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Abstract

Most multi-label classification methods are evaluated on real datasets, which is a good
practice for comparing the performance among methods on the average scenario. Due to
the large amount of factors to consider, this empirical approach does not explain, nor does
show the factors impacting the performance. A reasonable way to understand some of
the performance’s factors of multi-label methods independently of the context is to find a
mathematical proof about them. In this paper, mathematical proofs are given for the multi-
label method ranking by pairwise comparison and its extension for classification named by
calibrated label ranking, showing their performance on a worst case scenario for five multi-
label metrics. The pairwise approach adopted by ranking by pairwise comparison enables
the algorithm to achieve the optimal performance on Spearman rank correlation. However,
the findings presented in this paper clearly show that the same pairwise approach adopted
by the algorithm is also a crucial factor contributing to a very poor performance on other
multi-label metrics.

Keywords: Multi-label learning, Loss minimization, Pairwise preference

1. Introduction

In multi-label classification (MLC) an instance can be associated with multiple classes
or categories simultaneously. This dramatically affects complexity because the number
of possible classifications increases exponentially with respect to the number of classes. A
popular approach for developing multi-label methods is to transform the MLC problem into
several binary classification problems, which can then be handled by single-label classifiers.
Methods of this kind are called transformation-based multi-label methods, where the most
common one is the Binary Relevance (BR) method (Tsoumakas and Katakis, 2007). More
complex transformation-based methods are usually grounded on the main idea of exploiting
dependencies among labels (Read et al., 2009; Montañés et al., 2014; Younes et al., 2011).
The calibrated label ranking by pairwise classification (CLR) (Fürnkranz et al., 2008) is a
method that exploits pairwise dependencies by using a composition of single-label classifiers,
one for each distinct pair of labels.
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Empirical evidence clearly shows CLR being good for optimizing ranking metrics in
general, such as One-error and Coverage (Fürnkranz et al., 2008; Trohidis et al., 2011;
Zhang and Schneider, 2012a; Tahir et al., 2016; Huang et al., 2019). On the other hand,
it has also been shown empirically that CLR is not good for optimizing example-based
metrics on average (Trohidis et al., 2011; Zhang and Schneider, 2012a,b; Wang et al., 2014;
Tahir et al., 2016; Huang et al., 2019; Sun et al., 2019). This paper shows similar results,
but extended to the worst-case scenario with the help of mathematical proofs. Although
CLR has been used as a baseline for many multi-label methods (Fürnkranz et al., 2008;
Trohidis et al., 2011; Zhang and Schneider, 2012a,b; Wang et al., 2014; He et al., 2019),
yet they fail to provide a formal explanation to what makes CLR achieves a good/poor
performance is still missing. Knowing such an explanation helps researchers choose and
better understand multi-label methods. Therefore, the main objective in this paper is to
explain what drives the CLR performance. To achieve this objective, the probabilistic
framework of Dembczyński et al. (2012) is adopted and mathematical proofs are built upon
it for the worst case scenario. With the results published in this paper, it is possible to
conclude that the pairwise comparison approach adopted by CLR is the main factor behind
a poor performance on some specific datasets. The main characteristic of these specific
datasets is the presence of several pairs of labels that are mutually exclusive (i.e when one
occurs, the other label does not). In datasets of this kind, the performance of the CLR is
very sensible to the distribution of labels, i.e., a slight modification on the label distribution
may lead to a great change on the CLR performance.

Mathematical results for different MLC methods are provided by Dembczyński et al.
(2012) and Waegeman et al. (2014). They provide theoretical proofs with respect to the
worst-case scenario of some MLC methods such as the Hamming loss optimizer, sub-
set 0/1 loss optimizer and F-measure optimizer. They also analyze the performance of
the optimal methods over other metrics such as Hamming loss, subset 0/1 loss, Jaccard
distance, and F-measure. Motivated by those papers, this paper provides results for the
same metrics but focusing on CLR. To the best of our knowledge, this is the first work to
address this problem.

The paper is organized as follows. Section 2 provides a formal definition of multi-label
classification where the probabilistic framework is presented. Section 3 presents the main
results of this paper, where the worst-case scenario of CLR with respect to four metrics is
analyzed. Section 4 shows final observations about this research.

2. Multi-label Learning

Let X denote a feature space and L = {l1, l2, l3, ...ln} be a set of labels with n = |L|.
An instance is defined as a pair of two vectors (x,y) where x ∈ X and y is a labelling
(combination of labels) represented by a binary vector y = (y1, y2, ..., yn) such that yi = 1
only if the respective instance is associated to label li. A method h used to solve a multi-
label task may be denoted as a multi-label classifier or a multi-label ranker. In the former,
h is a function that maps the feature space X into the set of all possible labellings of n
labels. Let this set be denoted by Y, therefore h : X → Y and for a given instance x ∈ X
it returns a vector h(x) = (h1(x), h2(x), ..., hn(x)). In the latter, h is a function that maps
the feature space X into the set of all possible rankings, i.e set of all possible permutations
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of {1, 2, ..., n}. Let this set be denoted by Sn, therefore h : X → Sn and, in this case, hi(x)
denotes the rank of label i for a given instance x ∈ X .

The framework proposed by Dembczyński et al. (2012) assumes that labellings are dis-
tributed according to a conditional probability distribution P(Y|x) where x ∈ X and Y is a
random vector defined on Y. This means that for a specific feature vector x, each labelling
y ∈ Y occurs with a probability of P(Y = y|x) 1.

The risk of a multi-label method h and dataset features x ∈ X is defined as the condi-
tional expected loss

RL(h,x) = EY|XL(Y,h(x))

=
∑
y∈Y

L(y,h(x)) ·P(Y = y|X = x), (1)

where P(Y = y|X = x) represents the conditional probability of Y given feature vector x
and L(·) is a loss function for multi-label predictions. The regret of a multi-label method
h with respect to a loss function L is defined as

rL(h,x) = RL(h,x)−RL(h∗,x), (2)

where h∗ is a Bayes-optimal method that yields the minimum loss for L, defined as

h∗(x) = argmin
y

EY|X[L(Y,y)]. (3)

Since the feature vector x is always given and fixed at the start of all proofs or analysis
in this paper, the given feature vector x will be omitted. In the same way, x will be omitted
for any multi-label method h, meaning that, hi = hi(x) for any i.

For the rest of this paper, let the notation P(i), for an arbitrary distribution P of Y, be
defined as the marginal distribution of label i:

P(i) = P(Yi = 1) =
∑

y∈Y:yi=1

P(y).

The task of risk minimization is finding the optimal model h∗ defined in Equation (3).
Clearly this can be achieved by exhaustive search, which is testing all 2n possible labellings
for classification, or testing all n! rankings for label ranking, but a more efficient way is de-
sirable. In general, this is NP-hard as it contains a particular instance of risk minimization
of the Jaccard distance, proved to be NP-complete (Chierichetti et al., 2010). Therefore,
efficient algorithms are only designed for specific metrics where specific properties can be
exploited, which is the case for Hamming loss, F-measure and rank loss (Dembczyński et al.,
2012).

2.1 Multi-label metrics

Multi-label metrics are used to measure the quality of predictions or the cost for inaccuracy
of predictions. When a metric quantifies the error, it is called loss function, otherwise it is

1. P(Y = y|x) stands for the probability that an instance has labelling y given its feature vector x.
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called an utility function. In multi-label learning, there are two main types of metrics: the
instance-wise decomposable and label-wise decomposable. The instance-wise decomposable
metrics are those which can be expressed as an average of losses computed individually for
each instance. This one can be expressed as in Equation (1), where the loss function is a
function L(·) of the target labelling y (the true labelling), and the predicted output of a
multi-label method h, associating a penalty to errors in multi-label prediction. All met-
rics analyzed in this paper are assumed to be instance-wise decomposable. The label-wise
decomposable metrics are those that can be expressed as an average of losses computed
individually for each label. They are generally an average over a metric for binary classifi-
cation applied individually to each label. Note that a metric can be both instance-wise and
label-wise decomposable (e.g., Hamming loss).

As discussed in the previous section, the predicted output of a multi-label method can
be a labelling or a ranking. For the sake of easy reading, ŷ = (ŷ1, ŷ2, ..., ŷn) will be used to
denote a predicted labelling and ẑ = (ẑ1, ẑ2, ..., ẑn) to denote a predicted ranking. Hamming
loss is a metric for classification, defined as the fraction of labels incorrectly predicted:

LH(y, ŷ) =
1

n

n∑
i=1

[[yi 6= ŷi]], (4)

where [[.]] is the Iverson bracket.

Other common loss function is the subset 0/1 loss, which detects a strict coincidence of
the actual and estimated labels as

Ls(y, ŷ) = [[y 6= ŷ]]. (5)

More elaborate loss functions are the loss version of the F-measure and the Jaccard
distance given respectively by

LF (y, ŷ) = 1−
2
∑n

i=1 yiŷi∑n
i=1(yi + ŷi)

and

LJ(y, ŷ) = 1−
∑n

i=1 yiŷi∑n
i=1(yi + ŷi)−

∑n
i=1 yiŷi

.

A simple metric that takes into account a rank is the rank loss, which is defined as

Lr(y, ẑ) =
∑

(i,j):yi>yj

[[ẑi < ẑj ]].

The normalized rank loss is defined as

Lr̂(y, ẑ) =
Lr(y, ẑ)

sy(n− sy)
,

where sy =
∑n

i=1 yi.
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These metrics are the most common in the multi-label scenario, and they will be used
to analyze the performance of CLR. Not so common, but important for analyzing CLR, are
two metrics from the preference learning field: the squared rank distance

Lsrd(z, ẑ) =

n∑
i

(zi − ẑi)2

and the Spearman rank correlation2 (Hüllermeier and Fürnkranz, 2004). The Spearman
rank correlation is defined as the Pearson correlation between the ranked values of two
variables. In the context of preference learning, the Spearman rank correlation can be
obtained by the following formula

1− 6Lsrd(z, ẑ)

n(n2 − 1)
.

The Spearman rank correlation can be interpreted as a linear normalization of the squared
rank distance to the interval [−1, 1].

A review of optimal risk minimizers for the metrics defined in this section are presented
in the next section.

2.2 Optimal Risk and Regret

This subsection presents a brief review and definitions on optimal solutions for the risk
minimization and the regret of some metrics defined in Section 2.1. These definitions are
useful for the proofs in Section 3.

In Dembczyński et al. (2010) the authors proved that the optimal labelling y∗ for the
risk of a Hamming loss can be obtained by just looking at the marginal distribution of
labels, and it is given by

y∗i =

{
1, if P(i) > 1

2 ,

0, if P(i) ≤ 1
2 .

(6)

The authors Dembczyński et al. (2012) have shown the optimal labelling y∗ for the risk
of subset 0/1 loss is given by the mode of the distribution:

y∗ = argmax
y

P(y).

Interestingly, they showed that the optimal expected Hamming loss may give the worst case
regret of 1/2 in subset 0/1 loss. Furthermore, the optimal expected subset 0/1 loss solution
may give a regret as closely as possible to 1, with respect to Hamming loss.

Dembczyński et al. (2012) have also shown that to achieve optimal ranking z∗ in rank
loss, it is sufficient to order the labels with respect to their marginal distribution:

z∗i < z∗j ⇐⇒ P(i) > P(j).

2. Spearman rank correlation in the preference learning and multi-label ranking field is a utility function.
The higher, the better.
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Interestingly, the regret of rank loss can be obtained by just summing the difference P(i) −P(j)

of all pairs (i, j) with misorder (Dembczyński et al., 2012):

rr(z) =
∑

(i,j):z∗i <z
∗
j

[[zi > zj ]]
(
P(i) −P(j)

)
. (7)

Regarding the normalized rank loss, let smax be defined as smax = maxy:P(y)>0 sy(n−sy),
it is easy to see that

Rr̂(z) ≥ Rr(z)

smax
(8)

The authors Hüllermeier and Fürnkranz (2004) proved that the ranking constructed by
CLR is optimal for squared rank distance and, consequently, for Spearman rank correlation,
two metrics commonly used for preference learning. As it will be seen in the next section,
part of the pairwise approach adopted by CLR is essentially learning the preference of
one label over another, which may be one of the reasons why this approach is optimal for
Spearman rank correlation.

These formulas usually provide a much easier way of analyzing the risk and regret than
using the general formula at Equation (1), since the general formula is an equation of 2n

parameters of the label distribution. For instance, the regret of rank loss can be computed
by only using the marginal distributions. So, these formulas are widely used in the theorems
presented in Section 3.

2.3 Ranking by pairwise comparison

Ranking by pairwise comparison (RPC) is a multi-label method composed of n(n−1)
2 binary

classifiers, with the purpose of building a ranking for a given instance. The ranking is built
by first giving a score si for each label i. The score is computed by a pairwise preference
scheme where there exists a binary classifier for each distinct pair of labels (say i and j)
whose task is to distinguish the occurrence of label i and label j when assuming that only
one of both occurs. Therefore, each classifier outputs its preference towards one of the two
labels. A pseudo code for training RPC is presented in Algorithm 1 and the computation
of the score of a single label is presented in Algorithm 2.

Given this definition, let RPC be defined as a ranking method that prefers label i to
label j if si > sj , where si is computed by

si =
∑
k 6=i

[[P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) > 0.5]],

where (Yi = 1 ⊕ Yk = 1) means Yi = 1 or Yk = 1 exclusively and [[p > 0.5]] evaluates to 1
if p > 1

2 , and 0 otherwise. The probability is conditioned on Yi = 1 ⊕ Yk = 1, because in
Algorithm 1, the binary classifier cij is trained on D′ ∪D′′ (Line 7), which is equivalent to
{(x,y) ∈ D : yi = 1⊕ yj = 1}, but replacing all labellings y with a 1 when yi = 1, and with
a 0 when yj = 1. Therefore, the value [[P(Yi = 1, Yk = 0|Yi = 1⊕Yk = 1) > 0.5]] corresponds
to the vote given by the binary classifier responsible for distinguishing the presence of label
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Algorithm 1: Algorithm for training RPC.

Data: Training data set of m samples D = {(x1,y1), · · · , (xm,ym)}
Result: Trained binary classifiers cij for 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j.

1 for each pair of labels i, j do
2 D′ := {(x,y) ∈ D : yi = 1 and yj = 0}
3 D′ := {(x, 1) : (x,y) ∈ D′} // replace all labellings with a 1,

representing the positive class.

4

5 D′′ := {(x,y) ∈ D : yi = 0 and yj = 1}
6 D′′ := {(x, 0) : (x,y) ∈ D′′} // replace all labellings with a 0,

representing the negative class

7 cij := train binary classifier(D′ ∪D′′) // Binary classification problem.

8 end

Algorithm 2: Scoring a single label i in RPC.

Input: Trained binary classifiers cij for all j 6= i.
Result: Score s ∈ N

1 s := 0
2 for each label j different of i do
3 l = predict label(cij , x) // Function predict label returns 1 if i

is predicted positive, otherwise 0.

4 s := s+ l // +1 if i is predicted positive by cij.

5 end

pair (i, k). It is worth mentioning that P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) can be rewritten
as:

P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) =
P(Yi = 1, Yk = 0)

P(Yi = 1, Yk = 0) + P(Yi = 0, Yk = 1)
,

which is sometimes a more convenient form for calculating this conditional probability.

There may exist cases in which Yi = 1 ⊕ Yk = 1 never occurs. In practice, this would
mean that the binary classifier responsible for distinguishing label i from k would be trained
on an empty dataset. In this case, usually a value from {0, 1

2 , 1} (1
2 is the most frequent

choice) is arbitrarily adopted for [[P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) > 0.5]]. Whatever the
choice, as long as,

P(Yi = 1, Yk = 0|Yi = 1⊕ Yk = 1) + P(Yi = 0, Yk = 1|Yi = 1⊕ Yk = 1) = 1,

is satisfied, which is already true for P(Yi = 1 ⊕ Yk = 1) 6= 0, the proofs in this work are
valid.

Calibrated label ranking (CLR) is an adaptation of RPC for multi-label classification.
It adds an artificial label for constructing a bi-partition (a.k.a classification). The score of
the artificial label is given by n binary classifiers that are identical to the n binary classifiers
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of binary relevance method, as pointed out by Fürnkranz et al. (2008). The artificial label
represents the “negative label” inside the one-against-all strategy of binary relevance. A
label is said to be positive or relevant if the score si, as defined above, is greater than the
score of the artificial label. Note that now the score si should also include the artificial
label. Therefore, CLR is a classifier that predicts label i as positive only if∑
k 6=i

[[P(Yi = 1, Yk = 0|Yi = 1⊕Yk = 1) > 0.5]]+[[P(Yi = 1) > 0.5]] >

n∑
k=1

[[P(Yk = 0) > 0.5]].

The summation on the right-hand side of the inequality counts the number of votes in
favor of the calibrated/artificial label and [[P(Yi = 1) > 0.5]] corresponds to the vote given
by a one-against-all classifier (the classifier present in binary relevance method). Observe
that, although CLR is trained on Yi = 1 ⊕ Yk = 1, the algorithm can output multiple
positive labels. It will usually output multiple positive labels if

∑n
k=1[[P(Yk = 0) > 0.5]] is

low, i.e, if the label cardinality is high.
Although the name CLR is often used in the literature to describe its ranking and/or

classification components, the name RPC is used to emphasize the ranking component while
CLR to emphasize its multi-label classification component in this paper. For the sake of
simplicity, define function f(P, i, j) as

f(P, i, j) =

{
P(Yi = 1, Yj = 0|Yi = 1⊕ Yj = 1), if i 6= j

0, if i = j,

so that, the CLR prediction of label i can be redefined as:

n∑
j=1

[[f(P, i, j) > 0.5]] + [[P(Yi = 1) > 0.5]] >
n∑
j=1

[[P(Yj = 0) > 0.5]],

and the RPC preference of i over j can be redefined as:

n∑
k=1

[[f(P, i, k) > 0.5]] >
n∑
k=1

[[f(P, j, k) > 0.5]].

The versions where both CLR and RPC use the probability values as weights for voting are
respectively expressed as

n∑
j=1

f(P, i, j) + P(Yi = 1) >

n∑
j=1

P(Yj = 0), (9)

and

n∑
k=1

f(P, i, k) >
n∑
k=1

f(P, j, k). (10)

Note that the scores given by RPC and CLR to label i are respectively defined as

si =
n∑
k=1

f(P, i, k), (11)
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and

si =
n∑
j=1

f(P, i, j) + P(Yi = 1). (12)

This paper focuses on the weighted versions of RPC and CLR. We argue that the analysis
presented in this paper for the weighted version is still valid for the original version, since the
worst-case scenario distribution, named P̂ , has a special property where f(P̂, i, j) is close
to 0 or to 1, which means f(P̂, i, j) ≈ [[f(P̂, i, j) > 0.5]]. Throughout the paper function
hclr is used to denote CLR and hrpc to denote RPC.

3. Theoretical insights

The objective of this section is to present interesting theoretical properties of CLR that show
scenarios where CLR should not be used. The results show an issue in the way CLR makes
its pairwise comparison, resulting in a poor performance for very particular probability
label distributions types. As other authors already suggested, the issue lies mainly on how
the probability P(Yi = 1, Yj = 0|Yi = 1 ⊕ Yj = 1) is used inside the CLR prediction. The
results suggest CLR should be taken with caution when P(Yi = 1⊕ Yj = 1) is close to zero
for some labels i and j. A special distribution where this occurs is defined as follows.

Denote 0n as a vector of n zeroes, 1n as a vector of n ones and y(i) as a n-dimensional
vector of zeros apart from a one at the i-th position. Let P̂m denote a special distribution
of Y such that

P̂m(y) =


m+1

2(n+1) , if y = 1n

ε, if y = y(i) for any 1 ≤ i ≤ m
1− m+1

2(n+1) − ε ·m, if y = 0n

0, otherwise

where m is a positive integer such that 0 < m < n and ε is an arbitrary positive real number
that is assumed to be “really close” to 0. An example of P̂2 for n = 4:

P̂2(0, 0, 0, 0) = 70%− 2ε

P̂2(1, 1, 1, 1) = 30%

P̂2(1, 0, 0, 0) = P̂2(0, 1, 0, 0) = ε,

where null probabilities are omitted. The most important point to note about P̂m is the
high probability of occurrence of labelling 0n, specially when m is low. Also, note that
P̂m has exactly m+ 2 non-null values. The purpose of ε is to avoid undefined values when
calculating f (e.g 0

0) and to conveniently manipulate the output of function f . Proposition 1
shows an important property of this distribution.

Proposition 1 When considering distribution P̂m, CLR predicts ones for the first m labels
and zeroes for the other labels, i.e,

∑m
i=1 h

clr
i =

∑n
i=1 h

clr
i = m.

9
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Proof See Appendix A.

This proposition shows how much CLR is sensible to conditional probabilities. Just an
arbitrarily small value ε in P̂m makes CLR predicts m labels incorrectly. Next, it will be
seen how much this impacts CLR performance where several theorems with respect to the
regret of CLR and RPC are presented. Following each theorem, relevant observations are
made.

Theorem 2 The following upper bound holds for the regret with respect to Hamming loss:

sup
P∈Pn

(rH(hclr)) =

{
n

4(n+1) , if n is even
n−1
4n , if n is odd,

where Pn denotes the set of all distributions over n labels such that P(i) ≤ 1
2 for all i.

Proof See Appendix B.

An interesting point to observe from Theorem 2 is that there exists at least one dis-
tribution in the family Pn such that rH(hclr) ≤ 1

4 . Empirically, CLR and BR (a.k.a one-
against-all) has been shown to have a much closer performance on average with respect to
Hamming loss, according to experiments in the literature (Fürnkranz et al., 2008; Trohidis
et al., 2011; Zhang and Schneider, 2012a,b; Wang et al., 2014).

A more interesting result is presented with respect to subset 0/1 loss in Theorem 3.

Theorem 3 The following lower bound holds for the regret with respect to subset 0/1 loss:

sup
P
rs(h

clr) ≥ n

n+ 1
.

Proof Consider the regret rs(h
clr) on distribution P̂m for m = 1. If ε is sufficiently

small, then the mode of P̂1 is 0n, and P̂1(0n) = 1 − 1
n+1 − ε. From Proposition 1, it

has that P̂1(hclr) = P̂1(y(1)) = ε. As the mode of distribution is an optimal labelling for
subset 0/1 loss, the regret on distribution P̂m can be written as

rs(h
clr) = P̂1(0n)− P̂1(y(1))

= 1− 1

n+ 1
− 2ε

The value of ε can be arbitrarily small, so the supremum of rs(h
clr) is at least 1− 1

n+1 = n
n+1 .

Theorem 3 shows that when n tends to infinity, the supremum of regret rs(h
clr) tends to 1,

which is the highest regret possible for subset 0/1 loss. A high regret is already expected
as seen in empirical evidence (Trohidis et al., 2011; Zhang and Schneider, 2012a,b; Wang
et al., 2014; Tahir et al., 2016; Huang et al., 2019; Sun et al., 2019), but surely not of such
magnitude. It is important to note that even for a small number of labels, the worst case
regret is high, e.g. for n = 4 the highest regret is at least 0.8. Therefore, CLR is definitely
not a good method for optimizing subset 0/1 loss if one is concerned about worst case
scenarios.
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Theorem 4 The following lower bound holds for the regret with respect to Jaccard distance:

sup
P
rJ(hclr) ≥ 1− 1

n
.

Proof See Appendix C.

Note that if n→∞, then rJ(hclr) tends to 1. Again, this is the highest regret possible for
Jaccard distance and the regret is also high even for small n, e.g. for n = 4 the highest
regret is at least 0.75. A high regret was already expected, but not this high. This is
another metric researchers should be aware when considering the worst case.

Theorem 5 The following lower bound holds for the regret with respect to F-measure:

sup
P
rF (hclr) ≥ 1− n+ 3

(n+ 1)2
.

Proof See Appendix D.

Note that if n → ∞, then rF (hclr) tends to 1, which is the highest possible regret for F-
measure. For small values of n, the highest regret is still high, e.g. for n = 4 the highest
regret is at least 0.72.

Another interesting result is shown for rank loss in Theorem 6, where RPC does not
achieve optimal regret.

Theorem 6 For any n divisible by 4, the following lower bound holds for the regret with
respect to normalized rank loss:

sup
P
rr̂(h

rpc) ≥ 1

6
.

Proof See Appendix E.

Although Theorem 6 is not conclusive for stating that RPC performs poorly at worst
case scenarios, it suggests that RPC does not optimize rank loss for n ≥ 4, which is not the
expected behaviour. The non-optimal performance for RPC does not occur for the same
reason as the CLR: the function f can be 1 even when the label cardinality is very low.

As it can be seen in the proofs, the poor performance of CLR in the worst case scenario
comes from giving too much importance to conditional probabilities: an arbitrarily small
value ε is enough to change the conditional probability at f from zero to one and conse-
quently changing rankings/classifications. The expected value of multi-label metrics does
not give such importance to conditional probabilities, as it can be seen in their formulas at
equations (6), (7) and others presented by Dembczyński et al. (2012).

It is natural to question how rare are the special distributions used in this work and if
there are other distributions that yield similar results. Moreover, it is already expected that
CLR achieves a non-optimal performance on distributions that yields more than pairwise
dependencies, since CLR is specifically designed to exploit dependencies among pairs of
labels. Despite this, it will be shown that CLR can achieve a poor performance on F-measure
and subset 0/1 loss even when considering a distribution with only pairwise dependencies.

11
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For this purpose, let us define a family of probability distributions P of n labels such that
for any P̄ ∈ P:

P̄(y) = P̄(y1, y2) · P̄(y3) · P̄(y4) · · · P̄(yn) = P̄(y1, y2) ·
n∏
i=3

P̄(yi),

where the probabilities P̄(y1, y2) and P̄(yi) are abbreviations of P̄(Y1 = y1, Y2 = y2) and
P̄(Yi = yi), respectively. Any P̄ ∈ P is constructed such that it can be written as a
function of only the joint distribution of two labels and the marginal distributions of the
other labels. It is “almost” a distribution of independent variables. Not all probability
distributions can be written in this form, because the joint distribution of three or more
labels cannot be decomposed generically to the joint probability of only one or two labels.
Readers are recommended to check the work of Teugels (1990), if interested in more details
about decomposing and understanding the joint probability of a multivariate Bernoulli
distribution. In order to show some properties of CLR, let a specific distribution P̄ ∈ P be
defined such that

P̄(y1, y2) =


3ε, if y1 = y2 = 0,

ε, if y1 = y2 = 1,
1
2 − 2ε, if y1 = 1 and y2 = 0,
1
2 − 2ε, if y1 = 0 and y2 = 1

and P̄(Yi = 1) = φn for i ≥ 3, where φn is a function of n such that:

0 ≤ φn <
ε

3n
and lim

n→∞
(1− φn)n = 1,

for all n ≥ 3. There are many functions satisfying these two conditions of φn, for instance,
φn = ε/n2. It is crucial to note that if ε ≈ 0, then φn ≈ 0 and, consequently, P̄ will have
only two labellings (y(1) and y(2)) being with significant probabilities. Indeed,

P̄(y(1)) + P̄(y(2)) = (1− 4ε) · (1− φn)(n−2),

which tends to 1 as ε goes to 0. Before stating about the regret of CLR on distribution P̄,
it is important to take a look at a property of P̄ stated in Proposition 7.

Proposition 7 For distribution P̄ of n labels, CLR will predict 0n.

Proof See Appendix F.

Theorem 8 shows the regret of CLR with respect to subset 0/1 loss in P̄.

Theorem 8 The following expression holds for the regret with respect to subset 0/1 loss

rs(h
clr) =

(
1

2
− 5ε

)
· (1− φn)n−2, for distribution P̄,

and, consequently

lim
n→∞,ε→0

rs(h
clr) =

1

2
.

12
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Proof See Appendix G.

One half is a much better regret than 1, but is surely high considering such a simple
distribution as P̄. This is further evidence that it is not enough to exploit dependencies
to improve performance, even considering only pairwise dependencies. The same argument
can be used for the regret with respect to Jaccard distance, as shown in Theorem 9.

Theorem 9 The following expression holds for the regret with respect to Jaccard distance

lim
ε→0

rJ(hclr) =
1

2
, for distribution P̄.

Proof See Appendix H.

Theorem 10 shows the regret of CLR with respect to F-measure in P̄.

Theorem 10 The following expression holds for the regret with respect to F-measure loss

lim
ε→0

rJ(hclr) =
2

3
, for distribution P̄.

Proof See Appendix I.

Similar to Theorem 8, CLR achieves a poor performance in such a simple distribution,
therefore it is not enough to exploit dependencies to improve performance, since 2

3 is too
much for a regret.

Note the independence of both Y1 and Y2 with respect to all other variables P̄. This
means that even assuming a low level of dependency among labels, CLR may present a
poor performance. In fact, there is only a single dependence, which is between Y1 and Y2.

In addition to being a high regret distribution for CLR, P̄ is the worst case distribution
for the regret of the optimal solution for Hamming loss with respect to subset 0/1 loss:

sup
P
rs(h

∗
H) = Rs(h

∗
H)−Rs(h∗S) =

1

2
, when ε→ 0

where h∗H is the optimal solution for Hamming loss on distribution P̄ and h∗s for sub-
set 0/1 loss (Dembczyński et al., 2012). Hence, P̄ simultaneously gives poor regret for
Hamming loss optimizer and hclr with respect to subset 0/1 loss.

4. Conclusion

It has been revealed a single factor highly impacting a poor performance of RPC and CLR
in a worst case scenario: The adopted pairwise approach. That is, what is supposed to
increase performance in average, is the main cause for a poor performance in a worst case
scenario. Interestingly, although there exists classifiers achieving a worst-case regret as high
as CLR, until now, as far as we know, only CLR was found to have such a high worst-case
regret for multiple metrics, and this in the same single distribution. Therefore, it is expected
that the results presented in this paper help researchers to be aware of the consequences of
using the pairwise comparison approach done by RPC and CLR multi-label problems. The
analysis carried out in this paper takes one step closer on understanding the factors causing
a good/bad performance in multi-label algorithms.

13
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It is important to know that despite all results against RPC and CLR, RPC was proved
to be a risk minimizer for a particular loss function called Spearman rank correlation
(Hüllermeier and Fürnkranz, 2004). This loss function is for ranking problems, where
the function receives the target ranking and a predicted rank as parameters, while rank loss
receives the real labelling instead and a predicted ranking. Therefore, it can be concluded
that when comparing multi-label algorithms using multiple multi-label metrics, researches
should keep in mind that CLR may occasionally in some datasets present the worst possible
regret with respect to subset 0/1 loss, F-measure and Jaccard distance, but this does not
mean a useless performance, as it been shown that in the same scenario, RPC presents the
optimal expected Spearman rank correlation. Since CLR is an adaptation of an approach
which is essentially learning the preference among labels, it is expected that its performance
is better in preference learning than in multi-label classification.

We hope that the idea used in this paper of constructing special distributions in which
the conditional probabilities used by CLR and RPC are conveniently manipulated, can
be extended for finding the supreme regret of other multi-label methods that also use
conditional probabilities as a main part of its prediction. Future researches should address
others factors that are not considered here, such as the average scenario, instead of the
worst one. Further investigations can be done in order to improve the performance of CLR
in the worst-case regret such as better choosing the calibration threshold and/or changing
the pairwise approach.
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Appendix A. Proof of Proposition 1

Proposition 1 When considering distribution P̂m, CLR predicts ones for the first m labels
and zeroes for the other labels, i.e,

∑m
i=1 h

clr
i =

∑n
i=1 h

clr
i = m.

Proof It will be shown that hclr satisfies Inequality (9) on distribution P̂m if and only if
1 ≤ i ≤ m. Firstly, it will be shown that (9) is not satisfied for i > m, that is

n∑
j=1

f(P̂m, i, j) + P̂(i)
m <

n∑
j=1

(
1− P̂(j)

m

)
, for all i > m. (13)

Knowing that

P̂(i)
m =

{
P̂m(1n) + P̂m(y(i)) = m+1

2(n+1) + ε, for i ≤ m,
P̂m(1n) = m+1

2(n+1) , for i > m,
(14)

the right-hand side of (13) is equivalent to:

n∑
j=1

(
1− P̂(j)

m

)
= n− n · m+ 1

2(n+ 1)
−mε. (15)

For the left-hand side of (13), and for 1 ≤ j ≤ m < i ≤ n, it can be observed that

f(P̂m, i, j) =
P̂m(Yi = 1, Yj = 0)

P̂m(Yi = 1, Yj = 0) + P̂m(Yi = 0, Yj = 1)

=
0

0 + P̂m(y(j))
=

0

ε
= 0, for j ≤ m < i.

(16)

Using (16) and (15), (13) is equivalent to

n∑
j=m+1

f(P̂m, i, j) + P̂(i)
m < n− n · m+ 1

2(n+ 1)
−mε, for all i > m.

The last inequality is always satisfied, even if the left-hand side assumes an upper bound of∑n
j=m+1 f(P̂m, i, j) ≤

∑n
j=m+1:j 6=i 1 = n−m− 1:

n−m− 1 +
m+ 1

2(n+ 1)
< n− n m+ 1

2(n+ 1)
−mε ⇐⇒ −m− 1 < −(n+ 1)

m+ 1

2(n+ 1)
−mε

⇐⇒ 2m+ 2 > m+ 1 + 2mε

⇐⇒ m+ 1 > 2mε.

The last inequality is satisfied for a sufficiently small ε. This concludes the proof for i > m.
Now consider i ≤ m. Let us show that

n∑
j=1

f(P̂m, i, j) + P̂(i)
m >

n∑
j=1

(
1− P̂(i)

m

)
. (17)
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Firstly, note that, for if 1 ≤ i ≤ m < j ≤ n −→ f(P̂m, i, j) = P̂m(y(i))

P̂m(y(i))+P̂m(y(j))
= ε

ε+0 = 1.

Moreover, note that f(P̂m, i, j) = 1
2 for any 1 ≤ i ≤ m, 1 ≤ j ≤ m and i 6= j. Therefore,

Inequality (17) is equivalent to

m∑
j=1:j 6=i

1

2
+

n∑
j=m+1

1 + P̂(i)
m >

n∑
j=1

(
1− P̂(i)

m

)
,

and then

m− 1

2
+ (n−m) + P̂(i)

m >
n∑
j=1

(
1− P̂(i)

m

)
.

From (14), it has that P̂
(i)
m = m+1

2(n+1) + ε for all i ≤ m, so the above inequality is equivalent
to

m− 1

2
+ n−m+

m+ 1

2(n+ 1)
+ ε >

n∑
j=1

(
1− m+ 1

2(n+ 1)

)
,

and then simplifying

2n−m− 1 +
m+ 1

n+ 1
+ ε > 2n− n · m+ 1

n+ 1
,

and again

−m− 1 + (n+ 1)
m+ 1

(n+ 1)
+ ε > 0,

and finally

ε > 0,

which is, by definition, always true.

Appendix B. Proof of Theorem 2

Theorem 2 The following upper bound holds for the regret with respect to Hamming loss:

sup
P∈Pn

(rH(hclr)) =

{
n

4(n+1) , if n is even
n−1
4n , if n is odd,

where Pn denotes the set of all distributions over n labels such that P(i) ≤ 1
2 for all i.

Proof For an arbitrary distribution P of Y, denote y∗ as the optimal expected Hamming
loss for P. The risk of an arbitrary labelling ŷ with respect to Hamming loss can be written
as

RH(ŷ) =
1

n

n∑
i=1

(1−P(Yi = ŷi)), (18)
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which can be derived from the definition:

RH(ŷ) =
∑
y∈Y

LH(y, ŷ) ·P(Y = y)

=
∑
y∈Y

(
1

n

n∑
i=1

[[yi 6= ŷi]]

)
·P(Y = y)

=
1

n

n∑
i=1

∑
y∈Y

[[yi 6= ŷi]] ·P(Y = y)

=
1

n

n∑
i=1

∑
y∈Y:yi 6=ŷi

P(Y = y)

=
1

n

n∑
i=1

P(Yi 6= ŷi) =
1

n

n∑
i=1

(1−P(Yi = ŷi)).

The regret with respect to Hamming loss can be expressed as

rH(ŷ) =
1

n

n∑
i=1

(ŷi − y∗i )(1− 2P(i)), (19)

by using the definition of regret and (18):

rH(ŷ) = RH(ŷ)−RH(y∗)

=
1

n

n∑
i=1

(1−P(Yi = ŷi))−
1

n

n∑
i=1

(1−P(Yi = y∗i ))

=
1

n

n∑
i=1

(P(Yi = y∗i )−P(Yi = ŷi)).

Note that

P(Yi = y∗i )−P(Yi = ŷi) =


0, if y∗i = ŷi,

P(Yi = 0)−P(Yi = 1), if y∗i = 1 and ŷi = 0,

P(Yi = 1)−P(Yi = 0), if y∗i = 0 and ŷi = 1.

Therefore

rH(ŷ) =
1

n

n∑
i=1

(ŷi − y∗i )(P(Yi = 0)−P(Yi = 1))

=
1

n

n∑
i=1

(ŷi − y∗i )(1− 2P(i)).
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Said that, define A = {i : y∗i = 0 ∧ hclr
i = 1}, i.e the set of all false positive labels, and

a = |A|. From Equation (6), it is easy to see that y∗ = 0n for all distributions in Pn, so

rH(hclr) =
1

n

n∑
i=1

hclr
i (1− 2P(i))

=
1

n

(
a− 2

∑
i∈A

P(i)

) (20)

In the next steps, we will find a lower bound for
∑

i∈A P(i), consequently giving an upper
bound for rH(hclr). Summing the scores

∑
i∈A si, defined in (12), results in:∑

i∈A
si =

∑
i∈A

n∑
j=1

f(P, i, j) +
∑
i∈A

P(i)

=
∑
i∈A

∑
j∈A

f(P, i, j) +
∑
i∈A

∑
j /∈A

f(P, i, j) +
∑
i∈A

P(i)

Knowing that f(P, i, j) + f(P, j, i) = 1 for any i 6= j, we have that
∑

i∈A
∑

j∈A f(P, i, j) =
a(a−1)

2 , therefore∑
i∈A

si =
a(a− 1)

2
+
∑
i∈A

∑
j /∈A

f(P, i, j) +
∑
i∈A

P(i). (21)

Using the upper bound f(P, i, j) ≤ 1 −P(Yi = 0, Yj = 1) for any i and j, it can be shown
that ∑

i∈A

∑
j /∈A

f(P, i, j) ≤
∑
i∈A

∑
j /∈A

(1−P(Yi = 0, Yj = 1))

=
∑
i∈A

∑
j /∈A

(1 + P(Yi = 1, Yj = 1)−P(j))

≤
∑
i∈A

∑
j /∈A

(1 + P(i) −P(j))

= a(n− a) +
∑
i∈A

∑
j /∈A

(P(i) −P(j))

= a(n− a) + (n− a)
∑
i∈A

P(i) − a
∑
j /∈A

P(j).

(22)

Using the upper bound at (22) on Equation (21):∑
i∈A

si ≤
a(a− 1)

2
+ a(n− a) + (n− a)

∑
i∈A

P(i) − a
∑
j /∈A

P(j) +
∑
i∈A

P(i)

=
a(a− 1)

2
+ a(n− a) + (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j)

= −a(a+ 1)

2
+ an+ (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j).

(23)
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By definition of CLR, it is true that
∑

i∈A si ≥ a
(
n−

∑n
j=1 P(j)

)
, which is the sum of all

conditions associated to false positive labels. Applying the upper bound in (23) on it:

−a(a+ 1)

2
+ an+ (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j) ≥ a

n− n∑
j=1

P(j)

.
Note that an is present on both sides, so it can be simplified to

−a(a+ 1)

2
+ (n− a+ 1)

∑
i∈A

P(i) − a
∑
j /∈A

P(j) ≥ −a
n∑
j=1

P(j).

Also note that
∑n

j=1 P(j) =
∑n

j∈A P(j) +
∑n

j /∈A P(j), so the inequality is again simplified to

−a(a+ 1)

2
+ (n− a+ 1)

∑
i∈A

P(i) ≥ −a
n∑
j∈A

P(j),

which is equivalent to

(n+ 1)
∑
i∈A

P(i) ≥ a(a+ 1)

2
,

and finally∑
i∈A

P(i) ≥ a(a+ 1)

2(n+ 1)
.

Using this last lower bound for
∑

i∈A P(i) at Inequality (20), it can be derived an upper
bound for rH(hclr):

rH(hclr) ≤ 1

n

(
a− 2

∑
i∈A

P(i)

)

≤ 1

n

(
a− 2

a(a+ 1)

2(n+ 1)

)
=
a

n

(
1− a+ 1

n+ 1

)
=
a

n

(
n− 1 + a+ 1

n+ 1

)
=
a(n− a)

n(n+ 1)
,

which is a quadratic polynomial with respect to a that clearly has a maximum when a = n
2 ,

if n is even. Therefore

rH(hclr) ≤ n

4(n+ 1)
.
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If n is odd, the maximum is given when a = n−1
2 or a = n+1

2 .
To show that this bound is tight, it just needs to be shown the existence of a distribution

that yields a regret arbitrarily as close to the value above. Distribution P̂m for m = n
2

satisfies this condition. Given that P̂
(i)
n/2 = n+2

4(n+1) + ε < 1
2 for any i, the optimal labelling

for Hamming loss is 0n. Therefore, the value of rH(hclr) on distribution P̂n/2 is given by

rH(hclr) =
1

n

∑
i∈A

(
1− 2P̂

(i)
n/2

)
=

1

n

∑
i∈A

(
1− n+ 2

2(n+ 1)
− ε
)
,

and then, using Proposition 1,

rH(hclr) =
n

2n

(
1− n+ 2

2(n+ 1)
− ε
)

=
1

2

(
2n+ 2− n− 2

2(n+ 1)
− ε
)

=
n

4(n+ 1)
− ε

2
.

Appendix C. Proof of Theorem 4

Theorem 4 The following lower bound holds for the regret with respect to Jaccard distance:

sup
P
rJ(hclr) ≥ 1− 1

n
.

Proof Consider distribution P̂1 and note that there are only three labellings with a non-null
probability: 0n, 1n and y(1). From Proposition 1, it has that hclr = y(1) for distribution
P̂1. Given that the loss LJ(1n,h

clr) can be calculated as the following

LJ(1n,h
clr) = LJ(1n,y

(1)) = 1−
∑n

i=1 h
clr
i

n+
∑n

i=1 h
clr
i −

∑n
i=1 h

clr
i

= 1− 1

n
,

the risk of CLR is

RJ(hclr) = RJ(y(1)) =
∑

y∈{0n,1n,y(1)}

LJ(y,y(1))P̂1(y)

= LJ(0n,y
(1))︸ ︷︷ ︸

1

P̂1(0n)︸ ︷︷ ︸
1−1/(n+1)−ε

+LJ(1n,y
(1))︸ ︷︷ ︸

1−1/n

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LJ(y(1),y(1))︸ ︷︷ ︸
0

P̂1(y(1))

= 1− 1

n+ 1
− ε+

1

n+ 1
− 1

n(n+ 1)

= 1− ε− 1

n(n+ 1)
.
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The risk of the optimal solution y∗ is upper bounded by

RJ(y∗) ≤ RJ(0n) =
∑

y∈{0n,1n,y(1)}

LJ(y, 0n)P̂1(y)

= LJ(0n, 0n)︸ ︷︷ ︸
0

P̂1(0n) + LJ(1n, 0n)︸ ︷︷ ︸
1

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LJ(y(1), 0n)︸ ︷︷ ︸
≤1

P̂1(y(1))︸ ︷︷ ︸
ε

≤ 1

n+ 1
+ ε.

The regret is lower bounded by

rJ(hclr) ≥

RJ (hclr)︷ ︸︸ ︷
1− ε− 1

n(n+ 1)
−

RJ (0n)︷ ︸︸ ︷(
1

n+ 1
+ ε

)
= 1− 2ε− n+ 1

n(n+ 1)

= 1− 2ε− 1

n
.

The value of ε can be made arbitrarily small, so

sup rJ(hclr) ≥ 1− 1

n
.

Appendix D. Proof of Theorem 5

Theorem 5 The following lower bound holds for the regret with respect to F-measure:

sup
P
rF (hclr) ≥ 1− n+ 3

(n+ 1)2
.

Proof Consider distribution P̂1 and note that there are only three labellings with a non-null
probability: 0n, 1n and y(1). This proof is very similar to Theorem 4. From Proposition 1,
it has that hclr = y(1) for distribution P̂1. Given that the loss LF (1n,h

clr) can be calculated
as the following

LF (1n,h
clr) = LF (1n,y

(1)) = 1−
2
∑n

i=1 h
clr
i

n+
∑n

i=1 h
clr
i

= 1− 2

n+ 1
.
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the risk of CLR is

RF (hclr) = RF (y(1)) =
∑

y∈{0n,1n,y(1)}

LF (y,y(1))P̂1(y)

= LF (0n,y
(1))︸ ︷︷ ︸

1

P̂1(0n)︸ ︷︷ ︸
1−1/(n+1)−ε

+LF (1n,y
(1))︸ ︷︷ ︸

1−2/(n+1)

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LF (y(1),y(1))︸ ︷︷ ︸
0

P̂1(y(1))

= 1− 1

n+ 1
− ε+

1

n+ 1
− 2

(n+ 1)2

= 1− ε− 2

(n+ 1)2
.

The risk of the optimal solution y∗ is upper bounded by

RF (y∗) ≤ RF (0n) =
∑

y∈{0n,1n,y(1)}

LF (y, 0n)P̂1(y)

= LF (0n, 0n)︸ ︷︷ ︸
0

P̂1(0n) + LF (1n, 0n)︸ ︷︷ ︸
1

P̂1(1n)︸ ︷︷ ︸
1/(n+1)

+LF (y(1), 0n)︸ ︷︷ ︸
≤1

P̂1(y(1))︸ ︷︷ ︸
ε

≤ 1

n+ 1
+ ε.

The regret is lower bounded by

rF (hclr) ≥

RF (hclr)︷ ︸︸ ︷
1− ε− 2

(n+ 1)2
−

RF (0n)︷ ︸︸ ︷(
1

n+ 1
+ ε

)
= 1− 2ε− n+ 3

(n+ 1)2

= 1− 2ε− n+ 3

(n+ 1)2
.

The value of ε can be made arbitrarily small, so

sup rF (hclr) ≥ 1− n+ 3

(n+ 1)2
.

Appendix E. Proof of Theorem 6

Theorem 6 For any n divisible by 4, the following lower bound holds for the regret with
respect to normalized rank loss:

sup
P
rr̂(h

rpc) ≥ 1

6
.
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Proof The proof is given by showing that a specific probability label distribution P̃ gives
a regret of exactly 1

6 for any n divisible by 4. Before defining P̃, let three disjoint sets of
labels, A, B and C be defined as following (note that we are using integers to represent
labels):

A = {i ∈ Z | 1 ≤ i ≤ n

4
},

B = {i ∈ Z | n
4
< i ≤ n

2
},

C = {i ∈ Z | n
2
< i ≤ n}.

Distribution P̃ is defined as

P̃(y) =



3
4 − n · ε, if all labels in A are positive and all other labels are negative,
1
4 , if all labels in A are negative and all other labels are positive,

2ε, if exactly one label in A is positive and all other labels are negative

2ε, if exactly one label in B is positive and all other labels are negative

0, otherwise

where ε is an arbitrary positive real number that is assumed to be “really close” to 0. The
purpose of ε in P̃ is identical to the purpose of ε in distribution P̂m, which is to avoid
undefined value for f(P, i, j) when the numerator and denominator are both null and to
make f(P, i, j) be convenient values such as 1 or 1

2 .
It will be shown that RPC prefers any label in B to any label in A. Consider an arbitrary

pair of labels (i, j) where i ∈ A and j ∈ B. Let’s check that RPC prefers label j to i by
checking which score si or sj is higher:

n∑
k=1

f(P̃, j, k)−
n∑
k=1

f(P̃, i, k) > 0 ? (24)

If the difference above (sj-si) is positive, then RPC prefers label j to label i. The distribution

P̃ has so few non-null values that it is easy to check, for all i ∈ A, that:

f(P̃, i, k) =


3/4−nε+2ε
1−(n−4)ε , if k ∈ B,

3/4−nε+2ε
1−(n−2)ε , if k ∈ C,

1
2 , if k ∈ A ∧ k 6= i.

For all j ∈ B, it can be also checked that

f(P̃, j, k) =


1
2 , if k ∈ B ∧ k 6= j,

1, if k ∈ C,
2ε+1/4

1−(n−4)ε , if k ∈ A

Therefore, the score si is rewritten as:

si =
n∑
k=1

f(P̃, i, k) =
|A| − 1

2
+ |B|3/4− nε+ 2ε

1− (n− 4)ε
+ |C|3/4− nε+ 2ε

1− (n− 2)ε
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Analogously, the score sj is rewritten as:

sj =
n∑
k=1

f(P̃, j, k) = |A| 2ε+ 1/4

1− (n− 4)ε
+
|B| − 1

2
+ |C|.

Note that |A| = |B| so |B|−1
2 cancels out with |A|−1

2 on the difference sj − si. Therefore the
difference can be simplified to:

sj − si =

(
|A| 2ε+ 1/4

1− (n− 4)ε
+ |C|

)
−
(
|B|3/4− nε+ 2ε

1− (n− 4)ε
+ |C|3/4− nε+ 2ε

1− (n− 2)ε

)
Given that 3/4−nε+2ε

1−(n−2)ε ≤
3
4 and 2ε+1/4

1−(n−4)ε ≥ 2ε+ 1
4 , a lower bound for sj − si can be found:

sj − si ≥ |A|
(

2ε+
1

4

)
+ |C| −

(
3|B|

4
+

3|C|
4

)
.

It will be shown that this lower bound is positive. Given that 2|A| = |C| = 2|B|, it follows
that

sj − si ≥ |A|
(

2ε+
1

4

)
+ 2|A| − 3

4
· 3|A|

= |A| · 2ε.
The value |A| ·2ε is always positive since ε > 0 by definition. Therefore, it can be concluded
that RPC prefers any label j ∈ B to any label i ∈ A.

Instead of calculating the regret of the prediction of RPC (hrpc) on distribution P̃,
let us calculate the regret of the same prediction hrpc, but on a new distribution P̃0,
which is defined in the same way as P̃, but with ε being zero. It will be shown that
|rr̂(hrpc, P̃0)− rr̂(hrpc, P̃)| ≤ nε2n+1, where we are now using the notation where the prob-
ability distribution is an explicit parameter of the regret to avoid any confusion later.
Although this upper bound seems a bit high, it is a multiple of ε, which can be arbitrarily
made small. So when ε tends to zero, this difference also tends to zero. Note that we do not
use P̃0 from the beginning, because RPC prediction on P̃0 is undefined. Observe that these
two distributions slightly differ: |P̃0(y) − P̃(y)| ≤ nε for all y. For any arbitrary ranking
z,

Rr̂(z, P̃0)−Rr̂(z, P̃) =
∑
y

Lr̂(y, z) (P̃0(y)− P̃(y))︸ ︷︷ ︸
≤nε

≤ nε
∑
y

Lr̂(y, z) = nε2n.

The difference |rr̂(hrpc, P̃0)−rr̂(hrpc, P̃)| can not differ by twice of the above amount, since
the regret is the difference of two risks.

rr̂(h
rpc, P̃0)− rr̂(hrpc, P̃) = Rr̂(h

rpc, P̃0)−Rr̂(z∗0, P̃0)−
(
Rr̂(h

rpc, P̃)−Rr̂(z∗, P̃)
)

≤ Rr̂(hrpc, P̃0)−Rr̂(z∗0, P̃0)−
(
Rr̂(h

rpc, P̃)−Rr̂(z∗0, P̃)
)

= Rr̂(h
rpc, P̃0)−Rr̂(hrpc, P̃)︸ ︷︷ ︸

≤nε2n

+Rr̂(h
rpc, P̃)−Rr̂(z∗0, P̃0)︸ ︷︷ ︸

≤nε2n

≤ nε2n+1.
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This can be done similarly with rr̂(h
rpc, P̃)− rr̂(hrpc, P̃0), so

|rr̂(hrpc, P̃0)− rr̂(hrpc, P̃)| ≤ nε2n+1. (25)

To calculate the regret, it necessary to know what is the optimal solution for P̃0. Observe
that

sy(n− sy) =
n

4
· 3n

4
=

3n2

16
, (26)

where sy =
∑
yi, for all y such that P̃0(y) > 0. Hence, the optimal solution for normalized

rank loss in this distribution is exactly the same of rank loss, as observed in Equation (8).
To show the optimizer for rank loss prefers labels in A to labels in B, it just has to be
shown that P̃(Yi = 1)− P̃(Yj = 1) > 0, for all i ∈ A and all j ∈ B:

P̃0(Yi = 1)− P̃0(Yj = 1) =
3

4
− 1

4
=

1

2
. (27)

Hence, it can be concluded that the optimizer for rank loss prefers labels from A.

So RPC makes at least |A| · |B| = n2

16 misorder. The regret given by each of these

mistakes, as defined in Equation (7), are all equal and given by P̃0(Yi = 1)− P̃0(Yj = 1) for

i ∈ A and j ∈ B. From Equation (27), we have that P̃0(Yi = 1) − P̃0(Yj = 1) = 1
2 . From

Equation (7), the regret rR̂(hRPC) on P̃0 is given by multiplying the number of misorder

(n
2

16 ) by 1
2 and dividing by the constant normalization factor of Equation (26):

rr̂(h
rpc, P̃0) =

n2

16
· 1

2
· 16

3n2
=

1

6
.

From the equation above and from (25), the regret rr̂(h
rpc, P̃) differs from 1/6 only by a

multiple of ε. Since ε can be arbitrarily small, the supreme of rr̂(h
rpc, P̃) is at least 1

6 .

Appendix F. Proof of Proposition 7

Proposition 7 For distribution P̄ of n labels, CLR will predict 0n.

Proof It will be shown that s1 = s2 <
∑

i(1− P̄(i)) and s3 = s4 = ... = sn <
∑

i(1− P̄(i))
(see (12)). Firstly, calculate

∑
i(1− P̄(i)). Knowing that

P̄(1) = P̄(Y1 = 1, Y2 = 0)︸ ︷︷ ︸
1/2−2ε

+ P̄(Y1 = 1, Y2 = 1)︸ ︷︷ ︸
ε

=
1

2
− ε

P̄(2) = P̄(Y1 = 0, Y2 = 1)︸ ︷︷ ︸
1/2−2ε

+ P̄(Y1 = 1, Y2 = 1)︸ ︷︷ ︸
ε

=
1

2
− ε,
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it has that
n∑
i=1

(1− P̄(i)) = n− P̄(1)︸︷︷︸
1/2−ε

− P̄(2)︸︷︷︸
1/2−ε

−
n∑
i=3

P̄(i)︸︷︷︸
φn

= n− 1 + 2ε− (n− 2)φn.

(28)

Now, it will be shown that s1 ≤ n − 1 − ε <
∑

i(1 − P̄(i)). Before that, note that
P̄(Y1 = 1, Y2 = 0) = P̄(Y1 = 0, Y2 = 1), implying that f(P̄, 1, 2) = f(P̄, 2, 1) = 1/2.
Analogously, for any pair of labels i, j ≥ 3 and i 6= j, it has that f(P̄, i, j) = f(P̄, j, i) = 1/2.
Said that, an upper bound for s1 is

s1 = f(P̄, 1, 2) + P̄(1)︸︷︷︸
1/2−ε

+
n∑
j=3

f(P̄, 1, j)

=
1

2
+

1

2
− ε+

n∑
j=3

f(P̄, 1, j)︸ ︷︷ ︸
≤1

≤ 1− ε+ n− 2 = n− 1− ε,

and n− 1− ε is lesser than
∑

i(1− P̄(i)), because their difference is negative:

(n− 1− ε)−
∑
i

(1− P̄(i)) = (n− 1− ε)− (n− 1 + 2ε− (n− 2)φn) From Equation (28)

= −3ε+ (n− 2)φn < 0. By definition φn <
ε

n
.

It will be shown that s3 = s4 = ... = sn ≤
∑

i(1− P̄(i)). An upper bound for s3 is given
by

s3 = f(P̄, 3, 1) + f(P̄, 3, 2) + P̄(3)︸︷︷︸
φn

+

n∑
j=4

f(P̄, 3, j)︸ ︷︷ ︸
1/2

= f(P̄, 3, 1) + f(P̄, 3, 2) + φn +
n− 3

2

≤ 2 + φn +
n− 3

2
= φn +

n+ 1

2
.

It is easy to see that s3 ≤ φn+n+1
2 ≤ n−1+2ε−(n−2)φn, for a sufficiently large n (n ≥ 3).

Appendix G. Proof of Theorem 8

Theorem 8 The following expression holds for the regret with respect to subset 0/1 loss

rs(h
clr) =

(
1

2
− 5ε

)
· (1− φn)n−2, for distribution P̄,

and, consequently

lim
n→∞,ε→0

rs(h
clr) =

1

2
.

27



Mello and Varejão and Rodrigues

Proof Clearly, the mode of P̄ is either y(1) or y(2). In both cases, the risk is the same:

Rs(y
(1)) = 1− P̄(y(1)) = 1− P̄(1, 0) ·

(
1− P̄(3)

)n−2

= 1−
(

1

2
− 2ε

)
· (1− φn)n−2.

The risk of CLR is given by

Rs(h
clr) = Rs(0n) = 1− P̄(0, 0) ·

(
1− P̄(3)

)n−2
From Proposition 7

= 1− 3ε · (1− φn)n−2.

And finally, the regret is

rs(h
clr) = Rs(h

clr)−Rs(y(1))

=

(
1

2
− 2ε

)
· (1− φn)n−2 − 3ε · (1− φn)n−2

=

(
1

2
− 5ε

)
· (1− φn)n−2.

By definition, limn→∞(1− φn)n−2 = 1, so

lim
n→∞,ε→0

rs(h
clr) =

1

2
.

Appendix H. Proof of Theorem 9

Theorem 9 The following expression holds for the regret with respect to Jaccard distance

lim
ε→0

rJ(hclr) =
1

2
, for distribution P̄.

Proof Let A be a set of labellings of n labels defined as A = {0n,y(1),y(2),y(1,2)}, and
A′ = Y\A its complement of labellings of n labels. Let the risk be expressed as the following

RL(ŷ) =
∑
y∈Y

L(y, ŷ)P̄(y) =
∑
y∈A

L(y, ŷ)P̄(y) +
∑
y∈A′

L(y, ŷ)P̄(y).

It will be shown that
∑

y∈A′ LJ(y, ŷ)P̄(y) ≤ ε/2:∑
y∈A′

LJ(y, ŷ)P̄(y) ≤
∑
y∈A′

P̄(y) = 1−
∑
y∈A

P̄(y)

= 1−
(
P̄(0n) + P̄(y(1)) + P̄(y(2)) + P̄(y(1,2))

)
= 1−

P̄(0, 0) + P̄(1, 0) + P̄(0, 1) + P̄(1, 1)︸ ︷︷ ︸
1

 · P̄(Y3 = 0) · · · P̄(Yn = 0)︸ ︷︷ ︸
(1−φn)n−2

= 1− (1− φn)n−2 ≤ (n− 2)φn,
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where the last inequality comes from the Bernoulli inequality. By definition of φn it has
that (n− 2)φn < ε/2, which can be made arbitrarily small. Therefore,∑

y∈A
LJ(y, ŷ)P̄(y) ≤ RJ(ŷ) ≤ ε+

∑
y∈A

LJ(y, ŷ)P̄(y),

which implies that

lim
ε→0

RJ(ŷ) =
∑
y∈A

LJ(y, ŷ)P̄(y). (29)

Our objective is to calculate limε→0 rJ(hclr) = limε→0RJ(hclr) − limε→0RJ(y∗). When ε
tends to zero, φn tends to zero and P̄ will have only 2 non-null probabilities, y(1) and y(2).
Thus, calculating the limε→0 rJ(hclr) is easy since there will be only 2 non-null probabilities
to sum up. Hence, Equation (29) can be reduced to

lim
ε→0

RJ(ŷ) = LJ(y(1), ŷ)P̄(y(1)) + LJ(y(2), ŷ)P̄(y(2)). (30)

Firstly, let us determine the optimal risk. An optimal solution for Jaccard distance on P̄ is
clearly either y(1),y(2) or y(1,2). This can be easily solved by checking all three values.

lim
ε→0

RJ(y(1)) = LJ(y(1),y(1))︸ ︷︷ ︸
0

P̄(y(1)) + LJ(y(2),y(1))︸ ︷︷ ︸
1

· P̄(y(2))︸ ︷︷ ︸
1/2

From (30)

=
1

2
.

lim
ε→0

RJ(y(1,2)) = LJ(y(1),y(1,2))︸ ︷︷ ︸
1/2

· P̄(y(1))︸ ︷︷ ︸
1/2

+LJ(y(2),y(1,2))︸ ︷︷ ︸
1/2

· P̄(y(2))︸ ︷︷ ︸
1/2

From (30)

=
1

2
.

(31)

The optimal risk is 1
2 , when ε→ 0. The risk of hclr is given by

lim
ε→0

RJ(hclr) = lim
ε→0

RJ(0n) From Proposition 7

= LJ(y(1), 0n)︸ ︷︷ ︸
1

·P̄(y(1)) + LJ(y(2), 0n)︸ ︷︷ ︸
1

·P̄(y(2))

= 1.

(32)

The regret is given by:

lim
ε→0

rJ(hclr) = lim
ε→0

RJ(hclr)− lim
ε→0

RJ(y∗)

=
1

2
From (31) and (32)
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Appendix I. Proof of Theorem 10

Theorem 10 The following expression holds for the regret with respect to F-measure loss

lim
ε→0

rJ(hclr) =
2

3
, for distribution P̄.

Proof This proof is similar to the proof of Theorem 9. Let A be a set of labellings of n
labels defined as A = {0n,y(1),y(2),y(1,2)}. Like in Theorem 9, the risk on distribution P̄
can be expressed as (see Equation (30)):

lim
ε→0

RF (ŷ) = LF (y(1), ŷ)P(y(1)) + LF (y(2), ŷ)P(y(2)).

An optimal solution for F-measure on P̄ is clearly either y(1),y(2) or y(1,2). This can be
easily solved by checking all three values:

lim
ε→0

RF (y(1)) =LF (y(1),y(1))︸ ︷︷ ︸
0

·P̄(y(1)) + LF (y(2),y(1))︸ ︷︷ ︸
1

· P̄(y(2))︸ ︷︷ ︸
1/2

=
1

2
.

RF (y(1,2)) =LF (y(1),y(1,2))︸ ︷︷ ︸
1/3

· P̄(y(1))︸ ︷︷ ︸
1/2

+LF (y(2),y(1,2))︸ ︷︷ ︸
1/3

· P̄(y(2))︸ ︷︷ ︸
1/2

=
1

3
.

(33)

The risk of hclr is given by

lim
ε→0

RF (hclr) = lim
ε→0

RJ(0n) From Proposition 7

= LF (y(1), 0n)︸ ︷︷ ︸
1

·P̄(y(1)) + LJ(y(2), 0n)︸ ︷︷ ︸
1

·P̄(y(2))

= 1.

(34)

The regret is given by:

lim
ε→0

rF (hclr) = lim
ε→0

RF (hclr)− lim
ε→0

RF (y∗)︸ ︷︷ ︸
1/3

=
2

3
From (33) and (34)
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