Next: About this document ...
Up: Round Robin Classification
Previous: Acknowledgements
  Contents
-
E. L. Allwein, R. E. Schapire, and Y. Singer.
- Reducing multiclass to binary: A unifying approach for margin
classifiers.
Journal of Machine Learning Research, 1:113-141,
2000.
-
R. Anand, K. G. Mehrotra, C. K. Mohan, and S. Ranka.
- Efficient classification for multiclass problems using modular neural
networks.
IEEE Transactions on Neural Networks, 6:117-124,
1995.
-
C. Angulo and A. Català.
- K-SVCR. A multi-class support vector machine.
In R. López de Mántaras and E. Plaza (eds.) Proceedings
of the 11th European Conference on Machine Learning (ECML-2000), pp. 31-38. Springer-Verlag, 2000.
-
E. Bauer and R. Kohavi.
- An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants.
Machine Learning, 36:105-169, 1999.
-
S. D. Bay.
- Nearest neighbor classification from multiple feature subsets.
Intelligent Data Analysis, 3(3):191-209,
1999.
-
C. L. Blake and C. J. Merz.
- UCI repository of machine learning databases.
Department of Information and Computer Science, University of
California at Irvine, Irvine CA, 1998.
-
L. Breiman.
- Bagging predictors.
Machine Learning, 24(2):123-140, 1996.
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone.
- Classification and Regression Trees.
Wadsworth & Brooks, Pacific Grove, CA, 1984.
-
P. Clark and R. Boswell.
- Rule induction with CN2: Some recent improvements.
In Proceedings of the 5th European Working Session on Learning
(EWSL-91), pp. 151-163, Porto, Portugal, 1991. Springer-Verlag.
-
P. Clark and T. Niblett.
- The CN2 induction algorithm.
Machine Learning, 3(4):261-283, 1989.
-
W. W. Cohen.
- Fast effective rule induction.
In A. Prieditis and S. Russell (eds.) Proceedings of the 12th
International Conference on Machine Learning (ML-95), pp. 115-123, Lake
Tahoe, CA, 1995. Morgan Kaufmann.
-
W. W. Cohen and Y. Singer.
- A simple, fast, and effective rule learner.
In Proceedings of the 16th National Conference on Artificial
Intelligence (AAAI-99), pp. 335-342, Menlo Park, CA, 1999. AAAI/MIT
Press.
-
C. Cortes and V. Vapnik.
- Support-vector networks.
Machine Learning, 20(3):273-297, 1995.
-
T. G. Dietterich.
- Machine learning research: Four current directions.
AI Magazine, 18(4):97-136, Winter 1997.
-
T. G. Dietterich.
- Approximate statistical tests for comparing supervised classification
learning algorithms.
Neural Computation, 10(7):1895-1924, 1998.
-
T. G. Dietterich.
- Ensemble methods in machine learning.
In J. Kittler and F. Roli (eds.) First International Workshop
on Multiple Classifier Systems, pp. 1-15. Springer-Verlag,
2000a.
-
T. G. Dietterich.
- An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization.
Machine Learning, 40(2):139-158,
2000b.
-
T. G. Dietterich and G. Bakiri.
- Solving multiclass learning problems via error-correcting output
codes.
Journal of Artificial Intelligence Research, 2:263-286, 1995.
-
A. Feelders and W. Verkooijen.
- Which method learns most from the data? Methodological issues in
the analysis of comparative studies.
In Proceedings of the 5th International Workshop on Artificial
Intelligence and Statistics, pp. 219-225, Fort Lauderdale, Florida, 1995.
-
Y. Freund and R. E. Schapire.
- A decision-theoretic generalization of on-line learning and an
application to boosting.
Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
J. H. Friedman.
- Another approach to polychotomous classification.
Technical report, Department of Statistics, Stanford University,
Stanford, CA, 1996.
-
J. Fürnkranz.
- Pruning algorithms for rule learning.
Machine Learning, 27(2):139-171, 1997.
-
J. Fürnkranz.
- Exploiting structural information for text classification on the
WWW.
In D. Hand, J. N. Kok, and M. Berthold (eds.) Advances in
Intelligent Data Analysis: Proceedings of the 3rd International Symposium
(IDA-99), pp. 487-497, Amsterdam, Netherlands, 1999a.
Springer-Verlag.
-
J. Fürnkranz.
- Separate-and-conquer rule learning.
Artificial Intelligence Review, 13(1):3-54, 1999b.
-
J. Fürnkranz.
- Hyperlink ensembles: A case study in hypertext classification.
Technical Report OEFAI-TR-2001-30, Austrian Research Institute for
Artificial Intelligence, Wien, Austria, 2001a.
-
J. Fürnkranz.
- Round robin rule learning.
In C. E. Brodley and A. P. Danyluk (eds.) Proceedings of the
18th International Conference on Machine Learning (ICML-01), pp. 146-153,
Williamstown, MA, 2001b. Morgan Kaufmann Publishers.
-
J. Fürnkranz and G. Widmer.
- Incremental Reduced Error Pruning.
In W. Cohen and H. Hirsh (eds.) Proceedings of the 11th
International Conference on Machine Learning (ML-94), pp. 70-77, New
Brunswick, NJ, 1994. Morgan Kaufmann.
-
T. Hastie and R. Tibshirani.
- Classification by pairwise coupling.
In M. I. Jordan, M. J. Kearns, and S. A. Solla (eds.) Advances in
Neural Information Processing Systems 10 (NIPS-97), pp. 507-513. MIT
Press, 1998.
-
C.-W. Hsu and C.-J. Lin.
- A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 2002.
To appear.
-
A. Kalousis and T. Theoharis.
- Noemon: Design, implementation and performance results of an
intelligent assistant for classifier selection.
Intelligent Data Analysis, 3(5):319-337,
1999.
-
S. Knerr, L. Personnaz, and G. Dreyfus.
- Single-layer learning revisited: A stepwise procedure for building
and training a neural network.
In F. Fogelman Soulié and J. Hérault (eds.) Neurocomputing: Algorithms, Architectures and Applications, volume F68 of
NATO ASI Series, pp. 41-50. Springer-Verlag, 1990.
-
S. Knerr, L. Personnaz, and G. Dreyfus.
- Handwritten digit recognition by neural networks with single-layer
training.
IEEE Transactions on Neural Networks, 3(6):962-968, 1992.
-
J. F. Kolen and J. B. Pollack.
- Back propagation is sensitive to initial conditions.
In Advances in Neural Information Processing Systems 3
(NIPS-90), pp. 860-867. Morgan Kaufmann, 1991.
-
U. H.-G. Kreßel.
- Pairwise classification and support vector machines.
In B. Schölkopf, C. Burges, and A. Smola (eds.) Advances
in Kernel Methods: Support Vector Learning, chapter 15, pp. 255-268. MIT
Press, Cambridge, MA, 1999.
-
A. Krieger, A. J. Wyner, and C. Long.
- Boosting noisy data.
In C. E. Brodley and A. P. Danyluk (eds.) Proceedings of the
18th International Conference on Machine Learning (ICML-2001), pp.
274-281. Williamstown, MA, 2001. Morgan Kaufmann Publishers.
-
B.-L. Lu and M. Ito.
- Task decomposition and module combination based on class relations: A
modular neural network for pattern classification.
IEEE Transactions on Neural Networks, 10(5):1244-1256, 1999.
-
E. Mayoraz and E. Alpaydin.
- Support vector machines for multi-class classification.
In J. Mira and J. V. Sánchez-Andrés (eds.) Engineering
Applications of Bio-Inspired Artificial Neural Networks: Proceedings of the
International Work-Conference on Artificial and Natural Neural Networks
(IWANN-99), Volume II, pp. 833-842, Alicante, Spain, 1999.
Springer-Verlag.
-
E. Mayoraz and M. Moreira.
- On the decomposition of polychotomies into dichotomies.
In D. H. Fisher (ed.) Proceedings of the 14th International Conference on Machine
Learning (ICML-97), pp. 219-226, Nashville, TN, 1997. Morgan Kaufmann.
-
Q. McNemar.
- Note on the sampling error of the difference between correlated
proportions or percentages.
Psychometrika, 12:153-157, 1947.
-
M. Moreira and E. Mayoraz.
- Improved pairwise coupling classification with correcting
classifiers.
In C. Nédellec and C. Rouveirol (eds.) Proceedings of the 10th European Conference on Machine Learning
(ECML-98), pp. 160-171, Chemnitz, Germany, 1998. Springer-Verlag.
-
D. Opitz and R. Maclin.
- Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research, 11:169-198, 1999.
-
B. Pfahringer.
- Winning the KDD99 classification cup: Bagged boosting.
SIGKDD explorations, 1(2):65-66, 2000.
-
J. C. Platt, N. Cristianini, and J. Shawe-Taylor.
- Large margin DAGs for multiclass classification.
In S. A. Solla, T. K. Leen, and K.-R. Müller (eds.) Advances in Neural Information Processing Systems 12 (NIPS-99), pp. 547-553. MIT Press, 2000.
-
D. Price, S. Knerr, L. Personnaz, and G. Dreyfus.
- Pairwise neural network classifiers with probabilistic outputs.
In G. Tesauro, D. Touretzky, and T. Leen (eds.) Advances in
Neural Information Processing Systems 7 (NIPS-94), pp. 1109-1116. MIT
Press, 1995.
-
D. Pyle.
- Data Preparation for Data Mining.
Morgan Kaufmann, San Francisco, CA, 1999.
-
J. R. Quinlan.
- C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.
-
J. R. Quinlan.
- Bagging, boosting, and C4.5.
In Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI-96), pp. 725-730. AAAI/MIT Press, 1996.
-
R. L. Rivest.
- Learning decision lists.
Machine Learning, 2:229-246, 1987.
-
R. E. Schapire.
- Using output codes to boost multiclass learning problems.
In D. H. Fisher (ed.) Proceedings fo the 14th International Conference on Machine
Learning (ICML-97), pp. 313-321, Nashville, TN, 1997. Morgan Kaufmann.
-
R. E. Schapire and Y. Singer.
- Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297-336, 1999.
-
M. S. Schmidt.
- Identifying speakers with support vector networks.
In Proceedings of the 28th Symposium on the Interface
(INTERFACE-96), Sydney, Australia, 1996.
-
M. S. Schmidt and H. Gish.
- Speaker identification via support vector classifiers.
In Proceedings of the 21st IEEE International Conference Conference
on Acoustics, Speech, and Signal Processing (ICASSP-96), pp. 105-108,
Atlanta, GA, 1996.
-
G. Tesauro.
- Connectionist learning of expert preferences by comparison training.
In D. Touretzky (ed.) Advances in Neural Information
Processing Systems 1 (NIPS-88), pp. 99-106. Morgan Kaufmann, 1989.
-
P. E. Utgoff and J. Clouse.
- Two kinds of training information for evaluation function learning.
In Proceedings of the 9th National Conference on Artificial
Intelligence (AAAI-91), pp. 596-600, Anaheim, CA, 1991. AAAI Press.
-
J. Weston and C. Watkins.
- Support vector machines for multi-class pattern recognition.
In M. Verleysen (ed.) Proceedings of the 7th European
Symposium on Artificial Neural Networks (ESANN-99), pp. 219-224, Bruges,
Belgium, 1999.
-
I. H. Witten and E. Frank.
- Data Mining -- Practical Machine Learning Tools and Techniques
with Java Implementations.
Morgan Kaufmann Publishers, 2000.
Johannes Fürnkranz
2002-03-11