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Abstract

This paper develops an efficient computational method for solving a Gaussian process
(GP) regression for large spatial data sets using a collection of suitably defined local GP
regressions. The conventional local GP approach first partitions a domain into multiple
non-overlapping local regions, and then fits an independent GP regression for each local
region using the training data belonging to the region. Two key issues with the local
GP are (1) the prediction around the boundary of a local region is not as accurate as
the prediction at interior of the local region, and (2) two local GP regressions for two
neighboring local regions produce different predictions at the boundary of the two regions,
creating undesirable discontinuity in the prediction. We address these issues by constraining
the predictions of local GP regressions sharing a common boundary to satisfy the same
boundary constraints, which in turn are estimated by the data. The boundary constrained
local GP regressions are solved by a finite element method. Our approach shows competitive
performance when compared with several state-of-the-art methods using two synthetic data
sets and three real data sets.

Keywords: constrained Gaussian process regression, kriging, local regression, boundary
value problem, spatial prediction, variational problem

1. Introduction

Within its origin in geostatistics and known as kriging, the Gaussian process regression
(hereafter abbreviated as GP regression) has been developed to be a useful tool in machine
learning (Rasmussen and Williams, 2005). It provides the best linear unbiased prediction
computable by a simple closed-form expression, which also has a nice probabilistic interpre-
tation (MacKay, 1998). However, computing the exact solution of a GP regression requires
O(N3) operations when the number of data points is N , which is more than 10,000 or
100,000 in a typical geospatial data set. Such a computational complexity is prohibitively
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high for data sets of large size. The purpose of this paper is to develop a new computational
method to expedite the computation of GP regression for large data sets.

The computation issue for GP regression has received much attention in machine learn-
ing and spatial statistics. Since a major computation bottleneck for a GP regression is the
inversion of a big sample covariance matrix of size N × N , many approaches proposed to
approximate the sample covariance matrix with a more easily invertible one. Covariance
tapering (Furrer et al., 2006; Kaufman et al., 2008) tapers the original covariance function
to make a sample covariance matrix sparser and applies the sparse matrix computation
algorithms for faster inversion of the matrix. Low-rank approximation (Seeger et al., 2003;
Snelson and Ghahramani, 2006; Cressie and Johannesson, 2008; Banerjee et al., 2008; Sang
and Huang, 2012) introduces M latent variables and assumes a certain conditional indepen-
dence given the latent variables, which reduces the rank of the resulting sample covariance
matrix to M . The approximation of a Gaussian random field by a Gaussian Markov ran-
dom field has also been proposed (Lindgren et al., 2011). When a covariance matrix of
the approximated Gaussian random field is a Matérn covariance function, the sparse pre-
cision matrix for the Gaussian Markov random field can be explicitly constructed, and the
approximation can be efficiently computed.

On the other hand, local GP regression partitions a regression domain into local regions,
and an independent GP regression model is learned for each local region. Since the number
of observations belonging to a local region is much smaller than the total number of ob-
servations, the resulting sample covariance matrix for a local GP regression becomes much
smaller. However, because of the independence of the local GP regressions, two local GP
regressions for two neighboring local regions produce different predictions at the boundary
of the two regions. This discontinuity in prediction is not acceptable in applications. Many
proposed methods have combined local GP regressions into a global model. A popular ap-
proach is to take a mixture of local GP regressions through a Dirichlet mixture (Rasmussen
and Ghahramani, 2002), a treed mixture (Gramacy and Lee, 2008), Bayesian model aver-
aging (Tresp, 2000; Chen and Ren, 2009; Deisenroth and Ng, 2015), or a locally weighted
projection (Nguyen-Tuong et al., 2009). Another approach is to use multiple additive co-
variance functions of a global covariance and a local covariance (Snelson and Ghahramani,
2007; Vanhatalo and Vehtari, 2008), to simply construct a new local model for each testing
location (Gramacy and Apley, 2015).

Domain decomposition method (DDM, Park et al., 2011) is a specific local GP regres-
sion method that attempts to constrain the prediction of local GP regressions to be equal
at their shared domain boundaries. DDM was shown in the original paper to numerically
outperform several existing local GP methods in terms of computational cost and predic-
tion accuracy. Our proposed approach in this paper follows and advances DDM in several
aspects. In particular, we improve the way of constraining the prediction at boundaries
of local regions. In the original DDM paper, the predictions of two local GP regressions
for two neighboring local regions were constrained to be equal only at a finite number of
locations on the boundary of the two regions, so there is no guarantee that the predic-
tions are the same at other boundary locations. Our new approach considers a variational
formulation for a collection of boundary constrained local GP regressions to ensure that
the predictions of the two local GP regressions for neighboring regions are the same for all
points on the shared boundary. The variational formulation allows us to solve the boundary
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constrained local GP regressions using the finite element method. This is mathematically
more elegant and conceptually simpler than the previously somewhat ad hoc treatment. In
addition, we significantly improve the DDM by proposing two approaches for estimating
the boundary constraints (i.e., boundary values of local regions). The improved accuracy
of estimating these constraints leads to better prediction accuracy of our constrained local
GP regressions. Last, our new approach has better numerical stability than the DDM. It
was previously reported that the predictive variance estimate of the DDM can be negative
for some numerical examples (Pourhabib et al., 2014). Since the expression of the DDM’s
predictive variance estimate cannot be theoretically negative, the negative estimate is due
to numerical issues. Our new approach provides positive predictive variances for all the ex-
amples. The computation speed of the new approach is comparable to the DDM. When the
domain in Rd is partitioned into S local regions and each local region has NS training data
points, the computational cost of the proposed method is O(NN2

S + dS), where NS � N .
Since our method can be viewed as “patching” a collection of local GP regressions, we refer
to our method as patched Gaussian Process regression or patched GP for short.

The proposed patched GP method is theoretically applicable for an arbitrary input
dimension d, but the implementation of the approach may be practically difficult for d > 2
mainly due to hardness in generating finite element meshes for high dimensions. Therefore,
the practical application of the proposed approach would be a GP regression with a spatial
data set of large volume (i.e., the data fall in a domain in R2), which finds broad applications
in spatial statistics and remote sensing (Stein, 2012; Curran and Atkinson, 1998). We will
still describe and derive our approach for a general dimension to ease a possible future
extension of the approach to high dimensional problems. As a byproduct of this work, we
develop a finite element method for the boundary constrained GP regression problem, which
may have potential applications in GP solutions for partial differential equations (Graepel,
2003) or for linear stochastic differential equations having boundary conditions (Steinke and
Schölkopf, 2008).

The rest of the paper is organized as follows. Section 2 reformulates the GP regres-
sion as an optimization problem and also provides an equivalent variational formulation.
Section 3 considers the boundary constrained GP regression problem through optimiza-
tion and develops a finite element method for solving the equivalent variational problem.
Section 4 presents the core methodology of the proposed patched GP method for efficient
computation of GP regressions, including a finite element method for solving a boundary
constrained local GP regression, estimation of the boundary constraints, and estimation of
the parameters of the Gaussian process. Section 5 shows the numerical performance of the
patched GP method for different tuning parameters, and compares it to the full GP regres-
sion (i.e., full implementation of GP regression without approximation) and its precursor,
the DDM, using both synthetic and real data sets. Section 6 provides additional numerical
comparisons of the patched GP with several state-of-the-art approaches using real data sets.
Finally Section 7 concludes the paper.
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2. Reformulation of Gaussian Process Regression as An Optimization
Problem

A GP regression is formulated as follows: given a training set D = {(xn, yn), n = 1, . . . , N}
of N pairs of inputs xn and noisy outputs yn of a latent function f , obtain the predictive
distribution of f at a test location x∗, denoted by f∗ = f(x∗). We assume that the latent
function comes from a zero-mean Gaussian process with a covariance function k(·, ·) and
the noisy observations yi are given by

yi = f(xi) + εi, i = 1, . . . , N,

where εi ∼ N (0, σ2) are white noises independent of f(xi). Denote x = [x1, x2, . . . , xN ]′

and y = [y1, y2, . . . , yN ]′. The joint distribution of (f∗,y) is

P (f∗,y) = N
(

0,

[
k∗∗ k′x∗
kx∗ σ2I +Kxx

])
,

where k∗∗ = k(x∗, x∗), kx∗ = (k(x1, x∗), . . . , k(xN , x∗))
′ and Kxx is an N ×N matrix with

(i, j)th entity k(xi, xj). The subscripts of k∗∗,kx∗, and Kxx represent two sets of locations
between which the covariance is computed, and x∗ is abbreviated as ∗. The predictive
distribution of f∗ given y is

P (f∗|y) = N (k′x∗(σ
2I +Kxx)−1y, k∗∗ − k′x∗(σ2I +Kxx)−1kx∗). (1)

The predictive mean k′x∗(σ
2I + Kxx)−1y gives the point prediction of f(x) at location

x∗, whose uncertainty is measured by the predictive variance k∗∗ − k′x∗(σ2I +Kxx)−1kx∗.
Efficient calculation of the predictive mean and variance has been the focus of much research.

The predictive mean and variance can be derived using the viewpoint of the best linear
unbiased predictor (BLUP) as follows. Consider all linear predictors

µ(x∗) = u(x∗)
′y, (2)

which automatically satisfy the unbiasedness requirement E[µ(x∗)] = 0 since all random
variables yi have zero mean. We seek an N -dimensional vector u(x∗) such that the mean
squared prediction error E[µ(x∗)−f(x∗)]

2 is minimized. Since E[µ(x∗)] = 0 and E[f(x∗)] =
0, the mean squared prediction error equals the error variance var[µ(x∗) − f(x∗)] and can
be expressed as

σ(x∗) = u(x∗)
′E(yy′)u(x∗)− 2u(x∗)

′E(yf∗) + E(f2
∗ )

= u(x∗)
′(σ2I +Kxx)u(x∗)− 2u(x∗)

′kx∗ + k∗∗,
(3)

which is a quadratic form in u(x∗). It is easy to see σ(x∗) is minimized if and only if u(x∗) is
chosen to be (σ2I+Kxx)−1kx∗; moreover, the minimal value of σ(x∗) equals the predictive
variance given in (1).

The BLUP view of GP regression suggests a reformulation of GP regression as the
following optimization problem:

Minimize
u(x∗)∈RN

z[u(x∗)] =
1

2
u(x∗)

′Au(x∗)− f(x∗)
′u(x∗), (4)
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where A = (σ2I + Kxx) is an N × N positive definite matrix, and f(x∗) = kx∗ is a
N × 1 vectorial function. Note that the objective function in (4) equals half of the error
variance of a linear predictor given in (3) subtracting the constant term k∗∗/2. The one
half factor is introduced here to make subsequent formulas neat. The solution of (4) is
u†(x∗) = A−1kx∗ = (σ2I +Kxx)−1kx∗. Back to the GP regression problem, the predictive
mean is given by u†(x∗)

ty and the predictive variance is 2 z[u†(x∗)]+k∗∗, twice the optimal
objective value plus the variance of f∗ at the location x∗.

Usually we are interested in obtaining the predictive mean and variance at multiple
locations in a domain Ω ⊂ RN , where all training locations xi’s also belong to. To consider
the prediction at all locations in Ω, we consider the following optimization problem:

Minimize
u(·)∈[L2(Ω)]N

J(u) =

∫
Ω

{
1

2
u(x)′Au(x)− f(x)′u(x)

}
dx, (5)

where [L2(Ω)]N is the Cartesian product of N Hilbert spaces L2(Ω). The objective function
here is simply the integration of the objective function in the single location problem (4).
Since the optimal solution u†(x∗) obtains the minimum objective value of (4) at every
location x∗ ∈ Ω, u†(x∗) as a function of x∗ also solves the global problem (5).

According to a standard result from functional analysis (Ern and Guermond, 2004), the
problem (5) has an equivalent variational formulation, as follows.

Proposition 1 The vector u ∈ [L2(Ω)]N minimizes J(u) if and only if it solves the integral
equation ∫

Ω
u(x)′Av(x) dx =

∫
Ω
f(x)′v(x) dx for each v ∈ [L2(Ω)]N . (6)

The proof is given in Appendix A.

Throughout the rest of the paper, whenever no confusion may arise and to alleviate the
notation, we omit the Lebesgue measure under the integral sign. For example, we shall
write

∫
Ω u
′Av and

∫
Ω f
′v instead of

∫
Ω u(x)′Av(x) dx and

∫
Ω f(x)′v(x) dx.

3. Gaussian Process Regression with Boundary Constraints

The optimization problem (5) was introduced in previous section as a reformulation of the
GP regression. Now we introduce boundary constraints to the GP regression through this
optimization problem and develop a finite element solution for the corresponding variational
formulation. This finite element solution will serve as a building block in the next section
for the patched GP regression, which consists of a collection of boundary constrained GP
regressions.

3.1 Constrained Optimization Problem and Its Variational Formulation

We require that the domain Ω is a Lipschitz bounded open set. Let ∂Ω denote the boundary
of the domain Ω. We need to restrict our attention to smooth functions and specifically
consider only solution vectors in the Sobolev space [H1(Ω)]N instead of [L2(Ω)]N , where
H1(Ω) := {u ∈ L2(Ω); ∂iu ∈ L2(Ω), 1 ≤ i ≤ d} with ∂iu denoting the partial derivative of u
with respect to the ith dimension of input. We cannot use the bigger L2(Ω) space because
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the value of a function in this space can be unbounded on ∂Ω and so not well-defined. For
example, take Ω = (0, 1) and u(x) = x−1/3. It is clear that u(x) ∈ L2(Ω) but u(0) = ∞.
On the other hand, the values of a function in H1(Ω) are bounded at its domain boundary.
In fact, if u ∈ H1(Ω), then u restricted on ∂Ω, which we denote by u|∂Ω, is a member of

H1/2(∂Ω) := {u ∈ L2(Ω) : u(x)−u(y)

||x−y||(d+1)/2 ∈ L2(Ω × Ω)} (Ern and Guermond, 2004, Theorem

B.52).
Consider the boundary constraints of the form y′u(x) = b(x) for some known function

b ∈ H1/2(∂Ω). Since y′u(x) can be interpreted as a linear predictor at location x, the
constrains simply require the predictions at the domain boundary to have certain specified
functional form. Denote

Hb =

{
u ∈ [H1(Ω)]N :

∫
∂Ω
y′u|∂Ω v =

∫
∂Ω
b v for each v ∈ H1/2(∂Ω)

}
.

A constrained version of the optimization problem (5) can be written as

Minimize
u∈Hb

J(u) =

∫
Ω

{
1

2
u(x)′Au(x)− f(x)′u(x)

}
dx. (7)

Here, for mathematical convenience, we have replaced the strict boundary constraints
y′u(x) = b(x) by a weaker form for u ∈ Hb.

Similar to Proposition 1, we can show that the optimization problem (7) is equivalent
to a variational formulation:

Proposition 2 The vector u ∈ Hb minimizes J(u) if and only if it solves the integral
equation ∫

Ω
u(x)′Av(x) dx =

∫
Ω
f(x)′v(x) dx for each v ∈ Hb. (8)

The proof is given in Appendix B.

3.2 Finite Element Approximation

A finite element method approximates the space Hb of vector-valued functions on a domain
Ω by a finite dimensional vector space. With the approximation, the integral equation (8)
is converted to a finite-dimensional linear system of equations.

The finite dimensional approximation scheme requires a mesh and a set of finite elements.
A mesh Kh = {K1, . . . ,KM} is a set of a finite number of compact, connected and Lipschitz
subsets of Ω with non-empty interior which partitions Ω, where each Km is called a mesh
cell, and h parameterizes the size of Km; e.g. if Km is a polygon, h is the length of the
polygon’s side. For each Km ∈ Kh, a finite element is defined as a triplet {Km, Pm,Am},
where Pm is a vector space of functions q : Km → R with dim(Pm) = p, and Am is a set
of p linear forms αmj : Pm → RN spanning the dual vector space of Pm, which is called
the local degrees of freedom. There exists a basis {φm1, . . . , φmp} of the vector space Pm

satisfying αmj(φmk) = 1Nδjk, where 1N is a N -vector of 1’s. In our implementation, we
use the Lagrange finite element for {Km, Pm,Am}, where Km is a simplex in Rd, Pm is the
polynomial of order k and αmj = u(xmj) with xmj ∈ Km; more details can be found in Ern
and Guermond (2004, Section 1.2.3).
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For any vector-valued function u ∈ [H1(Ω)]N , let u|Km
denote its restriction to Km,

i.e., u(x)|Km
= 1Km(x)u(x). The finite element approximation of u on Km is given by

u|Km
≈ umh :=

p∑
j=1

βmjφmj ,

where βmj is an N -vector of coefficients in the basis expansion. The combination of umh’s
over Km, m ∈M , provides a global approximation of u over the whole domain Ω, i.e.,

uh =
M∑

m=1

umh =
M∑

m=1

p∑
j=1

βmjφmj , (9)

which has a matrix-vector representation

uh = U ′φ, (10)

where U is the (Mp)×N matrix formed by concatenating row vectors β′mj in row-wise and
φ is the (Mp)-dimensional column vector of φmj ’s. In (9) and (10) we explicitly extended
φmj to be zero outside Km. The collection of vector-valued functions with expression (10)
is a finite-dimensional linear space. We call this space the finite element space and denote
it as Gh, where the subscript denotes the mesh size h.

The finite element method for solving the unconstrained integral equation (6) seeks
uh ∈ Gh such that

a(uh,vh) = c(vh) for each vh ∈ Gh, (11)

where a(u,v) =
∫
u′Av and c(v) =

∫
f ′v. Following (10), we can write uh = U ′φ and

similarly vh = V ′φ. Both of the lhs and rhs of (11) can be simply represented as algebraic
forms as follows. First, since

u′hAvh = trace(φ′UAV ′φ) = trace(φφ′UAV ′),

we have

a(uh,vh) =

∫
Ω
u′hAvh = trace(

∫
Ω
φφ′UAV ′) = trace(ΦUAV ′),

where Φ =
∫

Ωφφ
′. Second, since

f ′vh = trace(f ′V ′φ) = trace(φf ′V ′),

we have that

c(vh) =

∫
Ω
f ′vh = trace(

∫
Ω
φf ′V ′) = trace(FV ′),

where F =
∫

Ωφf
′. Therefore, the integral equation (11) is equivalent to the following linear

system
trace((ΦUA− F )V ′) = 0 for each V ∈ RN×(Mp),

which is equivalent to
ΦU = FA−1. (12)
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We now introduce the boundary constraints. We partition (after reordering the el-
ements) the basis function vector φ used in uh = U ′φ into two vectors φ0 and φb in
column-wise such that, φ0 is a column vector of the φmj(x)’s satisfying φmj|∂Ω = 0 and φb

is a column vector of the φmj(x)’s satisfying φmj|∂Ω 6= 0. Suppose that φ0 has Q elements
and φb has R elements. Since the number of columns of φ is Mp, Q+R = Mp. With the
partition, we have that

uh = U ′0φ0 +U ′bφb, (13)

where U0 and U b are submatrices consisting of U ’s rows corresponding to φ0 and φb

respectively. Substituting (13) into equation (12), we have that

Φ0U0 + ΦbU b = FA−1, (14)

where Φ0 =
∫

Ωφφ
′
0 and Φb =

∫
Ωφφ

′
b.

The boundary constraints restricted to Gh can be written as∫
∂Ω
y′uh|∂Ω v =

∫
∂Ω
b v for each v ∈ Gh.

Using (14) and dropping the basis functions whose values are zero at the boundary, we
obtain ∫

∂Ω
y′U ′bφb|∂Ω φmj|∂Ω =

∫
∂Ω
b φmj|∂Ω for each φmj|∂Ω 6= 0,

which implies ∫
∂Ω
y′U ′bφb|∂Ωφ

′
b|∂Ω =

∫
∂Ω
bφ′b|∂Ω.

Letting B =
∫
∂Ωφb|∂Ωφ

′
b|∂Ω and b =

∫
∂Ω bφ

′
b|∂Ω, we have

y′U ′bB = b′, (15)

We decompose U b into two components: one orthogonal to y and the residual. Let Oy

be N × (N − 1) matrix of N − 1 column vectors orthogonal to y, which can be obtained by
the Gram-Schmidt process. There exist Z ∈ RR×(N−1) and z ∈ RR×1 satisfying

U b = ZO′y + zy′. (16)

Therefore, (14) becomes

Φ0U0 + ΦbZO
′
y + Φbzy

′ = FA−1 (17)

Since
y′U ′b = y′(OyZ

′ + yz′) = y′yz′,

equation (15) gives us
y′yz′B = b′,

therefore,
(y′y)z = B−1b. (18)

In summary, we first solve (18) for z, then solve (17) for U0 and Z, and then calculate
U b using (16). The finite element solution of the variational problem (8) is given by uh =
U0φ0 + U bφb. By the theory of finite element method (Ern and Guermond, 2004), the
approximate solution uh converges to the solution of the original problem as the mesh size
h tends to zero.
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4. Patching Constrained Local GPs for Efficient Computation of Global
GP regression

This section presents our patched GP regression method. We start from some notations.
We partition the domain Ω of the data into small local regions {Ωs, s = 1, . . . , S} and
partition the training data set D = {(xn, yn) : n = 1, . . . , N} accordingly into S data sets
Ds := {(xn, yn) ∈ D : xn ∈ Ωs}. We then calculate the local prediction function fs for the
local region Ωs using the data set Ds. There are some issues with this localized solution.
First, the prediction at around ∂Ωs is not as accurate as the prediction at the interior of
Ωs mainly because of the less number of observations available around ∂Ωs. In particular,
when S becomes large, the boundary regions also increase. Therefore, the inaccuracy at
the boundaries ∂Ωs can have significant negative effects on the overall prediction accuracy.
Second, two local GP regressions from two neighboring local regions Ωs and Ωt produce
different predictions fs and ft at the shared boundary, making the prediction discontinuous
on the boundary. This discontinuity is unacceptable since continuity of the prediction is
often desired. We propose to impose boundary constraints such that the two neighboring
local GP regressions give the same predictions on the shared boundary.

Section 4.1 applies the finite element method of Section 3 to solve a boundary con-
strained local GP problem for each local region when the boundary constraints are given.
Section 4.2 gives two methods for estimating the boundary constraints. Section 4.3 dis-
cusses some implementation details, including calculation of the integrations involving the
finite elements, and learning parameters of the covariance function of the GP regression.

4.1 Boundary-constrained Local GP

For two neighboring local regions Ωs and Ωt, let Γst = Ωs ∩Ωt denote the shared boundary,
where Ωs is the closure of Ωs. The prediction function f specialized on Γst is denoted by a
boundary function bst(x) for x ∈ Γst. For the time being, we assume that bst(x) is known
and shall discuss in next section how to estimate bst(x). Fix a domain Ωs, suppose all its
boundary functions {bst : ∀t,Γst 6= ∅} are known. Consider the following local GP problem
on Ωs

Minimize
us

J(us) =

∫
Ωs

{
1

2
us(x)′Asus(x)− f s(x)′us(x)

}
dx

subject to y′sus(x) = bst(x) on x ∈ Γst, ∀t, Γst 6= ∅
(19)

where As, f s(x) and ys are the localized versions of A, f(x) and y, which are all computed
using the data in Ωs. The constraints used in (19) restrict two local GP prediction functions
fs and ft to have the same prediction bst on the shared boundary Γst.

As in Section 3, we replace the boundary constraints by the weak form, approximate
us by its finite element approximation us,h = U ′s,0φs,0 +U ′s,bφs,b, where φs,0 is a vector of
local basis functions φmj ’s satisfying φmj(x)|Γst

= 0 for all t’s, and φs,b is a vector of local
basis functions φmj ’s satisfying φmj(x)|Γst

6= 0 for all t’s, and φs = (φ′s,0,φ
′
s,b)
′. Let Ns be

the length of ys and Oys
be Ns × (Ns − 1) matrix of Ns − 1 column vectors orthogonal to

ys. We can decompose U s,b into U s,b = ZsO
′
ys

+ zsy
′
s. As we derived in Section 3, the

finite element solution of the local problem (19) is obtained by solving the following linear
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system of equations for U s,0, Zs and zs,

Φs,0U s,0 + Φs,bZsO
′
ys

+ Φs,bzsy
′
s = F sA

−1
s ,

(y′sys)zs = B−1
s bs,

(20)

where Φs,0 =
∫

Ωs
φsφ

′
s,0, Φs,b =

∫
Ωs
φsφ

′
s,b, F s =

∫
Ωs
φsf

′
s, and

Bs =
∑

t:Γst 6=∅

∫
Γst

φs,b|Γst
φs,b|Γst

,

bs =
∑

t:Γst 6=∅

∫
Γst

bst|Γst
φs,b|Γst

.

Since bst(x) is unknown, we need to estimate bs using the procedure to be described in
Section 4.2. Using the second equation of (20), we obtain zs = B−1

s bs/y
′
sys. Substituting

this expression of zs in the first equation of (20), we obtain

Φs,0U s,0 + Φs,bZsO
′
ys

= F sA
−1
s −Φs,bzsy

′
s,

= F sA
−1
s −Φs,b

B−1
s bsy

′
s

y′sys
.

(21)

We then solve this equation for U s,0 and Zs, and compute U s,b = ZsO
′
ys

+zsy
′
s. Finally the

finite element solution of the constrained local GP problem (19) is us,h = U ′s,0φs,0+U ′s,bφs,b.
When the number of mesh cells in each local region is M on average and the number of

training data in each domain is NS , the computation complexity of solving the constrained
local GP regression (21) for one local region is O(N3

S + M2). The first part N3
S is for

inverting Aj , and the second part is for inverting Φs,0 and Φs,b, which is proportional to
M2 because Φs,0 and Φs,b are sparse banded matrices; note that the complexity of solving
a linear system with a banded coefficient matrix is proportional to the square of the size of
the linear system (Mahmood et al., 1991). The cost per local region is mostly bounded by
the cubic term O(N3

S). The total computational cost for S local regions is thus O(SN3
S),

which also equals to O(NN2
S).

4.1.1 Illustrative Output of the Constrained GP Formulation

Our constrained local GP regression provides a good approximate to a full GP regression
when the value of boundary function bst is close to the mean prediction of the full GP
regression at Γ. To show this, we performed a simple simulation study. In the study, we
generated a data set of 6,000 noisy observations from a zero-mean Gaussian process with
an exponential covariance function,

yi = f(xi) + εi for i = 1, . . . , 6000,

where xi ∼ Uniform(0, 10) and εi ∼ N (0, 1) are independently sampled, and f(xi) is sim-
ulated by the R package RandomField. Three hundreds of the observations were ran-
domly sampled to learn a Gaussian process regression (full GP) and the covariance hyper-
parameters, while the remaining 5,700 were kept for test data. The domain [0, 10] was parti-
tioned into ten local regions of size 1 delineated by boundary points {0.0, 0.1, 0.2, 0.3, . . . 1.0},
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Figure 1: Effect of the boundary constraint on Gaussian process regression.

and the 300 observations were distributed into the local regions accordingly. For each do-
main, an unconstrained GP regression (unconstrained local GP) and a constrained GP re-
gression (constrained local GP) were learned. When the constrained local GP was learned,
the values of the regression outcome at the boundary points were constrained to be equal to
the mean prediction of a full GP regression at the points. Note this is not a fair comparison
since the full GP prediction was used. This example was just used to show the room for
improvement if constraints are used.

Figure 1 shows the comparison of the mean predictions from a full GP, the constrained
local GP and the unconstrained local GP regressions. Compared to the unconstrained local
GP regression, the constrained model is much closer to a full GP regression especially at the
boundary points. The maximum difference in the mean predictions of the constrained model
and a full GP over the test data was 0.2803, while that of the unconstrained version was
0.6411. The advantage of placing the boundary constraints on the local GP in improving the
prediction accuracy is clear. However, placing the boundary constraints requires knowing
the value of the ground truth f at boundary points, i.e., boundary function bst. Estimating
the values of f at boundary points is the subject of the next section.
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4.2 Estimation of Boundary Values

The prediction function f at Γst, i.e., the boundary function bst, is unknown and needs to be
estimated before the constrained local GP regression is solved. We propose two approaches
for the estimation boundary values for the local GP regressions. The first approach is to
train a separate local GP regression using a subset of training data located around the
boundary Γst—this together with the constrained local GP regressions, leads to a two-step
procedure. The second approach is to iteratively solve the boundary value estimation and
the constrained local GP problems.

4.2.1 Localized Estimation

This approach is motivated by our observation that a GP regression for a local domain gives
accurate prediction at the center of the domain. We propose to estimate the prediction
function f at Γst by learning a local GP regression with a subset of the training data
that belong to a neighborhood of Γst. When x ∈ R, Γst is a point coordinate in R, and its
neighborhood is defined by an interval [Γst−r,Γst+r] around it with half width r > 0. When
x ∈ Rd in general, Γst is a d− 1 dimensional hyperplane within Rd, and its neighborhood
is defined by Nhr(Γst),

Nhr(Γst) = {x′ ∈ Rd; min
x∈Γst

||x′ − x||2 ≤ r}.

The value of the prediction function f at x ∈ Γst, i.e. bst(x), is estimated by the mean
prediction of the local GP regression built from a subset of training data, xst = {xn ∈
D;xn ∈ Nhr(Γst)} and the corresponding observed outputs yst,

b̂st(x) = k′xst∗(σ
2I +Kxstxst)

−1yst. (22)

When the average number of observations in the local neighborhood Nhr(Γst) is NB,
the complexity of this boundary estimation per boundary is O(N3

B). When the dimension
of the domain Ω is d and the domain is decomposed into S local regions of d-simplices, the
total number of the boundaries in between the local regions is proportional to dS. So, the
complexity of this boundary estimation procedure is O(dSN3

B).

4.2.2 Block Gauss-Seidel Iteration

The system of equations for the constrained local GP regression given by (20) is converted
into the following equation for three unknown variables U s,0, Zs and bs,

Φs,0U s,0 + Φs,bZsO
′
ys

+ Φs,bB
−1
s bsy

′
s/(y

′
sys) = F sA

−1
s , (23)

where we used (y′sys)zs = B−1
s bs to replace the zs in the first line of (20) withB−1

s bs/(y
′
sys).

Note that the above equation depends on an unknown boundary function bst only through
bs. We will estimate the vector quantity bs instead of estimating the boundary function bst
directly. The equation for U s,0, Zs and bs can be solved iteratively by the block Gauss-
Seidel method (Saad, 2003). The block Gauss-Seidel method is an iterative solver for a
linear system that partitions a number of unknowns into multiple blocks and solves the
linear system for one block at a time while keeping the other blocks fixed. In our problem,
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we have two block of unknowns, one block for U s,0 and Zs and the other block for bs. The

corresponding block Gauss-Seidel iteration is as follows. Start with an initial guess b
(0)
s .

We used a zero vector for the initial guess. At iteration k, we perform the following two
steps sequentially:

Step 1. With b
(k−1)
s fixed from the previous iteration, obtain U

(k)
s,0 and Z

(k)
s by solving

Φs,0U
(k)
s,0 + Φs,bZ

(k)
s O′ys

= F sA
−1
s −Φs,bB

−1
s b

(k−1)
s y′s/(y

′
sys), s = 1, . . . , S. (24)

Step 2. Obtain b
(k)
s by solving

Φs,bB
−1
s b

(k)
s y′s/(y

′
sys) = F sA

−1
s −Φs,0U

(k)
s,0 −Φs,bZ

(k)
s O′ys

, s = 1, . . . , S. (25)

Note that the equations in the system (24) appeared in Step 1 can be solved in parallel
for s = 1, . . . , S. But the equations in the system (25) appeared in Step 2 should be
solved collectively for all s = 1, . . . , S, since bs is shared by multiple local regions and thus
appears in multiple equations. The block Gauss-Seidel method converges very fast. When
the dimension of the domain Ω is d and the domain is decomposed into S local regions of
d-simplices, the total number of boundaries in between the local regions is proportional to
dS. On the other hand, the size of the linear system to be solved in Step 2 is proportional
to the number of boundaries. Since the coefficient matrix of the linear system is a banded
matrix, the complexity of solving such a linear system is proportional to the square of the
size of the linear system (Mahmood et al., 1991), that is, O(d2S2).

4.2.3 Numerical Comparison

This section numerically compares the two aforementioned solutions for boundary value es-
timation. We used the same data set used in Section 4.1.1 and applied the same partitioning
scheme for splitting the entire domain into 10 local regions, in between which there are nine
boundary locations. We applied the localized estimation method and the iterative block
Gauss-Seidel approach for estimating f(x) at the nine locations, and compared them with
the estimated values from a full GP regression. Figure 2-(a) shows the comparison results.
The root mean squared difference of the localized estimation to a full GP regression was
0.0775, while that of the iterative approach was 0.1369. Both of the errors are far below the
noise parameter σ = 1. The computation time for the estimation was comparable, 0.041328
seconds for the localized method and 0.038071 seconds for the iterative approach.

For another comparison, we generated a synthetic data set in 2-d of 8,000 noisy obser-
vations from a zero-mean Gaussian process with an exponential covariance function of scale
one and variance 10,

yi = f(xi) + εi for i = 1, . . . , 8000,

where xi ∼ Uniform([0, 6] × [0, 6]) and εi ∼ N (0, 1) were independently sampled, and the
Gaussian process realization f(xi) was simulated by the R package RandomField. We split
the input domain [0, 6]×[0, 6] into sixteen local regions of equal size, and 1,881 test locations
were chosen uniformly surrounding the local region boundaries. For each test location, we
obtained the prediction based on a full GP regression and computed the differences of the
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Figure 2: Comparison of the two proposed methods of boundary value estimation with a
full GP regression.

boundary estimation by the localized approach or the iterative approach and the full GP
regression prediction. The mean squared differences versus mesh size h are plotted in Figure
2-(b). Again, the localized approach works better.

4.3 Computation Complexity and Implementation Details

The total computation complexity of our proposed approach is the summation of two com-
plexities, one for the constrained GP regressions and the other for the boundary value esti-
mation. It is O(SN3

S +dSN3
B) when the localized estimation approach is used for boundary

value estimation, and it is O(SN3
S + d2S2) when the block Gauss-Seidel iteration is used.

Since SNS = N and NB is a constant, the complexity is O(NN2
S + dS) or O(NN2

S + d2S2)
respectively.

4.3.1 Evaluation of Integrals for quantities in Equation (20)

The integrals for defining several quantities in equation (20) can be computed effectively
using well-established finite element computations. Suppose that Ω ⊂ Rd and we use the
Lagrange finite elements of polynomial degree k, where the sth local region Ωs is partitioned
into M mesh cells {Km;m = 1, . . . ,M} for the finite element approximation. The φs is a
column vector of the Lagrange basis functions for the mesh cells,

{φm,j ;m = 1, . . . ,M, j = 0, 1, . . . , J}, and J =

(
d+ k
k

)
.

It is well known that each φm,j is a polynomial function of barycentric coordinates λj ’s
with respect to the d-simplex Km (Ern and Guermond, 2004, pages 22-23). One can use the
integral formula for barycentric coordinates (Voitovich and Vandewalle, 2008) to compute
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Φs,0 and Φs,b. For example, when d = 2,∫
Km

λaj1λ
b
j2λ

c
j3 = 2|Km|

a!b!c!

(2 + a+ b+ c)!
,

and when d = 3, ∫
Km

λaj1λ
b
j2λ

c
j3λ

d
j4 = 6|Km|

a!b!c!d!

(3 + a+ b+ c+ d)!
,

where |Km| is the volume of Km. Since φm,j1φm,j2 is also a polynomial functions of λj ’s,
one can use the previous integration formulas to evaluate

∫
Km

φm,j1φm,j2 and∫
Ωs

φm,j1φm,j2 =
∑
m

∫
Km

φm,j1φm,j2 . (26)

For the values of F s, one can take the finite element approximation of f s, where each
function fi in f s is approximated by∑

j

α
(i)
m,jφm,j on Km.

With this approximation, F s becomes∫
Ωs

φsfi =
∑
m

∫
Km

φs

∑
j

α
(i)
m,jφm,j

=
∑
m

∑
j

α
(i)
m,j

∫
Km

φsφm,j .

The last integral can be computed using (26).
Since φm,j|Γst

is a polynomial function of barycentric coordinates with respect to Γst,∫
Γst

φm,j1|Γst
φm,j2|Γjk

can be computed using the integral formulas in barycentric coordinates, facilitating the
evaluation of Bs and bs.

4.3.2 Learning Covariance Parameters

By far, our discussions have been made when using fixed parameters (often referred to as
hyperparameters in the literature) for the covariance function k(·, ·). In this subsection,
we discuss how to choose the hyperparameters. Basically, we follow the approach in Park
et al. (2011), which has two options, namely choosing different hyperparameters for each
local region or choosing the same hyperparameters for all local regions. When different
hyperparameters are chosen for each local region, the hyperparameters are estimated by
maximizing the local marginal likelihood functions. Specifically, the local hyperparameters,
denoted by θs associated with each Ωs, are selected such that they minimize the negative
log marginal likelihood:

MLs(θs) := − log p(ys; θs) =
ns
2

log(2π) +
1

2
log |As|+

1

2
y′sA

−1
s ys, (27)
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where As depends on θs. Note that (27) is the marginal likelihood of the standard local
kriging model typically seen in geostatistics.

When we want to choose the same hyperparameters applied for all local regions, we
choose the hyperparameter θ such that it minimizes

ML(θ) =
S∑

s=1

MLs(θ), (28)

where the summation of the negative log local marginal likelihoods is over all local regions.
The above treatment implicitly assumes that the data from each local region are mutually
independent. We used the criterion (28) for all numerical comparisons presented below.

5. Numerical Study of Patched GP and Comparison with DDM

In this section, we present the numerical performance of our patched GP method for different
tuning parameters, compared to the full GP regression. We also compare our patched GP
method with its precursor, the DDM (Park et al., 2011).

5.1 Data Sets and Evaluation Criteria

We considered four data sets: one synthetic data set in 1-d, one synthetic data set in 2-d,
and three real spatial data sets both in 2-d. The two synthetic data sets were generated by
the R package RandomField. The first data set in 1-d (hereafter denoted by synthetic-1d)
consists of 6,000 noisy observations from a zero-mean Gaussian process with an exponential
covariance function of scale one and variance 10,

yi = f(xi) + εi for i = 1, . . . , 6000,

where xi ∼ Uniform(0, 10) and εi ∼ N (0, 1) were independently sampled, and the Gaussian
process realization f(xi) was simulated by the R package. The synthetic data set in 2-d
(hereafter denoted by synthetic-2d) consists of 8,000 noisy observations from a zero-mean
Gaussian process with an exponential covariance function of scale one and variance 10,

yi = f(xi) + εi for i = 1, . . . , 8000,

where xi ∼ Uniform([0, 6] × [0, 6]) and εi ∼ N (0, 1) were independently sampled, and the
Gaussian process realization f(xi) was simulated by the R package RandomField. The two
synthetic data sets were used to show how our proposed method performs, compared to the
full GP regression.

The first real data set, TCO, contains data collected by NIMBUS-7/TOMS satellite to
measure the total column of ozone over the globe on Oct 1 1988. This set consists of
48,331 measurements. The second real data set, TCO.L2, also contains the total column of
ozone measured by the same satellite on the same date at much more locations (182,591
locations). The third real data set, ICETHICK, is the ice thickness profile for a portion of
the western Antartic ice sheet, which is available at http://nsidc.org/. The data set has
32,481 measurements. As shown in Figure 3, the ICETHICK data set has some sparse regions
with very few training points, while the TCO data set has a very dense distribution of the
training points; TCO.L2 data set has even denser distribution.
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Figure 3: Spatial distribution of the measurements for two real data sets. A dot represent
one measurement.

Using the three real spatial data sets, we can compare the computation time and pre-
diction accuracy of the patched GP with other methods. We randomly split each data set
into a training set containing 90% of the total observations and a test set containing the
remaining 10% of the observations. To compare the computational efficiency of methods,
we measure two computation times, the training time (including the time for hyperparam-
eter learning) and the prediction (or test) time. For comparison of accuracy, we use two
measures on the set of the test data, denoted as {(xt, yt); t = 1, . . . , T}, where T is the size
of the test set. The first measure is the mean squared error (MSE)

MSE =
1

T

T∑
t=1

(yt − µt)2, (29)

which measures the accuracy of the mean prediction µt at location xt. The second one is
the negative log predictive density (NLPD)

NLPD =
1

T

T∑
t=1

[
(yt − µt)2

2σ2
t

+
1

2
log(2πσ2

t )

]
, (30)

which considers the accuracy of the predictive variance σt as well as the mean prediction
µt. These two criteria were used broadly in the GP regression literature. A smaller value
of MSE or NLPD indicates a better performance.

When applying the patched GP, one issue is how to partition the whole domain into
local regions, also known as meshing in the finite element analysis literature (Ern and
Guermond, 2004). The patched GP works with any shapes of meshing. For this paper, we
used a uniform triangular mesh, where each local region is a triangular shaped region of the
same size. The implementation of the meshing was performed using the DistMesh MATLAB
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software (Persson and Strang, 2004). We used the localized estimation presented in Section
4.2.1 for boundary value estimation, and the hyperparameters of a covariance function was
obtained by minimizing (28) and was applied for all local regions. All numerical studies
were performed on a computer with Intel Xeon Processor W3520 and 6GB memory.

5.2 Performance of Patched GP with Different Tuning Parameters

The patched GP has two tuning parameters, number of local regions S and mesh size h
in finite element approximation. If the number of local regions (S) is one (i.e. there is no
split to local regions), the patched GP should converge to a full GP as the mesh size of the
patched GP’s finite element approximation goes to zero. In this section we illustrate how
the patched GP works for S > 1 and different mesh sizes using the data sets described in
the previous section.

For synthetic-1d, we uniformly partitioned the domain [0, 10] into S local regions of
equal size where S varies over {2, 4, 6, 8, 10}. The number of meshes per local region is
denoted by M , and it is related to mesh size h, which is the length of an interval mesh.
We randomly split 6,000 observations in synthetic-1d into a training data set of 4,500
observations and a test data set of 1,500 observations. For each S and h, we used the
training data set to learn the patched GP and a full GP, and compared the mean squared
difference of the patched GP and a full GP over the test data set. Figure 4-(a) shows the
mean squared difference versus S and h. Regardless of S, the difference converges to almost
zero (about e−6) as h goes to zero, which implies that the mean prediction of the patched
GP becomes very close to that of a full GP even with a large S; this can be qualitatively
seen in Figure 4-(b), -(c) and -(d). In other words, the performance of the patched GP does
not vary much with the choice of S although the method with a larger S typically converges
faster.

For synthetic-2d, we uniformly partitioned the domain into S local regions of equal
size where S varies over {68, 47, 32, 17, 10, 4}. The number of meshes per local region is
denoted by M , and it is related to mesh size h, which is the side length of a triangular mesh
for synthetic-2d. We randomly split 8,000 observations in synthetic-2d into a training
data of size 6,500 and a test data set of size 1,500. For each S and h, we used the training
data set to learn the patched GP and a full GP, and compared the mean squared difference
between the patched GP and the full GP over the test data set. Figure 5 shows the mean
squared difference versus S and h. Similar to the 1-d case, the performance of patched GP
does not vary much with different S values for the two synthetic data sets.

We also evaluated the performance of the patched GP on the real data sets TCO and
ICETHICK for different values of S and M . As described in Section 5.1, 90% of each data
set was randomly chosen and used as a training data set, and the remaining 10% was used
for computing the MSE. Figure 6 summarizes the results. The performance of the patched
GP did not vary much for different S. If S is large, the overall computation complexity
decreases significantly as M decreases. Therefore, in general, a larger S is preferred.

5.3 Comparison with DDM

Our proposed patched GP method is the direct enhancement of DDM. In this section, we
compare the numerical performance of DDM and patched GP.
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Figure 4: Mean squared difference of the patched GP and a full GP over the test data set
for synthetic-1d; (a) shows the mean squared differences for different S and h
parameter values, and (b)-(d) illustrate the mean predictions of the patched GP
and a full GP for different S’s with fixed 1/h = 3.

5.3.1 Overall Performance

We used three real data sets in 2-d to compare the MSEs and NLPDs of patched GP and
DDM versus the total computation time (training and test time), which includes the time
for hyperparameter learning, model learning, and prediction.
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Figure 5: Mean squared difference of the patched GP and a full GP versus S and h for
synthetic-2d
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Figure 6: MSE of the patched GP versus S and h for TCO and ICETHICK.

For both methods, we fixed S, S = 145 for TCO, S = 623 for TCO.L2, and S = 47 for
ICETHICK, because the performance did not vary much with the choice of S. We applied the
squared exponential covariance function and the same covariance hyperparameter learning
method for both DDM and patched GP, which is described in Park et al. (2011, Section
5). In the hyperparameter learning, we used a subset of the training data. The fractions
of the training data set used for the hyperparameter learning varied over {0.3, 0.5, 0.8, 1.0}.
As the fraction increases, we expect the training time increases, and the accuracy of the
hyperparameter estimation and the final prediction improves. For patched GP, the number
of meshes per local region for the finite element approximation (h) varied from 5 to 30
with step size 5. As seen in Section 5.2, the increase of h implies the increase of the

20



Patching Local Guassian Processes

0 50 100 150 200 250 300
0

10

20

30

40

50

train + test time (sec)

M
S

E
Time v.s. MSE for TCO Dataset

 

 

0 50 100 150 200 250 300
2

2.5

3

3.5

4

train + test time (sec)

N
LP

D

Time v.s. NLPD for TCO Dataset

 

 
DDM
patched GP

DDM
patched GP

0 200 400 600 800 1000
45

50

55

train + test time (sec)

M
S

E

Time v.s. MSE for TCO.L2 Dataset

 

 

0 200 400 600 800 1000
3

3.2

3.4

3.6

3.8

4

4.2

4.4

train + test time (sec)

N
LP

D

Time v.s. NLPD for TCO.L2 Dataset

 

 
DDM
patched GP

DDM
patched GP

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

train + test time (sec)

M
S

E

Time v.s. MSE for ICE Dataset

 

 
DDM
patched GP

0 50 100 150
6

6.5

7

7.5

8

train + test time (sec)

N
LP

D

Time v.s. NLPD for ICE Dataset

 

 
DDM
patched GP

Figure 7: Prediction accuracy versus total computation time. For ICETHICK (ICE) data
set, the NLPDs of DDM are imaginary numbers since the predictive variance
estimates were all negative.
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overall prediction accuracy and the total computation time. For DDM, we varied the
number of degree of freedoms on a local region boundary from 5 to 30 with step size 5.
For each experimental setting, we performed 20 replicated experiments with new random
splits of training and test data sets. We randomly split each data set into a training set
containing 90% of the total observations and a test set containing the remaining 10% of the
observations. The MSEs, NLPDs and the total computation times were averaged to reduce
the variation caused by random splits.

Figure 7 shows the MSE and NLPD versus the total computation time for both DDM
and patched GP. For shorter computation time, DDM performed better in terms of MSE
but patched GP obtained lower MSEs with longer computation time. In terms of NLPD,
the DDM was better for TCO and TCO.L2. The NLPD is roughly the squared bias of the
predictive mean divided by the predictive variance. Since the patched GP is better than the
DDM in MSE, the better NLPD performance of the DDM can be attributed to difference
in variance estimation. For TCO and TCO.L2, the DDM’s variance estimation is sufficiently
large to cover most observations. However, the DDM’s variance estimation is sometimes too
small, being negative. For example, the DDM produced the negative predictive variances for
ICETHICK, so the resulting NLPDs are imaginary numbers. The issue with DDM regarding
possible negative predictive variances has been reported in Pourhabib et al. (2014). The
same problem occurred in this numerical example.

5.3.2 Comparison in Boundary Value Estimation

We compared DDM and patched GP for boundary value estimation. For this comparison,
we used the localized estimation approach described in Section 4.2.1 with NB = 50. The
comparison was primarily focused on (1) how the boundary estimation of each method
on a boundary location is close to the mean prediction of a full GP regression on the
same location, and (2) how the boundary estimations of two neighboring local regions on
a boundary point are closed to each other. We fixed S = 16 and tried different mesh sizes
h for patched GP and different numbers of the control points placed on each boundary (p)
for DDM, which are directly relevant to the performance of boundary estimation. The h
varied over one fifth of a local region size through one thirtieth of a local region size, while
p comparably varied over five through thirty.

We used the whole synthetic-2d data set as a training data set to train both of the
methods, and 1,881 test locations were chosen uniformly from local region boundaries. For
each test location, we obtained the mean prediction of a full GP regression. The squared
differences of the mean prediction of DDM or patched GP to that of a full GP at the test
locations are averaged to obtain the mean squared difference. This difference versus h or p
is plotted in Figure 8-(a). As h decreases, the boundary estimation of patched GP at the
test locations converges to the mean prediction of a full GP regression at the same locations,
while the boundary estimation of DDM keeps deviating from a full GP result.

We also compared how consistent the mean predictions from two neighboring local
regions at their shared boundary are. We simply took the two mean predictions from two
neighboring local regions at some of the 1,881 test locations on their shared boundary. The
squared differences were taken and averaged over all shared boundaries. The mean squared
differences versus h or p are plotted in Figure 8-(b). The mean squared differences for
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(a) Difference between boundary estimation and full GP prediction
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Figure 8: Accuracy of Boundary Estimation.

patched GP are almost zero, while those for DDM are significantly non-zero relative to
those of patched GP.

6. Numerical Comparison with Other State-of-The-Art methods

This section compares patched GP with other state-of-the-art methods. Section 6.1 con-
tains the comparison to several localized approaches for GP regression, while Section 6.2
contains the comparison to the Gaussian Markov random field approach to the GP regres-
sion (Lindgren et al., 2011).

6.1 Comparison with Other Local GP Methods

In this section, we compare patched GP with other localized approaches for GP regression,
including BCM (Tresp, 2000), PIC (Snelson and Ghahramani, 2007), and RBCM (Deisen-
roth and Ng, 2015); we used the author’s implementation of BCM and implemented RBCM
and PIC with matlab by ourselves. We used three real data sets TCO, TCO.L2 and ICETHICK

to compare the MSEs and NLPDs of the approaches versus the total computation time,
which includes the time for hyperparameter learning, model learning and prediction. We
used the squared exponential covariance function and used the whole training data set to
choose hyperparameters for all of the compared methods. For patched GP, we fixed S = 145
for TCO, S = 623 for TCO.L2, and S = 47 for ICETHICK, and the number of meshes per local
region was varied from 5 to 40 with step size 5. For BCM and RBCM, we varied the number
of local experts M ∈ {100, 150, 200, 250, 300, 600} for TCO, M ∈ {50, 100, 150, 200, 250, 300}
for TCO.L2, and M ∈ {50, 100, 150, 200, 250, 300} for ICETHICK. For PIC, we varied the total
number of local regions m ∈ {100, 150, 200, 250, 350} for TCO, m ∈ {100, 200, 300, 400, 600}
for TCO.L2, and m ∈ {50, 100, 150, 200} for ICETHICK, and also varied the number of in-
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ducing inputs (M ∈ {100, 150, 200, 250, 300, 400, 500, 600, 700}) for all of the data sets. We
used the k-means clustering for splitting training data for both of BCM, RBCM, and PIC.

Figure 9 shows the logarithms of MSEs and NLPDs versus total computation times for
the three data sets. For TCO data set, the BCM, RBCM, and patched GP obtained more
accurate prediction than the PIC, and the patched GP was computationally more efficient
than the BCM and RBCM. For TCO.L2 data set, the patched GP uniformly outperformed
other competing methods, scaling better than BCM and RBCM and achieving better MSE
than the PIC. It is interesting to see that BCM is almost identically performing as the
RBCM when N is so large like in TCO.L2 data set. For ICETHICK data set, the PIC and
patched GP obtained more accurate prediction than the BCM and the RBCM. Please note
that the training data are quite densely spread over the whole domain for TCO while the
training data are sparse for some local regions in ICETHICK. The patched GP worked well
for both of the cases, while the PIC worked better for the sparse case and the BCM worked
better for the dense case. The RBCM has shown much better results than the BCM for the
sparse case but it is not better than the patched GP and PIC. The PIC combines a global
model with local models, which may help to improve the performance for the sparse case.

6.2 Comparison with GMRF

In this section, we compare patched GP with the Gaussian Markov random field approach
to the GP regression (Lindgren et al., 2011, GMRF), which was reported to scale great
with massive data set; we implemented the GMRF with matlab. The major checkpoints
of this comparison are the scalability and prediction accuracy. We used three real data
sets of different sizes, ICETHICK (N = 32, 813), TCO (N = 48, 311) and TCO.L2 (N =
182, 591) to compare the MSEs, NLPDS, and computation time of the approaches. In
this comparison, we used the exponential covariance function, since the GMRF does not
work with the squared exponential covariance function used for the other comparisons;
at least, the construction of the precision matrix for Gaussian Markov random field is not
straightforward. The GMRF does not have any tuning parameters, and the hyperparameter
learning of the GMRF was performed using 5% of the training data; the MSE performance
did not change much as the percentage increases, so we chose the smallest percentage to
obtain the smallest computation time. For patched GP, we presented the results with the
combinations of tuning parameters that obtain the best RMSE and the worst RMSE. To
be specific, we fixed S = 145 for TCO, S = 47 for ICETHICK, and S = 623 for TCO.L2, while
the number of meshes per local region was varied from 5 to 40 with step size 5.

Table 1 summarizes the comparison results. The computation time of patched GP
increases linearly in data size N , while the GMRF’s computation time increases in O(N2).
This is not surprising because the GMRF’s computation depends on nz, the number of

nonzero elements in the precision matrix, proportionally in n2
z or n

3/2
z , and the nz increases

at least linearly in N . For prediction performance, the best RMSE of the patched GP was
at least comparable or better than that of GMRF. The patched GP uniformly outperformed
the GMRF in terms of NLPD, which means that the posterior distribution of the patched
GP was better fitted to test data sets.
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Figure 9: Prediction accuracy versus total computation time. The legend in the upper left
panel applies to all other panels.
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Datasets
patched GP (best, worst) GMRF

Time RMSE NLPD Time RMSE NLPD

TCO (250.4, 48.4) (2.85, 5.75) (3.20, 3.91) 651.4 2.78 5.01
TCO.L2 (807.4, 192.2) (6.74, 7.31) (3.70, 3.82) 5702.7 9.24 5.26

ICETHICK (212.1, 31.2) (89.30, 199.33) (6.12, 6.80) 385.0 89.80 7.08

Table 1: Performance comparison of the patched GP with GMRF: the time unit used is
second.

7. Conclusion

We developed a method for solving a Gaussian process regression with constraints on a do-
main boundary and also developed a solution approach based on a finite element method.
The method is then applied to local GP regressions as a building block to develop the
patched GP method as a computationally efficient solver of a large-scale Gaussian process
regression or spatial kriging problem. The patched GP solves two issues of the simple local
GP approaches, namely the inaccuracy and inconsistency of prediction on the boundaries of
neighboring local regions. Comparing with its precursor DDM, the patched GP has an im-
proved way of considering the constraints related to the boundary regions. Both methods
reformulate the GP regression as an optimization problem, the patched GP method im-
proves DDM by rewriting the optimization problem in a function space and using the finite
element methods to solve the required integrals arising from the solution of the minimization
problem. The patched GP method is mathematically more elegant and its competitiveness
to existing methods is demonstrated through numerical studies.
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Appendix A. Proof of Proposition 1

Note that [L2(Ω)]N is a Hilbert space with the following inner product

(u,v) =

∫
Ω
u′v.

We define a bi-linear form on [L2(Ω)]N by a : [L2(Ω)]N × [L2(Ω)]N → R,

a(u,v) = (Au,v) =

∫
Ω
u′Av for u,v ∈ [L2(Ω)]N ,
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a linear functional c : [L2(Ω)]N → R as

c(u) =

∫
Ω
f ′u,

and define J(u) = 1
2a(u,u)− c(u). Since A is a N ×N (real) positive definite matrix, the

bi-linear form a(u,v) is symmetric and positive. Let α be the smallest eigenvalue of A. We
have that

a(u,u) ≥ α||u||2, ∀u ∈ [L2(Ω)]N .

Therefore, the bi-linear form a is coercive. It follows from Ern and Guermond (2004,
Proposition 2.4) that, u satisfies a(u,v)− c(v) = 0 for every v ∈ [L2(Ω)]N if and only if it
minimizes J(u) over u ∈ [L2(Ω)]N . Note that the coercivity of the bi-linear form a can be
interpreted as a strong convexity property of the functional J(u), which makes the problem
have a unique optimal solution (Ern and Guermond, 2004, Lemma 2.2).

Appendix B. Proof of Proposition 2

We have already proven that a(u,v) =
∫

Ω u
′Av is coercive, symmetric and positive for

u,v ∈ [L2(Ω)]N in the proof of Proposition 1. The same result holds for u,v ∈ Hb because
Hb ⊂ [L2(Ω)]N . Since Hb is a Hilbert space, solving the minimization problem is equivalent
to solving the integral equation (8) by Ern and Guermond (2004, Proposition 2.4).
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