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Abstract

This work is concerned with the non-negative rank-1 robust principal component analysis
(RPCA), where the goal is to recover the dominant non-negative principal components of
a data matrix precisely, where a number of measurements could be grossly corrupted with
sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely
on convex relaxation methods by lifting the problem to a higher dimension, which signifi-
cantly increase the number of variables. As an alternative, the well-known Burer-Monteiro
approach can be used to cast the RPCA as a non-convex and non-smooth `1 optimiza-
tion problem with a significantly smaller number of variables. In this work, we show that
the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA
based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any
spurious local solution, 2) has a unique global solution, and 3) its unique global solution
coincides with the true components. An implication of this result is that simple local search
algorithms are guaranteed to achieve a zero global optimality gap when directly applied to
the low-dimensional formulation. Furthermore, we provide strong deterministic and prob-
abilistic guarantees for the exact recovery of the true principal components. In particular,
it is shown that a constant fraction of the measurements could be grossly corrupted and
yet they would not create any spurious local solution.

1. Introduction

The principal component analysis (PCA) is perhaps the most widely-used dimension-
reduction method that reveals the components with maximum variability in high-
dimensional datasets. In particular, given the data matrix X ∈ Rm×n, where each row
corresponds to a data sample with size n, the goal is to recover its most dominant compo-
nent under the rank-1 spiked model1

X = βuv> + S (1)

1. There are more general models under which the PCA is shown to be useful (see Jolliffe (2011) for more
details). We use the rank-1 spiked model since it fits into our framework and is often used as a baseline
to evaluate the performance of the PCA.
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where β determines the signal-to-noise ratio, S is the additive noise matrix, and u and v
are two unknown unit norm vectors. If the data matrix X is symmetric (for instance, it
corresponds to a sample covariance matrix), then (1) can be modified as

X = βvv> + S (2)

Depending on the nature of the noise matrix, different methods have been proposed in
the literature to recover the principal components from (partial) observations of X. The
problem of recovering β, u, and v under a Gaussian and sparse noise is conventionally
referred to as PCA and robust PCA (or RPCA), respectively.

The properties of both PCA and its robust analog have been heavily studied in the
literature and their applications span from quantitative finance to health care and neuro-
science (Hull and White, 1990; Caprihan et al., 2008; Brenner et al., 2000). Recently, a
special focus has been devoted to further exploiting the prior knowledge on the principal
components, such as sparsity (Zou et al., 2006) and nonlinearity (Gorban et al., 2008). Ac-
cordingly, one such knowledge appearing in different applications is the non-negativity of the
principal components (Montanari and Richard, 2016). In this scenario, one needs to solve
the PCA or the RPCA under the additional constraints u,v ≥ 0. While the non-negative
PCA has been recently studied in Montanari and Richard (2016), the main focus of our
work is on its robust variant, where the noise matrix is assumed to be sparse and the goal
is the exact recovery of the non-negative vectors u and v. Note that the non-negativity of
principal components naturally arises in many real-world problems. In what follows, we will
present two classes of real-world applications for which the non-negative RPCA is useful.

1. Non-negative matrix factorization: Extracting the dominant principal component
of a symmetric or asymmetric data matrix appears in many applications and the examples
are ubiquitous. For instance, an important problem in astronomy is the recovery of non-
negative astronomical signals from the covariance matrix of photometric observations (Ren
et al., 2018). The measured data samples are prone to sparse and random outliers. Similarly,
one can extract moving objects from video frames via non-negative matrix factorization by
treating the background as the dominant low-rank component in the video frames and the
moving object as sparse noise (the non-negativity of the data is due to the non-negative
values of the pixels) (Lee and Seung, 1999; Candès et al., 2011). We will conduct a case
study on this application later in the paper.

2. Gene networks: Gene activities can be captured by the samples collected from different
organs, and are described by multi-spiked models (Lazzeroni and Owen, 2002):

X = X0 +

k∑
i=1

u(i)v
>
(i) (3)

where (i, j)th entry of X measures the strength of the participation of gene i in sample j and
X0 is an offset. Furthermore, k is the number of the gene-blocks, and u(i) and v(i) measure

the participation of different genes and samples in the ith gene-block. The participation
vectors are non-negative and the measurements can be subject to malfunctioning of the
measurement tools. Therefore, the problem of obtaining u(i) and v(i) can be cast as a
non-negative RPCA with multiple principal components.
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The seminal work by Candès et al. (2011) proposes a sparsity promoting convex re-
laxation for the RPCA that is capable of the exact recovery of u and v. Upon defining
W = uv>, the convex relaxation of the RPCA is defined as

min
W∈Rm×n

‖W‖∗ + λ‖PΩ(X −W )‖1 (4)

where ‖W‖∗ is the nuclear norm of W , serving as a penalty on the rank of the recovered
matrix W , and ‖ · ‖1 is used to denote the element-wise `1 norm. Furthermore, PΩ(·) is
the projection onto the set of matrices with the same support as the measurement set Ω.
Therefore, upon defining S = X −W as the corruption or noise matrix, ‖PΩ(X −W )‖1
plays the role of promoting sparsity in the estimated noise matrix. After finding an optimal
value of W , the matrix can then be decomposed into the desired vectors u and v, provided
that the relaxation is exact. Notice that the problem is convexified via lifting from n + m
variables on (u,v) to nm variables on W . Despite the convexity of the lifted problem, its
dimension makes it prohibitive to solve in high-dimensional settings. To circumvent this
issue, one popular approach is to resort to an alternative formulation, inspired by Burer
and Monteiro (2003) (commonly known as the Burer-Monteiro technique):

min
u∈Rm

+ ,v∈Rn
+

‖PΩ(X − uv>)‖1 (5)

Despite the non-convexity of (5), its smooth counterpart (with or without non-negativity
constraints) defined as

min
u∈Rm,v∈Rn

‖PΩ(X − uv>)‖2F︸ ︷︷ ︸
g(u,v)

(6)

has been widely used in matrix completion/sensing and is known to possess benign global
landscape, i.e., every local solution is also global and every saddle point has a direction with
a strictly negative curvature (Bhojanapalli et al., 2016; Ge et al., 2016, 2017). This will be
stated below.

Theorem 1 (Informal, Benign Landscape (Ge et al., 2017)) Under some technical
conditions, a regularized version of (6) has benign landscape: every local minimum is global
and every saddle point has a direction with a strictly negative curvature.

In particular, both symmetric and asymmetric matrix completion (or matrix sensing)
under dense Gaussian noise can be cast as (6) and in light of the above theorem, they
have benign landscape. However, it is well-known that such smooth norms are incapable of
correctly identifying and rejecting sparse-but-large noise/outliers in the measurements.

Despite the generality of Theorem 1 within the realm of smooth norms, it does not
address the following important question: Does the non-smooth and non-negative rank-1
RPCA (5) have benign landscape?

1.1. The Issue with the Known Proof Techniques

To understand the inherent difficulty of examining the landscape of (5), it is essential
to explain why the existing proof techniques for the absence of spurious local minima in
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matrix sensing/completion cannot naturally be extended to their robust counterparts. In
general, the main idea in the literature behind proving the benign landscape of matrix
sensing/completion is based on analyzing the gradient and the Hessian of the objective
function. More precisely, for every point that satisfies∇g(u,v) = 0 and does not correspond
to a globally optimal minimum, it suffices to find a global direction of descent d such that
vec(d)>∇2g(u,v)vec(d) < 0, where vec(d) is the vectorized version of d and ∇2g(u,v) is
the Hessian of g(u,v). Such a direction certifies that every stationary point that is not
globally optimal must be either a local maximum or a saddle point with a strictly negative
direction. However, this approach cannot be used to prove similar results for (5) mainly
because the objective function of (5) is non-differentiable and, hence, the Hessian is not
well-defined. This difficulty calls for a new methodology for analyzing the landscape of the
robust and non-smooth PCA; a goal that is at the core of this work.

2. Contributions

In this work, we characterize the landscape of both the symmetric non-negative rank-1
RPCA defined as

min
u∈Rn

+

‖PΩ(X − uu>)‖1 +Rβ(u)︸ ︷︷ ︸
freg(u)

(SN-RPCA)

and its asymmetric counterpart defined as

min
u∈Rm

+ ,v∈Rn
+

‖PΩ(X − uv>)‖1 +Rβ(u,v)︸ ︷︷ ︸
freg(u,v)

(AN-RPCA)

In particular, we fully characterize the stationary points of these optimization problems,
under both deterministic and probabilistic models for the measurement index Ω and the
noise matrix S. The functions Rβ(u) and Rβ(u,v) are regularization functions that prevent
the solutions from blowing up; roughly speaking, they penalize the points whose norm is
greater than β, but do not change the landscape otherwise. The exact definitions of these
regularization functions will be presented later in Section 7.

Remark 2 The focus of this paper is on the symmetric and non-symmetric RPCA under
the rank-1 spiked model. A natural extension to this model is its rank-r variant:

X = UV > + S (7)

where U :=
[
u1 · · · ur

]
∈ Rm×r+ and V :=

[
v1 · · · vr

]
∈ Rn×r+ are non-negative

matrices encompassing the r principal components of the model (the symmetric version can
be defined in a similar manner). Furthermore, similar to the rank-1 case, S is a sparse
noise matrix. Under this rank-r spiked model, the aim of the non-negative rank-r RPCA
is to recover the non-negative matrices U and V given a subset of the elements of the noisy
measurement matrix X. In Section 9, we will elaborate on the technical difficulties behind
this extension. In addition, we will provide some empirical evidence to support that the
developed results may hold for the general non-negative rank-r RPCA with r ≥ 2.

Definition 3 Given the set Ω, two graphs are defined below:
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- The sparsity graph G(Ω) induced by Ω for an instance of (SN-RPCA) is defined as a
graph with the vertex set V := {1, 2, ..., n} that includes an edge (i, j) if (i, j) ∈ Ω.

- The bipartite sparsity graph Gm,n(Ω) induced by Ω for an instance of (AN-RPCA) is
defined as a graph with the vertex partitions Vu := {1, 2, ...,m} and Vv := {m+ 1,m+
2, ...,m+ n} that includes an edge (i, j) if (i, j −m) ∈ Ω.

Furthermore, define ∆(G(Ω)) and δ(G(Ω)) as the maximum and minimum degrees of the
nodes in G(Ω), respectively. Similarly, ∆(Gm,n(Ω)) and δ(Gm,n(Ω)) are used to refer to the
maximum and minimum degrees of the nodes in Gm,n(Ω), respectively.

Definition 4 The sets of bad/corrupted and good/correct measurements are defined as
B = {(i, j)|(i, j) ∈ Ω, Sij 6= 0} and G = {(i, j)|(i, j) ∈ Ω, Sij = 0}, respectively.

Based on the above definitions, the sparsity graph is allowed to include self-loops. For
a positive vector x, we denote its maximum and minimum values with xmax and xmin,
respectively. Furthermore, define κ(x) = xmax

xmin
as the condition number of the vector x.

The first result of this paper develops deterministic conditions on the measurement set
Ω and the sparsity pattern of the noise matrix S to guarantee that the positive rank-1
RPCA has benign landscape. Let u∗ and (u∗,v∗) denote the true principal components
of (SN-RPCA) and (AN-RPCA), respectively.

Theorem 5 (Informal, Deterministic Guarantee) Assuming that u∗,v∗ > 0, there
exist regularization functions Rβ(u) and Rβ(u,v) such that the following statements hold:

1. (SN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true component, provided that G(G) has no bipartite component
and

κ(u∗)4∆(G(B)) . δ(G(G)) (8)

2. (AN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true components, provided that Gm,n(G) is connected and

max
{
κ(u∗)4, κ(v∗)4

}
∆(Gm,n(B)) . δ(Gm,n(G)) (9)

Theorem 5 puts forward a set of deterministic conditions for the absence of spurious local
solutions in (SN-RPCA) and (AN-RPCA) as well as the uniqueness of the global solution.
Notice that no upper bound is assumed on the values of the nonzero entries in the noise ma-
trix. The reasoning behind the conditions imposed on the minimum and maximum degrees
of the nodes in the sparsity graph of the measurement set is to ensure the identifiability of
the problem. We will elaborate more on this subtle point later in Section 7. Furthermore,
we will show later in the paper that some of the conditions delineated in Theorem 5—such
as the strict positivity of u∗ and v∗, as well as the absence of bipartite components in G(G)
for (SN-RPCA)—are also necessary for the exact recovery.

The second main result of this paper investigates (SN-RPCA) and (AN-RPCA) under
random sampling and noise structures. In particular, suppose that each element (in the
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symmetric case, each element of the upper triangular part) of S is nonzero with probability
d. Then, for every (i, j), we have

Xij =

{
u∗i v
∗
j with probability 1− d

arbitrary with probability d
(10)

Furthermore, suppose that every element of X is measured with probability p. In other
words, every (i, j) belongs to Ω with probability p. Finally, we assume that the noise and
sampling events are independent.

Theorem 6 (Informal, Probabilistic Guarantee) Assuming that u∗,v∗ > 0, there ex-
ist regularization functions Rβ(u) and Rβ(u,v) such that the following statements hold with
overwhelming probability:

1. (SN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true component, provided that

p &
κ(u∗)4 log n

n
, d .

1

κ(u∗)4
(11)

2. (AN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true components, provided that

p &
κ(w∗)4n log n

m2
, d .

r

κ(w∗)4
(12)

where w∗ =
[
u∗> v∗>

]>
, r = m/n, and n ≥ m.

A number of interesting corollaries can be obtained based on Theorem 6. For instance, it
can be inferred that the exact recovery is guaranteed even if the number of grossly corrupted
measurements is on the same order as the total number of measurements, provided that
u∗max
u∗min

is uniformly bounded from above.

In addition to the absence of spurious local minima and the uniqueness of the global
minimum, the next proposition states that the true solution can be recovered via local
search algorithms for non-smooth optimization.

Proposition 7 (Informal, Global Convergence) Under the assumptions of Theorem 5
and 6, local search algorithms converge to the true solutions of (SN-RPCA) and (AN-RPCA)
with overwhelming probability.

Starting from Section 3.3, we will delve into the detailed analysis of the symmetric and
asymmetric non-negative RPCA. In particular, we will analyze (SN-RPCA) and (AN-RPCA)
under different deterministic and probabilistic settings and provide formal versions of The-
orems 5 and 6.
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3. Numerical Results

In this section, we demonstrate the efficacy of the above-mentioned results in different
experiments. To this goal, first we briefly introduce the recently developed sub-gradient
method (Li et al., 2020) that is specifically tailored to non-smooth and non-convex problems,
such as those considered in this paper. The main advantage of the sub-gradient algorithm
compared to other state-of-the-art methods is its extremely simple implementation; we
present a sketch of the algorithm for solving the non-symmetric positive RPCA below1 (the
symmetric version can be solved using a similar algorithm with slight modifications):

Algorithm 1: Sub-gradient algorithm

1 Initialization: Strictly positive initial point w>0 =
[
u>0 v>0

]>
and step size µ0;

2 for k = 0, 1, . . . do
3 set dk as a sub-gradient of freg(u0,v0) defined in (AN-RPCA);
4 set µk according to a geometrically diminishing rule such that wk − µkdk is

strictly positive;
5 set wk+1 = wk − µkdk;
6 end

It has been shown in Li et al. (2020) that, under certain conditions on the initial point w0,
the initial step size µ0, and the update rule for µk, the iterates w0,w1, . . . converge to the
globally optimal solution at linear rate, provided that w0 is sufficiently close to the optimal
solution. The closeness of w0 to w∗ is required partly to avoid becoming stuck at a spurious
local minima. This requirement can be relaxed for the positive RPCA due to the absence of
undesired spurious local solutions, as proven in this paper. It is also worthwhile to mention
that, even though we use the sub-gradient algorithm to solve the positive RPCA, it will be
shown in Section 8 that the results of this paper guarantee that a large class of local-search
algorithms converge to the globally optimal solution of (SN-RPCA) or (AN-RPCA).

All of the following simulations are run on a laptop computer with an Intel Core i7 quad-
core 2.50 GHz CPU and 16GB RAM. The reported results are for a serial implementation
in MATLAB R2017b.

3.1. Exact Recovery:

To demonstrate the strength of the above-mentioned results, we consider thousands of
randomly generated instances of the positive rank-1 RPCA with different sizes and noise
levels. In particular, the dimension of the instances ranges from 10 to 100. For each
instance, the elements of u∗ are uniformly chosen from the interval [0, 2]. Note that u∗ will
be strictly positive with probability one. Furthermore, each element of the upper triangular
part of the symmetric noise matrix S is set to 2 with probability d and 0 with probability
1 − d. Figure 1a shows the performance of randomly initialized sub-gradient method for
the symmetric positive rank-1 RPCA. We declare that a solution is recovered exactly if
‖uu>−u∗u∗>‖F /‖u∗u∗>‖F ≤ 10−4. For each dimension and noise probability, we consider
100 randomly generated instances of the problem and demonstrate its exact recovery rate.

1. Note that this is a slightly modified version of the sub-gradient algorithm in Li et al. (2020) to ensure
the positivity of the iterates.
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Figure 1: (a) The performance of the randomly initialized sub-gradient method for (SN-RPCA). The
intensity of the color is proportional to the exact recovery rate of the true solution (darker blue
implies higher recovery rate). (b) The runtime of the sub-gradient method for (SN-RPCA). For
each dimension, it shows the average runtime and its min-max interval over 100 independent
trials.

The heatmap shows the exact recovery rate of the sub-gradient method, when directly
applied to (SN-RPCA). It can be observed that the algorithm has recovered the globally
optimal solution even when 35% of the entries in the data matrix were severely corrupted
with the noise. In contrast, even a highly sparse additive noise in the data matrix prevents
the sub-gradient method from recovering the true solution, when applied to the smooth
problem (6). Figure 1b shows the graceful scalability of the sub-gradient algorithm when
applied to (SN-RPCA). It can be seen that the algorithm is highly efficient. In particular,
its average runtime varies from 0.88 seconds for n = 100 to 43.20 seconds for n = 1000.

3.2. The Emergence of Local Solutions

Recall that u∗ and v∗ are both assumed to be strictly positive. In what follows, we will illus-
trate that relaxing these conditions to non-negativity gives rise to spurious local solutions.
Consider an instance of the symmetric non-negative rank-1 RPCA with the parameters

u∗ =
[
1 1 0

]>
, S = 0, Ω = {1, 2, 3}2\{(3, 3)} (13)

Notice that u∗ consists of two strictly positive and one zero entries. Furthermore, this is a
noiseless scenario where Ω consists of all possible measurements except for one. To examine
the existence of spurious local solutions in this example, 10000 randomly initialized trials
of the sub-gradient method is ran and the normalized distances between the obtained and
true solutions are displayed in Figure 2. Based on this histogram, about 20% of the trials
converge to spurious local solutions, implying that they are ubiquitous in this instance. This
experiment shows why the positivity of the true solution is crucial and cannot be relaxed.
We will formalize and prove this statement later in Section 6.
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Figure 2: The normalized distance between the obtained solution using randomly initialized sub-gradient
method and the true solution.

3.3. Moving Object Detection

In video processing, one of the most important problems is to detect anomaly or moving
objects in different frames of a video. In particular, given a video sequence, the goal is
to separate the nearly-static or slowly-changing background from the dynamic foreground
objects (Cucchiara et al., 2003). Based on this observation, Candès et al. (2011) has pro-
posed to model the background as a low-rank component, and the dynamic foreground as
the sparse noise. In particular, suppose that the video sequence consists of df gray-scale
frames, each with the resolution of dm × dn pixels. The data matrix X is defined as an
asymmetric dmdn × df matrix whose ith column is the vectorized version of the ith frame.
Therefore, the moving object detection problem can be cast as the recovery of the non-

negative vectors u ∈ Rdmdn+ and v ∈ Rdf+ , as well as the sparse matrix S ∈ Rdmdn×df , such
that

X ≈ uv> + S (14)

Note that the background may not always have a rank-1 representation. However, we will
show that (14) is sufficiently accurate if the background is relatively static. Furthermore,
notice that when the background is completely static, the elements of v should be equal
to one. However, this is not desirable in practice since the background may change due to
varying illuminations, which can be captured by the variable vector v. Each entry of X
is an integer between 0 (darkest) and 255 (brightest). To ensure the positivity of the true
components, we increase each element of X by 1 without affecting the performance of the
method.

The considered test case is borrowed from the work by Toyama et al. (1999)2 and is a
sequence of video frames taken from a room, where a person walks in, sits on a chair, and
uses a phone. We consider 100 gray-scale frames of the sequence, each with the resolution
of 120 × 160 pixels. Therefore, X, u, and v belong to R19,200×100

+ , R19,200
+ , and R100

+ ,

2. The video frames are publicly available at https://www.microsoft.com/en-us/research/project/

test-images-for-wallflower-paper/.
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Figure 3: The performance of the sub-gradient method in the moving object detection problem. The
first row shows 3 out of 100 gray-scale frames in the studied test case that contain the moving
objects. The second row shows the outcome of (SN-RPCA) solved using randomly initialized
sub-gradient method.

respectively. Figure 3 shows that the sub-gradient method with a random initialization can
recover the moving object, which is in accordance with the theoretical results of this paper.

4. Related Work

4.1. Non-convex and Low-rank Optimization

A considerable amount of work has been carried out to understand the inherent difficulty
of solving low-rank optimization problems both locally and globally.

Convexification: Recently, there has been a pressing need to develop efficient methods for
solving large-scale nonconvex optimization problems that naturally arise in data analytics
and machine learning (Dumais et al., 1998; Sharif Razavian et al., 2014; Bottou et al., 2018;
Zhang et al., 2018a; Olfat and Aswani, 2018). One promising approach for making these
large-scale problems more tractable is to resort to their convex surrogates; these meth-
ods started to receive a great deal of attention after the seminal works by Donoho (2006)
and Candes et al. (2006) on the compressive sensing and have been extended to emerging
problems in machine learning, such as fairness (Olfat and Aswani, 2018), robust polynomial
regression (Molybog et al., 2018; Madani et al., 2018), and neural networks (Bach, 2017), to
name a few. Nonetheless, the size of today’s problems has been a major impediment to the
tractability of these methods. In practice, the dimension of the real-world problems is over-
whelmingly large, often surpassing the ability of these seemingly efficient convex methods to
solve the problem in a reasonable amount of time. Due to this so-called curse of dimension-
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ality, the common practice is to deploy fast local search algorithms directly applied to the
original nonconvex problem with the hope of converging to acceptable solutions. Roughly
speaking, these methods can only guarantee the local optimality, thus exposing themselves
to potentially large optimality gaps. However, a recent line of work has shown that a
surprisingly large class of nonconvex problems, including matrix completion/sensing (Bho-
janapalli et al., 2016; Ge et al., 2016, 2017; Zhu et al., 2017), phase retrieval (Sun et al.,
2018), and dictionary recovery (Sun et al., 2017) have benign global landscape, i.e., every
local solution is also global and every saddle point has a direction with a strictly negative
curvature (see Chi et al. (2019) for a comprehensive survey on the related problems). More
recently, the work by Zhang et al. (2018c) has introduced a unified framework that shows
the benign landscape of nonconvex low-rank optimization problems with general loss func-
tions, provided that they satisfy certain restricted convexity and smoothness properties.
This enables most of the saddle-escaping local search algorithms to converge to a global
solution, thereby resulting in a zero optimality gap (Ge et al., 2015).

Benign landscape: As mentioned before, it has been recently shown that many low-rank
optimization problems can be cast as smooth-but-nonconvex optimization problems that
are free of spurious local minima. These methods heavily rely on the notion of restricted
isometry property (RIP)—a property that was initially introduced by Candes and Tao
(2005) and has been used ever since as a metric to measure a norm-preserving property
of the objective function. In general, these methods have two major drawbacks: 1) they
can only target a narrow set of nearly-isotropic instances (Zhang et al., 2018b), and 2)
their proof technique depends on the differentiability of the objective function; a condition
that is not satisfied for non-smooth norms, such as `1. To the best of our knowledge, the
work by Josz et al. (2018) is the only one that studies the landscape of the `1 minimization
problem, where the authors consider the tensor decomposition problem under the full and
perfect measurements. Our work is somewhat related to Ma et al. (2018) that derives
similar conditions for the absence of spurious local solution of the non-negative rank-1
matrix completion but for the smooth Frobenius norm minimization problem.

PCA with prior information: With an exponential growth in the size and dimensionality
of the real-world datasets, it is often required to exploit the additional prior information in
the PCA. In many real-world applications, prior knowledge from the underlying physics of
the problem—such as non-negativity (Montanari and Richard, 2016), sparsity (Zou et al.,
2006), robustness (Candès et al., 2011), and nonlinearity (Gorban et al., 2008)—can be
taken into account to perform more efficient, consistent, and accurate PCA.

Numerical algorithms for non-smooth optimization: Numerical algorithms for non-
smooth optimization problems can be dated back to the work by Clarke on the extended
definitions of gradients and directional derivatives, commonly known as generalized deriva-
tives (Clarke, 1990). Intuitively, for non-smooth functions, the gradient in the classical sense
seize to exist at a subset of the points in the domain. The Clarke generalized derivative
is introduced to circumvent this issue by associating a convex differential to these points,
even if the original problem is non-convex. In the domain of unconstrained non-smooth
optimization, earlier works have introduced simple algorithms that converge to approxi-
mate Clarke-stationary points (Goldstein, 1977; Chaney and Goldstein, 1978). More re-
cent methods take advantage of the fact that many non-smooth optimization problems

11
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are smooth in every open dense subset of their domains. This implies that the objective
function is smooth with probability one at a randomly drawn point. This observation lays
the groundwork for several gradient-sampling-based algorithms for both unconstrained and
constrained non-smooth optimization problems (Burke et al., 2005; Curtis and Overton,
2012). As mentioned before, a sub-gradient method has been recently proposed by Li et al.
(2020) for solving the RPCA, where the authors prove linear convergence of the algorithm
to the true components, provided that the initial point is chosen sufficiently close to the
globally optimal solution.

4.2. Comparison to the Existing Results on RPCA

Similar to the non-convex matrix sensing and completion, most of the existing results on the
RPCA work on a lifted space of the variables via different convex relaxations and they do
not incorporate the positivity constraints in the problem. In what follows, we will explain
the advantages of our proposed method compared to these results.

Positivity constraints: In the present work, we show that the positivity of the true com-
ponents is both sufficient and (almost) necessary for the absence of spurious local solutions.
We use this prior knowledge to obtain sharp deterministic and probabilistic guarantees on
the absence of spurious local minima for the RPCA based on the Burer-Monteiro formu-
lation. For instance, we show that up to a constant factor of the measurements can be
grossly corrupted and yet they do not introduce any spurious local solution. Considering
the fact that these results heavily rely on the positivity of the true components, it is unclear
if similar “no spurious local minima” results hold for the general case without the positivity
assumption. The statistical properties of these types of constraints have also been shown to
be useful in the classical PCA by Montanari and Richard (2016), where the authors show
that by imposing positivity constraints on the principal components, one can guarantee
its consistent recovery with smaller signal-to-noise ratio. It is also worthwhile to mention
that the incorporation of the non-negativity/positivity constraints in the low-rank matrix
recovery can be traced back to some earlier works on the non-negative matrix factorization
problem (Lee and Seung, 1999; Hoyer, 2004).

Computational savings: Similar to the convexification techniques in nonconvex opti-
mization, most of the classical results on the RPCA relax the inherent non-convexity of
the problem by lifting it to higher dimensions (Candès et al., 2011; Chandrasekaran et al.,
2011; Zhou et al., 2010; Hsu et al., 2011). In particular, by moving from vector to ma-
trix variables, they guarantee the convexity of the problem at the expense of significantly
increasing the number of variables. In this work, we show that such lifting is not neces-
sary for the positive rank-1 RPCA since—despite the non-convexity of the problem—it is
free of spurious local solutions and, hence, simple local search algorithms converge to the
true components when directly applied to its original formulation. More recently, a special
attention has been devoted to nonconvex methods for solving robust matrix sensing and
robust PCA problems (Gu et al., 2016; Netrapalli et al., 2014; Zhang et al., 2018d). In par-
ticular, the work by Netrapalli et al. (2014) proposes an alternating framework for solving
robust PCA, where the low-rank component and the sparse noise matrix are obtained by
successively projecting their corresponding residuals onto the sets of low-rank and sparse
matrices, respectively. The work by Gu et al. (2016) proposes a nonconvex alternating
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minimization approach for solving robust PCA. More generally, the work by Zhang et al.
(2018d) proposes a unified nonconvex framework based on projected gradient descent and
a thresholding operator for solving robust matrix sensing and robust PCA problems. Al-
though being cheaper than convexification techniques, the success of the above methods
heavily relies on the closeness of their initial points to the optimal solution, and therefore,
they fall short of proving general results on the benign landscape of these problems.

Sharp guarantees with mild conditions: In general, most of the existing results on
RPCA for guaranteeing the recovery of the true components fall into two categories. First,
a large class of methods rely on some deterministic conditions on the spectra of the dominant
components and/or the structure of the sparse noise (Hsu et al., 2011; Chandrasekaran et al.,
2011; Yi et al., 2016). For instance, the works by Hsu et al. (2011); Chandrasekaran et al.
(2011) require the regularization coefficient to be within a specific interval that is defined
in terms of the true principal components. Furthermore, the algorithm proposed by Yi
et al. (2016) requires prior knowledge on the density of the sparse noise matrix. Although
being theoretically significant, these types of conditions cannot be easily verified and met
in practice. With the goal of bypassing such stringent conditions, the second category of
research has studied the RPCA under probabilistic models. These types of guarantees were
popularized by Candès et al. (2011); Wright et al. (2009) and they do not rely on any
prior knowledge on the true components or the density of the noise matrix. However, their
success is contingent upon specific random models on the sparse noise or the spectra of the
true components, neither of which may be satisfied in practice.

In contrast, the method proposed here does not rely on any prior knowledge on the true
solution, other than the availability of an upper bound on the maximum absolute value of
the elements in the principal components3. Furthermore, unlike the previous works, our
results encompass both deterministic and probabilistic models under random sampling.

5. Preliminaries

A directional derivative of a locally Lipschitz and possibly non-smooth function h(x)
at x in the direction d is defined as

h′(x,d) := lim
t↓0

h(x + td)− h(x)

t
(15)

upon existence. Based on this definition, ū is directional-minimum-stationary (or D-
min-stationary) for (SN-RPCA) if f ′(ū,d) ≥ 0 for every feasible direction d, i.e., a direction
that satisfies di ≥ 0 when ui = 0 for every index i. Similarly, ū is directional-maximum-
stationary (or D-max-stationary) for (SN-RPCA) if f ′(ū,d) ≤ 0 for every feasible d.
Finally, ū is directional-stationary (or D-stationary) for (SN-RPCA) if it is either D-
min- or D-max-stationary4.

Every local minimum (maximum) ū should be D-min (max)-stationary for f(u). On
the other hand, ū cannot be a D-stationary point if f(u) has strictly positive and negative

3. Note that in most cases, these types of upper bounds can be immediately inferred by the domain
knowledge; see e.g. our discussion on the moving object detection problem.

4. Note that the notion of D-stationary points is often used in lieu of D-min-stationary in the litera-
ture. However, we use a slightly more general definition in this paper to account for the local maxima
of (SN-RPCA).
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directional derivatives at that point. In that case, ū is neither local maximum nor minimum.
A solution to a minimization problem is referred to as spurious local (or simply local)
if there exists another feasible point with a strictly smaller objective value; a solution
is globally optimal (or simply global) if no such point exists.

Finally, a vertex partitioning of a non-empty bipartite graph is the partition of its
vertices into two groups such that there exist no adjacent vertices within each group.

Notation: The upper-case, bold lower-case, and lower-case letters are used to show
the matrices, vectors, and scalars, respectively. The space of non-negative and real n × 1
vectors and m×n matrices are denoted by Rn+ and Rn×m+ , respectively. The symbols ‖W‖1
and ‖W‖F denote the element-wise `1 norm and Frobenius norm of W , respectively. The
(i, j)th entry of a matrix W is shown as Wij , whereas the ith entry of a vector w is denoted
by wi. Given the sequences f1(n) and f2(n), the notation f1(n) . f2(n) or equivalently
f1(n) = O(f2(n)) means that there exists a number c1 ∈ [0,∞) such that f1(n) ≤ c1f2(n)
for all n. Similarly, the notation f1(n) & f2(n) or f1(n) = Ω(f2(n)) means that there
exists a number c2 > 0 such that f1(n) ≥ c2f2(n) for all n. The indicator function Ix≥α
takes the value 1 if x ≥ α and 0 otherwise. For an event E , the notation P(E) is used to
show the probability of its occurrence. For a random variable X, the symbol E{X} shows
its expected value. For notational simplicity and unless stated otherwise, we will refer to
non-negative (or positive) rank-1 RPCA as non-negative (or positive) RPCA in the sequel.

6. Base Case: Noiseless Non-negative RPCA

In this section, we consider the noiseless version of both symmetric and asymmetric non-
negative RPCA. While not entirely obvious, the subsequent arguments are at the core of
our proofs for the general noisy case. In the noiseless scenario, (SN-RPCA) is reduced to

min
u≥0

∑
(i,j)∈Ω

|uiuj − u∗iu∗j |︸ ︷︷ ︸
f(u)

(P1-Sym)

For the asymmetric problem (AN-RPCA), the solution is invariant to scaling. In other
words, if (u,v) is a solution to (AN-RPCA), then (1

qu, qv) is also a valid solution with
the same objective value, for every scalar q > 0. To circumvent the issue of invariance
to scaling, it is common to balance the norms of u and v by penalizing their difference.
Therefore, similar to the works by Ge et al. (2017); Zheng and Lafferty (2016); Yi et al.
(2016), we consider the following regularized variant of (AN-RPCA):

min
u≥0,v≥0

‖PΩ(X − uv>)‖1 + α|u>u− v>v|︸ ︷︷ ︸
fasym(u,v)

(16)

for an arbitrary constant α > 0 (note that the positivity of α is the only condition required
in this work). To deal with the asymmetric case, we first convert it to a symmetric problem
after a simple concatenation of variables. Define w = [u> v>]>, w∗ = [u∗> v∗>]>, and
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Ω̄ = {(i, j)|(i, j −m) ∈ Ω}. Based on these definitions, one can symmetrize (16) as follows:

min
w≥0

∑
(i,j)∈Ω̄

|wiwj − w∗iw∗j |+ α

∣∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

∣∣∣∣∣∣︸ ︷︷ ︸
fsym(w)

(P1-Asym)

To simplify the notation, we drop the subscript from fsym(w) whenever there is no ambi-
guity in the context.

6.1. Deterministic Guarantees

Symmetric case: First, we introduce deterministic conditions to guarantee a benign land-
scape for (P1-Sym).

Theorem 8 Suppose that u∗ > 0 and G(Ω) has no bipartite component. Then, the following
statements hold for (P1-Sym):

1. It does not have any spurious local minimum;

2. The point u = u∗ is the unique global minimum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.

Additionally, if G(Ω) is connected, the following statements hold for (P1-Sym):

4. The points u = u∗ and u = 0 are the only D-min-stationary points;

5. The point u = 0 is a local maximum.

The above theorem has a number of important implications for (P1-Sym): 1) it has no
spurious local solution, 2) u = u∗ is its unique global solution, and 3) every feasible point
u > 0 such that u 6= u∗ has at least a strictly negative directional derivative. Additionally,
if G(Ω) is connected, the feasible points of (P1-Sym) with zero entries either have a strictly
negative directional derivative or correspond to the origin that is a local maximum with a
strictly negative curvature. Therefore, these points are not local/global minima and can be
easily avoided using local search algorithms.

To prove Theorem 8, we first need the following important lemma.

Lemma 9 Suppose that G(Ω) has no bipartite component and u∗ > 0. Then, for every
D-min-stationary point u of (P1-Sym), we have u[c] > 0 or u[c] = 0, where u[c] is a
sub-vector of u induced by the cth component of G(Ω).

Proof See Appendix A.

Now, we are ready to present the proof of Theorem 8.

Proof of Theorem 8: We prove the first three statements. Note that Statement 5 can be
easily verified and Statement 4 is implied by Lemma 9 and Statement 3.

15



Fattahi and Sojoudi

Suppose that u 6= u∗ is a local minimum. Note that if ui = 0 for some i, Lemma 9
implies that u[c] = 0 for the cth component that includes node i. However, a strictly
positive perturbation of u[c] decreases the objective function and, therefore, u cannot be a
local minimum. Hence, it is enough to consider the case u > 0. We show that u cannot be
D-stationary. This immediately certifies the validity of the first three statements. First, we
prove that

min
k∈Ωi

u∗k
uk
≤ ui
u∗i
≤ max

k∈Ωi

u∗k
uk

(17)

for every i ∈ {1, · · · , n}, where Ωi = {j|(i, j) ∈ Ω}. By contradiction and without loss of
generality, suppose that ui/u

∗
i > maxk∈Ωi

u∗k/uk for some i. This implies that uiuj > u∗iu
∗
j

for every j ∈ Ωi. Therefore, a negative or positive perturbation of ui results in respective
negative or positive directional derivatives, contradicting the D-stationarity of u. With no
loss of generality, assume that the sparsity graph G(Ω) is connected (since the arguments
made in the sequel can be readily applied to every disjoint component of G(Ω)) and that
the following ordering holds:

0 <
u∗1
u1
≤ u∗2
u2
≤ · · · ≤ u∗n

un
(18)

Therefore, due to (17), we have

0 <
u∗1
u1
≤ min

k∈Ωi

u∗k
uk
≤ ui
u∗i
≤ max

k∈Ωi

u∗k
uk
≤ u∗n
un

(19)

for every i ∈ {1, · · · , n}.
Since u 6= u∗, there exists some index t such that ut 6= u∗t . This implies that u∗n/un > 1;

otherwise, we should have u∗n/un ≤ 1. This together with (18), implies that u∗t /ut < 1 and
ut/u

∗
t > 1, which contradicts (19). Now, define the sets

T1 =

{
i|u
∗
i

ui
=
u∗n
un
, 1 ≤ i ≤ n

}
(20)

T2 =

{
j|uj
u∗j

=
u∗n
un
, 1 ≤ j ≤ n

}
(21)

Moreover, define the set N = V \(T1 ∪ T2) and let d be

di =


ui
un

if i ∈ T1

− ui
un

if i ∈ T2

0 if i ∈ N
(22)

Define a perturbation of u as û = u + dε where ε > 0 is chosen to be sufficiently small.
Next, the effect of the above perturbation on different terms of (P1-Sym) will be analyzed.
To this goal, we divide Ω into four sets

1. (i, j) ∈ Ω and i, j ∈ T1: In this case, since ui < u∗i and uj < u∗j , one can write

|ûiûj − u∗iu∗j | = u∗iu
∗
j − ûiûj = u∗iu

∗
j −

(
ui+

ui
un
ε

)(
uj+

uj
un
ε

)
= |uiuj − u∗iu∗j | −

(
2uiuj
un

)
ε−

(
uiuj
u2
n

)
ε2 (23)

16



Exact Guarantees for Non-negative Rank-1 RPCA

where we have used the assumption u∗,u > 0.

2. (i, j) ∈ Ω and i, j ∈ T2: In this case, since ui > u∗i and uj > u∗j , one can write

|ûiûj − u∗iu∗j | = ûiûj − u∗iu∗j =

(
ui−

ui
un
ε

)(
uj−

uj
un
ε

)
− u∗iu∗j

= |uiuj − u∗iu∗j | −
(

2uiuj
un

)
ε+

(
uiuj
u2
n

)
ε2 (24)

where we have used the assumption u∗,u > 0.

3. (i, j) ∈ Ω, i ∈ N , and j ∈ T1 ∪ T2: According to the definitions of T1 and T2, we have

ui
u∗i

<
u∗n
un
,

u∗i
ui

<
u∗n
un

(25)

Now, if j ∈ T1, one can write

ui
u∗i

<
u∗j
uj

=⇒ uiuj < u∗iu
∗
j (26)

which implies that

|ûiûj−u∗iu∗j | = u∗iu
∗
j − ûiûj = u∗iu

∗
j −ui

(
uj +

uj
un
ε

)
= |uiuj−u∗iu∗j |−

(
uiuj
un

)
ε (27)

Similarly, if j ∈ T2, one can verify that

|ûiûj − u∗iu∗j | = |uiuj − u∗iu∗j | −
(
uiuj
un

)
ε (28)

4. (i, j) ∈ Ω, i ∈ T1, and j ∈ T2: In this case, note that

|ûiûj − u∗iu∗j | =
∣∣∣∣(ui +

ui
un
ε

)(
uj −

uj
un
ε

)
− u∗iu∗j

∣∣∣∣ ≤ |uiuj − u∗iu∗j |+(uiuju2
n

)
ε2 (29)

The above analysis entails that—unless N and the subgraphs of G(Ω) induced by the
nodes in T1 or T2 are empty—f ′(u,d) > 0 and f ′(u,−d) < 0, implying that u cannot be
D-stationary. On the other hand, these conditions enforce G(Ω) to be bipartite, which is a
contradiction. This completes the proof. �

Next, we show that u∗ > 0 is almost necessary to guarantee the absence of spurious
local minima for (P1-Sym).

Proposition 10 Assume that u∗ ≥ 0 and that u∗ 6= 0 with u∗i = 0 for some i. Then, upon
choosing Ω = {1, . . . , n}2\{(i, i)}, (P1-Sym) has a spurious local minimum.

Proof See Appendix B.

The above corollary shows that if u∗ is non-negative with at least one zero element,
even in the almost perfect scenario where the set Ω includes all of the measurements ex-
cept for one, it may not be free of spurious local minima. The next corollary shows that
the assumption on the absence of bipartite components in G(Ω) is also necessary for the
uniqueness of the global solution.
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Proposition 11 Given any vector u∗ > 0 and set Ω, suppose that G(Ω) has a bipartite
component. Then, the global solution of (P1-Sym) is not unique.

Proof Without loss of generality, suppose that G(Ω) is a connected bipartite graph. For
any vector u∗ > 0, the solution u = u∗ is globally optimal for (P1-Sym). Suppose that the
bipartite graph G(Ω) partitions the entries of u into two sets V1 and V2 such that un ∈ V1.
Based on some simple algebra, one can easily verify that, for a sufficiently small ε > 0, the
solution

ûi ←
{
ui + ui

un
ε if i ∈ V1

ui − ui
un+εε if i ∈ V2

(30)

is also globally optimal for (P1-Sym).

Remark 12 Suppose that u∗ is a globally optimal solution of (P1-Sym) and that G(G)
includes a bipartite component. Then, according to Proposition 11, the part of u∗ whose
elements correspond to the nodes in this bipartite component can be perturbed to attain
another globally optimal solution, thereby resulting in the non-uniqueness of the global
solution. On the other hand, the connectedness assumption is required to eliminate the
undesirable stationary points on the boundary of the feasible region. Roughly speaking, the
elements of the vector variable u corresponding to different disconnected components can
behave independently from each other, giving rise to spurious D-stationary points in the
problem. To elaborate, recall that u[c] is a sub-vector of u induced by the cth component of
G(G). Based on Lemma 9, the D-stationary points restricted to each disjoint component of
G(G) are either strictly positive or equal to zero. Therefore, upon having two disconnected

components c1 and c2, the points u′ =
[
u∗[c1]> 0

]>
and u′′ =

[
0 u∗[c2]>

]>
are indeed

D-stationary points of (SN-RPCA), thereby resulting in spurious stationary points.

Asymmetric case: Next, we consider (16) in the noiseless scenario by analyzing its sym-
metrized counterpart (P1-Asym). Based on the construction of Ω̄, the corresponding spar-
sity graph G(Ω̄) is bipartite. On the other hand, according to Proposition 11, the existence
of a bipartite component in G(Ω̄) makes a part of the solution invariant to scaling, which
subsequently results in the non-uniqueness of the global minimum. The additional regular-
ization term in (P1-Asym) is introduced to circumvent this issue by penalizing the difference
in the norms of u and v.

Theorem 13 Suppose that w∗ > 0 and G(Ω̄) is connected. Then, the following statements
hold for (P1-Asym):

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j is the only D-stationary point.
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Proof See Appendix C.

Remark 14 Notice that, unlike the symmetric case, Theorem 13 requires the connectedness
of G(Ω̄). This is due to the additional regularization term in (AN-RPCA). In particular,
similar arguments do not necessarily hold for the disjoint components of G(Ω̄) because of
the coupling nature of the regularization term.

6.2. Probabilistic Guarantees

Next, we consider the random sampling regime. Similar to the previous subsection, we first
focus on the symmetric case.

Symmetric case: Suppose that every element of the upper triangular part of the matrix
u∗u∗> is measured independently with probability p. In other words, for every (i, j) ∈
{1, 2, ..., n}2 and i ≤ j, the probability of (i, j) belonging to Ω is equal to p.

Theorem 15 Suppose that n ≥ 2, u∗ > 0, and p ≥ min
{

1, (2η+2) logn+2
n−1

}
for some con-

stant η ≥ 1. Then, the following statements hold for (SN-RPCA) with probability of at least
1− 3

2n
−η:

1. The points u = u∗ and u = 0 are the only D-min-stationary points;

2. The point u = 0 is a local maximum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.

Before presenting the proof of Theorem 15, we note that the required lower bound on p
is to guarantee that the random graph G(Ω) is connected with high probability. This implies
that Theorem 8 can be invoked to verify the statements of Theorem 15. It is worthwhile
to mention that the classical results on Erdös-Rényi graphs characterize the asymptotic
properties of G(Ω) as n approaches infinity. In particular, it is shown by Erdös and Rényi
(1959) that with the choice of p = logn+c

n for some c > 0, G(Ω) becomes connected with

probability of at least Ω(e−e
−c

) as n → ∞. In contrast, we introduce the following non-
asymptotic result characterizing the probability that G(Ω) is connected and non-bipartite
for any finite n ≥ 2, and subsequently use it to prove Theorem 15.

Lemma 16 Given a constant η ≥ 1, suppose that p ≥ min
{

1, (2η+2) logn+2
n−1

}
and n ≥ 2.

Then, G(Ω) is connected and non-bipartite with probability of at least 1− 3
2n
−η.

Proof See Appendix D.

Proof of Theorem 15: The proof immediately follows from Theorem 8 and Lemma 16. �

Similar to the deterministic case, we will show that both assumptions u∗ > 0 and p &
log n/n are almost necessary for the successful recovery of the global solution of (P1-Sym).
In particular, it will be proven that relaxing u∗ > 0 to u∗ ≥ 0 will result in an instance that
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possesses a spurious local solution with non-negligible probability. Furthermore, it will be
shown that the choice p ≈ log n/n is optimal—modulo log n-factor—for the unique recovery
of the global solution.

Proposition 17 Assuming that u∗ ≥ 0 with u∗i = 0 for some i ∈ {1, . . . , n} and that
p < 1, (P1-Sym) has a spurious local minimum with probability of at least 1− p > 0.

Proof Suppose that u∗ ≥ 0 and there exists an index i such that u∗i = 0. The proof of
Proposition 10 can be used to show that excluding the measurement (i, i) gives rise to a
spurious local minimum. This occurs with probability 1 − p. The details are omitted due
to their similarities to the proof of Proposition 10.

Proposition 18 Given any u∗ > 0, suppose that np → 0 as n → ∞. Then, the global
solution of (P1-Sym) is not unique with probability approaching to one.

Proof See Appendix E.

Asymmetric case: Consider (16) under a random sampling regime, where each element
of u∗v∗> is independently observed with probability p. Next, the analog of Theorem 15 for
the asymmetric case is provided.

Theorem 19 Suppose that n,m ≥ 2, w∗ > 0, and p ≥ min
{

1, (m+n)((1+η) log(mn)+1)
(m−1)(n−1)

}
for

some constant η ≥ 1. Then, the following statements hold for (P1-Asym) with probability
of at least 1− 2(mn)−η − 4(mn)−2η:

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j is the only D-stationary point.

Before presenting the proof of Theorem 19, we note that G(Ω̄) no longer corresponds
to an Erdös-Rényi random graph due to its bipartite structure. Therefore, we present the
analog of Lemma 16 for random bipartite graphs.

Lemma 20 Given a constant η ≥ 1, suppose that p ≥ min
{

1, (m+n)((1+η) log(mn)+1)
(m−1)(n−1)

}
and

m,n ≥ 2. Then, G(Ω̄) is connected with probability of at least 1− 2(mn)−η − 4(mn)−2η.

Proof See Appendix F.

Proof of Theorem 19: The proof immediately follows from Theorem 13 and Lemma 20. �
Before proceeding, we note that, similar to the classical results on the Erdös-Rényi

graphs, there are asymptotic results guaranteeing the connectedness of a random bipartite
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graph as a function of p. In particular, Saltykov (1995) shows that G(Ω̄) is connected with

probability approaching to 1 as m+ n→∞, provided that p ≥ 3
(
1 + m

n

)−1 (n+m) log(n+m)
nm .

Lemma 20 offers another lower bound on p that matches this threshold (modulo a constant
factor), while being non-asymptotic in nature. In particular, it characterizes the probability
that the random bipartite graph is connected for all m,n ≥ 2.

7. Extension to Noisy Positive RPCA

In this section, we will show that an additive sparse noise with arbitrary values does not
drastically change the landscape of the RPCA. In other words, a limited number of grossly
wrong measurements will not introduce any spurious local solution to the positive RPCA.
The key idea is to prove that the direction of descent that was introduced in the previous
section is also valid when the measurements are not perfect, i.e., when they are subject to
sparse noise. To this goal, consider the following problem in the symmetric case:

min
u≥0

∑
(i,j)∈Ω

|uiuj −Xij |︸ ︷︷ ︸
f(u)

(31)

where
X = u∗u∗> + S (32)

is the matrix of true measurements perturbed with sparse noise. Similarly, consider the
following problem for the asymmetric case:

min
u≥0,v≥0

∑
(i,j)∈Ω

|uivj −Xij |+ α

∣∣∣∣∣∣
m∑
i=1

u2
i −

n∑
j=1

v2
j

∣∣∣∣∣∣ (33)

where α is an arbitrary positive number. After symmetrization, (33) can be re-written as

min
w≥0

∑
(i,j)∈Ω̄

|wiwj − X̄ij |+ α

∣∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

∣∣∣∣∣∣︸ ︷︷ ︸
f(w)

(34)

where
X̄ = ww> + S̄ (35)

for X̄ ∈ R(n+m)×(n+m) and

S̄ =

[
0 S
S> 0

]
(36)

Furthermore, define B̄ = {(i, j) : (i, j) ∈ Ω̄, S̄ij 6= 0} and Ḡ = {(i, j) : (i, j) ∈ Ω̄, S̄ij = 0} as
the sets of bad and good measurements for the symmetrized problem, respectively. In this
work, we do not impose any assumption on the maximum value of the nonzero elements of S.
However, without loss of generality, one may assume that u∗u∗>+S > 0 and w∗w∗>+S̄ > 0;
otherwise, the non-positive elements can be discarded due to the assumptions u∗ > 0 and
(u∗,v∗) > 0. In fact, we impose a slightly more stronger condition in this work.
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Assumption 1 There exists a constant c ∈ (0, 1] such that Sij + u∗iu
∗
j > cu∗

2

min and S̄ij +

w∗iw
∗
j > cw∗

2

min for (31) and (34), respectively.

7.1. Identifiability

Intuitively, the non-negative RPCA under the unknown-but-sparse noise is more challenging
to solve than its noiseless counterpart. In particular, one may consider (31) as a variant
of (P1-Sym) discussed in the previous section, where the locations of the bad measurements
are unknown; if these locations were known, they could have been discarded to reduce the
problem to (P1-Sym). If the measurements are subject to unknown noise, one of the main
issues arises from the identifiability of the solution. To further elaborate, we will offer an
example below.

Example 1 Suppose that X(ε) = (e1 + 1ε)(e1 + 1ε)>, where e1 is the first unit vector and
1 is a vector of ones. Assuming that Ω = {1, ..., n}2, one can decompose X(ε) in two forms

X(ε) = (e1 + 1ε)(e1 + 1ε)>︸ ︷︷ ︸
u∗1u

∗
1
>

+ 0︸︷︷︸
S1

(37a)

X(ε) = 11>ε2︸ ︷︷ ︸
u∗2u

∗
2
>

+ e1e
>
1 + 1e>1 ε+ e11

>ε︸ ︷︷ ︸
S2

(37b)

For every ε > 0, both S1 and S2 can be considered as sparse matrices since the number
of nonzero elements in each of these matrices is at most on the order of O(n). However,
unless more restrictions on the number of nonzero elements at each row or column of S
are imposed, it is impossible to distinguish between these two cases. This implies that the
solution is not identifiable.

In order to ensure that the solution is identifiable in the symmetric case, we assume that
∆(G(B)) ≤ η · δ(G(G)) for some constant η ≤ 1 to be defined later. Roughly speaking, this
implies that at each row of the measurement matrix, the number of good measurements
should be at least as large as the number of bad ones. Similar to the work by Ge et al.
(2016, 2017), we consider the regularized version of the problem, as in

min
u≥0

∑
(i,j)∈Ω

|uiuj −Xij |+Rβ(u)

︸ ︷︷ ︸
freg(u)

(P2-Sym)

where Rβ(u) is a regularizer defined as

Rβ(u) = λ
n∑
i=1

(ui − β)4 Iui≥β (38)
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for some fixed parameters λ and β to be specified later. Similarly, one can define an
analogous regularization for (34) as

min
w≥0

∑
(i,j)∈Ω̄

|wiwj − X̄ij |+ α

∣∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

∣∣∣∣∣∣+R(w)

︸ ︷︷ ︸
freg(w)

(P2-Asym)

with

Rβ(w) = λ

m+n∑
i=1

(wi − β)4 Iwi≥β (39)

for some fixed parameters λ and β to be specified later. Note that the defined regularization
function is convex in its domain. In particular, it eliminates the candidate solutions that are
far from the true solution. Without loss of generality and to streamline the presentation, it
is assumed that u∗max = w∗max = 1 in the sequel.

Lemma 21 Consider the parameter c defined in Assumption 1. The following statements
hold:

- By choosing β = 1 and λ = n/2, any D-stationary point u > 0 of (P2-Sym) satisfies
the inequalities (c/2)u∗

2

min ≤ umin ≤ umax ≤ 2.

- By choosing β = 1 and λ = (m+ n)/2, any D-stationary point w > 0 of (P2-Asym)
satisfies the inequalities (c/2)w∗

2

min ≤ wmin ≤ wmax ≤ 2.

Proof See Appendix G.

7.2. Deterministic Guarantees

In what follows, the deterministic conditions under which (P2-Sym) and (P2-Asym) have
benign landscape will be investigated. The results of this subsection will be the building
blocks for the derivation of the main theorems for both symmetric and asymmetric positive
RPCA under the random sampling and noise regime. Note that the analysis of the landscape
will be more involved in this case since the effect of the regularizer should be taken into
account.

Symmetric case: Recall that, for the sparsity graph G(Ω), ∆(G(Ω)) and δ(G(Ω)) corre-
spond to its maximum and minimum degrees, respectively.

Theorem 22 Suppose that

i. u∗ > 0;

ii. δ(G(G)) > (48/c2)κ(u∗)4∆(G(B));

iii. G(Ω) has no bipartite component.
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Then, with the choice of β = 1 and λ = n/2 for the parameters of the regularization function
Rβ(u), the following statements hold for (P2-Sym):

1. It does not have any spurious local minimum;

2. The point u = u∗ is the unique global minimum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.

Additionally, if G(Ω) is connected, the following statements hold for (P2-Sym):

4. The points u = u∗ and u = 0 are the only D-min-stationary points;

5. The point u = 0 is a local maximum.

Proof See Appendix H.

Asymmetric case: Theorem 22 has the following natural extension to asymmetric prob-
lems.

Theorem 23 Suppose that

i. w∗ > 0;

ii. δ(G(Ḡ)) > (48/c2)κ(w∗)4∆(G(B̄));

iii. G(Ḡ) is connected.

Then, with the choice of β = 1 and λ = (m+ n)/2 for the parameters of the regularization
function R(w), the following statements hold for (P2-Asym):

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j is the only D-stationary point.

Proof The proof is omitted due to its similarity to that of Theorem 22.

7.3. Probabilistic Guarantees

As an extension to our previous results, we analyze the landscape of the noisy non-negative
RPCA with randomness both in the location of the samples and in the structure of the
noise matrix. Suppose that for the symmetric case, with probability d, each element of the
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upper triangular part of X is independently corrupted with an arbitrary noise value. In
other words, for every (i, j) with i ≤ j, one can write

Xij =

{
u∗iu

∗
j with probability 1− d

arbitrary with probability d
(40)

Furthermore, similar to the preceding section, suppose that every element of the upper trian-
gular part of X = u∗u∗>+S is independently measured with probability p. The randomness
in the location of the measurements and noise is naturally extended to the asymmetric case
by considering the symmetrized X̄ and S̄ defined in (35) and (36), respectively.

Symmetric case: First, the main result in the symmetric case is presented below.

Theorem 24 Suppose that

i. n ≥ 2,

ii. u∗ > 0,

iii. d < 1
(144/c2)k(u∗)4+1

,

iv. p > (1740/c2)κ(u∗)4(1+η) logn
n ,

for some η > 0. Then, with the choice of β = 1 and λ = n/2 for the parameters of the
regularization function Rβ(u), the following statements hold for (P2-Sym) with probability
of at least 1− 3n−η:

1. The points u = u∗ and u = 0 are the only D-min-stationary points;

2. The point u = 0 is a local maximum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.

To prove Theorem 24, first we present the following lemma on the concentration of the
minimum and maximum degrees of random graphs.

Lemma 25 Consider a random graph G(n, p). Given a constant η > 0, the inequality:

P
(

∆(G(n, p)) ≥ max

{
3np

2
, 18(1 + η) log n

})
≤ n−η (41)

holds for every 0 < p ≤ 1. Furthermore, we have

P
(
δ(G(n, p)) ≤ np

2

)
≤ n−η (42)

provided that p ≥ 12(1+η) logn
n .

Proof See Appendix I.
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Remark 26 Note that since the degree of each node in G(n, p) is concentrated around np
with high probability, one may speculate that ∆(G(n, p)) and δ(G(n, p)) should also concen-
trate around np for all values of p and hence the inclusion of 18(1 + η) log n in (41) may
seem redundant. Surprisingly, this is not the case in general. In fact, it can be shown
that if p = 1/n (and hence np = 1), there exists a node whose degree is lower bounded
by log n/log log n with high probability. This explains the reasoning behind the inclusion of
18(1 + η) log n in the lemma.

Proof of Theorem 24: In light of Lemma 16, the bounds on p and d guarantee that
G(G) is connected and non-bipartite with probability of at least 1− 3

2n
−430(1+η). Therefore,

the proof is completed by invoking Theorem 22, provided that the second condition of

Theorem 22 holds. Define the events E1 =
{

∆(G(B)) ≤ max
{

3npd
2 , 18(1 + η) log n

}}
and

E2 =
{
δ(G(G)) ≥ np(1−d)

2

}
. Observe that Lemma 25 together with the bounds on p and d

results in the inequalities

P (E1) ≥ 1− n−η (43a)

P (E2) ≥ 1− n−144η (43b)

This in turn implies that the events E1 and E2 occur with probability of at least 1− n−η −
n−144η. Conditioned on these events, it suffices to show that

np(1− d)

2
>

48

c2
κ(u∗)4 max

{
3npd

2
, 18(1 + η) log n

}
(44)

in order to certify the validity of the second condition of Theorem 22. It can be easily
verified that the assumed upper and lower bounds on p and d guarantee the validity of (44).
Therefore, a simple union bound and the fact that n−η > 3

2n
−430(1+η) imply that the

conditions of Theorem 22 are satisfied with probability of at least 1− 3n−η. �

A number of interesting corollaries can be derived based on Theorem 24.

Corollary 27 Suppose that p is a positive number independent of n and d . log n/n. Then,
under an appropriate choice of parameters for the regularization function, the statements
of Theorem 24 hold with overwhelming probability, provided that κ(u∗) . (n/ log n)1/4.

Corollary 27 implies that, roughly speaking, if the total number of measurements is
sufficiently large (i.e., on the order of n2), then up to factor of n log n bad measurements
with arbitrary magnitudes will not introduce any spurious local solution to the problem.
Under such circumstances, the required upper bound on the ratio between the maximum
and the minimum entries of u∗ will be more relaxed as the dimension of the problem grows.

Corollary 28 Suppose that p is a positive number independent of n and that d . nε−1 for
some ε ∈ [0, 1). Then, under an appropriate choice of parameters for the regularization
function, the statements of Theorem 24 hold with overwhelming probability, provided that
κ(u∗) . n(1−ε)/4.
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Corollary 28 describes an interesting trade-off between the sparsity level of the noise and
the maximum allowable variation in the entries of u∗; roughly speaking, as κ(u∗) decreases, a
larger number of noisy elements can be added to the problem without creating any spurious
local minimum. The next corollary shows that a constant fraction of the measurements can
be grossly corrupted without affecting the landscape of the problem, provided that κ(u∗)
is uniformly bounded from above.

Corollary 29 Suppose that p and d are positive numbers independent of n and that d <
1

(144/c2)+1
. Then, under an appropriate choice of parameters for the regularization function,

the statements of Theorem 24 hold with overwhelming probability, provided that κ(u∗) ≤(
1−d

(144/c2)d

)1/4
.

Asymmetric case: The aforementioned results on the symmetric positive RPCA under
random sampling and noise will be generalized to the asymmetric case below.

Theorem 30 Define r = m/n and suppose that

i. n ≥ m ≥ 2,

ii. w∗ > 0,

iii. d < r
(144/c2)κ(w∗)4+r

,

iv. p > (1740/c2)κ(w∗)4(1+η)n logn
m2 ,

for some η > 0. Then, with the choice of β = 1 and λ = (m+n)/2 for the parameters of the
regularization function Rβ(w), the following statements hold for (P2-Sym) with probability
of at least 1− 10n−η:

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =∑m+n

j=m+1w
2
j is the only D-stationary point.

To prove Theorem 30, we derive a concentration bound on the minimum and maximum
degree of the random bipartite graphs. Define G(m,n, p) as a bipartite graph with the vertex
partitions Vu = {1, · · · ,m} and Vv = {m+ 1, · · · ,m+n} where each edge is independently
included in the graph with probability p.

Lemma 31 Consider a random bipartite graph G(m,n, p). Given a constant η > 0, the
inequality

P
(

∆(G(m,n, p)) ≥ max

{
3np

2
,
18(1 + η)n log n

m

})
≤ 2n−η (45)
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holds for every 0 < p ≤ 1. Furthermore, we have

P
(
δ(G(m,n, p)) ≤ mp

2

)
≤ 2n−η (46)

provided that p ≥ 12(1 + η) log n/m.

Proof See Appendix J.

Proof of Theorem 30: The bounds on p and d indeed guarantee that G(Ḡ) is connected
with overwhelming probability. Based on this fact, the result of Lemma 31 and the proof
of Theorem 24 can be combined to arrive at this theorem. The details are omitted for
brevity. �

Remark 32 The presented probability guarantees for RPCA share some similarities with
those derived for noisy matrix completion in Ge et al. (2017, 2016). In particular, according
to Theorems 24 and 30 and similar to the results of Ge et al. (2017, 2016), the probability of
having a spurious local solution decreases polynomially with respect to the dimension of the
problem. Furthermore, similar to our work, the required lower bound on the sampling prob-
ability p in Ge et al. (2017, 2016) scales polynomially with respect to the condition number
of the true solution. Finally, for non-symmetric noisy matrix completion problem, Ge et al.
(2017) shows that the required lower bound on p scales as logn

m . Comparing this dependency
with the one introduced in Theorem 30, it can be inferred that our proposed lower bound
is higher by a factor of n

m ; this is not surprising considering the fundamentally different
natures of these problems. Furthermore, Ge et al. (2017) uses this result to solve a modified
(smoothed) variant of the robust PCA. Due to this reformulation, their analysis does not
directly apply to (SN-RPCA) and AN-RPCA. Moreover, unlike our results, the success of
their method is contingent upon the knowledge of an upper bound on the number of nonzero
elements in different rows and columns of the noise matrix.

8. Global Convergence of Local Search Algorithms

So far, it has been shown that the positive RPCA is free of spurious local minima. Fur-
thermore, it has been proven that the global solution is the only D-stationary point in
the positive orthant. The question of interest in this section is: How could this unique
D-stationary point be obtained? Before answering this question, we will take a detour and
revisit the notion of stationarity for smooth optimization problems. Recall that x̄ is a sta-
tionary point of a differentiable function f(x) if and only if ∇f(x) = 0 and, under some
mild conditions, basic local search algorithms will converge to a stationary point. Therefore,
the uniqueness of the stationary point for a smooth optimization problem immediately im-
plies the convergence to global solution. Extra caution should be taken when dealing with
non-smooth optimization. In particular, the convergence of classical local search algorithms
may fail to hold since the gradient and/or Hessian of the function may not exist at every
iteration. To deal with this issue, different local search algorithms have been introduced
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to guarantee convergence to generalized notions of stationary points for non-smooth opti-
mization, such as directional-stationary (which is used in this paper) or Clarke-stationary
(to be defined next).

For a non-smooth and locally Lipschitz function h(x) over the convex set X , define the
Clarke generalized directional derivative at the point x̄ in the feasible direction d as

h◦(x,d) := lim sup
y→x
t↓0

h(y + td)− h(y)

t
(47)

Note the difference between the ordinary directional derivative h′(x,d) and its Clarke gen-
eralized counterpart: in the latter, the limit is taken with respect to a variable vector y that
approaches x̄, rather than taking the limit exactly at x̄. The Clarke differential of h(x) at
x̄ is defined as the following set (Clarke, 1990):

∂Ch(x̄) := {ψ|h◦(x,d) ≥ 〈ψ,d〉, ∀d ∈ Rn such that x + d ∈ X} (48)

where X is the feasible set of the problem. A point x̄ is Clarke-stationary (or C-stationary)
if 0 ∈ ∂C(x̄), or equivalently, h◦(x̄,d) ≥ 0 for every feasible direction d. It is well known
that C-stationary is a weaker condition than the D-min-stationarity. In particular, every
D-min-stationary point is C-stationary but not all C-stationary points are D-min-stationary.

On the other hand, although some local search algorithms converge to D-min-stationary
points for problems with special structures (Cui et al., 2018), the most well-known numerical
algorithms for non-smooth optimization—such as gradient sampling, sequential quadratic
programming, and exact penalty algorithms—can only guarantee the C-stationarity of the
obtained solutions (Burke et al., 2005; Curtis and Overton, 2012; Fasano et al., 2014).
Therefore, it remains to study whether the global solution of the positive RPCA is the only
C-stationary point. To answer this question, we need the following two lemmas.

Lemma 33 The following statements hold:

- If h : X → R and g : X → R are continuously differentiable at x̄ ∈ X , then (h +
g)◦(x̄,d) = h◦(x̄,d) + g◦(x̄,d) for every feasible direction d.

- If h : X → R is continuously differentiable at x̄ ∈ X , then h◦(x̄,d) = h′(x̄,d) for
every feasible direction d.

Proof Refer to the textbook by Clarke (1990).

Lemma 34 Let h1(x), h1(x), ..., hm(x) : X → R be continuous and locally Lipschitz func-
tions at x̄ ∈ X . Define

h(x) = max
1≤i≤m

hi(x) (49)

and let I(x̄) be the set of indices i such that h(x̄) = hi(x̄). Then,

h◦(x̄,d) ≤ max
i∈I(x̄)

h◦i (x̄,d) (50)

for every feasible direction d.
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Proof Consider a feasible point y ∈ B(x̄, ε) ∩ X , where B(x̄, ε) is the Euclidean ball
with the center x̄ and radius ε. First, we prove that I(y) ⊆ I(x̄) for sufficiently small
ε > 0. Notice that hi(x̄) < hj(x̄) for every i ∈ I(x̄) and j ∈ {1, ...,m}\I(x̄). Therefore,
due to the continuity of hi(·) for every i ∈ {1, ...,m}, it follows that there exists ε̄ > 0
such that hi(y) < hj(y) for every y ∈ B(x̄, ε) ∩ X with 0 < ε < ε̄. This implies that
I(y + td) ⊆ I(y) ⊆ I(x̄) for every y ∈ B(x̄, ε) ∩ X and every feasible direction d with
sufficiently small ε > 0 and t > 0. Now, note that

h(y + td)− h(y) = max
i∈I(y+td)

hi(y + td)− hi(y) ≤ max
i∈I(x̄)

hi(y + td)− hi(y) (51)

This implies that

h◦(x̄,d) = lim sup
y→x
t↓0

h(y + td)− h(y)

t
≤ max

i∈I(x̄)

lim sup
y→x
t↓0

hi(y + td)− hi(y)

t

 = max
i∈I(x̄)

h◦i (x̄,d)

(52)

This completes the proof.

Based on the above lemmas, we develop the following theorem.

Theorem 35 Under the conditions of Theorems 22 and assuming that G(Ω) is connected,
the global solution and the origin are the only C-stationary points of the symmetric positive
RPCA. A similar result holds for the asymmetric positive RPCA.

Proof Without loss of generality, we only consider the symmetric case. At a given point
u, the function f(u) is locally Lipschitz and can be written as

f(u) =
∑

(i,j)∈Ω

max{uiuj −Xij ,−uiuj +Xij} = max
σ∈M

fσ(u) (53)

where M is the class of functions from Ω to {−1,+1} and fσ(u) is defined as

fσ(u) =
∑

(i,j)∈Ω

σ(i, j)(uiuj −Xij). (54)

Hence,
freg(u) = Rβ(u) + max

σ∈M
fσ(u) (55)

Notice that each function fσ(u) is differentiable and locally Lipschitz for every σ ∈M. By
contradiction, suppose that there exists u ≥ 0 such that u 6∈ {u∗, 0} and 0 ∈ ∂Cfreg(u).
Furthermore, define I(u) as the set of all functions σ ∈ M for which fσ(u) = f(u). Using
the proof technique developed in Theorem 22, one can easily verify that there exists a feasi-
ble direction d such that f ′σ(u,d)+R′(u,d) < 0 for every σ ∈ I(u). By invoking Lemma 33
for every σ ∈ I(u), it can be concluded that f◦σ(u,d) + R◦(u,d) < 0. This, together with
Lemma 34, certifies that f◦reg(u,d) < 0, hence contradicting the assumption 0 ∈ ∂Cfreg(u).
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9. Discussions on Extension to Rank-r

So far, we have characterized the conditions under which the non-negative rank-1 RPCA
has no spurious local solution. However, the following question has been left unanswered:
Can these results be extended to the general robust non-negative rank-r RPCA?

As a first step toward answering this question and similar to our analysis in the rank-1
case, we consider the noiseless non-negative rank-r RPCA defined as

min
U∈Rn×r

+

f(U) = ‖PΩ(UU> − U∗U∗>)‖1 (P1-Sym-r)

for the symmetric version, and

min
U∈Rm×r

+ ,V ∈Rn×r
+

f(U, V ) = ‖PΩ(UV > − U∗V ∗>)‖1 (P1-Asym-r)

for the asymmetric version. The non-negative rank-r RPCA appears in many applica-
tions, such as robust inference in gene networks and motion detection with dynamic back-
ground. For instance, according to Section 1 and equation (3), one can define U∗ =[
u(1) u(2) . . . u(k)

]
and V ∗ =

[
v(1) v(2) . . . v(k)

]
in gene regulatory networks, and

formulate the problem of estimating the non-negative participation values of different genes
and samples as an instance of the non-negative rank-k RPCA (P1-Asym-r) (here, k is the
number of gene-blocks). Another example is the dynamic variant of the motion detection
problem in which the background changes over time. In particular, one can model this prob-
lem as a non-negative rank-r RPCA, where the rank r corresponds to the number of baseline
backgrounds that appear in the video frames. In particular, suppose that in any given video
frame at time t, the background Bt can be characterized as

∑r
i=1w

t
iB(i). In other words,

the background at time t is a non-negative weighted combination of r baseline backgrounds
{B(i)}ri=1. Under such circumstances, the motion detection problem with a dynamic back-
ground can be written as a non-negative rank-r RPCA (P1-Asym-r), where U∗ collects
the vectorized version of the baseline backgrounds, and the tth row of V ∗ corresponds to
the non-negative weights

[
wt1 wt2 . . . wtr

]
. Other applications of the non-negative rank-r

RPCA include topic modeling in text and image processing, as well as other applications
of non-negative matrix factorization (Cichocki et al., 2009).

A fundamental roadblock in extending the results of Section 6 to (P1-Sym-r)
and (P1-Asym-r) is the implicit rotational symmetry in the solution: given a rotation
matrix R and a solution Ũ (Ũ , Ṽ ) to (P1-Sym-r) ((P1-Asym-r) when m = n), the matrix
ŨR (ŨR, Ṽ R) is another feasible solution with f(ŨR) = f(Ũ) (f(ŨR, Ṽ R) = f(Ũ , Ṽ )),
provided that ŨR (ŨR, Ṽ R) is a non-negative matrix. In the rank-1 case, this does not
pose any problem since R = 1 is the only possible value. However, for the general rank-r
case with r ≥ 2, this rotational symmetry undermines the strict positivity assumption of
the true components. In particular, even if the true solution U∗ is strictly positive, there
exists a rotation matrix R such that U∗R is non-negative with at least one zero entry.
Furthermore, it is easy to see that the same rotational symmetry exists in the regularized
variant of the problem and in the presence of the noise. An important consequence of this
phenomenon is that Lemma 9 and, as a result, the technique used in Theorem 8 may not
be readily extended to the rank-r case.
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Figure 4: The success rate of the randomly initialized sub-gradient method for the positive rank-r RPCA.

Despite the theoretical difficulties in extending the presented results to the general rank-
r instances, we have indeed observed—through thousands of simulations—that in general,
the sub-gradient method introduced in Section 3 successfully converges to a solution U that
satisfies UU> = U∗U∗>, even if the measurement matrix is corrupted with a surprisingly
dense noise matrix. To illustrate this, we consider randomly generated instances of the
problem with the dimension n = 100 and the rank r ∈ {2, 3, 4, 5}. For each instance, the
elements of U∗ are uniformly chosen from the interval [0.5, 2.5]. Furthermore, each element
in the upper triangular part of the noise matrix S is set to 2 and 0 with probabilities
d and 1 − d, respectively. For each rank r and the noise probability d, we consider 500
independent instances of the problem and solve them using the randomly initialized sub-
gradient method. Similar to Subsection 3.1, we assume that a solution is recovered exactly
if ‖UU> − U∗U∗>‖F /‖U∗U∗>‖F ≤ 10−4. Figure 4 demonstrates the ratio of the instances
for which the sub-gradient method successfully recovers the true solution. As illustrated in
this figure, d can be as large as 0.30, 0.28, 0.26, and 0.25 to guarantee a success rate of at
least 90% when r is equal to 2, 3, 4, and 5, respectively.

This empirical study suggests that one of the following statements may hold for the
positive rank-r RPCA: (1) it is devoid of spurious local minima, or (2) its spurious local
minima can be escaped efficiently using the sub-gradient method. Further investigation of
this direction is left as an enticing challenge for future research.

10. Conclusion

This paper deals with the non-negative rank-1 robust principal component analysis (RPCA),
where the goal is to recover the true non-negative principal component of the data matrix
exactly, using partial and potentially noisy measurements of the data matrix. The main
difference between the RPCA and its classical counterpart is the sparse-but-arbitrarily-
large values of the additive noise. The most commonly known methods for solving the
RPCA are based on convex relaxations, where the problem is convexified at the expense
of significantly increasing the number of variables. In this work, we show that the original
non-convex and non-smooth `1 formulation of the positive rank-1 RPCA problem based
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on the well-known Burer-Monteiro approach has benign landscape, i.e., it does not have
any spurious local solution and has a unique global solution that coincides with the true
components. In particular, we provide strong deterministic and statistical guarantees for the
benign landscape of the positive rank-1 RPCA and show that the absence of spurious local
solutions is guaranteed to hold with a surprisingly large number of corrupted measurements.
While the results on “no spurious local minima” are ubiquitous for smooth problems related
to matrix completion and sensing, to the best of our knowledge, the results presented in this
paper are the first to prove the absence of local minima when the objective function is non-
smooth. Finally, through extensive simulations, we provide strong evidence suggesting that
the proposed results may hold for the general non-negative rank-r RPCA. The extension of
our theoretical results to this generalized problem is left as a future work.
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Appendix

Appendix A. Proof of Lemma 9:

Without loss of generality and for simplicity, we will assume that G(Ω) is connected since
the proof can be readily applied to each disjoint component of G(Ω). Consider a point u ≥ 0
with uk = 0 for some k. Consider Ωk = {j|(k, j) ∈ Ω} and note that it is non-empty due
to the assumption that G(Ω) is connected and non-bipartite. Furthermore, if there exists
r ∈ Ωk such that ur > 0, a positive perturbation of uk will result in a feasible and negative
directional derivative. Therefore, suppose that ur = 0 for every r ∈ Ωk. Similarly, one can
show that if ut > 0 for some t ∈ Ωr and r ∈ Ωk, then u has a feasible and strictly negative
directional derivative. Invoking the same argument for the neighbors of the nodes with the
zero value, one can infer that u = 0. This completes the proof. �

Appendix B. Proof of Proposition 10:

Suppose that u∗ ≥ 0 and there exists an index i such that u∗i = 0. Without loss of
generality, assume that i = 1 and u∗j > 0 for every j ≥ 2. Next, we will show that u
defined as u1 = β > 0 and uj = 0 for j ≥ 2 is a local minimum of (P1-Sym). Consider the
perturbed version of u as

û1 ← β + ε1 (56)

ûj ← εj ∀j ∈ {2, ..., n} (57)
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for sufficiently small |ε1| and ε2, ..., εn ≥ 0. Upon defining Ω = {1, ..., n}2\{(1, 1)}, one can
write

f(u) =
n∑
j=2

u∗j
2 +

n∑
j,k=2,j 6=k

u∗ju
∗
k (58)

f(û) =
n∑
j=2

u∗j
2−ε2j+

n∑
j=2

(β + ε1)εj +
n∑

j,k=2,i 6=j
|u∗ju∗k − εjεk| ≥ f(u) + β

n∑
j=2

εj−

 n∑
j=1

εj

2

+ ε21

(59)

It is easy to verify that there exist constants ε̄1 > 0 and ε̄ > 0 such that for every −ε̄1 ≤
ε1 ≤ ε̄1 and 0 ≤

∑n
j=2 εi ≤ ε̄, we have

β
n∑
j=2

εi −

(
n∑
i=1

εi

)2

+ ε21 ≥ 0 (60)

and hence f(û) ≥ f(u). This implies that u is a local minimum for f(u). �

Appendix C. Proof of Theorem 13:

First, we present a number of lemmas that are crucial to the proof of this theorem.

Lemma 36 Suppose that G(Ω̄) is connected and w∗ > 0. Then, for every D-min-stationary
point w, we have w > 0 or w = 0.

Proof The proof is omitted due to its similarity to that of Lemma 9.

Lemma 37 Suppose that G(Ω̄) is connected and w∗ > 0. Then,
∑m

i=1w
2
i =

∑m+n
j=m+1w

2
j

holds for every D-stationary point w > 0 of (P1-Asym).

Proof By contradiction, suppose that
∑m

i=1w
2
i 6=

∑m+n
j=m+1w

2
j for a D-stationary point

w > 0. Without loss of generality, suppose that
∑m

i=1w
2
i >

∑m+n
j=m+1w

2
j and consider the

following perturbation of w

ŵi ←
{
wi − wiε if 1 ≤ i ≤ n
wi + wiε if n+ 1 ≤ i ≤ n+m

(61)

For (i, j) ∈ Ω̄, one can write

|ŵiŵj − ŵ∗i ŵ∗j | = |(wi − wiε)(wj + wjε)− ŵ∗i ŵ∗j | = |wiwj − ŵ∗i ŵ∗j |+ wiwjε
2 (62)

Therefore, we have

f(ŵ)− f(w) ≤ −2α

 m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

 ε+O(ε2) (63)

This implies the existence of strictly positive and negative directional derivatives, thus re-
sulting in a contradiction. This completes the proof.
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Lemma 38 G(Ω̄) has a unique vertex partitioning.

Proof By contradiction, suppose that there exist two different vertex partitions (S, T ) and
(S̄, T̄ ) for G(Ω̄). Since G(Ω̄) is a connected bipartite graph, S̄ is not equal to S or T , and
therefore, S∩ S̄ and T ∩ T̄ are not empty. Now, it is easy to observe that the nodes in S∩ S̄
can only be connected to those in T ∩ T̄ and, similarly, the nodes in T ∩ T̄ can only be
connected to those in S ∩ S̄. Therefore, unless (S ∩ S̄)∪ (T ∩ T̄ ) includes all the nodes, the
graph will be disconnected, contradicting our assumption. On the other hand, this implies
that S ∩ S̄ = S and T ∩ T̄ = T , contradicting the assumption that (S, T ) and (S̄, T̄ ) are
different.

Proof of Theorem 13 For a D-min-stationary point w, note that if wi = 0 for some
index i, then Lemma 36 implies that w = 0, which can be easily verified to be a local
maximum. We assume that w∗ satisfies

∑m
i=1w

∗2
i =

∑m+n
j=m+1w

∗2
j , which can be ensured by

an appropriate scaling of u∗ and v∗ while keeping u∗v∗> intact. Now, it suffices to show
that for a D-stationary point w > 0, we have w = w∗. This proves the validity of the
statements of the theorem.

By contradiction, suppose that w > 0 with w 6= w∗ is a D-stationary point. In what
follows, we will construct directions with strictly positive and negative directional derivatives
at this point. Similar to the proof of Theorem 8, one can show that

0 <
w∗1
w1
≤ min

k∈Ω̄i

w∗k
wk
≤ wi
w∗i
≤ max

k∈Ω̄i

w∗k
wk
≤
w∗m+n

wm+n
(64)

for every 1 ≤ i ≤ m + n. By contradiction, suppose that wi 6= w∗i for some index i. First,
note that w∗m+n/wm+n > 1; otherwise, it holds that w∗m+n/wm+n ≤ 1 and wi/w

∗
i > 1, which

contradict with (64). Define

T u1 =

{
i|w
∗
i

wi
=
w∗m+n

wm+n
, 1 ≤ i ≤ m

}
, T u2 =

{
i|wi
w∗i

=
w∗m+n

wm+n
, 1 ≤ i ≤ m

}
T v1 =

{
i|w
∗
i

wi
=
w∗m+n

wm+n
,m+ 1 ≤ i ≤ m+ n

}
, T v2 =

{
i|wi
w∗i

=
w∗m+n

wm+n
,m+ 1 ≤ i ≤ m+ n

}
(65)

and

Nu = {1, . . . ,m}\(T u1 ∪ T u2 ) (66a)

Nv = {m+ 1, . . . ,m+ n}\(T u1 ∪ T u2 ) (66b)

Furthermore, define d̄ as

d̄i =



wi
wm+n

− wiγ if i ∈ T u1
−wiγ if i ∈ Nu

− wi
wm+n

− wiγ if i ∈ T u2
wi

wm+n
+ wiγ if i ∈ T v1

wiγ if i ∈ Nv

− wi
wm+n

+ wiγ if i ∈ T v2

(67)

35



Fattahi and Sojoudi

where

γ =

∑
i∈Tu

1
wi −

∑
i∈Tu

2
wi −

∑
i∈T v

1
wi +

∑
i∈T v

2
wi

wn
∑m+n

i=1 wi
(68)

Similar to the symmetric case, we show that if T u1 ∪T v1 is non-empty, then f ′(w, d̄) < 0 and
f ′(w,−d̄) > 0, which contradicts the D-stationarity of w. We will only show f ′(w, d̄) < 0
since f ′(w,−d̄) > 0 can be proven in a similar way. Define a perturbation of w as ŵ =
w + dε where ε > 0 is chosen to be sufficiently small.

First, we analyze the regularization term in (P1-Asym). One can write∣∣∣∣∣∣
m∑
i=1

ŵ2
i −

m+n∑
j=m+1

ŵ2
j

∣∣∣∣∣∣≤
∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

+ 2

∑
i∈Tu

1

wi
wm+n

−
∑
i∈Tu

2

wi
wm+n

−
∑
i∈T v

1

wi
wm+n

+
∑
i∈T v

2

wi
wm+n

 ε

− 2γ

(
m∑
i=1

wi +

m+n∑
i=m+1

wi

)
ε

∣∣∣∣∣+ (
1

wn
+ γ)2

(
m+n∑
i=1

wi

)
ε2 (69)

Now, according to the definition of γ, one can easily verify that

2

∑
i∈Tu

1

wi
wm+n

−
∑
i∈Tu

2

wi
wm+n

−
∑
i∈T v

1

wi
wm+n

+
∑
i∈T v

2

wi
wm+n

 ε− 2γ

(
m∑
i=1

wi +
m+n∑
i=m+1

wi

)
ε=0

(70)
This together with Lemma 37, reduces (69) to∣∣∣∣∣∣

m∑
i=1

ŵ2
i −

m+n∑
j=m+1

ŵ2
j

∣∣∣∣∣∣ ≤ (
1

wn
+ γ)2

(
m+n∑
i=1

wi

)
ε2 (71)

To analyze the first term of (P1-Asym), similar to our previous proofs, we will divide
the set Ω̄ into different cases (4 cases to be precise) and analyze the effect of the defined
perturbation in each case. For the sake of simplicity and to streamline the presentation, we
only report the final inequalities for these cases:

1. If (i, j) ∈ Ω̄ and (i, j) ∈ (T u1 × T v1 ) ∪ (T u2 × T v2 ), then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j | −
2wiwj
wm+n

ε+ wiwj

(
1

w2
m+n

− γ2

)
ε2 (72)

2. If (i, j) ∈ Ω̄ and (i, j) ∈ (Nu × (T v1 ∪ T v2 )) ∪ ((T u1 ∪ T u2 )×Nv), then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j | −
wiwj
wm+n

ε+ wiwj

(
γ

w2
m+n

− γ2

)
ε2 (73)

3. If (i, j) ∈ Ω̄ and (i, j) ∈ (T u1 × T v2 ) ∪ (T u2 × T v1 ), then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j |+ wiwj

(
γ

wm+n
− γ
)2

ε2 (74)
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4. If (i, j) ∈ Ω̄ and (i, j) ∈ Nu ×Nv, then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j |+ wiwjγ
2ε2 (75)

Based on the above inequalities and due to the fact that G(Ω̄) is connected, one can easily
verify that Nu ∪ Nv should be empty; otherwise, w has a strictly negative (and positive)
directional derivative. Based on the same reasoning, the graph induced by T u1 ∪T v1 or T u2 ∪T v2
should be empty. Therefore, G is bipartite with the components T u1 ∪T v1 and T u2 ∪T v2 . Now,
based on Lemma 38, (T u1 ∪ T v1 , T u2 ∪ T v2 ) induces the same vertex partitioning as (Vu, Vv)
(without loss of generality, assume that T u1 ∪T v1 = Vu and T u2 ∪T v2 = Vv). This implies that

w1

w∗1
= · · · = wm

w∗m
=
w∗m+1

wm+1
= · · · =

w∗m+n

wm+n
> 1 (76)

Therefore,
m∑
i=1

wi >
m∑
i=1

w∗i ,
m+n∑
i=m+1

w∗i >
m+n∑
i=m+1

wi (77)

Together with the assumption
∑m

i=1w
∗
i =

∑m+n
i=m+1w

∗
i , this implies that

m∑
i=1

wi >

m+n∑
i=m+1

wi (78)

which, according to Lemma 37, contradicts the D-stationarity of w. This completes the
proof. �

Appendix D. Proof of Lemma 16:

To prove this lemma, first we provide a lower bound on the probability of G(Ω) being
connected. Define Ck as the number of connected components with exactly k vertices in
G(Ω). Then, one can write:

P(G(Ω) is connected) = 1− P

dn/2e⋃
k=1

{Ck > 0}

 = 1− P(C1 > 0)−
dn/2e∑
k=2

P(Ck > 0) (79)

where dn/2e denotes the smallest integer that is greater than or equal to n/2. Next, we
provide an upper bound on P(Ck > 0) for every k ∈ {2, . . . , dn/2e}. We have

P(Ck > 0) ≤ E{Ck} =
∑

X⊆[1:n],|X |=k

E{IX } (80)

where IX is an indicator random variable taking the value 1 if the subgraph GX (Ω) of G(Ω)
induced by the set of vertices in X is an isolated connected component of G(Ω), and it takes
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the value 0 otherwise. On the other hand, note that GX (Ω) is connected if and only if it
contains a spanning tree. Therefore, one can write

E{IX } = P(GX (Ω) has a spanning tree)

≤
∑
T ⊂Kk

P(T belongs to GX (Ω))

≤ kk−2pk−1 (81)

where Kk is a complete graph over k vertices and T is a spanning tree. The last inequality is
due to the fact that the number of different spanning trees in Kk is equal to kk−2 (Hartsfield
and Ringel, 2013). Combining the above inequality with (80) results in

P(Ck > 0) ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k)

≤
(ne
k

)k
kk−2e−pk(n−k)

≤ 1

k2
e−pk(n−k)+k logn+k

≤ 1

k2
e−

k(n−1)
2 (p− 2 logn+2

n−1 ) (82)

where the second inequality is due to the relations
(
n
k

)
≤
(
ne
k

)k
and (1 − p)k(n−k) ≤

e−pk(n−k). Furthermore, the last inequality is due to k ≤ (n + 1)/2. Now, upon choos-

ing p ≥ (2η+2) logn+2
n−1 for some η > 0, one can write

P(Ck > 0) ≤ 1

k2
e−ηk logn =

1

k2
(n−η)k (83)

Revisiting (79), one can also verify that

P(C1 > 0) ≤ n(1− p)n−1 ≤ e−p(n−1)+logn ≤ n−η (84)

provided that p ≥ (η+1) logn
n−1 , which is implied by p ≥ (2η+2) logn+2

n−1 . Combining this bound
with (79), one can write

P(G(Ω) is connected) ≥ 1− n−η −
dn/2e∑
k=2

1

k2

(
n−η

)k
≥ 1− n−η − 1

4

n−2η

1− n−η

≥ 1−
(

1 +
1

4(nη − 1)

)
n−η

≥ 1− 5

4
n−η (85)

where we have used the assumption n ≥ 2 and η ≥ 1. Finally, given the event that G(Ω)
is connected, it is non-bipartite if it has at least one self-loop. Therefore, the probability of
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G(Ω) being non-bipartite is lower bounded by 1− (1− p)n. This implies that

P(G(Ω) is connected and non-bipartite) ≥
(

1− 5

4
n−η

)
(1− (1− p)n)

≥
(

1− 5

4
n−η

)(
1− e−np

)
≥
(

1− 5

4
n−η

)(
1− e−(n−1)p

)
≥
(

1− 5

4
n−η

)(
1− e−2n−(2η+2)

)
≥ 1− 3

2
n−η (86)

This completes the proof. �

Appendix E. Proof of Proposition 18:

To prove Proposition 18, we present another important result on Erdös-Rényi random
graphs.

Lemma 39 ((Erdös and Rényi, 1959)) Assuming that np→ 0 as n→∞, the following
properties hold with probability approaching to one:

- G(n, p) is acyclic.

- The size of every component of G(n, p) is O(log n).

Proof of Proposition 18: Assuming that np → 0, Lemma 39 implies that G(Ω) is the
union of disjoint tree components, each with the size of at most O(log n). In what follows, we
will show that, with probability approaching to one, G(Ω) has at least a bipartite component
without any self loops. This, together with Proposition 11, will immediately conclude the
proof. One can write

P(G(Ω) has a bipartite comp.)
(a)

≥ P(G(Ω) has a tree comp. without self loops)

≥ P(every comp. is a tree with size O(log n))

× P(no self-loop in at least one comp|every comp. is a tree with size O(log n))

(b)
= P(every comp. is a tree with size O(log n))

× P(no self-loop in at least one comp|every comp. has the size O(log n))

≥P(every comp. is a tree with size O(log n))

× (1− P(every comp. has self-loops|every comp. has the size O(log n)))

≥P(every comp. is a tree with size O(log n)︸ ︷︷ ︸
A

)

× (1− P(there are at least Ω(n/ log n) self-loops︸ ︷︷ ︸
B

)) (87)
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where (a) is followed by the fact that every tree is bipartite, and (b) is followed by the
fact that the self-loops are included in the graph independent of other edges. Based on
Lemma 39, we have P(A) → 1 as n → ∞. Now, we only need to show that P(B) → 0 as
n→∞. One can easily verify that

P(B) ≤
(

n
n

logn

)
p

n
logn ≤ (e log n)

n
logn p

n
logn (88)

where the second inequality follows from the relation
(
n
k

)
≤
(
ne
k

)k
. Replacing p = o(1/n)

gives rise to

lim
n→∞

P(B) ≤ lim
n→∞

(ep log n)
n

logn = 0 (89)

Together with (87), this implies that G(Ω) will have a bipartite component without self
loops with probability approaching 1. �

Appendix F. Proof of Lemma 20

We take an approach similar to the proof of Lemma 16. First, recall that {Vu, Vv} with
Vu = {1, . . . ,m} and Vv = {m+1, . . . ,m+n} is a vertex partitioning of the bipartite graph
G(Ω̄). Define Ck,l as the number of connected components with exactly k vertices from
Vu and l vertices from Vv. To simplify the presentation and without loss of generality, we
assume that m and n are even. One can write:

P(G(Ω̄) is connected) = 1− P

dm/2e⋃
k=0
k+l 6=0

dn/2e⋃
l=1

{Ck,l > 0}


≥ 1− (P(C1,0 > 0) + P(C0,1 > 0))−

dm/2e∑
k=1

dn/2e∑
l=1

P (Ck,l > 0) (90)

First, we provide an upper bound on P (Ck,l > 0) for k = 1, . . . , dm/2e and l = 1, . . . , dn/2e.
Similar to the proof of Lemma 16, one can write

P(Ck,l > 0) ≤ E{Ck,l} =
∑

Xu⊆[1:m],|Xu|=k
Xv⊆[m+1:m+n],|Xv |=l

E{IXu,Xv} (91)

where IXu,Xv is an indicator random variable taking the value 1 if the subgraph GXu,Xv(Ω̄)
of G(Ω̄) induced by the set of vertices in Xu ∪ Xv is an isolated connected component of
G(Ω̄), and it takes the value 0 otherwise. On the other hand, we have

E{IXu,Xv} = P(GXu,Xv(Ω̄) has a spanning tree)

≤
∑
T ⊂Kk,l

P(T belongs to GXu,Xv(Ω̄))

≤ kl−1lk−1pk+l−1 (92)
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where Kk,l is a complete bipartite graph over two sets of vertices with the sizes k and l,
and T is a spanning tree. The last inequality is due to the fact that the number of different
spanning trees in Kk,l is equal to kl−1lk−1 (Hartsfield and Ringel, 2013). Therefore, one can
write

P(Ck,l > 0) ≤
(
m

k

)(
n

l

)
kl−1lk−1pk+l−1(1− p)k(n−l)+l(m−k)

≤
(me
k

)k (ne
l

)l
kl−1lk−1e−p(k(n−l)+l(m−k))

≤ 1

kl

(
k

l

)l−k
e−p(k(n−l)+l(m−k))+k logm+l logn+(k+l)

≤ 1

kl
e−p(k(n−l)+l(m−k))+(k+l)(log(mn)+1) (93)

where we used the relation
(
k
l

)l−k ≤ 1 in the last inequality. Next, we show that the
following inequality holds:

k(n− l) + l(m− k) ≥ (k + l)
(m− 1)(n− 1)

m+ n
(94)

To this goal, note that

k(n− l) + l(m− k) ≥ (k + l)
(m− 1)(n− 1)

m+ n

⇐⇒ k(m+ n)(n− l) + l(m+ n)(m− k) ≥ (k + l)(m− 1)(n− 1)

⇐⇒ (k + l)mn+ kn(n− 2l) + lm(m− 2k) ≥ (k + l)(m− 1)(n− 1)

⇐⇒ kn(n− 2l) + lm(m− 2k) ≥ −nk −ml − (n− 1)l − (m− 1)l (95)

where the last inequality holds due to l ≤ (n + 1)/2 and k ≤ (m + 1)/2, which in turn
implies that kn(n− 2l) + lm(m− 2k) ≥ −nk −ml. Combining (94) and (93) leads to

P(Ck,l > 0) ≤ 1

kl
e
−(k+l)

(m−1)(n−1)
m+n

(
p− (m+n)(log(mn)+1)

(m−1)(n−1)

)
(96)

Upon choosing p ≥ (m+n)((1+η) log(mn)+1)
(m−1)(n−1) for some η ≥ 1, one can write

P(Ck,l > 0) ≤ 1

kl

(
(mn)−η

)(k+l)
(97)

On the other hand, it is easy to verify that

P(C0,1 > 0) ≤ n(1− p)m ≤ e−pm+logn ≤ (mn)−η

P(C1,0 > 0) ≤ m(1− p)n ≤ e−pn+logm ≤ (mn)−η (98)

provided that p ≥ (1+η) log(mn)
m and p ≥ (1+η) log(mn)

n , both of which are guaranteed to hold

with the choice of p ≥ (m+n)((1+η) log(mn)+1)
(m−1)(n−1) . Combining (98), (97), and (90) results in

P(G(Ω̄) is connected) ≥ 1− 2(mn)−η −
dm/2e∑
k=1

dn/2e∑
l=1

1

kl

(
(mn)−η

)(k+l)

≥ 1− 2(mn)−η − 4(mn)−2η (99)

where we have used the assumptions m,n ≥ 2 and η ≥ 1. This completes the proof. �
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Appendix G. Proof of Lemma 21

We present the proof for the symmetric case (the proof for the asymmetric case follows
directly after symmetrization and the fact that the penalty on the norm difference is zero
at the positive D-stationary points). First, we prove that umax ≤ 2. It suffices to show that
umax ≤ max{2β,

√
2n/λ}. This, together with the choice of β and λ, implies umax ≤ 2. To

this goal, we only need to verify that umax > 2β implies umax ≤
√

2n/λ. By contradiction,
suppose that umax >

√
2n/λ. In what follows, it will be shown that u has strictly positive

and negative directional derivatives, thereby contradicting its D-stationarity. Consider a
perturbation of u as û = u − emaxε for a sufficiently small ε > 0, where emax is a vector
with 1 at the location corresponding to umax and 0 everywhere else. One can write

freg(û)− freg(u) ≤

(
n∑
i=1

ui

)
ε+ λ

(
(umax − ε− β)4 − (umax − β)4

)
=

(
n∑
i=1

ui

)
ε− 4λ(umax − β)3ε+O(ε2)

(a)

≤

(
n∑
i=1

ui −
λ

2
u3

max

)
ε+O(ε2)

≤
(
numax −

λ

2
u3

max

)
ε+O(ε2) (100)

where (a) is due to the fact that umax ≥ 2β implies umax−β ≥ umax/2. (100) together with
umax >

√
2n/λ, implies that −emax is a direction with a negative directional derivative.

Similarly, it can be shown that emax is a direction with a positive directional derivative.
This contradicts the D-stationarity of u and, hence, umax ≤ max{2β,

√
2n/λ}.

Next, we aim to show that (c/2)u∗
2

min ≤ umin. By contradiction, suppose that there

exists an index i such that (c/2)u∗
2

min > ui. Now, since ui < 1, we have Iui≥β = 0 due to the
choice of β. Consider the terms in freg(u) that involves ui:∑

j∈Ωi

|uiuj −Xij | =
∑
j∈Gi

|uiuj − u∗iu∗j |+
∑
j∈Bi

|uiuj − (u∗iu
∗
j + Sij)| (101)

Considering the fact that umax ≤ 2, one can verify the following inequality for every (i, j) ∈
G:

uiuj < cu∗
2

min ≤ u∗
2

min ≤ u∗iu∗j (102)

A similar inequality holds for (i, j) ∈ B:

uiuj < cu∗
2

min

(a)

≤ u∗iu
∗
j + Sij (103)

where we have used Assumption 1 for (a). Therefore, a positive and negative perturbation
of ui results in negative and positive directional derivatives at u, thereby contradicting the
D-stationarity of this point. �
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Appendix H. Proof of Theorem 22:

The next lemma is crucial in proving Theorem 22.

Lemma 40 Suppose that the assumptions of Theorem 22 hold and define

s(u) = −
∑

(i,j)∈B
i,j∈T1

2uiuj
un

+
∑

(i,j)∈B
i,j∈T2

2uiuj
un

+
∑

(i,j)∈B
i∈T1∪T2,j∈N

uiuj
un︸ ︷︷ ︸

fB(u)

+
∑

(i,j)∈G
i,j∈T1

2uiuj
un

+
∑

(i,j)∈G
i,j∈T2

2uiuj
un

+
∑

(i,j)∈G
i∈T1∪T2,j∈N

uiuj
un︸ ︷︷ ︸

fG(u)

+
∑
i∈T2

4ui(ui − 1)3

un
Iui≥1︸ ︷︷ ︸

fR(u)

(104)

where the sets T1 and T2 are defined as (20) and (21), respectively. Then, for every D-
stationary point u > 0 such that u 6= u∗, the following inequalities hold with the choice of
β = 1 and λ = n/2:

- freg(û)− freg(u) ≤ −s(u)ε+O(ε2) for û = u + dε and a sufficiently small ε > 0.

- freg(û)− freg(u) ≥ s(u)ε−O(ε2) for û = u− dε and a sufficiently small ε > 0.

where d is defined as (22).

Proof To prove this lemma, first we show the validity of (19). By contradiction, suppose
that (19) does not hold. Without loss of generality, assume that there exists an index i
such that ui/u

∗
i > u∗n/un (the case with ui/u

∗
i < u∗1/u1 can be argued in a similar way).

This implies that uiuj > u∗iu
∗
j for every (i, j) ∈ Ω. Define û = u−eε for a sufficiently small

ε > 0, where e is a vector with ek = 1 if k = i and ek = 0 otherwise. One can write

freg(û)− freg(u) ≤ −

∑
j∈Gi

uj

 ε+

∑
j∈Bi

uj

 ε+ λ
(
(ui − ε− 1)4 − (ui − 1)4

)
Iui≥1

≤ −

∑
j∈Gi

uj

 ε+

∑
j∈Bi

uj

 ε

≤ −cu
∗2
min

2
δ(G(G)) + 2∆(G(B)) (105)

where Gi = {j|(i, j) ∈ G} and Bi = {j|(i, j) ∈ B}. The second inequality is due to the
fact that

(
(ui − ε− 1)4 − (ui − 1)4

)
Iui≥1 is non-negative and the third inequality follows

from Lemma 21 and the definitions of δ(G(G)), ∆(G(B)). Based on the assumption of
Theorem 22, we have

δ(G(G))

∆(G(B))
>

48

c2
κ(u∗)4 =

48

c2u∗
4

min

>
4

cu∗
2

min

(106)
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which implies (−cu∗2min/2)δ(G(G)) + 2∆(G(B)) < 0, and hence, −e is a direction with a
negative directional derivative. Similarly, it can be shown that e is a direction with a
positive directional derivative. This contradicts the D-stationarity of u and hence (19)
holds. Now, we will show the correctness of the first statement. Similar to the proof of
Theorem 8, one can verify that

∑
(i,j)∈Ω

|ûiûj −Xij | −
∑

(i,j)∈Ω

|uiuj −Xij | ≤ (fB(u)− fG(u))ε+O(ε2) (107)

Now, we only need to bound R(û) − R(u). To this goal, notice that if i ∈ T1, then
ui < u∗i ≤ 1 due to the fact that u 6= u∗ and u∗i /ui = u∗n/un > 1. Therefore, Iui≥1 = 0 for
every i ∈ T1. This implies that

R(û)−R(u) =
∑
i∈T2

(
ui −

ui
un
ε− 1

)4

Iui≥1 −
∑
i∈T2

(ui − 1)4 Iui≥1

= −
∑
i∈T2

4ui(ui − 1)3

un
Iui≥1ε+O(ε2) (108)

A similar approach can be taken to prove the second statement of the lemma.

Lemma 41 Suppose that G(Ω) has no bipartite component and every entry of X is strictly
positive. Then, for every D-min-stationary point u of (P1-Sym), we have u[c] > 0 or
u[c] = 0, where u[c] is a sub-vector of u induced by the cth component of G(Ω).

Proof The proof is similar to that of Lemma 9.

Proof of Theorem 22: Similar to the proof of Theorem 8, it suffices to show that none
of the points u > 0 with u 6= u∗ can be D-stationary. By contradiction, suppose that this
is not the case, i.e., there exists a D-stationary point u > 0 such that u 6= u∗. Consider
the functions fB(u) and fG(u) defined in Lemma 40. The main idea behind the proof is to
show that the term fG(u) always dominates fB(u). This, together with the non-negativity
of fR(u), shows that s(u) > 0 and hence, f ′reg(u,d) < 0 and f ′reg(u,−d) > 0, which is a
contradiction. One can bound each term in fB(u) and obtain

fB(u)≤ 1

un

(
2·∆(G(B))

2
|T1|u2

max+2·∆(G(B))

2
|T2|u2

max+
∆(G(B))

2
(|T1|+|T2|)u2

max

)
ε+O(ε2)

≤ 3

2un
∆(G(B))(|T1|+|T2|)u2

maxε+O(ε2)

≤ 6

un
∆(G(B))(|T1|+|T2|)ε+O(ε2) (109)
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where the last inequality follows from the fact that umax ≤ 2 due to Lemma 21. Next, we
derive a lower bound on fG(x):

fG(x) ≥ 1

un
· δ(G(G))

2
(|T1|+ |T2|)u2

minε+O(ε2)

≥ 1

un
· δ(G(G))

2
(|T1|+ |T2|)

c2u∗
4

min

4
ε+O(ε2)

=
c2u∗

4

min

8un
δ(G(G))(|T1|+ |T2|)ε+O(ε2) (110)

where the first inequality is due to the fact that the minimum value for fG(u) happens when
the neighbors of T1 ∪ T2 in G(G) all belong to the set N and their corresponding values in
uu> are all equal to u2

min. Furthermore, the second inequality is due to Lemma 16 and the
choice of β for Rβ(u). Therefore, one can write

fB(x)− fG(x) ≤

(
6

un
∆(G(B))− c2u∗

4

min

8un
δ(G(G))

)
(|T1|+ |T2|)ε+O(ε2)

=
∆(G(B))c2u∗

4

min

8un

(
48

c2
κ(u∗)4 − δ(G(G))

∆(G(B))

)
(|T1|+ |T2|)ε+O(ε2). (111)

Therefore, the choice of (48/c2)κ(u∗)4 < δ(G(G))/∆(G(B)) implies that fB(x)−fG(x) < 0,
thereby completing the proof. �

Appendix I. Proof of Lemma 25

The degree of each node is equal to the summation of n independent Bernoulli random
variables, each with parameter p. Therefore, Chernoff bound yields that

P(deg(v) ≥ (1 + δ)np) ≤ e−npδ2/3 (112a)

P(deg(v) ≤ (1− δ)np) ≤ e−npδ2/3 (112b)

for every vertex v and 0 ≤ δ ≤ 1, where deg(v) is the degree of vertex v in the graph.
Therefore, a simple union bound leads to

P(∆(G(n, p)) ≥ (1 + δ)np) ≤ ne−npδ2/3 = e−npδ
2/3+logn (113a)

P(δ(G(n, p)) ≤ (1− δ)np) ≤ ne−npδ2/3 = e−npδ
2/3+logn (113b)

Setting δ = 1/2 and assuming that p ≥ 12(1 + η) log n/n for some η > 0, one can write

P
(

∆(G(n, p)) ≥ 3np

2

)
≤ n−η (114a)

P
(
δ(G(n, p)) ≤ np

2

)
≤ n−η (114b)
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Furthermore, p < 12(1 + η) log n/n leads to

P (∆(G(n, p)) ≥ 18(1 + η) log n) ≤ P
(

∆

(
G
(
n,

12(1 + η) log n

n

))
≥ 18(1 + η) log n

)
≤ P

(
∆

(
G
(
n,

12(1 + η) log n

n

))
≥ 3np

2

)
≤ n−η (115)

Combining (115) with (114a) and (114b) results in the desired inequalities. This completes
the proof. �

Appendix J. Proof of Lemma 31

Define S = {1, ...,m} and T = {m+ 1, ...,m+n}. Similar to the proof of Lemma I, one can
write the following concentration inequalities:

P(max
v∈S
{deg(v)} ≥ (1 + δ)np) ≤ me−npδ2/3 (116a)

P(min
v∈S
{deg(v)} ≤ (1− δ)np) ≤ me−npδ2/3 (116b)

P(max
v∈T
{deg(v)} ≥ (1 + δ)mp) ≤ ne−mpδ2/3 (116c)

P(min
v∈T
{deg(v)} ≤ (1− δ)mp) ≤ ne−mpδ2/3 (116d)

which imply

P(∆(G(m,n, p)) ≥ (1 + δ)np) ≤ me−npδ2/3 + ne−mpδ
2/3 ≤ 2e−mpδ

2/3+logn (117a)

P(δ(G(m,n, p)) ≤ (1− δ)mp) ≤ me−npδ2/3 + ne−mpδ
2/3 ≤ 2e−mpδ

2/3+logn (117b)

Setting δ = 1/2 and assuming that p ≥ 12(1 + η) log n/m for some η > 0 results in

P(∆(G(m,n, p)) ≥ 3np

2
) ≤ 2n−η (118a)

P(δ(G(m,n, p)) ≤ mp

2
) ≤ 2n−η (118b)

Furthermore, if p < 12(1 + η) log n/m, one can write

P
(

∆(G(n, p)) ≥ 18(1 + η)n log n

m

)
≤ P

(
∆

(
G
(
n,

12(1 + η) log n

m

))
≥ 18(1 + η)n log n

m

)
≤ P

(
∆

(
G
(
n,

12(1 + η) log n

m

))
≥ 3np

2

)
≤ 2n−η (119)

This completes the proof. �
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