott (2013) restrict
attention to pre-specification of parametric families that are of exponential family form
(e.g. Wainwright and Jordan, 2008). Whilst exponential family density functions have
tractability advantages when used in semiparametric mean field variational Bayes,
there is no intrinsic reason for only such densities to be used. In Section 5 we illustrate
this point using pre-specified Skew-Normal density functions, which are not within the
exponential family.

• Recent articles on non-conjugate variational message passing, such as Knowles and
Minka (2011), Tan and Nott (2013) and Menictas and Wand (2015) used fixed-point
iteration to minimize the Kullback-Leibler divergence or, equivalently, maximize the
lower bound on the marginal log-likelihood. Theorem 1 of Knowles and Minka (2011)
constitutes such an approach. However, any optimization approach could be used for
obtaining the Kullback-Leibler optimal parameters such as Newton-Raphson iteration,
quasi-Newton iteration, stochastic gradient descent, the Nelder-Mead simplex method
and various hybrids and modifications of such methods.

• Some articles, such as the recent Challis and Barber (2013), are concerned solely with
approximate inference via minimum divergence according to the pre-specification that
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the posterior is within a parametric family such as Multivariate Normal with banded
Cholesky covariance matrix factors. These contributions represent special cases of
semiparametric mean field variational Bayes and their findings have relevance to the
more general situation.

The main purposes of this article are:

(1) Bring together the literature on semiparametric mean field variational Bayes and
identify its core tenets.

(2) Lay out and discuss numerical issues that arise in semiparametric mean field varia-
tional Bayes, which have a significant practical implications for this body of method-
ology.

The resulting exposition constitutes the first compendium on semiparametric mean field
variational Bayes at its fullest level of generality. It can also be used as a basis for enhance-
ments of semiparametric mean field variational Bayes methodology.

We use two examples to elucidate the general principles and numerical issues. The
first, Example 1, involves a Bayesian model with a single parameter and, hence, is such
that mean field approximation is not required. The simplicity of Example 1 allows a deep
appreciation of the various issues with minimal notational overhead. Example 2 is the
Bayesian Poisson mixed model treated in Wand (2014) and benefits from semiparametric
mean field variational Bayes methodology. It demonstrates issues with high-dimensional
optimization problems that are intrinsic to practical implementation.

One of the main outcomes of our numerical investigations is that fitting exponential
family density functions via natural fixed-point iteration has some attractive properties.
By ‘natural’, we mean a simple version of fixed-point iteration that arises when natural
parametrizations are used. As we explain in Section 4, natural fixed-point iterations use
Riemannian gradients to step through the parameter space, which is generally more efficient
than ordinary gradients. The benefits of Riemannian gradient-based algorithms for Machine
Learning problems goes back at least to Amari (1998). Such algorithms are the basis of the
semiparametric mean field variational Bayes approach of Honkela et al. (2010).

In Section 2 we describe semiparametric mean field variational Bayes in full generality.
A general overview of optimization strategies, pertinent to semiparametric mean field vari-
ational Bayes, is given in Section 3. The important special case of pre-specified exponential
family density functions is treated in Section 4. Section 5 deals with the more difficult
non-exponential family case via an illustrative example. Some closing remarks are given in
Section 6.

2. General Principles

Semiparametric mean field variational Bayes is an approximate Bayesian inference method
based on the principle of minimum Kullback-Leibler divergence. For arbitrary density
functions p1 and p2 on Rd,

KL(p1 ‖ p2) ≡
∫
Rd
p1(x) log

{
p1(x)/p2(x)

}
dx
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denotes the Kullback-Leibler divergence of p2 from p1. Note that

KL(p1 ‖ p2) ≥ 0 for any p1 and p2. (1)

Consider a generic Bayesian model with observed data DDD and parameter vector (θ,φ).
The reason for this notational decomposition of the parameter vector will soon become
apparent. Throughout this section we assume that (θ,φ) and DDD are continuous random
vectors with density functions p(θ,φ) and p(DDD). The situation where some components are
discrete has similar treatment with summations replacing integrals. Bayesian inference for
θ and φ is based on the posterior density function

p(θ,φ|DDD) =
p(DDD ,θ,φ)

p(DDD)
.

The denominator, p(DDD), is usually referred to as the marginal likelihood or the model evi-
dence.

Let q(θ,φ) be an arbitrary density function over the parameter space of (θ,φ). The
essence of variational approximate inference is to restrict q(θ,φ) to some class of density
functions Q and then use the optimal q-density function, given by

q∗(θ,φ) = argmin
q∈Q

KL
{
q(θ,φ)

∥∥∥ p(θ,φ|DDD)
}
, (2)

as an approximation to the posterior density function p(θ,φ|DDD).
Simple algebraic arguments (e.g. Section 2.1 of Ormerod and Wand, 2010) lead to

log p(DDD) = KL
{
q(θ,φ)

∥∥∥ p(θ,φ|DDD)
}

+ log p(DDD ; q) (3)

where

p(DDD ; q) ≡ exp

[∫ ∫
q(θ,φ) log

{
p(y,θ,φ)

q(θ,φ)

}
dθ dφ

]
. (4)

From (1) we have
p(DDD ; q) ≤ p(DDD) for any q(θ,φ)

showing that p(DDD ; q) is a lower bound on the marginal likelihood. The non-negativity
condition (1) means that an equivalent form for the optimal q-density function is

q∗(θ,φ) = argmax
q∈Q

p(DDD ; q). (5)

This alternative optimization problem has the attractive interpretation of q∗(θ,φ) being
chosen to maximize a lower bound on the marginal likelihood. For the remainder of this
article we work with (5) rather than (2).

Parametric variational approximate inference involves setting

Q = {q(θ,φ; ξ) : ξ ∈ Ξ},

corresponding to a parametric family of density functions with parameter vector ξ ranging
over Ξ. In this case (5) reduces to

q∗(θ,φ) = argmax
ξ∈Ξ

p(DDD ; q, ξ), (6)
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where p(DDD ; q, ξ) is the marginal likelihood lower bound defined by (4), but with the depen-
dence on ξ reflected in the notation.

An early contribution of this type is Hinton and van Camp (1993) who used minimum
Kullback-Leibler divergence for Gaussian approximation of posterior density functions in
neural networks models. Gaussian Q families have also been used by Lappalainen and
Honkela (2000), Archambeau et al. (2007), Raiko et al. (2007), Nickisch and Rasmussen
(2008), Honkela and Valpola (2005), Honkela et al. (2007), Honkela et al. (2008) and Opper
and Archambeau (2009). The recent contribution by Challis and Barber (2013) is an in-
depth coverage of Gaussian minimum Kullback-Leibler approximate inference. Salimans
and Knowles (2013) devised a stochastic approximation algorithm for solving (6) when Q is
a parametric family of exponential family form. Gershman et al. (2012) and Zobay (2014)
investigated Gaussian-mixture extensions.

In what one may label a nonparametric variational approximation approach, ordinary
mean field variational Bayes uses restricted q-density spaces such as

Q = {q(θ,φ) : q(θ,φ) = q(θ1) · · · q(θM ) q(φ)} for some partition {θ1, . . . ,θM} of θ. (7)

The word ‘nonparametric’ is justified by the fact that there is no pre-specification that the
q-density, or any of its factors, belong to a particular parametric family. Restriction of
q(θ,φ) to a product density form is the only pre-specification being made. An iterative
scheme for solving (5) under (7) follows from the last displayed equation given in Section
10.1.1 of Bishop (2006). The scheme is listed explictly as Algorithm 1 of Ormerod and Wand
(2010). Note that a simple adjustment that caters for (θ,φ), rather than θ, is required for
notation being used here. Gershman et al. (2012) also use the word ‘nonparametric’ to
describe a variational approximation approach. However, their methodology is parametric
in the sense of the terminology that we are using here.

We propose that the term semiparametric mean field variational Bayes be used for
restrictions of the form:

Q = {q(θ,φ) : q(θ,φ) = q(θ1) · · · q(θM ) q(φ; ξ), ξ ∈ Ξ} (8)

where {q(φ; ξ) : ξ ∈ Ξ} is a pre-specified parametric family of density functions in φ. Un-
der (8) there is no insistence on the q(θi) having a particular parametric form. For models
possessing particular conjugacy properties the optimal q-densities, q∗(θi), will belong to
relevant conjugate families. However, in general, the optimal q-densities of the θi can as-
sume arbitrary forms; see, for example, Figure 6 of Pham et al. (2013). The quality of a
variational approximation is limited by the restrictions imposed by the particular choice of
Q. Semiparametric mean field variational Bayes imposes a product density restriction and
then a parametric constraint on one of the factors. The overall quality of the approximation
is determined by the combination of these two restrictions. While the estimated nonpara-
metric factors are optimal given the product restriction, a parametric restriction with fewer
product assumptions may be more accurate.

We now turn to the practical problem of solving the optimization problem (5) when the
q-density restriction is of the form (8). Appropriate strategies for solving (5) depend on the
nature of q(φ; ξ) as a function of ξ and the set Ξ. Some possibilities are:

(A) Ξ is a finite set.
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(B) Ξ is an open subset of Rd for some d ∈ N and q(φ; ξ) is smooth function of ξ over
ξ ∈ Ξ.

(C) Ξ is an open subset of Rd for some d ∈ N and q(φ; ξ) is a non-smooth function of ξ
over ξ ∈ Ξ.

(D) Ξ is a complicated set that does not satisfy any of the descriptions given in (A)–(C).

For the vast majority of models in common use and q(φ; ξ) families (B) applies and most of
the remainder of this article is devoted to that case. However, we will first briefly deal with
(A) in Section 2.1, since it aids understanding of the semiparametric extension of mean field
variational Bayes. To date, we are unaware of any semiparametric mean field variational
Bayes contributions where (C) or (D) apply, so these cases are left aside.

2.1 Finite Parameter Space Case

Suppose that Ξ is a finite set. Then Algorithm 1 is the natural extension of the mean field
variational Bayes coordinate ascent algorithm given, for example, in Section 10.1.1 of Bishop
(2006) and Algorithm 1 of Ormerod and Wand (2010). In Algorithm 1, and elsewhere, the
notation θ\θi denotes the vector θ with the entries of θi excluded.

For each ξ ∈ Ξ:

Initialize: q(θ2), . . . , q(θM ).

Cycle:

q(θ1)←
exp

[
Eq(θ\θ1) q(φ; ξ){log p(y,θ,φ)}

]∫
exp

[
Eq(θ\θ1) q(φ; ξ){log p(y,θ,φ)}

]
dθ1

...

q(θM )←
exp

[
Eq(θ\θM ) q(φ; ξ){log p(y,θ,φ)}

]∫
exp

[
Eq(θ\θM ) q(φ; ξ){log p(y,θ,φ)}

]
dθM

until the increase in p(DDD ; q, ξ) is negligible.

q∗(θi; ξ)← q(θi), 1 ≤ i ≤M ; p(DDD ; q∗, ξ)← p(DDD ; q, ξ).

ξ∗ ← argmax
ξ∈Ξ

p(DDD ; q∗, ξ) ; q∗(θi)← q∗(θi; ξ
∗), 1 ≤ i ≤M .

Algorithm 1: Coordinate ascent algorithm for semiparametric mean field variational Bayes
when Ξ is a finite parameter space.

For each value of ξ in Ξ, Algorithm 1 is essentially the ordinary mean field variational
Bayes iterative algorithm — but with the density function of φ set to the parametric density
function q(φ; ξ). The optimal ξ is then found by maximizing over the approximate marginal
likelihood values that are recorded for each element of Ξ.
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2.2 Infinite Parameter Space Case

Algorithm 1 shows how to obtain the Kullback-Leibler-optimal q(θi) and q(φ; ξ) densities
in the case where Ξ is finite. However, for common parametric families such as the Normal
and Gamma, Ξ is infinite and the solution of (5) under (8) is more delicate. The coordinate
ascent idea used to obtain the q∗(θi) in Algorithm 1 can still be entertained. However, it
needs to be combined with an optimization scheme that searches for the optimal ξ over the
infinite space Ξ.

For the remainder of this article we focus on the problem of solving (5) under restric-
tion (B) on the q-density parameter space Ξ. We start by studying the criterion function
p(DDD ; q, ξ) and special forms that it takes under the mean field restriction. The notions of
entropy and factor graphs are shown to be very relevant and useful. We then introduce
two running examples, Example 1 and Example 2, to illustrate the issues involved. Since
Example 1 has only one parameter requiring inference, this is not a fully-fledged semipara-
metric mean field variational Bayes problem and the optimization problem is of the form
(6). Additionally, (6) for Example 1 is a bivariate optimization problem which allows deeper
probing of the numerical analytic issues. Example 2 uses the Poisson mixed model, treated
in Section 5.1 of Wand (2014), as our main semiparametric mean field variational Bayes
example. It is substantial enough to convey various practical issues but also has a closed
form log p(q; ξ) expression that allows purely algebraic exposition.

2.2.1 Entropy, Factor Graphs and the Marginal Log-Likelihood Lower
Bound

If x is a random vector having density function p then the corresponding entropy is given
by

Entropy(p) ≡ Ep{− log p(x)}.

For many common distributional families, the entropy admits an algebraic expression in
terms of the distribution’s parameters. For example, if

p(x;µ,Σ) = (2π)−d/2|Σ|−1/2 exp{−1
2(x− µ)T Σ−1(x− µ)}

is the Multivariate Normal density function of dimension d with mean vector µ and covari-
ance matrix Σ then

Entropy(p;µ,Σ) = 1
2 d{1 + log(2π)}+ 1

2 log |Σ|. (9)

Note that the entropy is independent of the mean vector µ.

Another entropy expression, which arises in many Bayesian models and the example of
Section 2.2.3, is that for the Inverse Gamma family of density functions. Let

x ∼ Inverse-Gamma(κ, λ)

denote the random variable x having density function

p(x;κ, λ) =
κλ

Γ(κ)
x−κ−1 exp(−λ/x), x > 0,
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with parameters κ, λ > 0. In this case

Entropy(p;κ, λ) = log(λ) + κ+ log{Γ(κ)} − (κ+ 1)digamma(κ) (10)

where digamma(x) ≡ (d/dx) log Γ(x) is the digamma function.

The next relevant concept is that of a factor graph, which we first explain via an exam-
ple. Consider the approximate Bayesian inference problem according to the semiparametric
mean field variational Bayes restriction (8). Figure 1 is the factor graph for an M = 9
example of (8) with the joint density function of all random vectors in the model factorizing
as follows:

p(x,θ,φ) = f1(θ1) f2(θ1,θ2,φ) f3(θ3) f4(θ4) f5(θ5,φ) f6(θ5) f7(θ6,φ) f8(θ6)

×f9(θ7,θ8,θ9) f10(θ2,θ3,θ4)
(11)

for factors f1, . . . , f10. Note that some of these factors depend on the data vector x, but the
dependence is suppressed in the fj notation. Specific examples are given in Sections 2.2.2
and 2.2.3. In Figure 1 the circles correspond to the components of the mean field product
restriction

q(φ)
9∏
i=1

q(θi) (12)

and are called stochastic nodes. The solid squares correspond to the factors fj , 1 ≤ j ≤ 10,
and are called factor nodes. Edges join each factor node fj to those stochastic nodes that
are included in the fj function.

θ1

θ2
θ3

θ4

θ5

θ6

θ7

θ8 θ9

φ

f1
f2

f3

f4

f5
f6

f7

f8
f9

f10

Figure 1: Factor graph corresponding to the model (11) and q-density product restriction
(12).
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Now consider the general case with semiparametric mean field restriction (8) and suppose
that p(x,θ, φ) has N factors fj , 1 ≤ j ≤ N . Then the marginal log-likelihood lower bound
admits the following expression in terms of the components of the corresponding factor
graph:

log p(DDD ; q, ξ) = Entropy{q(φ; ξ)}+

M∑
i=1

Entropy{q(θi)}+

N∑
j=1

Eq{log(fj)}.

The φ-localized component of log p(DDD ; q, ξ), which we denote by log p(DDD ; q, ξ)[φ], is

log p(DDD ; q, ξ)[φ] ≡ Entropy{q(φ; ξ)}+
∑

j∈ neighbors(φ)

Eq{log(fj)} (13)

where

neighbors(φ) ≡ {1 ≤ j ≤ N : fj is a neighbor of φ on the factor graph}

= {1 ≤ j ≤ N : fj involves φ}.

For the factor graph shown in Figure 1 neighbors(φ) = {2, 5, 7} and so have

log p(DDD ; q, ξ)[φ] = Entropy{q(φ; ξ)}+ Eq{log(f2)}+ Eq{log(f5)}+ Eq{log(f7)}.

as the φ-localized component of log p(DDD ; q, ξ).
For large Bayesian models it is prudent to maximize this localized approximate log-

likelihood as part of a coordinate ascent scheme involving all q-density parameters. Such an
approach, combined with the locality property of mean field variational Bayes (e.g. Wand
et al., 2011, Section 3), allows for streamlined handling of arbitrarily large models. We
formalize this approach to semiparametric mean field variational Bayes in the shape of
Algorithm 2 in the upcoming Section 2.2.4. However, we first give some concrete examples
of mean field variational Bayes with pre-specified parametric family q-density functions.

2.2.2 Example 1: Gumbel Random Sample

A Bayesian model for a random sample x1, . . . , xn from a Gumbel distribution with location
parameter φ and unit scale is

p(x1, . . . , xn |φ) =

n∏
i=1

exp{−(xi − φ)− e−(xi−φ)}, φ ∼ N(µφ, σ
2
φ). (14)

The posterior density function of φ is

p(φ|x) =
exp

{
nφ− eφ

∑n
i=1 e

−xi − 1
2σ2
φ

(φ− µφ)2
}

∫∞
−∞ exp

{
nφ′ − eφ′

∑n
i=1 e

−xi − 1
2σ2
φ

(φ′ − µφ)2
}
dφ′

. (15)

The denominator on the right-hand side of (15) is not available in closed form. This implies
that numerical methods such as quadrature are required to obtain the Bayes estimate of φ
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and corresponding credible sets. Instead we consider minimum Kullback-Leibler divergence
approximation of p(φ|x) over a parametric pre-specified family. Let

Q = {q(φ; ξ) : ξ ∈ Ξ}

be such a parametric family. Then the optimal q-density is q(φ; ξ∗) where

ξ∗ = argmax
ξ∈Ξ

p(q; ξ). (16)

Figure 2 shows the factor graph of the model, with factors p(φ) and p(x|φ) neighboring the
stochastic node φ.

p(φ) φ p(x|φ)

Figure 2: Factor graph for the Example 1 model.

The marginal log-likelihood lower bound is

log p(x; ξ) = Entropy{q(φ; ξ)}+ Eq{log p(φ)}+ Eq{log p(x|φ)} (17)

and the contributions to log p(x; ξ) from the factors are

Eq{log p(φ)} = − 1
2σ2
φ

[
{Eq(φ; ξ)(φ)− µφ}2 + Varq(φ; ξ)(φ)

]
and Eq{log p(x|φ)} = nEq(φ; ξ)(φ)−Mq(φ; ξ)(1)

∑n
i=1 e

−xi − nx
(18)

where Mq(φ; ξ) is the moment generating function corresponding to q(φ; ξ).
Now suppose that

Q =

q(φ;µq(φ), σ
2
q(φ)) =

1√
2πσ2

q(φ)

exp

{
−(φ− µq(φ))

2

2σ2
q(φ)

}
: µq(φ) ∈ R, σ2

q(φ) > 0


corresponding to the Normal family with q-density parameter vector ξ = (µq(φ), σ

2
q(φ)) and

parameter space Ξ = R × R+ where R+ ≡ (0,∞) is the positive half-line. Then, from the
entropy result (9) and the well-known expression for the moment generating function of the
Normal distribution we obtain

log p(x;µq(φ), σ
2
q(φ)) = 1

2{1 + log(2π)}+ 1
2 log(σ2

q(φ)) + nµq(φ)

− exp(µq(φ) + 1
2σ

2
q(φ))

n∑
i=1

e−xi − 1
2σ2
φ
{(µq(φ) − µφ)2 + σ2

q(φ)} − nx.

It follows that the Kullback-Leibler optimal Normal q-density function is q(φ;µ∗q(φ), (σ
2
q(φ))

∗)
where [

µ∗q(φ)

(σ2
q(φ))

∗

]
= argmax

µq(φ)∈R,σ2
q(φ)

>0

{
fNEx1

(
µq(φ), σ

2
q(φ);n,

n∑
i=1

e−xi , µφ, σ
2
φ

)}
(19)

10



Semiparametric Mean Field Variational Bayes

and
fNEx1(x, y; a, b, c, d) = 1

2 log(y) + a x− b exp(x+ 1
2 y)− 1

2d{(x− c)
2 + y}. (20)

The main arguments satisfy x ∈ R, y > 0 and the auxiliary arguments are such that
a, b, d > 0 and c ∈ R. From (19) we see that the minimum Kullback-Leibler divergence
problem (16), where Q is the Normal family, reduces to a non-linear bivariate optimization
problem. Theory given in Challis and Barber (2013) applies to this example. For example,
results given in their Section 3.2 can be used to establish that fNEx1(x, y; a, b, c, d) is jointly
concave in x and

√
y.

In Section 3 we study strategies for solving such problems and apply them to this
example in Section 4.2.

2.2.3 Example 2: Poisson Mixed Model

A single variance component Poisson mixed model is

yi |β,u
ind.∼ Poisson[exp{(Xβ +Zu)i}], 1 ≤ i ≤ n,

u |σ2 ∼ N(0, σ2IK), σ2 | a ∼ Inverse-Gamma(1
2 , 1/a),

β ∼ N(0, σ2
β Ip), a ∼ Inverse-Gamma(1

2 , 1/A
2)

(21)

where X is an n×p fixed effects design matrix, Z is an n×K random effects design matrix.
Note that the prior on σ in (21) is the Half Cauchy distribution with scale parameter A:

p(σ) =
(2/π)

A{1 + (σ/A)2}
, σ > 0.

In (21) σβ > 0 and A > 0 are hyperparameters to be chosen by the analyst.
A mean field approximation to the joint posterior density function of the model param-

eters is
p(β,u, σ2, a |y) ≈ q(β,u) q(σ2) q(a). (22)

As detailed in Appendix A.3, the optimal q-density functions satisfy

q∗(σ2) and q∗(a) are both Inverse-Gamma density functions, and

q∗(β,u) ∝ exp
{
yT (Xβ +Zu)− 1T exp(Xβ +Zu)

−1
2σ
−2
β ‖β‖

2 − 1
2 Eq(σ2)(1/σ

2)‖u‖2
}
.

(23)

Since q∗(β,u) is not a standard form, numerical methods are required to obtain the varia-
tional approximate Bayes estimates and credible sets. Semiparametric mean field variational
Bayes alternatives take the form

p(β,u, σ2, a |y) ≈ q(β,u; ξ) q(σ2) q(a) (24)

where {q(β,u; ξ) : ξ ∈ Ξ} is a pre-specified parametric family of density functions. The
optimal density functions q(β,u; ξ∗), q∗(σ2) and q∗(a) are found by minimizing

KL
{
q(β,u; ξ) q(σ2) q(a)

∥∥∥ p(β,u, σ2, a |y)
}
. (25)
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We now focus on solving (25).
In Appendix C of Wand (2014) it is shown that

q∗(σ2) is an Inverse-Gamma(1
2(K + 1), Bq(σ2)) density function, and

q∗(a) is an Inverse-Gamma(1, Bq(a)) density function

where
Bq(σ2) = 1

2 [‖Eq(β,u;ξ)(u)‖2 + tr{Covq(β,u;ξ)(u)}] + µq(1/a) (26)

and Bq(a) = µq(1/σ2) +A−2 with the definition

µq(1/v) ≡ Eq(v)(1/v)

for a generic random variable v.

(β,u) σ2 ap(β,u|σ2)p(y|β,u) p(σ2|a) p(a)

Figure 3: Factor graph for the Example 2 model with stochastic nodes corresponding the
mean field restriction (24). The dashed line box contains the stochastic node
(β,u) and its neighboring factors.

It remains to obtain the optimal value of ξ in q(β,u; ξ). Figure 3 shows the factor graph
of the current model under mean field restriction (24). The lower bound on the marginal
log-likelihood, in terms of the stochastic nodes and factors of Figure 3, is

log p(y; q, ξ) = Entropy{q(β,u; ξ)}+ Entropy{q(σ2)}+ Entropy{q(a)}
+Eq{log p(y|β,u)}+ Eq{log p(β,u|σ2)}
+Eq{log p(σ2| a)}+ Eq{log p(a)}.

(27)

One could substitute (26) into the log p(y; q, ξ) expression. This resulting marginal log-
likelihood lower bound would depend on the q-densities only through ξ and could then be
maximized over ξ ∈ Ξ.

An alternative strategy, that scales better to larger models, is to use a coordinate ascent
scheme that maximizes log p(y; q, ξ)[(β,u)], the (β,u)-localized component of log p(y; q, ξ),
over ξ ∈ Ξ. The relevant factors are those neighboring (β,u) in Figure 3, corresponding to
the dashed line box. The quantity requiring maximization is then

log p(y; q, ξ)[(β,u)] = Entropy{q(β,u; ξ)}+ Eq{log p(y|β,u)}+ Eq{log p(β,u|σ2)}

= Entropy{q(β,u; ξ)}+ yT {X Eq(β,u;ξ)(β) +Z Eq(β,u;ξ)(u)}
−1TEq(β,u;ξ){exp(Xβ +Zu)}

− 1
2σ2
β

[
‖Eq(β,u;ξ)(β)‖2 + tr{Covq(β,u;ξ)(β)}

]
−1

2 µq(1/σ2)

[
‖Eq(β,u;ξ)(u)‖2 + tr{Covq(β,u;ξ)(u)}

]
+ const

(28)
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where ‘const’ denotes terms not depending on ξ.
Next, suppose thatQ corresponds to the family of Multivariate Normal density functions

in (β,u):

q(β,u;µq(β,u),Σq(β,u)) = (2π)−(p+K)/2|Σq(β,u)|−1/2

× exp

{
−1

2

([
β
u

]
− µq(β,u)

)T
Σ−1
q(β,u)

([
β
u

]
− µq(β,u)

)}
.

Then the (β,u)-localized approximate marginal log-likelihood reduces to

log p(y; q,µq(β,u),Σq(β,u))
[(β,u)] = 1

2 log |Σq(β,u)|+ yTCµq(β,u)

−1T exp
{
Cµq(β) + 1

2diagonal(CΣq(β,u)C
T )
}

− 1
2σ2
β

{
‖µq(β)‖2 + tr(Σq(β))

}
−1

2 µq(1/σ2)

{
‖µq(u)‖2 + tr(Σq(u))

}
+ const

(29)

where C ≡ [X Z], diagonal(M) is the vector containing the diagonal entries of the square
matrix M , and µq(β) is the sub-vector of µq(β,u) corresponding to β. Analogous definitions
apply to µq(u), Σq(β) and Σq(u). Appendix A.3 provides derivational details for (29).

For this example, the full coordinate ascent scheme has updates as follows:

perform one or more updates of (µq(β,u),Σq(β,u)) within an
iterative scheme for the optimization problem:

argmax
µ′
q(β,u)

,Σ′
q(β,u)

{
log p(y; q,µ′q(β,u),Σ

′
q(β,u))

[β,u]
}

Bq(a) ← µq(1/σ2) +A−2 ; µq(1/a) ← 1/Bq(a)

Bq(σ2) ← 1
2 [‖µq(u)‖2 + tr{Σq(u)}] + µq(1/a)

µq(1/σ2) ← 1
2(K + 1)/Bq(σ2).

For now, we deliberately leave the form of the (µq(β,u),Σq(β,u)) maximization strategy un-
specified. We also allow for one or more updates of an iterative scheme aimed at maximizing
log p(y; q,µ′q(β,u),Σ

′
q(β,u))

[β,u], rather than iterating to convergence at every iteration of the
full coordinate ascent scheme. Section 3 describes various optimization strategies that could
be used for updating (µq(β,u),Σq(β,u)).

Negligible absolute change in log p(y; q,µq(β,u),Σq(β,u)) can be used as a stopping cri-
terion for the iterations and an algebraic expression for this quantity is given in Appendix
A.3.

We return to Example 2 in Section 4.3.

2.2.4 General Semiparametric Mean Field Variational Bayes Algorithm

We now treat semiparametric mean field variational Bayes in general, with the set-up laid
out in Section 2 and restriction (8). Let log p(DDD ; q, ξ)[φ] be defined with respect to the
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factor graph of p(x,φ,θ) with stochastic nodes θ1, . . . ,θM and φ. Algorithm 2 is a general
coordinate ascent algorithm for approximate inference that builds on the standard mean
field variational Bayes algorithm.

Initialize: q(θ2), . . . , q(θM ).

Cycle:

perform one or more updates of ξ within an iterative scheme for
the optimization problem:

argmax
ξ′∈Ξ

{
log p(DDD ; q, ξ′)[φ]

}

q(θ1)←
exp

[
Eq(θ\θ1) q(φ; ξ){log p(y,θ,φ)}

]∫
exp

[
Eq(θ\θ1) q(φ; ξ){log p(y,θ,φ)}

]
dθ1

...

q(θM )←
exp

[
Eq(θ\θM ) q(φ; ξ){log p(y,θ,φ)}

]∫
exp

[
Eq(θ\θM ) q(φ; ξ){log p(y,θ,φ)}

]
dθM

until the absolute change in log p(DDD ; q, ξ) is negligible.

Algorithm 2: The general semiparametric mean field variational Bayes algorithm for restric-
tion (8) with log p(DDD ; q, ξ)[φ] defined with respect to factor graph of p(x,θ,φ) with stochastic
nodes θ1, . . . ,θM and φ.

For each of these approaches, there remains the practical problem of devising an opti-
mization scheme for log p(DDD ; q, ξ)[φ] and ensuring that it leads to the optimal parameters
being chosen. Section 3 deals with this problem.

2.3 Relationship to Existing Literature

The general principle of semiparametric mean field variational Bayes that we have laid
out in this section is not brand new and, in fact, instances of this principle have made
appearances in the literature since the late 1990s — although they are few in number. We
now briefly survey articles known to us that have a semiparametric mean field variational
Bayes component. As we will see, the terminology varies quite considerably.

Barber and Bishop (1997) uses the terms ensemble learning and hyperparameter adap-
tation for what essentially is a semiparametric mean field variational Bayes approach to
fitting multi-layer neural networks. They pre-specify Multivariate Normal distributions for
the coefficient vector but, in their Section 2.1, allow covariance matrix parameters to be un-
specified except for mean field assumptions. However, they do not include numerical details
for minimizing Kullback-Leibler divergence over the Multivariate Normal parameters.
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Honkela et al. (2010) adopt the phrase fixed-form variational Bayes in what is a quite
general approach to semiparametric mean field variational Bayes as summarized in their Al-
gorithm 1. Optimization of the pre-specified parametric component parameters is achieved
using the nonlinear conjugate gradient method, which we describe in Section 3.2. However,
Honkela et al. (2010) work with with Riemannian gradients which, they argue, are more
efficient than Euclidean gradients.

In Knowles and Minka (2011) the focus is incorporation of pre-specified exponential
family distributions whilst preserving the message passing aspect of a modular approach
to mean field variational Bayes, known as variational message passing. They arrive at an
extension which they label non-conjugate variational message passing. The exponential
family distribution parameters are chosen via fixed-point iteration, which we describe in
detail in Section 3.1.

Tan and Nott (2013) take a semiparametric mean field variational Bayes approach to
approximate inference in Bayesian generalized linear mixed models for grouped data. They
use pre-specified Multivariate Normal density functions for the random effects of each group
with mean field product restrictions and achieve good approximation accuracy via so-called
partially noncentered parameterizations.

In the case of pre-specified Multivariate Normal density functions, Wand (2014) ob-
tains an explicit form for the fixed-point iteration scheme of Knowles and Minka (2011)
and illustrated its use for the Poisson mixed model described in Section 2.2.3. In Luts
and Wand (2015) and Menictas and Wand (2015), semiparametric mean field variational
Bayes with Multivariate Normal pre-specification is applied, respectively, to count response
semiparametric regression and heteroscedastic semiparametric regression.

2.4 Advantages and Limitations of Algorithm 2

As just described in Section 2.3, Algorithm 2 is a very useful generalization of the ordinary
mean field variational Bayes algorithm and allows for tractable handling of a wider class of
models. For example, the heteroscedastic nonparametric regression model of Menictas and
Wand (2015) is such that ordinary mean field variational Bayes is numerically challenging if
one uses the same product restrictions as used in homoscedastic nonparametric regression.
The semiparametric mean field variational Bayes extension, based on Multivariate Normal
pre-specification of basis function coefficients, leads to an iterative scheme with closed form
updates. Simulation studies show very good accuracy compared with Markov chain Monte
Carlo-based inference. However Algorithm 2 is not guaranteed to converge and, when it
does converge, may result in mediocre approximate Bayesian inference. We close this section
by briefly discussing such limitations of Algorithm 2.

In cases where a generic iterative procedure is used to solve argmaxξ′∈Ξ{log p(D; q, ξ′)}
there is no guarantee that the lower bound is increased in a particular iteration or of
convergence in general. As a consequence, the convergence guarantees enjoyed by ordinary
mean field variational Bayes algorithms are not shared by their semiparametric extension.
As we demonstrate in Section 4.2, convergence does not occur for particular numerical
optimization strategies.

Lastly, there is the limitation imposed by the mean field restriction. Even though
mean field variational Bayes can lead to very accurate approximate inference, there are
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circumstances where its accuracy is quite poor. Some examples, with explanations for the
inaccuracy, are given in Wang and Titterington (2005) and Neville et al. (2014). Semipara-
metric mean field variational Bayes shares this limitation since parametric pre-specification
imposes a degradation in accuracy compared with ordinary mean field variational Bayes.

3. Numerical Optimization Strategies

In ordinary mean field variational Bayes, parameter optimization is achieved using a convex
optimization algorithm that converges under reasonable assumptions (e.g. Luenberger and
Ye, 2008). In the semiparametric extension there is no such convex optimization theory
and general numerical optimization has to be called upon to optimize the parameters in the
pre-specified parametric density function.

Numerical optimization is a major area of mathematical study with an enormous lit-
erature. Recent summaries are given in, for example, Givens and Hoeting (2005) and
Ackleh et al. (2010), with the former being geared towards optimization problems arising
in Statistics. The choice of optimization method typically is driven by factors such as
the smoothness of the function requiring optimization and availability of expressions for
low-order derivatives. Optimization methods with derivative information invariably take
the form of iterative schemes. Semiparametric mean field variational Bayes often has the
luxuries of smoothness and derivative expressions. It is also beneficial to have relatively sim-
ple iterative updates given the overarching goal of fast approximate inference. Therefore,
we gear our summary of numerical optimization strategies towards simple derivative-based
schemes. This is in keeping with the existing literature on parametric and semiparametric
variational inference.

Let f : D ⊆ Rd → R be a function and consider the problem of finding its maximum
or minimum value over a set D0 ⊆ D. If all partial derivatives of f exist then a necessary
condition for a maximum or minimum in the interior of D0 is the stationary point condition

∂

∂xj
f(x) = 0, 1 ≤ j ≤ d. (30)

This converts the optimization problem to a multivariate root-finding problem. However
(30) is not a sufficient condition for global optima since local optima and saddle points of
f inside D0 also satisfy (30). Properties of f , such as regions where it is concave or convex,
can aid the determination of global optima.

Throughout this section we make use of the derivative matrix and Hessian matrix no-
tation defined in Appendix A.2.

3.1 Fixed-Point Iteration

Assuming that the derivative vector Dxf(x) (defined formally in Appendix A.1) exists, the
stationary point condition (30) can be written

Dxf(x)T = 0 (31)

where 0 is the vector of zeroes. Fixed-point iteration aims to find points that satisfy (31),
which we denote generically by x∗. Such points are then candidates as maxima or minima
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of f . Firstly, (31) is rewritten in the form

x = g(x) (32)

for some function g : D ⊆ Rd → Rd. Given this g, fixed-point iteration simply involves
repeated evaluation of g, as given in Algorithm 3

Initialize: x← xinit for some xinit ∈ D.

Cycle:

x← g(x)

until convergence.

Algorithm 3: The fixed-point iteration algorithm in generic form.

Note, however, the following issues regarding fixed point iteration:

• For a given stationary point condition (31) there are numerous functions g for which
(32) holds. In other words, there are many possible fixed point algorithms available
to solve (31).

• Once g and xinit are chosen then the above algorithm is not necessarily guaranteed
to converge to a stationary point x∗. There is a large literature on convergence of
fixed-point iterative algorithms and good references on the topic include Section 8.1
of Ortega (1990) and Section 8.2 of Ackleh et al. (2010). For example Theorem 8.1.7
of Ortega (1990) asserts that convergence of Algorithm 3 is guaranteed when xinit is
sufficiently close to x∗, the components of g are differentiable at x∗ and

ρ
(
Dx g(x∗)

)
< 1.

Here ρ(A) denotes the spectral radius of the square matrix A, defined to be

ρ(A) ≡ maximum of the absolute values of the eigenvalues of A.

Theorem 8.4 of Ackleh et al. (2010) provides a similar condition in terms of the spectral
norm ‖Dx g(x∗)‖spec where

‖A‖spec ≡
√

largest eigenvalue of ATA.

• There are also theorems that guarantee convergence of Algorithm 3 for particular
choices of xinit. If D0 is a closed convex subset of D such that g : D0 → D0, the
entries of Dx g(x) are each bounded and continuous on D0 and

sup
x∈D0

‖Dx g(x)‖spec ≤ α < 1

then Algorithm 3 will converge from any initial point xinit ∈ D0 (Theorems 8.2 and
8.3 of Ackleh et al., 2010).
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Despite this elegant theory, it is difficult to apply in practice with regards to choosing g
and xinit so that Algorithm 3 converges. This is exemplified in Section 4.2 when we return
to the Example 1 optimization problem. We also note that ‖Dx g(x)‖spec < 1 near x∗ is a
sufficient but not necessary condition for convergence of fixed point iteration. Nevertheless,
the function

ρ
(
Dx g(x)

)
is a useful convergence diagnostic for fixed-point iteration. For instance, if ρ

(
Dx g(x)

)
� 1

during the iterations then this would indicate convergence problems and the possibility of
non-existence of a fixed point x∗.

Various adjustments to fixed-point iteration have been proposed to enhance convergence.
For example, in the context of semiparametric mean field variational Bayes, Section 7 of
Minka & Knowles (2011) describes a damping adjustment.

3.1.1 Newton-Raphson Iteration

Newton-Raphson iteration is a special case of fixed-point iteration for optimizing f with
the g function taking the form

gNR(x) = x− {Hxf(x)}−1Dxf(x)T (33)

where Hxf(x) denotes the Hessian matrix of f(x) as formally defined in Appendix A.1.
Assuming existence of {Hxf(x)}−1, it is easily shown that x = gNR(x) if and only if
Dxf(x)T = 0. This leads to Algorithm 4, which conveys the generic form of Newton-
Raphson iteration.

Initialize: x← xinit for some xinit ∈ D.

Cycle:

x← x− {Hxf(x)}−1Dxf(x)T

until convergence.

Algorithm 4: The Newton-Raphson algorithm in generic form.

Some pertinent features of Algorithm 4 are:

• The function gNR in (33) has the property

ρ
(
Dx gNR(x∗)

)
= 0 (34)

for stationary points x∗, A proof is given in Appendix A.4. Therefore, via Theorem
8.4 of Ackleh et al. (2010), convergence to x∗ is guaranteed from a sufficiently close
xinit.

• If xinit is such that Algorithm 4 is convergent to x∗ then, under certain regularity
conditions, convergence is quadratic, in that the number of significant figures doubles
on each iteration.
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• Locating xinit values sufficiently close to x∗ for convergence to occur can be difficult
in practice and it is common to combine Newton-Raphson iteration with more robust
optimization strategies, such as the Nelder-Mead simplex method.

• A disadvantage of Newton-Raphson iteration compared with other fixed-point itera-
tive schemes is the requirement for second order partial derivatives, corresponding to
the entries of the Hessian matrix Hx f(x). A feeling for the type of additional calculus
needed is given in Appendix A.7.

• A variant of Newton-Raphson optimization known as damped Newton-Raphson em-
ploys line searches (or backtracking) in order to achieve much improved convergence
behavior. See, e.g., Section 9.5.2 of Boyd and Vandenberghe (2004).

3.2 Nonlinear Conjugate Gradient Method

The nonlinear conjugate gradient method is based on the conjugate gradient method, an
established iterative approach to solving large systems of linear equations (Hestenes and
Stiefel, 1952). The former arises from applying the latter to the linear system that arises
from optimization of a multivariate quadratic function. Details of the nonlinear conjugate
gradient method are given in Section 10.8 of Press et al. (2007). Algorithm 5 lists the
Polak-Ribiére version of the nonlinear conjugate gradient method for maximization of f
over D. Since minimization of f is equivalent to maximization of −f it is straightforward
to adapt Algorithm 5 to the minimization problem. We choose the Polak-Ribiére form here,
but another one is the Fletcher-Reeves form given by β ← (vTcurrvcurr)/(v

T
prevvprev).

Initialize: x← xinit for some xinit ∈ D.

vprev ← Dx f(x)T ; α← argmax
α>0

f(x+ α vprev)

x← x+ α vprev ; s← vprev

Cycle:

vcurr ← Dx f(x)T ; β ← vTcurr(vcurr − vprev)/(v
T
prevvprev)

s← β s+ vcurr ; α← argmax
α>0

f(x+ α s)

x← x+ α s ; vprev ← vcurr

until convergence.

Algorithm 5: The nonlinear conjugate gradient method for maximization of the function f
with the Polak-Ribiére form of the β parameter.

A key aspect of the nonlinear conjugate gradient method is that, on each iteration, it
takes a step in the direction D f(x)T from the current position at x. This is the steepest
instantaneous direction on the f surface. The parameter denoted by β has several alter-
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native forms. Nonlinear conjugate gradient methods have been shown to have good global
convergence properties (Dai and Yuan, 1999).

3.3 Other Optimization Strategies

Other popular optimization strategies include ascent (or descent) algorithms (e.g. Boyd
and Vandenberghe, 2004, Section 9.3), quasi-Newton methods (e.g. Givens and Hoeting,
2005, Section 2.2.2.3), the Gauss-Newton method (e.g. Givens and Hoeting, 2005, Section
2.2.3), stochastic gradient descent (e.g. Bottou, 2004) and the Nelder-Mead simplex method
(Nelder and Mead, 1965). The last of these has the attraction of not requiring derivatives
of f and is generally more robust than derivative-based methods.

3.4 Application to Semiparametric Mean Field Variational Bayes

We now focus on the optimization component of Algorithm 2

argmax
ξ′∈Ξ

{
log p(DDD ; q, ξ′)[φ]

}
(35)

and discuss ways in which numerical optimization strategies described in Sections 3.1–3.3
are applicable.

The stationary condition for the maximizer in (35) is

Dξ log p(DDD ; q, ξ)[φ]T = 0

and this may be manipulated in any of a number of ways to produce an equation of the form
ξ = g(ξ) for some function g. Fixed-point iteration Algorithm 3 can then be entertained
but, as discussed in Section 3.1, converge is not guaranteed for arbitrary g. We study this
issue in the context of Examples 1 and 2 in Sections 4.2 and 4.3.

Newton-Raphson iteration involves iterative updates:

ξ ← ξ − {Hξ log p(DDD ; q, ξ)[φ]}−1Dξ log p(DDD ; q, ξ)[φ]T

and so is a candidate for insertion into Algorithm 2 for updating the pre-specified parametric
q-density parameters.

Another alternative is, of course, updating ξ according to one or more iterations of the
nonlinear conjugate gradient method given by Algorithm 5, or any other iterative optimiza-
tion scheme. However, convergence needs to be monitored. For high-dimensional ξ, speed
of convergence may be also be an important factor. Next we discuss an adjustment aimed
at improving the convergence speed of gradient-based algorithms.

3.4.1 Riemannian Geometry Adjustment

As explained in, for example, Section 6.2 of Murray and Rice (1993) the density function
family {q(φ; ξ) : ξ ∈ Ξ} can be viewed as a submanifold of a Riemannian manifold. Rie-
mannian manifolds do not necessarily have a flat Euclidean geometry. For example, the
Riemannian manifold corresponding to the Univariate Normal family: 1√

2πσ2
q(φ)

exp

{
−

(φ− µq(φ))
2

2σ2
q(φ)

}
: µq(φ) ∈ R, σ2

q(φ) > 0

 (36)

20



Semiparametric Mean Field Variational Bayes

has hyperbolic geometry (Murray and Rice, 1993, Example 6.6.2) which is curved. Therefore
notions such as closeness of two members of (36) and steepness of gradients when searching
over the parameter space Ξ = R×R+ are not properly captured by the Euclidean geometry
notions of distance and slope. Adjustments for the Riemannian geometry of the family often
improve convergence of optimization algorithms for solving problems such as (35). More
detailed discussion on this issue is given in Section 2.2 of Honkela et al. (2010) and Section
2.3 of Hoffman et al. (2013).

Consider an optimization method that uses gradients of the form

Dξ log p(DDD ; q, ξ)[φ]T

to find the direction of steepest descent of the objective function log p(DDD ; q, ξ)[φ]. The
Riemannian geometry adjustment is to instead use

[−E{Hξ log q(φ; ξ)}]−1Dξ log p(DDD ; q, ξ)[φ]T (37)

where the premultiplying matrix is the inverse Fisher information of q(φ; ξ). In the Machine
Learning literature (e.g. Amari, 1998) (37) is often labeled the natural or Riemannian
gradient of log p(DDD ; q, ξ)[φ] with respect to ξ and the corresponding geometry is called
information geometry. If q(φ; ξ) corresponds to the Univariate Normal family (36) then the
Fisher information matrix is diag(σ−2

q(φ),
1
2σ
−4
q(φ)). Therefore, from (37), the natural gradient

of log p(q;µq(φ), σ
2
q(φ))

[φ] with respect to (µq(φ), σ
2
q(φ)) is given by

σ2
q(φ)

∂p(q;µq(φ), σ
2
q(φ))

[φ]

∂µq(φ)

2σ4
q(φ)

∂p(q;µq(φ), σ
2
q(φ))

[φ]

∂σ2
q(φ)


T

. (38)

Honkela et al. (2010) is a major contribution to semiparametric mean field variational
Bayes methodology and their Algorithm 1 uses the nonlinear conjugate gradient method
(Algorithm 5) with natural gradients rather than ordinary gradients. Via both simple
examples and numerical studies, they make a compelling case for the use of natural gradients
for optimization of the parameters of the pre-specified parametric q-density function.

3.5 Summary of Semiparametric Mean Field Variational Bayes Ramifications

In this section we have discussed several iterative numerical optimization strategies. Any
of these are candidates for the updating ξ in the Algorithm 2 cycle. Special mention has
been given to the well-known Newton-Raphson iteration since it can achieve very rapid
convergence and the nonlinear conjugate gradient method which has been shown to be
effective in semiparametric mean field variational Bayes contexts when the Riemmannian
geometry adjustment of Section 3.4.1 is employed (Honkela et al., 2010).

General fixed-point iteration has been discussed in detail. It has the advantage of
yielding particularly simple iterative updates for ξ in Algorithm 2. Established theory
shows that the spectral radius of the derivative matrix of the fixed-point function can be
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used to assess the quality of the scheme. In Section 4 we will explain how a particular fixed-
point iteration scheme, which we call natural fixed-point iteration, has attractive properties
when q(·; ξ) is an exponential family density function. We will also revisit Examples 1 and 2
in Section 4 and make some comparisons among various numerical optimization strategies.
Natural fixed-point iteration is seen to perform particularly well.

4. Exponential Family Special Case

We now focus on the important special case where the parametric density function family
{q(φ; ξ) : ξ ∈ Ξ} can be expressed in exponential family form:

q(φ;η) = exp{T (φ)Tη −A(η)}h(φ), η ∈ H, (39)

where η is a one-to-one transformation of ξ and H is the image of Ξ under this transforma-
tion. In (39) A(η) is called the log-partition function and h(φ) is called the base measure.
For example, the Univariate Normal density function family used in Example 1:

q(φ;µq(φ), σ
2
q(φ)) =

1√
2πσ2

q(φ)

exp

{
−(φ− µq(φ))

2

2σ2
q(φ)

}
, µq(φ) ∈ R, σ2

q(φ) > 0,

can be expressed as (39) with

T (φ) =

[
φ
φ2

]
, η ≡

[
η1

η2

]
=

[
µq(φ)/σ

2
q(φ)

−1/(2σ2
q(φ))

]
, A(η) = −1

4 η
2
1/η2 − 1

2 log(−2η2)

and h(φ) = (2π)−1/2. The natural parameter space is H = {(η1, η2) : η1 ∈ R, η2 < 0}. Even
though semiparametric mean field variational Bayes can involve pre-specification of an ar-
bitrary parametric family, virtually all methodology and examples in the existing literature
involves pre-specification within an exponential family. Exponential family distributions
also play an important role in the theory of mean field variational Bayes (e.g. Sato, 2001;
Beal and Ghahramani, 2006; Wainwright and Jordan, 2008).

Now consider the general factor graph set-up described in Section 2.2.1 with the approx-
imate marginal log-likelihood log p(DDD ; q,η)[φ] given by (13) but as a function of the natural
parameter vector η. Define

NonEntropy{q(φ;η)} ≡
∑

j∈ neighbors(φ)

Eq(φ;η){log(fj)}

so that
log p(DDD ; q,η)[φ] = Entropy{q(φ;η)}+ NonEntropy{q(φ;η)}.

An advantage of working with exponential family density functions is that the entropy takes
the simple form:

Entropy{q(φ;η)} = A(η)− Dη A(η)η + E[exp{h(φ)}]

where the notation of Appendix A.2 is being used. Moreover, as shown in Lemma 1 of
Appendix A.5, the derivative vector of Entropy{q(φ;η)} is simply

Dη Entropy{q(φ;η)} = −ηT Hη A(η). (40)
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This implies that the stationary point condition

{Dη log p(q;η)[φ]}T = 0 (41)

is equivalent to
η = {Hη A(η)}−1DηNonEntropy{q(φ;η)}T . (42)

Algorithm 1 of Knowles and Minka (2011) is a fixed-point iteration scheme based on (42).
One further interesting and useful connection concerns the mean parameter vector

τ ≡ E{T (φ)}

which is related to the natural parameter vector via

τ = Dη A(η)T .

Under suitable technical conditions τ is a one-to-one transformation of η. Also the chain
rule for differentiation of a smooth function s, listed as Lemma 2 in Appendix A.5, is

Dη s = (Dτ s)(Dητ ) = (Dτ s)Dη{Dη A(η)T } = (Dτ s)Hη A(η).

which leads to
Dτ s = {Hη A(η)}−1Dη s. (43)

Putting all of these relationships together we have:

Result 1 Let ξ be an arbitrary differentiable one-to-one transformation of η. Then the
stationary point condition (41) is equivalent to each the following conditions:

(a) η = {HηA(η)}−1 DηNonEntropy{q(φ;η)}T ,

(b) η = {HηA(η)}−1(Dη ξ)T DξNonEntropy{q(φ; ξ)}T ,

(c) η = Dτ NonEntropy{q(φ; τ )}T and

(d) η = (Dτ ξ)T DξNonEntropy{q(φ; ξ)}T .

We make the following remarks concerning Result 1:

• Result 1(a) immediately gives rise to the following fixed-point iteration scheme in the
natural parameter space η ∈ H:

η ← {HηA(η)}−1DηNonEntropy{q(φ;η)}T . (44)

We refer to (44) as the natural fixed-point iteration scheme and denote the corre-
sponding fixed-point function by

gnat(η) ≡ {HηA(η)}−1DηNonEntropy{q(φ;η)}T .

According to the theory of fixed-point iteration discussed in Section 3.1, convergence
of (44) is implied by

ρ
(
Dη gnat(η)

)
< 1

in a neighborhood of the maximizer η∗.
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• Result 1(b)–(d) offer the possibility of more convenient forms for the fixed-point up-
dates in terms of derivatives of the common parameters or mean parameters. Par-
ticularly noteworthy is the fact that Result 1(c)–(d) do not require computation of
{HηA(η)}−1. We make use of this situation for the Multivariate Normal family in
Section 4.1.

• The Fisher information of q(φ : η) is

−E{Hη log q(φ;η)} = HηA(η)

which implies that the natural fixed-point iteration scheme (44) involves updating η
according to natural Riemannian gradients of NonEntropy(q; τ ). From Result 1(c),
an equivalent updating scheme is

η ← DτNonEntropy{q(φ; τ )}T

which simply involves updating η according to the direction of maximum slope on the
NonEntropy(q; τ ) surface in the τ space.

• The forms for the stationary point in Result 1 can also be used to derive iterative
Newton-Raphson schemes for maximizing log p(q;η)[φ]. An example, corresponding
to Result 1(a) and optimization within the η space, is

η ← η −
[
HηNonEntropy{q(φ;η)} − HηA(η)− (ηT ⊗ I)Dηvec{HηA(η)}

]−1

×[DηNonEntropy{q(φ;η)}T − HηA(η)η].

The vec operator flattens a square matrix into a column vector and is defined formally in
Appendix A.1.

Any of the other optimization methods mentioned in Section 3 can also be applied to
the problem of obtaining

η∗ ≡ argmax
η∈H

{log p(DDD ; q, ξ)[φ]} = argmax
η∈H

[A(η)− Dη A(η)η + NonEntropy{q(φ;η)}]

and those involving gradients benefit from the entropy derivative result (40). Additionally,
relationship (43) implies that natural (Riemannian) gradients of the objective function in
the natural parameter space are equivalent to ordinary Euclidean gradients in the mean
parameter space.

4.1 Multivariate Normal Special Case

We now focus on the important special case of q(φ; ξ) being a d-variate Multivariate Normal
density function:

q(φ;µq(φ),Σq(φ)) = (2π)−d/2|Σq(φ)|−1/2 exp{−1
2(φ− µq(φ))

TΣ−1
q(φ)(φ− µq(φ))}.

Let

ξ ≡

[
µq(φ)

vec(Σq(φ))

]
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be the vector of common parameters. An explicit form for the natural fixed point iteration
updates in terms of µq(φ) and Σq(φ) was derived by Wand (2014) and appears as equation
(7) there. However Result 1 affords a more direct derivation of the same result, that
benefits from (43) and the cancellation of the HηA(η) matrix. We can also obtain a neater
alternative explicit form by using a differentiation identity, given as Lemma 4 in Appendix
A.5. The essence of Lemma 4 is given in the appendix of Opper and Archambeau (2009).

Result 2 Natural fixed-point iteration for q(φ; ξ) corresponding to the N(µq(φ),Σq(φ)) den-
sity function is equivalent to the following updating scheme:

vq(φ) ← Dµq(φ)NonEntropy(q;µq(φ),Σq(φ))
T

Σq(φ) ← −{Hµq(φ)NonEntropy(q;µq(φ),Σq(φ))}−1

µq(φ) ← µq(φ) + Σq(φ)vq(φ).

Appendix A.6 provides details on how Result 2 follows from Result 1.
Result 2 facilitates a semiparametric mean field variational Bayes algorithm that requires

only the first and second order derivatives of NonEntropy(q;µq(φ),Σq(φ)) with respect to
µq(φ). Concrete illustrations are given in Section 4.3 and Appendix A of Menictas and
Wand (2015).

In the case where q(φ; ξ) is the Univariate Normal density function with mean µq(φ) and
variance σ2

q(φ) Result 2 leads to the following common parameter updates for the natural
fixed point iterative scheme:

vq(φ) ←
∂NonEntropy(q;µq(φ), σ

2
q(φ))

∂µq(φ)

σ2
q(φ) ← −1

/{
∂2 NonEntropy(q;µq(φ), σ

2
q(φ))

∂µ2
q(φ)

}
µq(φ) ← µq(φ) + σ2

q(φ) vq(φ).

(45)

Despite its use of natural gradients, there is no automatic guarantee that iteration of (45)
leads to convergence to the maximum of log p(DDD ; q, ξ)[φ] on any given cycle of Algorithm 2.
However, the fixed-point iteration theory summarized in Section 3.1 provides some guidance.
We now use Example 1 to illustrate this point using the natural fixed-point iteration scheme
(45), an alternative simpler fixed-point scheme and a Newton-Raphson scheme.

4.2 Application to Example 1

Consider again the Gumbel random sample example introduced in Section 2.2.2 and the
problem of minimum Kullback-Leibler approximation of p(φ|x) within the Univariate Nor-
mal family. As shown there, the optimization problem is encapsulated in (19) and (20).

The Newton-Raphson scheme that arises directly from (19) is[
µq(φ)

σ2
q(φ)

]
←

[
µq(φ)

σ2
q(φ)

]
− {HfNEx1(µq(φ), σ

2
q(φ);n,

∑n
i=1 e

−xi , µφ, σ
2
φ)}−1

×D fNEx1(µq(φ), σ
2
q(φ);n,

∑n
i=1 e

−xi , µφ, σ
2
φ)T .

(46)
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Differentiation with respect to (µφ, σ
2
φ) is suppressed in the D and H on the right-hand side

of (46). Simple calculus leads to (46) being equivalent to the fixed-point iterative scheme[
µq(φ)

σ2
q(φ)

]
← gNR

([
µq(φ)

σ2
q(φ)

]
;n,

n∑
i=1

e−xi , µφ, σ
2
φ

)
(47)

where

gNR

([
x

y

]
; a, b, c, d

)
≡

[
x
y

]
−

 −b ex+
1
2 y − 1/d −1

2 b e
x+

1
2 y

−1
2 b e

x+
1
2 y − 1

2y2
− 1

4 b e
x+

1
2 y

−1

×

 a− b ex+
1
2 y − (x− c)/d

1
2y −

1
2 be

x+
1
2 y − 1/(2d)

 .
According to (45), the natural fixed-point iteration scheme (44) takes the form (47), but
with gNR replaced by gnat where

gnat

([
x

y

]
; a, b, c, d

)
≡

 x+ {a− b ex+
1
2 y − (x− c)/d}/(b ex+

1
2 y + d−1)

1/(b ex+
1
2 y + d−1)

 .
Lastly, there is the very simple fixed-point iteration scheme that arises from full simpli-
fication of D fNEx1(µq(φ), σ

2
q(φ);n,

∑n
i=1 e

−xi , µφ, σ
2
φ)T = 0, and corresponds to fixed points

of

gsimp

([
x
y

]
; a, b, c, d

)
≡

 c+ d(a− b ex+
1
2 y)

1/(b ex+
1
2 y + d−1)

 .
In Figure 4 we compare gNR, gnat and gsimp in terms of the behavior of the spectral norm

function ρ
(
D g(x, y)

)
and convergence of the fixed-point iterative scheme. We simulated

data from the n = 20 version of the Gumbel random sample model (14) with the value of φ
set to 0. The sufficient statistic

∑20
i=1 exp(−xi) fully determines fNEx1 and has a mean of 20.

In an effort to exhibit typical behavior, we selected a sample that produced a sufficient statis-
tic value close to this mean. The actual value is

∑20
i=1 exp(−xi) ≈ 19.94. The hyperparam-

eters were set to µφ = 0 and σ2
φ = 1010. The optimal parameters in the minimum Kullback-

Leibler Univariate Normal approximation to p(φ|x) are (µ∗q(φ), (σ
2
q(φ))

∗) ≈ (0.2260, 0.0500).

We set up a 101 × 101 pixel mesh of (µq(φ), log(σ2
q(φ))) values around this optimum with

limits (µ∗q(φ)−5, µ∗q(φ)+5) and
(

log{(σ∗q(φ)/5)2}, log{(5σ∗q(φ))
2}
)
. The upper panels of Figure

4 show the

indicator of ρ
(
Dg(µq(φ), σ

2
q(φ))

)
< 1 for g ∈ {gNR, gnat, gsimp}.

The lower panels show the

indicator of fixed-point iteration converging when starting from (µq(φ), σ
2
q(φ)).

The top half of Figure 4 shows, via dark grey shading, that both ρ
(
D gNR(µq(φ), σ

2
q )
)

and ρ
(
D gnat(µq(φ), σ

2
q )
)

are below 1 in regions around the root. The dark grey region for
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Figure 4: Upper panels: Dark grey shading shows points where ρ
(
D g(µq(φ), σ

2
q )
)
< 1 for

g ∈ {gNR, gnat, gsimp}. Lower panels: Dark grey shading shows points from which
fixed-point iteration, based on g ∈ {gNR, gnat, gsimp}, converges if initialized from
that point. The optimum is shown by a cross in each panel and corresponds to
minimum Kullback-Leibler divergence for a single n = 20 sample of the Gumbel
random sample model with hyperparameters set to µφ = 0 and σ2

φ = 1010.

gnat is much larger than that of gNR, suggesting that the former has better convergence
properties according to the theory described in Section 3.1. The lower panels confirm this,
with gnat-based fixed-point iteration converging from every initial value on the pixel mesh,
but Newton-Raphson iteration not converging from the sub-region on the top and left-hand
side of the mesh. Also note that ρ

(
D gsimp(µq(φ), σ

2
q )
)
≥ 1 over the whole pixel mesh and

gsimp-based fixed-point iteration does not converge, regardless of initial point.

Figure 5 shows the iteration trajectories from four different starting values and four
iterative schemes based on the same data and hyperparameter values as used in Figure
4. Also shown in each panel is an image plot of the surface being maximized, with a
logarithmic scale used for σ2

q(φ). In addition to the fixed-point iteration schemes based on
gNR and gnat we include the nonlinear conjugate gradient method given in Algorithm 5 and
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the Riemannian geometry adjustment involving the natural gradients given by (38). In
most cases the iterations led to convergence to (µ∗q(φ), (σ

2
q(φ))

∗) and the first three iterates
are plotted. However, Newton-Raphson failed to converge from the starting values in each
of the upper panels and the subsequent iterates are outside of the image plot boundaries.

µq(φ)

lo
g(

σ q
(φ

)2 )
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Figure 5: Iteration trajectories of four iterative algorithms aimed at solving the minimum
Kullback-Leibler problem for a Gumbel random sample of size n = 20 with hy-
perparameters µq(φ) = 0 and σ2

q(φ) = 1010. The initial value differs for each

panel and is shown by the yellow dot. The iterative algorithms are: (1) Newton-
Raphson fixed-point iteration based on gNR, (2) natural fixed-point iteration based
on gnat, (3) ordinary non-linear conjugate gradient method and (4) Riemannian
non-linear conjugate gradient method.
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The most striking feature of Figure 5 is the directness with which natural fixed-point
iteration and the Riemannian non-linear conjugate gradient method converge from all four
starting points and the similarity of their trajectories. This behavior is in keeping with the
fact that both work with the more appropriate Riemannian gradients. The ordinary non-
linear conjugate gradient trajectories are not as direct. Similar observations are made in
Honkela et al. (2010). As demonstrated there, the payoffs from using Riemannian gradients
in non-linear conjugate gradient updating are greater in higher-dimensional versions of
semiparametric mean field variational Bayes. Based on Figure 5, we anticipate that natural
fixed-point iteration is also very good in higher dimensions, and this is corroborated by
experiments for Example 2 described in Section 4.3. Newton-Raphson fixed-point iteration
is seen to be unreliable for this optimization problem and nowhere near as robust as natural
fixed-point iteration. Lastly, we note that the behavior represented in Figures 4 and 5
persists across each of several other samples that we generated.

4.3 Application to Example 2

From (29) and some simple matrix algebra

NonEntropy(q;µq(β,u),Σq(β,u))

= yTCµq(β,u) − 1T exp
{
Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T )
}

−1
2tr

([
σ−2
β Ip 0

0 µq(1/σ2)IK

]
{µq(β,u)µ

T
q(β,u) + Σq(β,u)}

)
−1

2(p+K) log(2π)− 1
2 p log(σ2

β)− 1
2 KEq{log(σ2)} − 1T log(y!)

where
µq(1/σ2) = Eq(1/σ2)(1/σ

2).

The derivatives appearing in Result 2 are

Dµq(β,u)
NonEntropy(q;µq(β,u))

T = CT
[
y − exp{Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T )}
]

−
[
σ−2
β Ip 0

0 µq(1/σ2)IK

]
µq(β,u)

and

Hµq(β,u)
NonEntropy(q;µq(β,u)) =

−

(
CTdiag[ exp{Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T )}]C +

[
σ−2
β Ip 0

0 µq(1/σ2)IK

])
.

It follows that the updates take the explicit form

wq(β,u) ← exp{Cµq(β,u) + 1
2diagonal(CΣq(β,u)C

T )}

Σq(β,u) ←

(
CTdiag{wq(β,u)}C +

[
σ−2
β Ip 0

0 µq(1/σ2)IK

])−1

µq(β,u) ← µq(β,u) + Σq(β,u)

{
CT (y −wq(β,u))−

[
σ−2
β Ip 0

0 µq(1/σ2)IK

]
µq(β,u)

}
.
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This is equivalent to the fixed-point iteration scheme[
µq(β,u)

vech(Σq(β,u))

]
← gEx2

([
µq(β,u)

vech(Σq(β,u))

]
; y,C,

[
σ−2
β Ip 0

0 µq(1/σ2)IK

])

where

gEx2

([
µ

vech(Σ)

]
; y,C,M

)
≡


µ+

[
CTdiag{ω(µ,Σ)}C +M

]−1

×
[
CT {y − ω(µ,Σ)} −Mµ

]
vech

([
CTdiag{ω(µ,Σ)}C +M

]−1
)


and
ω(µ,Σ) ≡ exp{Cµ+ 1

2diagonal(CΣCT )}.

Note that the vech operator stores the unique entries of a symmetric matrix in a column
vector. A formal definition of vech is given in Appendix A.1.

We simulated data according to the following special case of the Poisson mixed model:

yij |Ui ∼ Poisson {exp(β0 + β1 xij + Ui)} , Ui|σ2 ∼ N(0, σ2),

1 ≤ i ≤ m, 1 ≤ j ≤ n, β ∼ N(0, σ2
β I),

σ2| a ∼ Inverse-Gamma(1
2 , 1/a), a ∼ Inverse-Gamma(1

2 , A
−2).

(48)

The hyperparameters were set at σβ = A = 105 and the sample sizes were m = 30, n = 5.
Note that (48) is a special case of (21) with Z = Im ⊗ 1n, where 1n is the n × 1 vector
with all entries equal to one. We then ran Algorithm 2 with q(β,u) pre-specified to be the
N(µq(β,u),Σq(β,u)) density function and a single natural fixed-point iteration in each cycle

based on gEx2. The fixed-point iteration search over values of [µTq(β,u) vech(Σq(β,u))]
T is

within an open subset of R560.
Figure 6 shows trace plots of log p(y; q,µq(β,u),Σq(β,u)) and ρ

(
DgEx2

)
, based on the

explicit expressions for DgEx2 given in Appendix A.7. The upper panel indicates that the
algorithm becomes close to convergence after 6 − 10 iterations. After the same number of
iterations the values of ρ

(
DgEx2

)
fall below 1 and settle at about 0.15.

Before leaving this example we note that numerical checks indicate that the optimal
Σq(β,u) matrix is approximately sparse, with dominant diagonal entries. This implies the
possibility of low-rank approximations to the above semiparametric mean field variational
Bayes algorithm given, as described in Section 4.1.3 of Challis and Barber (2013).

5. A Non-Exponential Family Example

In the previous section it was seen that semiparametric mean field variational Bayes with
q(φ; ξ) having an exponential family form (39) leads to simplifications of the Kullback-
Leibler minimization problem. However, q(φ; ξ) does not have to be restricted in this way.
In this section we illustrate semiparametric mean field variational Bayes with the q-density of
φ specified to be in a non-exponential family: the family of Skew-Normal density functions
(Azzalini and Dalla Valle, 1996). Even though this family has a multivariate extension,
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Figure 6: Trace plots of log p(y; q, ξ)[(β,u)] and ρ
(
DgEx2

)
for the version of the Poisson

mixed model given by (48) with sample sizes m = 30 and n = 5.

we restrict attention to the univariate case and, in particular, its use within the context of
Example 1.

Specification of q(φ; ξ) being within the family of univariate Skew-Normal density func-
tions entails having

q(φ; ξ) =

√
2

πσ2
q(φ)

exp

{
−

(φ− µq(φ))
2

2σ2
q(φ)

}
Φ

{
λq(φ)(φ− µq(φ))

σq(φ)

}
(49)

where Φ(x) ≡ (2π)−1/2
∫ x
−∞ e

−t2/2 dt is the N(0, 1) cumulative distribution function. The q-

density parameter vector is ξ = (µq(φ), σ
2
q(φ), λq(φ)) and the corresponding parameter space

is Ξ = R × R+ × R. Now consider the Example 1 setting with q(φ; ξ) restricted to the
Skew-Normal family (49). The marginal log-likelihood lower bound, given by (17) and (18),
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depends on the explicit expressions

Eq(φ;ξ)(φ) = µq(φ) +
σq(φ)λq(φ)√

(π/2)(1 + λ2
q(φ))

, Varq(φ;ξ)(φ) = σ2
q(φ)

{
1−

2λ2
q(φ)

π(1 + λ2
q(φ))

}

and Mq(φ;ξ)(t) = 2 exp
(
µq(φ) + 1

2σ
2
q(φ)t

2
)

Φ

 λq(φ)σq(φ)t√
1 + λ2

q(φ)


where, as defined in Section 2.2.2, Mq(φ;ξ) is the moment generating function corresponding
to q(φ; ξ). It also depends on

Entropy{q(φ; ξ)} = 1
2{1 + log(π/2) + log(σ2

q(φ))} −
√

2

π

∫ ∞
−∞

log Φ(λq(φ)t)Φ(λq(φ)t)e
−t2/2 dt

which does not simplify any further. Plugging these expressions into (17) and (18) we get
the Kullback-Leibler optimal Skew-Normal q-density function is q(φ;µ∗q(φ), (σ

2
q(φ))

∗, λ∗q(φ))
where µ∗q(φ)

(σ2
q(φ))

∗

λ∗q(φ)

 = argmax
µq(φ)∈R,σ2

q(φ)
>0,λq(φ)∈R

{
fSN

Ex1

(
µq(φ), σ

2
q(φ), λq(φ);n,

n∑
i=1

e−xi , µφ, σ
2
φ

)}
(50)

and

fSN
Ex1(x, y, z; a, b, c, d) = 1

2 log(y)−
√

2

π

∫ ∞
−∞

log{Φ(zt)}Φ(zt)e−t
2/2 dt

+a

{
x+ z

√
2y

π(1 + z2)

}
− 2b exp(x+ 1

2 y)Φ

(
z
√
y

√
z2 + 1

)

− 1

2d

{x+ z

√
2y

π(1 + z2)
− c

}2

+ y

{
1− 2z2

π(1 + z2)

} .
Optimization problem (50) is considerably more challenging than its Normal counterpart.
In particular, evaluations of the objective function and its derivatives require numerical
integration.

We solved (50) for three Gumbel random samples of size n = 5, 10 and 20 and with∑n
i=1 e

−xi ≈ n, corresponding to the mean of this sufficient statistic. The intractable
integral in fSN

Ex1 was approximated using a trapezoidal quadrature scheme similar to that
described in Appendix B.2 of Wand et al. (2011). The limits of the trapezoidal grid were
increased until the ratio of the global maximum and minimum absolute values of the in-
tegrand fell below 10−20. The number of grid points was then doubled until the relative
difference between two successive iterations was less than 10−20. Multiple start locations
and simulated annealing were used to locate global optima. Natural fixed-point iteration no
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longer applies in this non-exponential family example and optimization of fSN
Ex1 was accom-

plished using the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method via the optim()
function in the R computing environment (R Development Core Team, 2016).

Figure 7 shows the optimal Skew-Normal q-density functions, together with the exact
posterior density functions and those based on the Normal q-density restriction. We see that
the Normal approximation is inferior for very low sample sizes, but that the approximations
are about the same for moderate to large sample sizes.
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Figure 7: Skew-Normal minimum Kullback-Leibler approximate posterior density functions
for samples of size n = 5, 10 and 20 for the Example 1 Gumbel random sample
setting. The exact posterior density functions and those based on restriction to
the Normal family are also shown.

6. Closing Remarks

We have taken a broad view of mean field variational Bayes with parametric pre-specifica-
tion of one of the q-density components and coined the term ‘semiparametric mean field
variational Bayes’ for this general approach. As well as laying out the general principles of
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semiparametric mean field variational Bayes, we have provided an overview of the numerical
issues attached to this methodology. Natural fixed-point iteration has been identified as a
promising general approach to dealing with the Kullback-Leibler optimization problem and
its attractive Riemannian gradient properties have been elucidated. Proof of convergence of
a particular semiparametric mean field variational Bayes strategy appears to be too difficult
a goal. However, for fixed-point iteration strategies, the spectral radius of the derivative
matrix of the fixed-point update function is a reasonable diagnostic measure for checking
convergence.
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Appendix A. Definitions and Derivations

A.1 Matrix definitions and identity

If A is a d × d matrix then vec(A) is the d2 × 1 vector obtained by stacking the columns
of A underneath each other in order from left to right. The inverse vec operator is denoted
by vec−1. In addition we let vech(A) denote the 1

2 d(d+ 1)×1 vector obtained from vec(A)
by eliminating the above-diagonal entries of A. If A is symmetric then vech(A) contains
all of the unique entries of A.

The derivations also require the commutation and duplication matrix notation of Mag-
nus and Neudecker (1999). If A is an arbitrary d× d matrix then the commutation matrix
of order d, denoted by Kd, is the the d2 × d2 matrix of zeroes and ones for which

Kd vec(A) = vec(AT ).

If B is a symmetric but otherwise arbitrary d × d matrix then the duplication matrix of
order d is the d2 × 1

2 d(d+ 1) matrix of zeroes and ones for which

Ddvech(B) = vec(B).

The Moore-Penrose inverse of Dd is

D+
d ≡ (DT

dDd)
−1DT

d .

Note that
D+
d vec(B) = vech(B). (51)

Another useful notation is

Q(A) ≡ (A⊗ 1T )� (1T ⊗A)

for a general m×n matrix A and 1 a n× 1 vector of ones. The symbol � denotes element-
wise product.
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The following well-known matrix identity is used several times in the derivations:

vec(ABC) = (CT ⊗A) vec(B). (52)

A.2 Derivative Matrix and Hessian Matrix Notation

Our summary of derivative-based optimization, and subsequent discussion, benefits from
derivative vector and Hessian matrix notation. Such notation is not universal, and through-
out this article we follow the conventions of Magnus and Neudecker (1999).

If h is a Rp-valued with argument x ∈ Rd then the derivative matrix of h with respect
to x, denoted by Dxh(x), is the p× d matrix with (i, j) entry

∂ h(x)i
∂ xj

A concrete derivative vector example is given in Section 2.3 of Wand (2014).

In the case p = 1, the Hessian matrix of h with respect to x is the d× d matrix

Hxh(x) ≡ Dx[{Dx h(x)}T ].

A.3 Example 2 Derivational Details

Here provide derivational details pertaining to Example 2 discussed in Section 2.2.3.

According to product restriction (22), the optimal q-density functions satisfy

q∗(β,u) ∝ exp[Eq(σ2,a) log{p(y,β,u, σ2, a)}],

q∗(σ2) ∝ exp[Eq(β,u,a) log{p(y,β,u, σ2, a)}]

and q∗(a) ∝ exp[Eq(β,u,σ2) log{p(y,β,u, σ2, a)}]

(e.g. Bishop, 2006, Section 10.1.1). Simple algebraic steps lead to the forms given in (23).
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First we consider general pre-specified q-density families of the form q(β,u; ξ), ξ ∈ Ξ.
With the help of (10) each of the terms in (27), can be expressed as follows:

Entropy{q(β,u; ξ)}= −
∫
RK+2 log{q(β,u; ξ)}q(β,u; ξ) dβ du,

Entropy{q(σ2)}= log(Bq(σ2)) + 1
2(K + 1) + log{Γ(1

2(K + 1))}
−1

2(K + 3)digamma{1
2(K + 1)},

Entropy{q(a)}= log(Bq(a)) + 1− 2 digamma(1),

Eq{log p(y|β,u)}= yT {X Eq(β,u;ξ)(β) +Z Eq(β,u;ξ)(u)}
−1TEq(β,u;ξ){exp(Xβ +Zu)} − 1T log(y!),

Eq{log p(β,u|σ2)}=−1
2(p+K) log(2π)− 1

2 p log(σ2
β)

−1
2 K {log{Bq(σ2)} − digamma{1

2(K + 1)}}

− 1
2σ2
β

[
‖Eq(β,u;ξ)(β)‖2 + tr{Covq(β,u;ξ)(β)}

]
−1

2 µq(1/σ2)

[
‖Eq(β,u;ξ)(u)‖2 + tr{Covq(β,u;ξ)(u)}

]
,

Eq{log p(σ2| a)}=−1
2 log(π)− 1

2 {log{Bq(a)} − digamma(1)}

−3
2 {log{Bq(σ2)} − digamma{1

2(K + 1)}
−µq(1/a)µq(1/σ2)

and Eq{log p(a)}=−1
2 log(π)− log(A)− 3

2 {log{Bq(a)} − digamma(1)}
−µq(1/a)/A

2.

(53)

The (β,u)-localized approximate marginal log-likelihood expression given by (28) follows
immediately from the relevant terms in (53).

If q(β,u; ξ) is specified to be the N(µq(β,u),Σq(β,u)) density function then the terms in
(27) that depend on ξ = (µq(β,u),Σq(β,u)) are

Entropy{q(β,u;µq(β,u),Σq(β,u))}= 1
2(p+K){1 + log(2π)}+ 1

2 log |Σq(β,u)|,
Eq{log p(y|β,u)}= yTCµq(β,u) − 1T log(y!)

−1T exp{Cµq(β) + 1
2diagonal(CΣq(β,u)C

T )}

and Eq{log p(β,u|σ2)}=−1
2(p+K) log(2π)− 1

2 p log(σ2
β)

−1
2 K {log{Bq(σ2)} − digamma{1

2(K + 1)}

− 1
2σ2
β

{
‖µq(β)‖2 + tr(Σq(β))

}
−1

2 µq(1/σ2)

{
‖µq(µ)‖2 + tr(Σq(u))

}
(54)

where C ≡ [X Z]. The (β,u)-localized approximate marginal log-likelihood expression
given by (29) follows immediately. An explicit expression for log p(q;µq(β,u),Σq(β,u)), for
use a a stopping criterion, can be formed by combining the relevant terms from (53) with
those in (54).
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A.4 Proof of (34)

In this proof, all appearances of D and H are assumed to be with respect to x. Let

gNR(x) ≡ x− {H f(x)}−1 D f(x)T .

Then, using (52),

d gNR(x) = dx+ {H f(x)}−1{dH f(x)}{H f(x)}−1D f(x)T

−{H f(x)}−1dD f(x)T

= dx+ {H f(x)}−1vec−1[Dvec{H f(x)} dx]{H f(x)}−1D f(x)T

−{H f(x)}−1H f(x) dx

= {H f(x)}−1vec
(
I vec−1[D vec{H f(x)} dx]{H f(x)}−1D f(x)T

)
= {H f(x)}−1

(
[D f(x){H f(x)}−1]⊗ I

)
D vec{H f(x)} dx.

Therefore

D gNR(x) = {H f(x)}−1
(

[D f(x){H f(x)}−1]⊗ I
)
D vec{H f(x)}.

Since D f(x∗) = 0, we get
D gNR(x∗) = O,

where O is the d× d matrix with all entries equal to zero, and (34) follows immediately.

A.5 Lemmas and Proofs Required for Results 1 and 2

Lemma 1 If
q(x;η) = exp{T (x)Tη −A(η)}h(x)

is an exponential family density function then

Dη Entropy{q(x;η)} = −ηT Hη A(η).

Proof of Lemma 1
Since

Entropy{q(x;η)} = A(η)− Dη A(η)η − E[log{h(x)}]

we then have

Dη Entropy{q(x;η)} = DηA(η)− Dη{Dη A(η)η} = DηA(η)− Dη{ηT Dη A(η)T }.

Next,

d{ηT DηA(η)T } = (dη)T DηA(η)T + ηT d{DηA(η)T }

= DηA(η)dη + ηT Dη {DηA(η)T }dη

= {DηA(η) + ηT HηA(η)} dη
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and so

Dη{ηT DηA(η)T } = DηA(η) + ηT HηA(η).

Hence,

Dη Entropy{q(x;η)} = DηA(η)− {DηA(η) + ηT HηA(η)} = −ηT HηA(η).

Lemma 2 Let s be a differentiable scalar-valued function of x ∈ Rd and let u ∈ Rk be
one-to-one transformation of x. Then

Dx s =
(
Du s

) (
Dx u

)
.

Proof of Lemma 2
Lemma 2 is a restatement of Theorem 8, Chapter 5, of Magnus and Neudecker (1999).

Lemma 3 Let x ∼ N(µ,Σ) have a d-dimensional Multivariate Normal distribution. The
natural statistic is

T (x) =

[
x

vech(xxT )

]
and corresponding mean parameter is τ ≡ E{T (x)}. Then

Dτ

[
µ

vec(Σ)

]
=

[
I 0

−(I +Kd)(µ⊗ I) Dd

]
.

Proof of Lemma 3
The transformation from the common parameters to the mean parameters is

τ ≡
[
τ 1

τ 2

]
=

[
µ

vech(Σ + µµT )

]
and the inverse transformation is easily shown to be[

µ
vec(Σ)

]
=

[
τ 1

Ddτ 2 − vec(τ 1τ
T
1 )

]
.

Hence

Dτ

[
µ

vec(Σ)

]
=

[
Dτ1µ Dτ2µ

Dτ1vec(Σ) Dτ2vec(Σ)

]
=

[
I 0

−Dτ1vec(τ 1τ
T
1 ) Dd

]
.

To obtain an explicit expression for the bottom left-hand block we note that

dvec(τ 1τ
T
1 ) = (I +Kd) vec

{
(dτ 1)τT1

}
.

Then, with the help of (52),

vec
{

(dτ 1)τT1
}

= vec
{
I(dτ 1)τT1

}
= (τ 1 ⊗ I) dτ 1.
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Hence,

Dτ1vec(Σ) = (I +Kd)(τ 1 ⊗ I) = (I +Kd)(µ⊗ I)

and the lemma follows immediately.

Lemma 4 Let

φ(x;µ,Σ) ≡ (2π)−d/2|Σ|−1/2 exp{−1
2(x− µ)TΣ−1(x− µ)}

denote the d-variate N(µ,Σ) density function. Then

vec−1
{
Dvec(Σ) φ(x;µ,Σ)T

}
= 1

2Hµφ(x;µ,Σ).

Proof of Lemma 4

First note that

(2π)d/2φ(x;µ,Σ) = |Σ|−1/2 exp[−1
2tr{(x− µ)(x− µ)TΣ−1}].

Then, using the identity tr(ATB) = vec(A)Tvec(B),

(2π)d/2dΣφ(x;µ,Σ) = (dΣ|Σ|−1/2) exp[−1
2tr{(x− µ)(x− µ)TΣ−1}]

+|Σ|−1/2
(
dΣ exp[−1

2tr{(x− µ)(x− µ)TΣ−1}]
)

=−1
2 |Σ|

−3/2|Σ|tr(Σ−1dΣΣ) exp[−1
2tr{(x− µ)(x− µ)TΣ−1}]

+|Σ|−1/2 exp[−1
2tr{(x− µ)(x− µ)TΣ−1}]

×[−1
2tr{(x− µ)(x− µ)TdΣΣ−1}]

=−1
2(2π)d/2φ(x;µ,Σ)vec(Σ−1)T dvec(Σ)

−1
2(2π)d/2φ(x;µ,Σ)tr{(x− µ)(x− µ)TΣ−1(dΣ)Σ−1}

=−1
2(2π)d/2φ(x;µ,Σ)vec(Σ−1)T dvec(Σ)

+1
2(2π)d/2φ(x;µ,Σ) vec{Σ−1(x− µ)(x− µ)TΣ−1}Tdvec(Σ).

Therefore, by Theorem 6, Chapter 5, of Magnus and Neudecker (1999),

Dvec(Σ)φ(x;µ,Σ) = 1
2φ(x;µ,Σ)vec[Σ−1{(x− µ)(x− µ)TΣ−1 − I}]T .

Also,

|Σ|1/2(2π)d/2dµφ(x;µ,Σ) = exp[−1
2tr{(x− µ)(x− µ)TΣ−1}]

×[−1
2tr{dµ{(x− µ)(x− µ)T }Σ−1}]

= |Σ|1/2(2π)d/2φ(x;µ,Σ)tr{(x− µ)(dµ)TΣ−1}

= |Σ|1/2(2π)d/2φ(x;µ,Σ)Σ−1(x− µ)T dµ
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which simplifies to

dµφ(x;µ,Σ) = φ(x;µ,Σ)Σ−1(x− µ)T dµ.

The second differential with respect to µ is then

d2
µφ(x;µ,Σ) = {dµφ(x;µ,Σ)}Σ−1(x− µ)T dµ+ φ(x;µ,Σ)Σ−1(−dµ)T dµ

= {φ(x;µ,Σ)Σ−1(x− µ)T dµ}Σ−1(x− µ)T dµ+ φ(x;µ,Σ)Σ−1(−dµ)T dµ

= (dµ)T
(
φ(x;µ,Σ)[Σ−1{(x− µ)(x− µ)TΣ−1 − I}]

)
dµ.

Hence, using Theorem 6, Chapter 6, of Magnus and Neudecker (1999)

Hµφ(x;µ,Σ) = φ(x;µ,Σ)[Σ−1{(x−µ)(x−µ)TΣ−1− I}] = 2vec−1
{
Dvec(Σ)φ(x;µ,Σ)T

}
.

A.6 Derivation of Result 2

To make the derivation less cumbersome we will suppress the subscripts on the mean µ and
covariance matrix Σ. As in Wand (2014) we work with the natural statistic and natural
parameter pair

T (φ) =

[
φ

vech(φφT )

]
and η =

[
Σ−1µ

−1
2Ddvec(Σ−1)

]
.

The mean parameter vector is

τ = E{T (φ)} =

[
µ

vech(Σ + µµT )

]
.

In Lemma 3 in Appendix A.5 we show that

Dτ

[
µ

vec(Σ)

]
=

[
I 0

−(I +Kd)(µ⊗ I) Dd

]
and so Result 1(d) becomes[

Σ−1µ

−1
2 D

T
d vec(Σ−1)

]

=

[
I −(µT ⊗ I)(I +Kd)

0 DT
d

][
DµNonEntropy{q(φ;µ,Σ)}T

Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

] (55)

where we have used the fact that KT
d = Kd. Using (52), and the fact that

vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

]
40



Semiparametric Mean Field Variational Bayes

is symmetric, the first component of (55) is equivalent to

Σ−1µ=DµNonEntropy{q(φ;µ,Σ)}T

−(µT ⊗ I)(I +Kd)Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

=DµNonEntropy{q(φ;µ,Σ)}T

−(µT ⊗ I)(I +Kd)vec
(

vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

])
=DµNonEntropy{q(φ;µ,Σ)}T

−2(µT ⊗ I)vec
(

vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

])
=DµNonEntropy{q(φ;µ,Σ)}T

−2 vec
(

vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

]
µ
)

=DµNonEntropy{q(φ;µ,Σ)}T

−2 vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

]
µ.

(56)

The second component (55) is equivalent to

−1
2 D

T
d vec(Σ) = DT

d [Dvec(Σ)NonEntropy{q(φ;µ,Σ)}]T

which, under the constraint that Σ is symmetric, is equivalent to

Σ−1 = −2 vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

]
. (57)

In view of relationships (56) and (57), the natural fixed-point iteration scheme becomes
Σ−1

newµnew = [DµNonEntropy{q(φ;µ,Σ)}]Tµ=µold,Σ=Σold

−2 vec−1
(

[Dvec(Σ)NonEntropy{q(φ;µ,Σ)}]Tµ=µold,Σ=Σold

)
µold

Σnew =
{
− 2 vec−1

(
[Dvec(Σ)NonEntropy{q(φ;µ,Σ)}]Tµ=µold,Σ=Σold

)}−1

where (µold,Σold) and (µnew,Σnew), respectively, denote the old and new values of (µ,Σ).
The following simplification ensues:

µnew = µold + Σnew[DµNonEntropy{q(φ;µ,Σ)}]Tµ=µold,Σ=Σold

Σnew =
{
−2 vec−1

(
[Dvec(Σ)NonEntropy{q(φ;µ,Σ)}]Tµ=µold,Σ=Σold

)}−1

which is equivalent to the following updating scheme:
v ← DµNonEntropy{q(φ;µ,Σ)}T

Σ ←
(
− 2 vec−1

[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

])−1

µ ← µ+ Σv

(58)
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as given in Wand (2014). However, from Lemma 4 in Appendix A.5 (see also Appendix A of
Opper and Archambeau, 2009) and the fact that NonEntropy{q(φ;µ,Σ)} is an expectation
with respect to the N(µ,Σ) density function we have

vec−1
[
Dvec(Σ)NonEntropy{q(φ;µ,Σ)}T

]
= 1

2HµNonEntropy{q(φ;µ,Σ)}

which leads to a somewhat more elegant alternative to (58) given in Result 2.

A.7 Derivation of the Derivative Matrix of gEx2

From Section 4.3, the fixed-point iteration updating function is of the form

gEx2

([
µ

vech(Σ)

])
≡

 gEx2,µ

vech(GEx2,Σ)


where

GEx2,Σ ≡
[
CTdiag{ω(µ,Σ)}C +M

]−1
,

gEx2,µ ≡ µ+GEx2,Σ[CT {y − ω(µ,Σ)} −Mµ]

and ω(µ,Σ) ≡ exp{Cµ+ 1
2diagonal(CΣCT )}.

Note that the dependence of GEx2,Σ and gEx2 on y, C and M is suppressed here.
The derivative matrix of gEx2 with respect to [µ vech(Σ)]T is

D [
µ

vech(Σ)

] gEx2 =

[
Dµ gEx2,µ Dvech(Σ) gEx2,µ

Dµ vech(GEx2,Σ) Dvech(Σ) vech(GEx2,Σ)

]
.

We now give explicit expressions for each of these four components of the derivative ma-
trix. It is more efficient, notationally, to first obtain expressions for the derivatives of
vech(GEx2,Σ).

A.7.1 Expression for Dµ vech(GEx2,Σ)

Dµ vech(GEx2,Σ) = −D+
p+K(GEx2,Σ ⊗GEx2,Σ)Q(C)T diag{ω(µ,Σ)}C (59)

Derivation:

Using the second rule in Section 3.3.5 of Wand (2002), (52) and (51),

dµvech(GEx2,Σ) =D+
p+K dµvec

(
[CTdiag{ω(µ,Σ)C}+M ]−1

)
=−D+

p+Kvec
{
GEx2,Σ

(
dµ[CTdiag{ω(µ,Σ)}C +M ]

)
GEx2,Σ

}
=−D+

p+K

(
GEx2,Σ ⊗GEx2,Σ

)
vec[CTdiag{dµω(µ,Σ)}C].

From Theorem 2(b) of Wand (2014),

vec[CTdiag{dµω(µ,Σ)}C] = Q(C)Tdµω(µ,Σ).
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Lastly, we use the chain rule in Section 3.3.2 of Wand (2002) to get

dµω(µ,Σ) = dµ exp{Cµ+ 1
2diagonal(CΣCT )} = diag{ω(µ,Σ)}C dµ.

Combining, we then obtain

dµvec(GEx2,Σ) = −D+
p+K

(
GEx2,Σ ⊗GEx2,Σ

)
Q(C)Tdiag{ω(µ,Σ)}C dµ

and the stated expression then follow from Theorem 6, Chapter 5, of Magnus and Neudecker
(1999).

A.7.2 Expression for Dvech(Σ) vech(GEx2,Σ)

Dvech(Σ) vech(GEx2,Σ) = −1
2D

+
p+K(GEx2,Σ ⊗GEx2,Σ)

×Q(C)T diag{ω(µ,Σ)}Q(C)Dp+K .
(60)

Derivation:

The derivation is similar to that for DµGEx2,Σ. It differs in that it requires dΣω(µ,Σ)
rather than dµω(µ,Σ). This entails

dΣω(µ,Σ) = dΣ exp{Cµ+ 1
2diagonal(CΣCT )} = 1

2diag{ω(µ,Σ)}dΣdiagonal(CΣCT ).

But Theorem 2(a) of Wand (2014) gives

dΣdiagonal(CΣCT ) = Q(C)dΣvec(Σ) = Q(C)Dp+K dΣvech(Σ)

which leads to the stated result.

A.7.3 Expression for Dµ gEx2,µ

Dµ gEx2,µ =
(
[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I

)
Dp+KDµvech(GEx2,Σ)

where Dµvech(GEx2,Σ) is given by (59).

Derivation:

Using the second rule in Section 3.3.4 of Wand (2002) for differentiation of matrix products,

dµgEx2,µ = dµ+ dµ

(
GEx2,Σ[CT {y − ω(µ,Σ)} −Mµ]

)
= dµ+

(
dµGEx2,Σ

)
[CT {y − ω(µ,Σ)} −Mµ]

−GEx2,Σ[CTdµω(µ,Σ) +M dµ]

= dµ+ vec
{
I
(
dµGEx2,Σ

)
[CT {y − ω(µ,Σ)} −Mµ]

}
−GEx2,Σ[CTdiag{ω(µ,Σ)}C +M ] dµ,
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where we have used the fact that
(
dµGEx2,Σ

)
[CT {y−ω(µ,Σ)}−Mµ] is a column vector.

Application of (52) leads to

dµgEx2,µ = dµ+
(
[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I

)
dµvec(GEx2,Σ)

−GEx2,Σ[CTdiag{ω(µ,Σ)}C +M ] dµ

=
{
I +

(
[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I

)
Dµvec(GEx2,Σ)

−GEx2,ΣG
−1
Ex2,Σ

}
dµ

=
(
[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I

)
Dp+KDµvech(GEx2,Σ) dµ.

The given expression follows from Theorem 6, Chapter 5, of Magnus and Neudecker (1999).

A.7.4 Expression for Dvech(Σ) gEx2,µ

Dvech(Σ) gEx2,µ =
(

[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I
)
Dp+KDvech(Σ)vech(GEx2,Σ)

−1
2GEx2,ΣC

T diag{ω(µ,Σ)}Q(C)Dp+K

where Dvech(Σ)vech(GEx2,Σ) is given by (60).

Derivation:

Dealing with matrix products via the second rule in Section 3.3.4 of Wand (2002) we obtain

dΣgEx2,µ = dΣ

(
GEx2,Σ[CT {y − ω(µ,Σ)} −Mµ]

)
= (dΣGEx2,Σ)[CT {y − ω(µ,Σ)} −Mµ]

−GEx2,ΣC
T dΣω(µ,Σ)

= vec
(
I(dΣGEx2,Σ)[CT {y − ω(µ,Σ)} −Mµ]

)
−1

2GEx2,ΣC
T diag{ω(µ,Σ)}Q(C) dvec(Σ)

=
(
[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I

)
Dp+Kdvech(GEx2,Σ)

−1
2GEx2,ΣC

T diag{ω(µ,Σ)}Q(C)Dp+Kdvech(Σ)

=
(
[CT {y − ω(µ,Σ)} −Mµ]T ⊗ I

)
×Dp+KDvech(Σ) vech(GEx2,Σ)dvech(Σ)

−1
2GEx2,ΣC

T diag{ω(µ,Σ)}Q(C)Dp+Kdvech(Σ).

Once again we call upon Theorem 6, Chapter 5, of Magnus and Neudecker (1999) to com-
plete the derivation.
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