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Abstract

We show a Talagrand-type concentration inequality for Multi-Task Learning (MTL), with which we
establish sharp excess risk bounds for MTL in terms of the Local Rademacher Complexity (LRC).
We also give a new bound on the LRC for any norm regularized hypothesis classes, which applies
not only to MTL, but also to the standard Single-Task Learning (STL) setting. By combining
both results, one can easily derive fast-rate bounds on the excess risk for many prominent MTL
methods, including—as we demonstrate—Schatten norm, group norm, and graph regularized MTL.
The derived bounds reflect a relationship akin to a conservation law of asymptotic convergence
rates. When compared to the rates obtained via a traditional, global Rademacher analysis, this very
relationship allows for trading off slower rates with respect to the number of tasks for faster rates
with respect to the number of available samples per task.
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1. Introduction

A commonly occurring problem, when applying machine learning in the sciences, is the lack
of a sufficient amount of training data to attain acceptable performance results; either obtaining
such data may be very costly or they may be unavailable due to technological limitations. For
example, in cancer genomics, tumor bioptic samples may be relatively scarce due to the limited
number of cancer patients, when compared to samples of healthy individuals. Also, in neuroscience,
electroencephalogram experiments are carried out on human subjects to record training data and
typically involve only a few dozen subjects.

In such settings, when considering any type of prediction task per individual subject (for example,
whether the subject is indeed suffering from a specific medical affliction or not), relying solely on
the scarce data per individual most often leads to inadequate predictive performance. Such a direct
approach completely ignores the advantages that might be gained, when considering intrinsic, strong
similarities between subjects and, hence, tasks. For instance, in the area of genomics, different
living organisms can be related to each other in terms of their evolutionary relationships as given by
the tree of life. Taking into account such relationships may be instrumental in detecting genes of
recently developed organisms, for which only a limited number of training data is available. While
our discussion here has focused on the realm of biomedicine, similar limitations and opportunities to
overcome them exist in other fields as well.

Transfer learning (Pan and Yang, 2010) and, in particular, Multi-Task Learning (MTL) (Caruana,
1997) leverage such underlying common links among a group of tasks, while respecting the tasks’
individual idiosyncrasies to the extent warranted. This is achieved by phrasing the learning process
as a joint, mutually dependent learning problem. An early example of such a learning paradigm is
the neural network-based approach introduced by Caruana (1997), while more recent works consider
convex MTL problems (Ando and Zhang, 2005; Evgeniou and Pontil, 2004; Argyriou et al., 2008a).
At the core of each such MTL formulation lies a mechanism that encodes task relatedness into the
learning problem (Evgeniou et al., 2005). Such relatedness mechanism can always be thought of as
jointly constraining the tasks’ hypothesis spaces, so that their geometry is mutually coupled, e.g.,
via a block norm constraint (Yousefi et al., 2015). Thus, from a regularization perspective, the tasks
mutually regularize their learning based on their inter-task relatedness. This process of information
exchange during co-learning is often referred to as information sharing. With respect to learning
theory results, the analysis of MTL goes back to the seminal work of Baxter (2000), which was
followed up by the works of Ando and Zhang (2005); Maurer (2006a). Nowadays, MTL frameworks
are routinely employed in a variety of settings. Some recent applications include computational
genetics (Widmer et al., 2013), image segmentation (An et al., 2008), HIV therapy screening (Bickel
et al., 2008), collaborative filtering (Cao et al., 2010), age estimation from facial images (Zhang and
Yeung, 2010), and sub-cellular location prediction (Xu et al., 2011), just to name a few prominent
ones.

MTL learning guarantees are centered around notions of (global) Rademacher complexities,
which were introduced to machine learning by Bartlett et al. (2002); Bartlett and Mendelson (2002);
Koltchinskii and Panchenko (2000); Koltchinskii (2001); Koltchinskii and Panchenko (2002), and
employed in the context of MTL by Maurer (2006a,b); Kakade et al. (2012); Maurer and Pontil
(2013); Maurer (2016); Maurer et al. (2016). All these works are briefly surveyed in Sect. 1.3. It is
worth noting that, if T denotes the number of tasks being co-learned and n denotes the number of
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available observations per task, then the fastest-converging error or excess risk bounds derived in
these works are of the order O(1/

√
nT ).

More recently, Koltchinskii (2006) and Bartlett et al. (2005) introduced a more nuanced variant
of these complexities, termed Local Rademacher Complexity (LRC), as opposed to the original
Global Rademacher Complexity (GRC). This new, modified function class complexity measure
is attention-worthy, since, as shown by Bartlett et al. (2005), an LRC-based analysis is capable of
producing more rapidly-converging excess risk bounds (“fast rates”), when compared to the ones
obtained via a GRC analysis. This can be attributed to the fact that, unlike LRCs, GRCs ignore
the fact that learning algorithms typically choose well-performing hypotheses that belong only to a
subset of the entire hypothesis space under consideration. The end result of this distinction empowers
a local analysis to provide less conservative and, hence, sharper bounds than the standard global
analysis. To date, there have been only a few additional works attempting to reap the benefits of
such local analysis in various contexts: active learning for binary classification tasks (Koltchinskii,
2010), multiple kernel learning (Kloft and Blanchard, 2011; Cortes et al., 2013), transductive learning
(Tolstikhin et al., 2014), semi-supervised learning (Oneto et al., 2015) and bounds on the LRCs via
covering numbers (Lei et al., 2015).

1.1 Our Contributions

Through a Talagrand-type concentration inequality adapted to the MTL case, this paper’s main
contribution is the derivation of sharp bounds on the MTL excess risk in terms of the distribution-
and data-dependent LRC. For a given number of tasks T , these bounds admit faster (asymptotic) con-
vergence characteristics in the number of observations per task n, when compared to corresponding
bounds hinging on the GRC. Hence, these faster rates ensure us that the MTL hypothesis selected by
a learning algorithm approaches the best-in-class solution as n increases beyond a certain threshold.
We also prove a new bound on the LRC, which generally holds for hypothesis classes with any norm
regularizers. This bound readily facilitates the bounding of the LRC for a range of such regularizers
not only for MTL, but also for the standard Single-Task Learning (STL) setting. As a matter of fact,
we demonstrate such results, in Sect. 4, for classes induced by graph-based, Schatten and group norm
regularizers. Moreover, we prove matching lower bounds and, thus, show that, aside from constants,
the LRC-based bounds are tight for the considered applications.

Our derived bounds reflect that one can trade off a slow convergence speed w.r.t. T for an
improved convergence rate w.r.t. n. The latter one ranges from the typical GRC-based O(1/

√
n)

bounds, all the way up to the fastest rate of order O(1/n) by allowing the bound to depend less on T .
Nevertheless, the premium in question becomes less relevant to MTL, since T is typically considered
fixed is such setting.

Fixing all other parameters when the number of samples per task n approaches infinity, our
local bounds yield faster rates compared to their global counterparts. Also, it is observed that, if
the number of tasks T and the radius R of the ball-norms can grow with n, there are cases wherein
local analysis always improves over the global one. When our local bounds are compared to the ones
in(Maurer and Pontil, 2013; Maurer, 2006b), which stem from a global analysis, one observes that
our bounds yield faster, O(1/T ) and O(1/n) convergence rates.
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1.2 Organization

The paper is organized as follows: Sect. 2 lays the foundations for our analysis by considering a
Talagrand-type concentration inequality suitable for deriving our bounds. Next, in Sect. 3, after
suitably defining LRCs for MTL hypothesis spaces, we provide our LRC-based MTL excess risk
bounds. Based on these bounds, we follow up this section with a local analysis of linear MTL
frameworks, in which task-relatedness is presumed and enforced by imposing a norm constraint.
More specifically, leveraging off Hölder’s inequality, Sect. 4 presents generic upper bounds for the
relevant LRC of any norm regularized hypothesis class. These results are subsequently specialized
to the case of group norm, Schatten norm and graph regularized linear MTL. Sect. 5 supplies the
corresponding excess risk bounds based on the LRC of the aforementioned hypothesis classes. The
paper concludes with Sect. 6, which investigates the convergence rate of our LRC-based excess risk
bounds for the previously mentioned hypothesis spaces. We also compare our local bounds with
those obtained from a GRC-based analysis provided in Maurer and Pontil (2013); Maurer (2006b).

1.3 Previous Related Works

An earlier work by Maurer (2006a), which considers linear MTL frameworks for binary classification,
investigates the generalization guarantees based on Rademacher averages. In this framework, all
tasks are pre-processed by a common bounded linear operator and operator norm constraints are used
to control the complexity of the associated hypothesis spaces. The GRC-based error bounds derived
are of order O(1/

√
nT ). Another contemporary study (Maurer, 2006b) provides bounds for the

empirical and expected Rademacher complexities of linear transformation classes. Based on Hölder’s
inequality, GRC-based risk bounds of order O(1/

√
nT ) are established for MTL hypothesis spaces

with graph-based and LSq -Schatten norm regularizers, where q ∈ {2} ∪ [4,∞].

The subject of MTL generalization guarantees benefited from renewed attention in recent years.
Kakade et al. (2012) take advantage of the strongly-convex nature of certain matrix-norm regularizers
to easily obtain generalization bounds for a variety of machine learning problems. Part of their work
is devoted to the realm of online and off-line MTL. In the latter case, which pertains to the focus of
our work, the paper provides a GRC-based excess risk bound of orderO(1/

√
nT ). Moreover, Maurer

and Pontil (2013) present a global Rademacher complexity analysis leading to excess risk bounds of
order O(

√
log(nT )/nT for a trace norm regularized MTL model. Also, Maurer (2016) examines

the bounding of (global) Gaussian complexities of function classes that result from considering
composite maps, as is typical in several settings, including MTL. An application of the paper’s
results yields MTL risk bounds of order O(1/

√
nT ). More recently, Maurer et al. (2016) presents

excess risk bounds of order O(1/
√
nT ) for both MTL and Learning-to-Learn (LTL) and reveals

conditions, under which MTL is more beneficial over learning tasks independently.

Finally, although loosely related to our focus, we mention in passing a few works that pertain to
generalization guarantees in the realm of life-long learning and domain adaptation. Generalization
performance analysis in life-long learning has been investigated by Thrun and Pratt (2012); Ben-
David and Schuller (2003); Ben-David and Borbely (2008); Pentina and Lampert (2015) and Pentina
and Ben-David (2015). Also, in the context of domain adaptation, similar considerations are examined
by Mansour et al. (2009a,b,c); Cortes and Mohri (2011); Zhang et al. (2012); Mansour and Schain
(2013) and Cortes and Mohri (2014).
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1.4 Basic Assumptions & Notations

Consider T supervised learning tasks sampled from the same input-output space X × Y . Each task t
is represented by an independent random variable (Xt, Yt) governed by a probability distribution µt.
Also, the i.i.d. samples related to each task t are described by the sequence (Xi

t , Y
i
t )ni=1, drawn from

µt.
In what follows, we use the following notational conventions: vectors and matrices are depicted

in bold face. The superscript T , when applied to a vector/matrix, denotes the transpose of that
quantity. We define NT := {1, . . . , T}. For any random variables X,Y and function f we use
Ef(X,Y ) and EXf(X,Y ) to denote the expectation with w.r.t. all the involved random variables
and the conditional expectation w.r.t. the random variable X respectively. For any vector-valued
function f = (f1, . . . , fT ), we introduce the following two notations:

Pf :=
1

T

T∑
t=1

Pft, Pnf :=
1

T

T∑
t=1

Pnft.

wherePft := E[ft(Xt)] andPnft := 1
n

∑n
i=1 ft(X

i
t). When well-defined, we denote the component-

wise exponentiation of a vector f as fα = (fα1 , . . . , f
α
T ),∀α ∈ R. For any loss function ` : R×R→

R+ and any f = (f1, . . . , fT ) we define `f = (`f1 , . . . , `fT ) where `ft is the function defined by
`ft((Xt, Yt)) = `(ft(Xt), Yt).

Finally, in the subsequent material, we always assume the measurability of functions and suprema
whenever necessary. Furthermore, operators on separable Hilbert spaces are assumed to be of trace
class.

2. Talagrand-Type Inequality for Multi-Task Learning

Our derivation of LRC-based error bounds for MTL is founded on a Talagrand-type concentration
inequality, which was adapted to the context of MTL and is presented next. It shows that the uniform
deviation between the true and empirical means for a vector-valued function classF can be dominated
by the associated multi-task Rademacher complexity plus a term involving the variance of functions
in F . A notable property of Theorem 1 is that the correlation among different components of f ,
encoded by either the constraint on variances or the constraint imposed in the hypothesis space, is
preserved. This last observation is congruent with the spirit of MTL. The proof of Theorem 1, which
is deferred to Appendix A, is based on a so-called Logarithmic Sobolev inequality on log-moment
generating functions.

Theorem 1 (TALAGRAND-TYPE INEQUALITY FOR MTL) Let F = {f := (f1, . . . , fT )} be
a class of vector-valued functions satisfying maxt∈NT supx∈X |ft(x)| ≤ b. Also, assume that
X := (Xi

t)
(T,Nt)
(t,i)=(1,1) is a vector of

∑T
t=1Nt independent random variables where X1

t , . . . , X
n
t ,∀t

are identically distributed. Let {σit}t,i be a sequence of independent Rademacher variables. If
1
T supf∈F

∑T
t=1 E

[
ft(X

1
t )
]2 ≤ r, then, for every x > 0, with probability at least 1− e−x,

sup
f∈F

(Pf − Pnf) ≤ 4R(F) +

√
8xr

nT
+

12bx

nT
, (1)
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where n := mint∈NT Nt, and the multi-task Rademacher complexity of function class F is defined
as

R(F) := EX,σ

{
sup

f=(f1,...,fT )∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

σitft(X
i
t)

}
.

Note that the same bound also holds for supf∈F (Pnf − Pf).

In Theorem 1, the data from different tasks are assumed to be mutually independent, which is
typically presumed in MTL (Maurer, 2006a). To present the results in a clear way we always assume
in the following that the available data for each task is the same, namely n.

Remark 2 Note that Theorem 1 pertains to classes of uniformly bounded functions and is used in
the sequel to bound the excess risk of multi-task learning function classes. However, using a new
argument by Mendelson (2014), Theorem 1 can be extended beyond the case of classes of uniformly
bounded loss functions. In particular, rather than adopting a concentration-based inequality, which
is crucial to our approach here to bound the suprema of the resulting empirical processes, the
approach in Mendelson (2014) relies on a “small ball” assumption. Such an assumption holds for
functions with “well-behaved high-order moments” (e.g. heavy-tailed functions).

Remark 3 At this point, we present the result of the previous theorem for the special case of single
task learning. It is very straightforward to verify that, for T = 1, the bound in (1) can be written as

sup
f∈F

(Pf − Pnf) ≤ 4R(F) +

√
8xr

n
+

12bx

n
, (2)

where the function f is chosen from a scalar-valued function class F . This bound can be compared
to the result of Theorem 2.1 of Bartlett et al. (2005), which for α = 1 reads as

sup
f∈F

(Pf − Pnf) ≤ 4R(F) +

√
2xr

n
+

8bx

3n
. (3)

Note that the difference between the constants in (2) and (3) is due to the fact that we were unable
to directly apply Bousquet’s version of Talagrand’s inequality (like it was done in Bartlett et al.
(2005) for scalar-valued functions) to the class of vector-valued functions. To be more clear, let
Z be defined as in (A.2) with the jackknife replication Zs,j . We find a lower bound Z

′′
s,j such that

Z
′′
s,j ≤ Z − Zs,j . Then, in order to apply Theorem 2.5 of Bousquet (2002), one needs to show

that the quantity 1
nT

∑T
s=1

∑n
j=1 Es,j [(Z

′′
s,j)

2] is bounded. This goal, ideally, can be achieved by

including a constraint similar to 1
T supf∈F

∑T
t=1 E

[
ft(X

1
t )
]2 ≤ r in Theorem 1. However, we

found that—when dealing with MTL class of functions—it is not very straightforward to define such
a constraint that satisfies the boundedness condition 1

nT

∑T
s=1

∑n
j=1 Es,j [(Z

′′
s,j)

2] in terms of r.
With that being said, the key ingredient to Theorem 1’s proof is the so-called Logarithmic Sobolev
inequality—Theorem A.1—which can be considered as the exponential version of Efron-Stein’s
inequality.
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3. MTL Excess Risk Bounds based on Local Rademacher Complexities

At the heart of Theorem 1 lies a variance bound, which motivates us to consider Rademacher averages
associated with a function sub-class enjoying small variances. As pointed out in Bartlett et al. (2005),
these (local) averages are always smaller than the corresponding global Rademacher averages and
allow for eventually deriving sharper generalization bounds. Herein, we exploit this very fact for
MTL generalization guarantees.

Definition 4 (MULTI-TASK LOCAL RADEMACHER COMPLEXITY) For a vector-valued func-
tion class F = {f = (f1, . . . , fT )}, the Multi-Task Local Rademacher Complexity (MT-LRC)
R(F , r) is defined as

R(F , r) := EX,σ
[

sup
f=(f1,...,fT )∈F

V (f)≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
, (4)

where V (f) is an upper bound on the variance of the functions in F .

For the case T = 1, it is clear that the MT-LRC reduces to the standard LRC for scalar-valued
function classes. Analogous to single task learning, a challenge in using the MT-LRC to refine
existing learning rates is to find an optimal radius trading-off the variance and the associated
complexity, which, as we show later, reduces to the calculation of the fixed-point of a sub-root
function.

Definition 5 (SUB-ROOT FUNCTION) A function ψ : [0,∞]→ [0,∞] is sub-root if and only if it
is non-decreasing and the function r 7→ ψ(r)/

√
r is non-increasing for r > 0.

Lemma 6 (Lemma 3.2 Bartlett et al. (2005)) If ψ is a sub-root function, then it is continuous on
[0,∞], and the equation ψ(r) = r has a unique (non-zero) solution r∗, which is known as the fixed
point of ψ. Moreover, for any r > 0, it holds that r > ψ(r) if and only if r∗ ≤ r.

Intuitively, the model sought for by learning algorithms would hopefully attain a small general-
ization error and enjoy a small variance, when there is a relationship between risks and variances.
The concept of local Rademacher complexity allows us to focus on identifying such models.

Definition 7 (VECTOR-VALUED BERNSTEIN CLASS) Let 0 < β ≤ 1 and B > 0. A vector-
valued function class F is said to be a (β,B)-Bernstein class with respect to the probability measure
P if there exists a function V : F → R+ such that

Pf2 ≤ V (f) ≤ B(Pf)β, ∀f ∈ F . (5)

It can be shown that the Bernstein condition (5) is not too restrictive and it holds, for example, for
non-negative bounded functions with respect to any probability distribution as shown in (Bartlett et al.,
2004). Other examples include the class of excess risk functions LF := {`f − `f∗ : f ∈ F}—with
f∗ ∈ F being the minimizer of P`f— when the function class F is convex and the loss function ` is
strictly convex.

In this section, we show that under some mild assumptions on a vector-valued Bernstein class,
LRC-based excess risk bounds can be established for MTL. We will assume that the loss function `
and the vector-valued hypothesis space F satisfy the following conditions:
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Assumption 8

1. There is a function f∗ = (f∗1 , . . . , f
∗
T ) ∈ F satisfying P`f∗ = inff∈F P`f .

2. There is a constant B′ ≥ 1 and 0 < β ≤ 1, such that for every f ∈ F we have P (f − f∗)2 ≤
B′
(
P (`f − `f∗)

)β .

3. There is a constant L, such that the loss function ` is L-Lipschitz in its first argument.

As pointed out in Bartlett et al. (2005), many regularized algorithms satisfy these conditions. More
specifically, a uniform convexity condition on the loss function ` is usually sufficient to satisfy
Assumption 8.2. A typical example is the quadratic loss function `(f(X), Y ) = (f(X)−Y )2. More
specifically, if |f(X) − Y | ≤ 1 for any f ∈ F , x ∈ X and Y ∈ Y , then it can be shown that the
conditions of Assumption 8 are met with L = 1 and B = 1.

We now present the main result of this section showing that the excess risk of MTL can be
bounded by the fixed-point of a sub-root function dominating the MT-LRC. The proof of the results
is provided in Appendix B.

Theorem 9 (Excess risk bound for MTL) Let F := {f := (f1, . . . , fT )} be a class of vector-
valued functions f satisfying maxt∈NT supx∈X |ft(x)| ≤ b. Assume that X := (Xi

t , Y
i
t )

(T,n)
(t,i)=(1,1)

is a vector of nT independent random variables, where for each task t, the samples (X1
t , Y

1
t ) . . . ,

(Xn
t , Y

n
t ) are identically distributed. Suppose that Assumption 8 holds. Define F∗ := {f − f∗},

where f∗ is the function satisfying P`f∗ = inff∈F P`f . Let B := max(B′L2, 1) and ψ be a
sub-root function with fixed point r∗ such that BLR(F∗, r) ≤ ψ(r), ∀r ≥ r∗, where R(F∗, r) is the
LRC of the functions class F∗:

R(F∗, r) := EX,σ
[

sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)
]
. (6)

Then, for any f ∈ F , K > 1 and x > 0, with probability at least 1− e−x,

P (`f − `f∗) ≤
K

K − β
Pn(`f − `f∗) + (2K)

β
2−β 20

2
2−β max

(
(r∗)

1
2−β , (r∗)

1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
48LBbx

(2− β)nT
. (7)

The following corollary is direct by noting that Pn(`f̂ − `f∗) ≤ 0.

Corollary 10 Let f̂ be any element of function class F satisfying Pn`f̂ = inff∈F Pn`f . Assume
that the conditions of Theorem 9 hold. Then for any x > 0 and r > ψ(r), with probability at least
1− e−x,

P (`f̂ − `f∗) ≤ (2K)
β

2−β 20
2

2−β max
(

(r∗)
1

2−β , (r∗)
1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
48LBbx

(2− β)nT
. (8)
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An immediate consequence of this section’s results is that one can derive excess risk bounds for given
regularized MTL hypothesis spaces. In the sequel, we will derive excess risk bounds for several
commonly used norm regularized MTL hypothesis spaces by further bounding the fixed point r∗

appearing in Corollary 10.

4. Local Rademacher Complexity Bounds for Norm Regularized MTL Models

This section presents very general MT-LRC bounds for hypothesis spaces defined by norm regular-
izers, which allows us to immediately derive, as specific application cases, LRC bounds for group
norm, Schatten norm, and graph regularized MTL models.

4.1 Preliminaries

We consider linear MTL models, where we associate to each task a functional ft(X) := 〈wt, φ(X)〉.
Here, wt belongs to a Reproducing Kernel Hilbert Space (RKHS)H, equipped with an inner product
〈., .〉 and an induced norm ‖.‖ :=

√
〈., .〉. Also, φ : X → H is a feature map associated to

H’s reproducing kernel k satisfying k(X, X̃) = 〈φ(X), φ(X̃)〉, ∀X, X̃ ∈ X . We assume that the
multi-task model W = (w1, . . . ,wT ) ∈ H× . . .×H is learned using the regularized cost function:

min
W

Ω
(
D1/2W

)
+ C

T∑
t=1

n∑
i=1

`(
〈
wt, φ(Xi

t)
〉
, Y i

t ), (9)

where the regularizer Ω(·) may be used to reflect a priori information. This regularization scheme
amounts to performing Empirical Risk Minimization (ERM) using the hypothesis space

F :=
{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T : Ω(D1/2W ) ≤ R2

}
, (10)

where D is a given positive operator defined onH. Note that the hypothesis spaces corresponding to
the group and Schatten norms can be recovered by setting D = I and by using their corresponding
norms. More specifically, by choosing Ω(W ) = 1

2‖W ‖
2
2,q, one obtains an L2,q-group norm

hypothesis space in (10). Similarly, the choice Ω(W ) = 1
2‖W ‖

2
Sq

gives an LSq -Schatten norm
hypothesis space in (10). Furthermore, the graph regularized MTL (Micchelli and Pontil, 2004;
Evgeniou et al., 2005; Maurer, 2006b) can be obtained by taking Ω(W ) = 1

2‖D
1/2W ‖2F , where

‖.‖F is a Frobenius norm, D := L + ηI , L is the relevant graph Laplacian, and η > 0 is a
regularization constant. On balance, all these MTL models can be considered as norm regularized
models. Note that in the sequel, we let q∗ be the Hölder conjugate exponent of q, i.e. 1/q+ 1/q∗ = 1.

4.2 General Bound on the LRC

Now, we can provide the main results on general LRC bounds for any MTL hypothesis space
of the form Ω(W ) = 1

2‖W ‖
2 for a norm ‖.‖. In what follows, the Hilbert-Schmidt operator

φ(X)⊗ φ(X) : H → H is defined as φ(X)⊗ φ(X)(u) = 〈φ(X),u〉φ(X).

Theorem 11 (LRC bounds for MTL models with norm regularizers) Let the regularizer Ω(W )
in (9) be given as an appropriate norm ‖.‖, whose dual is denoted by ‖.‖∗. Let the kernels be
uniformly bounded, that is, ‖k‖∞ ≤ K < ∞, and X1

t , . . . , X
n
t be an i.i.d. sample drawn from

Pt. Also, assume that for each task t, the eigen-decomposition of the Hilbert-Schmidt covariance

9
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operator Jt is given by Jt := E(φ(Xt) ⊗ φ(Xt)) =
∑∞

j=1 λ
j
tu

j
t ⊗ ujt , where (ujt )

∞
j=1 forms an

orthonormal basis of H and (λjt )
∞
j=1 are the corresponding eigenvalues in non-increasing order.

Then, for any given positive operator D on RT , any r > 0 and any non-negative integers h1, . . . , hT :

R(F , r) ≤ min
0≤ht≤∞


√
r
∑T

t=1 ht
nT

+

√
2R

T
EX,σ

∥∥∥D−1/2V
∥∥∥
∗

 , (11)

where V :=
(∑

j>ht

〈
1
n

∑n
i=1 σ

i
tφ(Xi

t),u
j
t

〉
ujt

)T
t=1

Proof Using the LRC’s definition, we have

R(F , r) =
1

nT
EX,σ

 sup
f=(f1,...,fT )∈F ,

Pf2≤r

n∑
i=1

〈
(wt)

T
t=1 ,

(
σitφ(Xi

t)
)T
t=1

〉
=

1

T
EX,σ

 sup
f∈F ,
Pf2≤r

〈
(wt)

T
t=1 ,

 ∞∑
j=1

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

〉
≤ 1

T
EX,σ

 sup
Pf2≤r

〈 ht∑
j=1

√
λjt

〈
wt,u

j
t

〉
ujt

T

t=1

,

 ht∑
j=1

√
λjt

−1
〈

1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

〉 (12)

+
1

T
EX,σ

sup
f∈F

〈
(wt)

T
t=1 ,

∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

〉 (13)

= A1 +A2,

where A1 and A2 stand respectively for the first (12) and second (13) term of the previous bound.
Step 1. Controlling A1: By applying the Cauchy-Schwartz (C.S.) inequality on A1, one gets

A1 ≤
1

T
EX,σ

 sup
Pf2≤r


 T∑
t=1

∥∥∥∥∥∥
ht∑
j=1

√
λjt

〈
wt,u

j
t

〉
ujt

∥∥∥∥∥∥
2

1
2

 T∑
t=1

∥∥∥∥∥∥
ht∑
j=1

(√
λjt

)−1
〈

1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

∥∥∥∥∥∥
2

1
2




=
1

T
EX,σ

 sup
Pf2≤r


 T∑
t=1

ht∑
j=1

λjt

〈
wt,u

j
t

〉2

 1
2

10
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 T∑
t=1

ht∑
j=1

(
λjt

)−1
〈

1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉2
 1

2


 .

With the help of Jensen’s inequality and taking advantage of the fact that EX,σ
〈

1
n

∑n
i=1 σ

i
tφ(Xi

t),u
j
t

〉2
=

λjt
n and Pf2 ≤ r together imply that 1

T

∑T
t=1

∑∞
j=1 λ

j
t

〈
wt,u

j
t

〉2
≤ r (see Lemma C.1 in the Ap-

pendix for the proof), we can further bound A1 as

A1 ≤

√
r
∑T

t=1 ht
nT

. (14)

Step 2. Controlling A2: We now use Hölder’s inequality to bound the second term A2 as
follows:

A2 =
1

T
EX,σ

sup
f∈F

〈
(wt)

T
t=1 ,

∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

〉
=

1

T
EX,σ

{
sup
f∈F

〈
D1/2W ,D−1/2V

〉}
Hölder
≤ 1

T
EX,σ

{
sup
f∈F

∥∥∥D1/2W
∥∥∥ .∥∥∥D−1/2V

∥∥∥
∗

}

≤
√

2R

T
EX,σ

∥∥∥D−1/2V
∥∥∥
∗
. (15)

Combining (15) and (14) completes the proof.

In what follows, we demonstrate the power of Theorem 11 by applying it to derive the LRC bounds
for some popular MTL models, including group norm, Schatten norm and graph regularized models,
which have been extensively studied in the MTL literature; for example, see (Maurer, 2006b;
Argyriou et al., 2007a,b, 2008a; Li et al., 2015; Argyriou et al., 2014).

4.3 Group Norm Regularized MTL

We first consider the MTL scheme, which captures the inter-task relationships by the group norm
regularizer 1

2‖W ‖
2
2,q := 1

2

(∑T
t=1 ‖wt‖q2

)2/q (Argyriou et al., 2007a, 2008a; Lounici et al., 2009;
Romera-Paredes et al., 2012). Its associated hypothesis space takes the form

Fq :=

{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T :

1

2
‖W ‖22,q ≤ R

2
max

}
. (16)

Before presenting the result for this case, we point out that A1 does not depend on the hypothesis
space’s W -constraint. Therefore, the bound for A1 is independent of the the choice of reqularizers
we consider in this study. However, A2 can be further bounded in a manner that depends on the
regularization function.

11
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We start off with a useful lemma which helps with bounding A2 for the group norm hypothesis
space (16). The proof of this lemma, which is based on the application of the Khintchine (C.1) and
Rosenthal (C.2) inequalities, is presented in Appendix C.

Lemma 12 Assume that the kernels in (9) are uniformly bounded, that is, ‖k‖∞ ≤ K < ∞.
Then, for the group norm regularizer 1

2 ‖W ‖
2
2,q in (16) and for any 1 ≤ q ≤ 2, the expectation

EX,σ
∥∥∥D−1/2V

∥∥∥
2,q∗

(for D = I) can be upper-bounded as

EX,σ

∥∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

∥∥∥∥∥∥∥
2,q∗

≤
√
Keq∗T

1
q∗

n
+

√√√√√√eq∗2

n

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

.

Corollary 13 Using Theorem 11, for any 1 < q ≤ 2, the LRC of function class Fq in (16) can be
bounded as

R(Fq, r) ≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
 ∞∑
j=1

min

(
rT

1− 2
q∗ ,

2eq∗2R2
max

T
λjt

)T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
. (17)

Proof Sketch: We use Lemma 12 to upper-bound A2 for the group norm hypothesis space (16) as

A2(Fq) ≤

√√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
. (18)

Now, combining (14) and (18) provides the following bound on R(Fq, r)

R(Fq, r) ≤

√
r
∑T

t=1 ht
nT

+

√√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
. (19)

Then, using the inequalities shown below, which hold for any α1, α2 > 0, any vectors a1,a2 ∈ RT
with non-negative elements, any 0 ≤ q ≤ p ≤ ∞ and any s ≥ 1,

(?)
√
α1 +

√
α2 ≤

√
2(α1 + α2) (20)

(??) lq − to− lp : ‖a1‖q = 〈1,aq1〉
1
q

Hölder’s
≤

(
‖1‖(p/q)∗ ‖a

q
1‖(p/q)

) 1
q

= T
1
q
− 1
p ‖a1‖p (21)

(? ? ?) ‖a1‖s + ‖a2‖s ≤ 21− 1
s ‖a1 + a2‖s ≤ 2 ‖a1 + a2‖s , (22)

one obtains the desired result. See Appendix C for the detailed proof.

Remark 14 Since the LRC bound above is non-monotonic in q, it is more practical to state the
above bound in terms of κ ≥ q; note that choosing κ = q is not always the optimal choice. Trivially,

12
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for the group norm regularizer with any κ ≥ q, it holds that ‖W ‖2,κ ≤ ‖W ‖2,q and, therefore,
R(Fq, r) ≤ R(Fκ, r). Thus, we have the following bound on R(Fq, r) for any κ ∈ [q, 2],

R(Fq, r) ≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
 ∞∑
j=1

min

(
rT 1− 2

κ∗ ,
2eκ∗2R2

max

T
λjt

)T

t=1

∥∥∥∥∥∥∥
κ∗
2

+

√
2KeRmaxκ∗T

1
κ∗

nT
.

(23)

Remark 15 (Sparsity-inducing group norm) The use of the group norm regularizer 1
2‖W ‖

2
2,1

encourages a sparse representation that is shared across multiple tasks (Argyriou et al., 2007b,
2008a). Notice that for any κ ≥ 1, it holds that R(F1, r) ≤ R(Fκ, r). Also, assuming an identical
tail sum

∑
j≥h λ

j for all tasks, the bound gets minimized for κ∗ = log T . For this particular choice
of κ∗, it is easy to show that

R(F1, r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
rT 1− 2

κ∗ ,
2eκ∗2R2

max

T
λjt

))T
t=1

∥∥∥
κ∗
2

+

√
2KeRmaxκ∗T

1
κ∗

nT

(lκ∗
2
−to−l∞)

≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
rT,

2e3(log T )2R2
max

T
λjt

))T
t=1

∥∥∥
∞

+

√
2KRmaxe

3
2 log T

nT
.

Remark 16 (L2,q Group norm regularizer with q ≥ 2) For any q ≥ 2, Theorem 11 provides an
LRC bound for the function class Fq in (16) given as

R(Fq, r) ≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
 ∞∑
j=1

min

(
rT

1− 2
q∗ ,

2R2
max

T
λjt

)T

t=1

∥∥∥∥∥∥∥
q∗
2

, (24)

where q∗ := q
q−1 .

Proof Using D = I , and ‖.‖ = ‖.‖2,q in (15) gives

A2(Fq)
Hölder’s
≤ 1

T
EX,σ

{
sup
f∈Fq

‖W ‖2,q ‖V ‖2,q∗

}

≤
√

2Rmax
T

EX,σ

 T∑
t=1

∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

∥∥∥∥∥∥
q∗


1
q∗

Jensen’s
≤
√

2Rmax
T

 T∑
t=1

EX,σ

∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

∥∥∥∥∥∥
2

q∗
2


1
q∗

=

√
2Rmax
T

 T∑
t=1

∑
j>ht

EX,σ

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉2


q∗
2


1
q∗

13
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=

√
2Rmax
T

 T∑
t=1

∑
j>ht

λjt
n


q∗
2


1
q∗

=

√√√√√√2R2
max

nT 2

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

.

By applying (20), (21) and (22), this last result together with the bound for A1 in (14) yields the
result.

To investigate the tightness of the bound in (17), we derive the corresponding lower bound, which
holds for the LRC of Fq with q ≥ 1. The proof of this result can be found in Appendix C.

Theorem 17 (Lower bound) Consider the hypothesis space shown in (16). The following lower
bound holds for the local Rademacher complexity of Fq for any q ≥ 1. There is an absolute constant
c such that, if λ1

t ≥ 1/(nR2
max) ∀t, then, for all r ≥ 1

n and q ≥ 1,

R(Fq,Rmax,T , r) ≥

√√√√ c

nT
1− 2

q∗

∞∑
j=1

min

(
rT

1− 2
q∗ ,

R2
max

T
λj1

)
. (25)

To make a clear comparison between the lower bound in (25) and the upper bound in (17), we assume
identical eigenvalue tail sums

∑
j≥∞ λ

j
t for all tasks. In this case, the upper bound translates to

R(Fq,Rmax,T , r) ≤

√√√√ 4

nT
1− 2

q∗

∞∑
j=1

min

(
rT

1− 2
q∗ ,

2eq∗2R2
max

T
λjt

)
+

√
2KeRmaxq∗T

1
q∗

nT
.

By comparing this to (25), we see that the lower bound matches the upper bound up to constants.
The same analysis for MTL models with Schatten norm and graph regularizers yields similar results
and confirms that the LRC upper bounds that we have obtained are reasonably tight.

Remark 18 It is worth pointing out that a matching lower bound on the local Rademacher complexity
does not necessarily imply a tight bound on the expectation of an empirical minimizer f̂ . As shown
in Section 4 of Bartlett et al. (2004), a direct analysis of the empirical minimizer can lead to sharper
bounds compared to the LRC-based bounds. Consequently, based on Theorem 8 in Bartlett et al.
(2004), there might be cases in which the local Rademacher complexity bounds are constants, while
P f̂ is a decreasing function of the number of samples n. Moreover, it is shown in the same paper
that, under some mild conditions on the loss function `, a similar argument also holds for the class of
loss functions {`f − `f∗ : f ∈ F}.

4.4 Schatten Norm Regularized MTL

Argyriou et al. (2007b) developed a spectral regularization framework for MTL, wherein the LSq -

Schatten norm 1
2‖W ‖

2
Sq

:= 1
2

[
tr
(
W TW

) q
2
] 2
q is studied as a concrete example that corresponds to

performing ERM in the following hypothesis space:

FSq :=

{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T :

1

2
‖W ‖2Sq ≤ R

′2
max

}
. (26)

14
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Corollary 19 For any 1 < q ≤ 2 in (26), the LRC of function class FSq is bounded as

R(FSq , r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
r,

2q∗R′2max
T

λjt

))T
t=1

∥∥∥
1
.

The proof is provided in Appendix C.

Remark 20 (Sparsity-inducing Schatten norm (trace norm)) Trace norm regularized MTL, cor-
responding to Schatten norm regularization with q = 1 (Maurer and Pontil, 2013; Pong et al., 2010),
imposes a low-rank structure on the spectrum of W . It can also be interpreted as low dimensional
subspace learning (Argyriou et al., 2008b; Kumar and Daume III, 2012; Kang et al., 2011). Note
that for any q ≥ 1, it holds that R(FS1 , r) ≤ R(FSq , r). Therefore, choosing the optimal q∗ = 2,
we get

R(FS1 , r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
r,

4R′2max
T

λjt

))T
t=1

∥∥∥
1
.

Remark 21 (LSq Schatten norm regularizer with q ≥ 2) For any q ≥ 2, Theorem 11 provides an
LRC bound for the function class FSq in (26) as

R(FSq , r) ≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
 ∞∑
j=1

min

(
rT

1− 2
q∗ ,

2R′2max
T

λjt

)T

t=1

∥∥∥∥∥∥∥
q∗
2

, (27)

where q∗ := q
q−1 .

Proof We first bound the expectation EX,σ ‖V ‖Sq∗ . Take U i
t as a matrix with T columns where

the only non-zero column t of U i
t is defined as

∑
j>ht

〈
1
nφ(Xi

t),u
j
t

〉
ujt . Based on the definition of

V =
(∑

j>ht

〈
1
n

∑n
i=1 σ

i
tφ(Xi

t),u
j
t

〉
ujt

)T
t=1

, we can then provide a bound for this expectation as
follows

EX,σ ‖V ‖Sq∗ = EX,σ

∥∥∥∥∥
T∑
t=1

n∑
i=1

σitU
i
t

∥∥∥∥∥
Sq∗

Jensen
≤

tr


 T∑
t,s=1

n∑
i,j=1

EX,σ
(
σitσ

j
sU

i
t
T
U j
s

)
q∗
2




1
q∗

=

tr

( T∑
t=1

n∑
i=1

EX
(
U i
t
T
U i
t

)) q∗
2




1
q∗
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=

tr


diag

EX n∑
i=1

∑
j>h1

〈 1
n
φ(Xi

1),uj1〉
2,. . .,EX

n∑
i=1

∑
j>hT

〈 1
n
φ(Xi

T ),ujT 〉
2


q∗
2




1
q∗

=

tr


 1

n
diag

∑
j>h1

λj1, . . . ,
∑
j>hT

λjT


q∗
2




1
q∗

=

√
1

n

 T∑
t=1

∑
j>ht

λjt


q∗
2


1
q∗

=

√√√√√√ 1

n

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

.

One can derive the final result by replacing this last expression into (11) and by utilizing (20), (21)
and (22).

4.5 Graph Regularized MTL

The idea underlying graph regularized MTL is to force the models of related tasks to be close to each
other, by penalizing the squared distance ‖wt −ws‖2 with different weights ωts. Here we consider
the following MTL graph regularizer (Maurer, 2006b)

Ω(W ) =
1

2

T∑
t=1

T∑
s=1

ωts‖wt −ws‖2 + η

T∑
t=1

‖wt‖2 =

T∑
t=1

T∑
s=1

(L + ηI)ts 〈wt,ws〉 ,

where L is the graph-Laplacian associated to a matrix of edge weights ωts, I is the identity
operator, and η > 0 is a regularization parameter. According to the identity

∑T
t=1

∑T
s=1

(
L +

ηI
)
ts

〈
wt,ws

〉
= ‖(L + ηI)1/2W ‖2F , the corresponding hypothesis space is:

FG :=
{
X 7→ [

〈
w1, φ(X1)

〉
, . . . ,

〈
wT , φ(XT )

〉
]T :

1

2
‖D1/2W ‖2F ≤ R′′2max

}
. (28)

where we define D := L + ηI .

Corollary 22 For any given positive operator D in (28), the LRC of FG is bounded by

R(FG, r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
r,

2D−1
tt R

′′2
max

T
λjt )
))T

t=1

∥∥∥
1
. (29)

where
(
D−1
tt

)T
t=1

are the diagonal elements of D−1.

See Appendix C for the proof.
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Remark 23 Note that if one considers a strongly convex norm of W , an alternative proof strategy
can be used to bound the A2 term in (13). This strategy is based on the duality of strong convexity
and strong smoothness (Theorem 3 in Kakade et al. (2012)) along with the application of the Fenchel-

Young inequality. This approach results in A2 ≤ Aub :=

√
2
µEX,σ

∥∥∥D−1/2V
∥∥∥2

∗
, where µ is the

strong convexity parameter. For the strongly convex cases considered in our study (e.g. 1
2 ‖W ‖

2
2,q

or 1
2 ‖W ‖

2
Sq

for any q ∈ (1, 2] ), it holds that µ ≤ 1 (see Theorem 16 and Corollary 19 in Kakade

et al. (2009)). Now, comparing
√

2EX,σ
∥∥∥D−1/2V

∥∥∥
∗

in (15) with Aub, one can easily verify that

√
2EX,σ

∥∥∥D−1/2V
∥∥∥
∗

Jensen′s
≤

√
2
µEX,σ

∥∥∥D−1/2V
∥∥∥2

∗
for any µ ≤ 1. Therefore, for the strongly

convex norms we considered here, Hölder’s inequality yields slightly tighter bounds for the MT-LRC.

5. Excess Risk Bounds for Norm Regularized MTL Models

In this section we will provide excess risk bounds for the hypothesis spaces considered earlier.
Note that, due to space limitations, the proofs are provided only for the hypothesis space Fq with
q ∈ (1, 2]. However, for the cases involving the L2,q-group norm with q = 1 or q ≥ 2, as well
as the LSq -Schatten and graph norms, the proofs can be obtained in a very similar fashion. More
specifically, by using the LRC bounds of Remark 16, Corollary 19, Remark 21 and Corollary 22, one
can follow the same proof steps shown in this section to arrive at the results pertaining to these cases.

Theorem 24 (Excess risk bound for an L2,q group norm regularized MTL) Assume that Fq in
(16) is a convex class of functions with ranges in [−b, b] and let the loss function ` of Problem (9)
satisfy Assumption 8. Let f̂ be any element of Fq for 1 < q ≤ 2 satisfying Pn`f̂ = inff∈Fq Pn`f .
Assume, moreover, that k is a positive definite kernel on X such that ‖k‖∞ ≤ K <∞. Denote by
r∗ the fixed point of 2BLR(Fq, r

4L2 ). Then, for any K > 1 and x > 0, with probability at least
1− e−x, the excess loss of function class Fq is bounded as

P (`f̂ − `f∗) ≤ (2K)
β

2−β 20
2

2−β max
(

(r∗)
1

2−β , (r∗)
1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
48LBbx

(2− β)nT
,

where the fixed point r∗ of the local Rademacher complexity 2BLR(Fq, r
4L2 ) satisfies

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
nT

+ 4BL

√√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+
4
√

2KeRmaxBLq∗T
1
q∗

nT
,

(30)

and where h1, . . . , hT are arbitrary non-negative integers.

Proof First, notice that Fq is convex and, therefore, it is star-shaped around any of its elements.
Hence, according to Lemma 3.4 in Bartlett et al. (2005)—which indicates that the local Rademacher
complexity of the star-hull of any function class F is a sub-root function—R(Fq, r) is a sub-root
function. Moreover, because of the symmetry of the σit’s distribution and because Fq is convex and
symmetric, it can be shown that R(F∗q , r) ≤ 2R(Fq, r

4L2 ), where R(F∗q , r) is defined in (6) for the
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class of functions Fq. Therefore, it suffices to find the fixed point of 2BLR(Fq, r
4L2 ) by solving

φ(r) = r. For this purpose, we will use (19) as a bound for R(Fq, r), and solve
√
αr + γ = r (or

equivalently r2 − (α+ 2γ)r + γ2 = 0) for r, where we define

α :=
B2
∑T

t=1 ht
nT

, and γ := 2BL

√√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+
2
√

2KeRmaxBLq∗T
1
q∗

nT
.

(31)

It is not hard to verify that r∗ ≤ α+ 2γ. Substituting the definition of α and γ in r∗ ≤ α+ 2γ gives
the result.

Now, regarding the fact that the λjt s are non-increasing with respect to j, we can assume
∃dt : λjt ≤ dtj−αt for some αt > 1. For example, this assumption holds for finite rank kernels, as
well as for convolution kernels. Thus, it can be shown that

∑
j>ht

λjt ≤ dt
∑
j>ht

j−αt ≤ dt
∫ ∞
ht

x−αtdx = dt

[
1

1− αt
x1−αt

]∞
ht

= − dt
1− αt

h1−αt
t . (32)

Note that via the lq − to− lp conversion inequality (21), for p = 1 and q = q∗
2 , we have

B2
∑T

t=1 ht
Tn

≤ B

√
B2T

∑T
t=1 h

2
t

n2T 2

(??)

≤ B

√√√√B2T
2− 2

q∗
∥∥∥(h2

t

)T
t=1

∥∥∥
q∗
2

n2T 2
.

which with the help of
√
α1 +

√
α2 ≤

√
2(α1 + α2) for any α1, α2 > 0, and ‖a1‖s + ‖a2‖s ≤

2 ‖a1 + a2‖s for any non-negative vectors a1,a2 ∈ RT and s = q∗

2 gives

r∗ ≤ min
0≤ht≤∞

2B

√√√√√
∥∥∥∥∥∥
(
B2T

2− 2
q∗ h2

t

n2T 2
− 32dteq∗2R2

maxL
2

nT 2(1− αt)
h1−αt
t

)T
t=1

∥∥∥∥∥∥
q∗
2

+
4
√

2KeRmaxBLq∗T
1
q∗

nT
.

(33)

Taking the partial derivative of the above bound with respect to ht and setting it to zero yields the
optimal ht as

ht =
(

16dteq
∗2R2

maxB
−2L2T

2
q∗−2

n
) 1

1+αt .

Note that substituting the previous expression for α := mint∈NT αt and d = maxt∈NT dt into (33),
we can upper-bound the fixed point of r∗ as

r∗ ≤ 14B2

n

√
α+ 1

α− 1

(
dq∗2R2

maxB
−2L2T

2
q∗−2

n
) 1

1+α
+

10
√
KRmaxBLq∗T

1
q∗

nT
,
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which implies that

r∗ = O

d 1
1+α

(
T

1− 1
q∗

q∗

) −2
1+α

n
−α
1+α

 .

It can be seen that the convergence rate can be as slow as O
(
q∗T 1/q∗√d

T
√
n

)
(for small α, where at

least one αt ≈ 1), and as fast as O( 1
n) (when αt →∞, for all t). The bound obtained for the fixed

point together with Theorem 24 provides a bound for the excess risk, which leads to the following
remark. Note that in the sequel, we assume that the data distribution of each task is concentrated and
uniform on the same M -dimensional unit sphere. This implies that (by symmetry) the eigenvalues
must all be equal and they sum up to 1. Thus, for each task t, λjt = 1

M . On the other hand, we
assumed earlier that λjt ≤ dtj−α for all 1 ≤ j ≤M . Therefore, choosing j = M , we are forced to
set d = Mα−1.

Remark 25 (Excess risk bounds for selected norm regularized MTL problems) Assume that F
is a class of functions with ranges in [−b, b]. Let the loss function ` of Problem (9) satisfy Assump-
tion 8. Additionally, assume that k is a positive definite kernel on X , such that ‖k‖∞ ≤ K < ∞.
Also, denote α := mint∈NT αt and d := maxt∈NT dt. Then, for any f ∈ F , K > 1 and x > 0, with
probability at least 1− e−x,

P (`f̂ − `f∗) ≤ (2K)
β

2−β 20
2

2−β max
(

(r∗)
1

2−β , (r∗)
1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
48LBbx

(2− β)nT
,

(34)

where, for F ∈
{
Fq,FSq ,FG

}
, f̂ is such that Pn`f̂ = inff∈F Pn`f and r∗ is the fixed point of

the local Rademacher complexity 2BLR(F , r
4L2 ). Furthermore, r∗ can be bounded for each of the

three hypothesis spaces as follows:

• Group norm: For any 1 < q ≤ 2,

r∗ ≤ min
κ∈[q,2]

14

√
α+ 1

α− 1

(
κ∗2R2

maxL
2
) 1

1+α
M

α−1
1+αB

2α
α+1

(
T

2
κ

) −1
1+α

n
−α
1+α

+
10
√
KRmaxBLκ∗T

1
κ∗

nT
. (35)

Also, for any q ≥ 2, we have

r∗ ≤ 8

√
α+ 1

α− 1

(
R2
maxL

2
) 1

1+α M
α−1
1+αB

2α
α+1

(
T

2
q

) −1
1+α

n
−α
1+α . (36)

• Schatten norm: For any 1 < q ≤ 2,

r∗ ≤ 8

√
α+ 1

α− 1

(
q∗R′2maxL

2
) 1

1+α M
α−1
1+αB

2α
α+1T

−1
1+αn

−α
1+α . (37)

Note that for the trace norm, we would have q∗ = 2 in the previous bound (see Remark 20).
Additionally, for any q ≥ 2, it holds

r∗ ≤8

√
α+ 1

α− 1

(
R′2maxL

2
) 1

1+α M
α−1
1+αB

2α
α+1

(
T

2
q

) −1
1+α

n
−α
1+α . (38)
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• Graph regularizer: For any positive operator D,

r∗ ≤ 8

√
α+ 1

α− 1

(
R′′2maxL

2D−1
max

) 1
1+α M

α−1
1+αB

2α
α+1T

−1
1+αn

−α
1+α . (39)

where D−1
max := maxt∈NT D−1

tt .

6. Discussion

In this section, we investigate the convergence rate of our LRC-based excess risk bounds, which
were established in the previous section. We also discuss related works and provide a new excess
risk bound by employing a rather different approach, which exhibits the benefit of a MTL regularizer
at the expense of a slower convergence rate in terms of the number of examples per task n. Note that,
for the purpose of this section, we will assume that β = 1, which hold for many loss function classes,
see Bartlett et al. (2004) for a discussion.

6.1 Convergence Rates

In order to facilitate a more concrete comparison of convergence rates, we will assume the same
spherical M -dimensional data distribution for each task t; this assumption leads to λjt = 1

M , or
equivalently d = Mα−1. Furthermore, we will concentrate only on the parameters R,n, T, q∗,M
and α and we will assume that all the other parameters are fixed and, hence, hidden in the big-O
notation. Thus, for our LRC-based bounds we have

Group norm: (a) ∀κ ∈ [q, 2], P (`f̂ − `f∗) = O

(
(R2

maxκ
∗2)

1
1+αM

α−1
1+α

(
T

2
κ

)− 1
1+α

n
−α
1+α

)
.

(b) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O

(
(R2

max)
1

1+αM
α−1
1+α

(
T

2
q

)− 1
1+α

n
−α
1+α

)
.

Schatten norm: (c) ∀q ∈ (1, 2], P (`f̂ − `f∗) = O
(

(R′2max)
1

1+αM
α−1
1+αT

−1
1+αn

−α
1+α

)
.

(d) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O

(
(R′2max)

1
1+αM

α−1
1+α

(
T

2
q

)− 1
1+α

n
−α
1+α

)
.

Graph: (e) P (`f̂ − `f∗) = O
(

(R′′2max)
1

1+αM
α−1
1+αT

−1
1+αn

−α
1+α

)
. (40)

A close appraisal of the results in (40) points to a conservation of asymptotic rates between n
and T , when all other remaining quantities are held fixed. This phenomenon is more apparent for the
Schatten norm and graph-based regularization cases, where the rates (exponents) of n and T sum
up to −1. Note that the trade-off is determined by the value of α, which can facilitate faster n-rates
and, simultaneously, compromise with slower T -rates. A similar trade-off is witnessed in the case
of group norm regularization, but this time between n and T 2/κ, instead of T , due to the specific
characteristics of the group norm. Now, consider the following two cases:

• M is large (high-dimensional data distribution): Note that in the case of very large M , α > 1;
Also, large M implies small α, that is, α → 1. In this case we get dimension-independent
bounds, which should be considered as an advantage for the case of high-dimensional data
distribution.

Group norm: (a) ∀κ ∈ [q, 2], P (`f̂ − `f∗) = O

(
(R2

maxκ
∗2)

1
2

(
T

2
κ

)− 1
2
n−

1
2

)
.

20



LRC-BASED LEARNING GUARANTEES FOR MTL

(b) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O

(
(R2

max)
1
2

(
T

2
q

)− 1
2
n−

1
2

)
.

Schatten-norm: (c) ∀q ∈ (1, 2], P (`f̂ − `f∗) = O
(

(R′2maxq
∗)

1
2T
−1
2 n−

1
2

)
.

(d) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O

(
(R′2max)

1
2

(
T

2
q

)− 1
2
n−

1
2

)
.

Graph: (e) P (`f̂ − `f∗) = O
(

(R′′2max)
1
2T
−1
2 n−

1
2

)
.

• M is small (low-dimensional data distribution): This case happens when the decay rate α is
fast ( α→∞), which gives the following rates

Group norm: (a) ∀κ ∈ [q, 2], P (`f̂ − `f∗) = O
(
Mn−1

)
.

(b) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O
(
Mn−1

)
.

Schatten-norm: (c) ∀q ∈ (1, 2], P (`f̂ − `f∗) = O
(
Mn−1

)
.

(d) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O
(
Mn−1

)
.

Graph: (e) P (`f̂ − `f∗) = O
(
Mn−1

)
.

Note that, most likely, a more realistic case lies somewhere in between these two extreme cases,
which can be interpreted as follows: when the data is relatively low-dimensional (small M and fast
decay of eigenvalues), we will have bounds with fast rates in n. However, MTL may offer little
advantage in this case due to the corresponding slow rates in T . This analysis confirms the general
belief that MTL proffers a potential advantage if there are many tasks with little data per task and are
sampled from high-dimensional data distributions.

6.2 Comparisons to Related Works

It is interesting to compare our local bound for the trace norm regularized MTL with the GRC-based
excess risk bound provided in Maurer and Pontil (2013), wherein they apply a trace norm regularizer
to capture the tasks’ relatedness. It is worth mentioning that they consider a slightly different
hypothesis space for W than the one we mentioned earlier; in our notation, this space reads as

F ′S1
:=

{
W :

1

2
‖W ‖2S1

≤ TR′2max
}
. (41)

The form of this space is based on the premise that, assuming a common vector w for all tasks, the
regularizer should not be a function of the number of tasks (Maurer and Pontil, 2013). Given the
task-averaged covariance operator C := 1/T

∑T
t=1 Jt = 1/T

∑T
t=1 E (φ(Xt)⊗ φ(Xt)), the excess

risk bound in Maurer and Pontil (2013) reads as

P (`f̂ − `f∗) ≤ 2
√

2LR′max

(√
‖C‖∞
n

+ 5

√
ln(nT ) + 1

nT

)
+

√
bLx

nT
.

Under the aforementioned M-dimensional data distributions and by using the hypothesis space of
(41), our local bound for the trace norm for any α > 1 is given as

P (`f̂ − `f∗) ≤ 6400K

√
α+ 1

α− 1

(
R′2maxL

2
) 1

1+α M
α−1
1+αB

2α
α+1n

−α
1+α +

(48Lb+ 16BK)Bx

nT
. (42)
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Now, let λmaxt be the maximum eigenvalue of the trace operator Jt. Also, let λmax :=
maxt∈NT {λmaxt }. It is easy to verify that tr(Jt) ≤ Mλmaxt and ‖C‖∞ ≤ λmax = 1/M , which
renders the GRC-based bound in Maurer and Pontil (2013) into the form

P (`f̂ − `f∗) ≤ 2
√

2LR′max

(√
λmax
n

+ 5

√
ln(nT ) + 1

nT

)
+

√
bLx

nT
. (43)

One observes that, in both cases, the bound vanishes as n→∞. However, it does so at a rate of
n−α/1+α for our local bound in (42) and at a slower rate of

√
lnn/n for the one in (43). Also, we

remark that, as T →∞, both bounds converge to a non-zero limit: our local bound in (42) at a fast
rate of 1/T and at a the slower rate of

√
lnT/T for the bound in (43). More specifically, making the

benevolent choices B = 1 and R′maxL = 1 and ignoring the factor of 6400K
√

α+1
α−1 , the limit of our

local bound in (42) as T →∞ becomes g(α) := M
α−1
1+αn

−α
1+α . One can very easily verify that g(α)

is increasing in α (i.e. g′(α) > 0), if and only if ln(Mn−
1
2 ) > 0, or, equivalently, M >

√
n. In

this case the optimal choice of α ∈ (1,∞) (i.e. α ≈ 1) makes our local bound of the order O( 1√
n

).
In other words, when the data distribution is sufficiently high-dimensional relative to n, the LRC
bound fails in competing with the O( 1√

Mn
) GRC bound in Maurer and Pontil (2013). On the other

hand, for lower dimensional distributions or sufficiently large n, we obtain a rate of 1/n for the LRC
bound at the expense of explicit dependence on the dimension. In particular, the local bound remains
larger than the GRC bound in (43) until n = M3 and improves only for larger sample sizes per task.

Another interesting comparison can be performed between our bounds and the one introduced in
Maurer (2006b) for a graph regularized MTL. Similar to Maurer (2006b), we consider the following
hypothesis space

F ′G =

{
W :

1

2

∥∥∥D1/2W
∥∥∥2

F
≤ TR′′2max

}
. (44)

Maurer (2006b) provides a bound on the empirical GRC of the aforementioned hypothesis space
that can be easily converted to a distribution dependent GRC bound of the form

R
(
F ′G
)
≤
√

2R′′2max
nT

∥∥∥(D−1
tt tr(Jt)

)T
t=1

∥∥∥
1
.

Now, with D := L + ηI (where L is the graph-Laplacian, I is the identity operator, and η > 0 is a
regularization parameter) and the same M -dimensional distributional assumptions, it can be shown
that ∥∥∥(D−1

tt tr(Jt)
)T
t=1

∥∥∥
1

=

T∑
t=1

D−1
tt tr(Jt) ≤Mλmax

T∑
t=1

D−1
tt = Mλmaxtr

(
D−1

)
=

= Mλmaxtr (L + ηI)−1 = Mλmax

(
T∑
t=1

1

δt + η
+

1

η

)
≤Mλmax

(
T

δmin + η
+

1

η

)
.

where λmax = 1
M as argued earlier. Furthermore, let {δ2, . . . , δT } be the nonzero eigenvalues ofL

with δmin := min{δ2, . . . , δT }. Then, the GRC-based excess risk bound is obtained as

Maurer (2006b) : P (`f̂ − `f∗) ≤
2LR′′max√

n

√
2Mλmax

(
1

δmin
+

1

Tη

)
+

√
bLx

nT
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(45)

Also, based on Remark 25, the LRC-based bound is given as

P (`f̂ − `f∗) ≤ 6400K

√
α+ 1

α− 1

(
R′′2maxL

2D−1
max

) 1
1+α M

α−1
1+αB

2α
α+1n

−α
1+α +

(48Lb+ 16BK)Bx

nT
.

(46)

The above results show that, when n → ∞, both GRC and LRC bounds approach zero, albeit at
different rates: the global bound at a rate of

√
1/n and the local one at a faster rate of n−α/α+1, since

α > 1. Additionally, both bounds approach non-zero limits as T → ∞. Nevertheless, the global
bound does so at a rate of

√
1/T and the local one at a faster rate of 1/T . Furthermore, similar to

the previous case, it can be shown that at the limit T →∞, for high-dimensional data distribution
(large M , small α ≈ 1), both local and global bounds yield the same convergence rate of O( 1√

n
).

However, for low number of dimensions relative to n (in specific, for M < n
1
3 ), our bound improves

over the GRC bound.

6.3 A Different Technique for The Trace Norm Regularized Space F ′S1

In what follows, we show that, by applying a rather different proof technique (departing from
Theorem 11), we can obtain an excess risk bound for the MTL space F ′S1

in (41), which aims at
slower rates in n and T , but exhibits the benefits of a multi-task regularizer. Recall that F ′S1

is given
as

F ′S1
:=

{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T :

1

2
‖W ‖2S1

≤ TR′2max
}
. (47)

Also recall that, from Theorem 11, it can be shown that the LRC of F ′S1
can be bounded as

R(F ′S1
, r) ≤ min

0≤ht≤∞


√
r
∑T

t=1 ht
nT

+

√
2R′2max
n2T

EX,σ
∥∥V ′∥∥

S∞

 , (48)

where

V ′ :=

∑
j>ht

〈
n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

. (49)

Now, following an approach similar to the one applied in Maurer and Pontil (2013), we will
bound EX,σ ‖V ′‖S∞ to yield the next theorem. Note that ‖.‖S∞ stands for the operator norm on the
separable Hilbert spaceH.

Theorem 26 Assume that the conditions of Theorem 24 hold for the hypothesis space F ′S1
in (47).

Also, denote by r∗ the fixed point of 2BLR(F ′S1
, r

4L2 ). Then, for any K > 1 and x > 0, with
probability at least 1− e−x, the excess loss of function class F ′S1

is bounded as

P (`f̂ − `f∗) ≤ (2K)
β

2−β 20
2

2−β max
(

(r∗)
1

2−β , (r∗)
1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
48LBbx

(2− β)nT
,

23



YOUSEFI, LEI, KLOFT, MOLLAGHASEMI AND ANAGNOSTOPOULOS

for

r∗ ≤ min
0≤ht≤∞

{
B2
∑T

t=1 ht
nT

+ 4BL

√
2R′2maxλh

n
+ 24BL

√
2R′2maxK (ln(nT ) + 1)

nT

}
, (50)

where λh := maxt∈NT {λ
ht
t } and where h1, . . . , hT are arbitrary non-negative integers.

The proof of the results is provided in Appendix D.
By considering the same M -dimensional data distribution, the bound in (50) becomes

r∗ ≤ 6BLR′max

(√
1

Mn
+ 6

√
K (ln(nT ) + 1)

nT

)
. (51)

It can be seen that, when the number of tasks T approaches∞, the above bound simplifies to

r∗ ≤ 6BLR′max√
Mn

.

In the sequel, we compare the two bounds (37) and (51) for the trace norm regularized MTL models
in terms of their convergence rates.

Remark 27 Using two different techniques, we proved the two following bounds on the fixed point
r∗ of the local Rademacher complexity 2BLR(F ′S1

, r
4L2 ):

• Our approach

r∗ ≤ 12

√
α+ 1

α− 1

(
R′2maxL

2
) 1

1+α M
α−1
1+αB

2α
α+1n

−α
1+α . (52)

• MP approach (Maurer and Pontil, 2013)

r∗ ≤ 6BLR′max

(√
1

Mn
+ 6

√
K (ln(nT ) + 1)

nT

)
. (53)

As a reminder, the proof of Theorem 11 refers to two terms: A1, which embodies a variance constraint,
and A2, which constitutes a MTL regularization constraint. The aforementioned bounds were derived
by using two different approaches to bound the A2 term, namely the LRC-based approach for (52)
and the MP technique for (53). In the case of (52), due to the LRC-based approach, the variance
constraint (A1 term) plays a dominant role in the overall bound and, thus, yields faster rates in n
for any α > 1. However, it offers no improvements in the limit T →∞, since this bound does not
decrease with increasing T . In contrast, using the MP technique, the MTL regularization constraint
(A2 term) is dominant in (53). While this prevents obtaining faster rates in terms of the number
of samples, it potentially offers the advantages of MTL for large T and high-dimensional data
distributions.
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Appendices

Appendix A. Proof of Theorem 1

This section presents the proof of Theorem 1. We first provide some useful foundations used in the
derivation of our result in Theorem 1.

Theorem A.1 (Theorem 2 in Boucheron et al. (2003)) Let X1, . . . , Xn be n independent random
variables taking values in a measurable space X . Assume that g : X n → R is a measurable
function and Z := g(X1, . . . , Xn). Let X ′1, . . . , X

′
n denote an independent copy of X1, . . . , Xn,

and Z ′i := g(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), which is obtained by replacing the variable Xi

with X ′i. Define the random variable V + :=
∑n

i=1 E′
[(
Z − Z ′i

)2
+

]
, where (u)+ := max{u, 0},

and E′[·] := E[·|X] denotes the expectation only w.r.t. the variables X ′1, . . . , X
′
n. Let θ > 0 and

λ ∈ (0, 1/θ). Then,

logE
[
eλ(Z−EZ)

]
≤ λθ

1− λθ
logE

[
exp

(λV +

θ

)]
.

Definition A.2 (Section 3.3 in Boucheron et al. (2013)) A function g : X n → [0,∞) is said to be
b-self bounding (b > 0), if there exist functions gi : X n−1 → R, such that for all X1, . . . , Xn ∈ X
and all i ∈ Nn,

0 ≤ g(X1, . . . , Xn)− gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) ≤ b,

and
n∑
i=1

[
g(X1, . . . , Xn)− gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)

]
≤ g(X1, . . . , Xn).

Theorem A.3 (Theorem 6.12 in Boucheron et al. (2013)) Assume that Z = g(X1, . . . , Xn) is a
b-self bounding function (b > 0). Then, for any λ ∈ R we have

logEeλZ ≤
(
eλb − 1

)
b

EZ.

Lemma A.4 (Lemma 2.11 in Bousquet (2002)) Let Z be a random variable, A,B > 0 be some
constants. If for any λ ∈ (0, 1/B) it holds

logE
(
eλ(Z−EZ)

)
≤ Aλ2

2
(
1−Bλ

) ,
then, for all x ≥ 0,

Pr
[
Z ≥ EZ +

√
2Ax+Bx

]
≤ e−x.

Lemma A.5 (Contraction property in Bartlett et al. (2005)) Let φ be a Lipschitz function with
Lipschitz constant L ≥ 0, that is, |φ(a) − φ(b)| ≤ L|a − b|, ∀a, b ∈ R. Let X1, . . . , Xn be n
independent random variables. Then, for every real-valued function class F , it holds

Eσ sup
f∈F

n∑
i=1

σiφ(f(Xi)) ≤ LEσ sup
f∈F

n∑
i=1

σif(Xi). (A.1)

Note that, in Theorem 17 of Maurer (2006a), it has been shown that the result of this lemma also
holds for classes of vector-valued functions.
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Proof of Theorem 1

Before laying out the details, we first provide a sketch of the proof. By defining

Z := sup
f∈F

[ 1

T

T∑
t=1

1

Nt

Nt∑
i=1

[Eft(Xi
t)− ft(Xi

t)]
]
, (A.2)

we first apply Theorem A.1 to control the log-moment generating function logE
(
eλ(Z−EZ)

)
. From

Theorem A.1, we know that the main component to control logE
(
eλ(Z−EZ)

)
is the variance-type

quantity V + =
∑T

s=1

∑Ns
j=1 E′

[(
Z − Z ′s,j

)2
+

]
. In the next step, we show that V + can also be

bounded in terms of two other quantities denoted by W and Υ. Applying Theorem A.1 for a specific
value of θ, then gives a bound for logE

(
eλ(Z−EZ)

)
in terms of logE[e

λ
b′ (W+Υ)]. We then turn to

controlling W and Υ respectively. Our approach to tackle W is to show that it is a self-bounding
function and then apply Theorem A.3 to control logE[e

λW
b′ ]. The Υ term is closely related to the

constraint imposed on the variance of functions in F and can be easily upper-bounded in terms of r.
We finally apply Lemma A.4 to transfer the upper bound on the log-moment generating function
logE

(
eλ(Z−EZ)

)
to the tail probability on Z. For clarify, we divide the proof into four main steps.

Step 1. Controlling the log-moment generating function of Z with the random variable W
and variance Υ. Let X ′ := (X ′it )

(T,Nt)
(t,i)=(1,1) be an independent copy of X := (Xi

t)
(T,Nt)
(t,i)=(1,1). Define

the quantity Z ′s,j by replacing the variable Xj
s in Z with X ′js . Then,

Z ′s,j := sup
f∈F

[ 1

TNs

[
E′fs(X ′js )− fs(X ′js )

]
− 1

TNs

[
Efs(Xj

s )− fs(Xj
s )
]

+
1

T

T∑
t=1

1

Nt

Nt∑
i=1

[Eft(Xi
t)− ft(Xi

t)]
]
. (A.3)

Let f̂ := (f̂1, . . . f̂T ) be such that Z = 1
T

∑T
t=1

1
Nt

∑Nt
i=1

[
Ef̂t(Xi

t)− f̂t(Xi
t)
]

and introduce

W := sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

[Eft(Xi
t)− ft(Xi

t)]
2
]
,

Υ := sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

E[Eft(Xi
t)− ft(Xi

t)]
2
]
.

It can be shown that, for any j ∈ Nn and any s ∈ NT ,

Z − Z ′s,j ≤
1

TNs

[
Ef̂s(Xj

s )− f̂s(Xj
s )
]
− 1

TNs

[
E′f̂s(X ′js )− f̂s(X ′js )

]
and, therefore,

(Z − Z ′s,j)2
+ ≤

1

T 2N2
s

(
[Ef̂s(Xj

s )− f̂s(Xj
s )]− [E′f̂s(X ′js )− f̂s(X ′js )]

)2
.

Then, from the identity E′[E′f̂s(X ′js )− f̂s(X ′js )] = 0, it follows that

T∑
s=1

Ns∑
j=1

E′
[(
Z − Z ′s,j

)2
+

]
≤

T∑
s=1

Ns∑
j=1

1

T 2N2
s

E′
[(

[Ef̂s(Xj
s )− f̂s(Xj

s )]− [E′f̂s(X ′js )− f̂s(X ′js )]
)2]
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=

T∑
s=1

Ns∑
j=1

1

T 2N2
s

[Ef̂s(Xj
s )− f̂s(Xj

s )]2 +
T∑
s=1

Ns∑
j=1

1

T 2N2
s

E′[E′f̂s(X ′js )− f̂s(X ′js )]2

≤ sup
f∈F

T∑
s=1

Ns∑
j=1

1

T 2N2
s

[Efs(Xj
s )− fs(Xj

s )]2 + sup
f∈F

T∑
s=1

Ns∑
j=1

1

T 2N2
s

E[Efs(Xj
s )− fs(Xj

s )]2

= W + Υ.

Introduce b′ := 2b
nT . Applying Theorem A.1 and the above bound to

∑T
s=1

∑Ns
j=1 E′

[(
Z − Z ′s,j

)2
+

]
yields the following bound on the log-moment generating function of Z

logE
[
eλ(Z−EZ)

]
≤ λb′

1− λb′
logE

[
e
λ
b′ (W+Υ)

]
, ∀λ ∈ (0, 1/b′). (A.4)

Step 2. Controlling the log-moment generating function of W . We now upper-bound the
log-moment generating function of W by showing that it is a self-bounding function. For any
s ∈ NT , j ∈ NNs , introduce

Ws,j := sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

[Eft(Xi
t)− ft(Xi

t)]
2 − 1

T 2N2
s

[Efs(Xj
s )− fs(Xj

s )]2
]
.

Note that Ws,j is a function of {Xi
t , t ∈ NT , i ∈ NNt}\{X

j
s}. Letting f̃ := (f̃1, . . . , f̃T ) be the

function achieving the supremum in the definition of W , one can verify that (note that b′ = 2b
nT )

T 2[W −Ws,j ] ≤
1

N2
s

[Ef̃s(Xj
s )− f̃s(Xj

s )]2 ≤ 4b2

n2
= T 2b′2. (A.5)

Similarly, if f̃
s,j

:= (f̃ s,j1 . . . , f̃s,jT ) is the function achieving the supremum in the definition of Ws,j ,
then one can derive the following inequality

T 2[W −Ws,j ] ≥
1

N2
s

[Ef̃s,js (Xj
s )− f̃s,js (Xj

s )]2 ≥ 0.

Also, it can be shown that

T∑
s=1

Ns∑
i=1

[W −Ws,j ] ≤
1

T 2

T∑
s=1

1

N2
s

Ns∑
i=1

[Ef̃s(Xj
s )− f̃s(Xj

s )]2

= sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

[Eft(Xi
t)− ft(Xi

t)]
2
]

= W. (A.6)

Therefore, according to Definition A.2, W/b′ is a b′-self bounding function. Applying Theorem A.3
then gives the following inequality for any λ ∈ (0, 1/b′):

logEeλ(W/b′) ≤ (eλb
′ − 1)

b′2
EW =

(eλb
′ − 1)

b′2
Σ2 ≤ λΣ2

b′(1− λb′)
, (A.7)
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where we introduced Σ2 := EW and where the last step uses the inequality (ex − 1)(1 − x) ≤
x,∀x ∈ [0, 1]. By further noting that (σit) is a sequence of independent Rademacher variables
independent of Xi

t , the Σ2 term can be controlled as follows

Σ2 ≤ 1

T 2
EX sup

f∈F

[ T∑
t=1

1

N2
t

Nt∑
i=1

[
Eft(Xi

t)− ft(Xi
t)
]2 − T∑

t=1

1

N2
t

Nt∑
i=1

E
[
Eft(Xi

t)− ft(Xi
t)
]2]

+ Υ

≤ 2EX,σ
[

sup
f∈F

1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

σit
[
Eft(Xi

t)− ft(Xi
t)
]2]

+ Υ

≤ 8bEX,σ
[

sup
f∈F

1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

σit
[
Eft(Xi

t)− ft(Xi
t)
]]

+ Υ

≤ 16bR(F)

nT
+ Υ,

where the first inequality follows from the definition of W and Υ and the second inequality follows
from the standard symmetrization technique used to relate the Rademacher complexity to the uniform
deviation of empirical averages from their expectation; see Bartlett et al. (2005). The third inequality
comes from a direct application of Lemma A.5 with φ(x) = x2 (with Lipschitz constant 4b on
[−2b, 2b]), and the last inequality uses Jensen’s inequality together with the definition of R(F) and
the fact that 1

N2
t
≤ 1

nNt
. Substituting the previous inequality on Σ2 back into (A.7) gives

logEeλ(W/b′) ≤ λ

b′(1− λb′)

[16bR(F)

nT
+ Υ

]
, ∀λ ∈ (0, 1/b′). (A.8)

Step 3. Controlling the term Υ. Note that Υ can be upper-bounded as

Υ : = sup
f∈F

[ 1

T 2

T∑
s=1

1

N2
s

Ns∑
j=1

E[Efs(Xj
s )− fs(Xj

s )]2
]

≤ 1

nT 2
sup
f∈F

[ T∑
s=1

E[Efs(X1
s )− fs(X1

s )]2
]

≤ 1

nT 2
sup
f∈F

[ T∑
s=1

E[fs(X
1
s )]2

]
≤ r

nT
,

(A.9)

where the last inequality follows from the assumption 1
T supf∈F

[∑T
s=1 E[fs(X

1
s )]2

]
≤ r of the

theorem.
Step 4. Transferring the bound on log-moment generating function of Z into tail probabil-

ities. Substituting the bound on logEeλW/b′ in (A.8) and the bound on Υ in (A.9) back into (A.4)
immediately yields the following inequality on the log-moment generating function of Z for any
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λ ∈ (0, 1/2b′)

logE[eλ(Z−EZ)] ≤ λb′

1− λb′
[ λ

b′(1− λb′)
[
16(nT )−1bR(F) + Υ] +

λΥ

b′

]
≤ λb′

1− λb′
λ

b′(1− λb′)

[16bR(F)

nT
+ 2Υ

]
≤ 2λ2

2(1− 2λb′)

[16bR(F)

nT
+

2r

nT

]
,

(A.10)

where the last inequality uses (1−λb′)2 ≥ 1−2λb′ > 0 since λ ∈ (0, 1/2b′). That is, the conditions
of Lemma A.4 hold and we can apply it (with A = 2

[16bR(F)
nT + 2r

nT

]
and B = 2b′) to get the

following inequality with probability at least 1− e−x (note that b′ = 2b
nT )

Z ≤ E[Z] +

√
4x
[16bR(F)

nT
+

2r

nT

]
+ 2b′x

≤ E[Z] + 8

√
bxR(F)

nT
+

√
8xr

nT
+

4bx

nT

≤ E[Z] + 2R(F) +
8bx

nT
+

√
8xr

nT
+

4bx

nT

≤ 4R(F) +

√
8xr

nT
+

12bx

nT
,

where the third inequality follows from 2
√
uv ≤ u+v, and the last step uses the following inequality

due to the symmetrization technique (here, the “ghost” sample X ′ is an i.i.d. copy of the initial
sample X)

EZ = EX
[

sup
f∈F

1

T
EX′

[ T∑
t=1

1

Nt

Nt∑
i=1

(
ft
(
X ′it
)
− ft

(
Xi
t

))]]
≤ EX,X′

[
sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

(
ft
(
X ′it
)
− ft

(
Xi
t

))]
= EX,X′,σ

[
sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

σit
(
ft
(
X ′it
)
− ft

(
Xi
t

))]
≤ 2R(F).

Note that the second identity holds since for any σit, the random variable ft(X ′it )− ft(Xi
t) has the

same distribution as σit(ft(X
′i
t )− ft(Xi

t)).

Appendix B. Proofs of the results in Sect. 3

Theorem B.3 is at the core of proving Theorem 9 in Sect. 3. We first present some useful lemmata.

Lemma B.1 Let c1, c2 > 0 and s > q > 0. Then the equation xs − c1x
q − c2 = 0 has a unique

positive solution x0 satisfying

x0 ≤
[
c

s
s−q
1 +

sc2

s− q

] 1
s
.
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Furthermore, for any x ≥ x0, we have xs ≥ c1x
q + c2.

Proof Denote p(x) := xs − c1x
q − c2. The uniqueness of a positive solution for the equation

p(x) = 0 is shown in Lemma 7.2 in Cucker and Zhou (2007). Let x0 be this unique positive solution.
Then, it follows from Young’s inequality

xy ≤ p−1xp + q−1yq, ∀x, y ≥ 0, p, q > 0, p−1 + q−1 = 1, (B.1)

that

xs0 = c1x
q
0 + c2 ≤

x
q· s
q

0
s
q

+
c

s
s−q
1
s
s−q

+ c2 =
q

s
xs0 +

s− q
s

c
s
s−q
1 + c2,

from which we have xs0 ≤ c
s
s−q
1 + sc2

s−q . The inequality p(x) ≥ 0 for any x ≥ x0 then follows
immediately from the facts that p(x0) = 0, limx→∞ p(x) =∞ and the uniqueness of roots for the
equation p(x) = 0.

Also, we will need the following lemma for the second step of the proof of Theorem B.3.

Lemma B.2 Let K > 1, r > 0, 0 < β ≤ 1 and B ≥ 1. Assume that F = {f := (f1, . . . , fT )} is a
vector-valued (β,B)-Bernstein class of functions. Define the re-scaled version of F as

Fr :=

{
f ′ =

(
f ′1, . . . , f

′
T

)
: f ′t :=

rft
max (r, V (f))

,f = (ft, . . . , fT ) ∈ F
}
. (B.2)

If V +
r := supf ′∈Fr [Pf

′ − Pnf ′] ≤ r
1
β

BK , then

∀f ∈ F Pf ≤ K

K − β
Pnf +

r
1
β

K
. (B.3)

Proof We prove (B.3) by considering two cases. Let f be any element in F . If V (f) ≤ r, then

f ′ = f and the inequality V +
r ≤ r

1
β

BK leads to

Pf ≤ Pnf +
r

1
β

BK
≤ K

K − β
Pnf +

r
1
β

K
. (B.4)

If V (f) ≥ r, then f ′ = rf/V (f) and the inequality V +
r ≤ r

1
β

BK yields

Pf ≤ Pnf +
r

1
β
−1
V (f)

BK
≤ Pnf +

r
1
β
−1

(Pf)β

K

(B.1)
≤ Pnf +

1

K

[(Pf)β]
1
β

1
β

+
1

K

(r
1
β
−1

)
1

1−β

1
1−β

= Pnf +
β

K
Pf +

(1− β)r
1
β

K
,
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where we have used Bernstein’s condition V (f) ≤ BP (f)β . The previous inequality can be
equivalently written as

Pf ≤ K

K − β
Pnf +

1− β
K − β

r
1
β ≤ K

K − β
Pnf +

r
1
β

K
. (B.5)

Eq. (B.3) follows by combining (B.4) and (B.5).

Theorem B.3 (LRC-based bounds for MTL) Let F = {f := (f1, . . . , fT ) : ∀t, ft ∈ RX } be a
class of vector-valued functions satisfying maxt∈NT supx∈X |ft(x)| ≤ b. LetX := (Xi

t , Y
i
t )

(T,n)
(t,i)=(1,1)

be a vector of nT independent random variables where (X1
t , Y

1
t ), . . . , (Xn

t , Y
n
t ), ∀t ∈ NT are iden-

tically distributed. Assume that F is a (β,B)-Bernstein class of vector-valued functions with 0 <
β ≤ 1 and B ≥ 1. Let ψ be a sub-root function with fixed point r∗. If BR(F , r) ≤ ψ(r), ∀r ≥ r∗,
then, for any K > 1, and x > 0, with probability at least 1− e−x, every f ∈ F satisfies

Pf ≤ K

K − β
Pnf +(2K)

β
2−β 20

2
2−β max

(
(r∗)

1
2−β , (r∗)

1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
24Bbx

(2− β)nT
.

(B.6)

Proof Let r ≥ r∗ be a fixed real number. Here, we use the vector-valued function class Fr as
defined in (B.2). The proof is broken down into two major steps. The first step applies Theorem
1 and the “peeling” technique (Van De Geer, 1987; Van Der Vaart and Wellner, 1996) to establish
an inequality on the uniform deviation over the function class Fr. The second step then uses the
Bernstein assumption V (f) ≤ B(Pf)β to convert this inequality stated forFr to a uniform deviation
inequality for F .

Step 1. Controlling uniform deviations for Fr. To apply Theorem 1 to Fr, we need to control
the variances and uniform bounds for elements in Fr. We first show that Pf ′2 ≤ r, ∀f ′ ∈ Fr.
Indeed, for any f ∈ F with V (f) ≤ r, the definition of Fr implies f ′t = ft and, hence, Pf ′2 =
Pf2 ≤ V (f) ≤ r. Otherwise, if V (f) ≥ r, then f ′t = rft/V (f) and we get

Pf ′2 =
1

T

T∑
t=1

Pf ′2t =
r2[

V (f)
]2( 1

T

T∑
t=1

Pf2
t

)
≤ r2[

V (f)
]2V (f) ≤ r.

Therefore, 1
T supf ′∈Fr

∑T
t=1 E[f ′t(Xt)]

2 ≤ r. Also, since functions in F admit a range of [−b, b]
and since 0 ≤ r/max(r, V (f)) ≤ 1, it holds that maxt∈NT supx∈X |f ′t(x)| ≤ b for any f ′ ∈ Fr.
Applying Theorem 1 to the function class Fr then yields the following inequality with probability at
least 1− e−x, ∀x > 0

sup
f ′∈Fr

[Pf ′ − Pnf ′] ≤ 4R(Fr) +

√
8xr

nT
+

12bx

nT
. (B.7)

It remains to control the Rademacher complexity of Fr. Denote F(u, v) :=
{
f ∈ F : u ≤ V (f) ≤

v
}
,∀0 ≤ u ≤ v, and introduce

Rnf
′ :=

1

nT

T∑
t=1

n∑
i=1

σitf
′
t(X

i
t), Rn(Fr) := sup

f ′∈Fr

[
Rnf

′
]
.
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Note that R(Fr) = ERn(Fr). Our assumption implies that V (f) ≤ B(Pf)β ≤ Bbβ,∀f ∈ F . Fix
λ > 1 and define k as the smallest integer such that rλk+1 ≥ Bbβ . Then, according to the union
bound inequality

R(G1 ∪ G2) ≤ R(G1) + R(G2), (B.8)

we obtain

R(Fr) = E
[

sup
f ′∈Fr

Rnf
′
]

= E
[

sup
f∈F

1

nT

T∑
t=1

n∑
i=1

r

max(r, V (f))
σitft(X

i
t)

]
(B.8)
≤ E

[
sup

f∈F(0,r)

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
+ E

[
sup

f∈F(r,Bbβ)

1

nT

T∑
t=1

n∑
i=1

r

V (f)
σitft(X

i
t)

]
(B.8)
≤ E

[
sup

f∈F(0,r)

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
+

k∑
j=0

λ−jE
[

sup
f∈F(rλj ,rλj+1)

Rnf

]

≤ R(F , r) +

k∑
j=0

λ−jR
(
F , rλj+1

)
≤ ψ(r)

B
+

1

B

k∑
j=0

λ−jψ(rλj+1).

The sub-root property of ψ implies that ψ(ξr) ≤ ξ
1
2ψ(r) for any ξ ≥ 1 and, hence,

R(Fr) ≤
ψ(r)

B

(
1 +
√
λ

k∑
j=0

λ−
j
2

)
≤ ψ(r)

B

(
1 +

λ√
λ− 1

)
.

Choosing λ = 4 in the above inequality implies that R(Fr) ≤ 5ψ(r)/B, which, together with the
inequality ψ(r) ≤

√
r/r∗ψ(r∗) =

√
rr∗,∀r ≥ r∗, gives

R(Fr) ≤
5

B

√
rr∗, ∀r ≥ r∗.

Combining (B.7) and the above inequality, for any r ≥ r∗ and x > 0, we derive the following
inequality with probability at least 1− e−x,

sup
f ′∈Fr

[Pf ′ − Pnf ′] ≤
20

B

√
rr∗ +

√
8xr

nT
+

12bx

nT
. (B.9)

Step 2. Transferring uniform deviations for Fr to uniform deviations for F . letting A :=
20
√
r∗/B+

√
8x/nT andC := 12bx/nT , the upper bound of (B.9) can be written asA

√
r+C, that

is, supf ′∈Fr [Pf
′−Pnf ′] ≤ A

√
r+C. Now, according to Lemma B.2, if supf ′∈Fr [Pf

′−Pnf ′] ≤
r
1
β

BK , then for any f ∈ F ,

Pf ≤ K

K − β
Pnf +

r
1
β

K
.
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To apply Lemma B.2, we let A
√
r + C = r

1
β /(BK). Assume r0 is the unique positive solution of

the equation A
√
r + C = r

1
β /(BK), which can be written as

r
1
β −ABKr

1
2 −BKC = 0.

Lemma B.1 then implies

r
1
β

0 ≤ (ABK)
2

2−β +
2BKC

2− β

≤ (BK)
2

2−β 2
β

2−β
[
(20B−1)

2
2−β (r∗)

1
2−β +

( 8x

nT

) 1
2−β
]

+
24BKbx

(2− β)nT
, (B.10)

where we have used the inequality (x+y)p ≤ 2p−1(xp+yp) for any x, y ≥ 0, p ≥ 1. If r∗ ≤ r0, we

can take r = r0 in (B.9) to show that V +
r0 ≤ A

√
r0 + C = r

1
β

0 /(BK), which, coupled with (B.10)
and Lemma B.2, gives

Pf ≤ K

K − β
Pnf + (2K)

β
2−β 20

2
2−β (r∗)

1
2−β +

(2β+3B2Kβx

nT

) 1
2−β

+
24Bbx

(2− β)nT
. (B.11)

If r∗ > r0, Lemma B.1 implies that A
√
r∗ + C ≤ (r∗)

1
β /(BK). We now take r = r∗ in (B.9) to

get V +
r∗ ≤ A

√
r∗ + C ≤ (r∗)

1
β /(BK), from which—via Lemma B.2—we obtain that

Pf ≤ K

K − β
Pnf +

r
1
β
∗
K
. (B.12)

Note that inequality (B.6) follows immediately by combining (B.11) and (B.12).

Proof of Theorem 9

Note that the proof of this theorem relies on the results of Theorem B.3. Introduce the following
class of excess loss functions

H∗F := {hf = (hf1 , . . . , hfT ), hft : (Xt, Yt) 7→ `(ft(Xt), Yt)− `(f∗t (Xt), Yt),f ∈ F} . (B.13)

It can be shown that

max
t∈NT

sup
x∈X
|hft(x, y)| = max

t∈NT
sup
x∈X
|`(ft(x), y)− `(f∗t (x), y)| ≤ Lmax

t∈NT
sup
x∈X
|ft(x)− f∗t (x)| ≤ 2Lb.

Also, Assumption 8 implies that

P (`f − `f∗)2 ≤ L2P (f − f∗)2 ≤ B′L2
(
P (`f − `f∗)

)β
, ∀hf ∈ H∗F ,

By letting B := max(B′L2, 1), we have for all hf ∈ H∗F ,

Ph2
f ≤ V (hf ) := L2P (f − f∗)2 ≤ B

(
P (`f − `f∗)

)β
= B(Phf )β.
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which implies thatH∗F is a (β,B)-Bernstein class of vector-valued functions. In addition, for any
r ≥ r∗, one can verify that

BR(H∗F , r) = BEX,σ

[
sup

V (hf )≤r,f∈F

1

nT

T∑
t=1

n∑
i=1

σithft(X
i
t , Y

i
t )

]

= BEX,σ

[
sup

V (hf )≤r,f∈F

1

nT

T∑
t=1

n∑
i=1

σit`ft(X
i
t , Y

i
t )

]
≤ BLR(F∗, r) ≤ ψ(r),

where the second to last inequality is due to Lemma A.5. Applying Theorem B.3 to the function
classH∗F completes the proof.

Appendix C. Proofs of the results in Sect. 4: “Local Rademacher Complexity Bounds
for Norm Regularized MTL Models”

Lemma C.1 Assume that the conditions of Theorem 11 hold. Then, for ever f ∈ F ,

(a) Pf2 ≤ r implies 1/T
∑T

t=1

∑∞
j=1 λ

j
t

〈
wt,u

j
t

〉2
≤ r.

(b) EX,σ
〈

1
n

∑n
i=1 σ

i
tφ(Xi

t),u
j
t

〉2
=

λjt
n .

Proof We first prove part (a). Given the eigen-decomposition E(φ(Xt)⊗φ(Xt)) =
∑∞

j=1 λ
j
tut⊗u

j
t

for each task t ∈ NT , we obtain

Pf2 =
1

T

T∑
t=1

E (〈wt, φ(Xt)〉)2 =
1

T

T∑
t=1

E (〈wt ⊗wt, φ(Xt)⊗ φ(Xt)〉)

=
1

T

T∑
t=1

〈wt ⊗wt,EX (φ(Xt)⊗ φ(Xt))〉 =
1

T

T∑
t=1

∞∑
j=1

λjt

〈
wt ⊗wt,u

j
t ⊗ ujt

〉

=
1

T

T∑
t=1

∞∑
j=1

λjt

〈
wt,u

j
t

〉〈
wt,u

j
t

〉
=

1

T

T∑
t=1

∞∑
j=1

λjt

〈
wt,u

j
t

〉2
≤ r.

Now, we turn to part (b). From the independence among the elements of the sequence
{
σit
}
i∈Nn
t∈NT

, it

follows that

EX,σ

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉2

=
1

n2
EX,σ

n∑
i,k=1

σitσ
k
t

〈
φ(Xi

t),u
j
t

〉〈
φ(Xk

t ),ujt

〉
σti.i.d.

=
1

n2
EX

(
n∑
i=1

〈
φ(Xi

t),u
j
t

〉2
)

=
1

n

〈
1

n

n∑
i=1

EX
(
φ(Xi

t)⊗ φ(Xi
t)
)
,ujt ⊗ ujt

〉

=
1

n

∞∑
l=1

λlt

〈
ult ⊗ ult,u

j
t ⊗ ujt

〉
=
λjt
n
.

35



YOUSEFI, LEI, KLOFT, MOLLAGHASEMI AND ANAGNOSTOPOULOS

The next lemmata are used in the proof of the LRC bound for the L2,q-group norm regularized MTL
in Corollary 13.

Lemma C.2 (Khintchine-Kahane Inequality in (Peshkir and Shiryaev, 1995)) LetH be an inner-
product space with induced norm ‖·‖H, v1, . . . , vM ∈ H and σ1, . . . , σn i.i.d. Rademacher random
variables. Then, for any p ≥ 1, we have that

Eσ

∥∥∥∥∥
n∑
i=1

σivi

∥∥∥∥∥
p

H

≤

(
c

n∑
i=1

‖vi‖2H

) p
2

. (C.1)

where c := max {1, p− 1}. The inequality also holds for p in place of c.

Lemma C.3 (Rosenthal-Young Inequality; Lemma 3 of (Kloft and Blanchard, 2012)) Let the in-
dependent non-negative random variables X1, . . . , Xn satisfy Xi ≤ B < +∞ almost surely for all
i = 1, . . . , n. If q ≥ 1

2 , cq := (2qe)q, then it holds

E

(
1

n

n∑
i=1

Xi

)q
≤ cq

[(
B

n

)q
+

(
1

n

n∑
i=1

EXi

)q]
. (C.2)

Proof of Lemma 12

For the group norm regularizer ‖W ‖2,q, we can further bound the expectation term in (15) for
D = I as follows

E := EX,σ

∥∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

∥∥∥∥∥∥∥
2,q∗

= EX,σ

 T∑
t=1

∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

∥∥∥∥∥∥
q∗


1
q∗

Jensen
≤ EX

 T∑
t=1

Eσ

∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

∥∥∥∥∥∥
q∗


1
q∗

(C.1)
≤ EX

 T∑
t=1

q∗ n∑
i=1

∥∥∥∥∥∥
∑
j>ht

〈
1

n
φ(Xi

t),u
j
t

〉
ujt

∥∥∥∥∥∥
2

q∗
2


1
q∗

=

√
q∗

n
EX

 T∑
t=1

∑
j>ht

1

n

n∑
i=1

〈
φ(Xi

t),u
j
t

〉2


q∗
2


1
q∗
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Jensen
≤

√
q∗

n

 T∑
t=1

EX

∑
j>ht

1

n

n∑
i=1

〈
φ(Xi

t),u
j
t

〉2


q∗
2


1
q∗

. (C.3)

Note that, for q ≤ 2, it holds that q∗/2 ≥ 1. Therefore, we cannot employ Jensen’s inequality to move
the expectation operator inside the inner term and, instead, we need to apply the Rosenthal-Young
(R+Y) inequality (see Lemma C.3), which yields

E
R+Y
≤
√
q∗

n

 T∑
t=1

(eq∗)
q∗
2

(Kn
) q∗

2

+

∑
j>ht

1

n

n∑
i=1

EX
〈
φ(Xi

t),u
j
t

〉2


q∗
2




1
q∗

=

√
q∗

n

 T∑
t=1

(eq∗)
q∗
2

(Kn
) q∗

2

+

∑
j>ht

λjt


q∗
2




1
q∗

. (C.4)

The last quantity can be further bounded using the sub-additivity of q∗
√
. as shown next

E ≤ q∗
√
e

n


T (K

n

) q∗
2

 1
q∗

+

 T∑
t=1

∑
j>ht

λjt


q∗
2


1
q∗


= q∗
√
e

n

T 1
q∗

√
K
n

+

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
1
2

q∗
2



=

√
Keq∗T

1
q∗

n
+

√√√√√√eq∗2

n

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

. (C.5)

Proof of Corollary 13

Combining (14), (15) and Lemma 12 provides the next bound on R(Fq, r)

R(Fq, r) ≤

√
r
∑T

t=1 ht
nT

+

√√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
(C.6)

(?)

≤

√√√√√√√ 2

nT

r T∑
t=1

ht +
2eq∗2R2

max

T

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
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(??)

≤

√√√√√√√ 2

nT

rT 1− 2
q∗
∥∥∥(ht)

T
t=1

∥∥∥
q∗
2

+
2eq∗2R2

max

T

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT

(???)

≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
rT 1− 2

q∗ ht +
2eq∗2R2

max

T

∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
,

where in steps (?), (??) and (? ? ?) we applied the corresponding inequalities shown next, which
hold for all non-negative numbers α1 and α2, any non-negative vectors a1,a2 ∈ RT , any p, q such
that 0 ≤ q ≤ p ≤ ∞ and any s ≥ 1.

(?)
√
α1 +

√
α2 ≤

√
2(α1 + α2)

(??) lp − to− lq : ‖a1‖q = 〈1,aq1〉
1
q

Hölder
≤

(
‖1‖(p/q)∗ ‖a

q
1‖(p/q)

) 1
q

= T
1
q
− 1
p ‖a1‖p

(? ? ?) ‖a1‖s + ‖a2‖s ≤ 21− 1
s ‖a1 + a2‖s ≤ 2 ‖a1 + a2‖s .

Since inequality (? ? ?) holds for any non-negative ht, it follows that

R(Fq, r) ≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
min
ht≥0

rT
1− 2

q∗ ht +
2eq∗2R2

max

T

∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT

≤

√√√√√√ 4

nT

∥∥∥∥∥∥∥
 ∞∑
j=1

min

(
rT

1− 2
q∗ ,

2eq∗2R2
max

T
λjt

)T

t=1

∥∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq∗T

1
q∗

nT
.

Proof of Theorem 17

By considering the hypothesis space in (16) and the MT-LRC’s definition, we have

R(Fq,Rmax,T , r) =
1

T
EX,σ

 sup
Pf2≤r,

‖W ‖22,q≤2R2
max

T∑
t=1

〈
wt,

1

n

n∑
i=1

σitφ(Xi
t)

〉
=

1

T
EX,σ

 sup
1/T

∑T
t=1 E〈wt,φ(Xt)〉2≤r,
‖W ‖22,q≤2R2

max

T∑
t=1

〈
wt,

1

n

n∑
i=1

σitφ(Xi
t)

〉

≥ 1

T
EX,σ


sup

∀t EX〈wt,φ(Xt)〉2≤r,
‖W ‖22,q≤2R2

max,

‖w1‖2=...=‖wt‖2

T∑
t=1

〈
wt,

1

n

n∑
i=1

σitφ(Xi
t)

〉

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=
1

T
EX,σ

 sup
∀t EX〈wt,φ(Xt)〉2≤r,

∀t ‖wt‖22≤2R2
maxT

− 2
q

T∑
t=1

〈
wt,

1

n

n∑
i=1

σitφ(Xi
t)

〉
=

1

T

T∑
t=1

EX,σ

 sup
∀t EX〈wt,φ(Xt)〉2≤r,

∀t ‖wt‖22≤2R2
maxT

− 2
q

〈
wt,

1

n

n∑
i=1

σitφ(Xi
t)

〉
= EX,σ

 sup
EX〈w1,φ(X1)〉2≤r,

‖w1‖22≤2R2
maxT

− 2
q

〈
w1,

1

n

n∑
i=1

σi1φ(Xi
1)

〉
= R(F

1,RmaxT
− 1
q ,1
, r).

According to Mendelson (2003), it can be shown that there is a constant c such that if λ1
t ≥ 1

nR2
max

,

then, for all r ≥ 1
n , it holds that R(F

1,RmaxT
− 1
q ,1
, r) ≥

√
c
n

∑∞
j=1 min

(
r,R2

maxT
− 2
q λj1

)
, which

provides the desired result after some algebraic manipulations. The following lemma is used in the
proof of the LRC bounds for the LSq -Schatten norm regularized MTL in Corollary 19.

Lemma C.4 (Khintchine’s inequality for arbitrary matrices in Tomczak-Jaegermann (1974))
Let Q1, . . . ,Qn be a set of arbitrarym×n matrices and let σ1, . . . , σn be a sequence of independent
Bernoulli random variables. Then for all p ≥ 2,

Eσ

∥∥∥∥∥
n∑
i=1

σiQi

∥∥∥∥∥
p

Sp

 ≤ pp/2( n∑
i=1

‖Qi‖
2
Sp

)p/2
. (C.7)

Proof of Corollary 19

In order to find an LRC bound for an LSq -Schatten norm regularized hypothesis space of (26), one
just needs to bound the expectation term in (11). Define U i

t as the matrix with T columns, whose only
non-zero tth column equals

∑
j>ht

〈
1
nφ(Xi

t),u
j
t

〉
ujt . Recall that, for the Schatten norm regularized

hypothesis space of (26), it holds that D = I . Therefore, we will have that

EX,σ
∥∥∥D−1/2V

∥∥∥
∗
= EX,σ

∥∥∥∥∥∥∥
∑
j>ht

〈
1

n

n∑
i=1

σitφ(Xi
t),u

j
t

〉
ujt

T

t=1

∥∥∥∥∥∥∥
Sq∗

= EX,σ

∥∥∥∥∥
T∑
t=1

n∑
i=1

σitU
i
t

∥∥∥∥∥
Sq∗

Jensen
≤ EX

Eσ

∥∥∥∥∥
T∑
t=1

n∑
i=1

σitU
i
t

∥∥∥∥∥
q∗

Sq∗


1
q∗
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(C.7)
≤ EX

(q∗)q
∗/2

(
T∑
t=1

n∑
i=1

∥∥U i
t

∥∥2

Sq∗

)q∗/2
1
q∗

=
√
q∗EX

 T∑
t=1

n∑
i=1

∥∥∥∥∥∥
∑
j>ht

〈
1

n
φ(Xi

t),u
j
t

〉
ujt

∥∥∥∥∥∥
21/2

=
√
q∗EX

 T∑
t=1

n∑
i=1

∑
j>ht

1

n2

〈
φ(Xi

t),u
j
t

〉2

1/2

Jensen
≤
√
q∗

n

 T∑
t=1

n∑
i=1

∑
j>ht

λjt

 1
2

=

√√√√√√q∗

n

∥∥∥∥∥∥∥
∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
1

. (C.8)

Proof of Corollary 22

Similar to the proof of Corollary 19, for the graph regularized hypothesis space depicted in (28), one
can bound the expectation term in (11) in this manner

EX,σ
∥∥∥D−1/2V

∥∥∥
∗

= EX,σ
[
tr
(
V TD−1V

)] 1
2

Jensen
≤ EX

 1

n2

T,T∑
t,s=1

n,n∑
i,l=1

∑
j>ht

∑
k>hs

D−1
st Eσ

(
σitσ

l
s

)〈
φ(Xi

t),u
j
t

〉〈
φ(X l

s),u
k
s

〉〈
ujt ,u

k
s

〉 1
2

= EX

 1

n

T∑
t=1

D−1
tt

∑
j>ht

1

n

n∑
i=1

〈
φ(Xi

t),u
j
t

〉2

 1
2

Jensen
≤

 1

n

T∑
t=1

D−1
tt

∑
j>ht

1

n

n∑
i=1

EX
〈
φ(Xi

t),u
j
t

〉2

 1
2

=
1√
n

 T∑
t=1

∑
j>ht

D−1
tt λ

j
t

 1
2

=

√√√√√√ 1

n

∥∥∥∥∥∥∥
D−1

tt

∑
j>ht

λjt

T

t=1

∥∥∥∥∥∥∥
1

. (C.9)

The remainder of the derivation is similar to that of Corollary 13 and is omitted for brevity.

Appendix D. Proof of the results in Sect. 6: “Discussion”

In what follows, we provide some general results that imply Theorem 26. More specifically, we
restate two concentration results for sums of non-negative operators with finite-dimensional ranges.
Towards this end, we will say that two operators A and B are related as A � B, if B−A is a positive
semi-definite operator.
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Theorem D.1 (Theorem A.3 in Maurer and Pontil (2016)) Consider the separable Hilbert space
H. LetM⊆ H be a subspace of finite dimension d. Also, consider the finite sequence Ak of random,
independent, self-adjoint operators onH. Assume that, for all m ∈ N, k ∈ NN and some R ≥ 0, it
holds that Ak � 0, Ran(Ak) ⊆M almost surely and

EAmk � m!Rm−1EAk.

Then, √
E‖
∑
k

Ak‖S∞ ≤
√
‖E
∑
k

Ak‖S∞ +
√
R (ln dim(M) + 1). (D.1)

Lemma D.2 (Lemma A.4 in Maurer and Pontil (2016)) Let a1, . . . , an ∈ Rd. Let

α :=
n∑
i=1

‖ai‖2,

and define a rank-one operator Qx on H , such that Qxv = 〈v, x〉x. Also, let D :=
∑n

i=1 σiai.
Then, for any p ≥ 1, it holds that

E[(QD)p] � (2p− 1)!!αp−1E[QD],

where (2p− 1)!! :=
∏p
i=1(2i− 1) = (2p− 1)(2(p− 1)− 1)× . . .× 5× 3× 1.

Theorem D.3 (Theorem 7 in Maurer and Pontil (2013)) Consider the independent random oper-
ators A1, . . . , AN , which satisfy 0 � Ak � I , ∀k. Also, assume that, for some d ∈ N, it holds
that

dimSpan(Ran(A1), . . . ,Ran(AN )) ≤ d,
almost surely. Then√√√√E‖

N∑
k=1

Ak‖S∞ ≤

√√√√‖E N∑
k=1

Ak‖S∞ +
√

6 (ln (4d2) + 1). (D.2)

Proof of Theorem 26

We first proceed to bound Eσ ‖V ′‖S∞ . Let Dt be the random vector
∑

j>ht

〈∑n
i=1 σ

i
tφ(Xi

t),u
j
t

〉
ujt ,

and recall that the rank-one operator QDt is such that QDtv := 〈v,Dt〉Dt. Then, it is clear that
V ′∗V ′ =

∑T
t=1QDt and, by using Jensen’s inequality, we have

Eσ‖V ′‖S∞ ≤

√√√√Eσ‖
T∑
t=1

QDt‖∞.

Note that Dt is the projection of
∑n

i=1 σ
i
tφ(Xi

t) onto the space spanned by
(
ujt

)
j>ht

. Since∑n
i=1 σ

i
tφ(Xi

t) belongs to the space spanned by
(
φ(Xi

t)
)n
i=1

, we know that Dt belongs to a sub-
space of dimension at most n. It then follows that Ran(QD1), . . . ,Ran(QDT

) lie in a subspace of
dimension at most nT . Thus, Lemma D.2 for αt :=

∑n
i=1 ‖φ(Xi

t)‖2 yields

Eσ[(QDt)
m] � (2m− 1)!!αm−1

t Eσ[QDt ] � m!
(

2 max
t
αt

)m−1
Eσ[QDt ],
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Therefore, applying Theorem D.1 with R = 2 maxt αt and dimension less than nT gives√√√√Eσ‖
T∑
t=1

QDt‖S∞ ≤

√√√√‖Eσ T∑
t=1

QDt‖S∞ +
√

2 max
t
αt (ln(nT ) + 1).

Since αt =
∑n

i=1 ‖φ(Xi
t)‖2 ≤ nK, we get√√√√Eσ‖
T∑
t=1

QDt‖S∞ ≤

√√√√‖Eσ T∑
t=1

QDt‖S∞ +
√

2nK (ln(nT ) + 1).

Now, we define

Bt := EσQDt =
n∑
i=1

∑
j,j′>ht

〈
φ(Xi

t),u
j
t

〉〈
φ(Xi

t),u
j′

t

〉
uit ⊗ uj

′

t

=
n∑
i=1

〈∑
j>ht

〈
φ(Xi

t),u
j
t

〉
ujt

〉
⊗
〈 ∑
j′>ht

〈
φ(Xi

t),u
j′

t

〉
uj
′

t

〉
=

n∑
i=1

QDt,i ,

where we introduce Dt,i :=
∑

j>ht

〈
φ(Xi

t),u
j
t

〉
ujt . Note that, in taking the expectation with respect

to the random variables Xi
t ’s, Theorem D.1 cannot be utilized, since the covariance may have infinite

rank, that is, we might not be able to find a finite-dimensional subspace, which contains the range
of all the QDt,i’s. However, since for all t ∈ NT and i ∈ Nn, it holds that ‖Dt,i‖ ≤

√
K, all the

QDt,i’s satisfy 0 � QDt,i � KI and they all are rank-one operators. It then follows that

dimSpan
(

(Ran(B1), . . . ,Ran(BT ))
)
≤ nT.

Therefore, we can apply Theorem D.3 with d = nT , which, in conjunction with the Jensen’s
inequality, yields

EXEσ‖V ′‖S∞ ≤ EX

√√√√Eσ‖
T∑
t=1

QDt‖S∞

≤ EX

√√√√‖Eσ T∑
t=1

QDt‖S∞ +
√

2nK (ln(nT ) + 1)

≤

√√√√EX‖
T∑
t=1

Bt‖S∞ +
√

2nK (ln(nT ) + 1)

≤

√√√√‖EX T∑
t=1

Bt‖S∞ +
√

6K (ln(4n2T 2) + 1) +
√

2nK (ln(nT ) + 1). (D.3)

After some simplifications, we arrive at

EX,σ‖V ′‖S∞ ≤

√√√√‖EX T∑
t=1

Bt‖S∞ + 6
√
nK (ln(nT ) + 1). (D.4)
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Furthermore, it can be shown that

EXBt = n
∑
j>ht

λjtu
j
t ⊗ ujt .

By considering the task-averaged operator C = 1/T
∑T

t=1 Jt = 1/T
∑T

t=1

∑∞
j=1 λ

j
tu

j
t ⊗ ujt and

choosing λh := maxt∈NT {λ
ht
t }, we get

EX,σ‖V ′‖S∞ ≤

√√√√n‖
T∑
t=1

∑
j>ht

λjtu
j
t ⊗ ujt‖S∞ + 6

√
nK (ln(nT ) + 1)

=
√
nTλh + 6

√
nK (ln(nT ) + 1). (D.5)

This last result, combined with (48), provides the LRC bound for the trace norm regularized class
F ′S1

R(F ′S1
, r) ≤

√
r
∑T

t=1 ht
nT

+

√
2R′2maxλh

n
+ 6

√
2R′2maxK (ln(nT ) + 1)

nT
.

(D.6)

Finally, using a similar argument as the one in Theorem 24, we get

r∗ ≤ min
0≤ht≤∞

{
B2
∑T

t=1 ht
nT

+ 4BL

√
2R′2maxλh

n
+ 24BL

√
2R′2maxK (ln(nT ) + 1)

nT

}
. (D.7)
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