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Abstract
We study the theoretical properties of a variational Bayes method in the Gaussian Process
regression model. We consider the inducing variables method introduced by Titsias (2009b)
and derive sufficient conditions for obtaining contraction rates for the corresponding vari-
ational Bayes (VB) posterior. As examples we show that for three particular covariance
kernels (Matérn, squared exponential, random series prior) the VB approach can achieve
optimal, minimax contraction rates for a sufficiently large number of appropriately chosen
inducing variables. The theoretical findings are demonstrated by numerical experiments.

Keywords: Variational Bayes, Gaussian Process regression, inducing variables, contrac-
tion rates

1. Introduction

Suppose we observe n independent pairs (x1, y1), . . . , (xn, yn), where each xi has distribution
G on a subset X ⊆ Rd and

yi = f(xi) + εi, i = 1, . . . , n, (1)

with an unknown function f : X → R and ε1, . . . , εn independent Gaussian variables with
mean zero and variance σ2. In Gaussian Process (GP) regression we model f a-priori
as a centered GP with covariance function k : X × X → R. GP regression has become
popular due to the explicit expressions for the posterior (also a GP, see e.g. Rasmussen and
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Williams, 2006 and Section 2 ahead) and the marginal likelihood, and the ease with which
uncertainty quantification can be obtained. Moreover, there exist mathematical guarantees
for consistency, optimal contraction rates, and validity of uncertainty quantification (e.g.
van der Vaart and van Zanten, 2008b; Sniekers and van der Vaart, 2015; Rousseau and
Szabo, 2017).

A drawback of plain GP regression is the fact that computation of the posterior requires
inversion of an n × n matrix, which becomes computationally demanding for large sample
size n. The computational cost typically scales as n3, which can be prohibitive in practice.
To alleviate the computational burden, reduced rank approximations are often employed;
see for instance Chapter 8 of Rasmussen and Williams (2006) and the more recent overview
in Liu et al. (2020). These approximations somehow summarise the posterior using m� n
variables instead of n, typically reducing the order of the computational cost from n3 to
nm2.

In this paper we consider the variational approximation proposed by Titsias (2009b).
This approach uses m so-called inducing variables to summarise the posterior (details are
given in the next section). It is a true variational Bayes procedure, in the sense that the
approximate posterior minimises the Kullback-Leibler (KL) divergence between the true
posterior and a parametrised family of approximating distributions.

While the computational aspects of low rank approximations are well understood, little
is known about whether the mathematical guarantees for the true posterior carry over to the
approximate posterior. Burt et al. (2019) analyse the expected KL-divergence between the
posterior and its variational approximation. In particular, they investigate in various cases
how large the number of inducing variables m should be chosen in relation to the sample size
n in order to ensure that the expected KL-divergence vanishes as n becomes large. However,
since they compute the expectation both over the data (x,y) and over the prior on f , these
results do not translate to (frequentist) guarantees about consistency and contraction rates,
which assume that the data is generated from a fixed, “true” regression function f0.

In this paper we derive contraction rates for the approximate posterior in this frequen-
tist setup. This makes it possible to compare rates with known minimax lower bounds,
which explain what the best possible contraction rates are and how these depend on global
characteristics of the true regression function f0, like its degree of smoothness. This in turn
gives insight into how the dimension m of the variational approximation should be chosen
in order for the variational posterior to have the same contraction rate as the true posterior.

Our findings can be summarised as follows:

(i) In order to have an optimal rate of contraction of the variational posterior around the
true regression function f0, it is not necessary that the KL-divergence between the
true posterior and the variational approximation vanishes as n→∞.

(ii) For appropriately chosen inducing variables, one can recover an α-smooth regression
function f0 at the optimal rate with the VB method using the Matérn kernel or a
series kernel with regularity hyper-parameter α if the number of inducing variables m
scales at least as nd/(d+2α).

(iii) These inducing variable VB methods also result in minimax contraction rate around
α-smooth regression functions f0 for GP priors with squared exponential covariance
kernel (in d = 1) if the number of inducing variablesm scales at least as n1/(1+2α) log n.
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(iv) Choosing fewer inducing points than the optimal number can result in overly smooth
posterior means and conservative, sub-optimally large credible sets; see the numerical
study in Section 7.

The remainder of the paper is organised as follows. In Section 2 we recall the inducing
variable variational Bayes method by Titsias (2009b). Next in Section 3 we briefly discuss
contraction rate results for GP posteriors following van der Vaart and van Zanten (2008b).
A more detailed description of the frequentist analysis of general (nonparametric) posteriors
are given in Appendix A. The main results are presented in Section 4 where sufficient
conditions are given on the GP prior and the inducing variables to obtain the contraction
rate of the corresponding VB posterior. In Sections 5.1 and 5.2 two specific choices of the
inducing variables are described, from the eigendecompositions of respectively the covariance
matrix and the covariance operator. We show in Section 6 that these approaches result
in rate optimal VB posterior contraction rates for the squared exponential, Matérn and
series covariance kernels, matching the optimal behaviour of the appropriately scaled true
posterior. Finally we conclude our results with a brief numerical study in Section 7.

1.1 Notation

For two positive sequences an, bn we use the notation an . bn if there exists a positive
constant C such that an ≤ Cbn for all n. We write an � bn if an . bn and bn . an are
satisfied simultaneously. We denote by tr the trace operator and by DKL(µ, ν) the Kullback-
Leibler divergence between the measures µ and ν. The norm ‖ · ‖ denotes the Euclidean
norm for vectors and the spectral/operator norm for matrices. By L2(X , G) we denote the
space of (almost sure equivalence classes of) Borel measurable real-valued functions f on X
such that ‖f‖22,G :=

∫
X |f |2 dG is finite.

2. Inducing variables variational Bayes

In this section we recall the sparse GP regression approach of Titsias (2009b), introducing
the notation that we use throughout the paper.

In the regression model (1), if a centered GP prior Π with covariance kernel k is used,
then the true posterior is again a GP, with mean and covariance function given by

x 7→ Kxf (σ2I +Kff )−1y,

(x, y) 7→ k(x, y)−Kxf (σ2I +Kff )−1Kfy,

respectively. Here we denote y = (y1, . . . , yn), f = (f(x1), . . . , f(xn)),

Kxf = covΠ(f(x),f) = (k(x, x1), . . . , k(x, xn)) = KT
fx,

Kff = covΠ(f ,f) = [k(xi, xj)]1≤i,j≤n, (2)

where we emphasise through the subscript Π that the covariances are computed under the
prior Π (and not also the distribution G of the design points). We denote the posterior
probability kernel by Π( · | x,y).

The idea of Titsias (2009b) is to summarise the true posterior through a collection of
inducing variables u1, . . . , um ∈ L2(Π), which by definition are continuous linear functionals
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of the prior process on f . By the linearity assumption, the prior process f conditional on
u = (u1, . . . , um) is again a GP, with mean and covariance function given by

x 7→ KxuK
−1
uuu, (3)

(x, y) 7→ k(x, y)−KxuK
−1
uuKuy, (4)

where Kxu = covΠ(f(x),u) = KT
ux and Kuu = [covΠ(ui, uj)]1≤i,j≤m. This motivates the

construction of a variational family of measures approximating the posterior by postulating
that the vector u has a Gaussian distribution with some mean µ ∈ Rm andm×m covariance
matrix Σ, and that the conditional f |u is the GP law given by (3)-(4). This results in a
variational family of GP laws indexed by variational parameters µ and Σ. Explicitly, for fixed
µ and Σ, the variational approximation to the posterior is a GP with mean and covariance
function given by

x 7→ KxuK
−1
uuµ,

(x, y) 7→ k(x, y)−KxuK
−1
uu(Kuu − Σ)K−1

uuKuy,

cf. also equation (2) in Burt et al. (2019). We denote this member of the variational family
by Ψµ,Σ( · | x,y).

It can be shown that for all µ and Σ, the approximation Ψµ,Σ( · | x,y) and the true
posterior Π( · | x,y) are equivalent measures (the Radon-Nikodym derivative reduces to a
finite-dimensional Gaussian derivative, a function of at most m+ n variables). Hence their
Kullback-Leibler divergence is well defined. Titsias (2009a) proves that there exist optimal
µ′ and Σ′ such that

inf
µ,Σ

DKL

(
Ψµ,Σ( · | x,y)

∥∥∥Π( · | x,y)
)

= DKL

(
Ψµ′,Σ′( · | x,y)

∥∥∥Π( · | x,y)
)

=
1

2

(
yT (Q−1

n −K−1
n )y + log

|Qn|
|Kn|

+
1

σ2
tr(Kn −Qn)

)
. (5)

Here Kn = σ2I +Kff and Qn = σ2I +Qff , where

Qff = KfuK
−1
uuKuf (6)

with Kuf = covΠ(u,f). Even though in Titsias (2009a) the considered distributions are
jointly over f and u, the Kullback-Leibler divergence does not change when we use the
f -marginal distributions, as follows from Matthews et al. (2016), noting that the inducing
variables are measurable functions of f .

The variational posterior Ψµ′,Σ′( · | x,y) can be seen as a particular rank-m approxima-
tion of the full posterior Π( · | x,y). In the next section we present results about the rate
at which it contracts around the true regression function f0 as n → ∞. Since the precise
form of the optimal variational parameters is not important here, we simply denote the
variational posterior by Ψ( · | x,y) = Ψµ′,Σ′( · | x,y).
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3. Posterior contraction rates for Gaussian process priors

We give a brief overview of posterior contraction rates for GP priors. In Appendix A
we provide further details and discuss general contraction rate results for (nonparametric)
Bayesian methods. Here we focus on the results directly used in our main theorem in the
upcoming section.

We study the posterior distribution Π( · | x,y) under the assumption that the data (x,y)
are generated according to some fixed, “true” regression function f0 ∈ L2(X , G). In other
words, we suppose (1) holds with f0 instead of f , or equivalently, the pairs (xi, yi) are i.i.d.
with Gaussian density

pf0(x, y) = (2πσ2)−1/2 exp(−(y − f0(x))2/(2σ2))

relative to the product of the data-generating measure G and the Lebesgue measure. We
denote by P0 the associated joint distribution of the data and by E0 its according expectation
operator. General theory on Bayesian contraction rates gives conditions under which the
posterior corresponding to a GP prior in the nonparametric regression model contracts
around the true regression function f0 at a certain rate εn → 0 as the sample size n tends
to infinity.

The standard approach for establishing contraction rates, as exposed in Ghosal and
van der Vaart (2017), relies on the existence of appropriate hypothesis tests. This is guar-
anteed when the chosen metric is the Hellinger distance, so the contraction rate is naturally
measured relative to this metric on the space of joint densities of the pair (xi, yi). Given
f1, f2 ∈ L2(X , G), this Hellinger distance dH between the two associated Gaussian densities
pf1 , pf2 is given by

dH(pf1 , pf2)2 =
1

2

∫∫ (√
pf1(x, y)−

√
pf2(x, y)

)2
dy dG(x)

=

∫
X

1− exp
(
− (f1(x)− f2(x))2

8σ2

)
dG(x). (7)

Considering this as a function of (f1, f2), the distance dH can be viewed as a metric on
the function space L2(X , G). In the sequel we shall abuse our notation and simply write
dH(f1, f2).

The posterior is said to contract around the truth f0 at the rate εn with respect to the
Hellinger distance dH if for any sequence Mn →∞,

E0 Π
(
f : dH(f, f0) ≥Mnεn | x,y)→ 0 (8)

as n→∞. Loosely speaking, (8) entails that if f0 generated the data, then, asymptotically,
all posterior mass lies in Hellinger balls around f0 with a radius of the order εn.

In view of van der Vaart and van Zanten (2008b), for GPs the posterior contraction rate
is determined by the concentration function ϕf0 : (0,∞)→ R associated to the GP prior Π,
which is defined as

ϕf0(ε) = inf
h∈H:‖h−f0‖2,G≤ε

‖h‖2H − log Π(f : ‖f‖2,G ≤ ε). (9)
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Here H is the Reproducing Kernel Hilbert Space (RKHS) associated to the prior, and ‖·‖H is
the corresponding RKHS norm (see e.g. van der Vaart and van Zanten, 2008a or Appendix
I of Ghosal and van der Vaart, 2017). Specifically, if εn → 0 is such that nε2n →∞ and

ϕf0(εn) ≤ nε2n, (10)

then the posterior distribution contracts at the rate εn. The following is a slightly more
refined version of this statement.

Lemma 1 Suppose that the concentration function inequality (10) holds for some sequence
of positive numbers εn → 0 with nε2n →∞. Then, for every constant C2 > 0 there exists an
event An in the σ-field generated by (x,y) such that P0(An)→ 1 and

E0 Π(f : dH(f, f0) ≥Mnεn | x,y)1An . exp(−C2nε
2
n). (11)

Note that the preceding lemma implies the posterior contraction (8). This inequality
together with a bound on the Kullback-Leibler divergence in (5) will help establish our
main result, a contraction rate statement for the variational posterior; see Theorem 2 ahead
and the lemmas below it. The results leading to Lemma 1 are recalled and discussed in
Appendix A. We note that in specific examples, verifying the concentration inequality (10)
means analysing the so-called small ball behaviour of the prior GP and the approximation
properties of its RKHS (see also Section 6 and Appendix B).

4. Main results

In this paper we are interested in contraction rate results like (8), but for the variational
posterior Ψ( · | x,y) instead of the full posterior Π( · | x,y). It is intuitively clear that in
addition to an assumption like (10), this requires control over the approximation properties
of the variational family, which depend on the choice of inducing variables u = (u1, . . . , un).
In the following theorem, this is measured in terms of the expected “size” of the difference
between the matrices Kff and Qff (defined in (2) and (6), respectively), which is the
covariance matrix of the conditional law of the vector f = (f(x1), . . . , f(xn)) given u (see
(4)). The size of Kff−Qff measures how well the vector of inducing variables u summarises
the full prior distribution. In short, we characterise the contraction rate of the variational
posterior by conditions on the inducing variables and the prior.

Below, ‖A‖ denotes the spectral norm and tr(A) is the trace of the square matrix A,
and Ex is the expectation over the input variables x alone.

Theorem 2 Suppose that for f0 ∈ L2(X , G) and εn → 0 such that nε2n →∞, the concentra-
tion function inequality (10) holds. If in addition there exists a constant C > 0 (independent
of n) such that

Ex ‖Kff −Qff‖ ≤ C, (12)

Ex tr(Kff −Qff ) ≤ Cnε2n, (13)

then the variational posterior contracts around f0 at the rate εn, that is, for all sequences
Mn →∞,

E0 Ψ
(
f : dH(f, f0) ≥Mnεn | x,y

)
→ 0. (14)

as n→∞.
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Proof The concentration inequality also holds with Mnεn instead of εn. Hence, by Lemma
1, there exist events An and a constant C2 > 0 such that P0(An)→ 1 and

E0 Π
(
f : dH(f, f0) ≥Mnεn | x,y

)
1An . e−C2nM2

nε
2
n .

Lemma 13 applied with δn = C2nM
2
nε

2
n yields

E0 Ψ(f : dH(f, f0) ≥Mnεn | x,y)1An .
E0DKL(Ψ( · | x,y) ‖Π( · | x,y)) + e−C2nM2

nε
2
n

nM2
nε

2
n

.

The proof is completed by combining this with P0(Acn)→ 0, and, as we prove now,

E0DKL(Ψ( · | x,y) ‖Π( · | x,y)) ≤ C1nε
2
n (15)

for some positive constant C1. By the concentration function inequality, there exist an h ∈ H
such that ‖h‖2H ≤ nε2n and ‖f0 − h‖2,G ≤ εn. Applying Lemma 3 ahead with that choice for
h and using the assumptions on Kff −Qff then establishes (15).

It can be seen from the proof that the variational posterior contracts at the same rate
as the true posterior if the inequality (15) holds. Since nε2n → ∞, this means that the
Kullback-Leibler divergence need not go to zero in P0-expectation. The inequality, which is
an essential step in the above proof, follows from the next lemma. A crucial difference with
Lemma 2 of Burt et al. (2019) is that we consider f0 to be fixed.

Lemma 3 For every f0 ∈ L2(X , G) and h ∈ H we have

E0DKL

(
Ψ( · | x,y)

∥∥∥Π( · | x,y)
)

≤ 1

σ2

(
n‖f0 − h‖22,G + ‖h‖2H Ex ‖Kff −Qff‖+ Ex tr(Kff −Qff )

)
.

Proof The matrix Kn −Qn = Kff −Qff is the covariance matrix of the conditional law
of the vector f = (f(x1), . . . , f(xn)) given u = (u1, . . . , um). In particular it is positive
semidefinite, which implies that Kn ≥ Qn, hence log(|Qn|/|Kn|) ≤ 0. Therefore, the KL-
divergence between the variational class and the true posterior can be bounded from above
by leaving out the logarithmic term on the right hand side of the identity (5), i.e.

DKL

(
Ψµ′,Σ′( · | x,y)

∥∥∥Π( · | x,y)
)
≤ 1

2

(
yT (Q−1

n − K−1
n )y +

1

σ2
tr(Kn − Qn)

)
. (16)

Now let Ey be the expectation over y, assuming the input variables x are fixed and f0

is the true regression function, so that E0 = Ex Ey. We have

Ey y
T (Q−1

n −K−1
n )y = fT0 (Q−1

n −K−1
n )f0 + σ2 tr(Q−1

n −K−1
n ). (17)

For the first term on the right-hand side we write, with h = (h(x1), . . . , h(xn)),
1

2
fT0 (Q−1

n −K−1
n )f0 ≤ hTQ−1

n (Kn −Qn)K−1
n h + (f0 − h)T (Q−1

n −K−1
n )(f0 − h)

≤ ‖Q−1
n ‖‖Kn −Qn‖hTK−1

n h + (f0 − h)TQ−1
n (f0 − h)

≤ 1

σ2

(
‖Kn −Qn‖hTK−1

ff h +

n∑
i=1

(f0(xi)− h(xi))
2
)
,
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where we used that Kn = σ2I + Kff ≥ Kff and Qn = σ2I + Qff ≥ σ2I. The quantity
hTK−1

ff h is the squared RKHS norm of the orthogonal projection in H of the function h on
the linear span of the functions k(x1, · ), . . . , k(xn, · ). Since orthogonal projections decrease
norms, we have hTK−1

ff h ≤ ‖h‖2H.
For the second term in (17) we note that

tr(Q−1
n −K−1

n ) = tr(Q−1
n (Kn −Qn)K−1

n ) ≤ ‖Q−1
n ‖‖K−1

n ‖ tr(Kn −Qn),

where the matrix norms appearing on the right are both bounded by σ−2.
Together we get

1

2
Ey y

T (Q−1
n −K−1

n )y ≤ 1

σ2

(
‖Kn −Qn‖‖h‖2H +

n∑
i=1

(f0(xi)− h(xi))
2 +

1

2
tr(Kn −Qn)

)
.

Combining this with (16), taking expectations over x and recalling that Kn −Qn = Kff −
Qff , we arrive at the statement of the lemma.

In the next section, we present two choices of inducing variables, also considered in Burt
et al. (2019), to which we apply Theorem 2.

5. Inducing variables from eigendecompositions

The covariance operator Tk on L2(X , G) associated with the kernel k is defined as

Tkψ(y) =

∫
X
k(x, y)ψ(x) dG(x). (18)

Note that this definition depends on the distribution G of the design points. Since k is a
covariance kernel, the operator Tk is positive (meaning 〈Tkψ,ψ〉 ≥ 0 for all ψ ∈ L2(X , G)).
We assume that k ∈ L∞(G×G). One of the assertions of Mercer’s Theorem (see e.g. König,
1986) is that consequently, Tk is a Hilbert-Schmidt operator, and thus compact. It follows
that Tk has eigenvalues λ1 ≥ λ2 ≥ · · · → 0.

The covariance kernels used in practice satisfy these mild assumptions. We focus on three
such kernels in this paper: the Matérn kernel, the squared exponential kernel, and the kernel
of a random series prior. For each kernel we consider one or two choices of inducing variables
and discuss the conditions of Theorem 2: we study the concentration function inequality
(10) and analyse the expected norm and trace terms (12) and (13). The latter is done with
help of the eigenvalues of the operator Tk. We consider kernels whose associated operator
Tk has exponentially or polynomially decreasing eigenvalues, that is, for j = 1, 2, . . . , we
assume one of the conditions

λj ≤ Cexpbne
−Dexpbnj , (19)

C−1
α j−1−2α/d ≤ λj ≤ Cαj−1−2α/d, (20)

for 0 < bn ≤ 1 and positive constants Cexp, Dexp, Cα.
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5.1 Using the eigendecomposition of the covariance matrix

In this case we construct inducing variables using the m largest eigenvalues and the corre-
sponding eigenvectors of the matrix Kff = [k(xi, xj)]1≤i,j≤n. We define

uj = vTj f =
n∑
i=1

vijf(xi), j = 1, . . . ,m, (21)

where vj = (v1
j , v

2
j , . . . , v

n
j ) is the eigenvector corresponding to the jth largest eigenvalue µj

of the matrix Kff . Note that each uj is a linear functional of f , and more precisely a linear
combination of the values of f evaluated at the observations x. It is easy to verify (see also
Section C.1. of Burt et al., 2019) that in this case we have

(Kuu)ij = covΠ(ui, uj) = µjδij ,

(Kfu)ij = covΠ(f(xi), uj) = µjv
i
j .

Hence in view of the identity Kff =
∑n

j=1 µjvjv
T
j ,

Qff = KfuK
−1
uuKuf =

m∑
j=1

µjvjv
T
j ,

Kff −Qff =
n∑

j=m+1

µjvjv
T
j . (22)

Note that with this choice of u the matrix Qff is the optimal rank-m approximation of Kff .
The computational complexity of obtaining the first m eigenvalues and the corresponding
eigenvectors of Kff numerically is O(mn2), by using for instance the Lanczos iteration
(Lanczos, 1950). Analytical expressions for the eigenvalues and eigenvectors of Kff are not
available for the majority of commonly used kernels.

Since the eigenvectors vj are orthogonal,

‖Kff −Qff‖ = µm+1, (23)

tr(Kff −Qff ) =
n∑

j=m+1

µj . (24)

Burt et al. (2020) explain that this choice of Qff is the minimiser of both these quantities.
As such, the right-hand sides of the above identities serve as benchmarks for other choices
of inducing variables. To bound these, we will use repeatedly the part of Proposition 2 in
Shawe-Taylor and Williams (2002) stating that

Ex

n∑
j=j0

µj/n ≤
∞∑
j=j0

λj (25)

for all j0 between 1 and n.

9
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We bound the expected trace and norm terms in Theorem 2. For exponentially decreasing
eigenvalues (19) this is straightforward. Indeed, from (24) and (25) we obtain

Ex ‖Kff −Qff‖ ≤ Ex tr(Kff −Qff ) ≤ n
∞∑

j=m+1

λj . n

∞∑
j=m+1

bne
−Dexpbnj . ne−Dexpbnm,

(26)
which suffices for our purposes. Polynomially decaying eigenvalues require more work as we
need to do better than bounding the operator norm by the trace.

Lemma 4 If the eigenvalues λ1, λ2, . . . of the operator (18) are polynomially decaying (20),
then there is a constant C̄α such that

Ex ‖Kff −Qff‖ ≤ C̄αnm−1−2α/d,

Ex tr(Kff −Qff ) ≤ C̄αnm−2α/d,

for any 2 ≤ m ≤ n.

Proof We deal with the norm term using (23). We argue by contradiction. Suppose that
for all i ∈ {m/2, . . . ,m} we have Ex µi/n > C̃αλi, where C̃α = 1 + dC2

α/α. Since

∞∑
i=m+1

λi ≤ Cα
∞∑

i=m+1

i−1−2α/d ≤ Cα
∫ ∞
m

t−1−2α/ddt =
Cαd

2α
m−2α/d, (27)

m∑
i=m/2

λi ≥ C−1
α

m∑
i=m/2

i−1−2α/d ≥ (2Cα)−1m−2α/d,

we have

Ex

n∑
i=m/2

µi/n ≥ Ex

m∑
i=m/2

µi/n > C̃α

m∑
i=m/2

λi ≥
∞∑

i=m/2

λi,

but this contradicts (25). Therefore there exists i ∈ {m/2, . . . ,m} such that Ex µi/n ≤ C̃αλi.
Hence

Ex µm+1 ≤ Ex µi ≤ nC̃αλi ≤ nC̃αλm/2 ≤ (C̃αCα21+2α/d)m−1−2α/dn,

hence, recalling (23), we obtain the bound on the expected norm term.
Regarding the trace term, the inequality (25) implies

Ex tr(Kff −Qff ) = Ex

n∑
i=m+1

µi ≤ n
∞∑

i=m+1

λi.

The inequality regarding the trace in the statement of the lemma then follows immediately
using (27).

We turn to the second choice of inducing variables before applying these results to the
chosen kernels.

10
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5.2 Using the eigendecomposition of the covariance operator

The previous method requires computing the eigenvalues and the eigenvectors of the matrix
Kff , which for large data sets becomes computationally demanding. Another choice of
inducing variables is

uj =

∫
X
f(x)ϕj(x) dG(x), j = 1, . . . ,m, (28)

where ϕ1, ϕ2, . . . are the eigenfunctions of the kernel operator Tk, corresponding to the
eigenvalues λ1, λ2, . . . , so

∫
k(x, y)ϕi(x) dG(x) = λiϕi(y). In case X is a compact interval

and the functions ϕj form a Fourier series, this choice of inducing variables yields the
variational Fourier features described in Hensman et al. (2018).

The relevant covariance matrices for the inducing variables (28) are

(Kuu)ij = covΠ(ui, uj) = λjδij ,

(Kfu)ij = covΠ(f(xi), uj) = λjϕj(xi)

(see again Appendix C of Burt et al., 2019 for the proof of these statements). Then in view
of Mercer’s theorem, Kff =

∑∞
j=1 λjϕjϕ

T
j where we denote ϕj = (ϕj(x1), . . . , ϕj(xn)), so

Qff =
m∑
j=1

λjϕjϕ
T
j ,

Kff −Qff =

∞∑
j=m+1

λjϕjϕ
T
j .

(Note that unlike the vj from the previous section, the vectors ϕj do not necessarily form
an orthonormal basis of Rn.)

With this choice of inducing variables, we obtain for the expected trace term

Ex tr(Kff −Qff ) =
∞∑

j=m+1

λj

n∑
i=1

Ex ϕj(xi)
2 = n

∞∑
j=m+1

λj . (29)

This is exactly the upper bound we obtained for the trace term in the previous section. For
the exponentially decaying eigenvalues, we bound the operator norm just as in (26) by

Ex ‖Kff −Qff‖ ≤ Ex tr(Kff −Qff ) . ne−Dexpbnm. (30)

The results regarding the polynomially decreasing eigenvalues are summarized in the next
lemma.

Lemma 5 Assume that the eigenvalues λ1, λ2, . . . of the operator (18) are polynomially
decaying (20), with α > d. Suppose the corresponding eigenfunctions of the operator Tk are
uniformly bounded. Then

Ex ‖Kff −Qff‖ . 1 + nm−1−2α/d + nd/(2α)m−2α/d log n,

Ex tr(Kff −Qff ) ≤ Cαd

2α
nm−2α/d.

11
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Proof The expected trace inequality follows upon combining (29) and (27). The expectation
of the spectral norm is bounded by distributing over the event

An(C) = {x ∈ X n : |〈ϕj ,ϕk〉 − nδjk| ≤ C
√
n log n, m < j, k ≤ nd/(2α)},

and its complement.
In view of Lemma 6 below, there exists a large enough C > 0 such that Px(An(C)c) ≤

n−1. Using the crude estimate

‖Kff −Qff‖ ≤ tr(Kff −Qff ) =

∞∑
j=m+1

n∑
i=1

λjϕj(xi)
2 ≤ nCϕ

∞∑
j=1

λj . n

(the constant Cϕ being the uniform bound for the ϕj) we then obtain

Ex 1An(C)c‖Kff −Qff‖ ≤ nPx(An(C)c) . 1.

On the event An(C) we use

Ex 1An(C)‖Kff −Qff‖ ≤ Ex 1An(C)

∥∥∥ nd/(2α)∑
k=m+1

λkϕkϕ
T
k

∥∥∥+ Ex

∥∥∥ ∑
k>nd/(2α)

λkϕkϕ
T
k

∥∥∥
≤ Ex 1An(C) max

‖v‖2=1
vT
( nd/(2α)∑
k=m+1

λkϕkϕ
T
k

)
v + Ex tr

( ∑
k>nd/(2α)

λkϕkϕ
T
k

)
,

where the last inequality follows from the positive semi-definiteness of the matrices λkϕkϕTk .
The second bounding term equals

tr
( ∑
k>nd/(2α)

λk Exϕkϕ
T
k

)
= n

∑
k>nd/(2α)

λk . n
∑

k>nd/(2α)

k−1−2α/d . 1.

Lastly, we deal with the first term by bounding

max
‖v‖2=1

vT
( nd/(2α)∑
k=m+1

λkϕkϕ
T
k

)
v = max

‖v‖2=1

nd/(2α)∑
k=m+1

λk〈v,ϕk〉2.

on the event An(C). It is sufficient to consider vectors v of the form v =
∑nd/(2α)

k=m+1 ρkϕk. On
the event An(C), using that α > d,

1 = ‖v‖22 =

nd/(2α)∑
k,j=m+1

ρjρk〈ϕj ,ϕk〉 ≥
nd/(2α)∑
k,j=m+1

ρjρk

(
nδjk − C

√
n log n

)

≥
nd/(2α)∑
k=m+1

ρ2
k

(
n− nd/(2α)C

√
n log n

)
≥ n

2

nd/(2α)∑
k=m+1

ρ2
k,

12
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and therefore

max
‖v‖2=1

nd/(2α)∑
k=m+1

λk〈v,ϕk〉2 = max
‖v‖2=1

nd/(2α)∑
k=m+1

λk

( nd/(2α)∑
j=m+1

ρj〈ϕj ,ϕk〉
)2

≤ max
‖v‖2=1

nd/(2α)∑
k=m+1

λk

( nd/(2α)∑
j=m+1

|ρj |(nδjk + C
√
n log n)

)2

. max
‖v‖2=1

nd/(2α)∑
k=m+1

λk

(
n2ρ2

k + n
d+2α
2α log n

nd/(2α)∑
j=m+1

ρ2
j

)

. nλm+1

(
max
‖v‖2=1

n
nd/(2α)∑
k=m+1

ρ2
k

)
+ nd/(2α) log n

nd/(2α)∑
k=m+1

λk

. nm−1−2α/d + nd/(2α)m−2α/d log n.

The proof is concluded by multiplying with 1An(C) and taking expectations Ex in the above
display.

The following lemma provides the concentration inequality for the empirical inner prod-
uct of the eigenfunctions, used in the proof of the preceding lemma.

Lemma 6 For orthonormal functions ϕ1, ϕ2, . . . , ϕMn w.r.t. the measure G such that |ϕi| ≤
Cϕ on X and x = (x1, x2, . . . , xn) i.i.d. with common distribution G, the random vectors
ϕ` = (ϕ`(x1), . . . , ϕ`(xn)) satisfy

Px

(
sup

1≤`,k≤Mn

|〈ϕ`,ϕk〉 − nδ`k| ≥ C
√
n log n

)
≤M2

nn
−(C/C2

ϕ)2/2

for any C > 0.

Proof By the subadditivity of the probability and using Hoeffding’s inequality for bounded
random variables we get that

Px( sup
1≤`,k≤Mn

|〈ϕ`,ϕk〉 − nδ`k| ≥ C
√
n log n)

≤M2
n sup
`,k

Px(|n−1〈ϕ`,ϕk〉 − δ`k| ≥ C
√
n−1 log n)

≤M2
n exp{−2n2C2n−1 log n

n4C4
ϕ

} = M2
n exp{− C2

2C4
ϕ

log n},

finishing the proof of the statement.

13
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6. Concrete examples

We consider three explicit examples to demonstrate how the approximation theory from the
previous section can be used to apply the main theorem in Section 4. The contraction rates
we obtain depend on the smoothness properties of the underlying true regression function
f0. To make this precise, we recall the definition of two smoothness classes.

The Hölder space Cα(X ) of smoothness α > 0 consists of those functions on X with
Hölder regularity α. This means partial derivatives of order up to α0 := dαe − 1 exist and
are uniformly bounded, and derivatives of order equal to α0 satisfy a Hölder condition with
exponent α− α0.

The Sobolev space Hα(X ) is the collection of restrictions f0|X to X of functions f0 :
Rd → R with Fourier transform f̂0(λ) = (2π)−d

∫
Rd e

i〈λ,x〉f0(x) dx satisfying∫
(1 + ‖λ‖2)α|f̂0(λ)|2 dλ <∞.

For α ∈ N the space Hα(X ) coincides with the space of functions with square integrable
weak α-derivatives over X .

6.1 Matérn kernel

The Matérn prior is the centered GP whose covariance kernel is

k(x, y) = c1‖x− y‖αKα(c2‖x− y‖), (31)

where c1, c2, α are positive constants and Kα is the modified Bessel function of the second
kind (see Rasmussen and Williams, 2006). If X = [0, 1]d and f0 ∈ Cα(X ) ∩Hα(X ), then it
is known that the true posterior contracts around f0 at the rate n−α/(d+2α); see e.g. van der
Vaart and van Zanten (2011). This is the optimal minimax rate of contraction for this
problem. The following corollary asserts that if the number of inducing variables is chosen
at least of the order nd/(d+2α), then for the first class of inducing variables considered above,
the variational posterior attains this optimal rate as well.

Corollary 7 Let k be the Matérn kernel (31) on X = [0, 1]d and let G be a distribution with
bounded Lebesgue density. Suppose that the inducing variables (21) are used and α > d/2.
Then the variational posterior contracts around f0 ∈ Cα(X ) ∩ Hα(X ) at the rate εn =
n−α/(d+2α) for m = mn ≥ nd/(d+2α).

Proof It follows from the assumptions on f0 and α combined with (results leading to)
Theorem 5 in van der Vaart and van Zanten (2011) that ϕ(ε) . ε−d/α, so the concentration
function inequality (10) holds for εn as specified.

The assumptions on G allow for an application of Theorem 1 in Seeger (2007), whose
proof yields (20) for the eigenvalues of the kernel operator Tk. Lemma 4 implies that the
trace and norm inequalities in Theorem 2 hold for m as given. This yields the contraction
statement for the variational posterior.

The other choice of inducing variables (28) is not considered here, since for the stationary
Matérn process we don’t have access to the eigenfunctions of the kernel operator Tk. For
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G equal to the uniform distribution on [0, 1]d, finding the eigenfunctions and eigenvalues is
equivalent to finding the Karhunen-Loève expansion. Explicit expressions appear only to
be available for the case α = 1/2 of the Ornstein-Uhlenbeck process, see for instance Corlay
and Pagès (2015).

6.2 Squared exponential kernel

The squared exponential process on X = Rd with length scale b > 0 is the centered GP on
Rd with covariance function

k(x, y) = exp(−‖x− y‖2/b2). (32)

The structure of the RKHS and sharp bounds for the concentration function are known for
this process, but in existing results the process is usually viewed on a compact subset of Rd
and the concentration function relative to the uniform norm is considered, see for instance
van der Vaart and van Zanten (2009), van der Vaart and van Zanten (2011). In this paper
we want to consider the example that G is a normal distribution, in which case the existing
results do not directly apply. Therefore we adapt the relevant results, viewing the squared
exponential process as a random element in the space L2(X , G).

We formulate the following lemma for slightly more general distributions G with sub-
Gaussian tails, that is, we assume that there exist constants C1, C2 > 0 such that

G(x : ‖x‖ > a) ≤ C1e
−C2a2 (33)

for all a > 0 large enough. It is seen from the proof that the statement of the lemma can
easily be adapted to cases with different tail behaviours.

Lemma 8 Let k be the squared exponential kernel (32) with length scale b = bn = n−1/(d+2α).
Suppose that f0 ∈ Cα(Rd) ∩ L2(Rd), and G satisfies the sub-Gaussian tail bound (33) on
X = Rd. Then the concentration function inequality (10) is satisfied for εn a multiple of
n−α/(d+2α) logκ/2 n, where κ = 1 + 3d/2.

Proof This follows from combining Lemma 15 and 16 in Appendix B.

By the results of van der Vaart and van Zanten (2009), under the assumptions of the
above lemma, the true posterior contracts around f0 at the optimal rate n−α/(d+2α), up
to a logarithmic factor. The following corollary asserts that if d = 1 and G is a normal
distribution, the same is true for the variational posteriors considered above.

Corollary 9 Let k be the squared exponential kernel (32) with b = bn = n−1/(1+2α), and
G a centered Gaussian distribution on X = R. Then the variational posterior using either
choice of inducing variables (21) or (28) contracts around f0 ∈ Cα(R) ∩ L2(R) at the rate
εn = n−α/(1+2α)(log n)5/4, provided that m = mn ≥ D−1

expn
1/(1+2α) log n.

Proof In Lemma 8 we have already established that the concentration function inequality
is satisfied for the specified truth f0, scale bn, and rate εn.
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We now prove the eigenvalues of the covariance operator are exponentially decaying. For
notational convenience suppose that a > 0 is such that G has density p(x) ∝ e−2ax2 . There
is an explicit expression for the eigenvalues (see Rasmussen and Williams, 2006)

λj =
√

2a/An

( 1

Anb2n

)j−1
, j = 1, 2, . . .

with An = a+ b−2
n +

√
a2 + 2ab−2

n . We note that

1

Anb2n
= 1− zn ≤ e−zn

for zn =
√
a2b4n + 2ab2n − ab2n, and zn/bn →

√
2a as n → ∞, so zn > Dexpbn when 0 <

Dexp <
√

2a and n is sufficiently large. Then

λj ≤
√

2a/Ane
−znj . bne

−Dexpbnj ,

so we are in the situation of (19). By (26) and (29), the choice of m yields

Ex ‖Kff −Qff‖ ≤ Ex tr(Kff −Qff ) . ne−Dexpbnm ≤ 1,

so the conditions of Theorem 2 are satisfied.

Remark 10 A stronger requirement on the smoothness of f0 is that it belongs to the RKHS
H associated to the prior. In this case the RKHS approximation term in the concentration
function is bounded by a constant, so the contraction rate is characterised by the small ball
probability which is bounded in Lemma 15. One can take a fixed length scale b > 0, so that
the concentration function inequality holds for εn satisfying(

log
1

εn

)κ
. nε2n.

This is fulfilled by the rate εn = n−1/2(log n)κ/2, which is almost the parametric rate n−1/2.
By the arguments used to establish the above corollary, the variational posterior contracts at
this rate when mn is taken of the order log n. This is also what Burt et al. (2019) suggest
for the exponential kernel. Our Corollary 9 illustrates that this choice may not be optimal
if f0 is not so smooth that it belongs to the RKHS of the squared exponential kernel, which
only contains analytic functions. See also the numerical illustration in Section 7.

6.3 Random series prior

The last choice of kernel is one defined through a series expansion. We take X = [0, 1]d and
consider a uniform distribution G for the design points. Let (ϕj) be an orthonormal basis of
the corresponding function space L2[0, 1]d. Suppose that the basis functions are continuous
and uniformly bounded, that is, supj supx |ϕj(x)| <∞. Define, for α > 0, the series

f(x) =
∞∑
j=1

j−1/2−α/dϕj(x)Zj , x ∈ [0, 1]d, (34)
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where (Zj) is a sequence of i.i.d. standard normal random variables. The series converges
uniformly and the resulting process (f(x) : x ∈ [0, 1]d) is a centered GP with covariance
function

k(x, y) =
∞∑
j=1

j−1−2α/dϕj(x)ϕj(y). (35)

By construction, (ϕj) is the orthonormal eigenbasis of the associated operator Tk with eigen-
values λj = j−1−2α/d. We note that one can generalise these priors to compact Riemannian
manifolds X (in fact, the compactness assumption can also be relaxed for appropriate choice
of G) and the coefficients j−1/2−α/d can be replaced by any sequence

√
λj such that (34)

converges.
We consider contraction of the variational posterior corresponding to this prior. A func-

tion f0 ∈ L2[0, 1]d has the expansion f0 =
∑∞

j=1 f0,jϕj where f0,j = 〈f0, ϕj〉. Here we
consider functions in the Sobolev space

H̃α = {f ∈ L2[0, 1]d : ‖f‖α <∞}, ‖f‖2α =
∑
j

j2α/d|〈f, ϕj〉|2.

In general this space is different from the previously defined Hα([0, 1]d) since it depends on
the choice of basis functions ϕj . If (ϕj) is the standard Fourier basis in d = 1, however, the
spaces coincide.

With either choice of inducing variables discussed earlier, the variational posterior con-
tracts around elements of H̃α at the minimax rate.

Corollary 11 Consider the kernel (35) for some uniformly bounded orthonormal basis (ϕj)
of L2[0, 1] consisting of continuous functions. Suppose that either

– the inducing variables (21) are used and α > d/2, or

– the inducing variables (28) are used and α > d.

Then the variational posterior contracts around f0 ∈ H̃α at the rate εn = n−α/(d+2α) for
m = mn ≥ nd/(d+2α).

Proof We start by bounding the concentration function. By Theorem 4.1 in van der Vaart
and van Zanten (2008a), the function h :=

∑J
j=1〈f0, ϕj〉ϕj =

∑J
j=1 f0,jϕj is an element of

the RKHS H of the prior with squared norm ‖h‖2H =
∑J

j=1 |f0,j |2/λj . If f0 ∈ H̃α then we
have

‖h‖2H =

J∑
j=1

|f0,j |2j1+2α/d ≤ J‖f0‖2α.

Moreover,
‖f0 − h‖22,G =

∑
j>J

|f0,j |2 ≤ ‖f0‖2αJ−2α/d

so by choosing J of the order ε−d/α, it follows that

inf
h∈H:‖h−f0‖2,G≤ε

‖h‖2H . ε−d/α.
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By the expansion (34), the centered small ball probability can be written as

Π(f : ‖f‖2,G ≤ ε) = Pr
( ∞∑
j=1

j−1−2α/dZ2
j ≤ ε2

)
.

By Corollary 4.3 in Dunker et al. (1998),

− log Pr
( ∞∑
j=1

j−1−2α/dZ2
j ≤ ε2

)
. ε−d/α.

It follows that the concentration function inequality (10) holds for εn as specified (up to a
constant), and this is the rate at which the true posterior contracts.

Evidently the eigenvalues satisfy (20). The trace and norm inequalities in Theorem 2
are readily verified for our choice of m with the help of either Lemma 4 or Lemma 5. This
yields the contraction statement for the variational posterior.

7. Numerical experiments

We illustrate the theoretical results by two numerical experiments, varying both the kernel
and the choice of inducing variables.

7.1 Matérn kernel – method 1

We simulate n = 3000 samples xi ∼ uniform[0, 1] and yi ∼ N (f0(xi), σ
2) with σ = 0.2 and

f0(x) = |x− 0.4|α − |x− 0.2|α

for α = 0.6, which is plotted in Figure 1. We use the Matérn-α kernel for the GP prior and
study the variational posterior using the inducing variables obtained from the covariance
matrix (Section 5.1).

We compare the behaviour of the true and variational Bayes methods for different choices
of the number of inducing points. Figures 2 and 3 show the mean and pointwise 95% credible
regions (intervals centered vertically around the posterior mean which have posterior mass
0.95) for both the true and variational posterior. According to Corollary 7, m should be at
least n1/(1+2α) ≈ 40. Figure 2 illustrates this: here m = 40, and although the variational
posterior is in general a bit smoother, its credible region is hardly larger than that of the
true posterior. On the contrary, one can conclude from Figure 3 that it is unwise to take a
significantly lower number of inducing variables. The variational posterior mean is far too
smooth and credible regions are too wide.

Table 1 shows estimates of the expected Kullback-Leibler divergence (5), computed from
100 repetitions of the above experiment for different n. We used m = n1/(1+2α) inducing
variables so that by Corollary 7 the variational posterior contracts at the minimax rate.
Note that the KL-divergence increases with n, meaning that it does not vanish. This is in
according with our theory, which says that the P0-expectation of the KL-divergence need
only be of the order nε2n →∞ (see the proof of Theorem 2).
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0

0.5 f0

Figure 1: plot of f0 = |x+ 1|α − |x+ 3/2|α for α = 0.8

0 1

−0.5

0

0.5 true posterior

variational posterior

Figure 2: True and variational posterior
and credible regions for Matérn
prior and m = 40 inducing
variables from method 1

0 1

−0.5

0

0.5 true posterior

variational posterior

Figure 3: True and variational posterior
and credible regions for Matérn
prior and m = 10 inducing
variables from method 1

n DKL(Ψ( · | x,y)‖Π( · | x,y))

100 14.71 (1.75)
300 25.20 (2.31)

1000 42.09 (3.23)
3000 68.90 (3.94)

Table 1: Estimates of the KL-divergence between variational and true posterior (average
over 100 repeated experiments). Estimated standard deviations are given between
brackets.
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7.2 Squared exponential kernel – method 2

In a similar fashion, we simulate n = 5000 samples xi ∼ N (0, 1) and yi from theN (f0(xi), σ
2)

distribution with
f0(x) = |x+ 1|α − |x+ 3/2|α

for α = 0.8 and σ = 0.2. The function f0 is plotted in Figure 4. Although strictly speaking
f0 /∈ L2(X , G), one can easily modify its tails maintaining f0 ∈ Cα(R) (also note that with
high probability all xi are in a large compact set).

We use the squared exponential kernel as defined in (32) with b = bn = 4n−1/(1+2α)

and the variational Bayes method with operator eigenvectors (Section 5.2) as the inducing
variables.

Corollary 9 prescribes that we take mn at least

(Dexpbn)−1 log n ≈
√

2a(n1/(1+2α)/4) log n ≈ 80,

where a = 1/4 to ensure that G = N (0, 1). Figure 5 illustrates that this is indeed a
good choice of m. One can observe that the true and variational posterior are virtually
indistinguishable, i.e., there is almost no loss of information in the variational Bayes method.

In Figure 6 we take a smaller numberm = 40 of inducing points than the optimalm ≈ 80.
One can observe that in this case the variational posterior mean is overly smooth, although
still gives a reasonable estimate of f0. The main difference when considering insufficiently
many inducing variables, is that the variational posterior overestimates variance. Here,
too, the variational Bayes method provides overly conservative, way too large credible sets
compared to the true posterior.

−2 −1 0 1 2

0.5

0

−0.5

f0

Figure 4: plot of f0 = |x+ 1|α − |x+ 3/2|α for α = 0.8
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Figure 5: True and variational posterior and credible regions for squared exponential prior
and m = 80 inducing variables from method 2

−2 −1 0 1 2
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−0.5
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variational posterior

Figure 6: True and variational posterior and credible regions for squared exponential prior
and m = 40 inducing variables from method 2

8. Conclusion

In this paper we consider the inducing variables variational Bayes method for GP regression
and determine sufficient conditions under which the variational approximation achieves the
same contraction rate as the original posterior. As examples we consider three commonly
used priors and two choices of inducing variables obtained from spectral decompositions
and determine a lower bound on the number of inducing variables, which is sufficient for
achieving optimal (minimax) contraction rates for the corresponding variational posterior.

The numerical experiments show that credible regions based on the variational posterior
are wider than those associated with the true posterior when too few inducing variables
are chosen, providing overly conservative uncertainty statements. Nevertheless this suggests
that reliable uncertainty quantification should also carry over from the true to the variational
posterior, even if the variational approximations are too sparse. If the original credible
regions can “capture” the true regression function with P0-probability tending to one, then
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so will variational credible regions. A natural next step is to substantiate these experimental
results by theory.

Besides the two choices of inducing variables discussed in this paper, inducing point
methods that fall within our framework, simply by taking inducing variables of the form
uj = f(zj) for points zj ∈ X . Burt et al. (2020) discuss several methods for selecting the
inducing points zj and obtain bounds on the KL-divergence between the true and variational
posterior. It would be interesting to see, by means of an application of Theorem 2, what the
minimal number of inducing points has to be in order for these methods to yield optimal
contraction rates.
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Appendix A. Theory of contraction rates

In this section we provide a brief summary of the frequentist theory of contraction rates for
Gaussian Process priors, tailored to our setting. First we start with a general contraction
rate result for (nonparametric) posterior distributions. It is a slightly modified version of
Theorem 8.9 of Ghosal and van der Vaart (2017) (which also directly follows from their
proof), similar to the original statement that appeared in the seminal paper by Ghosal et al.
(2000), but simplified and adapted to our setting. It makes use of the so-called covering
number (or entropy)

N(ε,F , dH), (36)

which is the minimal number of dH-balls of radius ε required to cover the set F ⊂ L2(X , G).

Lemma 12 Suppose that there exists a sieve F ⊂ L2(X , G), a constant C > 0, and a
sequence of postive numbers εn with nε2n →∞, such that

Π(f : ‖f − f0‖2,G < εn) ≥ exp(−Cnε2n), (37)

logN(εn,F , dH) . nε2n, (38)

Π(Fc) ≤ exp(−(C + 4)nε2n). (39)

Then there exists an event An such that P0(An)→ 1, and

E0 Π(f : dH(f, f0) ≥Mnεn | x,y)1An . exp(−C2nε
2
n)

holds for some C2 > 0, and, consequently, the posterior distribution contracts at the rate εn.

The above lemma can be summarised as follows: the posterior contraction rate at f0

is εn if the prior puts sufficient mass on εn-balls around f0, and the parameter space can
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be divided into two sets, of which one has log-entropy of order nε2n, and the other attains
exponentially small prior mass.

The original statement of this result differs in two ways from ours. Firstly, the original
condition (37) uses KL-divergence and KL-variation instead of the L2-norm ‖ · ‖2,G. In our
case the statements are equivalent since these are of the same order (see Lemma 2.7 in Ghosal
and van der Vaart, 2017). Secondly, the original theorem includes a testing condition, which
holds in our case due to the use of the Hellinger distance. For details we refer to Appendix
D of Ghosal and van der Vaart (2017).

For GP priors the contraction rate can be characterised by the concentration function
inequality (10), since it replaces the conditions of Lemma 12. Indeed, suppose that (10)
holds for some εn → 0 with nε2n → ∞. Theorem 2.1 in van der Vaart and van Zanten
(2008b) applied to the Banach space L2(X , G) with norm ‖ · ‖2,G yields a sieve F such that
(37) and (39) hold, and moreover,

logN(εn,F , ‖ · ‖2,G) . nε2n. (40)

This means there is a bound for a covering number with respect to a different metric. But
the elementary inequality 1 − e−u ≤ u applied to (7) shows that the Hellinger distance dH

is bounded by the L2-norm ‖ · ‖2,G up to a multiplicative constant, so the covering number
in condition (38) is bounded by a constant multiplied by the covering number in (40). This
means all conditions of Lemma 12 are satisfied and so Lemma 1 is proved.

To connect the contraction rates of the true and variational posterior in the proof of
Theorem 2, we use the following result, which is Theorem 5 of Ray and Szabo (2021).

Lemma 13 Let Fn be a measurable subset of the parameter space L2(X , G), An be an event,
and Q a distribution for f . If there exist C, δn > 0 such that

E0 Π(Fn | x,y)1An ≤ Ce−δn ,
then

E0Q(Fn)1An ≤
2

δn

(
E0DKL(Q ‖Π( · | x,y))1An + Ce−δn/2

)
.

Although this theorem was applied in context of a high-dimensional parameter space in
Ray and Szabo (2021), the result holds for general (possibly infinite-dimensional) parameter
spaces, hence can be applied in our setting as well.

Appendix B. The concentration function inequality for the squared
exponential prior

We provide the lemmas used in the proof of Lemma 8. The first lemma deals with the
L2(X , G)-entropy of the unit ball Hb

1 of the RKHS of the squared exponential process with
length scale b. Recall that N is defined in (36).

Lemma 14 Let f be the squared exponential process with covariance function (32) and
suppose that G satisfies the sub-Gaussian tail bound (33). There exist a constant K > 0
such that for all small enough ε > 0, the logarithm of the covering number satisfies

logN(ε,Hb
1, ‖ · ‖2,G) ≤ Kb−d

(
log

1

ε

)κ
,
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where κ = 1 + 3d/2.

Proof Let µb(dλ) = (2π1/2/b)−d exp(−‖bλ‖2/4) dλ be the spectral measure of the process
f . By Lemma 4.1 of van der Vaart and van Zanten (2009) the RKHS of the process is the
collection Hb of (real parts of) all functions of the form

hψ(x) =

∫
ei〈λ,x〉ψ(λ)µb(dλ),

with ψ ∈ L2(µb), and ‖hψ‖Hb = ‖ψ‖L2(µb). By Cauchy-Schwarz and the fact that µb(B) =

µ1(bB) all functions in the RKHS unit ball Hb
1 are uniformly bounded by C =

√
µ1(Rd). It

follows that for h1, h2 ∈ Hb
1 and a > 0 we have

‖h1 − h2‖2,G ≤ sup
‖x‖≤a

|h1(x)− h2(x)|+
√

2C
√
G(x : ‖x‖ > a).

The assumption (33) of sub-Gaussian tails implies that for a a large enough multiple of√
log(1/ε) we have G(x : ‖x‖ > a) ≤ ε2/(2C2), so that

logN
(

2ε,Hb
1, L

2(X , G)
)
≤ logN(ε,Hb

1, `
∞[−a, a]).

By Lemma 4.5 of van der Vaart and van Zanten (2009) the entropy on the right is bounded
by a constant times (a/b)d(log(1/ε))1+d.

Using the well-known connection between the entropy of the RKHS unit ball and the
small ball probabilities of a centered Gaussian process as in Lemma 4.6 of van der Vaart
and van Zanten (2009), we obtain the following small ball estimate from Lemma 14.

Lemma 15 Let f be the squared exponential process with covariance function (32) and
suppose that G satisfies the sub-Gaussian tail bound (33). There exist a constant K > 0
such that for all small enough ε > 0

− log Π(f : ‖f‖2,G ≤ ε) ≤ Kb−d
(
− log(bε)

)κ
,

where κ = 1 + 3d/2.

The following lemma deals with the approximation term in the concentration function
(9). It follows from the proof of Lemma 4.3 of van der Vaart and van Zanten (2009).

Lemma 16 Let f be the squared exponential process with covariance function (32) and
suppose that G satisfies the sub-Gaussian tail bound (33). Let Hb be the RKHS of f . If
f0 ∈ L2(Rd) ∩ Cα(Rd) for α > 0, then there exist constants K1,K2 > 0 such that

inf
h∈Hb:‖h−f0‖2,G≤K1bα

‖h‖2Hb ≤ K2b
−d

for all b > 0 small enough.
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