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Abstract

This paper considers the problem of matrix completion when the observed entries are
noisy and contain outliers. It begins with introducing a new optimization criterion for
which the recovered matrix is defined as its solution. This criterion uses the celebrated
Huber function from the robust statistics literature to downweigh the effects of outliers.
A practical algorithm is developed to solve the optimization involved. This algorithm is
fast, straightforward to implement, and monotonic convergent. Furthermore, the proposed
methodology is theoretically shown to be stable in a well defined sense. Its promising
empirical performance is demonstrated via a sequence of simulation experiments, including
image inpainting.
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1. Introduction

The goal of matrix completion is to impute those missing entries of a large matrix based
on the knowledge of its relatively few observed entries. It has many practical applications,
ranging from collaborative filtering (Rennie and Srebro, 2005) to computer visions (Wein-
berger and Saul, 2006) to positioning (Montanari and Oh, 2010). In addition, its application
to recommender systems is perhaps the most well known example, widely made popular-
ized by the so-called Netflix prize problem (Bennett and Lanning, 2007). In this problem
a large matrix of movie ratings is partially observed. Each row of this matrix consists of
ratings from a particular customer while each column records the ratings on a particular
movie. In the Netflix data set, there are around 5 × 105 customers and 2 × 104 movies,
with less than 1% of the ratings are observed. Without any prior knowledge, a reasonable
full recovery of the matrix is virtually impossible. To overcome this issue, it is common
to assume that the matrix is of low rank, reflecting the belief that the users’ ratings are
based on a relatively small number of factors. This low rank assumption is very sensible in
many applications, although the resulting optimizations are combinatorially hard (Srebro
and Jaakkola, 2003). To this end, various convex relaxations and related optimization algo-
rithms have been proposed to provide computationally feasible solutions; see, for example,
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Candès and Recht (2009); Candès and Plan (2010); Keshavan et al. (2010b,a); Mazumder
et al. (2010); Marjanovic and Solo (2012) and Hastie et al. (2014).

In addition to computational advances, the theoretical properties of matrix completion
using nuclear norm minimization have also been well studied. For example, when the
observed entries are noiseless, Candès and Recht (2009) show that perfect recovery of a
low rank matrix is possible; see also Keshavan et al. (2010b), Gross (2011) and Recht
(2011). This result of Candès and Recht (2009) has been extended to noisy measurements
by Candès and Plan (2010): with high probability, the recovery is subject to an error bound
proportional to the noise level. Techniques that achieve this desirable property are often
referred as stable. See also Keshavan et al. (2010a) and Koltchinskii et al. (2011) for other
theoretical developments of matrix completion from noisy measurements.

The original formulation of matrix completion assumes those observed entries are noise-
less, and is later extended to the more realistic situation where the entries are observed with
noise. This paper further extend the formulation to simultaneously allow for both noisy
entries and outliers. To the authors knowledge, such an extension has not been considered
before, although similar work exists. In Candès et al. (2011) a method called principal
component pursuit (PCP) is developed to recover a matrix observed with mostly noiseless
entries and otherwise a small amount of outliers. This is done by modeling the observed
matrix as a sum of a low rank matrix and a sparse matrix. Zhou et al. (2010) extend
this PCP method to noisy entries but assumes the matrix is fully observed, thus it does
not fall into the class of matrix completion problems. Lastly Chen et al. (2011) extend
PCP to safeguard against special outlying structures, namely outlying columns. However,
it works only on outliers and otherwise noiseless entries. Due to the similarity between the
matrix completion and principal component analysis, it is worthmentioning that there are
some related work (Karhunen, 2011; Luttinen et al., 2012) on robust principal component
analysis with missing values.

The primary contribution of this paper is the development of a new robust matrix
completion method that can be applied to recover a matrix with missing, noisy and/or
outlying entries. This method is shown to be stable in the sense of Candès and Plan (2010),
as discussed above. As opposed to the above referenced PCP approach that decomposes
the matrix into a sum of a low rank and a sparse matrix, the new approach is motivated
by the statistical literature of robust estimation which modifies the least squares criterion
to downweigh the effects of outliers. Particularly, we make use of the Huber function
for this modification. We provide a theoretical result that establishes an intrinsic link
between the two different approaches. To cope with the nonlinearity introduced by the
Huber function, we propose a fast, simple, and easy-to-implement algorithm to perform
the resulting nonlinear optimization problem. This algorithm is motivated by the ES-
Algorithm for robust nonparametric smoothing (Oh et al., 2007). As to be shown below,
it can transform a rich class of (non-robust) matrix completion algorithms into algorithms
for robust matrix completion.

The rest of this paper is organized as follows. Section 2 provides further background of
matrix completion and proposes a new optimization criterion for robust matrix recovery.
Fast algorithms are developed in Section 3 for practically computing the robust matrix
estimate. Theoretical and empirical properties of the proposed methodology are studied
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in Section 4 and Section 5 respectively. Concluding remarks are given in Section 6, while
technical details are relegated to the appendix.

2. Matrix Completion with Noisy Observations and Outliers

Suppose X is an n1 × n2 matrix which is observed for only a subset of entries Ωobs ⊆
[n1] × [n2], where [n] denotes {1, . . . , n}. Let Ω⊥obs be the complement of Ωobs. Define the
projection operator PΩobs

as PΩobs
B = C, where Cij = Bij if (i, j) ∈ Ωobs and Cij = 0

if (i, j) 6∈ Ωobs, for any n1 × n2 matrix B = (Bij)i∈[n1],j∈[n2]. The following is a standard
formulation for matrix completion using a low rank assumption:

minimize
Y

rank(Y )

subject to
1

2
‖PΩobs

X − PΩobs
Y ‖2F ≤ e,

where e > 0 and ‖ · ‖F is the Frobenius norm. Carrying out this rank minimization enables
a good recovery of any low rank matrix with missing entries. Note that for the reason of
accommodating noisy measurements, the constraint above allows for a slight discrepancy
between the recovered and the observed matrices.

However, this minimization is combinatorially hard (e.g., Srebro and Jaakkola, 2003).
To achieve fast computation, the following convex relaxation is often used:

minimize
Y

‖Y ‖∗

subject to
1

2
‖PΩobs

X − PΩobs
Y ‖2F ≤ e,

where ‖Y ‖∗ represents the nuclear norm of Y (i.e., the sum of singular values of Y ). The
Lagrangian form of this optimization is

minimize
Y

f(Y |X) ≡ 1

2
‖PΩobs

X − PΩobs
Y ‖2F + γ‖Y ‖∗, (1)

where γ > 0 has a one-to-one correspondence to e. The squared loss in the first term is
used to measure the fitness of the recovered matrix to the observed matrix. It is widely
known that such a squared loss is very sensitive to outliers and often leads to unsatisfactory
recovery results if such outliers exist. Motivated by the literature of robust statistics (e.g.,
Huber and Ronchetti, 2011), we propose replacing this squared loss by the Huber loss
function

ρc(x) =

{
x2, |x| ≤ c
c(2|x| − c), |x| > c

,

with tuning parameter c. When comparing with the squared loss, the Huber loss downweighs
the effects of extreme measurements. Our proposed solution for robust matrix completion
is given by the following minimization:

minimize
Y

g(Y ) ≡ 1

2

∑
(i,j)∈Ωobs

ρc(Xij − Yij) + γ‖Y ‖∗. (2)
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Note that the convexity of ρc guarantees the convexity of the objective criterion (2).
For many robust statistical estimation problems the tuning parameter c is pre-set as

c = 1.345σ̂ to achieve a 95% statistical efficiency, where σ̂ is an estimate of the standard
deviation of the noise. For the current problem, however, the choice of c is suggested by
Theorem 4 below: c = γ/

√
n(1)p, where n(1) = max{n1, n2} and p is the percentage of

missing entries. This choice of c was used throughout all our numerical work.

3. Fast Algorithms for Minimization of (2)

Since the gradient of the Huber function is non-linear, (2) is a harder optimization problem
when comparing to many typical matrix completion formulations such as (1). As an exam-
ple, consider (1) when X is fully observed; i.e., Ωobs = [n1] × [n2]. Through sub-gradient
analysis (e.g., Cai et al., 2010; Ma et al., 2011), one can derive a closed-form solution to (1),
denoted as Sγ(X), where Sγ is the soft-thresholding operator defined in Mazumder et al.
(2010), also given in (6) below. However, even if X was fully observed, (2) does not have a
closed-form solution. The goal of this section is to develop fast methods for minimizing (2).

3.1 A General Algorithm

In Oh et al. (2007) a method based on the so-called theoretical construct pseudo data is
proposed for robust wavelet regression. The idea is to transform a Huber-type minimization
problem into a sequence of fast and well understood squared loss minimization problems.
This subsection modifies this idea and proposes an algorithm to minimizing (2).

As similar to Oh et al. (2007), we define a pseudo data matrix as

Z = PΩobs
Ỹ +

1

2
ψc(E), (3)

where Ỹ is the current estimate of the target matrix, E = PΩobs
X−PΩobs

Ỹ is the “residual
matrix”, and ψc = ρ′c is the derivative of ρc. With a slight notation abuse, when ψc is
applied to a matrix, it means ψc is evaluated in an element-wise fashion. Straightforward
algebra shows that the sub-gradient of f(Y |Z) (with respect to Y ) evaluated at Ỹ ,

−(PΩobs
Z − PΩobs

Ỹ ) + γ∂‖Ỹ ‖∗, (4)

is equivalent to the sub-gradient of g(Y ) (with respect to Y ) evaluated at Ỹ ,

−1

2
ψc(PΩobs

X − PΩobs
Ỹ ) + γ∂‖Ỹ ‖∗. (5)

The proposed algorithm iteratively updates Ỹ = arg minY f(Y |Z) and Z using (3). Upon
convergence (implied by Proposition 1 below), the sub-gradient (4) contains 0 at the con-
verged Ỹ and thus the sub-gradient (5) also contains 0 at this converged Ỹ . Therefore this
Ỹ is the solution to (2). Details of this algorithm based on pseudo data matrix are given
in Algorithm 1.

Algorithm 1 has several attractive properties. First, it can be paired with any existing
(non-robust) matrix completion algorithm (or software), as can be easily seen in Step 2(c).
This is a huge advantage, as a rich body of existing (non-robust) methods can be made
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Algorithm 1 The General Robust Algorithm

1: Perform (non-robust) matrix completion on X and assign Y old ← arg minY f(Y |X).
This Y old is the initial estimate (starting point of the algorithm).

2: Repeat:

(a) Compute E ← PΩobs
X − PΩobs

Y old.

(b) Compute Z ← PΩobs
Y old + 1

2ψc(E).

(c) Perform (non-robust) matrix completion on Z and assign Y new ←
arg minY f(Y |Z).

(d) If
‖Y new − Y old‖2F
‖Y old‖2F

< ε,

exit.

(e) Assign Y old ← Y new.

3: Output Y new.

robust against outliers. Second, once such an (non-robust) algorithm is available, the rest
of the implementation is straightforward and simple, and no expensive matrix operations
are required. Lastly, it has strong theoretical backup, as to be reported in Section 4.

3.2 Further Integration with Existing Matrix Completion Algorithms

Many existing matrix completion algorithms are iterative. A direct application of Algo-
rithm 1 would lead to an algorithm that is iterations-within-iterations. Although our ex-
tensive numerical experience suggests that these direct implementations would typically
converge within a few iterations to give a reasonably fast execution time, it would still be
advantageous to speed up the overall procedure. Here we show that it is possible to further
improve the speed of the overall robust algorithm by embedding the pseudo data matrix
idea directly into a non-robust algorithm.

We shall illustrate this with the Soft-Impute algorithm proposed by Mazumder et al.
(2010). To proceed we first recall the definition of their thresholding operator Sγ : for any
matrix Z of rank r,

Sγ(Z) = UDγV
ᵀ, (6)

where Z = UDV ᵀ is the singular value decomposition of Z, D = diag[d1, . . . , dr] and
Dγ = diag[(d1 − γ)+, . . . , (dr − γ)+]. Now the main idea is to suitably replace an iterative
matrix estimate with the pseudo data matrix estimate given by (3). With Soft-Impute,
the resulting robust algorithm is given in Algorithm 2. We shall call this algorithm Robust-
Impute. As to be shown by the numerical studies below, Robust-Impute is very fast and
produces very promising empirical results. Our algorithm also has the sparse-plus-low-
rank structure in the singular value thresholding step (Step 2a(iii)). This linear algebra
structure has positive impact on the computational complexity. See Section 5 of Mazumder
et al. (2010) for details. Moreover, the monotonicity and convergence of our algorithm is
guaranteed by Proposition 1 and Theorem 2.
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Algorithm 2 Robust-Impute

1: Initialize Y old = Sγ1(PΩobs
X) and Z = X.

2: Do for γ1 > γ2 > · · · > γK :

(a) Repeat:

(i) Compute E ← PΩobs
X − PΩobs

Y old.

(ii) Compute Z ← PΩobs
Y old + 1

2ψc(E)

(iii) Compute Y new ← Sγk(PΩobs
Z + PΩ⊥obs

Y old).

(iv) If
‖Y new − Y old‖2F
‖Y old‖2F

< ε,

exit.

(v) Assign Y old ← Y new.

(b) Assign Ŷγk ← Y new.

3: Output the sequence of solutions Ŷγ1 , . . . , ŶγK .

4. Theoretical Properties

This section presents some theoretical backups for the proposed methodology.

4.1 Monotonicity and global convergence

We first present the following proposition concerning the monotonicity of the algorithms.
The proof can be found in Appendix A.1. We also provide an alternative proof suggested
by a referee, based on the idea of alternating minimization, in Appendix A.1

Proposition 1 (Monotonicity) Let Y (k) and

Z(k) = PΩobs
Y (k−1) + ψc(PΩobs

X − PΩobs
Y (k−1))/2

be, respectively, the estimate and the pseudo data matrix in the k-th iteration. If Y (k+1) is
the next estimate such that f(Y (k+1)|Z(k+1)) ≤ f(Y (k)|Z(k+1)), then g(Y (k+1)) ≤ g(Y (k)).

For the general version (Algorithm 1), it is obvious that the condition f(Y (k+1)|Z(k+1)) ≤
f(Y (k)|Z(k+1)) is satisfied as the result of the minimization Y old ← arg minY f(Y |Z).
For the specialized version Robust-Impute (Algorithm 2), this condition is implied by
Lemma 2 of Mazumder et al. (2010). Therefore both versions are monotonic.

As pointed out by a referee, the proposed algorithms can also be viewed as an instance
of the majorization-minimization (MM) algorithm (Lange et al., 2000; Hunter and Lange,
2004). It can be shown that, for (i, j) ∈ Ωobs,

ρc(Xij − Yij) ≤ ρc(Xij − Y old
ij )− (Yij − Y old

ij )ψc(Xij − Y old
ij ) + 2 · 1

2
(Yij − Y old

ij )2

=

[
Yij − Y old

ij −
1

2
ψc(Xij − Y old

ij )

]2

+ constant

= (Yij − Zij)2 + constant.
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Therefore, subject to an additive constant that does not depend on Y , h(Y |Y old) = f(Y |Z) =
(1/2)

∑
(i,j)∈Ωobs

(Zij − Yij)2 + γ‖Y ‖∗ is a majorization of the objective function g. With
this majorization, Algorithm 1 can be viewed as an MM algorithm. Additionally, one can
majorize the unobserved entries by (Yij − Zij)

2 = (Yij − Y old
ij )2 ≥ 0 and, together with

the above majorization of the observed entries, Algorithm 2 can also be shown as an MM
algorithm. Therefore the monotonicity of the proposed algorithms can also be obtained by
the general theory of MM algorithm (e.g., Lange, 2010). Moreover, the explicit connection
to the MM algorithm allows possible extensions of the current algorithm to other robust
loss functions such as Tukey’s biweight loss. However, due to non-differentiability of the
objective function, the typical convergence analysis of MM algorithm (e.g., Lange, 2010,
Ch. 15) does not apply to our case.

We summarize the global convergence rates of both Algorithm 1 and Algorithm 2 in the
following theorem.

Theorem 2 Let Y (k) and Y (0) be, respectively, the estimate in the k-th iteration and the
starting point of Algorithm 1 or Algorithm 2 Then for any k ≥ 1,

Algorithm 1: g(Y (k))− g(Y ∗) ≤
‖PΩobs

Y (0) − PΩobs
Y ∗‖2F

2k
, ∀Y ∗ ∈ Y,

Algorithm 2: g(Y (k))− g(Y ∗) ≤
‖Y (0) − Y ∗‖2F

2k
, ∀Y ∗ ∈ Y,

where Y be the set of all global minimizers of g (i.e. Y = arg minY ∈Rn1×n2 g(Y )).

The global convergence analysis of Algorithm 1 can be carried out similarly as in Beck and
Teboulle (2009) for proximal gradient method, despite that Algorithm 1 is not a proximal
gradient method. For completeness, we give the proof of Theorem 2 for Algorithm 1 in
Appendix A.2.

As for Robust-Impute (Algorithm 2), we can rewrite it as an instance of the proximal
gradient method applied to g(Y ) = g1(Y1)+g2(Y2), where g1(Y ) = (1/2)

∑
(i,j)∈Ωobs

ρc(Xij−
Yij) and g2(Y ) = γ‖Y ‖∗. In our case, the proximal gradient method with step size L iterates
over Y (k+1) = ξL(Y (k)) with

ξL(Ỹ ) = arg min
Y

{
g2(Y ) +

L

2

∥∥∥∥Y − (Ỹ − 1

L
∇g1(Ỹ )

)∥∥∥∥2

F

}
,

where L is a constant greater than or equal to the Lipstchiz constant of g1. Note that g1

has a Lipschitz contant 1. If we take L = 1, we have the following simplification.

g2(Y ) +
L

2

∥∥∥∥Y − (Ỹ − 1

L
∇g1(Ỹ )

)∥∥∥∥2

F

= g2(Y ) +
1

2

∥∥∥∥Y −{Ỹ +
1

2
ψc(PΩobs

X − PΩobs
Ỹ )

}∥∥∥∥2

F

= g2(Y ) +
1

2

∥∥∥Y − {PΩ⊥obs
Ỹ + PΩobs

Z
}∥∥∥2

F
.

The minimization of ξ1 is equivalent to Step 2a(iii) of Algorithm 2. Therefore, the proximal
gradient method is the same as Robust-Impute. This connection allows us to apply the
convergence results of proximal gradient method to Robust-Impute directly. Theorem
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2 for Algorithm 2 follows from Theorem 3.1 of Beck and Teboulle (2009). Lastly, the
Nesterov’s method (Nesterov, 2007) can be applied directly to accelerate Algorithm 2. The
resulted accelerated version is expected to be faster in terms of convergence. However, the
acceleration in the Nesterov’s method ruins the computationally beneficial sparse-plus-low-
rank structure (Mazumder et al., 2010) in the singular vaue thresholding step (Step 2a(iii)).
Hence, for large matrices, the non-accelerated version is still preferred in terms of overall
computations. The detailed discussion can be found in Section 5 of Mazumder et al. (2010).

4.2 Stable Recovery

Recall the stable property of Candès and Plan (2010) implies that, with high probability,
the recovered matrix is subject to an error bound proportional to the noise level. This
subsection shows that the robust matrix completion defined by (2) is also stable.

Although the formulation of (2) has its root from classical robust statistics, it is also
related to the more recent principal component pursuit (PCP) proposed by Candès et al.
(2011). PCP assumes that the entries of the observed matrix are noiseless, and that this
matrix can be decomposed as the sum of a low rank matrix and a sparse matrix, where the
sparse matrix is treated as the gross error. In Candès et al. (2011) it is shown that using PCP
perfect recovery is possible with or without missing entries in the observed matrix. Another
notable work by Chandrasekaran et al. (2011) provide completely deterministic conditions
for the PCP to succeed under no missing data. See Section 1.5 of Candès et al. (2011) for a
detailed comparison between these two pieces of work. For the case of noisy measurements
without missing entries, Zhou et al. (2010) extend PCP to stable PCP (SPCP), which is
shown to be stable. However, to the best of our knowledge, there is no existing theoretical
results for the case of noisy (and/or outlying) measurements with missing entries.

Inspired by She and Owen (2011), we first establish an useful link between robust ma-
trix completion (2) and PCP in the following proposition. The proof can be found in
Appendix A.3.

Proposition 3 (Equivalence) The minimization (2) is equivalent to

minimize
L,S

1

2
‖PΩobs

X − PΩobs
(L+ S)‖2F + γ‖L‖∗ + c‖S‖1. (7)

That is, the minimizing Y of (2) and the minimizing L of (7) coincide.

Minimization (7) has a high degree of similarity to both PCP and SPCP. It is equivalent
to

minimize
L,S

‖L‖∗ + λ‖S‖1 (8)

subject to ‖PΩobs
X − PΩobs

(L+ S)‖2F ≤ δ2,

where λ = c/γ and δ > 0 has a one-to-one correspondence to γ. When comparing with
PCP, (7) permits the observed matrix to be different from the recovered matrix (L+ S) to
allow for noisy measurements. When comparing with SPCP, (7) permits missing entries,
which is necessary for matrix completion problems.
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Proposition 3 has two immediate implications. First, the proposed Algorithm 1 provides
a general methodology to turn a large and well-developed class of matrix completion algo-
rithms into algorithms for solving SPCP with missing entries. Second, many useful results
from PCP can be borrowed to study the theoretical properties of robust matrix comple-
tion (2). In particular, we show that (2) leads to stable recovery. With Proposition 3, it
suffices to show that (7) achieves stable recovery of (L0, S

′
0) from the data PΩobs

(X) gener-
ated by PΩobs

(L0 + S0) obeying ‖PΩobs
X − PΩobs

(L0 + S0)‖F ≤ δ and S′0 = PΩobs
S0. Note

that L0 = X0.
We need some notations to proceed. For simplicity, we assume n = n1 = n2 but our

results can be easily extended to rectangular matrices (n1 6= n2). The Euclidean inner
product 〈Q,R〉 is defined as trace(QᵀR). Let p0 be the proportion of observed entries.
Write Γ ⊂ Ωobs as the set of locations where the measurements are noisy (but not outliters),
and Ω = Ωobs\Γ as the support of S′0 = PΩobs

S0; i.e., locations of outliers. Denote their
complements as, respectively, Γ⊥ and Ω⊥. We define PΓ, PΩ, PΓ⊥ and PΩ⊥ similarly to the
definition of PΩobs

. Let r be the rank of L0 and UDV ᵀ be the corresponding singular value
decomposition of L0, where U, V ∈ Rn×r and D ∈ Rr×r. Similar to Candès et al. (2011),
we consider the linear space of matrices

T := {UQᵀ +RV ᵀ : Q,R ∈ Rn×r}.

Write PT and PT⊥ as the projection operator to T and T⊥ respectively. As in Zhou
et al. (2010), we define a set of notations for any pair of matrices M = (L, S). Here,

let ‖M‖F :=
√
‖L‖2F + ‖S‖2F and ‖M‖♦ := ‖L‖∗ + λ‖S‖1. We also define the projection

operators PT ×PΓ⊥ : (L, S) 7→ (PTL,PΓ⊥S) and PT⊥ ×PΓ : (L, S) 7→ (PT⊥L,PΓS). In our
theoretical development, we consider the following special subspaces

Ψ := {(L, S) : L, S ∈ Rn×n,PΩobs
L = PΩobs

S,PΩ⊥obs
L = PΩ⊥obs

S = 0},

Ψ⊥ := {(L, S) : L, S ∈ Rn×n,PΩobs
L+ PΩobs

S = 0}.

And we write the corresponding projection operators as PΨ and PΨ⊥ respectively. Let
M0 = (L0, S

′
0). Lastly, for any linear operator A, the operator norm, denoted by ‖A‖, is

sup{‖Q‖F =1} ‖AQ‖F . In below, we write that an event occurs with high probability if it

holds with probability at least 1−O(n−10).
To avoid certain pathological cases (see, e.g., Candès and Recht, 2009), an incoherence

condition on U and V is usually assumed. To be specific, this condition with the parameter
µ is:

max
i
‖Uᵀei‖2 ≤

µr

n1
, max

i
‖V ᵀei‖2 ≤

µr

n2
, and ‖UV ᵀ‖∞ ≤

√
µr

n1n2
, (9)

where ‖Q‖ is the operator norm or 2-norm of matrix Q (i.e., the largest singular value of Q)
and ‖Q‖∞ = maxi,j |Qi.j |. This condition guarantees that, for small µ, the singular vectors
are reasonably spread out.

Theorem 4 (Stable Recovery) Suppose that L0 obeys (9) and Ωobs is uniformly dis-
tributed among all sets of cardinality m = p0n

2 with p0 > 0 being the proportion of observed
entries. Further suppose that each observed entry is grossly corrupted to be an outlier with

9
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probability τ independently of the others. Suppose L0 and S0 satisfy r ≤ ρrnµ
−1(log n)−2

and τ ≤ τs with ρr, τs being positive numerical constants. Choose λ = 1/
√
np0. Then, with

high probability (over the choices of Ω and Ωobs), for any X obeying ‖PΩobs
X −PΩobs

(L0 +
S0)‖F ≤ δ, the solution (L̂, Ŝ) to (8) satisfies

‖L̂−L0‖F ≤
{

2 + 8
√
n

(
1 +

√
8

p0

)}
δ and ‖Ŝ−S′0‖F ≤

{
2 + 8

√
n

(
1 +

√
8

p0

)}
√
np0δ,

where S′0 = PΩobs
(S0).

The proof of this theorem can be found in Appendix A.4.

5. Empirical Performances

Two sets of numerical experiments and a real data application were conducted to evaluate
the practical performances of the proposed methodology. In particular the performance of
the proposed procedure Robust-Impute is compared to the performance of Soft-Impute
developed by Mazumder et al. (2010). The reasons Soft-Impute is selected for comparison
are that it is one of the most popular matrix completion methods due to its simplicity and
scalability, and that it is shown by Mazumder et al. (2010) that it generally produces
superior results to other common matrix completion methods such as MMMF of Rennie
and Srebro (2005), SVT of Cai et al. (2010) and OptSpace of Keshavan et al. (2010b)

5.1 Experiment 1: Gaussian Entries

This experiment covers those settings used in Mazumder et al. (2010, Section 9) and addi-
tional settings with different proportions of missing entries and outliers. For each simulated
data set, the target matrix was generated as X0 = UV ᵀ, where U and V are random matri-
ces of size 100× r with independent standard normal Gaussian entries. Then each entry of
X0 is contaminated by additional independent Gaussian noise with standard deviation σ,
which is set to a value such that the signal-to-noise ratio (SNR) is 1. Here SNR is defined
as

SNR = s =

√
Var(X0)

σ2
,

where Var(X0) is the variance over all the entries of X0 conditional on U and V . Next,
for each entry, with probability p yet another independent Gaussian noise with σ/4 is
added; these entries are treated as outliers. We call this contaminated version of X0 as X.
Lastly, Ωobs is uniformly random over the indices of the matrix with missing proportion
as q. In this study, we used two values for r (5, 10), three values for p (0, 0.05, 0.1)
and three values for q (0.25, 0.5, 0.75). Thus in total we have 18 simulation settings.
For each setting 200 simulated data sets were generated, and both the non-robust method
Soft-Impute and the proposed Robust-Impute were applied to recover X0. We also
provide two oracle fittings as references. They are produced by applying Soft-Impute
to the simulated data set with outlying observed entries removed (i.e., treated as missing
entries), and with outlying observed entries replaced by non-outlying contaminated entries
(i.e., contaminated by independent Gaussian noise with standard deivation σ) respectively.
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The first oracle fitting is referred to as oracle1 while the second one is called oracle2 in the
following.

For the two simulation settings with r = 10 and q = 0.5, and one with p = 0 while the
other with p = 0.1, Figure 1 summarizes the average number of singular value decomposi-
tions (SVDs) used and the average test error. Here test error is defined as

Test error =
‖PΩ⊥obs

(X0 − X̂)‖2F
‖PΩ⊥obs

X0‖2F
,

where PΓ is the projection operator to the set of locations of the observed noisy entries
(but not outliers) Γ, and X̂ is an estimate of X0. From Figure 1 (Top), one can see that
the performance of Robust-Impute is slightly inferior to Soft-Impute in the case of
no outliers (p = 0), while Robust-Impute gave significantly better results when outliers
were present (p = 0.1). The inferior performance of Robust-Impute under the absence
of outliers is not surprising, as it is widely known in the statistical literature that a small
fraction of statistical efficiency would be lost when a robust method is applied to a data set
without outliers. However, it is also known that the gain could be substantial if outliers did
present.

As for computational requirements, one can see from Figure 1 (Bottom) that Robust-
Impute only used slightly more SVDs on average. For ranks greater than 5, the number
of SVDs used by Robust-Impute only differs from Soft-Impute on average by less than
1. This suggests that Robust-Impute is slightly more computationally demanding than
Soft-Impute.

Similar experimental results were obtained for the remaining 16 simulation settings. For
brevity, the corresponding results are omitted here but can be found in the supplementary
document.

From this experiment some empirical conclusions can be drawn. When there is no
outlier, Soft-Impute gives slightly better results, while with outliers, results from Robust-
Impute are substantially better. Since that in practice one often does not know if outliers
are present or not, and that Robust-Impute is not much more computationally demanding
than Soft-Impute, it seems that Robust-Impute is the choice of method if one wants to
be more conservative.

5.2 Experiment 2: Image Inpainting

In this experiment the target matrix is the so-called Lena image that has been used by many
authors in the image processing literature. It consists of 256 × 256 pixels and is shown in
Figure 2 (Left). The simulated data sets were generated via contaminating this Lena image
by adding Gaussian noises and/or outliers in the following manner. First independent
Gaussian noise was added to each pixel, where the standard deviation of the noise was set
such that the SNR is 3. Next, 10% of the pixels were selected as outliers, and to them
additional independent Gaussian noises with SNR 3/4 were added. In terms of selecting
missing pixels, two mechanisms were considered. In the first one 40% of the pixels were
randomly chosen as missing pixels, while in the second mechanism only 10% were missing
but they were clustered together to form patches. Two typical simulated data sets are shown
in Figure 2 (Middle). Note that Theorem 4 does not cover the second missing mechanism.
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Figure 1: Top: The average test errors with their standard error bands (plus or minus one
standard error). Bottom: The average number of singular value decompositions
used with standard error bands (plus or minus one standard error). Left: results
for the simulation setting: r = 10, p = 0 and q = 0.5. Right: results for the
simulation setting: r = 10, p = 0.1 and q = 0.5.
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training error testing error
rank 50 75 100 125 50 75 100 125

independent Soft-Impute 0.0499 0.0351 0.0221 0.0113 0.0578 0.0565 0.0581 0.0620
missing Robust-Impute 0.0486 0.0371 0.0282 0.0252 0.0546 0.0540 0.0557 0.0571

clustered Soft-Impute 0.0487 0.0386 0.0296 0.0214 0.0756 0.0751 0.0760 0.0781
missing Robust-Impute 0.0468 0.0390 0.0321 0.0268 0.0716 0.0714 0.0723 0.0742

Table 1: The average training and testing errors for the Lena experiment.

For each missing mechanism, 200 data sets were generated and both Soft-Impute and
Robust-Impute were applied to reconstruct Lena.

The average training and testing errors1 of the recovered images of matrix ranks 50, 75,
100 and 125 are reported in Table 1. For both missing mechanisms, Soft-Impute tends
to have lower training errors, but larger testing errors when compared to Robust-Impute.
In other words, Soft-Impute tends to over-fit the data, and Robust-Impute seems to
provide better results. Lastly, for visual evaluation, the recovered image of rank 100 using
Robust-Impute is displayed in Figure 1 (Right). From this one can see that the proposed
Robust-Impute provided good recoveries under both missing mechanisms.

5.3 Real data application: Landsat Thematic Mapper

In this application the target matrix is an image from a Landsat Thematic Mapper data set
publicly available at http://ternauscover.science.uq.edu.au/. This data set contains
149 multiband images of 100 × 100 pixels, with each image consists of six bands (blue,
green and red with three infrared bands). The scene is centered on the Tumbarumba flux
tower on the western slopes of the Snowy Mountains in Australia. Due to wild fires or
related reasons, some pixels are of value zero which can be treated as missing. Also, due to
detector malfunctioning, some isolated pixels have values much higher than the remaining
pixels, which can be treated as outliers. We selected an image band with a high missing
rate (27.6%) to test our procedure.

To evaluate the recovered matrix, the observed pixels were split into training, validation
and testing sets consisting 80%, 10% and 10% of the observed (nonzero) entries respectively.
We used the validation set to tune γ. The validation errors are computed in two ways:

mean squared error (MSE)
√∑

(i,j)∈V(Xij − X̂ij)2/|V| and mean absolute deviation (MAD)

median{|Xij−X̂ij | : (i, j) ∈ V}, where V represents the validation set. Similarly, we compute
the testing errors in terms of MSE and MAD. Note that the validation and testing sets may
contain outliers and therefore MAD serves as a robust and reliable performance measure.
The corresponding results are shown in Table 2. From this table it can be seen that with
the presence of outliers, Robust-Imputeprovided better results.

1. The solution path (formed by the pre-specified set of γ’s) may not contain any solution of rank 50, 75, 100
and 125. Thus, the average errors were computed over those fittings that contained the corresponding
fitted ranks. At most 2% of these fittings were discarded due to this reason.

13



Wong and Lee

Figure 2: Left: the Lena image. Middle: degraded Lena images by the independent missing
mechanism (Top) and the clustered missing mechanism (Down). Right: corre-
sponding recovered images of rank 100 via Robust-Impute.

tuning by MSE tuning by MAD
rank MSE MAD rank MSE MAD

Soft-Impute 24 45.20 31.15 21 45.23 31.15
Robust-Impute 24 44.63 29.00 29 44.57 28.76

Table 2: Rank and testing errors of the real data application.
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6. Concluding remarks

In this paper a classical idea from robust statistics has been brought to the matrix com-
pletion problem. The result is a new matrix completion method that can handle noisy and
outlying entries. This method uses the Huber function to downweigh the effects of outliers.
A new algorithm is developed to solve the corresponding optimization problem. This algo-
rithm is relatively fast, easy to implement and monotonic convergent. It can be paired with
any existing (non-robust) matrix completion methods to make such methods robust against
outliers. We also developed a specialized version of this algorithm, called Robust-Impute.
Its promising empirical performance has been illustrated via numerical experiments. Lastly,
we have shown that the proposed method is stable; that is, with high probability, the error
of recovered matrix is bounded by a constant proportional to the noise level.
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Appendix A. Technical Details

In this section, we provide technical details of our theoretical results.

A.1 Proofs of Proposition 1

Proof By rewriting

‖PΩobs
Z(k+1) − PΩobs

Y (k+1)‖2F
= ‖PΩobs

Z(k+1) − PΩobs
Y (k)‖2F + ‖PΩobs

Y (k) − PΩobs
Y (k+1)‖2F

2× trace
[
{PΩobs

Z(k+1) − PΩobs
Y (k)}{PΩobs

Y (k) − PΩobs
Y (k+1)}ᵀ

]
,

and using f(Y (k+1)|Z(k+1)) ≤ f(Y (k)|Z(k+1)), we have

1

2
‖PΩobs

Y (k) − PΩobs
Y (k+1)‖2F + trace

[
{PΩobs

Z(k+1) − PΩobs
Y (k)}{PΩobs

Y (k) − PΩobs
Y (k+1)}ᵀ

]
+ γ‖Y (k+1)‖∗ ≤ γ‖Y (k)‖∗.

Thus, by substituting Z(k+1) = PΩobs
Y (k) + 1

2ρ
′
c(PΩobs

X − PΩobs
Y (k)),

1

2
‖PΩobs

Y (k) − PΩobs
Y (k+1)‖2F +

1

2
trace

[
ρ′c(PΩobs

X − PΩobs
Y (k)){PΩobs

Y (k) − PΩobs
Y (k+1)}ᵀ

]
+ γ‖Y (k+1)‖∗ ≤ γ‖Y (k)‖∗.

(10)
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Here we abuse the notation slightly so that ρ′c of a matrix simply means the matrix formed
by applying ρ′c to its entries. Note that for each (i, j) ∈ Ωobs, by Taylor’s expansion,

ρc(Xij − Y (k+1)
ij ) = ρ(Xij − Y (k)

ij ) + (Y
(k)
ij − Y

(k)
ij )ρ′c(Xij − Y (k)

ij )

+

∫ Xij−Y
(k+1)
ij

Xij−Y
(k)
ij

(Xij − Y (k+1)
ij − t)ρ′′c (t)dt,

and the last integral term is less than or equal to (Y
(k)
ij − Y

(k+1)
ij )2 due to ρ′′c ≤ 2 almost

everywhere. Thus,∑
(i,j)∈Ωobs

ρc(Xij − Y (k+1)
ij ) ≤

∑
(i,j)∈Ωobs

ρc(Xij − Y (k)
ij )

+ trace
[
ρ′c(PΩobs

X − PΩobs
Y (k)){PΩobs

Y (k) − PΩobs
Y (k+1)}ᵀ

]
+ ‖PΩobs

Y (k) − PΩobs
Y (k+1)‖2F .

Now, plugging it into (10), we have g(Y (k+1)) ≤ g(Y (k)).

Proof (Alternative proof of Proposition 1) Similar to the proof of Proposition 3 in
Section A.3, one can show that

g(Y ) = min
S

1

2
‖PΩobs

X − PΩobs
Y − PΩobs

S‖2F + γ‖Y ‖∗ + c‖S‖1, (11)

where the minimizer is S(Y ) = (1/2)ψc(PΩobs
X − PΩobs

Y ). Now, one can show that

Z(k+1) = PΩobs
Y (k) + (1/2)ψc(PΩobs

X − PΩobs
Y (k))

= PΩobs
X + (1/2)ψc(PΩobs

Y (k) − PΩobs
X)

= PΩobs
X − (1/2)ψc(PΩobs

X − PΩobs
Y (k))

= PΩobs
X − S(Y (k)).

Now, due to (11),

g(Y (k+1)) = min
S

1

2
‖PΩobs

X − PΩobs
Y (k+1) − PΩobs

S‖2F + γ‖Y (k+1)‖∗ + c‖S‖1

≤ 1

2
‖PΩobs

X − PΩobs
Y (k+1) − PΩobs

S(Y (k))‖2F + γ‖Y (k+1)‖∗ + c‖S(Y (k))‖1

= f(Y (k+1)|X − S(Y (k))) + c‖S(Y (k))‖1
= f(Y (k+1)|PΩobs

X − S(Y (k))) + c‖S(Y (k))‖1
= f(Y (k+1)|Z(k+1)) + c‖S(Y (k))‖1
≤ f(Y (k)|Z(k+1)) + c‖S(Y (k))‖1

=
1

2
‖PΩobs

X − PΩobs
Y (k) − PΩobs

S(Y (k))‖2F + γ‖Y (k)‖∗ + c‖S(Y (k))‖1

= g(Y (k)).
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A.2 Proof of Theorem 2 for Algorithm 1

Proof This proof closely follows the proofs of Lemma 2.3 and Theorem 3.1 in Beck and
Teboulle (2009) by modifying their approximation model to

ζ(Y, Ỹ ) = g1(Ỹ ) + 〈Y − Ỹ ,∇g1(Ỹ )〉+
1

2
‖PΩobs

Y − PΩobs
Ỹ ‖2F + g2(Y )

= g1(Ỹ )− 1

2
〈Y − Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )〉+

1

2
‖PΩobs

Y − PΩobs
Ỹ ‖2F + g2(Y )

= g1(Ỹ )− 1

2
〈PΩobs

Y − PΩobs
Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )〉+

1

2
‖PΩobs

Y − PΩobs
Ỹ ‖2F

+ g2(Y ),

where 〈X,Y 〉 =
∑

i,j XijYij . Note that arg minY ζ(Y, Ỹ ) is the same as arg minY f(Y |Z),

where Z = PΩobs
Ỹ + (1/2)ψc(PΩobs

X − PΩobs
Ỹ ), in Steps 2(a)-(c) of Algorithm 1. Let

Π(Ỹ ) = arg minY ζ(Y, Ỹ ). Therefore Y (k+1) = Π(Y (k)). Moreover,

g1(Y ) ≤ g1(Ỹ ) + 〈Y − Ỹ ,∇g1(Ỹ )〉+
1

2
‖PΩobs

Y − PΩobs
Ỹ ‖2F ,

for any Y and Ỹ . Therefore, g(Π(Ỹ )) ≤ ζ(Π(Ỹ ), Ỹ ) for any Ỹ ∈ Rn1×n2 .
To proceed, we need a modified version of Lemma 2.3 in Beck and Teboulle (2009).

Lemma 5 For any Ỹ , Y ∈ Rn1×n2,

g(Y )− g(Π(Ỹ )) ≥ 1

2
‖PΩobs

Π(Ỹ )− PΩobs
Ỹ ‖2F + 〈PΩobs

Ỹ − PΩobs
Y,PΩobs

Π(Ỹ )− PΩobs
Y 〉.

This lemma is proved as follows. Since Π(Ỹ ) is the minimizer of the convex function
ζ(·, Ỹ ), there exists a b(Ỹ ) ∈ ∂g2(Π(Ỹ )), the subdifferential of g2 at Π(Ỹ ), such that
∇g1(Ỹ ) + PΩobs

Π(Ỹ )− PΩobs
Ỹ + b(Ỹ ) = 0. By the convexity of g1 and g2,

g1(Y ) ≥ g1(Ỹ )− 1

2
〈Y − Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )〉

g2(Y ) ≥ g2(Π(Ỹ ))− 〈Y −Π(Ỹ ), b(Ỹ )〉.

Therefore,

g(Y ) ≥ g1(Ỹ )− 1

2
〈Y − Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )〉+ g2(Π(Ỹ ))− 〈Y −Π(Ỹ ), b(Ỹ )〉. (12)

Since g(Π(Ỹ )) ≤ ζ(Π(Ỹ ), Ỹ ), we have g(Y ) − g(Π(Ỹ )) ≥ g(Y ) − ζ(Π(Ỹ ), Ỹ ). Plugging in
(12), the definition of ζ and the condition for b, the conclusion of the lemma follows.

Using Lemma 5 with Y = Y ∗ and Ỹ = Y (k), we have

2{g(Y ∗)− g(Y (k))} ≥ ‖PΩobs
Y ∗ − PΩobs

Y (k+1)‖2F − ‖PΩobs
Y ∗ − PΩobs

Y (k)‖2F .

Summing it over k = 0, . . . ,m− 1,

2

{
mg(Y ∗)−

m−1∑
k=0

g(Y (k))

}
≥ ‖PΩobs

Y ∗ − PΩobs
Y (m)‖2F − ‖PΩobs

Y ∗ − PΩobs
Y (0)‖2F . (13)
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Applying Lemma 5 with Y = Ỹ = Y (k),

2
{
g(Y (k))− g(Y (k+1))

}
≥ ‖PΩobs

Y (k+1) − PΩobs
Y (k)‖2F .

Multiplying it by k and summing over k = 0, . . . ,m− 1,

2

{
−mg(Y (m)) +

m−1∑
k=0

g(Y (k+1))

}
≥

m−1∑
k=0

k‖PΩobs
Y (k+1) − PΩobs

Y (k)‖2F . (14)

Adding (13) and (14),

2
{
g(Y ∗)− g(Y (m))

}
≥ ‖PΩobs

Y ∗ − PΩobs
Y (m)‖2F − ‖PΩobs

Y ∗ − PΩobs
Y (0)‖2F

+

m−1∑
k=0

k‖PΩobs
Y (k+1) − PΩobs

Y (k)‖2F .

Therefore,

g(Y (m))− g(Y ∗) ≤
‖PΩobs

Y ∗ − PΩobs
Y (0)‖2F

2m
.

A.3 Proof of Proposition 3

Proof Since both (2) and (7) are convex, we only need to consider the sub-gradients. The
sub-gradient conditions for minimizier of (2) are given as follows:

0 ∈ −1

2
ρ′c(PΩobs

X − PΩobs
Y ) + γ∂‖Y ‖∗, (15)

where ∂‖ · ‖∗ represents the set of subgradients of the nuclear norm. The sub-gradient
conditions for minimizier of (7) are given as follows:

0 ∈ −PΩobs
(X − L− S) + γ∂‖L‖∗ (16)

0 ∈ −PΩobs
(X − L− S) + c∂‖S‖1, (17)

where ∂‖ · ‖1 represents the set of subgradients of ‖ · ‖1. Here (17) implies, for (i, j) ∈ Ωobs,

Sij =


Xij − Lij − c, Xij − Lij > c

0, |Xij − Lij | ≤ c
Xij − Lij + c, Xij − Lij < −c

(18)

and Sij = 0 for (i, j) ∈ Ω⊥obs. Note, for (i, j) ∈ Ωobs, Xij − Lij − Sij = ρ′c(Xij − Lij)/2.
Plugging it into (16), we have (15) and thus this proves the proposition.
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A.4 Proof of Theorem 4

To prove Theorem 4, we first show three lemmas and one proposition.

Lemma 6 (Modified Lemma A.2 in Candès et al. 2011) Assume that for any ma-
trix Q, ‖PTPΓ⊥Q‖F ≤ n‖PT⊥PΓ⊥Q‖F . Suppose there is a pair (W,F ) obeying

PTW = 0, ‖W‖ < 1/2,

PΓ⊥F = 0, ‖F‖∞ < 1/2,

UV ᵀ +W + PTD = λ(sgn(S′0) + F ) with ‖PTD‖F ≤ n−2.

(19)

Then for any perturbation H = (HL, HS) satisfying PΩobs
HL + PΩobs

HS = 0,

‖M0 −H‖♦ ≥ ‖M0‖♦ +

(
1

2
− 1

n

)
‖PT⊥HL‖∗ +

(
λ

2
− n+ 1

n2

)
‖PΓHL‖1.

The proof of this lemma can be found in Candès et al. (2011). To procced, we write
‖M‖2F,λ = ‖L‖2F + λ2‖S‖2F for any pair of matrices M = (L, S).

Lemma 7 Let M = (ML,MS) be any pair of matrices. Suppose ‖PTPΩ‖2 ≤ p0/8 and
‖PΩobs

PTML‖2F ≥ p0‖PTML‖2F /2. Then

‖PΨ(PT × PΩ)M‖2F,λ ≥
(1 + λ2)p0

16
‖(PT × PΩ)M‖2F .

Proof (Proof of Lemma 7) Note that for any M ′ = (M ′L,M
′
S),

PΨM
′ =

(
PΩobs

(M ′L +M ′S)

2
,
PΩobs

(M ′L +M ′S)

2

)
.

Thus

‖PΨ(PT × PΩ)M‖2F,λ =
1 + λ2

4
‖PΩobs

(PTML + PΩMS)‖2F

=
1 + λ2

4

(
‖PΩobs

PTML‖2F + ‖PΩMS‖2F + 2〈PΩobs
PTML,PΩMS〉

)
,

where the last equality is due to Ω ⊂ Ωobs. By ‖PTPΩ‖2 ≤ p0/8,

〈PΩobs
PTML,PΩMS〉 = 〈PTML,PΩMS〉

= 〈PTML, (PTPΩ)PΩMS〉
≥ −‖PTPΩ‖‖PTML‖F ‖PΩMS‖F

≥ −
√
p0

2
√

2
‖PTML‖F ‖PΩMS‖F .

Combining with ‖PΩobs
PTML‖2F ≥ p0‖PTML‖2F /2, we have

‖PΨ(PT × PΩ)M‖2F,λ ≥
1 + λ2

4

(
p0

2
‖PTML‖2F + ‖PΩMS‖2F −

√
p0

2
‖PTML‖F ‖PΩMS‖F

)
.
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As 2(x2 + y2 − xy) ≥ x2 + y2 for x, y ≥ 0,

‖PΨ(PT ×PΩ)M‖2F,λ ≥
1 + λ2

8

(p0

2
‖PTML‖2F + ‖PΩMS‖2F

)
≥ (1 + λ2)p0

16
‖(PT ×PΩ)M‖2F .

Lemma 8 Let M = (ML,MS) be any pair of matrices. Then ‖PΨM‖2F,λ ≤ ‖M‖2F,λ/2.

Proof (Proof of Lemma 8) Write MΨ = (MΨ
L ,M

Ψ
S ) = PΨM . Since ‖MΨ

L ‖2F = ‖MΨ
S ‖2F ,

‖PΨM‖2F,λ = ‖MΨ
L ‖2F + λ2‖MΨ

S ‖2F

=
1

2
(‖MΨ

L ‖2F + ‖MΨ
S ‖2F ) +

λ2

2
(‖MΨ

L ‖2F + ‖MΨ
S ‖2F )

=
1

2
‖MΨ‖2F +

λ2

2
‖MΨ‖2F

≤ 1

2
‖M‖2F +

λ2

2
‖M‖2F =

1

2
‖M‖2F,λ.

Proposition 9 Assume that for any matrix Q,

‖PTPΓ⊥Q‖F ≤ n‖PT⊥PΓ⊥Q‖F and ‖PΩobs
PTQ‖F ≥ p0‖PTQ‖F /2.

Further suppose 4/n < λ ≤ 1, n ≥ 3, p0 > 0, ‖PTPΩ‖2 ≤ p0/8 and that there exists a pair
(W,F ) obeying (19). Then the solution M̂ = (L̂, Ŝ) to (7) satisfies

‖M̂ −M0‖F,λ ≤
[√

1 + λ2 + 4

(
1 +

√
8

p0

)
(
√
n+ nλ

√
p0)

]
δ.

where M0 = (L0, S
′
0) such that ‖PΩobs

X−PΩobs
(L0+S0))‖2F ≤ δ and S′0 = PΩobs

S0. Further,
if λ = 1/

√
np0 (which implies 1/n < p0 < n/16), we obtain

‖L̂−L‖F ≤
{

2 + 8
√
n

(
1 +

√
8

p0

)}
δ and ‖Ŝ−S′0‖F ≤

{
2 + 8

√
n

(
1 +

√
8

p0

)}
√
np0δ.

Proof (Proof of Proposition 9) Write M̂ = M0 +H, where H = (HL, HS), and HΨ =

(HΨ
L , H

Ψ
S ) = PΨH and HΨ⊥ = (HΨ⊥

L , HΨ⊥
S ) = PΨ⊥H. We want to bound

‖H‖F,λ = ‖HΨ +HΨ⊥‖F,λ
≤ ‖HΨ‖F,λ + ‖HΨ⊥‖F,λ
≤ ‖HΨ‖F,λ + ‖(PT⊥ × PΓ)HΨ⊥‖F,λ + ‖(PT × PΓ⊥)HΨ⊥‖F,λ. (20)
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We start with the first term of (20). Since HΨ
L = HΨ

S = (1/2)PΩobs
(HL +HS),

‖HΨ‖F,λ =

√
1 + λ2

2
‖PΩobs

(HL +HS)‖F

=

√
1 + λ2

2
‖PΩobs

(L̂+ Ŝ − L0 − S′0)‖F

≤
√

1 + λ2

2

(
‖PΩobs

(L̂+ Ŝ −X)‖F + ‖PΩobs
(L0 + S′0 −X)‖F

)
≤ δ
√

1 + λ2,

where the last inequality is due to the fact that both M0 and M̂ are feasible.
Then we focus on the second term of (20). First, we have

‖M0‖♦ ≥ ‖M̂‖♦ = ‖M0 +H‖♦ ≥ ‖M0 +HΨ⊥‖♦ − ‖HΨ‖♦.

By Lemma 6,

‖M0 +HΨ⊥‖♦ ≥ ‖M0‖♦ + a(n)‖PT⊥HΨ⊥
L ‖∗ + b(n, λ)‖PΓH

Ψ⊥
L ‖1,

where

a(n) =
1

2
− 1

n
and b(n, λ) =

λ

2
− n+ 1

n2
.

Now, combining the above inequalities,

‖HΨ‖♦ ≥ a(n)‖PT⊥HΨ⊥
L ‖∗ + b(n, λ)‖PΓH

Ψ⊥
L ‖1. (21)

By the assumption that λ > 4/n and n ≥ 3,

a(n) =
1

2
− 1

n
> 0 and b(n, λ) =

λ

2
− n+ 1

n2
>

2

n
− 1

n
− 1

n2
=

1

n
− 1

n2
> 0.

Therefore (21) implies ‖HΨ‖♦ ≥ a(n)‖PT⊥HΨ⊥
L ‖∗ and ‖HΨ‖♦ ≥ b(n, λ)‖PΓH

Ψ⊥
L ‖1.

Now, we are ready to establish a bound for the second term of (20).

‖(PT⊥ × PΓ)HΨ⊥‖F,λ ≤ ‖PT⊥HΨ⊥
L ‖F + λ‖PΓH

Ψ⊥
S ‖F

≤ ‖PT⊥HΨ⊥
L ‖∗ + λ‖PΓH

Ψ⊥
S ‖1

≤
{

1

a(n)
+

λ

b(n, λ)

}
‖HΨ‖♦

≤ 4(‖HΨ
L ‖∗ + λ‖HΨ

S ‖1).

As for the third term of (20), we apply Lemma 7 and the bound of the second term in

(20). As PΨH
Ψ⊥ = 0, PΨ(PT × PΓ⊥)HΨ⊥ + PΨ(PT⊥ × PΓ)HΨ⊥ = 0. Therefore, due to

Lemma 8,

‖PΨ(PT × PΓ⊥)HΨ⊥‖F,λ = ‖PΨ(PT⊥ × PΓ)HΨ⊥‖F,λ ≤
1√
2
‖(PT⊥ × PΓ)HΨ⊥‖F,λ.
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As PΩ⊥obs
HS does not affect the feasibility of M +H and H is chosen such that ‖M +H‖♦ is

minimized, thus PΩ⊥obs
HΨ⊥
S = PΩ⊥obs

HS = 0 which implies (PT×PΓ⊥)HΨ⊥ = (PT×PΩ)HΨ⊥ .

Thus, by Lemma 7,

‖(PT × PΓ⊥)HΨ⊥‖F ≤

√
8

(1 + λ2)p0
‖(PT⊥ × PΓ)HΨ⊥‖F,λ ≤

√
8

p0
‖(PT⊥ × PΓ)HΨ⊥‖F,λ.

And ‖(PT × PΓ⊥)HΨ⊥‖F,λ ≤ ‖(PT × PΓ⊥)HΨ⊥‖F as λ ≤ 1.
Collecting all the above bounds for the three terms, we derive the bound for ‖H‖F,λ:

‖H‖F,λ ≤ δ
√

1 + λ2 + 4

(
1 +

√
8

p0

)
(‖HΨ

L ‖∗ + λ‖HΨ
S ‖1).

Finally, ‖HΨ
L ‖∗ ≤

√
n‖HΨ

L ‖F , ‖HΨ
S ‖1 =

√
p0n2‖HΨ

S ‖F (since HΨ
S is supported on Ωobs) and

‖HΨ
L ‖F = ‖HΨ

S ‖ = ‖PΩobs
(HL +HS)‖F /2 ≤ δ. Therefore,

‖H‖F,λ ≤ δ
[√

1 + λ2 + 4

(
1 +

√
8

p0

)
(
√
n+ nλ

√
p0)

]
.

Assume that λ = 1/
√
np0. First we note that, due to λ > 4/n, this condition imposes a

reasonable coverage of p0: 1/n < p0 < n/16. Now we focus on simplifying the bound for
‖H‖F,λ. √

1 + λ2 + 4

(
1 +

√
8

p0

)
(
√
n+ nλ

√
p0) ≤ 2 + 8

√
n

(
1 +

√
8

p0

)
.

This implies

‖HL‖F ≤
{

2 + 8
√
n

(
1 +

√
8

p0

)}
δ and ‖HS‖F ≤

{
2 + 8

√
n

(
1 +

√
8

p0

)}
√
np0δ.

To prove Theorem 4, we establish one additional lemma.

Lemma 10 Suppose ‖PT − p−1
0 PTPΩobs

PT ‖ ≤ 1/2. Then for any matrix Q,

‖PΩobs
PTQ‖2F ≥

p0

2
‖PTQ‖2F .

Proof (Proof of Lemma 10) By the assumptions, for any matrix Q,

‖PΩobs
PTQ‖2F = 〈PΩobs

PTQ,PΩobs
PTQ〉

= 〈PTQ,PTPΩobs
PTQ〉

= p0〈PTQ, p−1
0 PTPΩobs

PTQ〉
= p0

[
‖PTQ‖2F + 〈PTQ, (p−1

0 PTPΩobs
PT − PT )Q

]
≤ p0

(
‖PTQ‖2F −

1

2
‖PTQ‖2F

)
=
p0

2
‖PTQ‖2F .
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Proof (Proof of Theorem 4) Recall that we write that an event occurs with high prob-
ability if it holds with probability at least 1 − O(n−10). Due to the asymptotic nature of
Theorem 4, we only require the conditions of Proposition 9 to hold asymptotically with
large probability. By Lemma A.3 of Candès et al. (2011), ‖PTPΓ⊥Q‖F ≤ n‖PT⊥PΓ⊥Q‖F
for all Q, with high probability. By Lemma 10 and Theorem 2.6 of Candès et al. (2011) (see
also Candès and Recht, 2009, Theorem 4.1), ‖PΩobs

PTQ‖2F ≥
p0
2 ‖PTQ‖

2
F for all Q, with

high probability. Further, by Candès and Recht (2009), ‖PTPΩ‖2 ≤ p0/8 occurs with high
probability. Candès et al. (2011, pp. 33-35) show that there exist dual certificates (W,F )
obeying (19) with high probability. For sufficiently large n, the conditions of λ and p0 in
Proposition 9 are fulfilled. Therefore, Theorem 4 follows from Proposition 9.
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