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Abstract

We derive an objective function that can be optimized to give an estimator for the Vapnik-
Chervonenkis dimension for use in model selection in regression problems. We verify our
estimator is consistent. Then, we verify it performs well compared to seven other model
selection techniques. We do this for a variety of types of data sets.

Keywords: Vapnik-Chervonenkis dimension, model selection, Bayesian information cri-
terion, sparsity methods, empirical risk minimization, multi-type data.

1. Complexity and Model Selection

Model selection is often the first problem that must be addressed when analyzing data.
In M-closed problems, see Bernardo and Smith (2000), the analyst posits a list of models
and assumes one of them is true. In such cases, model selection is any procedure that
uses data to identify one of the models on the model list. There is a vast literature on
model selection in this context including information based methods such as the Aikaikie
Information Criterion (AIC), the Bayes information criterion (BIC), residual based methods
such as Mallows Cp or branch and bound, and code length methods such as the two-stage
coding proposed by Barron and Cover (1991). We also have computational search methods
such as simulated annealing and genetic algorithms. In addition, cross-validation (CV) is
often used with non-parametric methods such as recursive partitioning, neural networks
(aka deep learning) and kernel methods. A less well developed approach to model selection
is via complexity as assessed by the Vapnik-Chervonenkis (VC) dimension, here denoted by
dV C . Its earliest usage seems to be in Vapnik and Chervonenkis (1968). A translation into
English was published as Vapnik and Chervonenkis (1971).

Although, the VC dimension goes back to 1968, it wasn’t until Vapnik et al. (1994) that
a method for estimating dV C was proposed in the classification context. Specifically, given
a collection C of classifiers, Vapnik et al. (1994) tried to estimate the VC dimension of C
by deriving an objective function based on the expected value of the maximum difference
between two empirical evaluations of a single loss function, here denoted by ∆. The two
empirical values come from dividing a given data set into a first and second part. The
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objective function proposed by Vapnik et al. (1994) depends on dV C , the sample size n, and
several constants that had to be determined. Using their objective function, they derived an
estimator d̂V C for dV C given a class C of classifiers. This algorithm treated possible sample
sizes as design points n1, n2, · · · , nL and requires one level of bootstrapping. Despite the
remarkable contribution of Vapnik et al. (1994), the objective function was over-complex and
the algorithm did not give a tight enough bound on ∆. Later, Vapnik and his collaborators
suggested a fix to tighten the bound on ∆. We do not use this here; it is unclear if this ‘fix’
will work in classification, let alone regression.

Choosing the design points is a nontrivial source of variability in the estimate of dV C .
So, Shao et al. (2000) proposed an algorithm, based on extensive simulations, to generate
optimal values of n1, n2, · · · , nL, given L. They argued that non-uniform values of the nl’s
gave better results than the uniform nl’s used in Vapnik et al. (1994).

More recently, in a pioneering paper that deserves more recognition that it has received,
McDonald et al. (2011) established the consistency of the Vapnik (1998) estimator d̂V C for
dV C in the classification context.

The main reason the estimator for dV C of Vapnik et al. (1994) did not become more
widely used, despite the result in McDonald et al. (2011), is, we suggest, that it was too
unstable because the objective function did not bound ∆ tightly enough in terms of dV C . In
addition, the form of the objective function in Vapnik et al. (1994) is more complicated and
less well-motivated than our result Theorem 2. The reason is that the derivation in Vapnik
et al. (1994) uses conditional probabilities, one of which goes to zero quite quickly (with n).
So, it contributes negligibly to the upper bound. Our derivation ignores the conditioning
and bounds a CV form of ∆ that is typically larger than that used in Vapnik et al. (1994).

Our consistency proof is a simplification of the proof of the main result McDonald et al.
(2011). Accordingly, we obtain a slower rate of consistency, but the probability of correct
model selection still goes to one.

Our overall strategy is to derive an objective function for estimating dV C in the regression
setting that provides, we think, a tighter bound on a modified form of ∆. To convert from
classification to regression, we discretize the loss used for regression into m intervals (the
case m = 1 would then apply to classification). To get a tighter bound, we change the form
of ∆ from what Vapnik et al. (1994) used and we optimize over the leading factor in our
upper bound. To use our estimator, we use an extra layer of bootstrapping so the quantity
we empirically optimize represents the quantity we derive theoretically more accurately.
The extra layer of bootstrapping stabilizes our estimator of dV C and appears to reduce
its dependency on the nl’s. If the models are nested in order of increasing VC dimension,
it is straightforward to choose the model with VC dimension closest to our estimate d̂V C .
Otherwise, we can convert a non-nested problem to the nested case by ordering the inclusion
of the covariates using a shrinkage method such as the ‘smoothly clipped absolute deviation’
(SCAD, Fan and Li (2001)), or correlation (see Fan and Lv (2008)), and use our d̂V C as
before. Even when we force a model list to be nested, our model selection method performs
well compared to a range of competitors including Vapnik et al. (1994)’s original method,

two forms of penalized empirical risk minimization (denoted P̂ERM1 and P̂ERM2), AIC,
BIC, CV (10-fold), SCAD, and adaptive LASSO (ALASSO, Zou (2006)). Our general
findings indicate that in realistic settings, model selection via estimated VC dimension,
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when properly done, is fully competitive with existing methods and, unlike them, rarely
gives abberant results.

This manuscript is structured as follows. In Sec. 2 we present the main theory justifying
our estimator. In Subsec. 2.1 we discretize bounded loss functions so that upper bounds
for the distinct regions involved in the definition of ∆ can be derived and in Subsec. 2.2
we define our estimator of the VC dimension and give an algorithm for how to compute it.
In Sec. 3 we use McDonald et al. (2011)’s consistency theorem to motivate our consistency
theorem for d̂V C . In Sec. 4 we present our studies using simulated, benchmark, and
real data. We compare our method for model selection to AIC, BIC, CV, P̂ERM1, and
P̂ERM2. In this context, we suggest criteria to guide the selection of design points. Our
comparisons also include simplifying non-nested model lists by using correlation, SCAD,
and ALASSO. In Sec. 5 we discuss our overall findings.

2. Deriving an optimality criterion for estimating VC dimension

This section concerns ∆, the expected supremal difference between two evaluations of a
bounded loss function, formally defined in (18) and (19). These bounds will enable us to
derive an estimator for the VC dimension. In Sec. 2.1, we present our alternative version
of the Vapnik et al. (1994) bounds and in Sec. 2.2, we present our estimator of dV C .

2.1. Extension of the Vapnik et al. (1994) bounds to regression

Let Z = (X,Y ) be a random variable with outcomes z = (x, y) assuming values on Z =
X ×Y. The first entry, X = x, is regarded as an explanatory variable leading to Y = y. Let
P ∈M(Z) be the distribution of Z, whereM(Z) is the collection of probability measures on
Z, and let Z1:2n = (Z1, . . . , Zn, Zn+1, . . . , . . . , Z2n) be a data set of size 2m of independently
and identically distributed (IID) copies of Z. Write D1 = {Z1, . . . , Zn} for the first half
and D2 = {Zn+1, . . . , Z2n} for the second half. Writing Zi = (Xi, Yi) for i = 1 . . . 2n, let

Q (Zi, α) = L (Yi, f (Xi, α)) ,

for a bounded real valued loss function L and α ∈ Λ. We assume that Λ is a compact set in
a finite dimensional real space, that the interior of Λ, Int(Λ), is non-void and convex, and
that Λ = Int(Λ). Also, we assume the continuous functions f(· | α) are parametrized by α
continuously and one-to-one. Thus, in our examples, Λ will be the parameter space for a
class of regression functions f(· | α). For ease of exposition we assume L, and hence Q, are
also continuous.

For a fixed α ∈ Λ, discretize Q(z, α) using m disjoint intervals (with union [0, B)):

Qm (z, α) =
m−1∑
j=0

(2j + 1)B

2m
I
[
Q(Z,α) ∈ Imj

]
. (1)

The discretization is based on the uniform left-closed, right-open partition of [0, B) into m
subintervals, here denoted Imj and the numbers ((2j+1)B)/(2m) are the midpoints. In (1),
I[·] is an indicator function taking value 1 when its argument is true and value 0 when it is
false. We use losses of the form (1) to define a cross-validation form for ∆.
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Start by letting α1, α2 ∈ Λ, with α1 6= α2, and let

ν(D2, α1) =
1

n

n∑
i=1

Q (Zn+i, α1) and ν(D1, α2) =
1

n

n∑
i=1

Q (Zi, α2) . (2)

These are the empirical risks of model α1 on the second half of the data and of model α2

on the first half of the sample, respectively. Observe that the empirical counts of the data
points whose losses land in Imj are

Nm
j (D2, α1) =

n∑
i=1

I [Q(Zn+i, α1) ∈ Imj ] and Nm
j (D1, α2) =

n∑
i=1

I [Q(Zi, α2) ∈ Imj ]. (3)

This means we are counting the errors of the α1 model on the second half of the data
and the erors of the α2 model on the first half of the data. This begins the set up of the
cross-validation form of the error that we use and leads to the following expressions for the
empirical losses of the discretized loss functions:

νm
(
D2, α1

)
=

1

n

m−1∑
j=0

Nm
j (D2, α1)

(2j + 1)B

2m

and νm
(
D1, α2

)
=

1

n

m−1∑
j=0

Nm
j (D1, α2)

(2j + 1)B

2m
. (4)

It is seen that the expressions in (4) are formed from the counts within each of the intervals.
Let these be denoted by

νmj (D2, α1) =
1

n
Nm
j (D2, α1)

(2j + 1)B

2m
and νmj (D1, α2) =

1

n
Nm
j (D1, α2)

(2j + 1)B

2m
.

(5)
The first step in bounding ∆ is to bound the probability of the ‘bad set’ where νm(D2, α1)

and νm(D1, α2) are not close. Let ε > 0 and, using the discretization into m intervals, define
the set Aε by the union:

Aε =

m−1⋃
m=0

Aε,m, (6)

where

Aε,m =

{
Z1:2n

∣∣∣ sup
α1,α2∈Λ

[νm(Zn+1:2n, α1)− νm(Z1:n, α2)] ≥ ε

}
. (7)

The only way a Z1:2n = z1:2n can be in Aε,m is that at least one value of j satisfies

sup
α1, α2∈ Λ

(νmj (zn+1:2n, α1)− νmj (z1:n, α2)) ≥ ε

m
.

Since Aε is defined on the entire range of our loss function, and we want to partition
the range into m disjoint intervals, write

Aε,m ⊆ {Z1:2n

∣∣∣ ∃ j sup
α1, α2∈Λ

(νmj (Zn+1:2n, α1)− νmj (Z1:n, α2)) ≥ ε

m
} ⊆

m−1⋃
j=0

Aε,m,j ,
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where Aε,m,j = {Z1:2n

∣∣∣ sup
α1, α2∈Λ

(νmj (Zn+1:2n, α1)− νmj (Z1:n, α2)) ≥ ε
m}.

Next, fix any value j ∈ {0, 1, . . . ,m− 1}. For any fixed z1:2n, and any given α1, α2 ∈ Λ,
define the vector of length 2n

(Qmj (zn+1, α1), . . . , Qmj (z2n, α1), Qmj (z1, α2), . . . , Qmj (zn, α2)), (8)

where Qmj (z, α) = I(Q(z, α) ∈ Imj ). Now define (α1, α2) ∼ (α′1, α
′
2) when the corresponding

2n-tuples are equal (for the given z1:2n). It is seen that ∼ is an equivalence relation on
Λ× Λ and therefore partitions Λ× Λ into disjoint equivalence classes. Let Kj = Kj(z1:2n)
be the number of equivalence classes for given j and z1:2n and for given (α1, α2) ∈ Λ × Λ,
write [(α1, α2)] for the equivalence class that contains it. Now, for k = 1 . . . ,Kj let(

α∗1jk, α
∗
2jk

)
= arg sup

α1,α2∈(Λ×Λ)k

(
νmj (zn+1:2n, α1)− νmj (z1:n, α2)

)
, (9)

where (Λ × Λ)k is the k-th equivalence class. Now,
⋃Kj
k=1

[
(α∗1jk, α

∗
2jk)

]
= Λ × Λ and[

(α∗1jk, α
∗
2jk)

]
∩
[
(α∗1jk, α

∗
2jk′)

]
= φ unless k = k′.

Any permutation π of {1, . . . , 2n} induces a permutation map Tπ : Z2n → Z2n which
acts by shuffling coordinates according to the indices permuted by π. There are (2n)!
such maps that can be denoted Ti for i = 1, . . . , 2n. The IID assumption implies that the
distribution of any Ti(Z1:2n) is the same as the distribution of Z1:2n. So, if any function
f : Z2n → R satisfies the symmetry condition f(Ti(z1:2n)) = f(z1:2n) and is integrable, its
integral satisfies∫

Z2n

f (Z1:2n) dP 2n (z1:2n) =

∫
Z2n

f (TiZ1:2n) dP 2n (z1:2n) , (10)

in which dP 2n(z1:2n) = dP (z1) · · · dP (z2n) and P ∈M(Z).

One of the quantities that will be essential to getting a tight enough bound on P 2n(Aε)
is the annealed entropy HΛ

ann(2n). Given a sample, say z1:2n, let NΛ(z1:2n) be the number
of different separations of z1:2n by a given set of functions. In the proof we will choose
all the functions in (8) for a given j. Since NΛ(z1:2n) ≤ 22n and the NΛ(z1:2n)’s are
measurable, ENΛ(Z1:2n) exists. The annealed entropy is the natural logarithm (base e)
of this, HΛ

ann(2n) = logENΛ(Z1:2n). As is customary, E means expectation in the true
distribution, P ∈M(Z).

Our first main result is similar to the corrresponding result in Vapnik et al. (1994).
However, there are numerous differences are in the details. For instance, our equivalence
class is defined on Λ × Λ, we use a cross-validation form of the error, we discretized the
loss function, and our result leads to Theorem 2 that only has one term, whereas the
corresponding result in Vapnik et al. (1994) has three terms.

Theorem 1 : Let ε ≥ 0 and m ∈ N. If dV C = V C ({Q (·, α) : α ∈ Λ}) is finite, then

P 2n (Aε) ≤ 2m

(
2ne

dV C

)dV C
exp

{
−nε

2

m2

}
. (11)
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Remark: The technique used to prove (11) is similar to the proof of Theorem 4.1 in Vapnik
(1998) giving bounds for the uniform convergence of the empirical risk. The hypotheses
of Theorem 4.1 in Vapnik (1998) require only the existence of the key quantities e.g the
annealed entropy, and the growth function. Our only extra condition is that dV C be finite.

Proof : Let m ∈ N and j ∈ {0, 1, . . . ,m − 1}. For any given z1:2n, α1, and α2 write
∆m
j (z1:2n, α1, α2) = νmj (zn+1:2n, α1)− νmj (z1:n, α2). Also, denote

(
α∗1j , α

∗
2j

)
= arg sup

(α1,α2)∈Λ×Λ
∆m
j (z1:2n, α1, α2)

= arg sup
(α1,α2)∈Λ×Λ

[
νmj (zn+1:2n, α1)− νmj (z1:n, α2)

]
(12)

It is seen that (α∗1j , α
∗
2j) are estimated using D2 and D1 respectively; this reversal of the

estimators with respect to the data is the essence of the cross-validation form of the error
that we use. Using some manipulations, we have by dropping the superscript 2n on P :

P (Aε) ≤ P

m−1⋃
j=0

Aε,m,j

 ≤ m−1∑
j=0

P (Aε,m,j)

=

m−1∑
j=0

P

({
z1:2n : sup

α1, α2∈Λ

(
νmj (zn+1:2n, α1)− νmj (z1:n, α2)

)
≥ ε

m

})
.

=

m−1∑
j=0

P

({
z1:2n : sup

α1, α2∈Λ
∆m
j (z1:2n, α1, α2) ≥ ε

m

})

=
m−1∑
j=0

P
({
z1:2n : ∆m

j (z1:2n, α
∗
1j , α

∗
2j) ≥

ε

m

})
.

Now, for each Ti write Ti(z1:2n) for the permuted sample and correspondingly write
D1
Ti(z1:2n) and D2

Ti(z1:2n) for the first and second halves of the permuted sample. This implies

∆m
j (Ti(z1:2n), α1, α2) = νmj (D2

Ti(z1:2n), α1)− νmj (D1
Ti(z1:2n), α2).

By symmetry of this function and (10) we can write

P
({
z1:2n : ∆m

j (z1:2n, α
∗
1j , α

∗
2j) ≥

ε

m

})
=

1

(2n)!

(2n)!∑
i=1

P
({
z1:2n : ∆m

j (Ti(z1:2n), α∗1j , α
∗
2j) ≥

ε

m

})
and therefore P (Aε) is bounded from above by

1

(2n)!

m−1∑
j=0

(2n)!∑
i=1

P
({
z1:2n : ∆m

j (Ti(z1:2n), α∗1j , α
∗
2j) ≥

ε

m

})
. (13)
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Using the properties of the equivalence relation ∼ and letting Z ′ denote a dummy variable
with the same distribution as Z, we have that for each fixed i, j and z1:2n

I{Z′1:2n:∆m
j (TiZ′1:2n,α∗1j ,α∗2j)≥

ε
m}(·) ≤ I{Z′1:2n:∆m

j (TiZ′1:2n,α∗1j1,α∗2j1)≥
ε
m} (·)

+ · · ·+ I{
Z′2n:∆m

j

(
TiZ′1:2n,α

∗
1jKj(z1:2n)

α∗
2jKj(z1:2n)

)
≥ ε
m

} (·)

=

Kj(z1:2n)∑
k=1

I{Z′1:2n:∆m
j (TiZ′1:2n,α∗1jkα

∗
2jk)≥

ε
m} (·) . (14)

The inequality in (14) follows because each z′1:2n making the indicator function on the left
side 1, must make at least one of the indicators on the right 1. This follows from the fact that
(α∗1j , α

∗
2j) is a global maximum and each (α∗1jk, α

∗
2jk) is a local maximum for n equivalence

class, see (12) and (9). Note that in (14) a Ti appears. Formally, this necessitates choosing
(α∗1j , α

∗
2j) and each (α∗1jk, α

∗
2jk) for given k to be dependent on the i in Ti also; this extra

step is suppressed in the notation since i has been dropped for ease of exposition.

Now, using (14), (13) is bounded by

P (Aε) ≤
1

(2n)!

m−1∑
j=0

(2n)!∑
i=1

∫ Kj(z1:2n)∑
k=1

I{Z′1:2n:∆m
j (TiZ′1:2n,α

∗
1jkα

∗
2jk)≥ ε

m} (z1:2n) dP (z1:2n)

=

∫ m−1∑
j=0

Kj(z1:2n)∑
k=1

 1

(2n)!

(2n)!∑
i=1

I{Z′1:2n:∆m
j (TiZ′1:2n,α

∗
1jk,α

∗
2jk)≥ ε

m} (z1:2n)

dP (z1:2n) .

To bound the summation in square brackets, we follow Vapnik (1998), Chap. 4. Let

Aε,m,j,k =
{
Z1:2n : ∆m

j

(
TiZ1:2n, α

∗
1jkα

∗
2jk

)
≥ ε

m

}
for fixed j and each k, where

[
(α∗1jk, α

∗
2jk)

]
= (Λ× Λ)k. Now, the summation in square

brackets is the fraction of the number of the (2n)! permutations Ti of Z1:2n for which Aε,m,j,k
is closed under Ti for any fixed equivalence class (Λ× Λ)k. As proved in Vapnik (1998) Sec.
4.13, it equals

Γk =
∑
`

(
b
`

)(
2n−b
n−`

)(
2n
n

)
where b = b(z1:2n) is the number of zi’s in z1:2n that satisfy Q(zi, α

∗
1jk) = 1 (for i = 1, . . . , n)

or Q(zi, α
∗
2jk) = 1 (for i = n+ 1, . . . , 2n), see Vapnik (1998), p. 136 or 143. The summation

is over `’s in the set {
` :

∣∣∣∣ `n − b− `
n

∣∣∣∣ ≥ ε

m

}
.

From Sec. 4.13 in Vapnik (1998), we have Γk ≤ 2 exp
(
−nε2

m2

)
uniformly in k.

7
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So, using this in the last bound on P (Aε) gives that P (Aε,m) is bounded from above by

∫ m−1∑
j=0

Kj(z1:2n)∑
k=1

2 exp

(
−nε

2

m2

)
dP(z1:2n) = 2 exp

(
−nε

2

m2

)∫ m−1∑
j=0

Kj(z1:2n)∑
k=1

dP(z1:2n)

= 2 exp

(
−nε

2

m2

)m−1∑
j=0

∫ Kj(z1:2n)∑
k=1

dP(z1:2n) = 2 exp

(
−nε

2

m2

)m−1∑
j=0

∫
Kj(z1:2n)dP(z1:2n)

= 2 exp

(
−nε

2

m2

)m−1∑
j=0

E (Kj(Z1:2n)) . (15)

Since Kj(z1:2n) is the number of equivalence classes given α1, α2, j, and z1:2n and NΛ

is the number of separations of z1:2n given by the functions in (8) i.e., over all α1, α2 ∈ Λ,
we have that

Kj(z1:2n) ≤ NΛ(z1:2n).

The reasoning is as follows and simply makes the reasoning behind the statement at the top
of p. 136 in Vapnik (1998) explicit. Recall Kj(z1:2n) is the number of equivalence classes in
Λ×Λ for fixed j and z1:2n. If (α1, α2) and (α′1, α

′
2) are in different equivalence classes then

∃u Qmj (zu, α1) 6= Qmj (zu, α
′
1) or Qmj (zu, α2) 6= Qmj (zu, α

′
2).

Without loss of generality, suppose the first inequality holds for some u. Then the two
functions Qmj (zu, α1), Qmj (zu, α

′
1) must assume values (0, 1) or (1, 0). Again, without loss

of generality suppose the first holds. Then, these two functions can separate z1:2n into
two disjoint subsets {zv

∣∣Qmj (zv, α1) = 0} and {zv
∣∣Qmj (zv, α1) = 0} and this is one of the

separations counted by NΛ(z1:2n). Taking into account all such separations we have

EKj(z1:2n) ≤ ENΛ(z1:2n). (16)

The growth function is defined to be

GΛ(2n) = log sup
z1,z2,...,z2n

NΛ (z1, . . . , z2n) ≥ ENΛ(Z1:2n) = Hann(2n).

So it is easy to see that HΛ
ann(2n) ≤ GΛ(2n). Now, Theorem 4.3 from Vapnik (1998) p.145

gives that

G(2n) ≤ dV C log

(
2ne

dV C

)
⇒ E

(
NΛ(z1:2n)

)
≤
(

2ne

dV C

)dV C
. (17)

Using (17) and (16) m times in (15) gives the theorem.

Next, we use use Theorem 1 to identify an objective function that can be minimized to
give an estimator for dV C . Formally, let

∆m = E

(
sup

α1,α2∈Λ

∣∣νm(D2, α1)− νm(D1, α2)
∣∣) (18)

8
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and

∆ = E

(
sup

α1,α2∈Λ

∣∣ν (D2, α1

)
− ν

(
D1, α2

)∣∣) . (19)

Obviously, ∆m ≈ ∆ provided that m,n, and dV C → ∞ at appropriate rates and the argu-
ment of ∆m satisfies appropriate uniform integrability conditions. In fact, we do not use
∆m → ∆. For our purpose, the following bounds are sufficient. They are important to our
methodology because they bound the expected maximum difference between two values of
the empirical losses by an expression that can be used to estimate the VC dimension.

Theorem 2 :

1. If dV C <∞, we have

∆m ≤ m

√√√√ 1

n
log

(
2m3

(
2ne

dV C

)dV C)
+

1

m

√
n log

(
2m3

(
2ne
dV C

)dV C) (20)

2. If dV C <∞, and

Dp (α) =

∫ ∞
0

p
√
P {Q (z, α) ≥ c}dc ≤ ∞

where 1 < p ≤ 2 is some fixed parameter, we have

∆ ≤
Dp(α

∗)2
2.5+ 1

p

√
dV C log

(
ne
dV C

)
n

1− 1
p

+
16Dp(α

∗)2
2.5+ 1

p

n
1− 1

p

√
dV C log

(
ne
dV C

) . (21)

3. Assume that dV C →∞, n
dV C
→∞, m→∞, log (m) = o(n), and

Dp (α) =

∫ ∞
0

p
√
P {Q(z, α) ≥ c}dc ≤ ∞

where p = 2. Then we have that

∆ ≤ min (1, 8Dp(α
∗))

√
dV C
n

log

(
2ne

dV C

)
. (22)

Proof : Proofs of the three clause of Theorem 2 can be found in Mpoudeu (2017) in Appen-
dices A1–A3. They rest on using the integral of probabilities identity and then bounding
the probabilities as in Theorem 1.

We can also use Theorem 1 to obtain an upper bound on the unknown true risk via the
following propositions. Let Q (αk) be the true unknown risk at αk and Qemp (αk) be the
empirical risk at αk. Assume that K values of αk have been fixed. These correspond to a
set of points in the parameter space; in our examples below we use estimates. In effect, we
are assuming that given an estimate, there is an αk so close to it that the approximation
error is negligible.

9
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Proposition 3 : For any η ∈ (0, 1), with probability at least 1− η, the inequality

Q (αk) ≤ Qemp (αk) +m

√√√√ 1

n
log

((
2m

η

)(
2ne

dV C

)dV C)
(23)

holds simultaneously for all functions Q (z, αk), k = 1, 2, · · · ,K.

Remark: This inequality follows from the additive Chernoff bounds (see, e.g., Vapnik
(1998), formulae (4.4) and (4.5)) and suggests that the best model will be the one that
minimizes the RHS of (23). The use of (23) in model selection as a form of risk minimization
because as dV C increases the second term on the right increases. This limits the size of dV C ;
we denoted this technique by PERM1 since a penalized empirical risk is being minimized.

Proof : To obtain inequality (23), we equate the RHS of Theorem 1 to a positive number
0 ≤ η ≤ 1. Thus:

η = 2m

(
2ne

dV C

)dV C
exp

(
−nε

2

m2

)
.

Solving for ε gives

ε = m

√√√√ 1

n
log

((
2m

η

)(
2ne

dV C

)dV C)
. (24)

Proposition 3 can be obtained from the additive Chernoff bounds, expression 4.4 in Vapnik
(1998) as follows

Q (αk) ≤ Qemp (αk) + ε. (25)

Using (24) in inequality (25), completes the proof.

Parallel to Prop. 3, we have the following for the multiplicative case.

Proposition 4 : For any η ∈ (0, 1), with probability 1− η, the inequality

Q (αk) ≤ Qemp (αk) +
m2

2n
log

(
2m

η

(
2ne

dV C

)dV C)
1 +

√√√√√1 +
4nQemp (αk)

m2 log

(
2m
η

(
2ne
dV C

)dV C)

(26)

holds simultaneously for all K functions in the set Q (z, αk), k = 1, 2, . . . ,K.

Remark: This follows from the multiplicative Chernoff bounds (see e.g., Vapnik (1998)
formulae (4.17) and (4.18)) and suggests that the best model will be the one that minimizes
the right hand side (RHS) of (26). Analogous to (23) we refer to the use of (26) in model
selection as PERM2.

10
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Proof : Let ε, η > 0. Then, inequality (4.18) in Vapnik (1998) gives, with probability at
least 1− η, that

Q (αk)−Qemp (αk)√
Q (αk)

≤ ε.

Routine algebraic manipulations and completing the square give(
Q (αk)− 0.5

(
ε2 + 2Qemp (αk)

))2 − 0.25
(
ε2 + 2Qemp (αk)

)2 ≤ −Q2
emp (αk) .

Taking the square root on both sides and re-arranging gives

Q (αk) ≤ Qemp (αk) + 0.5ε2

(
1 +

√
1 +

4Qemp (αk)

ε2

)

Using (24) in the last inequality completes the proof of the Proposition.

More details on the use of Propositions 3 and 4 can be found in Vapnik (1998) and
Mpoudeu (2017).

2.2. An Estimator of the VC Dimension

The upper bound from Theorem 2 can be written as

ΦdV C (n) = min (1, 8Dp(α
∗))

√
dV C
n

log

(
2ne

dV C

)
. (27)

This expression is meaningfully different from the form derived in Vapnik et al. (1994) and
studied in McDonald et al. (2011). Moreover, although min (1, 8Dp(α

∗)) does not affect the
optimization, it might not be the best constant for the inequality in (22). So, we replace it
with an arbitrary constant c over which we optimize to make our upper bound as tight as
possible. In our computations, we let c vary from 0.01 to 100 in steps of size 0.01. However,
we have observed in practice that the best value of ĉ is usually between 1 and 8. The
technique that we use to estimate d̂V C is also different from that in Vapnik et al. (1994).
Indeed, our Algorithm #1 below accurately encapsulates the way the LHS of (22) is formed
unlike the algorithm in Vapnik et al. (1994).

In particular, we use two bootstrapping procedures, one as a proxy for calculating
expectations and the second as a proxy for calculating a maximum. Moreover, we split
the data set into two subsets. Using the first data set, we fit model I and using the second
we fit model II. To explain how we find our estimate of the RHS of (22) from Theorem 2,
we start by replacing the sample size n in (27) with a specified value of design point, so
that the only unknown is dV C . Thus, formally, we replace (27) by

Φ∗dV C (nl) = ĉ

√
dV C
nl

log

(
2nle

dV C

)
,

11
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where ĉ is the optimal data driven constant. If we knew the left hand side (LHS) of (22),
even computationally, we could use it to estimate dV C . However, in general we don’t know
the LHS of (22). Instead, we generate one observation of the form

ξ (nl) = Φ∗dV C (nl) + ε(nl) (28)

for each design point nl by bootstrapping and denoted the realized values by ξ̂ (nl). In
(28), we assume ε(nl) has a mean zero, but an otherwise unknown, distribution. We can
therefore obtain a list of values of ξ̂(nl) for the elements of NL. In effect, we are assuming
that Φ∗dV C (nl) provides a tight bound on ∆, and hence ∆m as suggested by Theorem 2.
Our algorithm is as follows.

Algorithm #1

Inputs:

• A collection of regression models G = {gβ},
• A data set,

• Two integers b1 and b2 for the number of bootstrap samples,

• An integer m for the number of subintervals to discretize the losses,

• A set of design points NL = {n1, n2, . . . , nL}.

For each l = 1, 2, . . . , L do:

1. Take a bootstrap sample of size 2nl (with replacement) form the data set;

2. Randomly subdivide the bootstrap data into two groups G1 and G2 of size nl each;

3. Fit two models, one for G1 and one for G2;

4. Compute the squared error for each model on the covariates and responses that the
other model was trained on. Thus:

SE1 = (predict(Model1, x2)− y2)2 and SE2 = (predict(Model2, x1)− y1)2

where (x1, y1) ranges over G1 and (x2, y2) ranges over G2. So, there are nl values of
SE1 and nl values of SE2.

5. Discretize the loss function, i.e. put each SE1 and SE2 in one of the m disjoint intervals;

6. Estimate νmj (G2, α1) and νmj (G1, α2) using the SE1’s and SE2’s respectively in the
intervals Imj for j = 0, 1, . . . ,m− 1;

7. Compute the differences |νmj (G2, α1)− νmj (G1, α2)| for j = 0, 1, . . . ,m− 1;

8. Repeat Steps 1-7 b1 times, take the mean interval-wise and sum it across all intervals,
so we have:

rb1(nl) =

m−1∑
j=0

mean |νmj (G2, α1)− νmj (G1, α2)| ;

12
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9. Repeat Steps 1-8 b2 times to get rb1,i for i = 1, 2, . . . , b2 and form

ξ̂(nl) =
1

b2

b2∑
i=1

rb1,i(nl) .

It is seen that Step 9 uses a mean even though the definition of ∆m and ∆ (see (18) and
(19)) has a supremum inside the expectation. This is intentional because using a supremum
within each interval gave a worse estimator. We suggest that summing the mean over the
intervals performs well because it is not too far from the supermum and is more stable.

Note that this algorithm is parallelizable because different nl can be sent to different
nodes to speed the process of estimating ξ̂ (·) for all nl. After obtaining ξ̂(nl) for each value
of nl, we estimate dV C by minimizing the squared distance between ξ̂(nl) and Φ∗dV C (nl).
Our objective function is

fnl(dV C) =

L∑
l=1

(
ξ̂(nl)− ĉ

√
dV C
nl

log

(
2nle

dV C

))2

, (29)

where L is the number of design points. Optimizing (29) usually only leads to numerical
solutions and in our work below, we set b1 = b2 = W for convenience.

3. Proof of Consistency

In this section, we provide a proof of consistency for the estimator d̂V C for dV C that we
presented in Subsec. 2.2. In many respects, the structure of this proof should be credited to
McDonald et al. (2011). Our contribution is to adapt McDonald et al. (2011) to our stable
estimator for the regression context. We begin with some notation and definitions.

Let Φ = {φdV C ,c} be a collection of real valued functions parametrized by dV C ∈ H =
[1,M ] and c ∈ I = [a, b] ⊂ R with M ∈ N large enough and 0 < a < b <∞ so that b−a > 0
is also large enough. Elements of this collection are of the form

φdV C ,c (nl) = c

√
dV C
nl

log

(
2nle

dV C

)
(30)

as derived in Subsec. 2.2 (see expression (27)). In expression (30), we assume L values
n1, . . . , nL have been pre-specified. Fix a value of c and let Φc ⊂ Φ be the section of
elements corresponding to the fixed c. The proof holds for each fixed c and if we optimize
over c to obtain ĉ as explained in Subsec. 2.2, the convergence of d̂V C to the true value dV C
will only be faster.

The collection of functions Φ is the continuous image of a compact set and hence is
compact. Now, without loss of generality, we can choose R > supdV C ‖φdV C‖L where the
norm ‖·‖L is derived from the inner product

〈f, g〉L =
1

L

L∑
l=1

f (nl) g (nl)

13
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for real valued functions of a real variable. Thus φdV C = (φdV C (n1) , . . . , φdV C (nL)) (where
the subscript c on the φdV C ,c (nL)’s in expression (30) have been dropped for ease of nota-
tion). Fix a value of c and consider the compact subclass of Φ given by

Φc(R) =
{
φ ∈ Φc : ‖φ− φdV C‖L < R

}
, (31)

where φdV C is the element of Φc corresponding to the correct value of dV C . For a given nl,
we have

ξ̂(nl) =
1

b2

b2∑
i=1

rb1,i(nl) (32)

where rb1,i(nl) is the i bootstrapped value of the integrand of ∆m for each nl, i = 1, . . . ,W

and l = 1, . . . , L. In vector form, write ξ̂ =
(
ξ̂ (n1) , . . . , ξ̂ (nL)

)
. Using (28), each ξ̂ (nl) can

be represented as

ξ̂ (nl) = φdV C (nl) + ε (nl) . (33)

We have the following result.

Theorem 5 : Suppose the true dV C ∈ [1,M ] and that ∀i = 1, . . . ,W , ∀l = 1, . . . , L,
rb1,i (nl) ∼ N

(
φdV C (nl), σ

2
)

and independent, E (ε(nl)) = 0, V ar(ε(nl)) = σ2. Then, on
Φc(R), as n→∞, m→∞ and W = W (n)→∞ at suitable rates we have that

P
(∥∥∥φd̂V C − φdV C∥∥∥L ≥ δ) = O

(
1

W

)
. (34)

Remark: In fact, the rb1,i(nl)’s are only approximately independent N
(
φdV C (nl), σ

2
)
.

However, as n increases they become closer and closer to being independentN
(
φdV C (nl), σ

2
)
,

assuming φdV C (nl) is a tight enough upper bound, as n,m→∞ at appropriate rates. Also,
it is seen that if L = L(n) is increasing then ‖ · ‖L averages the evaluations of more and
more components of, say, φd̂V C . In the limit, this can be exihibited as an integral, i.e. as a

quadratic norm. So, ‖ · ‖L can be regarded as an approximation of a L2-space norm that
strengthens as a norm (or inner product) as n → ∞. In Theorem 5, if we controlled the
distance between ‖ · ‖L and its limit, we could get a stronger mode of consistency.

Proof : By definition of φdV C , we have

L∑
l=1

ξ̂ (nl)− c

√
d̂V C
nl

log

(
2nle

d̂V C

)2

≤
L∑
l=1

(
ξ̂ (nl)− c

√
dV C
nl

log

(
2nle

dV C

))2

(35)

or more compactly
∥∥∥ξ̂ − φd̂V C∥∥∥2

L
≤
∥∥∥ξ̂ − φdV C∥∥∥2

L
. Expanding both sides of (35) gives

L∑
l=1

(
φ2
d̂V C

(nl)− φ2
dV C

(nl)
)
≤ 2

L∑
l=1

ξ̂ (nl)
(
φd̂V C − φdV C (nl)

)

14
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and hence∥∥∥φd̂V C∥∥∥2

L
− ‖φdV C‖

2
L ≤ 2

L

L∑
l=1

(φdV C (nl) + ε (nl))
(
φd̂V C (nl)− φdV C (nl)

)
=

2

L

L∑
l=1

(
φdV C (nl)φd̂V C (nl)− φ2

dV C
(nl)

+ ε (nl)
(
φd̂V C (nl)− φdV C (nl)

))
.

Rearranging gives∥∥∥φd̂V C∥∥∥2

L
− 2〈ε, φd̂V C 〉+ ‖φdV C‖

2
L ≤ 2〈ε, φdV C − φd̂V C 〉L,

where ε = (ε (n1) , . . . , ε (nL)), i.e.∥∥∥φd̂V C − φdV C∥∥∥2

L
≤ 2〈ε, φd̂V C − φdV C 〉L. (36)

It is seen that the LHS is the main quantity we want to control. We have

P
(∥∥∥φd̂V C − φdV C∥∥∥L > δ

)
≤ P

(
〈ε, φdV C − φd̂V C 〉 ≥

δ2

2

)
≤ P

(
‖ε‖L

∥∥∥φdV C − φd̂V C∥∥∥L > δ2

2

)
≤ 2R2

δ2
E ‖ε‖2L , (37)

using the Cauchy-Schwarz inequality, the bound in (31), and Markov’s inequality.
By construction, we have that

E ‖ε‖2L =
1

L

L∑
l=1

E
(
ε2 (nl)

)
=

1

L

L∑
l=1

E

[(
1

W

W∑
i=1

rb1,i(nl)

)
− φ(nl)

]2

=
1

L

L∑
l=1

E

[
1

W

W∑
i=1

(rb1,i(nl)− φ(nl))

]2

=
1

LW 2

L∑
l=1

W∑
i=1

E (rb1,1(nl)− φ(nl))
2

=
1

LW 2

L∑
l=1

W∑
i=1

V ar (rb1,1(nl)) =
σ2

W
. (38)

Using (38) in (37) gives

P
(∥∥∥φd̂V C − φdV C∥∥∥L ≥ δ) ≤ 2R2σ2

δ2W
(39)
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in which the upper bound decreases as n increases because W (n) is increasing, thereby
giving (34).

A notable difference between (34) and the corresponding theorem in McDonald et al.
(2011) is that our simplified result effectively only gives

P
(∥∥∥φd̂V C − φdV C∥∥∥L ≥ δ) = O

(
1

W

)
(40)

rather than O
(
e−γW

)
for some γ > 0, a much faster rate. We conjecture that the more

sophisticated techniques used in McDonald et al. (2011) could be adapted to our setting
and thereby give an exponentially fast rate of convergence of d̂V C to dV C in probability.
However, as yet, we have not been able to show this. Also, although it is suppressed in the
notation, our result implicitly requires m→∞ to justify the use of φdV C .

Using Theorem 5, we can show that our d̂V C is consistent. Suppose that φdV C (·)
is κ-expansive, or simply expansive when κ is understood, i.e. ∀nl, ∃κ = κ (nl) so that

κ(nl)
∣∣∣dV C − d′V C∣∣∣ ≤ ∣∣∣φdV C (nl)− φd′V C (nl)

∣∣∣, where κ(n), the expansion factor, is bounded

on compact sets. Since the form of φdV C (nl) is known from (27), it is clear that the uniform
expansivity condition we have assumed below actually holds, at least for appropriately cho-
sen compact sets. We also observe that for c ∈ I there exists a neighborhood B (c, εl) , η > 0,
on which (34) is true. Cover I ×H by sets of the form B (c, η)× {dV C}; finitely many will
be enough since I ×H is compact.

Theorem 6 : Given that the assumptions of Theorem 5 hold and that φdV C (·) is expansive,
we have, as n→∞, that

P
(∣∣∣ ˆdV C − dV C

∣∣∣ ≥ δ) ≤ 2R2σ2

δ2κW
= O

(
1

W

)
, as Wn →∞, (41)

where κ =
√

1
L

∑L
l=1 κ (nl) is the overall expansion factor.

Proof : Since all L of the φdV C (nl)’s are at least locally expansive, their local expansivity
inequalities can be summarized by an inequality of the form

∣∣dV C − d′V C∣∣
√√√√ 1

L

L∑
l=1

κ (nl) ≤

√√√√ 1

L

L∑
l=1

(
φdV C (nl)− φd′V C (nl)

)2

= ‖φdV C (nl)− φd′V C (nl) ‖L,

(42)

where dV C is the true value and d
′
V C is any other value in H, and any extra constant from

the local expansion factors are assumed to have been absorbed into the κ (nl)’s as needed.

Let κ =
√

1
L

∑L
l=1 κ (nl). Using Theorem 5, and (42) we have

P
(∣∣∣d̂V C − dV C∣∣∣ ≥ δ) ≤ P [‖φd̂V C (nl)− φdV C (nl) ‖L ≥ δκ

]
≤ 2R2σ2

κδ2W
,

(43)
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where the last upper bound decreases as W = Wn →∞ as n→∞, giving (41).

4. Numerical Comparisons

For any model, we can estimate the LHS of (22) from Theorem 2 by Algorithm #1 in Sec.
2.2. Then, we can use nonlinear regression in (29) to find d̂V C . So, it is seen that d̂V C
is a function of the conjectured model. In principle, for any given model class, the VC
dimension can be found, so our method can be applied.

Since our goal is to estimate the true VC dimension, when a conjectured model P (· | β)
is linear and correct, we expect V C (P (· | β)) ∼= d̂V C . By the same logic, if P (· | β) is
far from the true model, we expect V C (P (· | β)) � d̂V C or V C (P (· | β)) � d̂V C . This
suggests we estimate dV C by seeking

d̂V C = arg min
k

∣∣∣V C (Pk (· | β))− d̂V C,k
∣∣∣ , (44)

where {Pk (· | β) |k = 1, 2, · · · ,K} is some set of models and d̂V C,k is calculated using model
k, t is a positive and usually small number that such that t ≤ 2. In the case of linear models,
with q = 1, 2, · · · , Q explanatory variables, we get

d̂V C = arg min
q

∣∣∣q − d̂V C,q∣∣∣ , (45)

where d̂V C,q is the estimated VC dimension for model of size q. Note that (44) can identify
a good model even when consistency fails. The reason is that (44) only requires a minimum
at the VC dimension not convergence to the true VC dimension which may be any model
under consideration. Here, to achieve uniqueness we use (45) and choose the smalest q
achieving the smallest value of |q − d̂V C,q|, provided this makes sense in context.

Our numerical work uses linear models, since for these we know the VC dimension equals
the number of explanatory variables, see Anthony and Bartlett (2009). To establish nota-
tion, we write the regression function as a linear combination of the fixed effect covariates
xj , j = 0, 1, · · · , p,

y = f(x, β) = β0 + β1x1 + β2x2 + · · ·+ βpxp =

p∑
j=0

βjxj .

Given a data set, {(xi, yi) , i = 1, 2, . . . , n}, the matrix representation is Y = Xβ + ε
where Y is the n × 1 vector of response values, X is the n × (1 + p) matrix with rows
(1, x1,1, x1,2, . . . , x1,p), β = (β0, β1, . . . , βp)

T is the vector of model parameters, and ε =

(ε1, ε2, . . . , εn)T is a n× 1 mean zero Gaussian random vector. The least squares estimator

β̂, assuming it exists, is given by β̂ =
(
X
′
X
)−1

X
′
Y.

4.1. Simulated data

We simulate data from

Y = β0x0 + β1x1 + β2x2 + · · ·+ βpxp + ε,
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where ε ∼ N(0, σε = 0.4) and

x0 = 1, βj ∼ N(µ = 5, σβ = 3), xj ∼ N(µ = 5, σx = 2), for j = 1, 2, · · · p,

in which all the β’s, x’s and ε’s are independently generated. We center and scale all our
variables, including the response. For convenience, we use a nested sequence of model lists.
If our covariates were highly correlated, before applying our method we could de-correlate
them by sphering, i.e. transforming the covariates using their covariance matrix so they
become approximately uncorrelated with variance one, see Murphy (2012) p. 144.

In Subsec. 4.1.1, we present a typical simulation result to verify our estimator for VC
dimension is consistent for the VC dimension of the true model. In Subsec. 4.1.2, we discuss
simulations we have done where results do not initially appear to be consistent with the
theory. First, large values of n are needed to get good performance with large values of p.
Second as p increases, we must choose nl’s that are properly spread out over [0, n].

4.1.1. A first example

We implemented simulations for a range of model sizes p = 15, 30, 40, 50, 60 and 70 and ap-
plied six model selection techniques AIC, BIC, CV, P̂ERM1, P̂ERM2, and VC dimension
(VCD), see Mpoudeu and Clarke (2018) for details. We tended to use larger sample sizes
with larger values of p and spaced the design points uniformly over [0, n], even though this
may be suboptimal. We arbitrarily set m = 10 and W = 50. Our models were nested,
including models that were too small and some that were too large, so that the estimate of
dV C would uniquely specify a model.

As a typical example, Fig. 1 shows the results for n = 700 and p = 70 with L = 7.
When the size of the conjectured model is strictly less than the size of the true model,
d̂V C is equal to the smallest design point. However, when the conjectured model exactly
matches the true model, d̂V C ≈ 61, underestimating dV C . Interestingly, if we simply look at
the minimal VCD value it occurs at the conjectured model of size 70, the true values of p.
When the conjectured model is more complex than the true model, the VCD value is visibly
higher than the VCD value for the true model. Thus, using VCD favors parsimony more
than the other methods do. In results not shown here, we increased n to 2000 and used
good design points (as discussed in Subsec. 4.1.2) and found d̂V C ≈ 70. Our observation
for the other five model selection methods is that they are less affected by the small sample
size, but decrease and ‘flatline’ in the sense that the AIC, BIC and CV values decrease very
slowly (making it unclear which model to choose) while P̂ERM1 and P̂ERM2 routinely
give models that are too small if one follows the usual rule of choosing the smallest local
minimum. Overall, using VCD penalizes models that are too large more than other methods
do, thereby giving a clearer statement about which model is true, at least in the limit with
intelligently chosen design points. Other choices of n, p, the design points, and other inputs,
gave results compatible with this interpretation.

Although the diagrams are not shown here (but see Mpoudeu and Clarke (2018), Sec.
4) the smallest discrepancy between the size dV C of the model and d̂V C usually occurs at
the true model. This indicates that d̂V C is consistent. In addition, even though the VCD
values generally increase as the size of the conjectured model exceeds the size of the true
model, in some cases, past a certain value dV C , the VCD value may flatline as well. The
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problem with d̂V C flatlining (or decreasing) past a certain value of dV C occurs mostly due
to instability, e.g., when n is not large enough relative to p.

We argue that estimating VC dimension directly is better than using P̂ERM1 or
P̂ERM2. There are several reasons. First, the computation of P̂ERM1 and P̂ERM2

requires d̂V C . It also requires a threshold η be chosen (see Propositions 3 and 4) and is

more dependent on m than d̂V C is. Being more complicated than d̂V C , P̂ERM1, P̂ERM2

will break down faster than d̂V C . This is seen, for instance in tables of Mpoudeu (2017)

Chap. 3 and the discussion there. More generally, we argue that P̂ERM1, and P̂ERM2

break down faster than d̂V C with increasing p, if the sample size is held constant. That is,
P̂ERM1 and P̂ERM2 are less efficient than d̂V C .

Finally for this subsection, we reiterate our observation that in practice, when our VC
dimension technique is used properly i.e., n is large enough relative to p, the σ used in
Theorem 6 and the design points are adequately chosen,

∣∣d̂V C − dV C∣∣ has a well defined
minimum at the true value of dV C . Also, in contrast with other methods (including using
shrinkage methods to nest models) our technique is generally more sensitive to over fit,
thereby giving better parsimony.

4.1.2. Dependence of d̂CV on n and NL

It is no surprise that the higher n/p is the better the discrimination of d̂V C over models
is. However, our findings are more complicated because of the design points. The informal
rule is that one wants n ≈ 10p for good parametric inference. However, this does not take
into account model selection that often requires n > 10p. Indeed, for good model selection
with dV C , we find that n ≥ 15 is usually sufficient, provided the design points are not
badly chosen. In our examples choosing the nl’s uniformly over [0, n] generally gives decent
but not optimal performance and for typical ranges of model sizes L ≥ 5 will suffice even
though larger values of L are usually better, say 7 ≤ L ≤ 10. Although we are unable at
this point to chracterize the tradeoff between design points and sample size, we have noted
that in some cases, good choice of design points can compensate for insufficient sample size.
Indeed, relatively small changes in the nl’s can have a large numerical effect when n is small;
possible due to instability in the nonlinear regression step, (29).

We leave the question of optimally choosing L and the nl’s as future work even though
we make the following recommendations: 1) Good choices of nl’s are spread over [0, n].
2. More nl’s should be in [n/2, n] than in [0, n2 ], but neither should be empty. 3. Good
choices for nl’s tend to remain good while poor choices of nl’s may not be as damaging to
inference, as n → ∞. 4. It is better to use fewer design points over a larger range than
more design points over a smaller range. 5. As n increases the nl’s should shift upward, i.e.,
more in [n/2, n]. 6. If enough nl’s are large relative to p, d̂V C may be accurate for smaller
n, perhaps n ≥ 12p will suffice.

4.2. Analysis of a Benchmark Data Set

The goal of this section is to evaluate our method on a ‘benchmark’ data set Tour obtained
from the Tour de France1. We start by giving some information about Tour, then in Sec.

1. Tour de France Data was compiled by B. Clarke. More information can be found at
http://www.letour.fr/.
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4.2.1 we analyze it using a model list based on two of the explanatory variables. The list is
a sequence of models nested by SCAD. We evaluate our method by comparing d̂V C to AIC,
BIC, CV, P̂ERM1, and P̂ERM2. In Subsec. 4.2.2, we look at the effect of outliers in the
estimates d̂V C , P̂ERM1, and P̂ERM2.

The full data set Tour has n = 103 data points. The data points are dependent (associ-
ated) because many cyclists competed in the Tour de France for more than one year. Here
we ignore the dependence structure because the dependencies are small enough that the
complication of accounting for them is not worthwhile. Each data point has a value of the
response variable (Speed), the average speed in kilometers per hour (km/h) of the winner
of the Tour. The explanatory variables are the Year (Y) of the Tour and its distance (D)
in kilometers. Our data is from 1903 to 2016. However, during World Wars 1 and 2 there
was no Tour, so we do not have data points for those years. The effect of World War I on
the speed of the winner of the tour can be seen in a scatterplot of Speed vs. Y – the lowest
winning speeds were in the years just after World War I, probably due to casualties. After
World War II, there was also a decrease in average winning speed, but the decrease was less
than after World War I. There is a curvilinear relationship between Speed and Year and a
roughly linear relationship between Speed and D; the variability of Speed increases with D.

4.2.1. Analysis of Tour Using a Nested Collection of Models

We identify a nested model list using Y , D, Y 2, D2 and the interaction between Year and
Distance denoted Y : D as covariates. Because the size of the data set is not large, we can
only use a small model list.

We order the variables using SCAD because as a shrinkage method it perturbs parameter
estimates the least and satisfies an oracle property. Under SCAD, the order of inclusion of
variables is Y , D, D2, Y 2, and Y : D. We therefore fit five different models. We use the six
model selection techniques from Sec. 4.1 and include d̂V C the original estimator in Vapnik
et al. (1994) for the sake of comparison. It is seen that Vapnik et al. (1994)’s original

Model d̂V d̂V C P̂ERM1 P̂ERM2 AIC BIC CV

Y 20 4 16.42 44.95 84 79.67 0.1294
Y, D 20 4 15.10 42.83 77 71.66 0.1209

Y, D, D2 20 4 11.21 36.37 24 26.21 0.0727
Y,D, D2, Y 2 20 4 11.09 36.16 17 28.77 0.0681

Y,D, D2, Y 2, Y : D 20 4 11.06 36.11 19 32.96 0.0691

Table 1: Model selection for the Tour de France data using seven methods. The design
points for d̂V and d̂V C are 20, 30, 40, 50, 60, 70, 80, 90, and 100 and W = 50. So
d̂V equals the smallest design point in all cases. This problem frequently occurs
for d̂V .

method is helpful only if it is reasonable to surmise that there are 15 missing variables
whereas our method uniquely identifies one of the models on the list. Even though there is
likely no model for Tour de France data set that is accurate to infinite precision, our method
is giving a useful result. Indeed, our method is choosing the fourth model list the same as
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indicated by AIC and CV. The BIC drops the Y 2 term which is not unreasonable because
the curvilinearity is less than quadratic. P̂ERM1 and P̂ERM2 include the interaction
term (which can be seen to be zero by a simple t-test). It may also be the case that the
derivation of the BIC rests heavily on the independent of data which is not the case here.

4.2.2. Analysis of The Tour de France data set with outliers removed

The observations just after World War I may be outliers. So, we consider the data set
formed by deleting the points from 1919 to 1926. Let us see how the six model selection
techniques now behave.

The process of analyzing this reduced data set is the same: We identify the nested model
lists by SCAD and then find the models corresponding to d̂V C , AIC, BIC, CV, P̂ERM1,
and P̂ERM2. The results are given in Table 2.

Model Size d̂V C P̂ERM1 P̂ERM2 AIC BIC CV

Y 4 12.87 40.72 67 75 0.1181
Y , D2 4 12.01 39.26 69 79 0.1336

Y , D2, D 4 11.66 38.36 46 59 0.0919
Y , D2, D, Y 2 4 11.48 38.34 28 43 0.0742

Y , D2, D, Y 2, Y : D 4 11.35 38.13 29 46 0.0735

Table 2: Model selection for the Tour de France data set with outliers removed.

Under SCAD, the order of inclusion of our covariates is: Y , D2, D, Y 2 and Y : D. This
order is different from when we used all data points. The outliers suggest Y : D was more
important than it probably is. Note also that when we used all the data points, D was
included before D2 and D2 was included after Y 2. Again, we fit 5 nested models.

From Table 2, if we choose a model using d̂V C , we get the same answer as in Sec. 4.2.1,
the model with four variables: Y , D2, D, Y 2. AIC and BIC choose the same model probably
because (Y : D) has low correlation with Speed (-0.08). P̂ERM1, P̂ERM2 and CV choose
the model of size 5, which we discount as before because Y : D is only slightly correlated
with Speed. That is, the reasoning in Subsec. 4.2.1 for why we think that the model chosen
by d̂V C is best continues to hold.

4.3. Application to a Real Data Set

To demonstrate the use of our technique, we re-analyze the Wheat data set presented and
studied in Campbell et al. (2003), Dilbirligi et al. (2006), and Dhungana et al. (2007)
from a non-complexity based standpoint. The Wheat data set has 2912 observations. More
information concerning the data set and the design structure can be found in Campbell et al.
(2003). The response variable is YIELD (MG/ha), the covariates that we used are 1000
kernel weight (TKWT), kernels per spike (KPS), Spikes per square meter (SPSM), height
of the plant (HT), test weight (TSTWT(KG/hl)), and kernels per square meter (KPSM).
Often, in agronomic data sets, there are several classes of explanatory variables, here we
have phenotypic, single nucleotide polymorphisms (SNP’s) and the variables defining the
design. We compare VC dimension based model selection to the methods used in the last
subsection and verify our method gives good results.
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Our collection of explanatory variables can be grouped into three categories: phenotype,
SNP, and design variables. For brevity, we fit only the phenotype variables in Subsec. 4.3.1
and phenotype plus design variables in Subsec. 4.3.2. Comparing these will show that
the model selection is unaffected by the design. Also, for brevity, our only analysis is
‘multilocation’ because we pooleded the data over location-year pairs. A full analysis is in
Mpoudeu and Clarke (2018).

4.3.1. Estimation of VC Dimension Using Phenotypic Covariates Only

Intuition suggests

Y IELD = β0 + β1 · TKWT ·KPSM + ε (46)

will be a good model because YIELD is essentially the product of the number of kernels
and their average weight. Likewise,

Y IELD = β0 + β1 · TKWT ·KPS · SPSM + ε (47)

should also be a good model. So, using only phenotpic variables does not lead to a unique
good model. Both are over simplifications and we can be confident that other influences on
YIELD must be considered. Indeed, a 3-dimensional plot of the vectors (YIELD, TKWT,
KPSM) looks like a triangle that is bowed out to one side. The bowing means that (46) is
only an approximation; other terms are required to explain YIELD. Henceforth, we focus
on (46) rather than (47) because we have limited ourselves to second order models.

To implement our multilocation analysis, we first find the order of inclusion of the
phenotypic variables in the model, using correlation with YIELD. Then, we find values for
d̂V C , AIC, BIC, CV, P̂ERM1, P̂ERM2, and the models given by SCAD and ALASSO.
Under absolute value of correlation with YIELD, the order of inclusion of the explanatory
variables is: TKWT · KPSM, TSTWT · KPSM, KPSM, SPSM · KPS, KPSM2, KPSM ·
HT, TKWT · SPSM, TSTWT2, TSTWT, SPSM · KPSM, KPS · KPSM, TSTWT · SPSM,
SPSM SPSM · HT, SPSM2, TKWT · TSTWT, TKWT, TSTWT · HT, TKWT2 TKWT ·
KPS, TSTWT · KPS, TKWT · HT, KPS · HT, HT, HT2 KPS, KPS2. So, we consider 27
nested models. This leads to Table 3.

First, we note there is no variability in P̂ERM1 and P̂ERM2 so following standard
usage, they select a model with TKWT · KPSM as the only explanatory variable. Likewise,
AIC, BIC, and CV suggest the one term model. However, d̂V C = 14 means the VC dimen-
sion chooses the model with the first 14 terms from the ordered list. SCAD and ALASSO
both give the one term model

̂Y IELD = 3.43 + 1.12 · TKWT ·KPSM, (48)

the same as P̂ERM1, P̂ERM2, AIC, BIC and CV. Thus the only reasonable model is the
one chosen by d̂V C .

4.3.2. Analysis of Wheat Using Phenotypic Data and the Design Structure

Our objective in this subsection is to take the design structure into account and see its
impact on the values of the VC dimension and hence on the chosen model. As before,
we implement a multilocation analysis. Including design variables forces us to use a more
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Size d̂V C P̂ERM1 P̂ERM2 AIC BIC CV

1 13 7 11 -9160 -9142 0.001801809
2 14 7 11 -9159 -9136 0.001802107
3 13 7 11 -9159 -9130 0.001802470
4 13 7 11 -9159 -9124 0.001803912
5 13 7 11 -9159 -9118 0.001803933
6 14 7 11 -9157 -9110 0.001805230
7 14 7 11 -9156 -9103 0.001805349
8 14 7 11 -9158 -9099 0.001806966
9 14 7 11 -9156 -9091 0.001807176
10 14 7 11 -9154 -9084 0.001808455
11 13 7 11 -9153 -9076 0.001808248
12 13 7 11 -9151 -9069 0.001808966
13 14 7 11 -9150 -9061 0.001810670
14 14 7 11 -9148 -9054 0.001812884
15 13 7 11 -9147 -9047 0.001813791

Table 3: The column labeled size gives the number of coefficients for each linear model.
The 2nd through 7th columns give the corresponding estimates for d̂V C , ÊRM1,
ÊRM2, AIC, BIC, and CV for Wheat.

complicated bootstrap procedure that would otherwise be sufficient. Thus, to implement
our method here, we perform a restricted bootstrap. Specifically, we bootstrap in each level
of the design variable (incomplete block) so that each half data set has all levels of the
design structure. We do this to maintain the design structure and its effects. To include
phenotypic variables in the models, we use the same order of inclusion as in Subsec. 4.3.1.

The natural comparison is between Tables 3 and 4. Apart from random variation, they
are identical. Moreover, the sparsity methods give exactly the same results in both settings.
Thus the conclusions here are the same as in Subsec. 4.3.1: The design variables have no
impact on model selection and d̂V C gives the only plausible model.

5. Conclusions

A concise summary of the contributions in this paper is as follows. Sec. 2.1 presents the
derivation of the objective function we used to estimate the VC dimension. It is essentially
an upper bound on the expected difference between two losses that we have defined as ∆m

or ∆, where the m indicates the discretization of the loss function for a regression problem.
In Subsec. 2.2 we give an estimator for dV C that uses our upper bound, nonlinear regression
treating sample sizes as design points, a data driven estimator of ∆m, and an optimization
over an arbitrary constant. While this sounds complex, in practice the computations can
usually be done in minutes on a regular laptop. Even though we only have an upper bound
on ∆m, in Sec. 3 we are able to give conditions under which our estimator is consistent.
This is circumstantial evidence that our upper bound is tight.
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Size d̂V C P̂ERM1 P̂ERM2 AIC BIC CV

1 13 7 11 -9160 -9142 0.001801809
2 13 7 11 -9159 -9136 0.001802107
3 13 7 11 -9159 -9130 0.001802470
4 13 7 11 -9159 -9124 0.001803912
5 13 7 11 -9159 -9118 0.001803933
6 13 7 11 -9157 -9110 0.001805230
7 13 7 11 -9156 -9103 0.001805349
8 13 7 11 -9158 -9099 0.001806966
9 13 7 11 -9156 -9091 0.001807176
10 13 7 11 -9154 -9084 0.001808455
11 13 7 11 -9153 -9076 0.001808248
12 13 7 11 -9151 -9069 0.001808966
13 13 7 11 -9150 -9061 0.001810670
14 13 7 11 -9148 -9054 0.001812884

Table 4: The column labeled size gives the number of coefficients for each linear model.
The 2nd through 7th columns give the corresponding estimates for d̂V C , P̂ERM1,
P̂ERM2, AIC, BIC, and CV for multi-location analysis with design structure.

We have done an extensive comparison of our estimator of VC dimension as a model
selection method with seven established model selection methods, namely two forms of
empirical risk minimization, AIC, BIC, CV, and two sparsity criteria. Other examples can
be found in Mpoudeu and Clarke (2018). We did this for the special case of linear models
but the same reasoning can be used for any class of nonlinear models e.g., trees, for which
the VC dimension can be identified. We also gave one example of how our estimator for
VC dimension performs better than the original estimator in Vapnik et al. (1994). As a
generality, our method equals or outperforms these other methods.
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