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Abstract

We consider the problem of estimating the latent structure of a social network based on
the observed information diffusion events, or cascades, where the observations for a given
cascade consist of only the timestamps of infection for infected nodes but not the source
of the infection. Most of the existing work on this problem has focused on estimating
a diffusion matrix without any structural assumptions on it. In this paper, we propose
a novel model based on the intuition that an information is more likely to propagate
among two nodes if they are interested in similar topics which are also prominent in the
information content. In particular, our model endows each node with an influence vector
(which measures how authoritative the node is on each topic) and a receptivity vector
(which measures how susceptible the node is for each topic). We show how this node-topic
structure can be estimated from the observed cascades, and prove the consistency of the
estimator. Experiments on synthetic and real data demonstrate the improved performance
and better interpretability of our model compared to existing state-of-the-art methods.

Keywords: alternating gradient descent, low-rank models, information diffusion, influence-
receptivity model, network science, nonconvex optimization

1. Introduction

The spread of information in online web or social networks, the propagation of diseases
among people, as well as the diffusion of culture among countries are all examples of in-
formation diffusion processes or cascades. In many of the applications, it is common to
observe the spread of a cascade, but not the underlying network structure that facilitates
the spread. For example, marketing data sets capture the times of purchase of products by
consumers, but not whether the consumer was influenced by a recommendation of a friend
or an advertisement on TV; we can observe when a person falls ill, but we cannot observe
who infected him/her. In all these settings, we can observe the propagation of information
but cannot observe the way they propagate.

There is a vast literature on recovering the underlying network structure based on the
observations of information diffusion. A network is represented by a diffusion matrix that
characterizes connections between nodes, that is, the diffusion matrix gives weight/strength
to the arcs between all ordered pairs of vertices. Gomez-Rodriguez et al. (2011) propose
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a continuous time diffusion model and formulate the problem of recovering the underlying
network diffusion matrix by maximizing the log-likelihood function. The model of Gomez-
Rodriguez et al. (2011) imposes no structure among nodes and allows for arbitrary diffusion
matrices. As a modification of this basic model, Du et al. (2013b) consider a more so-
phisticated topic-sensitive model where each information cascade is associated with a topic
distribution on several different topics. Each topic is associated with a distinct diffusion
matrix and the diffusion matrix for a specific cascade is a weighted sum of these diffusion
matrices with the weights given by the topic distribution of the cascade. This model can
capture our intuition that news on certain topics (for example, information technology) may
spread much faster and broader than some others (for example, military). However, since
the diffusion matrix for each topic can be arbitrary, the model fails to capture the intuition
that nodes have intrinsic topics of interest.

In this paper, we propose a novel mathematical model that incorporates the node-
specific topics of interest. Throughout the paper we use the diffusion of news among people
as an example of cascades for illustrative purposes. An item of news is usually focused
on one or a few topics (for example, entertainment, foreign policy, health), and is more
likely to propagate between two people if both of them are interested in these same topics.
Furthermore, a news item is more likely to be shared from node 1 to node 2 if node 1 is
influential/authoritative in the topic, and node 2 is receptive/susceptible to the topic. Our
proposed mathematical model is able to capture this intuition. We show how this node-topic
structure (influence and receptivity) can be estimated based on observed cascades with a
theoretical guarantee. Finally, on the flip side, after obtaining such a network structure,
we can use this structure to assign a topic distribution to a new cascade. For example, an
unknown disease can be classified by looking at its propagation behavior.

To the best of our knowledge, this is the first paper to leverage users’ interests for recov-
ering the underlying network structure from observed information cascades. Theoretically,
we prove that our proposed algorithm converges linearly to the true model parameters up
to statistical error; experimentally, we demonstrate the scalability of our model to large
networks, robustness to overfitting, and better performance compared to existing state-of-
the-art methods on both synthetic and real data. While existing algorithms output a large
graph representing the underlying network structure, our algorithm outputs the topic in-
terest of each node, which provides better interpretability. This structure can then be used
to predict future diffusions, or for customer segmentation based on interests. It can also be
applied to build recommendation systems, and for marketing applications such as targeted
advertising, which is impossible for existing works.

A conference version of this paper was presented in the 2017 IEEE International Confer-
ence on Data Mining (ICDM) series (Yu et al., 2017). Compared to the conference version,
in this paper we extend the results in the following ways: (1) we introduce a new penal-
ization method and a new algorithm in Section 4; (2) we build theoretical result for our
proposed algorithm in Section 5; (3) we discuss several variants and applications of our
model in Section 6; (4) we evaluate the performance of our algorithm on a new data set in
Section 8.1.
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1.1. Related Work

A large body of literature exists on recovery of latent network structure based on observed
information diffusion cascades (Kempe et al., 2003; Gruhl et al., 2004). See Guille et al.
(2013) for a survey. Pouget-Abadie and Horel (2015) introduce a Generalized Linear Cas-
cade Model for discrete time. Alternative approaches to analysis of discrete time networks
have been considered in (Eagle et al., 2009; Song et al., 2009a,b; Kolar et al., 2010a,b; Kolar
and Xing, 2011, 2012; Lozano and Sindhwani, 2010; Netrapalli and Sanghavi, 2012; Wang
and Kolar, 2014; Gao et al., 2016; Lu et al., 2018).

In this paper we focus on network inference under the continuous-time diffusion model
introduced in Gomez-Rodriguez et al. (2011), where the authors formulate the network
recovery problem as a convex program and propose an efficient algorithm (NetRate) to
recover the diffusion matrix. In a follow-up work, Gomez-Rodriguez et al. (2010) look
at the problem of finding the best K edge graph of the network. They show that this
problem is NP-hard and develop NetInf algorithm that can find a near-optimal set of
K directed edges. Gomez-Rodriguez et al. (2013) consider a dynamic network inference
problem, where it is assumed that there is an unobserved dynamic network that changes
over time and propose InfoPath algorithm to recover the dynamic network. Du et al.
(2012) relax the restriction that the transmission function should have a specific form, and
propose KernelCascade algorithm that can infer the transmission function automatically
from the data. Specifically, to better capture the heterogeneous influence among nodes, each
pair of nodes can have a different type of transmission model. Zhou et al. (2013) use multi-
dimensional Hawkes processes to capture the temporal patterns of nodes behaviors. By
optimizing the nuclear and `1 norm simultaneously, ADM4 algorithm recovers the network
structure that is both low-rank and sparse. Myers et al. (2012) consider external influence
in the model: information can reach a node via the links of the social network or through
the influence of external sources. Myers and Leskovec (2012) further assume interaction
among cascades: competing cascades decrease each other’s probability of spreading, while
cooperating cascades help each other in being adopted throughout the network. Gomez-
Rodriguez et al. (2016) prove a lower bound on the number of cascades needed to recover
the whole network structure correctly. He et al. (2015) combine Hawkes processes and topic
modeling to simultaneously reason about the information diffusion pathways and the topics
of the observed text-based cascades. Other related works include (Bonchi, 2011; Liu et al.,
2012; Du et al., 2013a; Gomez-Rodriguez and Schölkopf, 2012; Jiang et al., 2014; Zhang
et al., 2016).

The work most closely related to ours is Du et al. (2013b), where the authors propose
a topic-sensitive model that modifies the basic model of Gomez-Rodriguez et al. (2011) to
allow cascades with different topics to have different diffusion rates. However, this topic-
sensitive model still fails to account for the interaction between nodes and topics.

1.2. Organization of the Paper

In Section 2 we briefly review the basic continuous-time diffusion network model introduced
in Gomez-Rodriguez et al. (2011) and the topic-sensitive model introduced in Du et al.
(2013b). We propose our influence-receptivity model in Section 3. Section 4 details two
optimization algorithms. Section 5 provides theoretical results for the proposed algorithm.
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In Section 6 we discuss extensions of our model. Sections 7 and 8 present experimental
results on synthetic data set and two real world data sets, respectively. We conclude in
Section 9.

1.3. Notation

We use p to denote the number of nodes in a network and K to denote the number of topics.
The number of observed cascades is denoted as n. We use subscripts i, j ∈ {1, . . . , p}
to index nodes; k ∈ {1, . . . ,K} to index topics; and c to index each cascade. For any
matrix A, we use ‖A‖2 and ‖A‖F to denote the matrix spectral norm and Frobenius norm,
respectively. Moreover, ‖A‖0 =

∣∣(i, j) : Aij 6= 0
∣∣ denotes the number of nonzero components

of a matrix. The operation [A]+ keeps only nonnegative values of A and puts zero in
place of negative values. For a nonnegative matrix A, the operation Hard(A, s) keeps
only the s largest components of A and zeros out the rest of the entries. We use S =
supp(A) = {(i, j) : Aij 6= 0} to denote the support set of matrix A (with an analogous
definition for a vector). For any matrix A and support set S, we denote [A]S as the matrix
that takes the same value as A on S, and zero elsewhere. For any matrices A and B, denote
〈A,B〉 = tr(A>B) as the matrix inner product and 〈A,B〉S = tr

(
[A]>S · [B]S

)
as the inner

product on the support S only.

2. Background

We briefly review the basic continuous time diffusion network model introduced in Gomez-
Rodriguez et al. (2011) in Section 2.1. The topic-sensitive model introduced as a modifica-
tion of the basic model in Du et al. (2013b) is reviewed in Section 2.2.

2.1. Basic Cascade Model

Example. We first provide an illustrative example of a cascade in Figure 1. Here we have
5 nodes in the network, termed u1 to u5. At time t1 = 0, node u1 knows some information,
and starts the information diffusion process. Node u2 gets “infected” at time t2 = 1. The
process continues, and node u3, u4 become aware of the information at times t3 = 2 and
t4 = 4, respectively. Node u5 never gets infected, so we write t5 =∞. The arrows in Figure
1 represent the underlying network. However, we only observe the times at which each node
gets infected: t = [0, 1, 2, 4,∞].

Network structure and cascade generating process. The model of Gomez-Rodriguez
et al. (2011) assumes that the underlying network is composed of p nodes and uses a non-
negative diffusion matrix A = {αji} to parameterize the edges among them. The parameter
αji measures the transmission rate from j to i, where a larger αji means stronger connection
from j to i. The absence of j → i edge is denoted by αji = 0. For every node i, self infection
is not considered and αii = 0. A cascade based on the model and network here is generated
in the following way. At the beginning, at time 0, one of the p nodes is infected as a source
node. When a node j is infected, it samples a time at which it infects other uninfected nodes
it is connected to. The transmission time τji from node j to i follows a random distribution
with a density `(τ ;αji) for τ ≥ 0 (this density is called the transmission function/kernel).
A node i is infected the first time one of the nodes which can reach i infects it. After
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Figure 1: An illustrative example of one cascade.

being infected, node i becomes a new source and begins to infect other nodes by following
the same procedure and sampling the transmission times to other uninfected nodes that it
can reach. An infected node continues to infect additional nodes after infecting one of its
neighbor nodes.

The model assumes an observation window of length T time units since the infection of
the source node; nodes that are not infected until time T are regarded as uninfected. We
write `(ti | tj ;αji) = `(ti − tj ;αji) to indicate the density that i is infected by j at time ti
given that j is infected at time tj , parameterized by αji. The transmission times of each
infection are assumed to be independent, and a node remains infected in the whole process
once it is infected.

Data. In order to fit parameters of the model above, we assume that there are n indepen-
dent cascades denoted by the set Cn = {t1, . . . , tn}. A cascade c is represented by tc, which
is a p-dimensional vector tc = (tc1, . . . , t

c
p) indicating the time of infection of the p nodes;

tci ∈ [0, T c]
⋃
{∞} with T c being the observation window for the cascade c. Although not

necessary, for notational simplicity we assume T c = T for all the cascades. For an infected
node, only the first infected time is recorded even if it is infected by multiple neighbors.
For the source node i, tci = 0, while node uninfected up to time T we use the convention
tci =∞. Moreover, the network structure is assumed to be static and not change while the
n different cascades are observed.

Likelihood function. The likelihood function of an observed cascade t is given by

`(t;A) =
∏
ti≤T

∏
tm>T

S(T | ti;αim)×
[ ∏
k:tk<ti

S(ti | tk;αki)
∑
j:tj<ti

H(ti | tj ;αji)
]
, (1)

where S(ti | tj ;αji) = 1 −
∫ ti
tj
`(t − tj ;αji) dt is the survival function and H(ti|tj ;αji) =

`(ti− tj ;αji)/S(ti|tj ;αji) is the hazard function (Gomez-Rodriguez et al., 2011). Note that
the likelihood function consists of two probabilities. The first one is the probability that an
uninfected node “survives” given its infected neighbors; the second one is the density that
an infected node is infected at the specific observed time.

The transmission function affects the behavior of a cascade. Some commonly used trans-
mission functions are exponential, Rayleigh, and power-law distributions (Gomez-Rodriguez
et al., 2011). For exponential transmission, the diffusion rate reaches its maximum value at
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the beginning and then decreases exponentially. Because of this property, it can be used to
model information diffusion on internet or a social network, since (breaking) news usually
spread among people immediately, while with time a story gradually becomes unpopular.
The exponential transmission function is given by

`(τ ;αji) = αji · exp(−αjiτ) (2)

for τ ≥ 0 and `(τ ;αji) = 0 otherwise. We then have S(t + τ | t;αji) = exp(−αjiτ) and
H(t+ τ | t;αji) = αji. As a different example, with the Rayleigh transmission function the
diffusion rate is small at the beginning; it then rises to a peak and then drops. It can be
used to model citation networks, since it usually takes some time to publish a new paper
and cite the previous paper. New papers then gradually become known by researchers. The
Rayleigh transmission function is given as

`(τ ;αji) = αjiτ · exp
(
− 1

2
αjiτ

2
)

for τ ≥ 0 and `(τ ;αji) = 0 otherwise. We then have S(t + τ | t;αji) = exp(−1
2αjiτ

2) and
H(t + τ | t;αji) = αjiτ . We will use these two transmission functions in Section 8 for
modeling information diffusion on internet and in citation networks, respectively.

Optimization problem. The unknown parameter is the diffusion matrix A, which can
be estimated by maximizing the likelihood

minimize
αji

− 1

n

∑
c∈Cn

log `(tc;A)

subject to αji ≥ 0, j 6= i.

(3)

A nice property of the above optimization program is that it can be further separated
into p independent subproblems involving individual columns of A. Specifically, the ith

subproblem is to infer the incoming edges into the node i

minimize
αi

φ(αi)

subject to αji ≥ 0, j 6= i,
(4)

where the parameter αi = {αji | j = 1, . . . , N, j 6= i} denotes the ith column of A and the
objective function is

φ(αi) = − 1

n

∑
c∈Cn

φi(t
c;αi),

with φi(·;αi) denoting the likelihood function for one cascade. For example, for the expo-
nential transmission function, we have

φi(t;αi) = log

( ∑
j:tj<ti

αji

)
−
∑
j:tj<ti

αji(ti − tj) (5)

for an infected node, and

φi(t;αi) = −
∑
j:tj<T

αji(T − tj) (6)
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for an uninfected node. See Gomez-Rodriguez et al. (2011) for more details.

The problem (4) is convex in αi and can be solved by a standard gradient-based algo-
rithm. The linear terms in (5) and (6) act as an `1 penalty on the unknown parameter
and automatically encourage sparse solutions. Nonetheless, adding an explicit `1 penalty
can further improve results. Gomez-Rodriguez et al. (2016) propose to solve the following
regularized optimization problem

minimize
αi

φ(αi) + λ‖αi‖1

subject to αji ≥ 0, j 6= i,

using a proximal gradient algorithm (Parikh and Boyd, 2014).

2.2. Topic-sensitive Model

The basic model described above makes an unrealistic assumption that each cascade spreads
based on the same diffusion matrix A. However, for example, posts on information tech-
nology usually spread much faster than those on economy and military. Du et al. (2013b)
extend the basic model to incorporate this phenomena. Their topic-sensitive model assumes
that there are in total K topics, and each cascade can be represented as a topic vector in
the canonical K-dimensional simplex, in which each component is the weight of a topic:
mc := (mc

1, ...,m
c
K)> with

∑
km

c
k = 1 and mc

k ∈ [0, 1]. Each topic k is assumed to have its

own diffusion matrix Ak =
{
αkji

}
, and the diffusion matrix of the cascade Ac =

{
αcji

}
is

the weighted sum of the K matrices:

αcji =
K∑
k=1

αkjim
c
k. (7)

In this way, the diffusion matrix Ac can be different for different cascades. For each
cascade c, the propagation model remains the same as the basic model described in the
previous section, but with the diffusion matrix Ac given in (7). The unknown parameters
A1, . . . , AK can be estimated by maximizing the regularized log-likelihood. Du et al. (2013b)
use a group lasso type penalty and solve the following regularized optimization problem

minimize
αk
ji

− 1

n

∑
c∈Cn

φi

(
tc;
{
αcji
}p
j=1

)
+ λ

∑
j

‖αji‖2

subject to αcji =
K∑
k=1

αkjim
c
k,

αkji ≥ 0, j 6= i,

with a proximal gradient based block coordinate descent algorithm.

3. An Influence-Receptivity Based Topic-sensitive Model

In this section we describe our proposed influence-receptivity model. Our motivation for
proposing a new model for information diffusion stems from the observation that the two
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models discussed in Section 2 do not impose any structural assumptions on A or Ak other
than nonnegativity and sparsity. However, in real world applications we observe node-topic
interactions in the diffusion network. For example, different social media outlets usually
focus on different topics, like information technology, economy or military. If the main
focus of a media outlet is on information technology, then it is more likely to publish or
cite news with that topic. Here the topics of interest of a media outlet impart the network
structure. As another example, in a university, students may be interested in different
academic subjects, may have different music preferences, or follow different sports. In
this way it is expected that students who share the same or similar areas of interest may
have much stronger connections. Here the areas of interest among students impart the
structure to the diffusion network. Finally, in the context of epidemiology, people usually
have different immune systems, and a disease such as flu, usually tends to infect some
specific people, while leaving others uninfected. It is very likely that the infected people
(by a specific disease) may have similar immune system, and therefore tend to become
contagious together. Here the types of immune system among people impart the structure.

Taking this intuition into account, we build on the topic-sensitive diffusion model of Du
et al. (2013b) by imposing a node-topic interaction. This interaction corresponds to the
structural assumption on the cascade diffusion matrix Ac for each cascade c. As before, a
cascade c is represented by its weight on K topics (K � p): mc = (mc

1,m
c
2, . . . ,m

c
K)>, with∑

km
c
k = 1 and mc

k ∈ [0, 1]. Each node is parameterized by its “interest” in each of these
K topics as two K dimensional (row) vectors. Stacking each of these two vectors together,
the “interest” of all the p nodes form two p × K dimensional matrices. To describe such
structure, we propose two node-topic matrices B1, B2 ∈ Rp×K , where B1 measures how
much a node can infect others (the influence matrix) and B2 measures how much a node
can be infected by others (the receptivity matrix). We use b1ik and b2ik to denote the elements
on ith row and kth column of B1 and B2, respectively. A large b1ik means that node i tends
to infect others on topic k; while a large b2ik means that node i tends to be infected by
others on topic k. These two matrices model the observation that, in general, the behaviors
of infecting others and being infected by others are usually different. For example, suppose
a media outlet i has many experts in a topic k, then it will publish many authoritative
articles on this topic. These articles are likely to be well-cited by others and therefore it has
a large b1ik. However, its b2ik may not be large, because i has experts in topic k and does not
need to cite too many other news outlets on topic k. On the other hand, if a media outlet
i is only interested in topic k but does not have many experts, then it will have a small b1ik
and a large b2ik.

For a specific cascade c on topic k, there will be an edge j → i if and only if node j
tends to infect others on topic k (large b1jk) and node i tends to be infected by others on

topic k (large b2ik). For a cascade c with the topic-weight mc, the diffusion parameter αcji is
modeled as

αcji =
K∑
k=1

b1jk ·mc
k · b2ik.
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The diffusion matrix for a cascade c can be then represented as

Ac = B1 ·M c ·B>2 =

K∑
k=1

mc
k · b1kb2k

>
, (8)

whereM c = diag(mc) is a diagonal matrix representing the topic weight andBj = [bj1, . . . , b
j
K ]

with bjk denoting the kth column of Bj , j = 1, 2. In a case where one does not consider self
infection, we can modify the diffusion matrix for a cascade c as

Ac = B1M
cB>2 − diag(B1M

cB>2 ).

Under the model in (8), the matrix M c is known for each cascade c ∈ Cn, and the unknown
parameters are B1 and B2 only. The topic weights can be obtained from a topic model, such
as latent Dirichlet allocation (Blei et al., 2003), as long as we are given the text information
of each cascade, for example, the main text in a website or abstract/keywords of a paper.
The number of topics K is user specified or can be estimated from data (Hsu and Poupart,
2016). The extension to a setting with an unknown topic distribution M c is discussed in
Section 6.4.

With a known topic distribution M c, our model has 2pK parameters. Compared to
the basic model, which has p2 parameters, and the topic-sensitive model, which has p2K
parameters, we observe that our proposed model has much fewer parameters since, usually,
we have K � p. Based on (8), our model can be viewed as a special case of the topic-
sensitive model where each topic diffusion matrix Ak is assumed to be of rank 1. A natural
generalization of our model is to relax the constraint and consider topic diffusion matrices
of higher rank, which would correspond to several influence and receptivity vectors affecting
the diffusion together.

4. Estimation

In this section we develop an estimation procedure for parameters of the model described
in the last section. In Section 4.1 and 4.2 we reparameterize the problem and introduce
regularization terms in order to guarantee unique solution to estimation procedure. We
then propose efficient algorithms to solve the regularized problem in Section 4.3.

4.1. Reparameterization

The negative log-likelihood function for our model is easily obtained by plugging the parametriza-
tion of a diffusion matrix in (8) into the original problem (3). Specifically, the objective
function we would like to minimize is given by

f(B1, B2) = − 1

n

∑
c∈Cn

log `
(
tc;B1M

cB>2
)
. (9)

Unfortunately, this objective function is not separable in each column of B1, B2, so we have
to deal with entire matrices. Based on (8), recall that the diffusion matrix Ac can be viewed

as a weighted sum of K rank-1 matrices. Let Θk = b1kb
2
k
>

and denote the collection of these
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rank-1 matrices as Θ = (Θ1, . . . ,ΘK). With some abuse of notation, the objective function
f(·) in (9) can be rewritten as

f(Θ) = f(Θ1, . . . ,ΘK) = − 1

n

∑
c∈Cn

log `

(
tc;

K∑
k=1

mc
k ·Θk

)
. (10)

Note that since log `(·) is convex and Ac is linear in Θk, the objective function f(Θ) is
convex in Θ when we ignore the rank-1 constraint on Θk.

4.2. Parameter Estimation

To simplify the notation, we use f(·) to denote the objective function in (9) or (10), regard-

less of the parameterization as B1, B2 or Θ. From the parameterization Θk = b1kb
2
k
>

, it is
clear that if we multiply b1k by a constant γ and multiply b2k by 1/γ, the matrix Θk and the
objective function (10) remain unchanged. In particular, we see that the problem is not
identifiable if parameterized by B1, B2. To solve this issues we add regularization.

A reasonable and straightforward choice of regularization is the `1 norm regularization
on B1 and B2. We define the following norm

g1(B1, B2) =
∥∥B1 +B2

∥∥
1,1

,
∑
i,k

b1ik + b2ik (11)

and the regularized objective becomes

f1(B1, B2) = − 1

n

∑
c∈Cn

log `
(
tc;B1M

cB>2
)

+ λ · g1(B1, B2),

where λ is a tuning parameter. With this regularization, if we focus on the kth column,
then the term we would like to minimize is

γ‖b1k‖1 +
1

γ
‖b2k‖1. (12)

Clearly, in order to minimize (12) we should select γ such that the two terms in (12) are
equal. This means that, at the optimum, the column sums of B1 and B2 are equal. We
therefore avoid the scaling issue by adding the `1 norm penalty.

An alternative choice of the regularizer is motivated by the literature on matrix factor-
ization (Jain et al., 2013; Tu et al., 2016; Park et al., 2018; Ge et al., 2016; Zhang et al.,
2018). In a matrix factorization problem, the parameter matrix X is assumed to be low-
rank, which can be explicitly represented as X = UV > where X ∈ Rp×p, U, V ∈ Rp×r, and
r is the rank of X. Similar to our problem, this formulation is also not identifiable. The
solution is to add a regularization term ‖UU> − V V >‖2F , which guarantees that the singu-
lar values of U and V are the same at the optimum (Zhu et al., 2017; Zhang et al., 2018;
Park et al., 2018; Yu et al., 2020). Motivated by this approach, we consider the following
regularization term

g2(B1, B2) =
1

4
·
K∑
k=1

(∥∥b1k∥∥2

2
−
∥∥b2k∥∥2

2

)2
, (13)
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which arises from viewing our problem as a matrix factorization problem with rank-1 ma-
trices. The regularized objective function is therefore given by

f2(B1, B2) = − 1

n

∑
c∈Cn

log `
(
tc;B1M

cB>2
)

+ λ · g2(B1, B2).

Note that for this regularization penalty, at the minimum, we have that g2(B1, B2) = 0 and
that the `2-norm of the columns of B1 and B2 are equal. Furthermore, we can pick any
positive regularization penalty λ.

In summary, both regularizers g1(·) and g2(·) force the columns of B1 and B2 to be
balanced. At optimum the columns will have the same `1 norm if g1 is used and the same
`2 norm if g2 is used. As a result, for each topic k, the total magnitudes of “influence” and
“receptivity” are the same. In particular, a regularizer enforces the conservation law that
the total amount of output should be equal to the total amount of input.

The `1 norm regularizer induces a biased sparse solution. In contrast, the regularizer g2

neither introduces bias nor encourages a sparse solution. Since in real world applications
each node is usually interested in only a few topics, the two matrices B1, B2 are assumed
to be sparse, as we state in the next section. Taking this into account, if the regularizer g2

is used, we need to threshold the estimator to obtain a sparse solution.
In conclusion, the optimization problem that we are going to solve is

minimize
B1,B2

− 1

n

∑
c∈Cn

log `
(
tc;B1M

cB>2
)

+ λ · g(B1, B2)

subject to B1, B2 ≥ 0,

(14)

where the regularization g(·) is either g1(·), defined in (11), or g2(·), defined in (13).

4.3. Optimization Algorithm

While the optimization program (3) is convex in the diffusion matrix A, the proposed
problem (14) is nonconvex in B1, B2. Our model for a diffusion matrix (8) is bilinear and,
as a result, the problem (14) is a biconvex problem in B1 and B2, that is, the problem is
convex inB1 andB2, but not jointly convex. Gorski et al. (2007) provide a survey of methods
for minimizing biconvex functions. In general, there are no efficient algorithms for finding
the global minimum of a biconvex problem. Floudas (2000) propose a global optimization
algorithm, which alternately solves primal and relaxed dual problem. This algorithm is
guaranteed to find the global minimum, but the time complexity is usually exponential.
For our problem, we choose to develop a gradient-based algorithm. For the regularizer g1,
since the `1 norm is non-smooth, we develop a proximal gradient descent algorithm (Parikh
and Boyd, 2014); for the regularizer g2, we use an iterative hard thresholding algorithm (Yu
et al., 2020).

Since the optimization problem (14) is nonconvex, we need to carefully initialize the

iterates B
(0)
1 , B

(0)
2 for both algorithms. We find the initial iterates by minimizing the ob-

jective function f(Θ), defined in (10), without the rank-1 constraint. As discussed earlier,
the objective function f(Θ) is convex in Θ and can be minimized by, for example, the gra-
dient descent algorithm. After obtaining the minimizer Θ̂ = (Θ̂1, . . . , Θ̂K), we find the best
rank-1 approximation of each Θ̂k. According to the Eckart-Young-Mirsky theorem, the best
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Algorithm 1 Proximal gradient descent for (14) with regularizer g1(·)

Initialize B
(0)
1 , B

(0)
2

while tolerance > ε do

B
(t+1)
1 =

[
B

(t)
1 − η∇B1f

(
B

(t)
1 , B

(t)
2

)
− λη

]
+

B
(t+1)
2 =

[
B

(t)
2 − η∇B2f

(
B

(t)
1 , B

(t)
2

)
− λη

]
+

end while

Algorithm 2 Gradient descent with hard thresholding for (14) with regularizer g2(·)

Initialize B
(0)
1 , B

(0)
2

while tolerance > ε do

B
(t+0.5)
1 =

[
B

(t)
1 − η · ∇B1f

(
B

(t)
1 , B

(t)
2

)
− η · ∇B1g2

(
B

(t)
1 , B

(t)
2

)]
+

B
(t+1)
1 = Hard

(
B

(t+0.5)
1 , s

)
B

(t+0.5)
2 =

[
B

(t)
2 − η · ∇B2f

(
B

(t)
1 , B

(t)
2

)
− η · ∇B2g2

(
B

(t)
1 , B

(t)
2

)]
+

B
(t+1)
2 = Hard

(
B

(t+0.5)
2 , s

)
end while

rank-1 approximation is obtained by the singular value decomposition (SVD) by keeping
the largest singular value and corresponding singular vectors. Specifically, suppose the lead-
ing term of SVD for Θ̂k is denoted as σkukv

>
k for each k, then the initial values are given

by B
(0)
1 = Hard

(
[u1σ

1/2
1 , . . . , uKσ

1/2
K ], s

)
and B

(0)
2 = Hard

(
[v1σ

1/2
1 , . . . , vKσ

1/2
K ], s

)
. Starting

from B
(0)
1 , B

(0)
2 , we apply one of the two gradient-based algorithms described in Algorithm 1

and Algorithm 2, until convergence to a pre-specified tolerance level ε is reached. The gra-
dient ∇Bf(B1, B2) can be calculated by the chain rule. The specific form depends on the
transmission function used. In practice, the tuning parameters λ and s can be selected by
cross-validation. Based on our experience, both algorithms provide good estimators for B1

and B2. To further accelerate the algorithm one can use the stochastic gradient descent
algorithm.

5. Theoretical Results

In this section we establish main theoretical results. Since the objective function is noncon-
vex in B1, B2, proving theoretical result based on the `1 norm penalization is not straight-
forward. For example, the usual analysis applied to nonconvex M-estimators (Loh and
Wainwright, 2015) assumes a condition called restricted strong convexity, which does not
apply to our model. Therefore, to make headway on our problem, we focus on the optimiza-
tion problem with the regularizer g2 and leverage tools that have been used in analyzing
matrix factorization problems (Jain et al., 2013; Tu et al., 2016; Park et al., 2018; Ge et al.,
2016; Zhang et al., 2018; Na et al., 2019, 2020). Compared to these works which focus on
recovering one rank-K matrix, our goal is to recover K rank-1 matrices.

12
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Let B∗1 , B
∗
2 denote the true influence and receptivity matrices; the corresponding rank-1

matrices are given by Θ∗k = b1k
∗
b2k
∗>

, for each topic k. We start by stating assumptions under
which the theory is developed. The first assumption states that the parameter matrices are
sparse.

Assumption 1 Each column of the true influence and receptivity matrices are assumed
to be sparse with ‖b1∗k ‖0 = ‖b2∗k ‖0 = s∗, where ‖b‖0 =

∣∣j : bj 6= 0
∣∣ denotes the number of

nonzero components of a vector.

The above assumption can be generalized in a straightforward way to allow different
columns to have different levels of sparsity.

The next assumption imposes regularity conditions on the Hessian matrix of the objec-
tive function. First, we recall the Hessian matrix corresponding to the objective function
φ(α) in (4) for the basic cascade model. For a cascade c, the Hessian matrix is given by

Q(α) = D(α) +X(tc;α) ·X(tc;α)>, (15)

where D(α) is a diagonal matrix,

X(tc;α) = h(tc;α)−1∇αh(tc;α),

with

h(t;α) =

{∑
j:tj<ti

H(ti|tj ;αji) if ti < T,

0 otherwise,

and H(ti|tj ;αji) is the hazard function defined in Section 2.1. Recalling that α ∈ Rp denotes
the ith column of A, we have that Q(α) ∈ Rp×p. Both D(α) and X(tc;α) are simple for the
common transmission functions. For example, for exponential transmission, we have that
D(α) = 0 is the all zero matrix and

[
X(tc;α)

]
j

=


(∑

`:t`<ti
α`i

)−1
if tj < ti

0 otherwise.

See Gomez-Rodriguez et al. (2016) for more details.

Let [Θk]i ∈ Rp denote the ith column of Θk and let Θ[i] =
[
[Θ1]i, [Θ2]i, . . . , [ΘK ]i

]
∈

Rp×K be the collection of K such columns. Since Ac =
∑

km
c
k · Θk, we have that the ith

column of Ac is a linear combination of Θ[i]. Therefore, the Hessian matrix of f(Θ) with
respect to Θ[i] is a quadratic form of the Hessian matrices defined in (15). For a specific
cascade c, denote the transformation matrix as

P c =
[
mc

1 · Ip mc
2 · Ip . . . mc

K · Ip
]
∈ Rp×pK .

Then we have αci = P c ·Θ[i], where αci denotes the ith column of Ac. Using the chain rule,
we obtain that the Hessian matrix of f(Θ) with respect to Θ[i] for one specific cascade c is
given by

Hc
(
Θ[i]
)

= P c> · Q(αci ) · P c ∈ RpK×pK .
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The Hessian matrix of the objective function f(Θ) with respect to Θ[i] is now given as

H(Θ[i]) =
1

n

∑
c

Hc(Θ[i]).

We make the following assumption on the Hessian matrix.

Assumption 2 There exist constants µ,L > 0, so that µ · IpK � H(Θ[i]) � L · IpK hold
uniformly for any i ∈ {1, . . . , p}.

The optimization problem (3), used to find the diffusion matrix A for the basic cascade
model, is separable across columns of A as shown in (4). Similarly, the objective function
f(Θ) is separable across Θ[i], if we ignore the rank-1 constraint. As a result, the Hessian
matrix of f(Θ) with respect to Θ, is (after an appropriate permutation of rows and columns)
a block diagonal matrix in Rp2K×p2K with each block given by H(Θ[i]) ∈ Rp×p. Therefore,
Assumption 2 ensures that f(Θ) is strongly convex and smooth in Θ.

The upper bound in Assumption 2 is easy to satisfy. The lower bound ensures that the
problem is identifiable. The Hessian matrix depends in a non-trivial way on the network
structure, diffusion process, and the topic distributions. Without the influence-receptivity
structure, Gomez-Rodriguez et al. (2016) establish conditions for the basic cascade model
under which we can recover the network structure consistently from the observed cascades.
The conditions require that the behavior of connected nodes are reasonably similar among
the cascades, but not deterministically related; and also that connected nodes should get
infected together more often than non-connected nodes. Assumption 2 is also related to the
setting in Yu et al. (2019), who consider the squared loss, where the condition ensures that
the topic distribution among the n cascades is not too highly correlated, since otherwise we
cannot distinguish them. In our setting, Assumption 2 is a combination of the two cases: we
require that the network structure, diffusion process, and the topic distributions interact in
a way to make the problem is identifiable. We refer the readers to Gomez-Rodriguez et al.
(2016) and Yu et al. (2019) for additional discussions.

Subspace distance. Since the factorization of Θk as Θk = b1kb
2
k
>

is not unique, as dis-
cussed earlier, we will measure convergence of algorithms using the subspace distance. De-
fine the set of r-dimensional orthogonal matrices as

O(r) = {O ∈ Rr×r : O>O = OO> = Ir}.

Suppose X∗ ∈ Rp×p is a rank-r matrix that can be decomposed as X∗ = U∗V ∗> with
U∗, V ∗ ∈ Rp×r and σi(U

∗) = σi(V
∗) where σi(U) denotes the ith singular value of U . Let

X = UV > be an estimator of X∗. The subspace distance between X and X∗ is measured
as

min
O∈O(r)

{
‖U − U∗O‖2F + ‖V − V ∗O‖2F

}
.

The above formula measures the distance between matrices up to an orthogonal rotation.
For our problem, the matrices Θk are constrained to be rank-1, and the only possible
rotation is given by o = ±1. Moreover, since B1, B2 ≥ 0 are nonnegative, the negative
rotation is eliminated. As a result, the subspace distance for our problem reduces to the
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usual Euclidean distance. Let B = [B1, B2] and B∗ = [B∗1 , B
∗
2 ], then the “subspace distance”

between B and B∗ is defined as

d2(B,B∗) = min
ok∈{±1}

K∑
k=1

∥∥b1k − b1k∗ok∥∥2

2
+
∥∥b2k − b2k∗ok∥∥2

2
=
∥∥B1 −B∗1

∥∥2

F
+
∥∥B2 −B∗2

∥∥2

F
.

Statistical error. The notion of the statistical error measures how good our estimator
can be. In a statistical estimation problem with noisy observations, even the best estimator
can only be an approximation to the true parameter. The statistical error measures how
well the best estimator estimates the true unknown parameter. For a general statistical
estimation problem, the statistical error is usually defined as the norm of the gradient of
the objective function evaluated at the true parameter. For our problem, since we have
rank-1 and sparsity constraints, we define the statistical error as

estat = sup
∆∈Ω(s)

〈
∇Θf(Θ∗),∆

〉
, (16)

where the set Ω(s) is defined as

Ω(s) =
{

∆ : ∆ = [∆1, . . . ,∆K ],∆k ∈ Rp×p, rank(∆k) = 2, ‖∆k‖0 = 2s2, ‖∆‖F = 1
}
.

The statistical error depends on the network structure, diffusion process, and the topic
distributions, and it scales as n−1/2 with the sample size.

With these preliminaries, we are ready to state the main theoretical results for our
proposed algorithm. Our first result quantifies the accuracy of the initialization step. Let

Θ̂ = arg min
Θ

f(Θ)

be the unconstrained minimizer of f(Θ).

Theorem 3 Suppose Assumption 2 is satisfied, and we set s = c · s∗ in Algorithm 2 for
some constant c > 1. We have ∥∥Θ̂−Θ∗

∥∥2

F
≤ 2

µ

∥∥∇f(Θ∗)
∥∥
F
. (17)

Furthermore,

d2
(
B(0), B∗

)
≤

80ξ2K
∥∥∇f(Θ∗)

∥∥2

F

µ2σ∗
, (18)

where ξ is defined as ξ2 = 1 + 2√
c−1

and σ∗ = mink ‖Θ∗k‖2.

The upper bound obtained in (17) and (18) can be viewed as a statistical error for the
problem without rank-1 constraints. As a statistical error, the upper bound naturally scales
with the sample size as n−1/2. With a large enough sample size, the initial point will be
within the radius of convergence to the true parameter such that

d2
(
B(0), B∗

)
≤ 1

4
γσ∗ ·min

{
1,

1

4(µ+ L)

}
, (19)

where γ = min{1, µL/(µ+ L)} . This enables us to prove the following result.
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Theorem 4 Suppose Assumptions 1 and 2 are satisfied. Furthermore, suppose the sample
size n is large enough so that (19) holds and

e2
stat ≤

1− β
3ηKξ2

· µL

µ+ L
· 1

4
γσ∗ ·min

{
1,

1

4(µ+ L)

}
.

Then the iterates obtained by Algorithm 2, with s = c · s∗, c > 1, and the step size

η ≤ 1

8‖B(0)‖22
·min

{ K

2(µ+ L)
, 1
}
, (20)

satisfy

d2
(
B(T ), B∗

)
≤ βT · d2

(
B(0), B∗

)
+

C

1− β
· e2

stat, (21)

where β < 1 and C is a constant.

Theorem 4 establishes convergence of iterates produced by properly initialized Algo-
rithm 2. The first term in (21) corresponds to the optimization error, which decreases
exponentially with the number of iterations, while the second term corresponds to the un-
avoidable statistical error. In particular, Theorem 4 shows linear convergence of the iterates
up to statistical error, which depends on the network structure, diffusion process, and the
topic distributions. Note that the condition on estat is not stringent, since in the case that
it is not satisfied, then already the initial point B(0) is accurate enough.

Proofs of Theorem 3 and 4 are given in Appendix.

6. Some Variants and Extensions

In this section we discuss several variants and application specific extensions of the proposed
model. Section 6.1 considers the extension where in addition to the influence and receptivity
to topics, information propagation is further regulated by a friendship network. Section 6.2
discusses how we can use the B1 and B2 matrices to estimate the topic distribution of a
new cascade for which we do not have the topic distribution apriori. Section 6.3 discusses
how estimated matrices B1 and B2 can serve as embedding of the nodes. Finally, in Section
6.4 we consider estimation of B1, B2 in the setting where the topic distributions of cascades
are unknown.

6.1. Cascades Regulated by Friendship Networks

We have used news and media outlets as our running example so far and have assumed that
each node can influence any other node. However, in social networks, a user can only see
the news or tweets published by their friends or those she chooses to follow. If two users
do not know each other, then even if they are interested in similar topics, they still cannot
“infect” each others. Considering this we can modify our model in the following way:

Ac = B1M
cB>2 ⊗ F, (22)

where ⊗ denotes element-wise multiplication. F ∈ {0, 1}p×p is a known matrix indicating
whether two nodes are “friends” (fji = 1) or not (fji = 0). The modified optimization
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problem is a straightforward extension of (14) obtained by replacing the expression for Ac

with the new model (22). The only thing that changes in Algorithms 1 and 2 is the gradient
calculation.

As a further modification, we can allow for numeric values in F . Here we again have
fji = 0 if node j and i are not friends; when node j and i are friends, the value fji > 0
measures how strong the friendship is. A larger value means a stronger friendship, and
hence node j could infect node i in a shorter period of time. Under this setting, we assume
knowledge of whether fji is 0 or not, but not the actual value of fji when it is non-zero. This
modification is useful in dealing with information diffusion over a social network where we
know whether two nodes are friends or not, but we do not know how strong the friendship
is. We then have to estimate B = [B1, B2] and F jointly, resulting in a more difficult
optimization problem. A practical estimation procedure is to alternately optimize B and
F . With a fixed F , the optimization problem for B can be solved using Algorithm 1 or
2, except for an additional element-wise multiplication with F when calculating gradient.
With a fixed B, the optimization problem in F is convex and, therefore, can be solved by
any gradient-based iterative algorithm.

6.2. Estimating Topic Distribution mc

Up to now we have assumed that each topic distribution M c = diag(mc) is known. However,
once B1, B2 have been estimated, we can use them to classify a new cascade c by recovering
its topic-weight vector mc. For example, if an unknown disease becomes prevalent among
people, then we may be able to determine the type of this new disease and identify the
vulnerable population of nodes. Moreover, with estimated B1 and B2, we can recalculate
the topic distribution of all the cascades used to fit the model. By comparing the estimated
distribution with the topic distribution of the cascades we can find the ones where the two
topic distributions differ a lot. These cascades are potentially “outliers” or have abnormal
propagation behavior and should be further investigated.

The maximum likelihood optimization problem for estimating the topic distribution mc

is:
minimize

mc
k

− log `
(
tc;B1M

cB>2
)

subject to
∑
k

mc
k = 1,

0 ≤ mc
k ≤ 1.

(23)

This problem is easier to solve than (14) since Ac = B1M
cB>2 is linear in M c and therefore

the problem is convex in M c. The constraint
∑

km
c
k = 1 and 0 ≤ mc

k ≤ 1 can be incor-
porated in a projected gradient descent method, where in each iteration we apply gradient
descent update on M c and project it to the simplex.

6.3. Interpreting Node-topic Matrices B1 and B2

While throughout the paper we have used the diffusion of news as a running example, our
model and the notion of “topic” is much more broadly applicable. As discussed before it
can represent features capturing susceptibility to diseases, as well as, geographic position,
nationality, etc. In addition to the ability to forecast future information cascades, the
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influence-receptivity matrices B1 and B2 can also find other uses. For example, we can
use the rows of B2 to learn about the interests of users and for customer segmentation. In
epidemiology, we can learn about the vulnerability of population to different diseases, and
allocate resources accordingly.

The rows of B1, B2 act as a natural embedding of users in R2K and thus define a
similarity metric, which can be used to cluster the nodes or build recommender systems. In
Section 8 illustrate how to use this embedding to cluster and visualize nodes. The influence-
receptivity structure is thus naturally related to graph embedding. See Cai et al. (2018)
for a recent comprehensive survey of graph embedding. As a closely related work in graph
embedding literature, Chen et al. (2017) propose a model which also embeds nodes into
R2K . Compared to their model, our model allows for interaction of embedding (influence
and receptivity) vectors and the topic information, resulting in more interpretable topics.
Moreover, our model has flexibility to choose the transmission function based on different
applications and comes with theoretical results on convergence rate and error analysis.
For example, as will be shown in Section 8, for information propagation on the internet
(for example, media outlets citing articles, Facebook and Twitter users sharing posts), we
can choose the exponential transmission function; for the citation network, the Raleigh
transmission function is a more appropriate choice.

6.4. When Topic Distribution is Unknown

Throughout the paper we assume that the topic distribution M c is known for each cascade.
For example, the topic distribution can be calculated by Topic Modeling (Blei et al., 2003)
with the text information of each cascade. Alternatively it can come from the knowledge of
domain experts. However, in many applications domain experts or textual information may
be unavailable. Even if such resources are available, the topic distribution obtained from
Topic Modeling may be inaccurate or intractable in practice. In this case we must learn
the topic distribution and the influence-receptivity structure together. For this problem,
our observations constitute of the timestamps for each cascade as usual, and the variables
to be optimized are B = [B1, B2] and M c for each cascade c. A practical algorithm is to
alternately optimize on B and M c—with a fixed M c, we follow Algorithm 1 or 2 to update
B; with a fixed B, we follow (23) to update M c on each c. The two procedures are repeated
until convergence.

Theoretical analysis of this alternating minimization algorithm under the log-likelihood
in (1) is beyond the scope of the paper. For a simpler objective functions, such as the `2
loss, the theoretical analysis is tractable and the output of the alternating minimization
algorithm (the estimated B and M) can be shown to converge to the true value up to the
statistical error in both B and M . Specifically, we denote M∗ as the true topic distribution
and f(Θ,M) as the loss function defined in (10). Denote the statistical error defined in (16)
as estat,B and similarly define the statistical error on the topic distribution M as

e2
stat,M =

∑
c∈Cn

K∑
k=1

[
∇mc

k
f(Θ∗,M∗)

]2
.

Denote B[t] and M [t] as the output of the alternating minimization algorithm at iteration t.
Under some additional mild assumptions, after one iterate of the alternating minimization
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algorithm we have the contraction on B as

d2
(
B[t+1], B∗

)
≤ C1 · e2

stat,B + β1 · d2
(
M [t],M∗

)
,

for some constant C1 and β1 < 1. Similarly, after one iterate of the alternating minimization
algorithm we have the contraction on M as

d2
(
M [t+1],M∗

)
≤ C2 · e2

stat,M + β2 · d2
(
B[t], B∗

)
,

for some constant C2 and β2 < 1. Combining these two inequalities, after T iterations of
the alternative minimization algorithm we get

d2
(
B[T ], B∗

)
+ d2

(
M [T ],M∗

)
≤ C0(e2

stat,M + e2
stat,B) + βT0

[
d2
(
B[0], B∗

)
+ d2

(
M [0],M∗

)]
,

for some constant β0 = max{β1, β2} < 1. This shows that the iterates of the alternating
minimization algorithm converge linearly to the true values up to statistical error. We refer
the readers to Section 5 of Yu et al. (2019) for more details.

7. Synthetic Data Sets

In this section we demonstrate the effectiveness of our model on synthetic data sets. Since
several existing algorithms are based on the `1 norm regularization, for fair comparison, we
focus on our proposed Algorithm 1.1

7.1. Estimation Accuracy

We first evaluate our model on a synthetic data set and compare the predictive power of
the estimated model with that of Netrate and TopicCascade. In simulation we set p = 200
nodes, K = 10 topics. We generate the true matrices B1 and B2 row by row. For each row,
we randomly pick 2-3 topics and assign a random number Unif(0.8, 1.8) · ζ, where ζ = 3
with probability 0.3 and ζ = 1 with probability 0.7. We make 30% of the values 3 times
larger to capture the large variability in interests. All other values are set to be 0 and we
scale B1 and B2 to have the same column sum. To generate cascades, we randomly choose
a node j as the source. The jth row of B1 describes the “topic distribution” of node j on
infecting others. Therefore we sample a K dimensional topic distribution mc from Dir(b1j,:),

where b1j,: is the jth row of B1 and Dir(·) is Dirichlet distribution, which is widely used to
generate weights (Du et al., 2013b; He et al., 2019; Glynn et al., 2019; He and Hahn, 2020).
According to our model (8), the diffusion matrix of this cascade is Ac = B1M

cB>2 . The rest
of the cascade propagation follows the description in Section 2.1. For experiments we use
exponential transmission function as in (2). The diffusion process continues until either the
overall time exceeds the observation window T = 1, or there are no nodes reachable from
the currently infected nodes. We record the first infection time for each node.

We vary the number of cascades n ∈ {300, 500, 1000, 2000, 5000, 10000}. For all three
models, we fit the model on a training data set and choose the regularization parameter λ
on a validation data set. Each setting of n is repeated 5 times and we report the average

1. The codes are available at https://github.com/ming93/Influence_Receptivity_Network

19

https://github.com/ming93/Influence_Receptivity_Network


Yu, Gupta, and Kolar

value. We consider two metrics to compare our model with NetRate (Gomez-Rodriguez
et al., 2011) and TopicCascade (Du et al., 2013b):

(1) We generate independent n = 5000 test data and calculate negative log-likelihood
function on test data for the three models. A good model should be able to generalize
well and hence should have small negative log-likelihood. From Figure 2(a) we see that,
when the sample size is small, both Netrate and TopicCascade have large negative log-
likelihood on test data set; while our model generalizes much better. When sample size
increases, NetRate still has large negative log-likelihood because it fails to consider the
topic structure; TopicCascade behaves more and more closer to our model, which is as
expected, since our model is a special case of the the topic-sensitive model. However, our
model requires substantially fewer parameters.

(2) We calculate the true diffusion matrix Ak for each topic k based on our model:
Ak = B1M(k)B

>
2 where M(k) is diagonal matrix with 0 on all diagonal elements but 1

on location k. We also generate the estimated Âk from the three models as follows: for
our model we use the estimated B̂1 and B̂2; for TopicCascade model the Âk is estimated
directly as a parameter of the mode; for Netrate we use the estimated Â as the common
topic diffusion matrix for each topic k. Finally, we compare the estimation error of the

three models: error = 1
K

∑K
k=1

‖Âk−Ak‖
‖Ak‖ . From Figure 2(b) we see that both Netrate and

TopicCascade have large estimation error even if we have many samples; while our model
has much smaller estimation error.

Dense graph. We evaluate the performance of our method on a denser graph. When
generating each row of B1, B2, we randomly pick 5-6 topics instead of 2-3. This change
makes infections more frequent. For many of the cascades, almost all the nodes are infected.
Since this phenomenon is not common in practice, we shrink B1 and B2 by half, and reduce
the maximum observation time T by half to make sure that infection happens across about
30% of the nodes as before. The comparison of our method with Netrate and TopicCascade
with dense graph is shown in Figure 3. We see that the pattern is similar to the previous
experiments.
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(a) Negative log-likelihood on test data set

0 2000 4000 6000 8000 10000

#cascades

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
s
ti
m

a
ti
o

n
 e

rr
o

r

  Netrate

  TopicCascade

  Our method

(b) Estimation error

Figure 2: Comparison of our method with Netrate and TopicCascade.
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Kronecker graph. We generate B1 and B2 according to the Kronecker graph (Leskovec
et al., 2010). We consider two choices of parameters for generating the Kronecker graph
that resemble the real world networks: the first one is [0.8 0.6; 0.5 0.3], and the second
one is [0.7 0.7; 0.6 0.4]. For each choice of parameters, we follow the procedure in Leskovec
et al. (2010) to generate a network with 211 = 2048 nodes. Denote this adjacency matrix as
AKron ∈ R2048×2048. Matrices B1, B2 ∈ R2048×10 are obtained from a non-negative matrix
factorization of AKron, AKron ≈ B1B

>
2 . This corresponds to K = 10. We randomly select

p = 200 nodes and discard others. This gives B1, B2 ∈ R200×10. Finally, we zero out
small values in B1 and B2, scale them and treat them as the true parameters so that the
percentage of infections behaves similar as the previous experiments. Figure 4 and 5 show
the comparison on Kronecker graph. Once again, our method has the best performance.
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(a) Negative log-likelihood on test data set
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Figure 3: Comparison of our method with Netrate and TopicCascade on a dense graph.
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Figure 4: Comparison of our method with Netrate and TopicCascade on Kronecker graph
with parameter [0.8 0.6; 0.5 0.3].
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Compare g1 and g2 regularizations. Both g1 and g2 regularizers provide good estimates
for B1 and B2. At optimum, the columns will have the same `1 norm if g1 is used, and the
same `2 norm if g2 is used. In simulation, the performance of using g1 or g2 depends on
whether the true parameter has the same `1 or `2 column norm. In practice, the columns
of B1 and B2 could be balanced in a much more complicated way.

For the experiment, when using g2, we set s1 = 1.5 · s∗1 and s2 = 1.5 · s∗2 where s∗1 and
s∗2 are the true sparsity level of B1 and B2; when using g1, for fair comparison, we set a
fixed small regularization parameter λ. To illustrate the difference between g1 and g2, we
set p = 50 and evaluate the performance of Algorithm 1 with g1 and Algorithm 2 with
g2 on different sample sizes. We scale the true B∗1 and B∗2 to have the same column sum
(`1 norm). Algorithm 2 is initialized with the solution of Algorithm 1. Figure 6 shows
the comparison results on different sample sizes. We see that both methods performs well.
When sample size is small, g1 seems to be slightly better, since the true values are scaled to
have the same `1 column norm. When sample size is large, g2 seems to be slightly better,
since `1 norm regularizer induces a biased solution.

Comparison with TopicCascade with enough samples. Although our model is a
special case of the topic-sensitive model, in the previous experiments, it seems like Topic-
Cascade is not performing well even when sample size n is large, especially on estimation
error. We remark that the reason is that TopicCascade has p2K parameters, while our model
has only 2pK parameters. With p = 200, TopicCascade model has 100 times more parame-
ters than ours. With such a large number of parameters, in order to obtain a sparse solution,
we have to choose a large regularization in TopicCascade. Such a large regularization in-
duces a large bias on the nonzero parameters, and therefore it worsens the performance of
TopicCascade. Here we consider a lower dimensional model with p = 10,K = 6, and show
that TopicCascade behaves similarly to our model when n is large.

We repeat the experiment while keeping all the other settings unchanged. Figure 7 shows
the comparison of the three methods with different sample sizes. We see that TopicCascade
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Figure 5: Comparison of our method with Netrate and TopicCascade on Kronecker graph
with parameter [0.7 0.7; 0.6 0.4].
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is almost as good as our method with large enough sample size. We also see that Netrate
performs better when p and K are small, in terms of negative log-likelihood. This may be
due to the small difference among topics, so one adjacency matrix suffices. However, the
performance of Netrate is still bad in terms of estimation error. We also observe that the
estimation error is not small even with small p,K and large sample size. This may be due
to only a few nodes being infected in each cascade, and therefore the effective information
in each cascade is low.

Comparison of F1 score. We compare the three methods using F1 score. The F1 score
is defined as the harmonic mean of precision and recall: F1 = 2·(precision−1+recall−1)−1,
where precision is the fraction of edges in the estimated network that is also in the true net-
work; recall is the fraction of edges in the true network that is also in the estimated network.
Since we have K topics, we calculate the F1 score of each {Ak}Kk=1, and take the average.
We would like to remark that the F1 score is based on the estimated discrete network, while
Netrate, TopicCascade, and our model estimate continuous parameters. Therefore, the F1
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Figure 6: Comparison of g1 and g2 regularizations.
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Figure 7: Comparison of our method with Netrate and TopicCascade, with a small p.
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Figure 8: Comparison of our method with Netrate and TopicCascade on the F1 score.

score is not the main focus of the comparison. In Lasso, it is well known that one should
choose a larger regularization parameter for variable selection consistency and a smaller reg-
ularization parameter for parameter estimation consistency (Meinshausen and Bühlmann,
2006). Similarly, to obtain a better F1 score, we choose a larger regularization parameter.

For the experiments, we set p = 50 and set the regularization parameter as 20 times the
optimal one selected on the validation set for parameter estimation. Figure 8 shows the F1

score of the three methods. We see that our method has the largest F1 score even when
the sample size is relatively small. With large enough sample size, both our method and
TopicCascade can recover the network structure.

7.2. Running Time

We next compare the running times of the three methods. For fair comparison, for each
method we set the step size, initialization, penalty λ, and tolerance level to be the same.
Also one third of the samples are generated by each model. For our model we follow the data
generation procedure as described before; for TopicCascade, for each topic k, we randomly
select 5% of the components of Ak to be nonzero, and these nonzero values are set as before
as Unif(0.8, 1.8) · ζ, where ζ = 3 with probability 0.3 and ζ = 1 with probability 0.7; for
Netrate, we again randomly select 5% of the components of A to be nonzero with values
Unif(0.8, 1.8) · ζ, and we randomly assign topic distributions. We run the three methods
on 12 kernels. For Netrate and TopicCascade, since they are separable in each column,
we run 12 columns in parallel; for our method, we calculate the gradient in parallel. We
use our Algorithm 1 for our method and the proximal gradient algorithm for the other
two methods, as suggested in Gomez-Rodriguez et al. (2016). We fix a baseline model size
n = 500, p = 50,K = 10, and set a free parameter ξ. For ξ = {1, 2, 5, 8}, each time we
increase n, p by a factor of ξ and record the running time (in seconds) of each method.
Table 1 summarizes the results based on 5 replications in each setting. We can see that

24



Low-rank Topic-Based Model for Information Cascades

ξ = 1 ξ = 2 ξ = 5 ξ = 8

Netrate 1.15 4.42 53.52 211.0
TopicCascade 5.43 36.10 153.03 1310.7
Our method 9.79 19.83 91.95 454.9

Table 1: Running time comparison (in sec).

Netrate is the fastest because it does not consider the topic distribution. When p becomes
large, our algorithm is faster than TopicCascade and is of the same order as Netrate. This
demonstrates that although our model is not separable in each column, it can still deal with
large networks.

8. Real World Data Set

In this section we evaluate our model on two real world data sets. We again focus on our
proposed Algorithm 1.

8.1. Memetracker Data Set

The first data set is the MemeTracker data set (Leskovec et al., 2009).2 This data set
contains 172 million news articles and blog posts from 1 million online sources over a period
of one year from September 1, 2008 till August 31, 2009. Since the use of hyperlinks to
refer to the source of information is relatively rare in mainstream media, the authors use
the MemeTracker methodology (Leskovec and Sosic, 2016) to extract more than 343 million
short textual phrases. After aggregating different textual variants of the same phrase, we
consider each phrase cluster as a separate cascade c. Since all documents are time stamped, a
cascade c is simply a set of time-stamps when websites first mentioned a phrase in the phrase
cluster c. Also since the diffusion rate of information on the internet usually reaches its peak
when the information first comes out and decays rapidly, we use exponential transmission
function here.

For our experiments we use the top 500 media sites and blogs with the largest 5000
cascades (phrase clusters). For each website we record the time when they first mention a
phrase in the particular phrase cluster. We set the number of topic K to be 10 as suggested
in Du et al. (2013b), and perform Topic Modeling (LDA) to extract 10 most popular topics.
We choose the regularization parameter λ based on a hold-out validation set, and then
use our Algorithm 1 to estimate the two node-topic matrices. The two matrices and the
key words of the 10 topics are given in Tables 3 (B1) and Table 4 (B2). The keywords
of the 10 topics are shown at the head of each table; the first column is the url of the
website. Since LDA is a randomized algorithm, we run it several times and select the one
that performs the best in separating the meaningful topics. We also manually adjust the
top keywords a bit by removing a few trivial words, so that they are more informative. For
example, the word “people” appears in several topics, and therefore we are not reporting it
except for the seventh topic where “people” is the top-1 keyword. The websites above the
center line in each table are the most popular websites. We have also hand-picked some less

2. Data available at http://www.memetracker.org/data.html
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Figure 9: Scatter plot of B1 and B2 using t-SNE algorithm, for Memetracker data set.

popular websites below the center line whose url suggest that they focus on specific topics,
for example politics, business, sports, etc. The top websites are mostly web portals and
they broadly post and cite news in many topics. Therefore to demonstrate that our model
does extract some meaningful information, we select less popular websites below the center
line and hope we can correctly extract the topics of interest of these specific websites.

From the two tables we can see that in general the influence matrix B1 is much sparser
than the receptivity matrix B2, which means that websites tend to post news and blogs in
many topics but only a few of them will be cited by others. The websites we hand pick are
not as active as the top websites. Therefore the values for these websites are much smaller.
For the top websites we only display entries which are above the threshold of 0.1, and leave
smaller entries blank in the two tables; for the hand selected websites, only 0 values are
left blank. From the two tables we see that our model performs quite well on those specific
websites. For example the political websites have a large value on topic 4 (election); the
business and economics websites have large value on topic 3 (economy), etc. Those “as
expected” large values are shown in boldface in order to highlight them.

We then visualize the estimated B1 and B2 using t-SNE algorithm (van der Maaten and
Hinton, 2008) to see whether nodes are clustered with respect to a set of topics, and whether
the clusters in B1 correspond to the ones in B2. In B1 and B2, each row is a 10 dimensional
vector corresponding to a website. We use t-SNE algorithm to give each website a location
in a two-dimensional map and the scatter plot of B1 and B2 are given in Figure 9(a) and
Figure 9(b). From the two figures we see that these points do not form clear clusters, which
means most of the websites are in general interested in many of the topics and they do not
differ too much from each other. We can see clearer clusters in the next example.

Finally we check the performance of our method on about 1500 test cascades and com-
pare with Netrate and TopicCascade. Since the number of parameters are different for the
three models, besides negative log-likelihood, we also use AIC and BIC as our metrics. Table
2 summarizes the results. The first column shows the names of the three methods and the
following columns are the averaged negative log-likelihood on train set, averaged negative
log-likelihood on test set, number of total parameters, number of nonzero parameters, AIC
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train test parameter nonzero AIC BIC

Netrate 68.5 81.1 250000 20143 2.60×105 3.65×105

TopicCascade 62.5 81.8 2500000 142718 5.08×105 1.25×106

Our method 80.3 82.3 10000 7272 2.38× 105 2.76× 105

Table 2: Comparison of the 3 methods on test cascades for Memetracker data set.
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blog.myspace.com 0.29 0.17 0.17 0.11 0.25 0.54 0.12 0.24 0.43
us.rd.yahoo.com 0.7 0.33 0.24 0.18 0.15 0.38 0.28 0.4 0.42 0.61
news.google.com 0.15 0.13 0.15 0.13 0.15 0.65
startribune.com 0.42 0.59 0.5 0.3 0.32 0.49 0.24 0.31
news.com.au 0.12 0.18 0.2
breitbart.com 0.77 0.47 0.15 0.16 0.37 0.25 0.55
uk.news.yahoo.com 0.51 0.3 0.36 0.17 0.3 0.33 0.13 0.15
cnn.com 0.13 0.15 0.5 0.19 0.34 0.12
newsmeat.com 0.55
washingtonpost.com 0.10 0.41 0.14 0.10 0.10 0.39 0.13 0.23 0.22
forum.prisonplanet.com 0.2 0.17
news.originalsignal.com 0.13 0.17
c.moreover.com 0.19 0.24
philly.com
rss.feedsportal.com 0.1 0.14 0.15 0.18 0.19

foxnews.com 0.099 0.17 0.26 0.052 0.071 0.085
sports.espn.go.com 0.038 0.29 0.23 0.12 0.41
olympics.thestar.com 0.013 0.036 0.012
forbes.com 0.019 0.028 0.02 0.035
scienceblogs.com 0.24 0.14 0.077 0.2 0.12 0.15 0.092 0.052 0.29 0.091
swamppolitics.com 0.42 0.049
cqpolitics.com 0.016 0.23 0.082 0.16 0.23 0.045

Table 3: The influence matrix B1 for Memetracker data set.

and BIC on test set calculated using the negative log-likelihood on test set (third column)
and the number of nonzero parameters (fifth column).

From the table we see that our model has the largest negative log-likelihood on train
set, and one reason for that is that our model have fewest parameters. However, we can
see that both Netrate and TopicCascade are overfitting, while our method can generalize to
test set with little overfitting. Our method uses much fewer parameters but has comparable
negative log-likelihood on test, and also our method has the smallest AIC and BIC value.
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blog.myspace.com 0.42 0.63 0.28 0.47 0.55 0.18 0.29 0.43 0.49 0.22
us.rd.yahoo.com 0.36 0.28 0.28 0.44 0.56 0.19 0.22 0.41 0.27 0.18
news.google.com 0.15 0.10 0.17 0.12 0.11
startribune.com 0.19 0.25 0.16 0.37 0.38 0.13 0.14 0.27 0.23 0.13
news.com.au 0.10 0.13 0.12
breitbart.com 0.14 0.13 0.14 0.3 0.2 0.16 0.18
uk.news.yahoo.com 0.12 0.14 0.15 0.21 0.14 0.14 0.14 0.13
cnn.com 0.12 0.15 0.18 0.16 0.15 0.12
newsmeat.com
washingtonpost.com 0.12 0.15 0.15 0.23 0.17 0.12 0.1 0.16 0.18
forum.prisonplanet.com 0.10 0.10
news.originalsignal.com 0.22 0.23 0.18 0.37 0.26 0.18 0.26 0.21
c.moreover.com 0.24 0.21 0.15 0.37 0.36 0.11 0.15 0.34 0.25 0.17
philly.com 0.11 0.15 0.16 0.21 0.14 0.11 0.1
rss.feedsportal.com 0.11 0.11 0.1 0.10

canadianbusiness.com 0.012 0.061 0.017 0.012 0.012
olympics.thestar.com 0.013 0.023 0.02 0.013
tech.originalsignal.com 0.036 0.032 0.04 0.031 0.038 0.13 0.037 0.037 0.043 0.031
businessweek.com 0.017 0.032 0.012 0.01 0.015 0.012 0.012 0.017
economy-finance.com 0.026 0.014 0.072 0.024 0.027 0.036 0.03 0.02
military.com 0.014 0.037 0.014 0.02 0.014 0.013
security.itworld.com 0.042 0.015
money.canoe.ca 0.011 0.022 0.02 0.012
computerworld.com 0.011 0.053

Table 4: The receptivity matrix B2 for Memetracker data set.

8.2. Arxiv Citation Data Set

The second data set is the ArXiv high-energy physics theory citation network data set
(Leskovec et al., 2005; Gehrke et al., 2003).3 This data set includes all papers published
in ArXiv high-energy physics theory section from 1992 to 2003. We treat each author as a
node and each publication as a cascade. For our experiments we use the top 500 authors
with the largest 5000 cascades. For each author we record the time when they first cite
a particular paper. Since it usually takes some time to publish papers we use Rayleigh
transmission function here. We set the number of topic K to be 6, and perform Topic
Modeling on the abstracts of each paper to extract 6 most popular topics. We then use our
Algorithm 1 to estimate the two node-topic matrices. The two matrices and the key words
of the 6 topics are given in Tables 6 (B1) and Table 7 (B2). Again the keywords of the 6
topics are shown at the head of each table and the first column is the name of the author.

We compare the learned topics to the research interests listed by the authors in their
website and we find that our model is able to discover the research topics of the authors
accurately. For example Arkady Tseytlin reports string theory, quantum field theory and
gauge theory; Shin’ichi Nojiri reports field theory; Burt A. Ovrut reports gauge theory;

3. Data available at http://snap.stanford.edu/data/cit-HepTh.html
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Figure 10: Scatter plot of B1 and B2 using t-SNE algorithm, for Citation data set.

train test parameter nonzero AIC BIC

Netrate 66.8 83.9 250000 13793 2.34×105 3.05×105

TopicCascade 67.3 85.3 1500000 57052 3.24×105 6.16×105

Our method 78.2 82.3 6000 3738 2.10× 105 2.29× 105

Table 5: Comparison of the 3 methods on test cascades for citation data set.

Amihay Hanany reports string theory; Ashoke Sen reports string theory and black holes as
their research areas in their webpages. Moreover, Ashok Das has papers in supergravity,
supersymmetry, string theory, and algebras; Ian Kogan has papers in string theory and
boundary states; Gregory Moore has papers in algebras and non-commutativity. These are
all successfully captured by our method.

We then again visualize the estimated B1 and B2 using t-SNE algorithm for which the
scatter plots are shown in Figures 10. Here we see distinct patterns in the two figures.
Figure 10(a) shows 6 “petals” corresponding to the authors interested in 6 topics, while
the points in the center corresponds to the authors who have small influence on all the 6
topics. We therefore apply K-Means algorithm to get 7 clusters for the influence matrix B1

as shown in Figure 10(a) (each color corresponds to one cluster), and then plot receptivity
matrix B2 in Figure 10(b) using these colors. We see that although Figure 10(b) also shows
several clusters, the patterns are clearly different from Figure 10(a). This demonstrates the
necessity of having different influence matrix B1 and receptivity matrix B2 in our model.

Finally we check the performance of our method on about 1200 test cascades and com-
pare with Netrate and TopicCascade. Table 5 summarizes the results. Similar as before,
although Netrate and TopicCascade have smaller negative log-likelihood on train data, our
method has the best performance on test data with significantly less parameters and little
overfitting. So again we see that our model works quite well on this citation data set.
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Christopher N. Pope 0.15 0.16 0.062 0.12
Hong Lu 0.11 0.16 0.067 0.12
Arkady Tseytlin 0.019 0.37 0.13 0.08 0.18
Sergei D. Odintsov 0.042 0.29 0.037 0.013
Shin’ichi Nojiri 0.028 0.22
Emilio Elizalde 0.012 0.023 0.11 0.14
Cumrun Vafa 0.17 0.43
Edward Witten 0.034 0.019 0.3 0.39 0.036
Ashok Das 0.065 0.018 0.038 0.14
Sergio Ferrara 0.41 0.056 0.2 0.11
Renata Kallosh 0.16 0.49 0.17 0.11 0.029
Mirjam Cvetic 0.35 0.04 0.032 0.026
Burt A. Ovrut 0.11 0.23 0.083
Ergin Sezgin 0.16 0.25 0.54
Ian Kogan 0.013 0.14 0.11
Gregory Moore 0.04 0.18
I. Antoniadis 0.21 0.084 0.13 0.32 0.07 0.22
Andrew Strominger 0.37 0.2
Barton Zwiebach 0.027 0.015 0.15 0.2
Paul Townsend 0.036 0.72 0.65 0.21
Robert Myers 0.075 0.023 0.018
Eric Bergshoeff 0.096 0.062 0.12 0.092
Amihay Hanany 0.16 0.049 0.22
Ashoke Sen 0.11 0.15 0.48 0.22

Table 6: The influence matrix B1 for citation data set.
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black
hole

energy
chains

quantum
model
field

theory

gauge
theory
field

effective

algebra
space
group

structure

states
space

noncommutative
boundary

string
theory

supergravity
supersymmetric

Christopher N. Pope 0.5 0.78 0.062 0.26
Hong Lu 0.47 0.86 0.045 0.25
Arkady Tseytlin 0.23 0.88 0.55 0.3 0.26
Sergei D. Odintsov 0.58 0.80 0.029 0.14 0.16
Shin’ichi Nojiri 0.29 0.35 0.021 0.17
Emilio Elizalde 0.037 0.18 0.24 0.019
Cumrun Vafa 0.098 0.64 0.087 0.16
Edward Witten 0.097 0.29 0.41 0.28 0.2
Ashok Das 0.2 0.099 0.11 0.023 0.14
Sergio Ferrara 0.51 0.3 0.041 0.53 0.13
Renata Kallosh 0.19 0.3 0.58 0.16
Mirjam Cvetic 0.029 1.4 0.077 0.31 0.095
Burt A. Ovrut 0.021 0.17 0.34 0.13 0.12
Ergin Sezgin 0.17 0.062 0.38 0.1
Ian Kogan 0.061 0.3 0.05 0.42 0.13
Gregory Moore 0.27 0.064 0.28 0.51 0.38 0.056
I. Antoniadis 0.1 0.024 0.042 0.23 0.1
Andrew Strominger 0.032 0.58 0.078 0.1 0.079
Barton Zwiebach 0.14 0.018 0.096 0.021 0.068
Paul Townsend 0.06 0.12 0.42 0.21
Robert Myers 0.86 0.2 0.23 0.042 0.04
Eric Bergshoeff 0.24 0.15 0.82 0.27 0.011
Amihay Hanany 0.65 0.02 0.22
Ashoke Sen 0.057 0.16 0.051 0.04

Table 7: The receptivity matrix B2 for citation data set.
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9. Conclusion

The majority of work on information diffusion has focused on recovering the diffusion matrix
while ignoring the structure among nodes. In this paper, we propose an influence-receptivity
model that takes the structure among nodes into consideration. We develop two efficient
algorithms and prove that the iterates of the algorithm converge linearly to the true value
up to a statistical error. Experimentally, we demonstrate that our model performs well in
both synthetic and real data, and produces a more interpretable model.

There are several interesting research threads we plan to pursue. In terms of modeling,
an interesting future direction would be to allow each cascade to have a different propagation
rate. In our current model, two cascades with the same topic distribution will have the
same diffusion behavior. In real world, we expect some information to be intrinsically more
interesting and hence spread much faster. Another extension would be allowing dynamic
influence-receptivity matrices over time. Finally, all existing work on network structure
recovery from cascades assumes that the first node observed to be infected is the source of
the diffusion. In many scenarios, the source may be latent and directly infect many nodes.
Extending our model to incorporate this feature is work in progress.
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Appendix A. Technical proofs

A.1. Proof of Theorem 3.

Since f(Θ) is strongly convex in Θ, we have

f(Θ̂)− f(Θ∗)−
〈
∇f(Θ∗), Θ̂−Θ∗

〉
≥ µ

2

∥∥Θ̂−Θ∗
∥∥2

F
.

On the other hand, since Θ̂ is the global minimum, we have

f(Θ̂) ≤ f(Θ∗).

Combining the above two inequalities, we obtain

µ

2

∥∥Θ̂−Θ∗
∥∥2

F
≤ −

〈
∇f(Θ∗), Θ̂−Θ∗

〉
≤
∥∥∇f(Θ∗)

∥∥
F
·
∥∥Θ̂−Θ∗

∥∥
F

and ∥∥Θ̂−Θ∗
∥∥
F
≤ 2

µ

∥∥∇f(Θ∗)
∥∥
F
.

This shows that for any k, we have

∥∥Θ̂k −Θ∗k
∥∥
F
≤ 2

µ

∥∥∇f(Θ∗)
∥∥
F
.

According to the construction of the initialization point, the rank-1 SVD of Θk is given by
σkukv

>
k . Since it is the best rank-1 approximation of Θ̂k, we have that∥∥σkukv>k − Θ̂k

∥∥
F
≤
∥∥Θ̂k −Θ∗k

∥∥
F
.

By the triangular inequality

∥∥σkukv>k −Θ∗k
∥∥
F
≤
∥∥σkukv>k − Θ̂k

∥∥
F

+
∥∥Θ̂k −Θ∗k

∥∥
F
≤ 2
∥∥Θ̂k −Θ∗k

∥∥
F
≤ 4

µ

∥∥∇f(Θ∗)
∥∥
F
.

Then by Lemma 5.14 in Tu et al. (2016) we have

∥∥b1k(0) − b1k
∗∥∥2

2
+
∥∥b2k(0) − b2k

∗∥∥2

2
≤ 2√

2− 1
·
∥∥σkukv>k −Θ∗k

∥∥2

F

‖Θ∗k‖2
.

Let σ∗ = mink ‖Θ∗k‖2. Using Lemma 3.3 in Li et al. (2016), we have the following upper

bound on the initialization B(0) =
[
B

(0)
1 , B

(0)
2

]
,

d2
(
B(0), B∗

)
≤ ξ2 · 2K√

2− 1
·

16
∥∥∇f(Θ∗)

∥∥2

F

µ2σ∗
≤

80ξ2K
∥∥∇f(Θ∗)

∥∥2

F

µ2σ∗
,

where ξ is defined as ξ2 = 1 + 2√
c−1

with c set as s = cs∗ as in Theorem 4.
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A.2. Proof of Theorem 4.

The key part of the proof is to quantify the estimation error after one iteration. We
then iteratively apply this error bound. For notation simplicity, we omit the superscript
indicating the iteration number t when quantifying the iteration error. We denote the
current iterate as B = [B1, B2] and the next iterate as B+ = [B+

1 , B
+
2 ]. Recall that the

true values are given by B∗ = [B∗1 , B
∗
2 ] with columns given by b1k

∗
, b2k
∗
. The kth columns of

B1, B2, B
+
1 , B

+
2 are denoted as b1k, b

2
k, b

1+
k , b2+

k . We use bk and b+k to denote bk = [b1k, b
2
k] and

b+k = [b1+
k , b2+

k ].
According to the update rule given in Algorithm 2, we have

B+
1 = Hard

(
B1 − η · ∇B1f

(
B1, B2

)
− η · ∇B1g

(
B1, B2

)
, s
)
,

B+
2 = Hard

(
B2 − η · ∇B2f

(
B1, B2

)
− η · ∇B2g

(
B1, B2

)
, s
)
,

with the regularization term g(B1, B2) = 1
4 ·
∑K

k=1

(∥∥b1k∥∥2

2
−
∥∥b2k∥∥2

2

)2
given in (13). Note

that, since the true values B∗1 , B
∗
2 are nonnegative and the negative values only make the

estimation accuracy worse, we can safely ignore the operation [B]+ in the theoretical anal-
ysis. Moreover, when quantifying the estimation error after one iteration, we assume that
the current estimate B is not too far away from the true value B∗ in that

d2(B,B∗) ≤ 1

4
γσ∗ ·min

{
1,

1

4(µ+ L)

}
, (24)

where γ = min{1, µL/(µ+L)} and σ∗ = mink ‖Θ∗k‖2. This upper bound (24) is satisfied for
B(0) when the sample size is large enough, as assumed in (19). In the proof, we will show
that (24) is also satisfied in each iteration of Algorithm 2. Therefore we can recursively
apply the estimation error bound for one iteration.

Let

S1 = supp(B1) ∪ supp(B+
1 ) ∪ supp(B∗1) and S2 = supp(B2) ∪ supp(B+

2 ) ∪ supp(B∗2)

denote the nonzero positions of the current iterate, next iterate, and the true value. Simi-
larly, let

S1k = supp(b1k) ∪ supp(b1+
k ) ∪ supp(b1∗k ) and S2k = supp(b2k) ∪ supp(b2+

k ) ∪ supp(b2∗k )

capture the support for the kth column. With this notation, we have

d2(B+, B∗) =
∥∥B+

1 −B
∗
1

∥∥2

F
+
∥∥B+

2 −B
∗
2

∥∥2

F

≤ ξ2
(∥∥B1 −B∗1 − η ·

[
∇B1f

(
B1, B2

)
+∇B1g

(
B1, B2

)]
S1

∥∥2

F

+
∥∥B2 −B∗2 − η ·

[
∇B2f

(
B1, B2

)
+∇B2g

(
B1, B2

)]
S2

∥∥2

F

)
≤ ξ2

(
d2(B,B∗)− 2η ·

〈
∇Bf

(
B
)

+∇Bg
(
B
)
, B −B∗

〉
S1∪S2

+ η2 ·
∥∥[∇Bf(B)+∇Bg

(
B
)]
S1∪S2

∥∥2

F

)
≤ ξ2

(
d2(B,B∗)− 2η ·

〈
∇Bf

(
B
)

+∇Bg
(
B
)
, B −B∗

〉
S1∪S2

+ 2η2 ·
∥∥[∇Bf(B)]S1∪S2

∥∥2

F
+ 2η2 ·

∥∥[∇Bg(B)]S1∪S2

∥∥2

F

)
,

(25)
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where the first inequality follows from Lemma 3.3 of Li et al. (2016) and ξ is defined as
ξ2 = 1 + 2√

c−1
with c set as s = cs∗.

Different from the existing work on matrix factorization that focuses on recovery of a
single rank-K matrix, in our model, we have K rank-1 matrices. Therefore we have to
deal with each column of B1 and B2 separately. With some abuse of notation, we denote
fk(bk) = fk(b

1
k, b

2
k) = fk(Θk) = f(Θ1, . . . ,Θk, . . . ,ΘK) as a function of the kth columns of

B1, B2, with all the other columns fixed. The gradient of fk(Θk) with respect to b1k is then
given by ∇fk(Θk) · b2k. Similarly, we denote

gk(bk) = gk(b
1
k, b

2
k) =

1

4

(∥∥b1k∥∥2

2
−
∥∥b2k∥∥2

2

)2
,

such that g(B1, B2) =
∑K

k=1 gk(bk).

We first deal the terms involving regularization g(·) in (25). Denote ∆bk =
∥∥b1k∥∥2

2
−
∥∥b2k∥∥2

2
,

so that gk(bk) = 1
4(∆bk)

2. Then

∥∥∥[∇Bg(B)]S1∪S2

∥∥∥2

F
≤

K∑
k=1

‖∇gk(bk)‖2F ≤
K∑
k=1

(∆bk)
2 · ‖bk‖22 ≤ ‖B‖22 ·

K∑
k=1

(∆bk)
2. (26)

Equation (36) in the proof of Lemma B.1 in Park et al. (2018) gives us

〈
∇Bg

(
B
)
, B −B∗

〉
S1∪S2

≥
K∑
k=1

[5

8
(∆bk)

2 − 1

2
∆bk · ‖bk − b∗k‖22

]
. (27)

We then bound the two terms in (27). For the first term, we have

(∆bk)
2 ≥

∥∥b1kb1k> − b1k∗b1k∗>∥∥2

F
+
∥∥b2kb2k> − b2k∗b2k∗>∥∥2

F
− 2
∥∥b1kb2k> − b1k∗b2k∗>∥∥2

F

≥ γ ·
(∥∥b1kb1k> − b1k∗b1k∗>∥∥2

F
+
∥∥b2kb2k> − b2k∗b2k∗>∥∥2

F
+ 2
∥∥b1kb2k> − b1k∗b2k∗>∥∥2

F

)
− 4µL

µ+ L

∥∥b1kb2k> − b1k∗b2k∗>∥∥2

F

≥ 3

2
γ
∥∥Θ∗k

∥∥
2
·
(∥∥b1k − b1k∗∥∥2

2
+
∥∥b2k − b2k∗∥∥2

2

)
− 4µL

µ+ L

∥∥b1kb2k> − b1k∗b2k∗>∥∥2

F
,

(28)

where the last inequality follows from Lemma 5.1 in Tu et al. (2016), and γ = min{1, µL/(µ+
L)} as before. For the second term in (27), recall that the current iterate satisfies the
condition (24), so that

1

2
∆bk · ‖bk − b∗k‖22 ≤

1

2
∆bk · ‖bk − b∗k‖2 ·

√
1

4
γσ∗

≤ 1

16
γσ∗ · ‖bk − b∗k‖22 +

1

4
(∆bk)

2.

(29)
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Plugging (29) and (28) into (27) and summing over k, we obtain

〈
∇Bg

(
B
)
, B −B∗

〉
S1∪S2

≥ 3

8

K∑
k=1

(∆bk)
2 − 1

16

K∑
k=1

γσ∗ · ‖bk − b∗k‖22

=
1

4

K∑
k=1

(∆bk)
2 +

1

8

K∑
k=1

(∆bk)
2 − 1

16
γσ∗ · d2(B,B∗)

≥ 1

8
γσ∗d2(B,B∗)− µL

2(µ+ L)

∥∥b1kb2k> − b1k∗b2k∗>∥∥2

F
+

1

4

K∑
k=1

(∆bk)
2.

Together with (26), we obtain

− 2η
〈
∇Bg

(
B
)
, B −B∗

〉
S1∪S2

+ 2η2
∥∥∥[∇Bg(B)]S1∪S2

∥∥∥2

F

≤ −1

4
ηγσ∗d2(B,B∗) + η

µL

µ+ L

∥∥b1kb2k> − b1k∗b2k∗>∥∥2

F
+
(

2η2‖B‖22 −
1

2
η
) K∑
k=1

(∆bk)
2.

(30)
Next, we upper bound the terms in (25) involving the objective function f(·). For the

inner product term, for each k, we have〈
[∇fk(b1kb2k

>
) · b2k]S1 , b

1
k − b1k

∗
〉

+
〈

[∇fk(b1kb2k
>

) · b1k]S2 , b
2
k − b2k

∗
〉

=
〈
∇fk(b1kb2k

>
), (b1k − b1k

∗
)b2k
>

+ b1k(b
2
k − b2k

∗
)>
〉
S1k,S2k

=
〈
∇fk(b1kb2k

>
), (b1k − b1k

∗
)(b2k − b2k

∗
)> + b1kb

2
k
> − b1k

∗
b2k
∗>
〉
S1k,S2k

=
〈
∇fk(b1kb2k

>
), (b1k − b1k

∗
)(b2k − b2k

∗
)>
〉
S1k,S2k

+
〈
∇fk(b1kb2k

>
), b1kb

2
k
> − b1k

∗
b2k
∗>
〉
S1k,S2k

=
〈
∇fk(b1kb2k

>
), (b1k − b1k

∗
)(b2k − b2k

∗
)>
〉
S1k,S2k︸ ︷︷ ︸

W1k

+
〈
∇fk(b1k

∗
b2k
∗>

), b1kb
2
k
> − b1k

∗
b2k
∗>
〉
S1k,S2k︸ ︷︷ ︸

W2k

+
〈
∇fk(b1kb2k

>
)−∇fk(b1k

∗
b2k
∗>

), b1kb
2
k
> − b1k

∗
b2k
∗>
〉
S1k,S2k︸ ︷︷ ︸

W3k

.

For the term W3k, Theorem 2.1.11 of Nesterov (2004) gives

W3k ≥
µL

µ+ L
·
∥∥∥b1kb2k> − b1k∗b2k∗>∥∥∥2

F
+

1

µ+ L
·
∥∥∥ [∇f(b1kb

2
k
>

)−∇f(b1k
∗
b2k
∗>

)
]
S1k,S2k

∥∥∥2

F
.

(31)
For the term W2k, according to the definition of the statistical error in (16), we have

K∑
k=1

W2k ≥ −estat ·
K∑
k=1

∥∥∥b1kb2k> − b1k∗b2k∗>∥∥∥
F

≥ −K
2

µ+ L

µL
e2

stat −
1

2

µL

µ+ L

K∑
k=1

∥∥∥b1kb2k> − b1k∗b2k∗>∥∥∥2

F
.

(32)
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For the term W1k,

K∑
k=1

W1k =
K∑
k=1

〈
∇fk(b1k

∗
b2k
∗>

), (b1k − b1k
∗
)(b2k − b2k

∗
)>
〉
S1k,S2k

+
〈
∇fk(b1kb2k

>
)−∇fk(b1k

∗
b2k
∗>

), (b1k − b1k
∗
)(b2k − b2k

∗
)>
〉
S1k,S2k

≥ −

(
estat +

K∑
k=1

∥∥∥ [∇fk(b1kb2k>)−∇fk(b1k
∗
b2k
∗>

)
]
S1k,S2k

∥∥∥
F

)
· d2(B,B∗)

≥ −

(
estat +

K∑
k=1

∥∥∥ [∇fk(b1kb2k>)−∇fk(b1k
∗
b2k
∗>

)
]
S1k,S2k

∥∥∥
F

)√
γσ∗

16(µ+ L)
d(B,B∗)

≥ − K

2(µ+ L)
·

(
e2

stat +

K∑
k=1

∥∥∥ [∇fk(b1kb2k>)−∇fk(b1k
∗
b2k
∗>

)
]
S1k,S2k

∥∥∥2

F

)

− 1

16
γσ∗ · d2(B,B∗),

(33)
where we use the fact that d(B,B∗) satisfies (24),

∥∥(b1k − b1k
∗
)(b2k − b2k

∗
)>
∥∥
F
≤
∥∥b1k − b1k∗∥∥F∥∥b2k − b2k∗∥∥F ≤ ∥∥b1k − b1k∗∥∥2

F
+
∥∥b2k − b2k∗∥∥2

F
,

and that their summation is d2(B,B∗). For the term in (25) involving square of f(·), we
have

∥∥∥[∇Bf(B)]S1∪S2

∥∥∥2

F
≤ 4 ·

( K∑
k=1

∥∥∥ [∇f(b1kb
2
k
>

)−∇f(b1k
∗
b2k
∗>

)
]
S1,S2

∥∥∥2

F
+ e2

stat

)
· ‖B‖22. (34)

Combining (31), (32), (33), and (34), we obtain

− 2η
〈
∇Bf

(
B
)
, B −B∗

〉
S1∪S2

+ η2
∥∥∥[∇Bf(B)]S1∪S2

∥∥∥2

F

≤ e2
stat ·

(
8‖B‖22η2 +

K(µ+ L)

µL
η +

K

µ+ L
η
)

− µL

µ+ L
η

K∑
k=1

∥∥∥b1kb2k> − b1k∗b2k∗>∥∥∥2

F
+

1

8
γσ∗η · d2(B,B∗)

+
(

8η2‖B‖22 −
Kη

µ+ L

) K∑
k=1

∥∥∥ [∇fk(b1kb2k>)−∇fk(b1k
∗
b2k
∗>

)
]
S1k,S2k

∥∥∥2

F
.

(35)
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Plugging (30) and (35) into (25), we obtain

d2(B+, B∗) = ξ2

(
1− 1

4
γσ∗η

)
· d2(B,B∗) + ξ2

(
2η2‖B‖22 −

1

2
η
) K∑
k=1

(∆bk)
2

+ ξ2

(
8η2 · ‖B‖22 −

Kη

µ+ L

)
·
K∑
k=1

∥∥∥ [∇fk(b1kb2k>)−∇fk(b1k
∗
b2k
∗>

)
]
S1k,S2k

∥∥∥2

F

+ ξ2

(
K(µ+ L)

µL
η +

Kη

µ+ L
+ 8η2 · ‖B‖22

)
· e2

stat.

(36)
When the step size satisfies

η ≤ 1

4‖B‖22
·min

{ K

2(µ+ L)
, 1
}
, (37)

the second and third terms in (36) are non-positive. Therefore, we can upper bound them
with 0 to obtain

d2
(
B(t+1), B∗

)
≤ β · d2

(
B(t), B∗

)
+ 3ηKξ2 · µ+ L

µL
· e2

stat, (38)

with the contraction value

β = ξ2
(

1− 1

4
γσ∗η

)
< 1. (39)

From (39) we see that β is a multiplication of two terms. The first term ξ2 = 1 + 2√
c−1

is slightly larger than 1, while the second term is smaller than 1. In order to guarantee
that β < 1, we should choose a conservative hard thresholding parameter (recall that
s = c · s∗), so that ξ2 is close to 1. In practice, we observe that β < 1 for a large range
of hard thresholding parameters. Notice that without the hard thresholding step, we are
guaranteed to have β < 1.

In order to iteratively apply the error bound (38), we need to show that the condition
(24) is satisfied in each iteration. A sufficient condition is to require

e2
stat ≤

1− β
3ηKξ2

· µL

µ+ L
· 1

4
γσ∗ ·min

{
1,

1

4(µ+ L)

}
. (40)

It is straightforward to verify that (38) and (40) imply that the next iterate also satisfies
the condition (38). To justify the condition (40), consider the case where the condition (40)
is violated. Together with (38), this shows that d2(B,B∗) ≤ C · e2

stat, which means that the
current iterate is already optimal. Therefore, we can assume (40) and then (38) is satisfied
for all the iterations.

With the error bound (38) we can complete the proof. For a large enough sample
size, the initial point B(0) satisfies (24). The proof above shows that (38) is satisfied with
t = 0. The condition (40) ensures that the next iterate B(1) also satisfies (24). Iterating
the argument, we obtain

d2
(
B(T ), B∗

)
≤ βT · d2

(
B(0), B∗

)
+

3ηKξ2

1− β
· µ+ L

µL
· e2

stat,
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which shows that the iterates of Algorithm 2 converge linearly to the true value up to a
statistical error.

Finally, it remains to provide an upper bound on the step size (37) that is independent
of the norm of the value in each iterate ‖B‖2, as given in (20). This can be established as
in the proof of Lemma 4 in Yu et al. (2020). The proof is now complete.
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