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Abstract

This paper studies the nonparametric modal regression problem systematically from a
statistical learning viewpoint. Originally motivated by pursuing a theoretical understanding
of the maximum correntropy criterion based regression (MCCR), our study reveals that
MCCR with a tending-to-zero scale parameter is essentially modal regression. We show that
the nonparametric modal regression problem can be approached via the classical empirical
risk minimization. Some efforts are then made to develop a framework for analyzing and
implementing modal regression. For instance, the modal regression function is described,
the modal regression risk is defined explicitly and its Bayes rule is characterized; for the
sake of computational tractability, the surrogate modal regression risk, which is termed
as the generalization risk in our study, is introduced. On the theoretical side, the excess
modal regression risk, the excess generalization risk, the function estimation error, and
the relations among the above three quantities are studied rigorously. It turns out that
under mild conditions, function estimation consistency and convergence may be pursued
in modal regression as in vanilla regression protocols such as mean regression, median
regression, and quantile regression. On the practical side, the implementation issues of
modal regression including the computational algorithm and the selection of the tuning
parameters are discussed. Numerical validations on modal regression are also conducted to
verify our findings.
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1. Introduction

In this paper, we are interested in the nonparametric regression problem which aims at infer-
ring the functional relation between input and output. Regression problems are concerned
with the conditional distribution, which in practice can never be known in advance. Instead,
normally, what one can access is only a set of observations drawn from the joint probability
distribution. To state this problem mathematically, let us denote X as the explanatory
variable that takes values in a compact metric space X ⊂ Rd and Y that takes values in
Y = R as the response variable. Typically, we consider the following data-generating model

Y = f?(X) + ε,

where ε is the noise variable. In nonparametric regression problems, the purpose is to infer
the unknown function f? nonparametrically while certain assumptions on the noise variable
ε may be imposed. As a compromise, regression estimators usually settle for learning a
characterization of the conditional distribution by sifting information through observations
generated above. Characterizations of the conditional distribution are versatile, where the
several usual ones include the conditional mean, the conditional median, the conditional
quantile, and the conditional mode. The versatility of the characterizations of the con-
ditional distribution raises the question that which characterization we should pursue in
regression problems. To answer this question, tremendous attention has been drawn in
the statistics and machine learning communities. As a matter of fact, a significant part
of parametric and nonparametric regression theory has been fostered to illuminate this
question.

It is generally considered that each of the above-mentioned regression protocols has its
own merits in its own regimes. For instance, it has been well understood that regression
towards the conditional mean can be most effective if the noise is Gaussian or sub-Gaussian.
Regression towards the conditional median or conditional quantile can be more robust in
the absence of light-tailed noise or symmetric conditional distributions. In practice, the
choice of the most appropriate regression protocol is usually decided by the type of data
encountered. In the statistics and machine learning literature, these regression protocols
have been studied extensively and understood well. In this study, we focus on a regression
problem that has not been well studied in the statistical learning literature, namely, modal
regression.

1.1. Modal Regression

Modal regression approaches the unknown truth f? by regressing towards the conditional
mode function. For a set of observations, the mode is the value that appears most frequently.
While for a continuous random variable, the mode is the value at which its density function
attains its peak value. The conditional mode function is denoted pointwisely as the mode of
the conditional density of the dependent variable conditioned on the independent variable.

Previously proposed in Sager and Thisted (1982); Collomb et al. (1987) and studied in,
e.g., Lee (1989, 1993), it is shown that one of the most appealing features of modal regression
lies in its robustness to outliers, heavy-tailed noise, and skewed noise. Moreover, regression
towards the conditional mode in some cases can be a better option when predicting the
trends of observations. This is also the case in some real-world applications, as illustrated
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in Matzner-Løfber et al. (1998); Einbeck and Tutz (2006); Yu et al. (2014). However, it
seems to us that so far not enough attention has been given to the theory and applications of
modal regression, especially in the statistical learning literature. As yet another regression
protocol, the above-mentioned merits of modal regression suggest that it deserves far more
attention than it has received, especially in the big data era today. This motivates our
study on modal regression in this paper.

1.2. Historical Notes on Modal Regression

Modal regression is concerned with the mode. Studies on the mode estimation date back
to the 1960s since the seminal work of Parzen (1962). It opens the door for kernel density
estimation by proposing the Parzen window method, with the help of which the estimation
of the mode can typically proceed. Many subsequent studies concerning theoretical as
well as practical estimation of the mode have been emerging since then, among them are
Chernoff (1964); Robertson and Cryer (1974); Fukunaga and Hostetler (1975); Eddy (1980);
Comaniciu and Meer (2002), and Dasgupta and Kpotufe (2014).

In a regression setup, the concern of the conditional mode estimate gives birth to modal
regression. As far as we are aware, the idea of regression towards the conditional mode
was first proposed in Sager and Thisted (1982) in an isotonic regression setup. It was then
specifically investigated in Collomb et al. (1987) when dealing with dependent observations.
As a theoretical study, the main conclusion drawn there was the uniform convergence of
the nonparametric mode estimator to the conditional mode function. Lately, in Lee (1989,
1993), some pioneering studies of modal regression were conducted. The tractability prob-
lem of mode regression was first discussed in their studies from, say, a supervised learning
and risk minimization viewpoint. By considering some specific modal regression kernels,
and assuming the existence of a global conditional mode function under a linear model
assumption, they established the asymptotic normality of the resulting estimator. More
and more attention to the theory and applications of modal regression has been attracted
since the work in Yao et al. (2012); Yao and Li (2014) and Kemp and Santos Silva (2012).
In Yao and Li (2014), a global mode was assumed to exist and take a linear form. Under
proper assumptions on the conditional density of the noise variable, the implementation is-
sues and the asymptotic normality of the estimator, as well as its robustness were explored.
Recently, Chen et al. (2016b) presented an interesting study towards modal regression in
which the conditional mode was sought by estimating the maximum of a joint density. By
assuming a factorizable modal manifold collection, results on asymptotic error bounds as
well as techniques for constructing confidence sets and prediction sets were provided.

To further disentangle the literature on modal regression, we can roughly categorize
existing studies by tracing the thread of global or local approaches that they follow. For
local approaches, the conditional mode is sought via maximizing a conditional density or
a joint density which is typically estimated non-parametrically, e.g., by using kernel den-
sity estimators. Studies in Collomb et al. (1987); Samanta and Thavaneswaran (1990);
Quintela-Del-Rio and Vieu (1997); Ould-Säıd (1997); Herrmann and Ziegler (2004); Ferraty
et al. (2005); Gannoun et al. (2010); Yao et al. (2012); Chen et al. (2016b); Sasaki et al.
(2016); Zhou and Huang (2016); Yao and Xiang (2016); Zhou and Huang (2019) fall into
this category. For global approaches, the conditional mode is usually sought by maximizing
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the kernel density estimator for the variable induced by the residual and assuming that the
global mode is unique and belongs to a certain hypothesis space. To name a few, stud-
ies in Lee (1989, 1993); Lee and Kim (1998); Yao and Li (2014); Kemp and Santos Silva
(2012); Baldauf and Santos Silva (2012); Yu and Aristodemou (2012); Lv et al. (2014);
Salah and Françoise (2016) follow this line. It should be noticed that most studies based
upon global approaches assume the existence (and also the uniqueness) of a global condi-
tional mode function that is of a parametric form. While for the studies based upon local
approaches, usually only the uniqueness assumption of the conditional mode function is im-
posed. Loosely speaking, modal regression estimators of the former case are nonparametric,
while (semi-) parametric in the latter case.

Most of the above-mentioned studies are theoretical in nature. It should be noted that
some application-oriented studies on modal regression have also been conducted. Among
them, Matzner-Løfber et al. (1998) carried out an empirical comparison among three regres-
sion schemes, namely, the conditional mean regression, the conditional median regression,
and the conditional mode regression, in nonparametric forecasting problems. They empiri-
cally observed that for certain datasets, e.g., the Old Faithful eruption prediction dataset,
the mode can be a better option in forecasting than the mean and the median; Yu et al.
(2014) discussed the mode-based regression problem in the big data context. Based on
empirical evaluations on the Health Survey for England dataset, they argued that the mode
could be an effective alternative for pattern-finding; Einbeck and Tutz (2006) dealt with
the speed-flow data in traffic engineering by applying a multi-modal regression model.

1.3. Objectives of This Study and Our Contributions

As mentioned above, in the statistics literature, there exist some interesting studies towards
modal regression from both theoretical and practical viewpoints. However, we notice that
several problems related to the theoretical understanding as well as the practical implemen-
tations of modal regression remain unclear. For example:

• Modal regression regresses towards the conditional mode function, a direct estimation
of which involves the estimation of a conditional or joint density. In fact, many of the
existing studies on modal regression follow this approach. Notice that the explanatory
variable may be high-dimensional vector-valued, which may make the estimation of
the conditional or the joint density infeasible. This poses an important question: how
to carry out modal regression without involving the estimation of a density function
in a (possibly) high-dimensional space? According to the existing studies on modal
regression, assuming the existence of a global conditional mode function and imposing
some prior structure assumptions on it seem to be promising in avoiding estimating
such a density. However, most existing studies of this type assume that the conditional
mode function possesses a certain linear or parametric form. This could be restrictive
in certain circumstances.

• With a modal regression estimator at hand, how can we evaluate its statistical per-
formance? That is, how can we measure the approximation ability of the modal
regression estimator to the conditional mode function? This concern is of great im-
portance in nonparametric statistics as well as in machine learning as it is closely
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related to the prediction ability of the estimator on future observations. On the other
hand, concerning the implementation issues of modal regression, how can we perform
model selection in modal regression?

To address the above two problems raised in modal regression, in this study, we pro-
pose to perform modal regression through the classical empirical risk minimization (ERM)
scheme. Within the statistical learning framework, we then develop a learning theory
framework for assessing the performance of the resulting modal regression estimator. Our
contributions made in this study can be summarized as follows:

• The first main contribution of our study is that we present the first systematic statis-
tical learning treatment on modal regression. This purpose is achieved by developing
a statistical learning setup for modal regression, adapting it into the classical ERM
framework, and conducting a learning theory analysis for modal regression estimators.
The statistical learning approach to modal regression in this paper distinguishes our
work from previous studies.

• The second main contribution of this study lies in that we develop a statistical learning
framework for modal regression. To this end, the modal regression risk is devised, the
Bayes rule of the modal regression risk is characterized, computationally tractable
surrogates of the modal regression risk are introduced, and ERM schemes for modal
regression are formulated.

• Following the ERM scheme, by assuming the existence of a global conditional mode
function, the modal regression estimator in our study is pursued by maximizing a
one-dimensional density estimator. This is more computationally tractable compared
with the approaches adopted in most of the existing studies, in which the estimation
of a possibly high-dimensional density is involved, as detailed in Section 3.5. This
gives the third main contribution of this study.

• Another contribution made in this paper is that we present a learning theory analysis
on the modal regression estimator resulted from the ERM scheme. The theoretical
results in our analysis are concerned with the modal regression risk consistency, the
generalization risk consistency, the function estimation ability of the modal regression
estimator, and their relations, see Section 3 for details.

• It should be highlighted that, as we shall also explain below, the study in this pa-
per is originally motivated by pursuing some further understanding of the maximum
correntropy based regression (MCCR), which was recently investigated in Feng et al.
(2015). In particular, this study is started with the realization that MCCR with a
tending-to-zero scale parameter is modal regression, see Section 4 for details. It turns
out that the study conducted in this paper brings us some new perspectives and a
deeper understanding of MCCR.

1.4. Structure of This Paper

This paper is organized as follows: in Section 2, we formulate the modal regression problem
within the statistical learning framework. To this end, we introduce the modal regres-
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notation meaning

X , Y the independent variable space and the dependent variable space, respectively
X,Y random variables taking values in X and Y, respectively
x, y realizations of X and Y , respectively
M the function set comprised of all measurable function from X to R
ε the noise variable specified by the residual Y − f?(X)
z a set of n-size realizations of (X,Y ) with z := {(xi, yi)}ni=1

Ef the random variable induced by the residual Y − f(X)
H a hypothesis space that is assumed to be a compact subset of C(X )
Kσ a smoothing kernel with the bandwidth σ
ρ the joint probability distribution of X × Y
ρX the marginal distribution of X
L2
ρX the function space of square-integrable functions with respect to ρX

pEf or pf the density function of the random variable Ef
pY |X the conditional density of Y conditioned on X
pX,Y the joint density of X and Y
pε|X the conditional density of ε conditioned on X
f? the underlying truth function in modal regression, see formula (2.1)
fM the modal regression function or the conditional mode function, see formula (2.2)
fz,σ the empirical modal regression estimator in H, see formula (2.4)
fH,σ the data-free modal regression estimator in H, see formula (2.5)
fH the data-free least squares regression estimator in H
R(f) the modal regression risk for the hypothesis f : X → R
Rσ(f) the data-free generalization risk for the hypothesis f : X → R
Rσn(f) the empirical generalization risk for the hypothesis f : X → R

Table 1: A list of notations and their definitions in this paper

sion function in Subsection 2.1. We define the modal regression risk and characterize its
Bayes rule in Subsection 2.2. A kernel density estimation interpretation and an empiri-
cal risk minimization perspective of modal regression are provided in Subsections 2.3 and
2.4, respectively. Section 3 is devoted to developing a learning theory for modal regres-
sion. The modal regression calibration problem (see Subsection 3.2), the convergence of
the excess generalization risk (see Subsection 3.3), and the function estimation calibration
problem (see Subsection 3.4) are studied by applying standard learning theory arguments.
Comparisons between our study and the existing ones are also mentioned in this section.
In Section 4, we interpret MCCR from a modal regression viewpoint by suggesting that
MCCR with a tending-to-zero scale parameter is essentially modal regression. Since one of
the main motivations of the present study is to understand MCCR within the statistical
learning framework and having realized that MCCR with a tending-to-zero scale parameter
is modal regression, we, therefore, retrospect MCCR in Section 4.2 by applying the theory
developed in Section 3 and depict a general picture of MCCR. Section 5 is concerned with
the implementation issues in modal regression such as model selection and computational
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algorithms. Numerical validations will be provided in this section. We close this paper
in Section 6 with conclusions. For the sake of readability, a list of notations and their
definitions in this paper is provided in Table 1.

2. A Statistical Learning Framework for Modal Regression

2.1. Formulating the Modal Regression Problem

We first formulate the modal regression problem formally in this subsection. To this end,
we first assume that we are given a set of i.i.d observations z that are generated by

Y = f?(X) + ε, (2.1)

where the mode of the conditional distribution of ε at any x ∈ X is assumed to be zero.
That is, mode(ε |X = x) := arg maxt∈R pε|X(t |X = x) = 0 for any x ∈ X , where pε|X
is the conditional density of ε conditioned on X. It is obvious from (2.1) that under the
zero-mode noise assumption, it holds that mode(Y |X) = f?(X). We further assume that
pε|X is continuous and bounded on R for any x ∈ X . Here, it should be remarked that in
this study we do not assume either the homogeneity or the symmetry of the distribution
of the noise ε. In other words, the heterogeneity of the distribution of the residuals or the
skewed noise distribution is allowed.

In modal regression problems, we aim at approximating the modal regression function
(see formula (1.1) in Collomb et al. (1987)):

Definition 1 (Modal Regression Function) The modal regression function fM :
X → R is defined as

fM(x) := arg max
t∈R

pY |X(t|X = x), x ∈ X , (2.2)

where pY |X(·|X) denotes the conditional density of Y conditioned on X.

Throughout this paper, we assume that the modal regression function fM is well-defined
on X . That is, arg maxt∈R pY |X(t | X = x) is assumed to exist and be unique for any
fixed x ∈ X . Obviously, this is equivalent to assuming the existence and uniqueness of
the global mode of the conditional density pY |X . On the other hand, due to the zero-
mode assumption of the conditional distribution of ε in (2.1) for any x ∈ X , we know that
fM ≡ f?. Consequently, the learning for modal regression problem is equivalent to the
problem of learning the modal regression function fM, and thus f?. Said differently, fM is
the so-called target hypothesis.

From the definition, the modal regression function fM is defined as the maximum of
the conditional density pY |X conditioned on X. Note that, maximizing the conditional
density is equivalent to maximizing the joint density pX,Y for any fixed realization of X.
Therefore, it is direct to see that one can approximate fM by maximizing the conditional
density pY |X or the joint density pX,Y , both of which can be estimated via kernel density
estimation. This is, in fact, what most of the existing studies on modal regression do (see
e.g., Collomb et al., 1987; Chen et al., 2016b; Yao and Xiang, 2016). However, estimating
the conditional density pY |X or the joint density pX,Y via kernel density estimation suffers
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from the curse of dimensionality and is not feasible when the dimension of the input space
is high. In this study, we are interested in an empirical risk minimization approach that is
dimension-insensitive as formulated later.

2.2. Modeling the Modal Regression Risk and Characterizing the Bayes Rule

To be in a position to carry out a statistical learning assessment of modal regression, besides
the target hypothesis defined above, we also need to devise a fitting risk that measures the
goodness-of-fit when a candidate hypothesis is considered. The newly devised fitting risk
should vote the target hypothesis (2.2) as the best candidate when the hypothesis space is
sufficiently large. This gives the main purpose of this subsection.

Definition 2 (Modal Regression Risk) For a measurable function f : X → R, its
modal regression risk R(f) is defined as

R(f) =

∫
X
pY |X(f(x)|X = x)dρX (x). (2.3)

Analogously to learning for regression and classification scenarios (see, e.g., Cucker
and Zhou, 2007; Steinwart and Christmann, 2008), we denote the Bayes rule of modal
regression as the “best” hypothesis favored by the above modal regression risk over the
measurable function set M (comprised of all measurable functions from X to R). The
following conclusion indicates that the target hypothesis fM is exactly the Bayes rule of
modal regression.

Theorem 3 The modal regression function fM in (2.2) gives the Bayes rule of modal re-
gression. That is,

fM = arg max
f∈M

R(f).

Proof Recall that the conditional mode function fM is given as

fM(x) = arg max
t∈R

pY |X(t |X = x), x ∈ X .

Following the modal regression risk defined in Definition 2, for any measurable function
f ∈M, we have

R(f) =

∫
X
pY |X(f(x)|X = x)dρX (x) ≤

∫
X
pY |X(fM(x)|X = x)dρX (x) = R(fM),

which directly yields

fM = arg max
f∈M

R(f).

This completes the proof of Theorem 3.

The plausibility of the above-defined modal regression risk stems from the fact that fM
is the Bayes rule of modal regression, as justified by Theorem 3. With the modal regression
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risk being defined and recalling that fM maximizes the modal regression risk, the most
direct way to learn fM is to maximize the sample analogy of the modal regression risk.
Unfortunately, this is intractable since the discretization of an unknown conditional density
is involved. In the next subsection, to circumvent this problem, we introduce a surrogate
of the modal regression risk.

Remark 4 We now give a remark on the terminology “risk”. For any measurable function
f : X → R, the modal regression risk R(f) in Definition 2 can be regarded as a measure
of the extent to which the function f fits the Bayes rule fM in the R(·) sense. Therefore,
the terminology “risk” is not used as what is commonly referred to in the statistical learn-
ing literature. However, in what follows, given the one-to-one correspondence between the
corresponding maximization and minimization problems, we still term R(f) as the (modal
regression) risk of f .

2.3. Learning for Modal Regression via Kernel Density Estimation

We now show that the modal regression problem can be tackled by applying the kernel
density estimation technique. To this purpose, let f : X → R be a measurable function and
denote Ef as the random variable induced by the residual Y − f(X), where the subscript f
indicates its dependence on f . We also denote pEf , or simply pf , as the density function of
the random variable Ef and denote pε|X as the conditional density of the random variable
ε = Y − f?(X). The following theorem, which was first established in Fan et al. (2016),
relates the modal regression risk of f to pε|X and pEf .

Theorem 5 Let f : X → R be a measurable function. Then,∫
X
pε|X(·+ f(x)− f?(x)|X = x)dρX (x)

is a density of the random variable Ef := Y − f(X), which is denoted as pEf . Correspond-
ingly, we have pEf (0) = R(f).

Proof From the model assumption that ε = Y − f?(X), we have

ε = Ef + f(X)− f?(X).

As a result, the density function of the error variable Ef can be expressed as∫
X
pε|X(·+ f(x)− f?(x)|X = x)dρX (x)

and denoted by pEf . Moreover, from the definition of the risk functional R(·) in (2.3), we
know that

pEf (0) =

∫
X
pε|X(f(x)− f?(x)|X = x)dρX (x)

=

∫
X
pY |X(f(x)|X = x)dρX (x)

= R(f).
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This completes the proof of Theorem 5.

From Theorem 5, the hypothesis f that maximizes the modal regression risk R(f) is
the one that maximizes the density of Ef := Y − f(X) at 0, which can be estimated non-
parametrically. In this study, the kernel density estimation technique is tailored to modal
regression with the help of the modal regression kernel defined below.

Definition 6 (Modal Regression Kernel) A kernel Kσ : R × R → R+ is said to be a
modal regression kernel with the representing function φ and the bandwidth parameter
σ > 0 if there exists a function φ : R → [0,∞) such that Kσ(u1, u2) = φ

(
u1−u2
σ

)
for any

u1, u2 ∈ R, φ(u) = φ(−u), φ(u) ≤ φ(0) for any u ∈ R, and
∫
R φ(u)du = 1.

According to Definition 6, it is easy to see that common smoothing kernels (see, e.g.,
Wand and Jones, 1994) such as the Naive kernel, the Gaussian kernel, the Epanechnikov
kernel, and the Triangular kernel are modal regression kernels. Their corresponding repre-
senting functions can be easily deduced with simple computations. For a modal regression
kernel Kσ with the representing function φ, throughout this paper, without loss of general-
ity, we assume φ(0) = 1.

As a consequence of Theorem 5, for any measurable function f , we know that pf(0) =
R(f). With the help of a modal regression kernel Kσ, it is immediate to see that an
empirical kernel density estimator p̂f for pf at 0 can be formulated as follows

p̂f(0) =
1

nσ

n∑
i=1

Kσ(yi − f(xi), 0) =
1

nσ

n∑
i=1

Kσ(yi, f(xi)) := Rσn(f).

Therefore, when confined to a hypothesis space H, learning a function f that maximizes
the modal regression risk is cast as learning the function f that maximizes the value of the
empirical density estimator p̂f at 0. Thus, the empirical target hypothesis is modeled as

fz,σ : = arg max
f∈H

p̂f(0)

= arg max
f∈H
Rσn(f),

(2.4)

where H is assumed to be a compact subset of C(X ) throughout this paper. The population
version of fz,σ can be expressed as

fH,σ := arg max
f∈H
Rσ(f), (2.5)

where Rσ(·) is the expectation of Rσn(·) with respect to the random samples z and for any
f : X → R, it can be expressed as

Rσ(f) =
1

σ

∫
X×Y

φ

(
y − f(x)

σ

)
dρ(x, y).

The risk functional Rσ(f) defined above gives the generalization risk of f when a
modal regression kernel Kσ with the representing function φ is adopted. As we shall see
later, it can be seen as a surrogate of the true modal regression risk R(f) since Rσ(f)
approximates R(f) when σ → 0. The interpretation of modal regression from a kernel
density estimation viewpoint explains the requirement that

∫
R φ(u)du = 1 in Definition 6.
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2.4. Modal Regression: an Empirical Risk Minimization View

In the preceding subsection, we showed that the modal regression scheme (2.4) can be
interpreted from a kernel density estimation point of view. Maximizing the value of the
kernel density estimator for Ef at 0 encourages the considered hypothesis f to approximate
the projection of the Bayes rule onto H, i.e., fH,σ. In this subsection, we show that one
can also interpret the modal regression scheme (2.4) by using the language of empirical risk
minimization.

To proceed, let us consider a modal regression kernel Kσ with the representing function
φ and the scale parameter σ > 0. We then introduce the following distance-based modal
regression loss φσ : R→ [0,∞):

φσ(y − f(x)) = σ−1
(
1− φ

(
(y − f(x))σ−1

))
. (2.6)

Based on the newly introduced loss φσ, the modal regression scheme (2.4) can be reformu-
lated as follows

fz,σ = arg min
f∈H

1

n

n∑
i=1

φσ(yi, f(xi)), (2.7)

and, similarly, its data-free counterpart can be formulated as

fH,σ = arg min
f∈H

∫
X×Y

φσ(y, f(x))dρ. (2.8)

It is easy to see that the empirical estimator (2.7) is an M-estimator and the two formulations
of fz,σ in (2.4) and (2.7) are, in fact, equivalent. Similarly, one also obtains the same target
hypothesis from (2.5) and (2.8).

Remark 7 For formulation simplification, whenever referred to herein, fz,σ and fH,σ will
be pointed to the estimators formulated by (2.4) and (2.5), respectively, while keeping in
mind that the conducted analysis on fz,σ is inspired by and within the ERM framework.

3. A Learning Theory of Modal Regression

In this section, we aim to develop a learning theory for modal regression which can be used
to assess the statistical learning performance of the modal regression estimator fz,σ.

3.1. Learning the Conditional Mode: Three Building Blocks

In Section 2, for a given hypothesis f , the modal regression risk R(f) is defined; moreover,
it turns out that fM is the Bayes rule of modal regression. On the other hand, we show
that the modal regression estimator can be learned via maximizing the risk functional
Rσn(·). Recalling that the central concern in learning theory is risk consistency under various
notions and following the clue of existing learning theory studies on the binary-classification
problem, it is natural and necessary to investigate the following three problems:

1. The problem of the excess generalization risk consistency and convergence rates, i.e.,
the convergence from Rσ(fz,σ) to Rσ(f?).
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2. The modal regression calibration problem, i.e., whether the convergence fromRσ(fz,σ)
to Rσ(f?) implies the convergence from R(fz,σ) to R(f?)?

3. The function estimation calibration problem, i.e., whether the convergence fromR(fz,σ)
to R(f?) implies the convergence from fz,σ to f??

fz,σ → f? R(fz,σ)→ R(f?) Rσ(fz,σ)→ Rσ(f?)

Figure 1: An illustration of the three building blocks in learning for modal regression. The left block stands
for the function estimation consistency of fz,σ, the middle block denotes the modal regression
consistency of fz,σ, while the right block represents the excess generalization risk consistency of
fz,σ.

The above three problems are fundamental in conducting a learning theory analysis on
modal regression and serve as three main building blocks. Detailed explorations will be
expanded in the following subsections.

3.2. Towards the Modal Regression Calibration Problem

We first investigate the modal regression calibration problem stated in Question 1, i.e.,
whether the convergence from Rσ(fz,σ) to Rσ(f?) implies the convergence from R(fz,σ) to
R(f?). To this end, we need to confine ourselves to the calibrated modal regression kernel
defined below.

Definition 8 (Calibrated Modal Regression Kernel) A modal regression kernel Kσ

with the representing function φ is said to be a calibrated modal regression kernel if it
satisfies the following conditions:

(i) φ is bounded;

(ii) φ is Lipschitz continuous on R with the Lipschitz constant L;

(iii)
∫
R u

2φ(u)du <∞.

Another restriction we need to impose is on the conditional density pε|X as follows:

Assumption 1 The conditional density of ε given X, namely, pε|X , is second-order con-
tinuously differentiable and ‖p′′ε|X‖∞ is bounded from above.

Theorem 9 Suppose that Assumption 1 holds and let Kσ be a calibrated modal regression
kernel with the representing function φ and the scale parameter σ. For any measurable
function f : X → R, it holds that∣∣∣{R(f?)−R(f)} − {Rσ(f?)−Rσ(f)}

∣∣∣ ≤ c1σ2,
where c1 = ‖p′′ε|X‖∞

∫
R u

2φ(u)du.

12
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Proof Recalling the definition of the risk functional Rσ(f) for any measurable function
f : X → R and applying Taylor’s Theorem to the conditional density pε|X , we have

Rσ(f) =
1

σ

∫
X×Y

φ

(
y − f(x)

σ

)
dρ(x, y)

=
1

σ

∫
X

∫
R
φ

(
t− (f(x)− f?(x))

σ

)
pε|X(t | X = x)dt dρX (x)

=

∫
X

∫
R
φ(u)pε|X(f(x)− f?(x) + σu | X = x)dudρX (x)

=

∫
X

∫
R
φ(u)pε|X(f(x)− f?(x) | X = x)dudρX (x)

+ σ

∫
X

∫
R
uφ(u)p′ε|X(f(x)− f?(x) | X = x)dudρX (x)

+
σ2

2

∫
X

∫
R
u2φ(u)p′′ε|X(ηx |X = x)dudρX (x),

(3.1)

where, for any fixed x ∈ X , the point ηx lies between f(x)− f?(x) and f(x)− f?(x) + σu.
The fact that Kσ is a calibrated modal regression kernel with the representing function

φ ensures
∫
R φ(u)du = 1 and reminds the symmetry of φ on R, which further indicates that∫

R uφ(u)du = 0. On the other hand, the fact that

R(f) =

∫
X
pε|X(f(x)− f?(x)|X = x)dρX (x),

together with Equalities (3.1) yields

|Rσ(f)−R(f)| ≤ σ2

2

(
‖p′′ε|X‖∞

∫
R
u2φ(u)du

)
.

Denoting c1 := ‖p′′ε|X‖∞
∫
R u

2φ(u)du, we accomplish the proof of Theorem 9.

Remark 10 The proof of Theorem 9 indicates that Rσ(f) is a second-order approximation
(with respect to σ) of R(f) since Rσ(f)−R(f) = O(σ2). In fact, if a higher-order kernel
(see e.g., Section 2.8 in Wand and Jones, 1994) is used, a higher-order approximation of
R(f) can be expected.

From the proof of Theorem 9, we see that whenKσ is a calibrated modal regression kernel
with the representing function φ and the scale parameter σ, for any measurable function
f : X → R, the generalization risk Rσ(f) approaches the true modal regression risk R(f)
provided that σ → 0. Therefore, in the above sense, Rσ(f) can be considered as a relaxation
of R(f). On the other hand, Theorem 9 indicates that the difference between the excess
modal regression riskR(f?)−R(f) and the excess generalization riskRσ(f?)−Rσ(f)
can be upper bounded byO(σ2). Clearly, under the assumptions of Theorem 9, when σ → 0,
Rσ(f?) − Rσ(f) also approaches R(f?) − R(f). In this sense, Theorem 9 establishes a
comparison theorem akin to the one in the classification scenario (see Zhang, 2004; Bartlett
et al., 2006). This elucidates the terminology—the calibrated modal regression kernel, and
the terminology—the modal regression calibration problem.

13
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3.3. Towards the Convergence Rates of the Excess Generalization Risk

One of the main focuses in learning theory is the generalization ability of a learning al-
gorithm that measures its out-of-sample prediction ability. It plays an important role in
designing learning algorithms with theoretical guarantees. In this subsection, we derive the
generalization bounds for the modal regression estimator fz,σ, i.e., the convergence rates of
Rσ(f?) − Rσ(fz,σ), by means of learning theory arguments. The following assumption is
needed for this purpose:

Assumption 2 We make the following assumptions:

(i) There exists a positive constant M such that ‖f?‖∞ ≤M ;

(ii) supt∈R, x∈X pε|X(t | X = x) = c2 <∞;

(iii) For any ε > 0, there exists an exponent p with 0 < p < 2 such that the `2-empirical
covering number (with radius ε) of H, denoted as N2,x(H, ε), satisfies

logN2,x(H, ε) . ε−p,

where the definition of the empirical covering number is provided below (see also An-
thony and Bartlett (2009)), and the notation a . b for a, b ∈ R means that there exists
a positive constant c such that a ≤ cb.

Definition 11 (`2-empirical Covering Number) Let F be a set of functions on X and
x = {x1, · · · , xm} ⊂ X . The metric d2,z is defined on F by

d2,x(f, g) =

{
1

m

m∑
i=1

(f(xi)− g(xi))
2

}1/2

.

For every ε > 0, the `2-empirical covering number of F with respect to d2,x is defined
as

N2,x(F , ε) = inf
{
` ∈ N : ∃{fi}`i=1 such that F = ∪`i=1{f ∈ F : d2,x(f, fi) ≤ ε}

}
.

Restrictions in Assumption 2 are fairly standard if we recall that the hypothesis space
H is assumed to be a compact subset of C(X ). In what follows, without loss of generality,
we also assume that ‖f‖∞ ≤ M for any f ∈ H. The following error decomposition lemma
is helpful in bounding the excess generalization error.

Lemma 12 Let fz,σ be produced by (2.4) and assume that f? ∈ H. Then we have

Rσ(f?)−Rσ(fz,σ) ≤ Rσ(fH,σ)−Rσn(fH,σ) +Rσn(fz,σ)−Rσ(fz,σ).

Proof Recalling that fH,σ = arg maxf∈HRσ(f), we have

Rσ(f?)−Rσ(fz,σ) ≤ Rσ(fH,σ)−Rσ(fz,σ)

≤ Rσ(fH,σ)−Rσn(fH,σ) +Rσn(fH,σ)−Rσn(fz,σ) +Rσn(fz,σ)−Rσ(fz,σ)

≤ Rσ(fH,σ)−Rσn(fH,σ) +Rσn(fz,σ)−Rσ(fz,σ),

14
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where the last inequality is due to the fact that the quantity Rσn(fH,σ)−Rσn(fz,σ) is at most
zero. This completes the proof of Lemma 12.

The following lemma, established in Wu et al. (2007), provides a Bernstein-type con-
centration inequality for function-valued random variables. It was proved by applying the
local Rademacher complexity arguments developed in Bartlett et al. (2005).

Lemma 13 Let F be a class of bounded measurable functions. Assume that there are
constants γ ∈ [0, 1] and B, cγ > 0 such that ‖f‖∞ ≤ B and Ef2 ≤ cγ(Ef)γ for every f ∈ F .
If for some cp > 0 and 0 < p < 2,

logN2,x(F , ε) ≤ cpε−p, ∀ε > 0,

then there exists a constant c′p depending only on p such that for any t > 0, with probability
at least 1− e−t, it holds that

Ef − 1

n

n∑
i=1

f(zi) ≤
1

2
η1−γ(Ef)γ + c′pη + 2

(
cγt

n

) 1
2−γ

+
18Bt

n
, ∀f ∈ F ,

where

η = max

{
c

2−p
4−2γ+pγ
γ

(cp
n

) 2
4−2γ+pγ

, B
2−p
2+p

(cp
n

) 2
2+p

}
.

Theorem 14 Suppose that Assumption 2 holds, f? ∈ H, and the risk functional Rσ(·) is
defined in association with a calibrated modal regression kernel Kσ and the representing
function φ. Let fz,σ be produced by (2.4) with σ ≤ 1. Then for any 0 < δ < 1, with
probability at least 1− δ, it holds that

Rσ(f?)−Rσ(fz,σ) .

(
1

nσ
+
σ−

2+3p
4

n1/2
+
σ
− 2+3p

2+p

n
2

2+p

)
log

(
1

δ

)
.

Proof We prove the theorem by applying Lemma 13 to the following function-valued
random variable on Z = X × Y:

ξ(z) :=
1

σ
φ

(
y − fH,σ(x)

σ

)
− 1

σ
φ

(
y − f(x)

σ

)
, (3.2)

where fH,σ is given in (2.5) and f ∈ H. Due to the boundedness assumption of φ, it is
easy to see that |ξ(z)| ≤ 2‖φ‖∞/σ. Moreover, recalling the definition of the risk functional
Rσ(·), the following inequality holds

Eξ2 = E
[

1

σ
φ

(
Y − fH,σ(X)

σ

)
− 1

σ
φ

(
Y − f(X)

σ

)]2
≤ 2‖φ‖∞

σ
(Rσ(fH,σ) +Rσ(f)).

(3.3)
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From the proof of Theorem 9, we know that

Rσ(fH,σ) ≤ R(fH,σ) +
σ2

2

(
‖p′′ε|X‖∞

∫
R
u2φ(u)du

)
.

Similarly, we also have

Rσ(f) ≤ R(f) +
σ2

2

(
‖p′′ε|X‖∞

∫
R
u2φ(u)du

)
.

The above two inequalities together with the bound for Eξ2 and the fact that σ ≤ 1 yield

Eξ2 ≤ 2‖φ‖∞
σ

(R(fH,σ) +R(f) + c1σ
2)

≤ 2‖φ‖∞
σ

(pfH,σ(0) + pf(0) + c1σ
2)

. σ−1,

where the last inequality is due to the boundedness assumption of the conditional density
of ε while the second inequality is a consequence of Theorem 5.

Recalling that φ is Lipschitz continuous on R with the Lipschitz constant L, for any
f1, f2 ∈ H, we thus have∣∣∣∣ 1σφ

(
y − f1(x)

σ

)
− 1

σ
φ

(
y − f2(x)

σ

)∣∣∣∣ ≤ L

σ2
‖f1 − f2‖∞.

Consequently, if we denote FH as the following set

FH :=

{
g
∣∣∣ g(z) =

1

σ
φ

(
y − fH,σ(x)

σ

)
− 1

σ
φ

(
y − f(x)

σ

)
, f ∈ H

}
,

then Assumption 2 (iii) implies that

logN2,x(FH, ε) ≤ logN2,x(H, εσ2/L) . (εσ2)−p.

Applying Lemma 13 to the random variable ξ with B = 2‖φ‖∞/σ, γ = 0, cp = σ−2p, and
cγ = σ−1, then for any 0 < δ < 1, with probability at least 1− δ, it holds that

Rσ(fH,σ)−Rσ(f)− (Rσn(fH,σ)−Rσn(f)) .

(
1

nσ
+
σ−

2+3p
4

n1/2
+
σ
− 2+3p

2+p

n
2

2+p

)
log

(
1

δ

)
.

Noticing that the above inequality holds for any f ∈ H and recalling Lemma 12, we obtain
the desired conclusion in Theorem 14.

The generalization bounds in Theorem 14 are derived for the case when the parame-
ter σ goes to zero in accordance with the sample size. When the parameter σ diverges,
generalization bounds can be also derived as shown below.
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Theorem 15 Suppose that Assumption 2 holds, f? ∈ H, and the risk functional Rσ(·) is
defined in association with a calibrated modal regression kernel Kσ and the corresponding
representing function φ. Let fz,σ be produced by (2.4) with σ > 1. Then for any 0 < δ < 1,
with probability at least 1− δ, it holds that

Rσ(f?)−Rσ(fz,σ) .
log δ−1

σ
√
n
.

Proof Similar to the proof of Theorem 14, the desired bound can be established by applying
Lemma 13 to the random variable ξ in (3.2) with the only difference in bounding Eξ2. Recall
that for a calibrated modal regression kernel Kσ, its representing function φ is bounded.
Therefore, we have

Eξ2 = E
[

1

σ
φ

(
Y − fH,σ(X)

σ

)
− 1

σ
φ

(
Y − f(X)

σ

)]2
. σ−2.

In order to accomplish the proof, it suffices to apply Lemma 13 to the random variable ξ
with B = 2‖φ‖∞/σ, γ = 0, cp = σ−2p, and cγ = σ−2. By following the same procedure, the
desired conclusion in Theorem 15 can be obtained.

The ERM learning scheme (2.4) is adaptive in that the scale parameter σ may vary
in correspondence to the sample size n, e.g., σ = nθ with θ ∈ R. Note from Theorem 15
that, with a properly chosen σ value, the ERM scheme (2.4) is generalization consistent in
the sense that the generalization risk Rσ(fz,σ) converges to Rσ(f?) when the sample size n
tends to infinity. It is also interesting to note that a wide range of σ values is admitted to
ensure such a consistency property as shown in the following corollary.

Corollary 16 Suppose that Assumption 2 holds, f? ∈ H, and the risk functional Rσ(·)
is defined in association with a calibrated modal regression kernel Kσ and the representing
function φ. Let fz,σ be produced by (2.4). Then for any 0 < δ < 1, with probability at least
1− δ, it holds that

Rσ(f?)−Rσ(fz,σ)→ 0,

when n→ +∞ and σ := nθ with θ ∈
(
− 2

2+3p ,+∞
)

.

Corollary 16 is an immediate result of Theorems 14 and 15 and its proof is omitted here.
With a properly chosen σ value, the following conclusion reveals that the ERM scheme (2.4)
is also modal regression consistent. This gives an affirmative answer to Question 2 listed in
Subsection 3.1.

Theorem 17 Suppose that Assumptions 1, 2 hold, and f? ∈ H. Let fz,σ be produced by

(2.4) which is induced by a calibrated modal regression kernel Kσ with σ = O(n
− 2

10+3p ). For
any 0 < δ < 1, with probability at least 1− δ, it holds that

R(fz,σ)−R(f?) . n
− 4

10+3p log(δ−1).
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Proof Since Assumption 2 holds, f? ∈ H, and Kσ is a calibrated modal regression kernel,
from Theorem 14 we know that for any 0 < δ < 1, with probability at least 1− δ, we have

Rσ(f?)−Rσ(fz,σ) .

(
1

nσ
+
σ−

2+3p
4

n1/2
+
σ
− 2+3p

2+p

n
2

2+p

)
log

(
1

δ

)
.

When Assumption 1 holds and Kσ is a calibrated modal regression kernel, Theorem 9 yields∣∣∣{R(f?)−R(fz,σ)} − {Rσ(f?)−Rσ(fz,σ)}
∣∣∣ . σ2.

As a result, for any 0 < δ < 1, with probability at least 1− δ, we have

R(f?)−R(fz,σ) . σ2 +

(
1

nσ
+
σ−

2+3p
4

n1/2
+
σ
− 2+3p

2+p

n
2

2+p

)
log

(
1

δ

)
.

With the choice σ = O(n
− 2

10+3p ), the proof of Theorem 17 can be accomplished.

3.4. Towards the Function Estimation Calibration Problem

We now explore the relation between the modal regression consistency of fz,σ and its es-
timation consistency, which is termed as function estimation calibration problem in our
study. From the studies in Heinrich (2013); Dearborn and Frongillo (2018), we realized that
without further distributional assumptions, it is in general hopeless to learn the conditional
mode through ERM approaches. In our study, we need to impose some further assumptions
on the conditional density pε|X (see e.g., Doss and Wellner (2016)).

Definition 18 (Strongly s-Concave Density) A density p is strongly s-concave if it
exhibits one of the following forms:

1. p = ϕ
1/s
+ for some strongly concave function ϕ if s > 0, where ϕ+ = max{ϕ, 0};

2. p = exp(ϕ) for some strongly concave function ϕ if s = 0;

3. p = ϕ
1/s
+ for some strongly convex function ϕ if s < 0.

Assumption 3 The density of ε conditioned on X , denoted by pε|X(·|X), satisfies the fol-
lowing conditions:

1. supx∈X pε|X(0|X = x) = c3;

2. pε|X(t | X = x) ≤ pε|X(0|X = x), ∀t ∈ R, x ∈ X ;

3. inft∈[−2M,2M ], x∈X pε|X(t|X = x) = c0 > 0;

4. pε|X(· | X) denotes strongly s-concave densities for all realizations of X.
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Conditions 1 and 2 in Assumption 3 require that the global mode of the conditional den-
sity pε|X for any realization of X in X is uniquely zero while Condition 3 rules out densities
that are not bounded away from below in the vicinity of this unique mode. The first two
conditions hold for continuous densities with a unique global mode. Condition 4 assumes
the strongly s-concave density assumption on pε|X , which is typical from a statistical view-
point as it holds for common symmetric and skewed distributions. Several representative
examples are listed below:

Example 1 (Student’s t-distribution) Let ρ be a Student’s t-distribution. Its probabil-
ity density function p is

p(t) =
Γ(ν+1

2 )

Γ(ν2 )

(
1 +

t2

ν

)− ν+1
2

,

where ν is the number of degrees of freedom and Γ is the gamma function. Specifically,
when ν = 1, it gives the density function of a typical heavy-tailed distribution, namely,
Cauchy distribution; when ν = ∞, it is the density function of a most common probability
distribution, i.e., Gauss distribution. One can easily see that for Student’s t-distributions,
their densities are strongly s-concave and are of the form 3 in Definition 18.

Example 2 (Skewed normal distribution) Let ρ be a skewed normal distribution with
the probability density function

p(t|µ, θ, τ) =
4τ(1− τ)√

2πθ2
exp

{
−2(x− µ)2

σ2
(
τ − I(x≤µ)(x)

)}
,

where IA(x) is the indicator function that takes the value 1 if A is true and 0, otherwise.
Clearly, the above density is also strongly s-concave and is of the form 2 in Definition 18.

When Assumption 3 holds, the function estimation convergence can be elicited from the
convergence of the modal regression risk, as shown in the following theorem.

Theorem 19 Suppose that Assumption 3 holds and let f : X → Y be a measurable function
in H. Then, it holds that

‖f − f?‖2L2
ρX

. R(f?)−R(f).

Proof If Assumption 3 is fulfilled, then pε|X is strongly s-concave. We verify the desired
relation by discussing different cases of s. If s = 0, we know that − log pε|X is strongly
convex for all x. Consequently, in this case, it holds that

‖f − f?‖2L2
ρX

.
∫
X

[− log pε|X(f(x)− f?(x) | X = x) + log pε|X(0 | X = x)]dρX (x)

.
∫
X

[
pε|X(0 | X = x)− pε|X(f(x)− f?(x) | X = x)

]
dρX (x),
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where the last inequality is a consequence of the mean value theorem and Assumption 3. If
s > 0, −psε|X is strongly convex for all x, then

‖f − f?‖2L2
ρX

.
∫
X

[−psε|X(f(x)− f?(x) | X = x) + psε|X(0 | X = x)]dρX (x)

. max{scs−10 , scs−13 }
∫
X

[
pε|X(0 | X = x)− pε|X(f(x)− f?(x) | X = x)

]
dρX (x),

where the second inequality is due to the Lipschitz continuity of h(t) = ts and Assumption
3. If s < 0, psε|X is strongly convex for all x. In this case, we have

‖f − f?‖2L2
ρX

.
∫
X

[psε|X(f(x)− f?(x) | X = x)− psε|X(0 | X = x)]dρX (x)

. −scs−10

∫
X

[
pε|X(0 | X = x)− pε|X(f(x)− f?(x) | X = x)

]
dρX (x),

where the second inequality is again due to the Lipschitz continuity of h(t) = ts and
Assumption 3. Recalling the fact that

R(f?)−R(f) =

∫
X

[
pε|X(0 | X = x)− pε|X(f(x)− f?(x) | X = x)

]
dρX (x),

we complete the proof of Theorem 19.

Combining the estimates established in the above several subsections, we are now able
to answer Question 3 raised in Subsection 3.1.

Theorem 20 Suppose that Assumptions 1, 2, and 3 hold, and f? ∈ H. Let fz,σ be produced

by (2.4) which is induced by a calibrated modal regression kernel Kσ with σ = O(n
− 2

10+3p ).
For any 0 < δ < 1, with probability at least 1− δ, we have

‖fz,σ − f?‖2L2
ρX

. n
− 4

10+3p log(δ−1).

Proof The theorem can be proved by combining the estimates in Theorems 17 and 19.

3.5. Some Remarks

We give some remarks here. As noted earlier, most of the existing studies on modal re-
gression were conducted by resorting to maximizing the joint density estimator or the
conditional density estimator. However, there are two main barriers when seeking the max-
imizer in this way. First, from a statistical learning viewpoint, learning the maximizer of
the joint density or the conditional density is a local type learning scheme, in which one
has to train the model for each test point. Second, the estimation of a high-dimensional
joint or conditional density may suffer from the curse of dimensionality. In our proposed
ERM approach to modal regression, the hypothesis space H is a function space that can be
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infinite-dimensional. In practice, it can be specified by applying certain regularization pro-
cedures. Moreover, the prevalent kernel-based methods can be naturally integrated since
the hypothesis space can be chosen as a subset of a certain reproducing kernel Hilbert
space. On the other hand, the proposed ERM approach to modal regression only involves a
one-dimensional density estimation problem. From the above comparisons and the learning
theory analysis conducted in this paper, it is easy to see that our study provides a different
take on modal regression and the proposed ERM approach distinguishes our work with the
existing studies.

4. Modal Regression Interpretation of Correntropy based Regression

As mentioned above, our study on modal regression in this paper is initiated to understand
the so-called maximum correntropy criterion in regression problems (see Liu et al., 2007;
Principe, 2010). In this sense, the present study is a continuation of our previous work
in Feng et al. (2015). As a generalized correlation measurement, correntropy has been
drawing much attention recently. Owing to its prominent merits on robustness, it has been
pervasively used and has found many real-world applications in signal processing, machine
learning, and computer vision (see e.g., Bessa et al., 2009; He et al., 2011, 2012; Lu et al.,
2013; Chen et al., 2016a).

4.1. Correntropy and Correntropy based Regression

Mathematically speaking, correntropy is a generalized similarity measure between two scalar
random variables U and V , which is defined by Rσ(U, V ) = EKσ(U, V ). Here Kσ is a
Gaussian kernel given by Kσ(u, v) = exp

{
−(u− v)2/σ2

}
with the bandwidth σ > 0, (u, v)

being a realization of (U, V ). Given a set of i.i.d observations z = {(xi, yi)}ni=1, for any
f : X → R, the empirical estimator of the correntropy between f(X) and Y is given as

Rσn(f) :=
1

n

n∑
i=1

Kσ(yi, f(xi)).

The maximum correntropy criterion based regression models the empirical target func-
tion by maximizing the empirical estimator of the correntropy Rσ as follows

fz,σ = arg max
f∈H
Rσn(f), (4.1)

where H is assumed to be a compact subset of C(X ). Here, C(X ) is denoted as the Banach
space of continuous functions on X . The maximum correntropy criterion in regression
problems has shown its efficiency for cases where non-Gaussian noise or outliers are present
(see e.g., Liu et al., 2007; Principe, 2010; Wang et al., 2013).

In the literature, existing understanding of the maximum correntropy criterion and
MCCR is still limited. More frequently, the maximum correntropy criterion is roughly taken
as a robustified least squares criterion, analogously to the trimmed least squares criterion.
However, the statistical performance of fz,σ and its relation to the least squares criterion
are not clear. The barriers are mainly caused by the presence of the scale parameter σ and
the non-convexity of the related model. Recently, some theoretical understanding towards
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the maximum correntropy criterion was conducted in Feng et al. (2015) by introducing
a distance-based regression loss, the study of which is inspired by those on information
theoretic learning in Hu et al. (2013) and Fan et al. (2016). The main conclusion drawn in
Feng et al. (2015) is that MCCR is essentially robustified mean regression with diverging σ
values. On the other hand, our study conducted in this paper shows that with diminishing
σ(n) values, MCCR is, in fact, modal regression. The built-in robustness of modal regression
schemes may explain the empirical successes of MCCR from a different viewpoint.

4.2. A General Picture of Correntropy based Regression

Based on this study and the study in Feng et al. (2015), we are now able to depict a
general picture of the correntropy based regression from a statistical learning viewpoint. To
this end, we exposit the correntropy based regression by considering three different cases
below, namely, (1): σ = σ(n) → ∞; (2): σ := σ0 for some σ0 > 0, that is, σ is fixed and
independent of the sample size n; (3): σ := σ(n) → 0. Before proceeding, we recall the
following data-generating model

Y = f?(X) + ε.

We first consider the case when σ(n) → ∞. Under the zero-mean noise assumption
on ε, i.e., E(ε|X) = 0, MCCR (4.1) with σ(n) → ∞ encourages the approximation of fz,σ
towards the conditional mean function E(Y |X) and the scale parameter σ in this case plays
a trade-off role between robustness and generalization. More explicitly, in this case, MCCR
is mean regression calibrated in the sense of the following theorem, see also Lemma 7 in
Feng et al. (2015):

Theorem 21 (Lemma 7, Feng et al. (2015)) Assume that EY 4 <∞ and denote f? =
E(Y |X). For any f ∈ H, it holds that∣∣∣‖f − f?‖2L2

ρX
− |σ3(Rσ(f?)−Rσ(f))|

∣∣∣ . σ−2.

It turns out that when σ(n) is properly chosen with σ(n) → ∞, the consistency of
Rσ(f?) − Rσ(fz,σ) implies the consistency of ‖fz,σ − f?‖2L2

ρX
. Moreover, the following

convergence rates are established in Feng et al. (2015):

Theorem 22 Assume that f? = E(Y |X) ∈ H and EY 4 < +∞. Under a mild capacity
assumption on H, for any 0 < δ < 1, with confidence 1− δ, it holds that

‖fz,σ − f?‖2L2
ρX

. σ−2 + σn−1/(1+p),

where the index p > 0 reflects the capacity of the hypothesis space H.

Obviously, according to the above theorem, when σ is chosen as σ := n−1/(3+3p), the
convergence rates for ‖fz,σ − f?‖2L2

ρX
of the type O

(
n−2/(3+3p)

)
can be established. It

is worth to mention that recently, in Feng and Wu (2019), the above moment condition
EY 4 < +∞ was further relaxed to E|Y |1+ζ < +∞ with ζ > 0. Notice that in this case the
underlying truth f? corresponds to the conditional mean. Therefore, MCCR in this case

22



Learning for Modal Regression

H

fz,σ

fHfH,σ

f?

Figure 2: A schematic illustration of the mechanism of correntropy-based regression when σ(n) → ∞ and
the noise variable ε is assumed to be zero-mean. fH,σ is the data-free counterpart of fz,σ, fH is
the data-free least squares regression estimator and f? is the conditional mean function E(Y |X).

H

fz,σ

fH,σ

f?

Figure 3: A schematic illustration of the mechanism of correntropy-based regression when σ is fixed and
independent on n and the noise variable ε is assumed to be zero-mean. fH,σ is the data-free
counterpart of fz,σ and f? is the conditional mean function E(Y |X) or the conditional median
function median(Y |X).

H

fz,σ

fH,σ

f?

Figure 4: A schematic illustration of the mechanism of correntropy-based regression when σ(n)→ 0 and the
noise variable ε is assumed to admit a unique global zero-mode. fH,σ is the data-free counterpart
of fz,σ and f? is the conditional mode function mode(Y |X).
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is essentially robustified mean regression. A schematic illustration of MCCR in this case
is given in Fig. 2, in which fH,σ is the population version of fz,σ and fH is the data-free
least squares regression estimator. As argued in Feng et al. (2015), compared with the
least squares regression, an additional bias, i.e., the distance between fH,σ and fH, appears
when bounding the L2

ρX -distance between fz,σ and the conditional mean function E(Y |X).
Moreover, this bias in some sense reflects the trade-off between the convergence rate of
‖fz,σ − f?‖2L2

ρX
and the robustness of fz,σ. These observations were further justified in a

regularized learning setup in Lv and Fan (2019).

σ(n)→∞ σ fixed σ(n)→ 0

resulting conditional conditional mean conditional
estimator mean estimator or median estimator mode estimator

target function E(Y |X) E(Y |X) or median(Y |X) mode(Y |X)

noise weak moment bounded symmetric allow skewness
condition condition or symmetric stable or heavy-tailedness

rates O(n−2/(3+3p)) O(n−2/(2+p)) O(n−4/(10+3p)

Table 2: An overview of the three scenarios in correntropy based regression

The case when σ = σ0, i.e., σ is fixed and independent of n, was investigated in Feng et al.
(2015), Feng and Wu (2019), and Feng and Ying (2019). As argued in Feng and Wu (2019),
with a fixed parameter σ and without imposing any noise assumptions, it is impossible
to learn the truth function f?. It turns out that in this case, if some noise assumptions
are introduced, correntropy based regression regresses towards the conditional mean or
the conditional median. More specifically, according to Lemma 18 in Feng et al. (2015),
under bounded symmetric noise assumptions, it is also calibrated mean regression when
σ0 is properly chosen. Convergence rates of ‖fz,σ − f?‖2L2

ρX
can be also established under

such noise assumptions, see Theorem 6 in Feng et al. (2015). Inspired by the work in Fan
et al. (2016), it is demonstrated in Feng and Ying (2019) that under the symmetric stable
noise assumption, correntropy based regression can learn the underlying truth function f?

well where the truth function in this scenario corresponds to the conditional mean or the
conditional median function.

The fact that MCCR can be cast as a modal regression problem when σ(n)→ 0 switches
our attention from robust mean regression in Feng et al. (2015) to modal regression in this
study. To recap, the modal regression scheme (2.4) with the Gaussian kernel as the modal
regression kernel retrieves MCCR (4.1). From the arguments in the preceding sections,
we know that under the assumption that the noise variable admits a unique global zero-
mode, MCCR (4.1) with σ(n) → 0 is modal regression calibrated. That is, under proper
assumptions as listed in Theorem 20, one may expect the learning theory type convergence
from the MCCR estimator to the modal regression function mode(Y |X). Results reported
in the above sections reveal that the modal regression problem can be also studied from
an empirical risk minimization viewpoint. A schematic illustration of the mechanism of
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correntropy-based regression when σ(n)→ 0 is presented in Fig. 4. In this case, the robust-
ness of MCCR stems from the built-in robustness of modal regression estimators.

An overview of the above-discussed three scenarios in correntropy based regression is
summarized in Table 2. To sum up, in short, what makes MCCR so special is that it results
an interesting walk between modal regression and robustified mean regression by adjusting
the scale parameter σ in correspondence to the sample size n.

5. Model Selection and Numerical Validations

This section is concerned with the implementation issues of the proposed ERM approach to
modal regression. The model selection problem will be tackled by tailoring the technique of
cross validation. Numerical validations on the effectiveness of the proposed modal regression
estimators will also be provided.

5.1. Experimental Setup

In our empirical studies, the hypothesis space H is chosen as a bounded subset of a re-
producing kernel Hilbert space HK that is induced by a Mercer kernel K. Specifically,
we employ the following Tikhonov regularization to determine the radius of the working
hypothesis space automatically:

fz,σ := arg min
f∈HK

⊕
R

1

n

n∑
i=1

`σ(yi − f(xi)) + λ‖f‖2K, (5.1)

where `σ is the loss function `σ(t) = σ2(1 − exp(−t2/σ2)), and λ > 0 is a regularization
parameter. The representor theorem ensures that fz,σ can be modeled by

fz,σ(x) =
n∑
i=1

αz,iK(x, xi) + bz, x ∈ R,

where αz = (αz,1, · · · , αz,n)> ∈ Rn and bz ∈ R are learned from (5.1). For the Mercer
kernel K, we use the Gaussian kernel K(x, x′) = exp

(
− ‖x− x′‖2/h2

)
with the bandwidth

parameter h > 0.

5.2. Algorithms

The regularization problem (5.1) is essentially a regularized M-estimation problem. We,
therefore, apply the iteratively re-weighted least squares algorithm to solve it. The pseudo-
code of the iteratively re-weighted least squares algorithm is listed in Algorithm 1. For each
iteration in Algorithm 1, the weight is updated as follows:

ωk+1
i =

|∇`σ(yi −K>i αk − bk)|
|yi −K>i αk − bk|

, i = 1, . . . , n, (5.2)

with the initial guess α0, b0 being zero.
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Algorithm 1: Iteratively Re-weighted Least Squares Algorithm for Solving (5.1)

Input: data {(xi, yi)}ni=1, regularization parameter λ > 0, Gaussian kernel bandwidth
h > 0, scale parameter σ > 0 and the initial guess α0 ∈ Rn, b0 ∈ R.
Output: the learned coefficient αk+1 = (αk+1

1 , . . . , αk+1
n )> and bk+1 ∈ R.

while the stopping criterion is not satisfied do
• Compute αk+1 and bk+1 by solving the following weighted least squares problem:

(αk+1, bk+1) = arg min
α∈Rn, b∈R

n∑
i=1

ωk+1
i (yi −K>i α− b)2 + λα>Kα,

where ωk+1
i is specified in (5.2).

• Set k := k + 1.
end while

5.3. Model Selection via Concatenated Cross Validation

We now discuss the model selection problem of the proposed modal regression estimator.
Here, the problem of model selection refers to the selection of the three tuning parameters,
i.e., the regularization parameter λ, the bandwidth parameter h of the Gaussian kernel, and
the scale parameter σ in the loss function.

In our study, we choose these parameters by tailoring the frequently used cross-validation
technique and propose Concatenated Cross Validation (CCV) for model selection. In order
to carry out the cross-validation process, we need to choose an error criterion. As we are
interested in learning the conditional mode function, the mean squared error criterion, the
absolute deviation error criterion, as well as the criteria under robustness constraints, see
e.g., Cantoni and Ronchetti (2001), may not serve well for this purpose. Recall that the
ERM approach for modal regression we proposed in this study can be also re-expressed as
follows

fz,σ = arg max
f∈H

1

nσ

n∑
i=1

exp

(
−(yi − f(xi))

2

σ2

)
,

where the hypothesis space H is chosen as a subset of a reproducing kernel Hilbert space
induced by the Gaussian kernel as mentioned above. The criterion that we use in CCV is es-
sentially the loss function in the above ERM scheme. More explicitly, denoting {(xi, yi)}mi=1

as the validation set and {ŷi,σ}mi=1 the estimated values, CCV can be proceeded through
the following steps:

Step 1: We implement a first five-fold cross validation under the following criterion

arg max
σ

1

mσ0

m∑
i=1

exp

(
−(yi − ŷi,σ)2

σ20

)
,

where the initial value σ0 is set as m−1/5, which is the optimal σ value according to our
theoretical analysis. We denote the best σ value selected in this step as σ1.
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Step 2: We then implement a second five-fold cross validation under the following updated
criterion

arg max
σ

1

mσ1

m∑
i=1

exp

(
−(yi − ŷi,σ)2

σ21

)
.

We denote the best σ value selected in this step as σ2.

Step 3: We continue to implement a third five-fold cross validation under the following
updated criterion

arg max
σ

1

mσ2

m∑
i=1

exp

(
−(yi − ŷi,σ)2

σ22

)
.

We denote the best σ value selected in this step as σ3. Note that in the above steps, the
estimated values {ŷi,σ}mi=1 also depend on the tuning parameters λ and h, which are also
updated accordingly at each step. We suppress the two subscripts for simplification.

Step 4: With the selected σ value in Step 3, we then train the regularized ERM model by
using the iterative reweighted least squares algorithm. We then take the resulting estimator
as the modal regression estimator and proceed with the prediction process.
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Figure 5: The dotted red curve with square marks is the conditional mode function fMO for observations
generated by (5.3) while the dotted black curve with plus marks gives the conditional mean
function fME. The dotted blue curve with ⊗ marks represents the learned estimator fz,σ from
noisy observations.
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5.4. Numerical Validation on a Toy Example

We validate the effectiveness of the proposed modal regression estimator on the following
toy example. We generate artificial data through the following regression model

y = f?(x) + κ(x)ε, (5.3)

where x ∼ U(0, 1), f?(x) = 2 sin(πx), and κ(x) = 1 + 2x. The noise variable is distributed
as ε ∼ 0.5N(−1, 42) + 0.5N(1, 0.12). A similar example was employed in Yao and Li (2014).
With simple calculations, it is easy to see that the conditional mean function is fME =
2 sin(πx) and the conditional mode function is approximately fMO = 2 sin(πx) + 1 + 2x. In
our experiment, 600 observations are drawn from the above data-generating model and the
size of the test set is also set to 600. The reconstructed curve is plotted at the test points in
Fig. 5, in which the conditional mean function fME and the conditional mode function fMO are
also plotted for comparisons. In our experiment, we choose the three tuning parameters,
i.e., the bandwidth parameter h of the Gaussian kernel, the regularization parameter λ,
and the scale parameter σ in the loss function, by using Concatenated Cross Valudation
described above.

From Fig. 5, it is easy to see that the proposed modal regression estimator fz,σ can learn
the conditional mode function fMO well instead of learning the conditional mean function
fME. It is interesting to point out that the obtained empirical target function fz,σ can also
learn the conditional mean function with a large σ value as explained in Section 4.

5.5. Application to Speed-Flow Data

We now apply the proposed modal regression estimator to speed-flow data. Speed-flow
data are intensively discussed in transportation science, which are usually visualized in
terms of speed-flow diagrams. In this subsection, we apply the proposed modal regression
approach to the analysis of the speed-flow data collected in Petty et al. (1996), the speed-
flow diagrams of which are presented in Figs. 6 and 7. In the speed-flow diagrams, the
x-axis is traffic flow that is measured in vehicles per lane per hour while the y-axis is
speed measured in miles per hour. The speed-flow data analyzed here contain two data
sets collected in 1993 on two individual lanes (lane 2 and lane 3) of the 4-lane Californian
freeway I-880. The data were collected by loop detectors, and the time units are 30 seconds
per observation, see Einbeck and Tutz (2006) for more background details. This speed-flow
data contains 1318 observations and are publicly available in the R-package hdrcde. From
the speed-flow diagrams, it can be observed that the mean regression function may not
be able to characterize the functional relation between speed and traffic flow. This is also
observed in many related studies that analyze the speed-flow data, see e.g., Einbeck and
Tutz (2006). This is because the less dense cloud of data points at the bottom of the two
figures, which corresponds to situations where speed is dismissed, may be interpreted as
abnormal observations when pursuing such a functional relation.

In our experiments, we apply the proposed modal regression approach to pursuing the
functional relation. By following the same setup as in our above experiments on artificial
data, we plot the learned modal regression estimator as well as the mean regression estimator
resulting from kernel ridge regression. From the reported experimental results in Fig. 6
and Fig. 7, it can be seen that modal regression estimator is less sensitive to abnormal
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Figure 6: The blue curve represents the conditional mode function estimator fz,σ for 1318 observations
of lane 2 while the black curve gives the conditional mean function estimator by kernel ridge
regression.
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Figure 7: The blue curve represents the conditional mode function estimator fz,σ for 1318 observations
of lane 3 while the black curve gives the conditional mean function estimator by kernel ridge
regression.
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observations and serves better in trend estimation when analyzing speed-flow data. It would
be interesting to explore more real-world applications of the modal regression estimator
learned through the proposed ERM approach, which will be the future work of our study
in this respect.

6. Conclusions

As one of the important regression protocols, modal regression has not been much studied
yet in the statistical learning literature. In this study, we investigated the modal regres-
sion problem from a statistical learning viewpoint. By assuming the existence and the
uniqueness of the global mode of the conditional distribution in regression, we reformu-
lated the modal regression problem into the classical empirical risk minimization frame-
work. In particular, such a reformulation renders the associated modal regression approach
dimension-independent. A learning theory framework for analyzing and assessing the pro-
posed modal regression estimator was also developed. Based on the proposed statistical
learning treatment on modal regression, we gained some insights into the regression prob-
lem. These insights include: first, modal regression problem can be tackled via empirical
risk minimization and can be also interpreted from a kernel density estimation point of
view; second, learning for modal regression is generalization consistent and modal regres-
sion calibrated in the sense defined in our study; third, function estimation consistency and
convergence in the sense of the L2

ρX -distance can be derived in modal regression. These
findings in return unveil the working mechanism of MCCR when its scale parameter tends
to zero as in this case, it corresponds to a modal regression problem.
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Elias Ould-Säıd. A note on ergodic processes prediction via estimation of the conditional
mode function. Scandinavian Journal of Statistics, 24(2):231–239, 1997.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals
of Mathematical Statistics, 33(3):1065–1076, 1962.

Karl F. Petty, Hisham Noeimi, Kumud Sanwal, Dan Rydzewski, Alexander Skabardonis,
Pravin Varaiya, and Haitham Al-Deek. The freeway service patrol evaluation project:
Database support programs, and accessibility. Transportation Research Part C: Emerging
Technologies, 4(2):71–85, 1996.

Jose C. Principe. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives.
Springer Science & Business Media, 2010.

Alejandro Quintela-Del-Rio and Philippe Vieu. A nonparametric conditional mode estimate.
Journal of Nonparametric Statistics, 8(3):253–266, 1997.

Tim Robertson and Jonathan D. Cryer. An iterative procedure for estimating the mode.
Journal of the American Statistical Association, 69(348):1012–1016, 1974.

Thomas W. Sager and Ronald A. Thisted. Maximum likelihood estimation of isotonic modal
regression. The Annals of Statistics, 10(3):690–707, 1982.

Khardani Salah and Yao Anne Françoise. Nonlinear parametric mode regression. Commu-
nications in Statistics - Theory and Methods, 46(6):3006–3024, 2016.

34



Learning for Modal Regression

Mrityunjay Samanta and Aerambamoorthy Thavaneswaran. Non-parametric estimation of
the conditional mode. Communications in Statistics-Theory and Methods, 19(12):4515–
4524, 1990.

Hiroaki Sasaki, Yurina Ono, and Masashi Sugiyama. Modal regression via direct log-density
eerivative estimation. In International Conference on Neural Information Processing,
pages 108–116. Springer, 2016.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, New York,
2008.

Matt P. Wand and Chris M. Jones. Kernel Smoothing. Chapman & Hall, London, 1994.

Xueqin Wang, Yunlu Jiang, Mian Huang, and Heping Zhang. Robust variable selection
with exponential squared loss. Journal of the American Statistical Association, 108(502):
632–643, 2013.

Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Multi-kernel regularized classifiers. Journal
of Complexity, 23(1):108–134, 2007.

Weixin Yao and Longhai Li. A new regression model: modal linear regression. Scandinavian
Journal of Statistics, 41(3):656–671, 2014.

Weixin Yao and Sijia Xiang. Nonparametric and varying coefficient modal regression. arXiv
preprint arXiv:1602.06609, 2016.

Weixin Yao, Bruce G. Lindsay, and Runze Li. Local modal regression. Journal of Nonpara-
metric Statistics, 24(3):647–663, 2012.

Keming Yu and Katerina Aristodemou. Bayesian mode regression. arXiv preprint
arXiv:1208.0579, 2012.

Keming Yu, Katerina Aristodemou, Frauke Becker, and Joann Lord. Fast mode regression
in big data analysis. In Proceedings of the 2014 International Conference on Big Data
Science and Computing, page 24. ACM, 2014.

Tong Zhang. Statistical behavior and consistency of classification methods based on convex
risk minimization. The Annals of Statistics, 32(1):56–85, 2004.

Haiming Zhou and Xianzheng Huang. Nonparametric modal regression in the presence of
measurement error. Electronic Journal of Statistics, 10(2):3579–3620, 2016.

Haiming Zhou and Xianzheng Huang. Bandwidth selection for nonparametric modal regres-
sion. Communications in Statistics-Simulation and Computation, 48(4):968–984, 2019.

35


	Introduction
	Modal Regression
	Historical Notes on Modal Regression
	Objectives of This Study and Our Contributions
	Structure of This Paper

	A Statistical Learning Framework for Modal Regression
	Formulating the Modal Regression Problem
	Modeling the Modal Regression Risk and Characterizing the Bayes Rule
	Learning for Modal Regression via Kernel Density Estimation
	Modal Regression: an Empirical Risk Minimization View

	A Learning Theory of Modal Regression
	Learning the Conditional Mode: Three Building Blocks
	Towards the Modal Regression Calibration Problem
	Towards the Convergence Rates of the Excess Generalization Risk
	Towards the Function Estimation Calibration Problem
	Some Remarks

	Modal Regression Interpretation of Correntropy based Regression
	Correntropy and Correntropy based Regression
	A General Picture of Correntropy based Regression

	Model Selection and Numerical Validations
	Experimental Setup
	Algorithms
	Model Selection via Concatenated Cross Validation
	Numerical Validation on a Toy Example
	Application to Speed-Flow Data

	Conclusions

