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Abstract

We show that prediction performance for global-local shrinkage regression can overcome
two major difficulties of global shrinkage regression: (i) the amount of relative shrinkage is
monotone in the singular values of the design matrix and (ii) the shrinkage is determined
by a single tuning parameter. Specifically, we show that the horseshoe regression, with
heavy-tailed component-specific local shrinkage parameters, in conjunction with a global
parameter providing shrinkage towards zero, alleviates both these difficulties and conse-
quently, results in an improved risk for prediction. Numerical demonstrations of improved
prediction over competing approaches in simulations and in a pharmacogenomics data set
confirm our theoretical findings.
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1. Introduction

We develop theoretical results on prediction risk in the high-dimensional linear regression
model

y = Xβ + ε, (1)

where y ∈ Rn, X ∈ Rn×p, β ∈ Rp, ε ∼ N (0, σ2In) with p > n, and the design matrix X is
assumed fixed. Let β̂ denote the estimate of β based on the observed data y and design
X. Let y∗ denote a future observation generated from the same model, independent of y.
Define the quadratic predictive risk

R = Ey∗,y|X,β(y∗ −Xβ̂)2, (2)

where the subscript denotes that the expectation is with respect to the data generating
distribution, with X and β held fixed. We focus on comparing estimators β̂ according
to the criterion of Equation (2) in a non-asymptotic fixed n, fixed p > n setting. Our
approach follows the paradigm of Stein (1956), with risk results that are valid for all p
and n, rather than asymptotic oracle properties. Our specific contribution, established by
Theorem 5.1 and Corollary 5.1, is to identify the shortcomings of some commonly used global
shrinkage estimators in prediction, with shrinkage driven by a single tuning parameter,
and to demonstrate that under certain conditions, suitably-chosen component-specific local
shrinkage parameters can result in theoretically lower predictive risk.

1.1. Connections with existing global shrinkage regression approaches

We define shrinkage estimators with a single tuning parameter as “global.” Examples
include ridge regression (Hoerl and Kennard, 1970) and principal components regression
or PCR (Jolliffe, 1982), and they remain popular in prediction under the high-dimensional
model of Equation (1). Shrinkage methods enjoy a number of advantages over simultaneous
shrinkage and selection-based methods such as the lasso (Tibshirani, 1996) and comfortably
outperform them in predictive performance in certain situations. Prominent among these is
when the predictors are correlated and the resulting lasso estimate is unstable, whereas ridge
or PCR estimates are not (see, e.g, the discussion in Chapter 3 of Hastie et al., 2009). On
the theoretical side, Polson and Scott (2012a) used a representation devised by Frank and
Friedman (1993) to show that many commonly used high-dimensional shrinkage regression
estimates, such as the estimates of ridge regression, regression with g-prior (Zellner, 1986)
and PCR, can be viewed as posterior means under a unified framework of “global” shrinkage
prior on the regression coefficients that are suitably orthogonalized. Polson and Scott
(2012a) also demonstrated that purely global shrinkage regression methods suffer from two
major difficulties: (i) the amount of relative shrinkage is monotone in the singular values of
the design matrix and (ii) the shrinkage is determined by a single tuning parameter. Both
of these factors can translate to poor out of sample prediction performance, which they
demonstrated numerically.

Polson and Scott (2012a) further provided numerical evidence that the difficulties men-
tioned above can be resolved by allowing “local,” component-specific shrinkage terms, in
conjunction with a global shrinkage parameter as used in ridge or PCR, giving rise to the
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so-called “global-local” shrinkage regression models. Specifically, Polson and Scott (2012a)
demonstrated by simulations that using the horseshoe prior of Carvalho et al. (2010) on the
regression coefficients performed well over a variety of competitors in terms of predictive
performance, including the lasso, ridge, PCR and sparse partial least squares (Chun and
Keles, 2010). While these empirical results are encouraging, a theoretical investigation of
the conditions required for the horseshoe regression to outperform a global shrinkage regres-
sion method such as ridge or PCR in terms of prediction has been lacking. Our work bridges
this theoretical gap by developing formal tools for comparing the finite sample predictive
risk for shrinkage methods.

1.2. Regression with non-convex penalties

The `1 or `2 penalties that correspond to lasso or ridge regression are convex. While this
simplifies the computation, it also results in a number of drawbacks such as bias in esti-
mating large signals (Fan and Li, 2001). This problem can be remedied using non-convex
`q penalties for 0 < q < 1, but this introduces other problems such as non-uniqueness of
solutions and greater computational burden. Prominent examples of non-convex penalties
include the smoothly clipped absolute deviation or SCAD (Fan and Li, 2001) and the min-
imax concave penalty of MCP (Zhang, 2010). In particular, the MCP estimate enjoys a
number of asymptotic optimality properties and conditions required for an iterative compu-
tational algorithm to reach the global optimum are available (Mazumder et al., 2011). The
optimality results, however, are valid only in an asymptotic regime with various assump-
tions on the design X and do not characterize finite sample risk properties. Nevertheless,
the univariate MCP estimator is identical to the firm shrinkage estimator of Gao and Bruce
(1997), who provide explicit finite sample expressions for predictive risk, a fact utilized later
in Section 6.

1.3. Finite sample estimates of predictive risk

The quadratic risk in Equation (2) involves the future observation y∗ and must be estimated.
Developing a formal estimate based on the training data (X, y) to compare predictive per-
formance of competing regression methods is important in both frequentist and Bayesian
settings. This is because the frequentist tuning parameter or the Bayesian hyper-parameters
can then be chosen to minimize the estimated predictive risk, if prediction of future obser-
vations is the main modeling goal. A finite sample unbiased estimate of R in Equation (2)
is given by Stein’s unbiased risk estimate or SURE (Stein, 1981).

We will focus on SURE as our estimate of R for the remainder of this article, which is
an example of a model-based covariance penalty. Other examples of covariance penalties
include Mallows’ Cp (Mallows, 1973), Akaike’s information criterion (Akaike, 1974) and risk
inflation criterion (Foster and George, 1994). Nonparametric penalties include the general-
ized cross validation of Craven and Wahba (1978), which has the advantage of being model
free but usually produces a prediction error estimate with high variance (Efron, 1983). The
relationship between the covariance penalties and nonparametric approaches were further
explored by Efron (2004), who showed the covariance penalties to be a Rao-Blackwellized
version of the nonparametric penalties. Thus, Efron (2004) concluded that model-based
penalties such as SURE or Mallows’ Cp (the two coincide for models where the fit is linear
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in the response variable) offer substantially lower variance in estimating the prediction risk,
assuming of course the model is true. From a computational perspective, calculating SURE,
when it is explicitly available, is substantially less burdensome than performing cross val-
idation, which usually requires several Monte Carlo replications. Furthermore, SURE, an
estimate of quadratic risk in prediction, also has connections with the Kullback–Leiber risk
for the predictive density (George et al., 2006).

1.4. Outline of main contributions

Our main contribution is to analyze the finite sample predictive risk of global shrinkage
regression methods, examine where these methods fall short, and demonstrate a remedy
using local shrinkage parameters. The main results are summarized as follows.

1.4.1. Theoretical findings

The key technique to our innovation is an orthogonalized representation first employed
by Frank and Friedman (1993) that allows shrinkage regression estimates to be viewed
as posterior means under some suitable priors. This is formulated in Section 2. Using
this representation in Sections 3 and 4, we devise general, explicit and numerically stable
techniques for computing SURE for regression models that can be employed to compare the
performances of global as well as horseshoe regressions. We characterize the finite sample
risk properties of all competing methods by computing expectations of SURE. Consequently,
all results provided in our article are valid under minimal assumptions on the design matrix,
similar to the risk results by Stein (1956), where the only requirement is n > 2. This is at a
contrast with most existing results in linear regression focusing on asymptotic minimax risk
that require various assumptions on the singular values of X (e.g., Raskutti et al., 2011;
Castillo et al., 2015; Dobriban and Wager, 2017).

Using the developed tools for SURE, we provide explicit finite sample risk comparisons
between the global ridge and global-local horseshoe regressions in Section 5, where for all
methods the tuning parameter is chosen to optimize SURE. Specifically, we demonstrate
that the horseshoe regression can outperform the optimal ridge regression in prediction
when most true signals are zero, but a few are large. We also compare risk of the horseshoe
regression with non-convex penalized likelihood approaches such as MCP in Section 6 and
show that when most of the true signals are away from zero, the risk of MCP can be quite
large, unlike that of the horseshoe regression.

1.4.2. Empirical findings

Extensive numerical results are provided in Section 7 and Supplementary Section S.1. Our
simulation results treat three distinct regimes: (i) sparse-robust: where most true signals are
zero and a few are large, (ii) null: where all signals are zero and (iii) dense: where all signals
are large. Our major finding is that the horseshoe regression outperforms the other methods
in (i). Moreover, it is not much worse than ridge in (iii) and adaptive lasso in (ii), which
are usually the best performers in these settings. Being a shrinkage estimate, the results
for the horseshoe are numerically stable, unlike that of the selection-based estimators in the
dense case. We conclude with a demonstration on real data in Section 8 and by outlining
some possible extensions of the current work in Section 9.
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2. Shrinkage regression estimates as posterior means

Let X = UDW T be the singular value decomposition of the design matrix. Let D =
diag(d1, . . . , dn) with d1 ≥ . . . ≥ dn > 0 and Rank(D) = min(n, p) = n. Define Z = UD
and α = W Tβ. Then the regression model of Equation (1) can be reformulated as:

y = Zα+ ε. (3)

The ordinary least squared (OLS) estimate of α is α̂ = (ZTZ)−1ZT y = D−1UT y. Following
the original results by Frank and Friedman (1993), several authors have used the well-
known orthogonalization technique (Polson and Scott, 2012a; Clyde et al., 1996; Denison and
George, 2012) to demonstrate that the estimates of many shrinkage regression methods can
be expressed in terms of the posterior mean of the “orthogonalized” regression coefficients
α under the following hierarchical model:

(α̂i | αi, σ2)
ind∼ N (αi, σ

2d−2i ), (4)

(αi | σ2, τ2, λ2i )
ind∼ N (0, σ2τ2λ2i ), (5)

with σ2, τ2 > 0. The global term τ controls the amount of shrinkage and the fixed λ2i
terms depend on the method at hand. Given λi and τ , the estimate for β under the global
shrinkage prior, denoted by β̃, can be expressed in terms of the posterior mean estimate for
α as follows:

α̃i =
τ2λ2i d

2
i

1 + τ2λ2i d
2
i

α̂i, and β̃ =

n∑
i=1

α̃iwi, (6)

where α̃i = E(αi | τ, λ2i , X, y); wi is a p × 1 vector and is the ith column of the p × n
matrix W and the term τ2λ2i d

2
i /(1+τ2λ2i d

2
i ) ∈ (0, 1) is the shrinkage factor. The expression

from Equation (6) makes it clear that it is the orthogonalized OLS estimates α̂is that are
shrunk. We shall show that this orthogonalized representation is also particularly suitable
for calculating the prediction risk estimate. The reason is tied to the independence assump-
tion that is now feasible in Equations (4) and (5). To give a few concrete examples, we
note below that several popular shrinkage regression models fall under the framework of
Equations (4–5):

1. For ridge regression, λ2i = 1,∀i, and we have α̃i = τ2d2i α̂i/(1 + τ2d2i ).

2. For K component PCR, λ2i is infinite for the first K components and then 0. Thus,
α̃i = α̂i for i = 1, . . . ,K and α̃i = 0 for i = K + 1, . . . , n.

3. For regression with g-prior, λ2i = d−2i and we have α̃i = τ2α̂i/(1 + τ2) for i = 1, . . . , n.

This shows the amount of relative shrinkage α̃i/α̂i is constant in di for PCR and g-prior
and is monotone in di for ridge regression. In none of these cases it depends on the OLS
estimate α̂i (consequently, on y). In the next section we quantify the effect of this behavior
on the prediction risk estimate.
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3. Stein’s unbiased risk estimate for global shrinkage regression

Define the fit ỹ = Xβ̃ = Zα̃, where α̃ is the posterior mean of α. As noted by Stein
(1981), the fitted risk is an underestimation of the prediction risk, and SURE for prediction
is defined as:

SURE = ||y − ỹ||2 + 2σ2
n∑
i=1

∂ỹi
∂yi

,

where the
∑n

i=1(∂ỹi/∂yi) term is also known as the “degrees of freedom” (Efron, 2004). By
Tweedie’s formula (Masreliez, 1975; Pericchi and Smith, 1992) that relates the posterior
mean with the marginals; we have for a Gaussian model of Equations (4–5) that: α̃ =
α̂ + σ2D−2∇α̂ logm(α̂), where m(α̂) is the marginal for α̂. Noting y = Zα̂ yields ỹ =
y + σ2UD−1∇α̂ logm(α̂). Using the independence of αis, the formula for SURE becomes

SURE =σ4
n∑
i=1

d−2i

{
∂

∂α̂i
logm(α̂i)

}2

+ 2σ2
n∑
i=1

{
1 + σ2d−2i

∂2

∂α̂2
i

logm(α̂i)

}
. (7)

Thus, the prediction risk estimate for shrinkage regression can be quantified in terms of
the first two derivatives of the log marginal for α̂. Integrating out αi from Equations (4–5)
yields in all these cases,

(α̂i | σ2, τ2, λ2i )
ind∼ N (0, σ2(d−2i + τ2λ2i )).

The marginal of α̂ is given by

m(α̂) ∝
n∏
i=1

exp

{
− α̂2

i /2

σ2(d−2i + τ2λ2i )

}
,

which yields

∂ logm(α̂i)

∂α̂i
=

−α̂i
σ2(d−2i + τ2λ2i )

;
∂2 logm(α̂i)

∂α̂2
i

=
−1

σ2(d−2i + τ2λ2i )
. (8)

Therefore, Equation (7) reduces to the following expression for SURE for global shrinkage
regressions: SURE =

∑n
i=1 SUREi, where,

SUREi =
α̂2
i d

2
i

(1 + τ2λ2i d
2
i )

2
+ 2σ2

τ2λ2i d
2
i

(1 + τ2λ2i d
2
i )
. (9)

From a computational perspective, the expression in Equation (9) is attractive, as it avoids
costly matrix inversions. For a given σ one can choose τ to minimize the prediction risk,
which amounts to a one-dimensional optimization. Note that in our notation, d1 ≥ d2 . . . ≥
dn > 0. Clearly, this is the SURE when λis are fixed and finite (e.g., ridge regression). For K
component PCR, only the first K terms appear in the sum. The di terms are features of the
design matrix X and one may try to control the prediction risk by varying τ . When τ →∞,
SURE → 2nσ2, the risk of prediction with ordinary least squares (unbiased). When τ → 0,
we get the mean-only model (zero variance): SURE →

∑n
i=1 α̂

2
i d

2
i . Regression models with

τ ∈ (0,∞) represent a bias-variance tradeoff. Following are the two major difficulties of
global shrinkage regression:
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1. The first term of Equation (9) shows that SURE is increased by those components for
which α̂2

i d
2
i is large. Choosing a large τ alleviates this problem, but at the expense of

an SUREi of 2σ2 even for components for which α̂2
i d

2
i is small (due to the second term

in Equation (9)). Thus, it might be beneficial to differentially minimize the effect of
the components for which α̂2

i d
2
i is large, while ensuring those for which α̂2

i d
2
i is small

make a contribution less than 2σ2 to SURE. Yet, regression models with λi fixed,
such as ridge, PCR, regression with g-priors, provide no mechanism for achieving this,
since the relative shrinkage, defined as the ratio α̃i/α̂i, equals τ2λ2i d

2
i /(1 + τ2λ2i d

2
i ),

and is solely driven by a single quantity τ .

2. Equation (6) shows that the relative shrinkage for α̂i is monotone in di; that is, those
α̂i corresponding to a smaller di are necessarily shrunk more (in a relative amount).
This is only sensible in the case where one has reasons to believe the low variance
eigen-directions (i.e., principal components) of the design matrix are not important
predictors of the response variables, an assumption that can be violated in real data
(Polson and Scott, 2012a).

In the light of these two problems, we proceed to demonstrate that putting a heavy-tailed
prior on λis, in combination with a suitably small value of τ to enable global-local shrinkage
can resolve both these issues. The intuition behind this is that a small value of a global
parameter τ enables shrinkage towards zero for all the components while the heavy tails of
the local or component-specific λi terms ensure the components with large values of α̂idi are
not shrunk too much, and allow the λi terms to be learned from the data. Simultaneously
ensuring both of these factors helps in controlling the prediction risk for both the noise as
well as the signal terms.

4. Stein’s unbiased risk estimate for the horseshoe regression

The global-local horseshoe shrinkage regression of Polson and Scott (2012a) extends the
global shrinkage regression models of the previous section by putting a local (component-
specific), heavy-tailed half-Cauchy prior on the λi terms that allow these terms to be learned
from the data, in addition to a global τ . The model equations become:

(α̂i | αi, σ2)
ind∼ N (αi, σ

2d−2i ), (10)

(αi | σ2, τ2, λ2i )
ind∼ N (0, σ2τ2λ2i ), (11)

λi
ind∼ C+(0, 1), (12)

with σ2, τ2 > 0 and C+(0, 1) denotes a standard half-Cauchy random variable with density
p(λi) = (2/π)(1 + λ2i )

−1. The posterior mean α̃ and the regression estimate β̃ are then
obtained analogously to Equation (6), with the only difference being one uses the posterior
mean E(λi | α̂i, τ) instead of a fixed λi. The marginal prior on αis that is obtained as a
normal scale mixture by integrating out λis from Equations (11) and (12) is called the horse-
shoe prior (Carvalho et al., 2010). Improved mean square error over competing approaches
in regression has been empirically observed by Polson and Scott (2012a) with horseshoe
prior on αis. The intuitive explanation for this improved performance is that a heavy tailed
prior of λi leaves the large αi terms of Equation (11) un-shrunk in the posterior, whereas

7



Bhadra et al.

the global τ term provides shrinkage towards zero for all components (see, for example, the
discussion by Polson and Scott, 2012b; Bhadra et al., 2017; Carvalho et al., 2010, and the
references therein). However, no explicit formulation of the prediction risk under horseshoe
shrinkage is available so far and we demonstrate below the heavy-tailed priors on λi terms,
in addition to a global τ , can be beneficial in controlling the overall prediction risk.

Under the model of Equations (10–12), after integrating out αi from the first two equa-
tions, we have,

(α̂i | σ2, τ2, λ2i )
ind∼ N (0, σ2(d−2i + τ2λ2i )).

We have, p(λi) ∝ 1/(1 + λ2i ). Thus, the marginal of α̂, denoted by m(α̂), is given up to a
constant of proportionality by

m(α̂) =

n∏
i=1

∫ ∞
0
N (α̂i | 0, σ2(d−2i + τ2λ2i ))p(λi)dλi

∝(2πσ2)−n/2
n∏
i=1

∫ ∞
0

exp

{
− α̂2

i d
2
i /2

σ2(1 + τ2d2iλ
2
i )

}
di

(1 + τ2d2iλ
2
i )

1/2

1

1 + λ2i
dλi. (13)

This integral involves the normalizing constant of a compound confluent hypergeometric
distribution that can be computed using a result of Gordy (1998).

Proposition 4.1 (Gordy, 1998). The compound confluent hypergeometric (CCH) density
is given by

CCH(x; p, q, r, s, ν, θ) =
xp−1(1− νx)q−1{θ + (1− θ)νx}−r exp(−sx)

B(p, q)H(p, q, r, s, ν, θ)
,

for 0 < x < 1/ν, where the parameters satisfy p > 0, q > 0, r ∈ R, s ∈ R, 0 ≤ ν ≤ 1 and
θ > 0. Here B(p, q) is the beta function and the function H(·) is given by

H(p, q, r, s, ν, θ) = ν−p exp(−s/ν)Φ1(q, r, p+ q, s/ν, 1− θ),

where Φ1 is the confluent hypergeometric function of two variables, given by

Φ1(α, β, γ, x1, x2) =
∞∑
m=0

∞∑
n=0

(α)m(β)n
(γ)m+nm!n!

xm1 x
n
2 , (14)

where (a)k denotes the rising factorial with (a)0 = 1, (a)1 = a and (a)k = (a+ k− 1)(a)k−1.

We present our first result in the following theorem and show that the marginal m(α̂) and
all its derivatives lend themselves to a series representation in terms of the first and second
moments of a random variable that follows a CCH distribution. Consequently, we quantify
SURE for the horseshoe regression.

Theorem 4.1 Denote m′(α̂i) = (∂/∂α̂i)m(α̂i) and m′′(α̂i) = (∂2/∂α̂2
i )m(α̂i). Then, the

following holds.
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A. SURE for the horseshoe shrinkage regression model defined by Equations (10–12) is
given by SURE =

∑n
i=1 SUREi, where the component-wise contribution SUREi is

given by

SUREi = 2σ2 − σ4d−2i

{
m′(α̂i)

m(α̂i)

}2

+ 2σ4d−2i
m′′(α̂i)

m(α̂i)
. (15)

B. Under independent standard half-Cauchy prior on λis, for the second and third terms
in Equation (15) we have:

m′(α̂i)

m(α̂i)
= − α̂id

2
i

σ2
E(Zi), and

m′′(α̂i)

m(α̂i)
= −d

2
i

σ2
E(Zi) +

α̂2
i d

4
i

σ4
E(Z2

i ),

where (Zi | α̂i, σ, τ) follows a CCH(p = 1, q = 1/2, r = 1, s = α̂2
i d

2
i /2σ

2, v = 1, θ =
1/τ2d2i ) distribution.

A proof is given in Appendix A.1. Theorem 4.1 provides a computationally tractable mech-
anism for calculating SURE for the horseshoe shrinkage regression in terms of the moments
of CCH random variables. Gordy (1998) provides a simple formula for all integer moments
of CCH random variables. Specifically, he shows if X ∼ CCH(x; p, q, r, s, ν, θ) then

E(Xk) =
(p)k

(p+ q)k

H(p+ k, q, r, s, ν, θ)

H(p, q, r, s, ν, θ)
, (16)

for integers k ≥ 1. Moreover, as demonstrated by Gordy (1998), these moments can be
numerically evaluated quite easily over a range of parameter values and calculations remain
very stable. A consequence of this explicit formula for SURE is that the global shrinkage
parameter τ can now be chosen to minimize SURE by performing a one-dimensional nu-
merical optimization. Another consequence is that an application of Theorem 3 of Carvalho
et al. (2010) shows

lim
|α̂i|→∞

m′(α̂i)

m(α̂i)
= lim
|α̂i|→∞

∂ logm(α̂i)

∂α̂i
= 0,

with high probability, where m(α̂i) is the marginal under the horseshoe prior. Recall that
the posterior mean α̃i and the OLS estimate α̂i are related by Tweedie’s formula as α̃i =
α̂i+σ2d−2i ∂ logm(α̂i)/∂α̂i. Thus, α̃i ≈ α̂i, with high probability, as |α̂i| → ∞, for any fixed
di and σ for the horseshoe regression. Since α̂i is unbiased for αi, the resultant horseshoe
posterior mean is also seen to be unbiased when |α̂i| is large. Compare with the resultant
α̃i for global shrinkage regression of Equation (6), which is monotone decreasing in di, and
therefore can be highly biased if a true large |αi| corresponds to a small di. Perhaps more
importantly, we can use the expression from Theorem 4.1 to estimate the prediction risk of
the horseshoe regression for the signal and the noise terms. First we treat the case when
|α̂i| is large. We have the following result.

Theorem 4.2 Define si = α̂2
i d

2
i /2σ

2, θi = (τ2d2i )
−1. For any si ≥ 1, θi ≥ 1, we have for

the horseshoe regression of Equations (10–12) that{
1− θi(C̃1 + C̃2)

(1 + si)

s2i
− θ2i (C̃1 + C̃2)2

(1 + si)
2

s3i

}
≤ SUREi

2σ2
≤

{
1 + 2θi(1 + si)

(
C1

s2i
+

C2

s
3/2
i

)}
,
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where C1 = {1− 5/(2e)}−1/2 ≈ 3.53, C2 = 16/15, C̃1 = (1− 2/e)−1/2 ≈ 1.95, C̃2 = 4/3, are
constants.

A proof is given in Appendix A.2. Our result is non-asymptotic, i.e., it is valid for any
si ≥ 1. However, an easy consequence is that SUREi → 2σ2, almost surely, as si → ∞,
provided τ2 ≤ d−2i . An intuitive explanation of this result is that component-specific shrink-
age is feasible in the horseshoe regression model due to the heavy-tailed λi terms, which
prevents the signal terms from getting shrunk too much and consequently, making a large
contribution to SURE due to a large bias. With just a global parameter τ , this component-
specific shrinkage is not possible. A comparison of SUREi resulting from Theorem 4.2
with that from Equation (9) demonstrates using global-local horseshoe shrinkage, we can
rectify a major shortcoming of global shrinkage regression, in that the terms with large si
do not make a large contribution to the prediction risk. Moreover, the main consequence
of Theorem 4.2, that is SUREi → 2σ2, almost surely, as si →∞, holds for a larger class of
“global-local” priors, of which the horseshoe is a special case.

Theorem 4.3 Consider the hierarchy of Equations (10–11) and suppose the prior on λi
in Equation (12) satisfies p(λ2i ) ∼ (λ2i )

a−1L(λ2i ) as λ2i → ∞, where f(x) ∼ g(x) means
limx→∞ f(x)/g(x) = 1. Assume a ≤ 0 and L(·) is a slowly-varying function, defined as
lim|x|→∞ L(tx)/L(x) = 1 for all t ∈ (0,∞). Then we have SUREi → 2σ2, almost surely,
as si →∞.

A proof is given in Appendix A.3. Densities that satisfy p(λ2i ) ∼ (λ2i )
a−1L(λ2i ) as λ2i →∞

are sometimes called regularly varying or heavy-tailed. Clearly, the horseshoe prior is a
special case, since for the standard half-Cauchy we have p(λi) ∝ 1/(1 + λ2i ), which yields
by a change of variables p(λ2i ) = (λ2i )

−3/2{λ2i /(1 + λ2i )}, which is of the form (λ2i )
a−1L(λ2i )

with a = −1/2 since L(λ2i ) = λ2i /(1 + λ2i ) is seen to be slowly-varying. Other priors that
fall in this framework are the horseshoe+ prior of Bhadra et al. (2017), for which p(λi) ∝
log(λi)/(λ

2
i − 1) = λ−2i L(λ2i ) with L(λ2i ) = log(λi)λ

2
i /(λ

2
i − 1). Ghosh et al. (2016) show

that the generalized double Pareto prior (Armagan et al., 2013) and the three parameter
beta prior (Armagan et al., 2011) also fall in this framework. Thus, Theorem 4.3 generalizes
the main consequence of Theorem 4.2 to a broader class of priors in the asymptotic sense
as si →∞.

Next, for the case when |α̂i| is small, we have the following result for estimating the
prediction risk of the horseshoe regression.

Theorem 4.4 Define si = α̂2
i d

2
i /2σ

2 and θi = (τ2d2i )
−1. Then the following statements are

true for the horseshoe regression.

A. SUREi is an increasing function of si in the interval si ∈ [0, 1] for any fixed τ .

B. When si = 0, we have that SUREi is a monotone increasing function of τ , and is
bounded in the interval (0, 2σ2/3] when τ2d2i ∈ (0, 1].

C. When si = 1, we have that SUREi is bounded in the interval (0, 1.93σ2] when τ2d2i ∈
(0, 1].

10
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A proof is given in Appendix A.4. This theorem establishes that: (i) the terms with smaller
si in the interval [0, 1] contribute less to SURE, with the minimum achieved at si = 0
(these terms can be thought of as the noise terms) and (ii) if τ is chosen to be sufficiently
small, the terms for which si = 0, has an upper bound on SURE at 2σ2/3. Note that
the OLS estimator has risk 2σ2 for these terms. At si = 0, the PCR risk is either 0 or
2σ2, depending on whether the term is or is not included. A commonly used technique
for shrinkage regressions is to choose the global τ to minimize a data-dependent estimate
of the risk, such as CL or SURE (Mallows, 1973). The ridge regression SURE at si = 0
is an increasing function of τ and thus, it might make sense to choose a small τ if all si
terms were small. However, in the presence of some si terms that are large, ridge regression
cannot choose a very small τ , since the large si terms will then be heavily shrunk and
contribute too much to SURE. This is not the case with global-local shrinkage regression
methods such as the horseshoe, which can still choose a small τ to mitigate the contribution
from the noise terms and rely on the heavy-tailed λi terms to ensure large signals are not
shrunk too much. Consequently, the ridge regression risk estimate is usually larger than
the global-local regression risk estimate even for very small si terms, when some terms with
large si are present along with mostly noise terms. At this point, the results concern the
risk estimate (i.e., SURE) rather than risk itself, the discussion of which is deferred until
Section 5.

To summarize the theoretical findings, Theorem 4.2 together with Theorem 4.4 estab-
lishes that the horseshoe regression is effective in handling both very large and very small
values of α̂2

i d
2
i . Specifically, Theorem 4.4 asserts that a small enough τ shrinks the noise

terms towards zero, minimizing their contribution to SURE. Whereas, according to Theo-
rem 4.2, the heavy tails of the Cauchy priors for the λi terms ensure the large signals are
not shrunk too much and ensures a SURE of 2σ2 for these terms, which is an improvement
over purely global methods of shrinkage.

5. Prediction risk for the global and horseshoe regressions

In this section we compare the theoretical prediction risks of global and global-local horse-
shoe shrinkage regressions. While SURE is a data-dependent estimate of the theoretical
risk, these two quantities are equal in expectation for all n. We use a concentration ar-
gument to derive conditions under which the horseshoe regression will outperform global
shrinkage regression, e.g., ridge regression, in terms of predictive risk. While the analysis
seems difficult for an arbitrary design matrix X, we are able to treat the case of ridge
regression for orthogonal design, i.e., XTX = I. Clearly, if the SVD of X is written as
X = UDV T , then we have D = I and for ridge regression λi = 1 for all i. Thus, for
orthogonal design, Equations (4) and (5) become

(α̂i | αi, σ2)
ind∼ N (αi, σ

2),

(αi | σ2, τ2, λ2i )
ind∼ N (0, σ2τ2),

where τ is the global shrinkage parameter. Since the fit in this model is linear in α̂i, SURE
is equivalent to Mallows’ CL. Equation (14) of Mallows (1973) shows that if τ is chosen to

11
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minimize CL, then the optimal ridge estimate is given in closed form by

α?i =

(
1− nσ2∑n

i=1 α̂
2
i

)
α̂i.

Alternatively, the solution can be directly obtained from Equation (9) by taking di = λi = 1
for all i and by setting τ? = argminτ

∑n
i=1 SUREi. It is perhaps interesting to note that

this “optimal” ridge estimate, where the tuning parameter is allowed to depend on the data,
is no longer linear in α̂. In fact, the optimal solution α? can be seen to be closely related to
the James–Stein estimate of α and its risk can therefore be quantified using the risk bounds
on the James–Stein estimate. As expected due to the global nature of ridge regression, the
relative shrinkage α?i /α̂i of the optimal solution only depends on |α̂|2 =

∑n
i=1 α̂

2
i but not

on the individual components of α̂. Theorem 1 of Casella and Hwang (1982) shows that

1− n− 2

n+ |α|2
≤ R(α, α?)

R(α, α̂)
≤ 1− (n− 2)2

n

(
1

n− 2 + |α|2

)
.

Consequently, if |α|2/n→ c as n→∞ then the James–Stein estimate satisfies

lim
n→∞

R(α, α?)

R(α, α̂)
=

c

c+ 1
.

Thus, α? offers large benefits over the least squares estimate α̂ for small c but it is practically
equivalent to the least squares estimate for large c. The prediction risk of the least squares
estimate for p > n is simply 2nσ2, or an average component-specific risk of 2σ2. We first
show that when true αi = 0, the component-specific risk bound of the horseshoe shrinkage
regression with a fixed τ = 1 (i.e., the case of purely local shrinkage) is less than 2σ2. We
have the following result.

Theorem 5.1 (Prediction risk for the purely local horseshoe regression). Let D = I and let
the global shrinkage parameter in the horseshoe regression be τ2 = 1. When true αi = 0, an
upper bound of the component-wise risk of the purely local horseshoe regression is 1.75σ2 <
2σ2.

A proof can be found in Appendix A.5. The proof uses the fact that the actual risk can
be obtained by computing the expectation of SURE. We split the domains of integration
into three distinct regions and use the bounds on SURE from Theorems 4.2 and 4.4, as
appropriate.

When true αi is large enough, a consequence of Theorem 4.2 is that the component-
specific risk for global-local shrinkage regression is 2σ2. This is because SURE in this case is
almost surely equal to 2σ2 and α̂i is concentrated around true αi. Therefore, it is established
that if only a few components of true α are large and the rest are zero in such a way that
|α|2/n is large, then the horseshoe regression with fixed τ = 1 outperforms ridge regression
in terms of predictive risk. The benefit arises from a lower risk for the αi = 0 terms. On
the other hand, if all components of true α are zero or all are large, the horseshoe regression
need not outperform ridge regression.

Although Theorem 5.1 shows the horseshoe regression with a fixed τ = 1 outperforms the
optimal ridge regression in predictive risk when α = 0, a useful corollary is that the optimal
horseshoe regression still outperforms the optimal ridge regression, where the optimal global
tuning parameters for both methods are chosen by minimizing their respective SURE.

12
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Corollary 5.1 (Prediction risk for the optimal horseshoe regression). Let SUREHS(τ = 1)
and SUREHS(τ = τ∗HS) denote the SURE for the horseshoe regression with fixed τ =
1 and τ = τ∗HS = argminτ (SUREHS(τ)). Then, for any α, R(α, α̂HS(τ = τ∗HS)) ≤
R(α, α̂HS(τ = 1)).

Proof

R(α, α̂HS(τ = τ∗HS)) = Eα̂|α(SUREHS(τ = τ∗HS)) ≤ Eα̂|α(SUREHS(τ = 1)) = R(α, α̂HS(τ = 1)).

Clearly, τ∗HS is a function of the data and this complicates exact prediction risk calculations
for the optimal horseshoe regression as an expectation of SURE as in Theorem 5.1. It is not
clear if an explicit minimizer of SURE analogous to Equation (14) of Mallows (1973) for
ridge regression can be obtained for the horseshoe regression. Nevertheless, Corollary 5.1
shows the risk for the horseshoe regression can only decrease further if one sets τ = τ∗HS ,
similar to the risk result of Stein (1956). This holds because the expectations of SURE are
computed with respect to the distribution of α̂, which is independent of τ given true α.

6. Risk comparisons with other non-convex regressions

In this section we compare the risk of the proposed horseshoe regression with other ap-
proaches that are not shrinkage methods. Specifically, we consider the minimax concave
penalty (MCP) of Zhang (2010). Again, for simplicity assume that the design matrix X is
orthogonal. As pointed out by Zhang (2010), in this case the solution to the MCP estimator
is available in closed form and reduces to the firm shrinkage estimator of Gao and Bruce
(1997), which is given by

δλ,γ(α̂i) =


0, if |α̂i| ≤ λ,
sign(α̂i)

γ(|α̂i|−λ)
γ−1 , if λ ≤ |α̂i| ≤ γλ,

α̂i, if |α̂i| > γλ,

for λ > 0 and γ > 1. For a fixed λ, soft and hard thresholding estimators are obtained
as γ → ∞ and γ → 1+ respectively. An explicit expression for the risk of this estimator
is given in Theorem 1 of Gao and Bruce (1997), from which it can be seen easily that
R(δλ,γ) > λ2{1/2−Φ(−2λ)} when αi = λ for any fixed λ > 0 and γ > 1, where Φ(·) is the
standard normal distribution function. Thus, for MCP to work well, a small value for λ is
essential. However, λ is the threshold below which the estimates are shrunk to zero and
a large λ is favored in a “dense” situation, where there are many true parameters several
standard deviations away from zero. While this behavior is not necessarily a problem for
the MCP, since it is designed with a sparse situation in mind, it is perhaps desirable to
avoid a large risk at a given λ. The horseshoe regression achieves exactly that, since its
component-specific risk in a dense case is 2σ2 by Theorem 4.2. In Supplementary Section
S.1 we verify that the MCP performs worse than both global and global-local shrinkage
methods in a dense situation under a variety of designs X.
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Table 1: The true orthogonalized regression coefficients α0i, their ordinary least squared
estimates α̂i, and singular values di of the design matrix, for n = 100 and p = 500.

i α0i α̂i di α̂idi

1 0.10 0.10 635.10 62.13
2 -0.44 -0.32 3.16 -1.00

. . . . . . . . . . . . . . .
5 -0.13 0.30 3.05 0.91
6 10.07 10.22 3.02 30.88

. . . . . . . . . . . . . . .
29 0.46 0.60 2.53 1.53
30 10.47 11.07 2.51 27.76
. . . . . . . . . . . . . . .
56 0.35 0.57 2.07 1.18
57 10.23 10.66 2.07 22.05
. . . . . . . . . . . . . . .
66 -0.00 -0.35 1.90 -0.66
67 11.14 11.52 1.88 21.70
. . . . . . . . . . . . . . .
95 -0.82 -0.56 1.42 -0.79
96 9.60 10.21 1.40 14.26
. . . . . . . . . . . . . . .
100 0.61 0.91 1.27 1.15

7. Numerical examples

We simulate data where n = 100, and consider the cases p = 100, 200, 300, 400, 500. Let B
be a p×k factor loading matrix, with all entries equal to 1. Let Fi be k×1 matrix of factor
values, with all entries drawn independently from N (0, 1). The ith row of the n× p design
matrix X is generated by a factor model, with number of factors k = 8, as follows:

Xi = BFi + ξi, ξi ∼ N (0, 0.1), for i = 1, . . . , n.

Thus, the columns of X are correlated. Let X = UDW T denote the singular value decom-
position of X. The observations y are generated from Equation (3) with σ2 = 1, where for
the true orthogonalized regression coefficients α0, the 6, 30, 57, 67, and 96th components
are randomly selected as signals, and the remaining 95 components are noise terms. Coeffi-
cients of the signals are generated by a N (10, 0.5) distribution, and coefficients of the noise
terms are generated by a N (0, 0.5) distribution. For the case n = 100 and p = 500, some
of the true orthogonalized regression coefficients α0, their ordinary least squared estimates
α̂, and the corresponding singular values d of the design matrix, are shown in Table 1.

Table 2 lists the SURE for prediction and actual out of sample sum of squared prediction
error (SSE) for the ridge, lasso, PCR and horseshoe regressions. Out of sample prediction
error of the adaptive lasso is also included in the comparisons, although we are unaware of
a formula for computing the SURE for the adaptive lasso. SURE for ridge and PCR can be
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Table 2: SURE and average out of sample prediction SSE (standard deviation of SSE) on
one training set and 200 testing sets for the competing methods for n = 100, for ridge
regression (RR), the lasso regression (LASSO), the adaptive lasso (A LASSO), principal
components regression (PCR) and the horseshoe regression (HS). The lowest SURE in each
row is in italics and the lowest average prediction SSE is in bold. A formula for SURE is
unavailable for the adaptive lasso.

RR LASSO A LASSO PCR HS
p SURE SSE SURE SSE SSE SURE SSE SURE SSE

100 159.02 168.24 125.37 128.98 127.22 162.23 179.81 120.59 126.33
(23.87) (18.80) (18.10) (25.51) (18.77)

200 187.38 174.92 140.99 132.46 151.89 213.90 191.33 139.32 126.99
(21.13) (18.38) (20.47) (22.62) (17.29)

300 192.78 191.91 147.83 145.04 153.64 260.65 253.00 151.24 136.67
(22.95) (19.89) (21.19) (26.58) (18.73)

400 195.02 182.55 148.56 165.63 178.98 346.19 292.02 147.69 143.91
(22.70) (21.55) (20.12) (28.98) (18.41)

500 196.11 188.78 159.95 159.56 186.23 386.50 366.88 144.97 160.11
(22.33) (19.94) (23.50) (39.38) (20.29)

computed by an application of Equation (9) and SURE for the horseshoe regression is given
by Theorem 4.1. SURE for the lasso is calculated using the result given by Tibshirani and
Taylor (2012). In each case, the model is trained on 100 samples. We report the SSE on
100 testing samples, averaged over 200 testing data sets, and their standard deviations. For
ridge, lasso, PCR and horseshoe regression, the global shrinkage parameters were chosen to
minimize SURE for prediction. In adaptive lasso, the shrinkage parameters were chosen by
cross validation due to SURE being unavailable. It can be seen that SURE in most cases are
within one standard deviation of the actual out of sample prediction SSE, suggesting SURE
is an accurate method for evaluating actual out of sample prediction performance. When
p = 100, 200, 300, 400, horseshoe regression has the lowest prediction SSE. When p = 500,
SSE of the lasso and horseshoe regression are close, and the lasso performs marginally
better. The horseshoe regression also has the lowest SURE in all but one cases. Generally,
SURE increases with p for all methods. The SURE for ridge regression approaches the
OLS risk, which is 2nσ2 = 200 in these situations. SURE for PCR is larger than the OLS
risk and PCR happens to be the poorest performer in most settings. Performance of the
adaptive lasso also degrades compared to the lasso and the horseshoe, which remain the
two best performers. Finally, the horseshoe regression outperforms the lasso in four out of
the five settings we considered.

Figure 1 shows contribution to SURE by each component for n = 100 and p = 500, for
ridge, PCR, lasso and horseshoe regressions. The components are ordered left to right on
the x-axis by decreasing magnitude of di, and SURE for prediction on each component are
shown on the y-axis. Note from Table 1 that the 6, 30, 57, 67 and 96th components are the
signals, meaning these terms correspond to a large α0. The PCR risk on the 96th component
is 203.22, which is out of range for the y-axis in the plot. For this data set, PCR selects
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Figure 1: Component-wise SURE for ridge (blue), PCR (gray), lasso (cyan), and horseshoe
regression (red), for n = 100 and p = 500. Signal components are shown in solid squares
and noise components shown in blank circles. Dashed horizontal line is at 2σ2 = 2.
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Figure 2: SURE for ridge (blue), PCR (gray), lasso (cyan) and horseshoe regression (red),
versus α̂d, where α̂ is the OLS estimate of the orthogonalized regression coefficient, and d
is the singular value, for n = 100 and p = 500. Dashed horizontal lines are at 2σ2 = 2 and
2σ2/3 = 0.67.
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81 components, and therefore SURE for the first 81 components equal to 2σ2 = 2 and the
SURE is equal to α̂2

i d
2
i for i = 82, . . . , 100. Component-wise SURE for ridge regression are

large on the signal components, and is decreasing as the singular values d decrease on the
other components. But due to the large global shrinkage parameter τ ridge must select
in presence of both large signals and noise terms, the magnitude of improvement over the
OLS risk 2σ2 is small for the noise terms. On the other hand, the horseshoe estimator
does not shrink the components with large α̂idi heavily and therefore the horseshoe SURE
on the signal components are almost equal to 2σ2 (according to Theorem 4.2). SURE
for the horseshoe is also much smaller than 2σ2 on many of the noise components. Lasso
also appears to be quite effective for the noise terms, but its performance for the signal
components is generally not as effective as the horseshoe.

Figure 2 takes a fresh look at the same results and shows component-wise SURE plotted
against α̂idi. The signal components as well as the first component in Table 1 have α̂idi > 10.
Horseshoe SURE converges to 2σ2 for large α̂idi, as expected from Theorem 4.2. For
these components, the SURE for both ridge and lasso are larger than 2σ2, due to the bias
introduced in estimating large signals by these methods (see also Theorem 1 of Carvalho
et al., 2010). When α̂i

2d2i ≈ 0, risks for lasso and horseshoe are comparable, with lasso being
slightly better. This is because an estimate can be exactly zero for the lasso, but not for the
horseshoe, which is a shrinkage method (as opposed to a selection method). Nevertheless,
the upper bound on SURE for the horseshoe regression at 2σ2/3 when α̂i

2d2i ≈ 0 and
provided τ is chosen to be small enough so that τ2 ≤ d−2i , as established by Theorem 4.4,
can be verified from Figure 2.

Additional simulation results are presented in Supplementary Section S.1, where we (i)
treat a higher dimensional case (p = 1000), (i) perform comparisons with non-convex MCP
(Zhang, 2010) and SCAD (Fan and Li, 2001) regressions, (iii) explore different choices of
X and (iv) explore the effect of the choice of α. The main finding is that the horseshoe
regression is often the best performer when α has a sparse-robust structure as in Table 1,
that is most elements are very small while a few are large so that |α|2 is large. This is
consistent with the theoretical results of Sections 5 and 6.

8. Assessing out of sample prediction in a pharmacogenomics data set

We compare the out of sample prediction error of the horseshoe regression with ridge regres-
sion, PCR, the lasso, the adaptive lasso, MCP and SCAD on a pharmacogenomics data set.
The data were originally described by Szakács et al. (2004), in which the authors studied 60
cancer cell lines in the publicly available NCI-60 database (https://dtp.cancer.gov/discovery development/nci-
60/). The goal here is to predict the expression of the human ABC transporter genes (re-
sponses) using some compounds or drugs (predictors) at which 50% inhibition of cellular
growth for the cell lines are induced. The NCI-60 database includes the concentration level
of 1429 such compounds, out of which we use 853, which did not have any missing values,
as predictors. We investigate the expression levels of transporter genes A1 to A12 (except
for A11, which we omit due to missing values), and B1. Thus, in our study X is a n × p
matrix of predictors with n = 60, p = 853 and Y is a n-dimensional response vector for each
of the 12 candidate transporter genes under consideration.
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To test the performance of the methods, we split each data set into training and testing
sets, with 75% (45 out of 60) of the observations in the training sets. We standardize
each response by subtracting the mean and dividing by the standard deviation. We fit the
model on the training data, and then calculate mean squared prediction error (prediction
MSE) on the testing data. This is repeated for 20 random splits of the data into training
and testing sets. The tuning parameters in ridge regression, the lasso, the adaptive lasso,
SCAD and MCP are chosen by five-fold cross validation on the training data. Similarly,
the number of components in PCR and the global shrinkage parameter τ for horseshoe
regression are chosen by cross validation as well. It is possible to use SURE to select the
tuning parameters or the number of components, but one needs an estimate of the standard
deviation of the errors in high-dimensional regressions. This is a problem of recent interest,
as the OLS estimate of σ2 is not well-defined in the p > n case. Unfortunately, some of
the existing methods we tried, such as the method of moments estimator of Dicker (2014),
often resulted in unreasonable estimates for σ2, such as negative numbers. Thus, we stick
to cross validation here, as it is not necessary to estimate the residual standard deviation
in that case.

The average prediction MSE over 20 random training-testing splits for the competing
methods is reported in Table 3. Average prediction MSE for responses A1, A8 and A10
are around or larger than 1 for all of the methods. Since the responses are standardized
before analysis, we might conclude that none of the methods performed well for these cases.
Among the remaining nine cases, the horseshoe regression substantially outperforms the
other methods for A3, A4, A9, A12 and B1. It is comparable to PCR for A5 and A7, and
is comparable to the adaptive lasso for A6, which are the best performers in the respective
cases. Overall, the horseshoe regression performed the best in 5 among the total 12 cases
we considered.

9. Concluding remarks

We outlined some situations where the horseshoe regression is expected to perform better
compared to some other commonly used “global” shrinkage or selection alternatives for
high-dimensional regression. Specifically, we demonstrated that the global term helps in
mitigating the prediction risk arising from the noise terms, and an appropriate choice for
the tails of the local terms is crucial for controlling the risk due to the signal terms. For this
article we have used the horseshoe prior as our choice for the global-local prior. However, in
recent years, several other priors have been developed that fall in this class. This includes
the horseshoe+ (Bhadra et al., 2017, 2016), the three-parameter beta (Armagan et al.,
2011), the normal-exponential-gamma (Griffin and Brown, 2010), the generalized double
Pareto (Armagan et al., 2013), the generalized shrinkage prior (Denison and George, 2012)
and the Dirichlet–Laplace prior (Bhattacharya et al., 2015). Empirical Bayes approaches
have also appeared (Martin and Walker, 2014) and the spike and slab priors have made
a resurgence due to recently developed efficient computational approaches (Ročková and
George, 2014; Ročková and George, 2016). Especially in the light of Theorem 4.3, we ex-
pect the results developed in this article for the horseshoe to foreshadow similar results
when many of these alternatives are deployed. A particular advantage of using the horse-
shoe prior seems to be the tractable expression for SURE, as developed in Theorem 4.1.
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Table 3: Average out of sample mean squared prediction error computed on 20 random
training-testing splits (number of splits out of 20 with lowest prediction MSE), for each of the
12 human ABC transporter genes (A1–A10, A12, B1) in the pharmacogenomics example.
Methods under consideration are ridge regression (RR), principal components regression
(PCR) , the lasso, the adaptive lasso (A LASSO), the minimax concave penalty (MCP),
the smoothly clipped absolute deviation (SCAD) penalty, and the horseshoe regression
(HS). Lowest prediction MSE and largest number of splits with the lowest prediction MSE
for each response in bold.

Response RR PCR LASSO A LASSO MCP SCAD HS

A1 1.12 1.10 1.00 1.00 1.01 1.06 1.30
(2) (5) (7) (2) (1) (1) (2)

A2 1.00 1.04 0.95 0.93 0.92 0.99 1.15
(3) (1) (7) (5) (1) (0) (3)

A3 0.77 0.91 1.11 0.90 0.92 1.06 0.65
(1) (0) (0) (0) (1) (0) (18)

A4 0.92 0.95 0.97 0.96 0.93 0.99 0.79
(2) (0) (2) (2) (2) (0) (12)

A5 0.82 0.77 1.06 0.81 0.83 0.94 0.79
(1) (6) (4) (1) (2) (0) (6)

A6 0.93 0.92 0.98 0.86 0.87 0.90 0.95
(4) (0) (3) (5) (0) (2) (6)

A7 0.92 0.83 0.92 0.93 0.99 0.93 0.85
(0) (8) (1) (4) (0) (0) (7)

A8 1.08 1.05 1.14 1.01 1.01 1.15 1.34
(6) (4) (6) (4) (0) (0) (0)

A9 0.57 0.64 0.81 0.67 0.77 0.68 0.55
(4) (0) (0) (6) (0) (1) (9)

A10 1.18 1.04 1.00 1.01 1.00 1.06 1.33
(0) (7) (4) (3) (2) (0) (4)

A12 1.01 1.12 1.09 1.01 1.02 1.05 0.80
(0) (0) (2) (2) (1) (0) (15)

B1 0.53 0.59 0.70 0.63 0.91 0.70 0.46
(1) (0) (3) (2) (1) (3) (10)

Whether this advantage translates to some of the other global-local priors mentioned above
is an open question. Following the approach of Stein (1981), our risk results are developed
in a non-asymptotic setting (finite n, finite p > n). In the normal means model, finite sam-
ple risk properties in estimation under heavy-tailed priors have been considered by Polson
and Scott (2012b). However, their work does not consider (a) predictive risk or (b) a linear
regression model. Global-local priors such as the horseshoe and horseshoe+ are known to be
minimax in estimation in the Gaussian sequence model (van der Pas et al., 2014, 2016). For
linear regression, frequentist minimax risk results are discussed by Raskutti et al. (2011);
and Castillo et al. (2015) have shown that spike and slab priors achieve minimax prediction
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risk in regression. Whether the prediction risk for the horseshoe regression is optimal in an
asymptotic sense is an important question to investigate and recent asymptotic prediction
risk results for ridge regression (Dobriban and Wager, 2017) should prove helpful for com-
paring with global shrinkage methods. Another possible direction for future investigation
might be to explore the implications of our findings on the predictive density in terms of
an appropriate metric, say the Kullback-Leibler loss, following the results of George et al.
(2006).
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Appendix A. Proofs

A.1. Proof of Theorem 4.1

Part A follows from Equation (7) with standard algebraic manipulations. To prove part B,
define Zi = 1/(1 + τ2λ2i d

2
i ). Then, from Equation (13)

m(α̂) = (2πσ2)−n/2
n∏
i=1

∫ 1

0
exp(−ziα̂2

i d
2
i /2σ

2)diz
1/2
i

(
ziτ

2d2i
1− zi + ziτ2d2i

)
1

τdi
(1− zi)−1/2z−3/2i dzi

= (2πσ2)−n/2
n∏
i=1

∫ 1

0
exp(−ziα̂2

i d
2
i /2σ

2)(1− zi)−1/2
{

1

τ2d2i
+

(
1− 1

τ2d2i

)
zi

}−1
dzi.

From the definition of the compound confluent hypergeometric (CCH) density in Gordy
(1998), the result of the integral is proportional to the normalizing constant of the CCH
density and we have from Proposition 4.1 that,

m(α̂) ∝ (2πσ2)−n/2
n∏
i=1

H

(
1,

1

2
, 1,

α̂2
i d

2
i

2σ2
, 1,

1

τ2d2i

)
.

In addition, the random variable (Zi | α̂i, σ, τ) follows a CCH(1, 1/2, 1, α̂2
i d

2
i /2σ

2, 1, 1/τ2d2i )
distribution. Lemma 3 of Gordy (1998) gives,

d

ds
H(p, q, r, s, ν, θ) = − p

p+ q
H(p+ 1, q, r, s, ν, θ).

This yields after some algebra that,

m′(α̂i)

m(α̂i)
=− 2

3

H
(

2, 12 , 1,
α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

)
H
(

1, 12 , 1,
α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

) α̂id2i
σ2

,

m′′(α̂i)

m(α̂i)
=
−2

3H
(

2, 12 , 1,
α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

)
d2i
σ2 + 8

15H
(

3, 12 , 1,
α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

)
α̂2
i d

4
i

σ4

H
(

1, 12 , 1,
α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

) .
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The correctness of the assertion

m′(α̂i)

m(α̂i)
= − α̂id

2
i

σ2
E(Zi), and

m′′(α̂i)

m(α̂i)
= −d

2
i

σ2
E(Zi) +

α̂2
i d

4
i

σ4
E(Z2

i ),

can then be verified using Equation (16), completing the proof.

A.2. Proof of Theorem 4.2

Define si = α̂2
i d

2
i /2σ

2 and θi = (τ2d2i )
−1, withθi ≥ 1, si ≥ 1. From Theorem 4.1, the

component-wise SURE is

SUREi =2σ2 − 2σ2E(Zi)− α̂2
i d

2
i {E(Zi)}2 + 2α̂i

2d2iE(Z2
i )

=2σ2[1− E(Zi) + 2siE(Z2
i )− si{E(Zi)}2], (A.1)

Thus,

2σ2[1− E(Zi)− si{E(Zi)}2] ≤ SUREi ≤ 2σ2[1 + 2siE(Z2
i )].

To find bounds on SURE, we need upper bounds on E(Z2
i ) and E(Zi). Clearly, θ−1i ≤

{θi + (1 − θi)zi}−1 ≤ 1, when θi ≥ 1. Let ai = log(s
5/2
i )/si. Then ai ∈ [0, 5/(2e)) when

si ≥ 1. Now,

E(Z2
i ) =

∫ 1
0 z

2
i (1− zi)−

1
2 {θi + (1− θi)zi}−1 exp(−sizi)dzi∫ 1

0 (1− zi)−
1
2 {θi + (1− θi)zi}−1 exp(−sizi)dzi

,

An upper bound to the numerator of E(Z2
i ) can be found as follows.∫ 1

0
z2i (1− zi)−

1
2 {θi + (1− θi)zi}−1 exp(−sizi)dzi

≤
∫ 1

0
z2i (1− zi)−

1
2 exp(−sizi)dzi

=

∫ ai

0
z2i (1− zi)−

1
2 exp(−sizi)dzi +

∫ 1

ai

z2i (1− zi)−
1
2 exp(−sizi)dzi

≤ (1− ai)−
1
2

∫ ai

0
z2i exp(−sizi)dzi + exp(−aisi)

∫ 1

ai

z2i (1− zi)−
1
2dzi

= (1− ai)−
1
2

2

s3i

{
1−

(
1 + aisi +

a2i s
2
i

2

)
exp(−aisi)

}
+ exp(−aisi)

∫ 1

ai

z2i (1− zi)−
1
2dzi

≤ {1− 5/(2e)}−
1
2

2

s3i
+

1

s
5/2
i

∫ 1

0
z2i (1− zi)−

1
2dzi

=
C1

s3i
+

C2

s
5/2
i

,
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where C1 = {1 − 5/(2e)}−
1
2 ≈ 3.53 and C2 =

∫ 1
0 z

2
i (1 − zi)−

1
2dzi = Γ(1/2)Γ(3)/Γ(3.5) =

16/15. Similarly, a lower bound on the denominator of E(Z2
i ) is∫ 1

0
(1− zi)−

1
2 {θi + (1− θi)zi}−1 exp(−sizi)dzi

≥ θ−1i
∫ 1

0
exp(−sizi)dzi

= θ−1i

{
1− exp(−si)

si

}
≥ 1

θi(1 + si)
,

Thus, combining the upper bound on the numerator and the lower bound on the denomi-
nator

E(Z2
i ) ≤ θi(1 + si)

(
C1

s3i
+

C2

s
5/2
i

)
.

Thus,

SUREi ≤ 2σ2[1 + 2siE(Z2
i )]

≤ 2σ2

{
1 + 2θi(1 + si)

(
C1

s2i
+

C2

s
3/2
i

)}
. (A.2)

An upper bound to the numerator of E(Zi) can be found as follows. Let ãi = log(s2i )/si.
Then, ãi ∈ [0, 2/e) for si ≥ 1.∫ 1

0
zi(1− zi)−

1
2 {θi + (1− θi)zi}−1 exp(−sizi)dzi

≤
∫ 1

0
zi(1− zi)−

1
2 exp(−sizi)dzi

=

∫ ãi

0
zi(1− zi)−

1
2 exp(−sizi)dzi +

∫ 1

ãi

zi(1− zi)−
1
2 exp(−sizi)dzi

≤ (1− ãi)−
1
2

∫ ãi

0
zi exp(−sizi)dzi + exp(−ãisi)

∫ 1

ai

zi(1− zi)−
1
2dzi

= (1− ãi)−
1
2

1

s2i
{1− (1 + ãisi) exp(−ãisi)}+ exp(−ãisi)

∫ 1

ãi

zi(1− zi)−
1
2dzi

≤ (1− 2/e)−
1
2

1

s2i
+

1

s2i

∫ 1

0
zi(1− zi)−

1
2dzi

=
C̃1

s2i
+
C̃2

s2i
,

where C̃1 = (1− 2/e)−1/2 ≈ 1.95 and C̃2 =
∫ 1
0 zi(1− zi)

− 1
2dzi = Γ(1/2)Γ(2)/Γ(2.5) = 4/3.

The lower bound on the denominator is the same as before. Thus,

E(Zi) ≤
θi(1 + si)

s2i

(
C̃1 + C̃2

)
.
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Thus,

SUREi ≥ 2σ2[1− E(Zi)− si{E(Zi)}2]

≥ 2σ2
{

1− θi(C̃1 + C̃2)
(1 + si)

s2i
− θ2i (C̃1 + C̃2)

2 (1 + si)
2

s3i

}
. (A.3)

Thus, combining Equations (A.2) and (A.3) we get{
1− θi(C̃1 + C̃2)

(1 + si)

s2i
− θ2i (C̃1 + C̃2)

2 (1 + si)
2

s3i

}
≤ SUREi

2σ2
≤

{
1 + 2θi(1 + si)

(
C1

s2i
+

C2

s
3/2
i

)}
,

for si ≥ 1, θi ≥ 1.

A.3. Proof of Theorem 4.3

Our proof is similar to the proof of Theorem 1 of Polson and Scott (2011). Note from
Equations (10–11) that integrating out αi we have

α̂i | λ2i , σ2, τ2
ind∼ N (0, σ2(d−2i + τ2λ2i )).

Let p(λ2i ) ∼ (λ2i )
a−1L(λ2i ), as λ2i →∞ where a ≤ 0. Define ui = σ2(d−2i + τ2λ2i ). Then, as

in Theorem 1 of Polson and Scott (2011), we have

p(ui) ∼ ua−1i L(ui), as ui →∞.

The marginal of α̂i is then given by

m(α̂i) =

∫
1√

2πui
exp{−α̂2

i /(2ui)}p(ui)dui.

An application of Theorem 6.1 of Barndorff-Nielsen et al. (1982) shows that

m(α̂i) ∼ |α̂i|2a−1L(|α̂i|) as |α̂i| → ∞.

Thus, for large |α̂i|

∂ logm(α̂i)

∂α̂i
=

(2a− 1)

|α̂i|
+
∂ logL(|α̂i|)

∂α̂i
. (A.4)

Clearly, the first term in Equation (A.4) goes to zero as |α̂i| → ∞. For the second term, we
need to invoke the celebrated representation theorem by Karamata. A proof can be found
in Bingham et al. (1989).

Result A.1 (Karamata’s representation theorem). A function L is slowly varying if and
only if there exists B > 0 such that for all x ≥ B the function can be written in the form

L(x) = exp

(
η(x) +

∫ x

B

ε(t)

t
dt

)
,

where η(x) is a bounded measurable function of a real variable converging to a finite number
as x goes to infinity ε(x) is a bounded measurable function of a real variable converging to
zero as x goes to infinity.

23



Bhadra et al.

Thus, using the properties of η(x) and ε(x) from the result above

d log(L(x))

dx
= η′(x) +

ε(x)

x
→ 0 as x→∞.

Using this in Equation (A.4) shows ∂ logm(α̂i)/∂α̂i → 0 as |α̂i| → ∞. By similar calcula-
tions, ∂2 logm(α̂i)/∂

2α̂i → 0 as |α̂i| → ∞. From Equation (7)

SUREi =σ4d−2i

{
∂

∂α̂i
logm(α̂i)

}2

+ 2σ2
{

1 + σ2d−2i
∂2

∂α̂2
i

logm(α̂i)

}
.

Thus, SUREi → 2σ2, almost surely, as |α̂i| → ∞.

A.4. Proof of Theorem 4.4

The proof of Theorem 4.4 makes use of technical lemmas in Appendix A.6.
Recall from Appendix A.1 that if we define Zi = 1/(1 + τ2λ2i d

2
i ) then the density of Zi

is given by

(Zi | α̂i, di, τ, σ2) ∼ CCH

(
Zi | 1,

1

2
, 1,

α̂2
i d

2
i

2σ2
, 1,

1

τ2d2i

)
. (A.5)

Then SURE is given by SURE =
∑n

i=1 SUREi with

SUREi = 2σ2[1− E(Zi) + 2siE(Z2
i )− si{E(Zi)}2]

= 2σ2[1− E(Zi) + siE(Z2
i ) + siVar(Zi)], (A.6)

where si = α̂2
i d

2
i /2σ

2. Thus,

∂{SUREi}
∂si

= −2σ2
∂E(Zi)

∂si
+ 2σ2

∂

∂si
{siE(Z2

i )}+ 2σ2
∂

∂si
{siVar(Zi)}

:= I + II + III. (A.7)

Now, as a corollary to Lemma A.1, (∂/∂si)E(Zi) = {E(Zi)}2 − E(Z2
i ) = −Var(Zi) < 0,

giving I > 0. The strict inequality follows from the fact that Zi is not almost surely a
constant for any si ∈ R and (∂/∂si)E(Zi) is continuous at si = 0. Next, consider II. Define
θi = (τ2d2i )

−1 and let 0 ≤ si ≤ 1. Then,

∂

∂si
{siE(Z2

i )} = E(Z2
i ) + si

∂

∂si
E(Z2

i )

= E(Z2
i ) + si{E(Zi)E(Z2

i )− E(Z3
i )} (by Lemma A.1)

= siE(Zi)E(Z2
i ) + {E(Z2

i )− siE(Z3
i )}.

Now, clearly, the first term, siE(Zi)E(Z2
i ) ≥ 0. We also have Z2

i − siZ3
i = Z2

i (1− siZi) ≥ 0
a.s. when 0 ≤ Zi ≤ 1 a.s. and 0 ≤ si ≤ 1. Thus, the second term E(Z2

i ) − siE(Z3
i ) ≥ 0.

Putting the terms together gives II ≥ 0. Finally, consider III. Denote E(Zi) = µi. Then,

∂

∂si
{siVar(Zi)} = Var(Zi) + si

∂

∂si
{Var(Zi)}

= Var(Zi)− si
∂2E(Zi)

∂s2i
= E{(Zi − µi)2} − siE{(Zi − µi)3} (by Lemma A.2)

= E[(Zi − µi)2{1− si(Zi − µi)}].

24



Prediction Risk

Now, (Zi − µi)2{1 − si(Zi − µi)} ≥ 0 a.s. when 0 ≤ Zi ≤ 1 a.s. and 0 ≤ si ≤ 1 and thus,
III ≥ 0. Using I, II and III in Equation (A.7) yields SUREi is an increasing function of si
when 0 ≤ si ≤ 1, completing the proof of Part A.

To prove Part B, we need to derive an upper bound on SURE when si = 0. First,
consider si = 0 and 0 < θi ≤ 1. we have from Equation (A.6) that SUREi = 2σ2(1−EZi).
By Lemma A.3, (∂/∂θi)E(Zi) > 0 and SUREi is a monotone decreasing function of θi,
where θi = (τ2d2i )

−1. Next consider the case where si = 0 and θi ∈ (1,∞). Define
Z̃i = 1 − Zi ∈ (0, 1) when Zi ∈ (0, 1). Then, by Equation (A.11) and a formula on Page 9
of Gordy (1998), we have that Z̃i also follows a CCH distribution. Specifically,

(Z̃i | α̂i, di, τ, σ2) ∼ CCH

(
Z̃i |

1

2
, 1, 1,− α̂

2
i d

2
i

2σ2
, 1, τ2d2i

)
,

and we have SUREi = 2σ2E(Z̃i). Define θ̃i = θ−1i = τ2d2i . Then by Lemma A.3,
(∂/∂θ̃i)E(Z̃i) = −Cov(Z̃i, W̃i) > 0 on 0 < θ̃i < 1. Therefore, SUREi is a monotone
increasing function of θ̃i on 0 < θ̃i < 1, or equivalently a monotone decreasing function of
θi on θi ∈ (1,∞).

Thus, combining the two cases above, we get that SURE at si = 0 is a monotone
decreasing function of θi for any θi ∈ (0,∞), or equivalently, an increasing function of τ2d2i .
Since 0 ≤ Z̃i ≤ 1 almost surely, a natural upper bound on SUREi is 2σ2. However, it is
possible to do better provided τ is chosen sufficiently small. Assume that τ2 ≤ d−2i . Then,
since SUREi is monotone increasing in θi, the upper bound on SURE is achieved when
θi = (τ2d2i )

−1 = 1. In this case, E(Zi) has a particularly simple expression, given by

E(Zi) =

∫ 1
0 zi(1− zi)

− 1
2 {θi + (1− θi)zi}−1dzi∫ 1

0 (1− zi)−
1
2 {θi + (1− θi)zi}−1dzi

=

∫ 1
0 zi(1− zi)

− 1
2dzi∫ 1

0 (1− zi)−
1
2dzi

=
2

3
. (A.8)

Thus, supSUREi = 2σ2(1− EZi) = 2σ2/3, completing the proof of Part B.

To prove Part C, we first note that when si = 1 we have

SUREi = 2σ2[1− E(Zi)|si=1 + 2E(Z2
i )|si=1 − {E(Zi)|si=1}2]

where E(Zi) and E(Z2
i ) are evaluated at si = 1. Recall that when θi ≥ 1 and zi ∈ (0, 1) we

have θ−1i ≤ {θi + (1− θi)zi}−1 ≤ 1. Thus,

E(Z2
i )|si=1 =

∫ 1
0 z

2
i (1− zi)−

1
2 {θi + (1− θi)zi}−1 exp(−zi)dzi∫ 1

0 (1− zi)−
1
2 {θi + (1− θi)zi}−1 exp(−zi)dzi

≤
∫ 1
0 z

2
i (1− zi)−

1
2 exp(−zi)dzi

θ−1i
∫ 1
0 (1− zi)−

1
2 exp(−zi)dzi

≈ θi
0.459

1.076
= 0.43θi, (A.9)
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and

E(Zi)|si=1 =

∫ 1
0 zi(1− zi)

− 1
2 {θi + (1− θi)zi}−1 exp(−zi)dzi∫ 1

0 (1− zi)−
1
2 {θi + (1− θi)zi}−1 exp(−zi)dzi

,

≥
θ−1i

∫ 1
0 zi(1− zi)

− 1
2 exp(−zi)dzi∫ 1

0 (1− zi)−
1
2 exp(−zi)dzi

≈ θ−1i
0.614

1.076
= 0.57θ−1i . (A.10)

Thus,

SUREi ≤ 2σ2

[
1− 0.57

θi
+ 0.86θi −

(
0.57

θi

)2
]
.

When θi = 1, it can be seen that SUREi ≤ 1.93σ2.

A.5. Proof of Theorem 5.1

The proof of Theorem 5.1 makes use of technical lemmas in Appendix A.6.
Recall from Appendix A.1 that if we define Zi = 1/(1 + τ2λ2i d

2
i ) then the density of Zi

is given by

(Zi | α̂i, di, τ, σ2) ∼ CCH (Zi | 1, 1/2, 1, si, 1, θi) . (A.11)

where si = α̂2
i d

2
i /2σ

2 and θi = (τ2d2i )
−1. Consider the case where di = 1 for all i and τ2 = 1,

i.e., θi = 1 for all i. From Equation (A.6), the risk estimate is SURE =
∑n

i=1 SUREi with

SUREi = 2σ2[1− E(Zi) + siE(Z2
i ) + siVar(Zi)],

≤ 2σ2[1− E(Zi) + si + siVar(Zi)] = Ři.

We begin by showing that the upper bound Ři = 2σ2[1−E(Zi)+si+siVar(Zi)] is convex in
si when si ∈ (0, 1). It suffices to show −E(Zi) and siVar(Zi) are separately convex. First,
(∂2/∂2si)E(Zi) = E{(Zi − µi)3} ≤ 0, by Lemmas A.2 and A.4, proving −E(Zi) is convex.
Next,

∂2

∂s2i
{siVar(Zi)} =

∂

∂si

[
Var(Zi) + si

∂

∂si
{Var(Zi)}

]
= 2

∂

∂si
{Var(Zi)}+ si

∂2

∂s2i
{Var(Zi)}

= −2E(Zi − µi)3 − si
∂

∂si
E(Zi − µi)3 (by Lemma A.2)

= −2E(Zi − µi)3 + siE(Zi − µi)4, (by Lemma A.5)

≥ 0,

where the last inequality follows by Lemma A.4. Thus, since Ři is convex, it lies entirely
below the straight line joining the two end points for si ∈ (0, 1). But Ři|si=0 ≤ 2σ2/3 =
0.67σ2 (by Equation (A.8)) and

Ři|si=1 ≤ 2σ2
[
1− 0.57 + 1 + 0.43− (0.57)2

]
= 3.07σ2,
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by Equations (A.9) and (A.10).Thus, by convexity

SUREi ≤ Ři ≤ 0.67σ2 + si(3.07− 0.67)σ2 = (0.67 + 2.4si)σ
2 for si ∈ (0, 1) (A.12)

We remark here that our simulations suggest SUREi itself is convex, not just the upper
bound Ři, although a proof seems elusive. Nevertheless, as we shall see below, the convexity
of Ři is sufficient for our purposes.

Next, consider the interval si ∈ (1, 3). Noting that both E(Zi) and E(Z2
i ) are monotone

decreasing functions of si we have

SUREi ≤ 2σ2[1− E(Zi)|si=3 + 2si{E(Z2
i )|si=1} − si{E(Zi)|si=3}2]

But,

E(Zi)|si=3,θi=1 =

∫ 1
0 zi(1− zi)

− 1
2 exp(−3zi)dzi∫ 1

0 (1− zi)−
1
2 exp(−3zi)dzi

= 0.35.

E(Z2
i )|si=1 < 0.43 from Equation (A.9). Thus,

SUREi ≤ 2σ2[1− 0.35 + 0.86si − si(0.35)2}2] = 2σ2(0.65 + 0.74si) for si ∈ (1, 3). (A.13)

Using the upper bound from Theorem 4.2,

SUREi ≤ 11.55σ2 for si ≥ 3. (A.14)

When αi = 0, we have that α̂i ∼ N (0, σ2d−2i ). Thus, α̂2
i d

2
i /σ

2 ∼ χ2(1). Since si = α̂2
i d

2
i /2σ

2

we have that p(si) = (π)−1/2s
−1/2
i exp(−si) for si ∈ (0,∞). Combining Equations (A.12),

(A.13) and (A.14) we have

Riski = E(SUREi) ≤
∫ 1

0
σ2(0.67 + 2.4si)π

−1/2s
−1/2
i exp(−si)dsi

+

∫ 3

1
2σ2(0.65 + 0.74si)π

−1/2s
−1/2
i exp(−si)dsi

+

∫ ∞
3

11.55σ2π−1/2s
−1/2
i exp(−si)dsi

= 1.75σ2.

A.6. Technical lemmas

Lemma A.1 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂/∂s)E(Zk) = E(Z)E(Zk)− E(Zk+1).

Lemma A.2 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂2/∂2s)E(Z) = −(∂/∂s)Var(Z) = E{(Z −
µ)3}, where µ = E(Z).

Lemma A.3 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂/∂θ)E(Z) = −Cov(Z,W ), for W = (1 −
νZ){θ + (1− θ)νZ}−1. If 0 < θ ≤ 1 then (∂/∂θ)E(Z) > 0.

Lemma A.4 If Z ∼ CCH(p, q, r, s, 1, 1) with q > p, then E(Z − µ)3 ≤ 0, where µ = E(Z).

Lemma A.5 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂/∂s)E(Z − µ)3 = −E{(Z − µ)4}, where
µ = E(Z).
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A.6.1. Proof of Lemma A.1

Let, Z ∼ CCH(p, q, r, s, ν, θ). Then for any integer k

E(Zk) =

∫ 1/ν
0 zk+p−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν
0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

.

Thus,

∂

∂s
E(Zk) =

∫ 1/ν
0 −zk+p(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν
0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

−

[∫ 1/ν
0 zk+p−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν
0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν
0 −zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν
0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=− E(Zk+1) + E(Z)E(Zk).

For an alternative proof directly using the H(·) functions, see Appendix D of Gordy (1998).

A.6.2. Proof of Lemma A.2

Let, Z ∼ CCH(p, q, r, s, ν, θ). From Lemma A.1, (∂/∂s)E(Z) = −E(Z2) + {E(Z)}2 =
−Var(Z). Let µ = E(Z). Then,

∂2

∂s2
E(Z) =− ∂

∂s
Var(Z)

=− ∂

∂s

[∫ 1/ν
0 (z − µ)2zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]

=

∫ 1/ν
0 (z − µ)2zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

−

[∫ 1/ν
0 (z − µ)2zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν
0 zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=Cov(Z, (Z − µ)2)

=E[(Z − µ){(Z − µ)2 − E(Z − µ)2}]
=E{(Z − µ)3} −Var(Z)E(Z − µ) = E{(Z − µ)3}.
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A.6.3. Proof of Lemma A.3

Let Z ∼ CCH(p, q, r, s, ν, θ) and W = (1− νZ){θ + (1− θ)νZ}−1. Then,

∂

∂θ
E(Z) =−

∫ 1/ν
0 zp(1− νz)q{θ + (1− θ)νz}−(r+1) exp(−sz)dz∫ 1/ν
0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

+

[ ∫ 1/ν
0 zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν
0 zp−1(1− νz)q{θ + (1− θ)νz}−(r+1) exp(−sz)dz∫ 1/ν
0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=− E(ZW ) + E(Z)E(W ) = −Cov(Z,W ).

When 0 < θ ≤ 1, it is obvious that Z andW are negatively correlated, and thus−Cov(Z,W ) >
0.

A.6.4. Proof of Lemma A.4

Let Z ∼ CCH(p, q, r, s, 1, 1). Then,

E(Z − µ)3 =

∫ 1
0 (z − µ)3zp−1(1− z)q−1 exp(−sz)dz∫ 1

0 z
p−1(1− z)q−1 exp(−sz)dz

,

which can be seen to have the same sign as the third central moment, or skewness of a
Beta(p, q) random variable, which is negative when q > p.

A.6.5. Proof of Lemma A.5

Let, Z ∼ CCH(p, q, r, s, ν, θ). Let µ = E(Z). Then,

∂

∂s
E(Z − µ)3 =−

∫ 1/ν
0 (z − µ)3zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

+

[∫ 1/ν
0 (z − µ)3zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν
0 zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0 zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=− Cov(Z, (Z − µ)3)

=− E[(Z − µ){(Z − µ)3 − E(Z − µ)3}]
=− E{(Z − µ)4}+ E(Z − µ)3E(Z − µ) = −E{(Z − µ)4}.
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regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
74(2):287–311, 2012a.

Nicholas G. Polson and James G. Scott. On the half-Cauchy prior for a global scale pa-
rameter. Bayesian Analysis, 7(4):887–902, 12 2012b. doi: 10.1214/12-BA730. URL
http://dx.doi.org/10.1214/12-BA730.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for high-
dimensional linear regression over `q-balls. IEEE Transactions on Information Theory,
57(10):6976–6994, 2011.
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S.1. Additional simulations

We provide additional simulation results, complementing the results in Table 2. For each

simulation setting, we report SURE when a formula is available. We also report the average

out of sample prediction SSE (standard deviation of SSE) computed based on one training

set and 200 testing sets. For each setting, n = 100. The methods under consideration are

ridge regression (RR), principal components regression (PCR), the lasso, the adaptive lasso

(A LASSO), the minimax concave penalty (MCP), the smoothly clipped absolute deviation

(SCAD) penalty and the proposed horseshoe regression (HS). The method with the lowest

SSE is in bold and that with lowest SURE is in italics for each setting. The features of

these additional simulations include the following.

1. We explore a higher dimensional case (p = 1000) for each setting.

2. We incorporate two non-convex regression methods for comparisons. These are SCAD

(Fan and Li, 2001) and MCP (Zhang, 2010).

3. We explore different choices of the design matrix X. These include three cases: (i) X

is generated from a factor model, where it is relatively ill-conditioned (as in Table 2),

(ii) X is generated from a standard normal, where it is well-conditioned and (iii)

X is exactly orthogonal, with all singular values equal to 1. These are reported in

corresponding table captions.

4. We explore different choices of true α. These include three cases: (i) Sparse-robust

α, where most elements of α are close to zero and a few are large, (ii) null α, where

all elements of α are zero and (iii) dense α, where all elements are non-zero. Exact

settings and the value of ||α||2 are reported in the table captions.

The major finding is that the horseshoe regression outperforms the other global shrinkage

methods (ridge and PCR) when α is sparse-robust, which is consistent with the theoretical

observation in Section 5. It also outperforms the other selection-based methods in this

case. On the other hand, the dense α case is most often favorable to ridge regression,

while the null α case is favorable to selection-based methods such as the lasso, adaptive

lasso, MCP or SCAD, due to the ability of these methods to produce exact zero estimates.

However, the selection-based methods perform considerably worse compared to both global

and global-local shrinkage methods in the dense α case.
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Table S.1: Sparse-robust α (five large coefficients equal to 10 and other coefficients equal
to 0.5 or −0.5 randomly, giving

∑n
i=1 α

2
i = 523.75); X generated by a factor model with 4

factors, each factor follows a standard normal distribution; d1/dn is the ratio of largest and
smallest singular values of X.

RR PCR LASSO A LASSO MCP SCAD HS
p d1/dn SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 2360.43 165.45 159.83 163.80 161.62 122.78 145.07 132.25 127.07 127.85 116.01 123.07
(22.02) (21.28) (19.39) (17.57) (16.71) (17.19) (16.43)

200 28.47 188.13 206.39 217.40 244.71 174.48 162.94 148.41 154.01 157.73 160.89 152.37
(28.61) (29.80) (24.44) (22.48) (23.17) (23.23) (22.75)

300 22.76 192.35 212.05 266.84 280.25 155.26 190.09 175.46 172.18 176.29 157.50 164.17
(28.50) (32.62) (26.20) (22.17) (21.55) (22.19) (22.85)

400 21.81 194.73 199.36 337.32 328.48 179.45 182.89 197.25 199.08 198.40 172.63 165.15
(28.75) (34.79) (27.41) (25.02) (25.52) (25.31) (24.67)

500 18.18 196.03 180.12 410.82 379.03 158.07 173.82 223.21 224.91 226.76 166.10 161.77
(27.16) (39.41) (26.50) (27.98) (29.65) (29.26) (24.22)

1000 15.20 197.91 184.86 669.69 736.69 196.83 205.28 345.26 344.04 344.04 191.64 182.18
(26.42) (56.58) (29.56) (36.60) (37.34) (37.34) (25.43)

Table S.2: Null α (
∑n

i=1 α
2
i = 0); X is the same as in Table S.1.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 88.23 100.86 92.85 113.28 87.36 100.81 100.70 100.81 100.81 92.42 102.31
(13.20) (14.91) (13.29) (13.21) (13.29) (13.29) (13.72)

200 121.30 107.68 128.83 115.65 117.90 105.77 100.32 104.39 101.78 122.29 111.39
(15.70) (16.28) (15.06) (14.80) (14.93) (14.89) (16.12)

300 125.78 101.36 139.96 124.37 108.85 111.85 101.30 104.89 102.91 119.67 112.00
(13.99) (17.35) (15.37) (14.02) (14.27) (14.00) (15.76)

400 113.00 99.50 113.50 99.41 102.81 111.92 114.62 99.40 110.30 113.42 107.20
(13.12) (13.09) (15.51) (15.80) (13.20) (15.20) (14.90)

500 90.74 101.04 88.26 107.31 90.26 99.49 99.06 99.49 99.49 101.55 102.93
(14.17) (15.08) (14.16) (14.04) (14.16) (14.16) (14.68)

1000 88.86 100.34 85.67 103.47 82.51 100.43 99.52 100.43 100.41 99.73 104.84
(14.00) (14.29) (13.90) (13.70) (13.90) (14.00) (14.96)
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Table S.3: Dense α (all coefficients equal to 2, giving
∑n

i=1 α
2
i = 400); X is the same as in

Table S.1.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 162.49 159.94 177.47 175.19 194.86 203.89 504.55 491.67 491.67 185.46 173.89
(21.60) (22.36) (28.11) (46.13) (45.31) (45.31) (23.63)

200 183.75 200.92 196.06 233.12 211.99 232.36 960.77 895.83 911.94 204.10 228.18
(27.97) (31.18) (31.06) (59.48) (60.85) (60.19) (31.21)

300 189.38 209.92 200.39 225.92 216.01 524.84 1344.27 1298.80 1298.80 206.99 227.55
(27.88) (30.15) (69.45) (71.29) (77.97) (77.97) (29.98)

400 193.02 195.01 197.74 217.68 218.16 306.15 1768.05 1675.73 1675.73 207.81 213.91
(28.92) (31.02) (42.65) (78.92) (75.86) (75.86) (31.14)

500 194.85 175.46 208.87 201.18 220.34 743.40 2154.61 2082.54 2081.42 207.93 188.93
(26.52) (29.07) (100.54) (92.70) (92.93) (93.37) (28.10)

1000 197.37 181.65 247.40 197.59 224.75 210.78 4280.80 4075.00 4075.00 203.47 186.48
(26.50) (27.76) (29.70) (145.28) (138.72) (138.72) (26.95)

Table S.4: Sparse-robust α (five large coefficients equal to 10 and other coefficients equal to
0.5 or −0.5 randomly, giving

∑n
i=1 α

2
i = 523.75); X follows a standard normal distribution;

d1/dn is the ratio of largest and smallest singular values of X.

RR PCR LASSO A LASSO MCP SCAD HS
p d1/dn SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 351.2 196.72 188.67 228.78 231.34 207.63 425.67 2537.23 2573.27 2573.27 195.22 188.52
(29.04) (34.36) (59.68) (112.58) (128.46) (128.46) (28.90)

200 5.73 199.84 193.41 221.35 206.25 218.26 1618.40 4849.94 4915.72 4964.26 201.91 194.14
(28.36) (28.28) (211.54) (146.61) (186.74) (186.55) (28.45)

300 3.63 199.91 217.43 8538.46 8082.93 222.62 1926.13 13132.01 7316.38 7316.39 200.92 219.97
(27.91) (320.98) (248.97) (281.12) (218.82) (218.83) (28.13)

400 2.89 199.94 197.47 228.38 223.43 224.53 2384.04 9593.41 9695.47 9695.47 200.31 197.69
(27.43) (31.13) (299.58) (210.42) (323.72) (323.72) (27.46)

500 2.51 199.95 193.86 256.09 273.63 224.96 471.73 11980.15 11991.11 11991.11 200.15 194.17
(27.26) (33.97) (60.52) (235.77) (272.80) (272.80) (27.24)

1000 1.88 199.98 185.85 605.64 560.45 222.18 5781.13 23866.06 24566.13 24566.13 199.96 185.79
(27.17) (45.94) (759.08) (326.06) (941.16) (941.16) (27.17)
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Table S.5: Null α (
∑n

i=1 α
2
i = 0); X is the same as in Table S.4.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 118.45 119.12 96.35 106.88 92.06 101.21 100.52 101.21 101.21 119.11 114.69
(18.19) (15.18) (14.33) (14.20) (14.33) (14.33) (17.47)

200 136.93 135.02 96.49 100.14 94.54 100.15 100.13 100.39 102.06 126.19 126.34
(21.74) (14.77) (14.69) (14.70) (14.88) (15.26) (20.13)

300 152.52 160.29 119.00 131.94 118.15 100.71 100.49 100.71 100.71 140.91 140.08
(21.61) (18.01) (14.48) (14.37) (14.48) (14.48) (18.93)

400 158.64 159.13 100.88 104.06 96.30 103.07 100.46 103.03 103.03 138.62 132.14
(23.15) (15.59) (15.11) (14.82) (15.04) (15.04) (19.62)

500 166.06 158.83 98.64 98.10 94.30 100.36 97.99 100.36 100.36 140.14 131.53
(23.35) (14.50) (14.79) (14.50) (14.79) (14.79) (19.59)

1000 181.23 169.22 89.95 100.66 87.79 100.07 99.80 100.66 100.51 141.11 138.94
(25.25) (14.10) (14.03) (14.00) (14.08) (14.07) (21.12)

Table S.6: Dense α (all coefficients equal to 2, giving
∑n

i=1 α
2
i = 400); X is the same as in

Table S.4.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 193.13 188.60 206.31 200.53 222.52 210.23 40019.73 40063.42 40063.42 199.25 191.74
(28.91) (29.51) (31.36) (690.71) (717.27) (717.27) (29.37)

200 199.76 193.93 392.38 349.52 224.73 316.05 80016.11 80187.49 80187.49 200.14 194.48
(28.41) (37.90) (42.77) (983.86) (1102.52) (1102.52) (28.50)

300 199.88 217.60 400.63 445.11 222.50 16845.87 120071.46 123161.75 123161.75 200.02 217.75
(27.93) (43.70) (2167.53) (1191.24) (3757.26) (3757.26) (27.92)

400 199.92 196.61 627.97 618.38 222.51 43325.17 159926.82 161662.45 161662.45 200.00 196.70
(27.35) (59.10) (5447.99) (1418.60) (3304.65) (3304.65) (27.35)

500 199.94 193.02 794.03 823.27 225.01 6497.32 199982.59 200043.69 200043.69 200.00 193.33
(27.16) (62.69) (824.72) (1550.64) (1647.47) (1647.47) (27.18)

1000 199.97 185.98 2116.68 2108.78 224.77 3145.06 399770.90 400168.82 400168.82 200.03 186.02
(27.17) (101.50) (411.60) (2359.10) (2934.25) (2934.25) (27.17)

Table S.7: Sparse-robust α (five large coefficients equal to 10 and other coefficients equal
to 0.5 or −0.5 randomly, giving

∑n
i=1 α

2
i = 523.75); X with all singular values equal to 1.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 183.50 179.99 291.45 275.49 139.29 139.39 129.30 126.70 126.19 131.81 122.60
(25.31) (32.44) (20.36) (19.20) (18.79) (18.83) (18.72)

200 184.47 196.14 261.65 277.35 135.93 150.17 128.76 129.25 129.58 129.15 131.16
(28.79) (33.30) (21.76) (17.75) (17.61) (17.90) (18.63)

300 182.50 192.24 267.96 269.04 126.35 146.72 132.26 132.05 132.17 119.09 128.72
(25.37) (30.40) (18.96) (17.85) (17.87) (17.73) (17.34)

400 184.03 178.58 311.01 287.95 145.28 139.68 128.94 127.57 127.41 130.13 123.83
(25.20) (32.98) (19.20) (17.40) (17.42) (17.43) (17.02)

500 183.81 173.44 278.35 268.85 147.54 139.74 126.65 127.19 126.30 132.70 120.78
(24.08) (30.78) (19.98) (18.36) (18.31) (18.17) (17.29)

1000 185.36 166.39 280.59 262.54 124.52 130.61 128.83 129.78 129.47 119.24 125.49
(23.16) (30.01) (18.02) (17.50) (17.70) (17.62) (17.37)
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Table S.8: Null α (
∑n

i=1 α
2
i = 0); X with all singular values equal to 1.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 94.70 100.13 97.63 102.62 94.54 100.15 100.13 100.15 100.15 99.92 101.44
(14.71) (15.37) (14.69) (14.70) (14.69) (14.69) (15.06)

200 115.52 103.43 111.09 118.11 109.16 122.81 100.49 112.22 100.80 116.62 106.72
(14.80) (16.91) (17.79) (14.37) (16.20) (14.53) (15.47)

300 98.74 100.49 99.45 113.35 96.40 103.03 100.46 103.03 103.03 103.10 102.40
(14.80) (16.49) (15.04) (14.82) (15.04) (15.04) (14.87)

400 96.78 97.99 103.88 102.24 94.02 103.08 97.99 101.71 103.17 99.64 101.01
(14.49) (15.12) (14.96) (14.50) (14.81) (14.97) (14.78)

500 88.55 99.97 89.06 100.91 87.74 100.65 99.98 100.65 100.65 93.63 101.53
(14.81) (14.72) (14.87) (14.83) (14.87) (14.87) (14.98)

1000 88.87 100.94 91.96 107.30 88.45 101.14 100.95 101.62 101.14 94.34 102.26
(14.17) (15.40) (14.14) (14.17) (14.30) (14.14) (14.48)

Table S.9: Dense α (all coefficients equal to 2, giving
∑n

i=1 α
2
i = 400); X with all singular

values equal to 1.

RR PCR LASSO A LASSO MCP SCAD HS
p SURE SSE SURE SSE SURE SSE SSE SSE SSE SURE SSE

100 177.89 183.69 220.87 200.41 203.16 307.44 502.55 505.43 505.43 200.80 204.16
(25.16) (26.35) (43.19) (41.53) (43.20) (43.20) (27.46)

200 181.88 188.39 207.49 239.95 214.11 255.88 499.88 498.84 498.84 205.16 217.46
(27.10) (33.45) (35.61) (41.69) (42.90) (42.90) (30.81)

300 176.64 193.53 215.03 205.00 196.19 250.76 496.84 497.60 495.93 199.33 212.19
(25.76) (26.70) (32.66) (45.74) (47.41) (45.90) (27.68)

400 174.62 195.83 248.90 249.51 209.80 221.41 495.21 494.17 494.17 198.84 206.49
(26.36) (32.46) (29.85) (40.50) (40.89) (40.89) (28.41)

500 179.13 173.13 202.78 192.97 214.36 201.27 501.67 503.19 503.19 205.16 193.40
(23.18) (25.08) (25.63) (38.90) (38.93) (38.93) (25.60)

1000 179.32 173.71 225.50 195.46 209.35 248.20 503.44 507.29 507.29 204.51 194.73
(24.14) (25.78) (30.87) (41.48) (41.38) (41.38) (26.67)
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