
Journal of Machine Learning Research 24 (2023) 1-49 Submitted 12/19; Revised 8/22; Published 4/23

On the Convergence of Stochastic Gradient Descent with
Bandwidth-based Step Size

Xiaoyu Wang wxy@lsec.cc.ac.cn
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100190, China
University of Chinese Academy of Sciences
No.19A Yuquan Road, Beijing 100049, China

Ya-xiang Yuan yyx@lsec.cc.ac.cn

State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics

and Scientific/Engineering Computing, Academy of Mathematics and Systems Science

Chinese Academy of Sciences

Beijing 100190, China

Editor: Simon Lacoste-Julien

Abstract

We first propose a general step-size framework for the stochastic gradient descent(SGD)
method: bandwidth-based step sizes that are allowed to vary within a banded region. The
framework provides efficient and flexible step size selection in optimization, including cycli-
cal and non-monotonic step sizes (e.g., triangular policy and cosine with restart), for which
theoretical guarantees are rare. We provide state-of-the-art convergence guarantees for
SGD under mild conditions and allow a large constant step size at the beginning of train-
ing. Moreover, we investigate the error bounds of SGD under the bandwidth step size where
the boundary functions are in the same order and different orders, respectively. Finally, we
propose a 1/t up-down policy and design novel non-monotonic step sizes. Numerical exper-
iments demonstrate these bandwidth-based step sizes’ efficiency and significant potential
in training regularized logistic regression and several large-scale neural network tasks.

Keywords: stochastic gradient descent, bandwidth-based step size, non-asymptotic con-
vergence, non-monotonic step size, machine learning

1. Introduction

We consider the following stochastic optimization problem

min
x∈Rd

f(x) = Eξ∼Ξ[f(x; ξ)], (1)

where ξ is a random variable drawn from an unknown source distribution Ξ and f(x; ξ) is the
instantaneous loss function over the variable x ∈ Rd . This problem is often encountered
in machine learning and statistics and attracts much attention along with big data and
artificial intelligence. The corresponding empirical risk problem is to minimize f(x) =
1
n

∑n
i=1 f(x; ξi), where each ξi (i ∈ {1, 2, . . . , n}) denotes a realization of ξ.
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The stochastic gradient descent (SGD) algorithm (Robbins and Monro, 1951) is widely
used to solve the machine learning problem (1). The iterates of SGD are given by

xt+1 = xt − η(t)gt, (2)

where η(t) > 0 is step size and the stochastic gradient gt is an unbiased estimator of its true
gradient ∇f(xt)(i.e., E[gt | Ft1] = ∇f(xt)). However, its performance is highly dependent
on the choice of step size due to the natural noise from the stochastic gradient. In this
paper, we investigate the performance of the SGD algorithm defined in (2) under a general
class of step size (possibly non-monotonic).

1.1 Theoretical Analysis of SGD Under Various Step Sizes

The asymptotic results of SGD are given in (Chung, 1954; Leen and Orr, 1994; Leen et al.,
1998). Leen and Orr (1994) analyzed the asymptotic properties around the locally optimal
solution x∗ with η(t) = η0/t and show that if η0 > 1/(2λmin) (λmin is the smallest eigenvalue
of ∇2f(x∗)), the error E[∥xt − x∗∥2] has order O(1/t), which is an optimal (minimax)
rate (Polyak and Juditsky, 1992; Agarwal et al., 2009; Ghadimi and Lan, 2012).

Recently, the focus has been shifted to studying the non-asymptotic convergence results.
Moulines and Bach (2011) established the convergence rate of SGD for a class of step sizes
η(t) = η0/t

p for p ∈ (0, 1]. For strongly convex and L-smooth functions, SGD exhibits an
optimal error bound O(1/T ) (T is the total number of iterations) with η(t) = η0/t (Moulines
and Bach, 2011; Rakhlin et al., 2012; Nguyen et al., 2019b). However, the results become
complicated if the function is not L-smooth. The best known result on the last iterate
is E[f(xT ) − f(x∗)] ≤ O(log T/T ) with η(t) = 1/(µt) (Shamir and Zhang, 2013), which
is proved to be tight by (Harvey et al., 2019). Many averaging techniques such as suffix
averaging (Rakhlin et al., 2012) and polynomial-decay averaging (Shamir and Zhang, 2013;
Lacoste-Julien et al., 2012) are incorporated into SGD and obtain an optimal O(1/T ) rate.
Hazan and Kale (2014) achieved an O(1/T ) convergence rate by exponentially decreasing
the step size after a consecutive period which grows exponentially, and adopting a simple
modification where the inner iterations are averaged as an output. Jain et al. (2019) designed
the piece-wise decay step size with the form of O(1/t) per period and obtained an optimal
error bound E[f(xT )− f(x∗)] ≤ O(1/T ) on the last iterate. But for non-smooth problems,
these papers rely on the uniform boundedness of stochastic gradient (i.e.,E[∥gt∥2] ≤ G2).
This restricts the trajectory of the iterates to be bounded (see Section 2 for details).

The step decay schedule (constant and then cut) has attracted much interest due to its
excellent performance in training deep neural networks (Ge et al., 2019; Li et al., 2021).
Ge et al. (2019) analyzed a step decay step size which decays exponentially after T/ log T
iterations and achieved a near-optimal O(log T/T ) convergence rate for least squares prob-
lems. Li et al. (2021) proposed a continuous step decay schedule and proved a near-optimal
convergence rate under the Polyak-Lójasiewicz condition and smoothness.

To the best of our knowledge, there are many other efficient (possibly non-monotonic)
step sizes preferred in deep learning, e.g., adaptive methods (Duchi et al., 2011; Tieleman
and Hinton, 2012; Zeiler, 2012; Kingma and Ba, 2015; Loizou et al., 2021), Barzilai-Borwein
based (Tan et al., 2016; Yang et al., 2018), line-search based (Keskar and Saon, 2015;

1. We use Ft to denote σ-algebra of the random information at iteration t.
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Vaswani et al., 2019b), cyclical learning rate (step size) (Smith, 2017; Loshchilov and Hutter,
2017; An et al., 2017). Some recent works (Oymak, 2021; Goujaud et al., 2022) show that
the gradient-based algorithms under cyclical step sizes have a faster convergence for a class
of functions whose Hessian spectrum has special structures.

1.2 Motivation

In this paper, we focus on the non-asymptotic convergence of the SGD method in which
the step size {η(t)} varies in a bounded region rather than any fixed schedules. The lower
and upper bounds of the region are defined by two monotonic but non-increasing functions
δ1(t) and δ2(t) w.r.t. the iteration number t. More specifically, we assume there exist two
positive constants m ≤M such that

mδ1(t) ≤ η(t) ≤Mδ2(t), ∀ t ≥ 1, (BD)

and dδ1(t)/dt ≤ 0 and dδ2(t)/dt ≤ 0. Especially, when δ1(t) = δ2(t) = 1/t, we call it
1/t-band. Such an idea is originally motivated by the piece-wise decay and step-decay step
sizes (Hazan and Kale, 2014; Jain et al., 2019; Ge et al., 2019), which is a step function
whose graph consists of some line segments lying within two curves (i.e., their lower and
upper bounds). The diminishing step size η(t) = η0/t, piece-wise decay step size proposed
by Jain et al. (2019), and step-decay step size in Hazan and Kale (2014) can be regarded
as the special cases of 1/t-band.

Dauphin et al. (2014) pointed out that a great obstacle to minimizing deep neural
networks with high possibility arose from saddle points instead of poor local minima. The
proposed non-monotonic scheduling (BD), admitting some intermediate increase in step
size, might help rapidly traverse the saddle points and find flat minima. Smith (2017)
described a type of cyclical learning rate (step size) that varied within a band of minimum
and maximum values and showed the potential benefits of training deep neural networks.
Similarly, An et al. (2017) proposed a sine-wave learning rate framework. Their boundaries
decay exponentially after a few fixed epochs. The policy lets the step size locally vary within
a reasonable band. Although their mechanisms might have a short-term negative effect, it
is beneficial overall.

Another motivation comes from the constant step size, which achieves linear convergence
to the neighborhood of the optimal solution with constant noise (Gower et al., 2019). As
long as the iterates are not diverging, a relatively larger constant step size can achieve a
faster linear convergence at the beginning but finally lead to a higher noise error (also see
Corollary 1 withM = m). One intuition is that we reach the upper bound of the bandwidth
step size in the early stages of training to speed up the convergence and then drop the step
size to touch the lower bound to reduce the noise error. We give a simple example in
Corollary 1 to address how this bandwidth framework can be useful.

We are interested in the class of bandwidth-based step size described in (BD), which
gives us a lot of freedom and a novel insight to design more efficient step sizes in practice.
Although many specific and effective schedules are mentioned in Section 1.1, it is still a very
interesting and challenging topic to analyze the convergence properties of the SGD method
based on such a generic class of step size. Moreover, some popular step sizes, e.g., cyclical
learning rate (Smith, 2017; Loshchilov and Hutter, 2017; An et al., 2017), perform well in
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practice but lack non-asymptotic convergence guarantees. To overcome these limitations,
we explore their connections in theory and practice using the novel bandwidth-based step
size framework (BD).

1.3 Main Contributions

Inspired by the above potential benefits of this bandwidth-based framework, we are the
first to provide uniform convergence guarantees of SGD for strongly convex problems under
different classes of bandwidth step sizes and make the following contributions:

First, we explore a class of step sizes lying in a bandwidth-based region to achieve
state-of-the-art results E[∥xT+1 − x∗∥2] orE[f(x̂T 2) − f(x∗)] ≤ O(1/T ) on strongly convex
problems. The main results are briefly summarized in Table 1 and will come in Section 3
afterward. Specifically,

• We extend the typical 1/t stepsize (i.e., η(t) = η0/t) to 1/t-band which allows step
size to vary locally in any way and covers some interesting modes e.g., constant and
then cut (Hazan and Kale, 2014), triangular (Smith, 2017), and sine-wave (An et al.,
2017). The convergence results for 1/t-band are comparable to those of Moulines and
Bach (2011), Shamir and Zhang (2013) and Lacoste-Julien et al. (2012) for O(1/t)
step size. However, throughout the paper, we use a weak growth condition with noise
E[∥gt∥2] ≤ 4Lf (f(xt) − f∗) + 2σ2 where Lf > 0 is a constant (Nguyen et al., 2018;
Vaswani et al., 2019a), which is milder than the traditional L-smoothness (Moulines
and Bach, 2011), and the individual function is not needed to be convex.

• We relax the lower bound of 1/t-band, which is on average greater than (or equal
to) O(1/t). We also prove that the lower bound is essential to achieve an O(1/T )
rate if the upper bound is M/t. This covers the piece-wise decay step size proposed
by Jain et al. (2019). A relatively large step size often performs well at the beginning
of training from both theory and practice (Gower et al., 2019). We turn to extend
the upper bound of 1/t-band and provide theoretical guarantees for the policy which
allows the constant step size in initial iterations (see the last case of Table 1). Our
results demonstrate that there are wide classes of step sizes that can achieve a state-
of-the-art O(1/T ) rate beyond the classic 1/t-stepsize.

• In particular, the cyclical step sizes developed in Smith (2017); An et al. (2017);
Loshchilov and Hutter (2017), which lack convergence guarantees, can achieve the op-
timal O(1/T ) and near-optimal convergence rates by properly choosing their bound-
aries. We elaborate on the applications of the bandwidth framework for the cyclical
step sizes in Section 3.1.

Second, we provide unified worst-case convergence guarantees for a class of bandwidth
step size that δ1(t) = δ2(t) = δ(t). The results are briefly shown in Table 2 and will be
given in Section 4. Especially, in the degenerated case that η(t) = 1/tp (p ∈ (0, 1]), our
result is comparable to those in the prior literature (Moulines and Bach, 2011), while we

2. Here x̂T is a type of averaging of the previous iterations xt from t = 1, 2, · · · , T .
3. We use [C1T

p] to denote a positive integer set from 1 to C1T
p where C1 > 0 is a constant and p ∈ (0, 1).

This notation is also suited for [T ]
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δ1(t) δ2(t) Theorem

1/t 1/t 1∑T
t=t∗ δ1(t) ≥ O (ln ((T + 1)/t∗)) 1/t 3

1, for t ∈ [C1T
p]3 1, for t ∈ [C1T

p]
4

1/t, for t ∈ [T ]\[C1T
p] 1/t, for t ∈ [T ]\[C1T

p]

Table 1: The bandwidth step sizes in Section 3 to achieve E[∥xT+1 − x∗∥2] ≤ O(1/T )

use the weak growth condition on the stochastic gradient instead of L-smoothness for each
individual function. When limt→∞ δ(t)t = 0, our result is novel. This includes the case
that η(t) = O(1/(t ln t)) that has not been discussed before. In this analysis, we add a
new condition −dδ(t)/dt ≤ c1δ(t)

2 which clarifies “in the most general case” mentioned
in Nguyen et al. (2019a) and we give a more rigorous proof. Moreover, our analysis can
provide better upper bounds in some cases, such as η(t) = 1/

√
t and 1/(t log(t)) than those

of theorem 10 in Nguyen et al. (2019a).

Conditions E[∥xT+1 − x∗∥2] Theorem

δ1(t) = δ2(t)

limt→∞ tδ(t) = 1 O(1/Tµm) +O(1/T ) 1

limt→∞ tδ(t) = 0 O(exp(−µm
∑T

t=1 δ(t))) 5
= δ(t) limt→∞ tδ(t) = ∞ O(δ(t)) +O(exp(−µm

∑T
t=1 δ(t)))

δ1(t) ̸= δ2(t)

δ1(t) = 1/t
O(log2(T )/T ) 6

δ2(t) = log(t)/t

δ1(t) = 1/t
O(1/T 2α−1) 7

δ2(t) = 1/tα

δ1(t) = 1/(t log(t))
O(1/ log(T )µm) 8

δ2(t) = 1/tα

Table 2: A brief summary of convergence results in Sections 4 and 5 where µ is the strongly
convexity parameter and α ∈ (1/2, 1].

Third, we also discuss the cases of the lower and upper bounds being in different orders
(i.e., δ1(t) ̸= δ2(t)), listed in Table 2, and the main results are given in Section 5. The
theoretical results explore the connections between the band and its boundaries and broaden
the boundaries of the step size for analyzing the convergence behaviors of SGD.

Finally, we propose a 1/t up-down policy and design four non-monotonic step sizes
including 1/t Fix-period, 1/t Grow-period, 1/t Grow-Exp, and 1/t Fix-Exp. The proposed
bandwidth step size, e.g., 1/t Fix-period and 1/t Grow-period, have potential benefits due
to the larger enclosed area of their graph compared to their baseline (see Remark 6).
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• We test regularized logistic regression and some nonconvex problems (e.g., deep neural
networks, VGG-16 (Simonyan and Zisserman, 2015) and ResNet-18 (He et al., 2016))
on the real data sets (MNIST, CIFAR-10, and CIFAR-100). Numerical experiments
demonstrate the efficiency of these bandwidth step sizes compared to their baselines:
η(t) = η0/t and exponential decaying step size (Hazan and Kale, 2014), respectively.

• We implement the bandwidth-based step sizes with other default algorithms in deep
learning, e.g., averaged SGD (Polyak and Juditsky, 1992), SGD with momentum
(Polyak, 1964; Sutskever et al., 2013) and Adam (Kingma and Ba, 2015). The results
show that the proposed 1/t up-down policy and these step sizes also work for averaged
SGD and momentum acceleration. Moreover, we compare the proposed step size
strategies to other popular step sizes, such as triangular policy (Smith, 2017) and
cosine annealing (Loshchilov and Hutter, 2017). A great potential is shown when the
step size satisfies the bandwidth, especially for nonconvex optimization.

Organization: in Section 2, we present some necessary definitions and lemmas used in the
downstream analysis. In Section 3, we investigate the conditions for the bandwidth-based
step size of SGD to achieve the O(1/T ) convergence rate. Section 4 discusses the scenario
where the ending points of the bandwidth step size are in the same order, which covers most
cases we met. Section 5 considers the situation where the bands have different lower and
upper boundaries. In Section 6, we perform numerical experiments based on bandwidth for
the proposed step sizes. Then we make a conclusion in Section 7.
Notation. Let x∗ be the unique minimizer of f , that is x∗ = argminx∈Rd f(x). We use Ft
to denote σ-algebra of the random information at t-th iteration. In default, the expectation
is taken with respect to the source distribution Ξ, that is E[·] = EΞ[·] := Eξ∼Ξ[·]. Other
notations include: ∥·∥:= ∥·∥2; [n] = {1, 2, . . . , n}; [n]\[n1] = {n1 + 1, n1 + 2, . . . , n} for any
n1 < n ∈ N.

2. Preliminaries

This part will give some definitions and basic lemmas used in the later sections.

Assumption 1 (µ-strongly convex) The objective function f(·) : Rd 7−→ R is µ-strongly
convex if there exists a constant µ > 0 such that

f(x)− f(x̂) ≥ ⟨∇f(x̂), x− x̂⟩+ µ

2
∥x− x̂∥2 , (3)

for all x, x̂ ∈ Rd.

Note that f(x; ξ) for each ξ is not guaranteed convex even when we assume that f(x)
is µ-strongly convex.

Assumption 2 (Unbiased gradient estimator) For any input vector x, the stochastic gra-
dient oracle returns a vector g ∈ Rd such that E[g] = ∇f(x).

Next, we assume the stochastic gradient gt of the SGD formula in (2) satisfies the
following assumption, which is a direct consequence of expected smoothness (Gower et al.,
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2020) if the noise E[∥∇f(x∗; ξ)∥2)] for each ξ ∈ Ξ is finite. When σ = 0, the inequality (4)
is known as the weak growth condition (Vaswani et al., 2019a). We may also call it a weak
growth condition with noise.

Assumption 3 There exists a constant Lf > 0 such that

E[∥g∥2] ≤ 4Lf (f(x)− f(x∗)) + 2σ2. (4)

The definition of expected smoothness in Gower et al. (2020) is about the individual
functions w.r.t a distribution. Here we make the assumption on the stochastic gradient gt,
which is usually computed by some mini-batch strategies on the individual functions.

Uniformly bounded gradient. The assumption of uniformly bounded gradient (i.e.,
E[∥gt∥2] ≤ G2 for some fixed G > 0) is used in some recent papers (Shamir and Zhang, 2013;
Rakhlin et al., 2012; Hazan and Kale, 2014; Jain et al., 2019). However, this is clearly false
if f is strongly convex, which has been pointed out by Nguyen et al. (2018); Leblond et al.
(2018). If f is µ-strongly convex and E[∥gt∥2] ≤ G2, by Jensen inequality in expectation
that ∥E[X]∥2 ≤ E[∥X∥2], we have

µ2 ∥xt − x∗∥2 ≤ 2µ(f(xt)− f(x∗)) ≤ ∥∇f(xt)∥2 = ∥E[gt]∥2 ≤ E[∥gt∥2] ≤ G2.

In this case, f(xt) − f(x∗) and ∥xt − x∗∥2 should be bounded on the whole space Rd.
However, this leads to a contradiction when ∥xt − x∗∥ is sufficiently large. Thus we assume
the stochastic gradient of SGD satisfies Assumption 3 (Gower et al., 2020; Nguyen et al.,
2018) rather than uniformly bounded.

L-smooth property vs expected smoothness. Suppose that f is µ-strongly convex.
By (5), the L-smooth property used in Moulines and Bach (2011)

∥∇f(x; ξ)−∇f(x∗; ξ)∥2 ≤ L2 ∥x− x∗∥2 ≤ 2L2

µ
[f(x)− f∗], (5)

implies expected smoothness with Lf = L2/µ (assume E[∥∇f(x∗; ξ)∥2] is a finite constant),
but the opposite does not hold (see Nguyen et al. (2019a)). Moreover, if f is convex and
L-smooth, the expected smoothness assumption can be satisfied with Lf = 2L, but the
opposite is not true. Indeed, example 2.2 of Gower et al. (2019) shows that Assumption 3
holds even when f(x; ξ) or f is not convex.

Lemma 1 Suppose that f is µ-strongly convex then

⟨∇f(x), x− x∗⟩ ≥ f(x)− f(x∗) +
µ

2
∥x− x∗∥2 , for x ∈ Rd. (6)

All proofs of the lemmas in this section are provided in Appendix A.

Lemma 2 Suppose that the objective function f satisfies Assumption 1. Considering the
SGD method defined by (2) where the stochastic gradient gt satisfies Assumptions 2 and 3,
we have E[∥xt+1 − x∗∥2 | Ft] is at most

(1− µη(t)) ∥xt − x∗∥2 + 2η(t)2σ2 + (4Lfη(t)
2 − 2η(t))[f(xt)− f(x∗)]. (7)
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Besides, let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )} and fn0 := max
1≤t≤n0

{f(xt)− f(x∗)}. If n0

is a finite constant and is independent of T (the budget of the iteration t), then for t > n0,
we have E[∥xt+1 − x∗∥2] is at most

exp

(
−µ

t∑
l=1

η(l)

)
∆0
n0

+ 2σ2
t∑
l=1

η(l)2 exp

(
−µ

t∑
u>l

η(u)

)
, (8)

where ∆0
n0

= ∥x1 − x∗∥2 + n0χn0fn0

exp(−µ
∑n0

l=1 η(l))
and χn0 = max

1≤t≤n0

{
4Lfη(t)

2 − 2η(t)
}
.

In Lemma 2, we propose a unified analysis framework for the SGD algorithm under
strong convexity and weak growth condition with noise which is milder than L-smooth used
in Moulines and Bach (2011). Different from Gower et al. (2019); Nguyen et al. (2019a),
in Lemma 2, we do not require the step size to be equal to or smaller than 1/(2Lf ) for
all iterations but allow it to be larger than 1/(2Lf ) at the initial and finite n0 iterations.
Therefore, such a framework is more flexible in dealing with general situations. For in-
stance, η(t) = 1/(µt) is larger than 1/(2Lf ) in the first few iterations. We will address the
motivation of introducing n0 in Remark 1.

Remark 1 (Justification of n0) In the strongly convex case, the optimal rate O(1/T ) of
SGD can be achieved when the step size η(t) = 1/(µt) (Moulines and Bach, 2011; Shamir
and Zhang, 2013). However, this step size may not satisfy η(t) ≤ 1/(2Lf ) at the first few
iterations n0 = 2Lf/µ > 1. To avoid this potential conflict, Lemma 2 allows the step size to
be larger than 1/(2Lf ) at the first n0 iterations and assumes that n0 is a finite constant and
independent on T . The restriction on n0 can be easily guaranteed by the commonly used step
sizes. For example, the polynomial diminishing step size η(t) = η0/t

p (p ∈ (0, 1]), which
finally decreases to zero, obviously satisfies the restriction of n0 when n0 = ⌈(2η0Lf )1/p⌉
with sufficient large T ≥ n0.

Remark 2 For simplicity, let

Γ1
T := exp

(
−µ

T∑
l=1

η(l)

)
∆0
n0
, (9a)

Γ2
T := 2σ2

T∑
l=1

η(l)2 exp

(
−µ

T∑
u>l

η(u)

)
. (9b)

From Lemma 2, let t = T , we have

E[∥xT+1 − x∗∥2] ≤ Γ1
T + Γ2

T . (10)

Based on (10), the upper bound of E[∥xT+1 − x∗∥2] is divided into two parts Γ1
T and Γ2

T .

Once the summation
∑T

l=1 η(l) is evaluated, Γ1
T can be easily estimated by (9a). There-

fore, the challenge of the following analysis for different bandwidth step sizes falls on the
evaluation of Γ2

T .
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As shown by Lemma 2, the error bound of E[∥xT+1 − x∗∥2] is determined by two error
terms Γ1

T and Γ2
T . Clearly, the optimization error Γ1

T will decay faster for some larger step

sizes whose graph encloses larger area (i.e.,
∑T

t=1 η(t)). In the bandwidth-based step size
scenario, this implies that the upper boundMδ2(t) is faster than the lower bound mδ1(t) in
reducing the optimization error Γ1

T . However, this does not indicate that the upper bound
η(t) =Mδ2(t) always performs better than the lower bound η(t) = mδ1(t), especially when
the noise error term Γ2

T leads the bound of (10). We give a specific example of the bandwidth
constant step size (δ(t) = 1) to show its advantages over the constant step size η(t) = η > 0.

Corollary 1 (A motivating example of the bandwidth-based step size) Under the conditions
of Lemma 2, we consider the step size η(t) = M for t ∈ [1, T/2) and η(t) = m for t ∈
[T/2, T ] where 0 < m ≤M ≤ 1/(2Lf ), then for T ≥ 1, we have E[∥xT+1 − x∗∥2] is at most

exp

(
−µ(m+M)T

2

)
∥x1 − x∗∥2 + 2σ2m

µ
+ 2σ2

M −m

µ
exp

(
−µmT

2

)
.

Let M = m = η, and then the above corollary recovers the result for constant step size,
which linearly converges to the neighborhood of the solution with a constant noise (see
theorem 3.1 of (Gower et al., 2019)). As we can see, a relatively large constant step size
(η = M) is faster in reducing the optimization error but gives rise to a large noise error
2σ2M/µ. The example provided in Corollary 1 gives us the first intuition that we can
choose the upper bound η(t) = M at the beginning to achieve the faster convergence but
finally reduce the noise error Γ2

T by hitting the lower bound η(t) = m.

3. Non-Asymptotic Analysis of SGD for An Optimal Convergence Rate

In this section, we will first analyze the non-asymptotic convergence rate of the classical
SGD algorithm where the step size η(t) satisfies the following conditions

(A) there exists a constant m > 0 such that η(t) ≥ m
t ,

(B) there exists a constant M ≥ m such that η(t) ≤ M
t .

This is a special case of (BD) with δ1(t) = δ2(t) = 1/t. The step size under these conditions
is more general and possibly non-monotonic compared with the common choice η(t) =
η0/(a+t) (Rakhlin et al., 2012; Moulines and Bach, 2011; Shamir and Zhang, 2013; Lacoste-
Julien et al., 2012; Bottou et al., 2018; Gower et al., 2019).

The natural questions arising are the convergence of SGD and, if the convergence holds,
the corresponding convergence rate (e.g., O(1/T ) rate). It is easy to see that SGD converges
under (A) and (B) since they satisfy the well-known conditions (1′)

∑∞
t=1 η(t) = ∞ and

(2′)
∑∞

t=1 η(t)
2 <∞ given by Robbins and Monro (1951). The remaining question is which

cases can ensure that SGD obtains the optimal O(1/T ) convergence rate under condition
(BD). Here the optimal rate under (BD) means the state-of-the-art O(1/T ) convergence
rate, not the best results achieved w.r.t. bandwidth (BD). All proofs in this section are
given in Appendix B.
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Theorem 1 Let Assumptions 1, 2, and 3 hold. We consider the step size η(t) satisfy the
conditions (A) and (B) for all 1 ≤ t ≤ T and let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. After
at most T > n0 iterates, we have

E[∥xT+1 − x∗∥2] ≤



∆0
n0

(T+1)µm +O
(

M2σ2

(T+1)µm

)
if m < 1

µ ;

∆0
n0

T+1 +O
(
M2σ2 · lnT

T+1

)
else if m = 1

µ ;

∆0
n0

(T+1)(µm) +O
(
M2σ2

T+1

)
elsem > 1

µ .

where ∆0
n0

has the same definition as Lemma 2.

First, we would like to clarify what this finite constant n0 in Theorem 1 is. Under
conditions (A) and (B), to make sure that η(t) ≤ 1/(2Lf ) after n0 iterations, we let n0 ≥
2MLf+1. We might as well set n0 = 2MLf+1 which is a finite constant and then choose a
sufficiently large budget T > n0. Especially, if m > 1/µ, then n0 = 2MLf +1 > 2Lf/µ+1.

Theorem 1 provides the unified worst-case convergence guarantees for all step sizes
belonging to 1/t-band. It reveals the variation of the convergence rates with the coefficient
m of the lower bound δ1(t). When m > 1/µ, an optimal O(1/T ) convergence rate of SGD
under strong convexity is obtained, which is comparable to that of Moulines and Bach
(2011). Still, the weak growth condition on the gradient is milder than L-smooth used in
Moulines and Bach (2011), and each individual function is not necessarily to be convex.
Note that m = 1/µ is a special case that achieves a near-optimal O(ln(T )/T ) convergence
rate. Besides, if m < 1/µ, it greatly slows down the convergence of SGD with the rate
O(1/Tµm). Thus the value of m is critical. The similar behaviors have been also observed
in Leen and Orr (1994); Nemirovski et al. (2009); Moulines and Bach (2011) for η(t) = η0/t.

We then give a specific example of 1/t-band to show its theoretical potential benefits
compared to the typical step size η(t) = η0/t.

Corollary 2 (A special example of 1/t-band) Under the same conditions as Theorem 1, we
consider the step size η(t) = M/t for t ∈ [1, T/2) and η(t) = m/t for t ∈ [T/2, T ] where
1/µ < m ≤M , then

E[∥xT+1 − x∗∥2] ≤
∆0
n0

2µ(m−M)TµM
+

2σ2m2

µm− 1
· 1
T

+

(
M2

µM − 1
− m2

µm− 1

)
2σ2

T2µm−1

Let m =M = η0, we then recover the convergence O
(
∆0
n0
/T (µη0) + σ2η20/T

)
for η(t) =

η0/t (Moulines and Bach, 2011). In the noise-less setting (σ2 = 0), the upper bound
η(t) =M/t is fastest among the 1/t-band in converging to the solution with an O(1/TµM )
rate. However, it is incorrect in the noise setting where the noise error term (w.r.t. σ2)
finally dominates the convergence. In turn, a larger M results in a larger constant factor
M2 of the noise error. For m > 1/µ, the constant factor with respect to σ2 in Corollary 2
is smaller than the constant 2M2/(µM − 1) achieved by the upper bound M/t, i.e.,

2σ2m2

µm− 1
+

(
M2

µM − 1
− m2

µm− 1

)
2σ2

2µm−1
<

2M2σ2

µM − 1
.
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This example in Corollary 2 makes a compromise that the step-size first reaches the upper
bound M/t which can accelerate the convergence at the beginning, and then moves to the
lower bound m/t to reduce the noise error.

Theorem 2 Let Assumptions 1, 2, and 3 hold. We consider the step size η(t) to satisfy
the conditions (A) and (B) for all 1 ≤ t ≤ T . Let n1 := sup {t ∈ N+ : η(t) > 1/(4Lf )} and
fn1 = max1≤t≤n1 {f(xt)− f(x∗)}. If m ≥ 1/µ, for T > n1, we have that E[f(x̂T ) − f(x∗)]
is bounded by

O
(

∆0
n1

T (T + t0)
+

fn1

T (T + t0)
+
M2σ2

mT
+
M2σ2

m

lnT

T (T + t0)

)
(11)

where x̂T =
∑T

t=1(t+t0)xt
S1

, t0 ∈ N, S1 = T (T+t0)(t0+1)
2 , ∆0

n1
= ∥x1−x∗∥2

(n1+1)µm + 4σ2M2 + n1χn1fn1.

Moreover, we derive the error bound for 1/t-band on the functions values of order
O(1/T + ln(T )/T 2), which is comparable to those of Rakhlin et al. (2012); Lacoste-Julien
et al. (2012); Shamir and Zhang (2013) using similar averaging techniques (see Remark
3) for 1/t-stepsize. However, we use the much-relaxed growth condition (Assumption 3)
instead of the uniform boundedness of stochastic gradient which is troublesome when the
iterates are not restricted to be bounded (Rakhlin et al., 2012; Lacoste-Julien et al., 2012;
Shamir and Zhang, 2013; Hazan and Kale, 2014). From (11), we know that the noise error
(related to σ2) depends on M2/m. Compared to Theorem 1 (when m > 1/µ), we find that
if M ≈ m, the averaging technique reduces the dependence of M from quadratic to linear.

Remark 3 (Other averaging techniques) In (11), for any T > 0, let x̂T =
∑T

t=1 α(t)xt,
where α(t) = (t+ t0)/S1, we have

α(t)

α(t+ 1)
=

t+ t0
t+ t0 + 1

.

If t0 = 1, the weight scheme in (11) is exactly the same as Lacoste-Julien et al. (2012). For
different t0 > 1, x̂T produces a generalized weighted average iterate, different from those
in Lacoste-Julien et al. (2012) and Shamir and Zhang (2013). We can see that for fixed
0 < t < T , the ratio between the weights α(t)/α(t + 1) = t/(t + η) (Shamir and Zhang,
2013) is smaller than (t+ t0)/(t+ t0 + 1) if η ≥ 1 and t0 ≥ 1. This means that the weight
of (11) from t to t − 1 decays slower than that in Shamir and Zhang (2013). Moreover, if
α(t) = (t+ t0)

k/
∑

t(t+ t0)
k for some k ∈ N+, we have

α(t)

α(t+ 1)
=

(t+ t0)
k

(t+ t0 + 1)k
.

This form is actually equivalent to that of Shamir and Zhang (2013), and the integer k
corresponds to η. These averaging techniques are also related to the tool of factorial powers
proposed in Defazio and Gower (2021).

We further relax the lower or upper bound of η(t) and figure out in which cases the
state-of-the-art O(1/T ) convergence rate can also be obtained. To better understand how
the lower or upper bound affects the convergence rate, we only change one of them at one

11
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time. In general, if we fix the upper bound δ2(t), the lower bound of η(t) can be extended to
(A1) (see Theorem 3). Moreover, in Remark 4, we reveal that the condition (A1) is essential
to reach the optimal O(1/T ) convergence rate.

Theorem 3 Suppose that Assumptions 1, 2, and 3 hold. We consider the step size η(t)
satisfy the following conditions

(A1) there exists a constant C > 0 such that for all t∗ ∈ {1, 2, · · · , T}, we have

T∑
t=t∗

η(t) ≥ C ln

(
T + 1

t∗

)
; (12)

(B) there exists a constant M > 0 such that η(t) ≤ M
t for all 1 ≤ t ≤ T .

Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. If C > 1/µ, for t > n0, we have E[∥xT+1 − x∗∥2]
is at most

∆0
n0

(T + 1)(µC)
+O

(
σ2M2

µC − 1
· 1

T + 1

)
.

The theorem shows that if the upper bound δ2(t) is of order 1/t, the lower bound of
η(t) can be extended to be of order 1/t on average to obtain an O(1/T ) rate. Note that
condition (A1) does not require η(t) to be larger than C/t for all 1 ≤ t ≤ T . For example,
if η(t) is larger than m/t for t ∈ [1, αT ] where α ∈ (0, 1) and satisfies condition (B), we still
can derive an O(1/T ) bound for SGD under this step size.

Compared to the step size from Jain et al. (2019). The following piece-wise
decay step size which is modified by Jain et al. (2019) for strongly convex problems (see (4)
of Jain et al. (2019))

η(t) = 2−i · 1

µt
, for Ti < t ≤ Ti+1, Ti = T − ⌈T · 2−i⌉,

satisfies (A1) and (B). From Theorem 3, we are able to achieve an O(1/T ) rate measured
by E[∥xT+1 − x∗∥2], which is slightly weaker than that of Jain et al. (2019) measured by
functions values on the final iterate (E[f(xT )− f∗] ≤ O(1/T )). Jain et al. (2019) assumes
that the objective function is Lipschitz continuous (∥∇f(x)∥ is bounded) and the stochastic
gradient is bounded (a.s.). However, our assumption of the gradient is much weaker. As
we know, the 1/t-stepsize only achieves E[f(xT )− f∗] ≤ O(log T/T ) for non-smooth prob-
lems (Shamir and Zhang, 2013). Thus, the piece-wise example, in turn, indicates that the
bandwidth-based framework can be useful and has the potential to design a step size that
is better than the typical η(t) = η0/t step size. It is interesting to know whether we can
achieve E[f(xT )− f∗] ≤ O(1/T ) as Jain et al. (2019) under the general conditions (A) and
(B1). But to keep our focus, we will not give the analysis here and leave it to the future.

Remark 4 To analyze the convergence rate of SGD, the key step is to estimate Γ2
T defined

by (9b). If η(t) has an upper bound M/t for all 1 ≤ t ≤ T , we have

Γ2
T = 2σ2

T∑
t=1

η(t)2 exp

(
−µ

T∑
u>t

η(u)

)
≤ 2σ2M2

T∑
t=1

1

t2
· exp

(
−µ

T∑
u>t

η(u)

)
.

12
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Considering the partial summation of 1
t2
exp

(
−µ
∑T

u>t η(u)
)
from t∗ to T, for all 1 ≤ t∗ ≤

T , we have
T∑
t=t∗

1

t2
· exp

(
−µ

T∑
u>t

η(u)

)
≥

T∑
t=t∗

1

t2
· exp

(
−µ

T∑
u=t∗

η(u)

)
.

In order to achieve the convergence rate such that E[∥xT+1 − x∗∥2] ≤ O(1/T ), we have to
require that

2σ2M2
T∑
t=t∗

1

t2
· exp

(
−µ

T∑
u=t∗

η(u)

)
≤ O

(
1

T

)
.

Then

2σ2M2 exp

(
−µ

T∑
u=t∗

η(u)

)(
1

t∗
− 1

T

)
≤ O

(
1

T

)
=⇒

T∑
u=t∗

η(u) ≥ 1

µ
ln

(
T

t∗
− 1

)
+O(1).

Thus we see that condition (A1) in Theorem 3 is essential to achieve the optimal O(1/T )
convergence rate under condition (B).

A relatively large step size, as long as the iterate is stable, is often preferred in practice,
especially at the initial training (Huang et al., 2017; Loshchilov and Hutter, 2017). The
upper bound of p is always smaller than 1 for m > 1/µ and r ∈ (1/2, 1), so the value of
p is reasonable. A few attempts have been made by Gower et al. (2019); Allen-Zhu (2018)
to allow the constant step sizes at the earlier training. In the following theorem, the step
size η(t) is allowed to vary within a constant band whose lower and upper bounds consist
of two positive constants in the early C1T

p (p ∈ (0, 1)) iterations. After C1T
p iterations,

the step size turns to the second stage within a 1/t-band. For simplicity, we assume that
C1T

p is an integer.

Theorem 4 We assume that Assumptions 1, 2, and 3 hold. If the step size η(t) satisfies
the following conditions: there are some constants p ∈ (0, 1), C1 > 0, 0 < m1 ≤ M1,
0 < m2 ≤M2 such that

(A2) η(t) ≥ m1 for t ∈ [C1T
p] and η(t) ≥ m2

t for t ∈ [T ]\[C1T
p];

(B2) η(t) ≤M1 for t ∈ [C1T
p] and η(t) ≤ M2

t for t ∈ [T ]\[C1T
p].

Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. If κ = (µm2)(1−p) ≥ 1 and n0 is a finite constant
and is independent of T , then for T > n0, E[∥xT+1 − x∗∥2] is at most

O
(

∆0
n0

T (κ+p)

)
+O

(
M2

1σ
2

µm1T κ

)
+O

(
M2

2σ
2

T + 1

)
.

Let κ = (µm2)(1−p) ≥ 1, i.e., m2 ≥ 1/(µ(1−p)) for p ∈ (0, 1), we can achieve a unified
O(1/T ) convergence rate for a class of step-size that satisfies conditions (A2) and (B2).
Suppose that the constant n0 comes earlier than the turning point (i.e., n0 < C1T

p), to
ensure that η(t) ≤ 1/(2Lf ) after n0 iterates, we require that the total number of iterations
T is sufficient large such thatM2/(C1T

p) ≤ 1/(2Lf ), i.e., C1T
p ≥ 2M2Lf ≥ 2Lf/(µ(1−p)).
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We might as well let n0 ≤ 2M2Lf . By properly choosing the step size such that η(t) ≤
1/(2Lf ) for t ∈ [n0, C1T

p], then the constant n0 is well-defined.
When the iteration budget T is very large, for example, T ≫ (4K/C1)

1/p where K =
Lf/µ, we can see that C1T

p ≫ 4K, our result allows more iterations where the step size
can be a constant at the early stage of training, which extends the existing result of Gower
et al. (2019) only equipped with a constant step size at the initial 4K steps. Note that
Allen-Zhu (2018) proposes an algorithm SGDsc(a.k.a. SGD after SGD), in which the step
size η(t) = 1/(2L) for the initial ⌊T/2⌋ iterates, where L is the parameter of smoothness.
However, the output of each inner loop is an average of all inner iterates, which is different
from the SGD algorithm discussed in this paper. Thus we will not give a further comparison.

3.1 Guarantees for Cyclical Step Sizes

The last part of this section will address the applications of the bandwidth framework to
provide guarantees for the cyclical step sizes. We focus on the cyclical step size, which
repeats the same pattern (e.g., constant, triangular, cosine, sine-wave) at each cycle i ≥ 1,
given the budget of iteration T ≥ 1 and the length of each cycle Ti:

ηimin ≤ η(t) ≤ ηimax (13)

where t ∈ [1 +
∑i−1

l=1 Tl,
∑i

l=1 Tl],
∑

i Ti = T and each Ti ≥ 1.
Hazan and Kale (2014) proposed the piece-wise decay step size within the i-th run

η(t) = ηi =
ηi−1

2
, t ∈ [Ti, Ti+1), Ti+1 = 2Ti, (14)

where
∑

i Ti = T , T0 ≥ 1, and η(1) = η0. The step size drops half per cycle, but the period
Ti of each cycle doubles. Clearly, it satisfies the conditions (A) and (B) with m = T0η0/2
and M = T0η0. So we can obtain an O(1/T ) convergence rate for (14) (see Theorems 1
and 2) which is comparable to Hazan and Kale (2014) but under milder condition (we use
expected smooth rather than uniformly bounded gradient in (Hazan and Kale, 2014)). We
address one result derived from Theorem 1 below.

Corollary 3 Let k0 ≥ 1 be the stage number of (14) where n0 = T0(2
k0−1). To ensure that

η(t) ≤ 1/(2Lf ) after n0 iterations and m = η0T0/2 > 1/µ, we set k0 = 1+log2(4Lf/(µT0)).
Under the same setting as Theorem 1, for the SGD algorithm with step size (14), after
T > n0 iterations, we have E[∥xT+1 − x∗∥2] ≤ O(1/T ).

In addition, for any step size (e.g., locally varied like triangle, cosine, and sine-wave)
which belong to this class of bandwidth schedule (i.e., lower and upper bounds are based on
(14)), the optimal rate can be guaranteed immediately by properly choosing the parameters.

The exponentially decaying step size is popular and defaulted in some deep learning
libraries (e.g., PyTorch and TensorFlow), that is

η(t) = η0α
⌊t/T0⌋, (15)

where α ∈ (0, 1) is a constant which is independent of T and T0 accounts for how many
iterations have been performed since the last run. For simplicity, we let α = 1/2. Here we
consider the period T0 be fixed and the same per cycle, and make the following discussions:
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• T0 = 1, or a constant (independent of T ). Its non-asymptotic convergence can not be
guaranteed because

∑∞
t=1 η(t) = +∞ is not satisfied.

• T0 = ⌊T r⌋, r ∈ (0, 1). When k0 = ⌊t/T0⌋ = ⌊r log2(T )⌋, the partial summation∑(k0+1)T0
t=k0T0

η(t)2 exp(−µ
∑T

u=(k0+1)T0
η(u)) ≥ exp(−2µη0)

∑(k0+1)T0
t=k0T0

η(t)2 = O(1/T r).
From Lemma 2, it hardly obtains the non-asymptotic O(1/T ) convergence rate.

• T0 = ⌊T/ log2 T ⌋. Let k0 = ⌊t/T0⌋ = ⌊log2 T − log2 log2(T )⌋. In this case we have∑(k0+1)T0
t=k0T0

η(t)2 exp(−µ
∑T

u=k0T0
η(u)) ≥ exp(−2µη0)

∑(k0+1)T0
t=k0T0

η(t)2 = O(log2 T/T ).
We can see that the best result will not exceed O(log2 T/T ) from Lemma 2. This rate
has been demonstrated by Ge et al. (2019) for the least squares problems.

• T0 = ⌊T/k⌋, where k ∈ N+ is a constant( independent of T ). In this case, the final
step size is 2−k ≫ 1/T . It is impossible to achieve the non-asymptotic O(1/T ) rate.

Therefore, we can conclude that SGD hardly achieves the ideal O(1/T ) convergence rate
under (15) for strongly convex problems if the period T0 of each cycle is fixed and the same.

A sine-wave learning rate was proposed (An et al., 2017) where the step size decays
exponentially (the continuous form of (15)) and local oscillations within a range of val-
ues. This cyclical step size can be treated within the bandwidth framework (BD) based on
(15). Unfortunately, from the discussion on exponential decaying step size (15), the non-
asymptotically state-of-the-art O(1/T ) convergence rate can not be guaranteed in theory.
Nevertheless, if the boundary functions δ1(t) and δ2(t) are taken as (14), that is, the bound-
ary functions drop by half and the length of the cycle increases after each cycle. It results
in the sine-wave learning rate achieving the optimal O(1/T ) convergence rate. Moreover, if
the sine-wave policy or their boundaries is chosen as the following corollary, our previous
analysis can guarantee the optimal O(1/T ) convergence rate.

Corollary 4 For any cyclical step size whose lower and upper bounds satisfy, for example,
(A) and (B) of Theorem 1 and its variants, e.g., (A1) and (B), and (A2) and (B2), we have
E[∥xT+1 − x∗∥2] ≤ O(1/T ) under some proper conditions.

The triangular policy was proposed by Smith (2017) where the original idea is to linearly
increase and then decrease the step size within a band. In the simulations, the author fixes
the lower bound ηimin of the band as a constant and adopts the decaying schedule (15) as the
upper bound ηimax. The previous theorems can not be used anymore due to the fixed lower
bound. According to the similarity of cyclical step sizes per cycle, we can apply Lemma 2 to
show the convergence of this class of step size with extra carefulness. The formal description
of the result is addressed below.

Corollary 5 Consider the cyclical step size defined by (13) (see Figure 1) where the length
of each cycle Ti = T0 ≥ 1 is fixed, number of cycle N = ⌈T/T0⌉, the lower bound ηmin = m >
0 is fixed as a small constant and the upper bound ηimax decays with cycle i. At each cycle
i, let Si and Qi denote the enclosed area of the cyclical step size with its lower bound ηmin,
and the enclosed area between the upper bound ηimax and lower bound ηmin, respectively. We
assume that Si/Qi ≥ ψ (i ∈ [N ]) where ψ ∈ (0, 1] is a constant. Under the same conditions
of Lemma 2, let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}, then for T ≥ n0, we have

E[∥xT+1 − x∗∥2] ≤ exp

(
−µψ

N∑
i=1

Qi − µmT

)
∆0

n0
+ 2σ2T0

N∑
i=1

(ηimax)
2 exp

(
−µ

N∑
l>i

(ψQl +mT0)

)
.
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(a) triangular (b) cosine

Figure 1: The visualization of two popular cyclical step-sizes

In particular, we consider the two decaying patterns for upper bound ηimax:

(1) ηimax =M/2i−1 where t ∈ [1+(i−1)T0, iT0] (1 ≤ i ≤ N). Especially, if N = ⌈log2 T ⌉,
we have E[∥xT+1 − x∗∥2] ≤ O( log2 TT ).

(2) ηimax =M/(iT0) for all i ∈ [N ]. Then E[∥xT+1 − x∗∥2] ≤ O
((

T0
T

)µMψ
+ 1

T

)
.

This corollary establishes a unified analysis framework for the cyclical step size whose
lower bound is fixed, and the upper bound is decreasing. The proof is given in Appendix B.
To be more intuitive about the step-sizes of Corollary 5, we depict two popular cyclical
schemes: triangular and cosine step-sizes in Figure 1. In each cycle, an example of the
two enclosed areas Si, Qi can be found in the shaded area. The assumption on Si/Qi ≥ ψ
(i ∈ [N ]) is easily satisfied by triangular step size (Smith, 2017) with ψ = 1/2 and cosine step
size (Loshchilov and Hutter, 2017) with ψ = 1/2. For the triangular step size (Smith, 2017),
we can achieve a near-optimal (up to log2 T ) rate based on the exponential decaying upper
bound (see Case (1) of Corollary 5). This rate matches the result of the step-decay step size
achieved by Ge et al. (2015) for strongly convex least squares problems. Furthermore, if we
select the piece-wise 1/i as the upper bound (see Case (2) from Corollary 5), an O(1/T )
rate can be achieved with triangular step size (Smith, 2017) under proper conditions: for
instance when T0 ≪ T is a constant and M ≥ 1/(µψ) or T0 = O(1/T r) for r ∈ (0, 1)
and M ≥ 1/((1 − r)µψ)). We notice that the cosine with restart policy proposed by
(Loshchilov and Hutter, 2017) only considers the fixed upper and lower bounds. But the
authors mentioned that it is interesting to study cosine step size with decaying upper or
lower bounds. The analysis above can provide convergence guarantees for the cosine step
size with restart if the upper and lower bounds are under proper conditions.

4. Convergence Analysis Under the Same Boundary Order

In this section, we will investigate the convergence rate of the SGD algorithm where the
bandwidth-based step size (BD) has the same boundary order, i.e., δ1(t) = δ2(t).
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The well-known convergence conditions on step size for standard SGD were proposed
by Robbins and Monro (1951)

(1′)
∞∑
t=1

η(t) = +∞; (2′)
∞∑
t=1

η(t)2 < +∞. (H1)

Obviously, the polynomial decaying step size η(t) = O(1/tp) for p ∈ (12 , 1] satisfies (H1).
However, (H1) does not hold for η(t) = O(1/tp) with 0 < p ≤ 1/2 which has been proven
to converge (Leen et al., 1998; Ljung, 1977; Moulines and Bach, 2011). Moreover, one
interesting thing is that the step size under (H1) is possibly non-monotonic. For example,
the step size may oscillate between two boundaries η(t) = 1/t and η(t) = 1/

√
t.

Ljung (1977) proposed the following convergence conditions (H2) for the recursive
stochastic algorithms

(1′)
∑∞

t=1 η(t) = +∞; (2′)
∑∞

t=1 η(t)
p < +∞, for some p > 0;

(3′) η(·) is a decreasing sequence; (4′) limt→∞ sup[1/η(t)− 1/η(t− 1)] <∞.
(H2)

Compared to (H1), (H2) seems cover more generic cases, e.g., η(t) = η0/t
p for all p ∈ (0, 1].

However, there are some cases which satisfy (H1) but are not admitted by (H2), for example
η(t) = 1/(t log(t + 1)). Moreover, the step size η(t) of (H2) is assumed to be decreasing,
which is not essential for (H1).

Recently, Nguyen et al. (2019a) extended (H1) and (H2) to the following cases (H3)

(1′)
∞∑
t=1

η(t) = +∞; (2′) lim
t→+∞

η(t) = 0; (3′)
dη(t)

dt
≤ 0. (H3)

As we can see, the common choices η(t) = 1/tp for p ∈ (0, 1] and 1/(t ln(t)) all satisfy (H3).
In addition, η(t) = 1/ ln(t), which decays slower than any polynomial decaying step sizes,
satisfies the above conditions. The authors proved the convergence of SGD and derived
a uniform formula to describe the convergence rates for the step sizes satisfying (H3) (see
theorem 9 and 10 in Nguyen et al. (2019a)).

In the rest of this section, we focus on the sequence of step size {η(t)} that satisfies

mδ(t) ≤ η(t) ≤Mδ(t), (BD-S)

where m ≤ M are two positive constants and the boundary function δ(t) satisfies (H3).
The main theorem is presented as follows, covering most of the abovementioned cases. The
proofs in this section are provided in Appendix C.

Theorem 5 Suppose Assumptions 1, 2, and 3 hold. The step size sequence {η(t)} satisfies
condition (BD-S) and the boundary function δ(t) is differentiable and satisfies (H3). Let
n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )} and we assume that n0 is a constant which is indepen-
dent of T . For t > n0,

1. if limt→∞ tδ(t) = 0, we have that E[∥xt+1 − x∗∥2] is at most∆0
n0

+ ε2
δ(1)2(tϵ − 1) + 2ϵ2

exp
(
−µm

∫ tϵ
u=1 δ(u)du

)
 exp

(
−µm

∫ t+1

u=1
δ(u)du

)
,

where ϵ and tϵ are constants appeared in the proof, ε2 = 2σ2M2 exp(µmδ(1)).
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2. If limt→∞ tδ(t) = 1, the results of Theorem 1 can be applied.

3. If limt→∞ tδ(t) = +∞ and there exist constants c1 ≤ µm
2 and TM ∈ N such that

−dδ(t)
dt ≤ c1δ(t)

2 for all t ≥ TM , then E[∥xt+1 − x∗∥2] is at most

ε2
µm− c1

δ(t+ 1) +

∆0
n0

+
ε2δ(1)

2TM

exp
(
−µm

∫ tM
u=1 δ(u)du

)
 exp

(
−µm

∫ t+1

u=1
δ(u)du

)
,

where ε2 is the same as the first case.

Corresponding to the limit of δ(t)t, we discuss three interesting cases in Theorem 5.
As we know, the result is new when limt→∞ tδ(t) = 0. It covers the cases in which the
step size drops faster than 1/t, e.g., δ(t) = 1/(t ln(t)). In the third case, to make the
proof precise, we add a condition that −dδ(t)/dt ≤ c1δ(t)

2 (∀t ≥ TM ) for some c1 and TM
(details are provided in Remark 5). The common choices, e.g., δ(t) = 1/tp for all p ∈ (0, 1]
and δ(t) = 1/ ln(t), all satisfy the condition. Especially, for η(t) = η0/t

p with p ∈ (0, 1),
we can achieve an O(1/tp) convergence rate, which is comparable to that of Moulines and
Bach (2011); however, we use the weak growth condition with noise which is milder than
L-smooth, and we do not assume the convexity (a.s.) of each individual function (Moulines
and Bach, 2011). More cases such as δ(t) = ln(t+1)/tp for all p ∈ (0, 1] can also be included
in the discussions. It is worthwhile to mention that when t is continuous, (4′) of (H2) can
be reformulated as

lim
t→∞

sup[1/η(t)− 1/η(t− 1)] = lim
t→∞

sup

[
η(t− 1)− η(t)

η(t)η(t− 1)

]
= lim

t→∞
sup

−dη(t)
dt

η(t)2
< +∞.

This exactly implies that there exists a constant c1 > 0 such that −dη(t)/dt ≤ c1η(t)
2 for

sufficiently large t. In the third case of Theorem 5, the scalar c1 is supposed to be smaller
than µm/2. The following lemma reveals that as long as such c1 > 0 exists, there must be
a constant c1 > 0 such that c1 ≤ µm/2.

Lemma 3 We suppose that limt→∞ tδ(t) = +∞. If there exist constants c1 > 0 and

TM ∈ N+ such that −dδ(t)
dt ≤ c1δ(t)

2 for all t ≥ TM , there must be such a constant c1 that
satisfies c1 ≤ µm

2 .

Remark 5 Theorem 5 shows the convergence rate of SGD where the bandwidth-based step
size satisfies (BD-S). We emphasize that

1. In the proof of the third case, an important step is to use integral
∫ t
l=1 P (l)dl to evaluate

the summation
∑t

l=1 P (l) where P (l) is the product of δ(l)
2 and exp(−µm

∫ t+1
u=l δ(u)du).

Even though δ(l) is decreasing and exp(−µm
∫ t+1
u=l δ(u)du) is increasing, there can be

many possibilities for their product. Nguyen et al. (2019a) considered three cases for
the product that, e.g., decreases and then increases, keeps on increasing or decreas-
ing (see the proof of theorem 9 in Nguyen et al. (2019a)). However, as we know the
product of δ(l)2 and exp(−µm

∫ t+1
u=l δ(u)du) increases and then decreases in Ge et al.

(2019). In Theorem 5, we add a condition −dδ(t)/dt ≤ c1δ(t)
2 to describe “most

general cases” mentioned in Nguyen et al. (2019a) and make the proof more rigorous.
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2. Theorem 5 reveals the convergence rate of SGD, which is totally determined by δ(t+1)
or exp(−µm

∫ t+1
u=1 δ(u)du). Our result provides better upper bounds in many cases

compared to that of Nguyen et al. (2019a). For example, when η(t) = 1/(t ln(t)),
theorem 10 of Nguyen et al. (2019a) no longer gives an upper bound but Theorem 5
shows that it is bounded by exp(−µm

∫ t+1
u=1 δ(u)du). In the case that η(t) = 1/

√
t, the

first term of the upper bound in theorem 10 (Nguyen et al., 2019a) is actually larger
than η(t+ 1), which is worse than the result of Theorem 5.

3. The step size η(t) in Theorem 5 can be non-monotonic, rather than monotonic (Ljung,
1977; Nguyen et al., 2019a) or given in monotonic forms ( e.g., η0/T or η0/t

p for
p ∈ (0, 1]) in most of the literature analyzing the convergence rate of SGD (Rakhlin
et al., 2012; Moulines and Bach, 2011; Shamir and Zhang, 2013; Lacoste-Julien et al.,
2012; Bottou et al., 2018; Gower et al., 2019; Jain et al., 2019).

5. Convergence Analysis Based on the Different Boundary Orders

This section will present the convergence rate of SGD where the lower bound function δ1(t)
and the upper bound function δ2(t) are in different orders. From Section 4, if the lower and
upper bounds of the step size η(t) are in the same order, their convergence rate is consistent
with their boundaries. In the following part, we want to find out the convergence behaviors
of SGD when the boundaries of the step size are in different orders.

First, we are interested in the case δ2(t) = ln(t + 1)/(t + 1) which decays slower than
the lower bound δ1(t) = 1/(t+ 1).

Theorem 6 Suppose that Assumptions 1, 2, and 3 hold. Let the step size sequence {η(t)}
satisfy that

m

t+ 1
≤ η(t) ≤ M ln(t+ 1)

t+ 1
, t ≥ 1,

for 0 < m ≤M . Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. For T > n0, we have

E[∥xT+1 − x∗∥2] ≤



O
(

∆0
n0

T+2 + M2σ2 ln3 T
T+2

)
if m = 1

µ ;

O
(

∆0
n0

(T+2)(µm) +
M2σ2

(T+2)(µm)

)
else if m < 1

µ ;

O
(

∆0
n0

(T+2)(µm) +
M2 ln2 T
T+2

)
else m > 1

µ .

The theorem reveals that when m > 1/µ, SGD can achieve an O(ln2(T )/T ) bound,
which is nearly optimal. The proofs in this section are given in Appendix D.

As we know, (H1) is sufficient for the convergence of SGD, but the convergence rate
under (H1) is unknown yet. If we keep the lower bound δ1(t) = 1/t and continue to extend
the upper bound δ2(t), what kinds of results will we get? The following result answers this
interesting question.

Theorem 7 We assume that Assumptions 1, 2, and 3 hold. If step size η(t) satisfies that

m

t
≤ η(t) ≤ M

tα
(16)
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for α ∈ (1/2, 1]. Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. For t > n0, we have

E[∥xT+1 − x∗∥2] ≤


∆0

n0

(T+1)(2α−1) +O
(

M2σ2 lnT
(T+1)(2α−1)

)
if µm = 2α− 1;

O
(

∆0
n0

(T+1)(µm)

)
+O

(
M2

(T+1)(2α−1)

)
else µm ̸= 2α− 1.

In Theorem 7, the upper bound δ2(t) in (16) is extended to 1/tα for α ∈ (1/2, 1]. It
is straightforward to see that (H1) holds for the step size η(t) that satisfies (16). The
corresponding convergence rate is O(1/(T + 1)2α−1) which is relied on α when µm > 1.
Obviously, this result is worse than those achieved at its lower and upper bounds. Unfortu-
nately, we cannot improve Theorem 7. On the other direction, we reduce the lower bound
δ1(t) to 1/((t+1) ln(t+1)), which decreases faster than the case δ1(t) = 1/t in Theorem 7.

Theorem 8 Suppose that Assumptions 1, 2, and 3 hold. Let the step size η(t) satisfy

m

(t+ 1) ln(t+ 1)
≤ η(t) ≤ M

(t+ 1)α
, t ≥ 1, (17)

for α ∈ (1/2, 1]. Then for sufficiently large T , we have

E[∥xT+1 − x∗∥2] ≤ O
(

1

(ln(T + 2))µm

)
.

Theorem 8 shows that the convergence rate of SGD where the step size satisfies (17) is
consistent with the result achieved at the lower bound η(t) = m/((t+ 1) ln(t+ 1)).

6. Numerical Experiments

In this section, we propose several non-monotonic step sizes within 1/t-band to show the
effectiveness compared to their baselines, e.g., η(t) = η0/t (called 1/t-stepsize) and expo-
nentially decaying step size. The typical 1/t stepsize decays very fast at the beginning, so
we update all step sizes after one epoch4 shown as Algorithm 1 (called Epoch-SGD).

Algorithm 1 Epoch-SGD

1: Initialization: initial point x0 = x11, # inner loop m
′
, # outer loop N

2: for t = 1 : N do
3: Update the step size η(t)
4: for i = 1 : m

′
do

5: Choose a subset Ωi ⊆ [n] randomly, where |Ωi| = b
6: Compute gti =

1
b

∑
l∈Ωi

∇f(xti; ξl)
7: xti+1 = xti − η(t)gti
8: end for
9: xt+1

1 = xt
m′+1

10: end for
11: Return xN

m′+1

4. One epoch means to traverse all sample data once.
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6.1 1/t-band Step Sizes

We formulate some non-monotonic step sizes η(t) which belongs to a banded region [η0/t, sη0/t]
(named 1/t-band), where s > 1. The boundary function η(t) = η0/t is called 1/t-stepsize.
Let ti (i = 1, 2, · · · , 1 ≤ t1 < t2 < t3 < · · · ) be the nodes where the step size might be
non-monotonic or non-differentiable. For t ∈ [ti, ti+1), let

η(t) =
Âi

B̂it+ 1
, (18)

where Âi, B̂i are constants such that η(ti) = sη0/ti and η(ti+1) = η0/ti+1. In reality, other
forms of η(t) exist, e.g., linear decay and concave decay. In the paper, we are interested in
the case that η(t) has the form of (18). We consider the two cases: (1) ti+1 − ti is fixed
and the same. We call this 1/t Fix-period band; (2) ti+1 − ti grows exponentially. We
call this 1/t Grow-period band. For an intuitive explanation, we plot the two cases and
their boundaries 1/t-stepsize (s = 3) in Figure 2(a).
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Figure 2: Different kinds of 1/t-band step sizes

More general, the step size varies between the minimum ηmin = {ηimin}i∈N and maximum
ηmax = {ηimax}i∈N, and locally has the form that

η(t) =
Âi

B̂it+ 1
∈ [ηimin, η

i
max], t ∈ [ti, ti+1]. (19)

Especially, we consider ηimax > ηi−1
min, which is called 1/t up-down policy. For 1/t Fix-

period band and 1/t Grow-period band, the baseline of the step size is ηmin = η0/t. Based
on the known exponentially decaying step size with a growing period (called Grow-Exp)

η(t) = ηi = η0/2
i, t ∈ [ti, ti+1], Ti = ti+1 − ti = T02

i, (20)

which has been studied by Hazan and Kale (2014). Let ηimin = ηi in (20) and we define
ηimax = θηi−1

min where the up-down ratio θ > 1 (called 1/t Grow-Exp). If θ is too large,
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a sudden increase in step size might lead to a negative effect. Therefore, we restrict the
ratio θ ∈ (1, 1.5]. The Grow-Exp step size, 1/t Grow-Exp step size, and their boundaries are
plotted in Figure 2(b) where T0 = 5 and θ = 1.5. Regardless of Grow-Exp or 1/t Grow-Exp,
we can easily find that they all belong to 1/t-band.

We then include the comments on the proposed bandwidth step sizes to show how these
step sizes also guide from our theory.

Remark 6 (Theoretical benefits from bandwidth) From Figure 2(a), we see that the
area enclosed by 1/t Fixed-period band and x-axis is larger than that of its lower boundary.
According to Lemma 2, based on 1/t Fixed-period band, we can achieve a lower error bound
for Γ1

T than that of the boundary η(t) = η0/t. Thus 1/t Fixed-period band could be faster
than 1/t-stepsize (η(t) = η0/t) at the initial iterations when Γ1

T dominates the error bound
of E[∥xT+1 − x∗∥2]. At the end of each cycle, the step sizes hit the lower bound, which
finally reduces the noise error. We have the similar conclusions for 1/t Grow-period band
and 1/t Grow-Exp.

Next, some numerical experiments are performed to demonstrate the efficiency of the
proposed non-monotonic step sizes. All experiments are implemented in python 3.7.0 on
a single node of LSSC-IV5, which is a high-performance computing cluster maintained at
the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of
Sciences. The operating system of LSSC-IV is Red Hat Enterprise Linux Server 7.3.

6.2 Parameters Tuning

This subsection discusses how to choose the parameters when designing the step sizes.
The initial step size η0 is chosen from {0.1, 0.5, 1, 5, 10, 15} for the Epoch-SGD algorithm

on all step size schedules. Generally speaking, for the 1/t-band, we do not know exactly the
coefficientsm andM for the lower and upper boundaries. In the experiments, the coefficient
m is tuned properly using a similar approach as the initial step size η0. Instead of finding
the coefficientM of the upper bound, we tune the bandwidth s =M/m ∈ {2, 3, 4, 5} for 1/t
Fix-period band and 1/t Grow-period band. The distance of the adjacent nodes ti(i ∈ N+)
depends on a budget of the outer loop N . In our experiments we set ti+1 − ti = 30, t1 = 30
for 1/t Fix-period band and ti+1 = 2ti, t1 = 30 for 1/t Grow-period. From Figure 2(a), we
can see that 1/t Fix-period , 1/t Grow-period and 1/t-stepsize coincide in the first cycle
and 1/t Fix-period also coincides with 1/t Grow-period in the second cycle.

The Grow-Exp step size drops by half, and the period of each cycle is doubled. The
initial period T0 is chosen from {1, 2, 3, 5, 10, 20}. For 1/t Grow-Exp, we tune the up-down
ratio θ ∈ {1.1, 1.2, 1.3, 1.4, 1.5} and the length of T0 is the same as Grow-Exp.

In Section 3, to achieve the optimal rate, η0 must be larger than 1/µ where µ is the
strongly-convex parameter. One may doubt the initial step size η0 selected above is too
small compared to the scalar 1/µ = 1/Λ (e.g., in the following logistic regression problems
Λ = 10−4). However, this is not the case. In the experiments, we modify the step size in
every epoch instead of every iteration. Let t̃0 be the number of iterations of each epoch,
i.e., t̃0 = n/b where n is the data size, and b is the mini-batch size. In the first epoch
(t ∈ [1, n/b]), the step size is a constant, which can be covered by Theorem 4. After the first

5. http://lsec.cc.ac.cn/chinese/lsec/LSSC-IVintroduction.pdf.
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epoch (t ≥ t̃0), we then can compute η0 = η(t̃0) = m2/t̃0, i.e., the scalar of lower bound
m2/t in Theorem 4 will be m2 = t̃0η0 ∈ t̃0 {0.1, 0.5, 1, 5, 10, 15}. After one epoch or a few
epochs, the scalar m2 of the lower bound is competitive to 1/Λ.

6.3 Regularized Logistic Regression

First, we empirically test the above step sizes on the regularized logistic regression problems,
which is strongly convex for regularization parameter Λ > 0

f(x) =
1

n

n∑
i=1

ln(1 + exp(−bi ⟨ai, x⟩)) +
Λ

2
∥x∥2 ,

where {ai, bi}ni=1 is a training sample set with ai ∈ Rd and bi ∈ {−1,+1}. We use the two
binary classification data sets w8a (n = 49749, d = 300) and rcv1.binary (n = 20242, d =
47236) from LIBSVM6, where the 0.75 partition of the data is used for training, and the
remaining is for testing. The regularizer parameter Λ = 10−4, batch size b = 128, the outer
loop N = 120 and the inner loop m

′
= n/128.

We plot the average results of 5 runs on w8a in Figure 3. For the x-axis, we always
use the number of epochs calculated. The y-axis is the value of the loss function on the
training data set (left) and the accuracy (the percent of correctly classified data sets) on the
testing data set (right). For 1/t-stepsize, the best initial step size η0 = 5, and we apply the
same initial step size for the other step sizes. Other important parameters are set as s = 3,
T0 = 2, and θ = 1.2. From Figure 3, we can see that the exponentially decaying step size
(Grow-Exp) performs better than 1/t-stepsize on training loss and accuracy. Our proposed
1/t Fix-period and 1/t Grow-period both achieve good performance than 1/t-stepsize. In
addition, 1/t Grow-Exp gets higher accuracy than Grow-Exp.
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Figure 3: Results for regularized logistic regression

In Figure 4, we report the average results of 5 runs on rcv1.binary. The best-tuned
initial step size η0 is 10 for 1/t-stepsize, and we use the same initial step size for other
step size schedules. The value of θ is 1.3 for 1/t Grow-Exp, and other parameters are the
same as w8a. We achieve a similar performance as Figure 3. From Figures 3 and 4, the

6. https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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Figure 4: Results for regularized logistic regression

Grow-Exp step sizes significantly improve the performance of Epoch-SGD over 1/t-stepsize.
This implies that the relatively large step size at the initial iterations possibly makes the
algorithm drop rapidly. We also observe that the proposed 1/t Grow-Exp step size, based
on the 1/t up-down policy, yields better performance compared to the Grow-Exp step size.

6.4 Deep Neural Network and Residual Neural Network

In this subsection, we conduct experiments on some standard data sets, e.g., MNIST and
CIFAR-100.

First of all, we test on a fully-connected 3-layer (784-500-300-10) neural network to train
MNIST7, consisting of a training set of 60000 images with 28x28 pixels and a testing set
of 10000 images in 10 classes. The batch size b = 128, the outer loop N = 120 and the
inner loop m

′
= n/128. For the 1/t-stepsize, the best η0 is achieved at η0 = 0.5 based

on its accuracy. For the 1/t Fix-period band and 1/t Grow-period band, η0 is the same
as that of the 1/t-stepsize. We choose s = 3, that is η(t) ∈ [η0/t, 3η0/t]. For Grow-Exp,
the parameters are set as η0 = 0.5, T0 = 10. For 1/t Grow-Exp, we set θ = 1.3, and other
parameters are the same as Grow-Exp. The average results of 5 runs are given in Figure 5.
It is easy to see that the Grow-Exp type step size achieves better performance compared
to 1/t-stepsize, 1/t Fix-period band, and 1/t Grow-period band. Besides, our proposed 1/t
Grow-Exp achieves lower training loss than Grow-Exp.

Next, we implement the above five step sizes on ResNet-18 (He et al., 2016) with
CIFAR-1008. The CIFAR-100 data set consists of 60000 32x32 color images in 100 classes,
50000 images for training, and the remaining 10000 images for testing. For 1/t-stepsize,
we set η(t) = η0/(1 + t/10), where η0 ∈ {0.1, 0.5, 1, 5, 10, 15}. The best performance of
1/t-stepsize is achieved at η0 = 1. In this case, the bandwidth s = 3. Other important
parameters are the same as the experiment in DNNs. For Grow-Exp, η0 = 0.5 and T0 = 10.
For 1/t Grow-Exp, η0 = 0.5, T0 = 10 and θ = 1.3.

7. http://deeplearning.net/data/mnist/
8. https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 5: Results on deep neural networks (DNNs)

We repeat the training process 5 times, and the average results (the left is the testing
loss function, and the right is the accuracy of the testing data set) are presented in Figure 6.
In this case, we see that the sudden increase of the 1/t Fix-period band and 1/t Grow-period
band may lead to a short-term negative effect but overall helps these step-sizes outperform
the 1/t-stepsize at the long-term training. Especially the 1/t Grow-period band performs
better than the 1/t Fix-period band. The frequently going up and down makes the 1/t
Fix-period band less stable than the 1/t Grow-period band. This may be the main reason
for this phenomenon.
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Figure 6: Results on ResNet-18

Another observation from Figure 6 is that the Grow-Exp step size does not work well as
Section 6.3. This may be because a growing number of epochs in Grow-Exp might reduce
its generalization at the final stage of each cycle. Nevertheless, we find that 1/t Grow-Exp
yields better performance than Grow-Exp. Indeed, the 1/t-stepsize scheme may not be the
best baseline for solving nonconvex problems. We take it as an example and empirically
demonstrate that the step size based on bandwidth is potential and often helps in practice.
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6.5 Additional Experiments on Other Algorithms and Step Sizes

For further investigation, more experiments are carried out to compare different step sizes on
Epoch-SGD and other default algorithms in deep learning, including SGD with momentum
(called Momentum for short), averaged SGD (called ASGD) (Polyak and Juditsky, 1992)
and Adam (Kingma and Ba, 2015). We use two popular data sets: CIFAR-109 and CIFAR-
100 for image classifications. The CNN architectures VGG-16 (Simonyan and Zisserman,
2015) and ResNet-18 (He et al., 2016) are adopted for training CIFAR-10 and CIFAR-100,
respectively.

In addition to the step sizes tested in the above subsections, we implement the popular
exponentially decaying step size with a fixed period T0 (called Fix-Exp), which has been
discussed in Section 3.1:

η(t) = ηi = η0/10
i, t ∈ [Ti, Ti+1), Ti+1 − Ti = T0, i ∈ N. (21)

Let ηimin = ηi for i ∈ N+ and we define ηimax = θηi−1
min where θ ∈ (1, 1.5]. Based on (21), we

propose the following step size (called 1/t Fix-Exp):

η(t) =
Âi

B̂it+ 1
∈ [ηimin, η

i
max], t ∈ [Ti, Ti+1) , Ti+1 − Ti = T0. (22)

This is similar to 1/t Grow-Exp, but the number of epochs per cycle is fixed and is the same.
Besides, we also implement the two cyclical step sizes: triangular policy (Smith, 2017) and
cosine annealing (Loshchilov and Hutter, 2017).

Firstly, we test on VGG-16 for training CIFAR-10. The baseline initial step size is set
as η0 = 1 for SGD and ASGD, η0 = 0.1 for Momentum, and η0 = 0.001 for Adam. For
Momentum, β = 0.9. In Adam, (β1, β2) = (0.9, 0.99) is used. The best-tuned value of
weight decay is 10−4 for SGD and ASGD, 5 × 10−4 for Momentum and 10−5 for Adam.
The common parameters N = 120 and b = 128 for all algorithms. We perform the above
algorithms with Fix-Exp (T0 = 30) and 1/t Fix-Exp (T0 = 30, θ = 1.3). The average
results of five runs are presented in Figure 7. We find that 1/t Fix-Exp overall shows better
performance than Fix-Exp on SGD, Momentum, and ASGD. However, the results of Adam
based on Fix-Exp and 1/t Fix-Exp almost coincide, which implies that the up-down policy
may not work well for Adam.

Besides, we test Momentum with the following step sizes: (1) 1/t-stepsize (η(t) =
η0/(1+ t/5)); (2) 1/t Fix-period band (ti+1− ti = 30, s = 3); (3) Fix-Exp (T0 = 30); (4) 1/t
Fix-Exp (T0 = 30, θ = 1.3); (5) triangular policy based on (21), called “Triangular” (rise
and fall ratio is 1.5); (6) cosine annealing, called “Cosine” (we use the last iterations as the
initial point of restart cycle). All step sizes are best tuned with η0 = 0.1, and the period
of each cycle is 30 for triangular policy and cosine annealing. The average results of 5 runs
are shown in Figure 8. We observe that 1/t Fix-Exp shows its advantages over 1/t-stepsize,
1/t Fix-period band, Fix-Exp, and triangular policy after 80 epochs, and the final results
are comparable to cosine annealing.

Next, we implement the above algorithms with Fix-Exp and 1/t Fix-Exp on ResNet-18
for training CIFAR-100. We report the average results of five runs in Figure 9. The budget

9. http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 7: Results on VGG-16 for CIFAR-10
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Figure 8: Results of different step sizes for CIFAR-10

of the outer iteration N = 240 and the period of each cycle T0 = 60. The other parameters
are chosen the same as the experiments on CIFAR-10. Similarly, we can conclude that the
up-down policy in 1/t Fix-Exp leads to improvements after the second cycle over Fix-Exp
on SGD, ASGD, and Momentum, respectively. We also observe that the up-down policy
does not work for Adam but at least does not make Adam worse.

In Figure 10, we report the average results of five runs on the above step sizes for
Momentum. The period for 1/t Fix-period band is ti+1− ti = 60. For Fix-Exp,1/t Fix-Exp,
triangular policy (the ratio of rising and fall is 2), cosine annealing, the period per cycle
T0 = 60 and other parameters are the same as those of CIFAR-10. As the figures show,
1/t Fix-Exp can reach lower testing loss and higher accuracy than the other step sizes after
about 150 epochs.

7. Conclusion

We have proposed a bandwidth-based framework for SGD that allows the step size to vary
in a banded region and be non-monotonic. Our purpose is not to focus on one specific step
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Figure 9: Results on ResNet-18 for CIFAR-100
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Figure 10: Results of different step sizes on CIFAR-100

size but to provide a uniform convergence framework for many non-monotonic step sizes
within one class. We have investigated the conditions where the SGD method achieves an
O(1/T ) convergence rate and have extended its boundaries at the initial iterations, which
could be useful in practical applications. Moreover, we have discussed three situations
covering most general cases and provided explicit error bounds. In some cases, such as
η(t) = η0/(t ln(t)) and η0/

√
t, we have achieved better upper bounds than theorem 10

of Nguyen et al. (2019a). The bandwidth-based step size with different lower and upper
bounds orders often gets worse convergence rates than its boundaries. The convergence
rate for some existing step sizes such as exponentially decaying step size (Hazan and Kale,
2014), cyclical policy (Smith, 2017), sine-wave annealing (An et al., 2017) and cosine with
restart (Loshchilov and Hutter, 2017) can be revealed by our analysis if their boundaries
satisfy the conditions discussed in this paper.

The bandwidth-based framework gives us a lot of freedom when designing the step
size with additional advantages. We have proposed four non-monotonic step sizes based on
1/t-stepsize and exponentially decaying step size. The numerical results empirically demon-
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strate their efficiency and potential for solving convex and nonconvex problems, especially
for nonconvex problems (e.g., deep neural networks, and convolutional neural networks).
Besides, we found that the bandwidth-based step size works for averaged SGD and momen-
tum. It is worthwhile to explore SGD and its variants (e.g., momentum) with bandwidth-
based step size on nonconvex optimization in the future. We believe that the bandwidth
scheme can inspire possibilities for designing more effective step sizes for nonconvex opti-
mization. Besides, in the current experiments, the faction τ =M/m is tuned in a heuristic
way. It will be interesting to portray the relationship or find the exact values for the lower
and upper bounds in the future.

The proposed schedule leads to a new prospect based on step size, which might help
avoid the saddle points. As we can see, a great effort has been made to avoid saddle points
by incorporating the noise into the search direction per iteration (Ge et al., 2015; Jin et al.,
2017; Du et al., 2017). Whether incorporating the noise or intermediate increasing to step
size would help avoid the saddle points and bad local minimizers will be an exciting subject
for future research.
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Appendix A. Proofs of the Results in Section 2

Proof (of Lemma 1) Due to the µ-strongly convex property of the objective function f(x)
for x ∈ Rd and ∇f(x∗) = 0, let x = x and x̂ = x∗ in (3), we have

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+ µ

2
∥x− x∗∥2

≥ f(x∗) +
µ

2
∥x− x∗∥2 .

(23)

Besides, letting x = x∗ and x̂ = x in (3) gives

f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩+ µ

2
∥x− x∗∥2 .

Re-arranging the above inequality, we have

⟨∇f(x), x− x∗⟩ ≥ f(x)− f(x∗) +
µ

2
∥x− x∗∥2 . (24)

as required.
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Proof (of Lemma 2) Considering the SGD algorithm defined by (2), we have

E[∥xt+1 − x∗∥2 |Ft] = E[∥xt − η(t)gt − x∗∥2 |Ft]
= E[∥xt − x∗∥2 |Ft]− E[2η(t) ⟨gt, xt − x∗⟩ |Ft] + η(t)2E[∥gt∥2 |Ft]
= ∥xt − x∗∥2 − 2η(t) ⟨∇f(xt), xt − x∗⟩+ η(t)2E[∥gt∥2 |Ft],

(25)

where the last equality uses the fact that the stochastic gradient gt is an unbiased estimation
of ∇f(xt) at xt. Assumption 3 holds that there exists a constant Lf > 0 such that

E[∥gt∥2 | Ft] ≤ 4Lf (f(xt)− f∗) + 2σ2. (26)

Since f is µ-strongly convex, by Lemma 1, the inequality (24) holds. Let x = xt in (24),
together with (26), then (25) can be evaluated by

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− µη(t)) ∥xt − x∗∥2

+ 2η(t)2σ2 + (4Lfη(t)
2 − 2η(t))[f(xt)− f(x∗)].

(27)

Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. For t > n0, we have 4Lfη(t)
2 − 2η(t) ≤ 0.

Then the inequality (27) can be

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− µη(t)) ∥xt − x∗∥2 + 2η(t)2σ2. (28)

Let χn0 = max
1≤t≤n0

{
4Lfη(t)

2 − 2η(t)
}

and fn0 = max
1≤t≤n0

{f(xt)− f(x∗)}. Because n0 is

supposed to be a constant which is independent of T , the sequence {f(xt)− f(x∗)}n0
t=1 is

bounded by a constant fn0 . For 1 ≤ t ≤ n0, we have

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− µη(t)) ∥xt − x∗∥2 + 2η(t)2σ2 + χn0fn0 . (29)

For t > n0, taking expectations again and applying the recursion of (28) and (29) from 1
to t, we have

E[∥xt+1 − x∗∥2]

≤
t∏
l=1

(1− µη(l)) ∥x1 − x∗∥2 + 2σ2
t∑
l=1

η(l)2
t∏
u>l

(1− µη(u)) + χn0fn0

n0∑
l=1

t∏
u>l

(1− µη(u))

≤ exp

(
−µ

t∑
l=1

η(l)

)
∆0
n0

+ 2σ2
t∑
l=1

η(l)2 exp

(
−µ

t∑
u>l

η(u)

)
, (30)

where ∆0
n0

= ∥x1 − x∗∥2 + n0χn0fn0

exp(−µ
∑n0

l=1 η(l))
. The last inequality of (30) uses the fact that

1 + x ≤ exp(x) for all x ∈ R. Note that the coefficient 1 − µη(l) of E[∥xl − x∗∥2] may be
negative for the previous finite terms 1 ≤ l ≤ t, so the recursive process starting from t = 1
is not appropriate. However, because exp(−µη(l)) is always positive, we might as well relax
the upper bound of E[∥xt+1 − x∗∥2] as (30).
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Appendix B. Proofs of the Results in Section 3

Proof (of Theorem 1) In this case, the sequence of step size η(t) satisfies that

0 <
m

t
≤ η(t) ≤ M

t
, for 1 ≤ t ≤ T.

It is known that

ln(t+ 1) ≤
t∑
l=1

1

l
≤ ln(t) + 1 (31a)

and ∫ t+1

u=l

du

u
≤

t∑
u=l

1

u
≤
∫ t

u=l−1

du

u
, for any l > 1. (31b)

Then we have
t∑
l=1

η(l) ≥
t∑
l=1

m

l
≥ m ln(t+ 1) (32a)

and
t∑
u>l

η(u) ≥
t∑
u>l

m

u
=

t∑
u=1

m

u
−

l∑
u=1

m

u
≥ m(ln(t+ 1)− ln(l)− 1). (32b)

Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. In this case, when t ≥ 2MLf , we have

η(t) ≤ M

t
≤ 1

2Lf
. (33)

Thus, n0 ≤ 2MLf which is independent of T .
From Lemma 2, we know that for T > n0, E[∥xT+1 − x∗∥2] can be estimated as

E[∥xT+1 − x∗∥2] ≤ Γ2
T + Γ2

T , (34)

where

Γ1
T := exp

(
−µ

T∑
l=1

η(l)

)
∆0
n0
, Γ2

T := 2σ2
T∑
l=1

η(l)2 exp

(
−µ

T∑
u>l

η(u)

)
.

Applying (32a) into Γ1
T , we can achieve that

Γ1
T ≤ exp (−µm ln(T + 1))∆0

n0
=

∆0
n0

(T + 1)µm
. (35)

Now, we proceed to obtain the upper bound for Γ2
T . Using the upper bound of η(t) and

(32b) gives

Γ2
T = 2σ2

T∑
l=1

η(l)2 exp

(
−µ

T∑
u>l

η(u)

)

≤ 2σ2
T∑
l=1

η(l)2 exp(−µm(ln(T + 1)− ln(l)− 1))

≤ 2σ2M2 exp(µm)

(T + 1)µm

T∑
l=1

1

l2
· exp(µm ln(l)) ≤ 2σ2M2 exp(µm)

(T + 1)µm

T∑
l=1

lµm

l2
.
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If m = 1
µ then

Γ2
T ≤ 2σ2M2 exp(1) · ln(T ) + 1

T + 1
.

However, when m ̸= 1
µ , we have that

T∑
l=1

lµm

l2
=

T∑
l=1

l(µm−2) ≤
∫ T+1

l=1
l(µm−2)dl + 1, (36)

then

Γ2
T ≤ 2σ2M2 exp(µm)

(µm− 1)
· (T + 1)µm−1 + µm− 2

(T + 1)µm
.

Substituting the upper bounds of ΓT1 and ΓT2 into (34), we get the desired result.

Proof (of Theorem 2) Let n1 := sup
{
t ∈ N+ : η(t) > 1

4Lf

}
. In this case, mt ≤ η(t) ≤ M

t

which implies that δ1(t) = δ2(t) = 1/t. When t ≥ 4MLf , we have η(t) ≤ 1/(4Lf ). Thus
we know n1 ≤ 4MLf , which is independent of T . Let χn1 = max

1≤t≤n1

{
4Lfη(t)

2 − 2η(t)
}
and

fn1 = max
1≤t≤n1

{f(xt)− f(x∗)}. Because n1 is a constant, the sequence {f(xt)− f(x∗)}n1
t=1

can be bounded by fn1 which is a constant. For t > n1, 4Lη(t)
2 − 2η(t) ≤ −η(t), then the

inequality (27) in Lemma 2 will be

E[∥xt+1 − x∗∥2 | Ft]
≤ (1− µη(t)) ∥xt − x∗∥2 + 2η(t)2σ2 + (4Lη(t)2 − 2η(t))[f(xt)− f(x∗)]

≤ (1− µη(t)) ∥xt − x∗∥2 + 2η(t)2σ2 − η(t)[f(xt)− f(x∗)]. (37)

Shifting [f(xt)− f(x∗)] to the left side and E[∥xt+1 − x∗∥2 | Ft] to the right side, we obtain

η(t)[f(xt)− f(x∗)] ≤ (1− µη(t)) ∥xt − x∗∥2 − E[∥xt+1 − x∗∥2 | Ft] + 2η(t)2σ2.

Applying the lower bound of η(t) into the left side and then dividing the above inequality
by mδ1(t)δ1(t+ t0) (t0 ∈ N) gives

f(xt)− f(x∗)

δ1(t+ t0)
≤ 1

m

{(
1

δ1(t)δ1(t+ t0)
− µm

δ1(t+ t0)

)
∥xt − x∗∥2 − E[∥xt+1 − x∗∥2]

δ1(t)δ1(t+ t0)

}

+
2η(t)2σ2

mδ1(t)δ1(t+ t0)
.
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Summing the above inequality for t from n1 to T , we get that

E

[
f

(∑T
t=1

1
δ1(t+t0)

xt∑T
t=1

1
δ1(t+t0)

)
− f(x∗)

]

≤ 1∑T
t=1

1
δ1(t+t0)

(
n1∑
t=1

E
[
f(xt)− f(x∗)

δ1(t+ t0)

]
+

T∑
t=n1+1

E
[
f(xt)− f(x∗)

δ1(t+ t0)

])

≤ 1∑T
t=1

m
δ1(t+t0)

T∑
t=n1+1

{(
1

δ1(t)δ1(t+ t0)
− µm

δ1(t+ t0)

)
E[∥xt − x∗∥2]− E[∥xt+1 − x∗∥2]

δ1(t)δ1(t+ t0)

}

+
1∑T

t=1
1

δ1(t+t0)

n1∑
t=1

fn1

δ1(t+ t0)
+

1∑T
t=1

m
δ1(t+t0)

T∑
t=n1+1

2η(t)2σ2

δ1(t)δ1(t+ t0)
, (38)

where the first inequality follows from the well-known Jensen inequality if f is convex. If
µm satisfies the following condition:

µm ≥ 1

δ1(t+ 1)
− δ1(t+ t0 + 1)

δ1(t)δ1(t+ t0)
(∀ t > n1), (39)

by simple calculations, we can show that the coefficient of E[∥xt − x∗∥2] (t > n1) is non-
positive. Taking the form δ1(t) = 1/t, if µm ≥ 1, the condition (39) will hold. Then let

x̂T =
∑T

t=1(t+t0)xt
S1

and S1 =
∑T

t=1(t+ t0), applying the inequality (38), we get

E [f (x̂T )− f(x∗)] ≤ (n1 + t0 + 1)

mS1
(n1 + 1− µm)E[∥xn1+1 − x∗∥2] + (1 + t0)(n1 + t0)fn1

2S1

+
2σ2M2

mS1

T∑
t=n1+1

t(t+ t0)

t2
. (40)

By Lemma 2, for 1 ≤ t ≤ n1, we have that

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− µη(t)) ∥xt − x∗∥2 + 2η(t)2σ2 + χn1fn1 . (41)

Applying the recursion of (41) for t from 1 to n1 and taking expectation again gives

E[∥xn1+1 − x∗∥2]

≤ exp

(
−µ

n1∑
t=1

η(t)

)
∥x1 − x∗∥2 + 2σ2

n1∑
l=1

η(l)2 exp

(
−µ

n1∑
u>l

η(u)

)

+ χn1fn1

n1∑
l=1

exp

(
−µ

n1∑
u>l

η(u)

)

≤ exp (−µm ln(n1 + 1)) ∥x1 − x∗∥2 + 2σ2M2
n1∑
l=1

1

l2
+ n1χn1fn1

≤ ∥x1 − x∗∥2

(n1 + 1)µm
+ 4σ2M2 + n1χn1fn1 .
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Incorporating the above bound of E[∥xn1+1 − x∗∥2] into (40), we can obtain that

E [f (x̂T )− f(x∗)] ≤ (n1 + t0 + 1) (n1 + 1− µm)

mS1

[
∥x1 − x∗∥2

(n1 + 1)µm
+ 4σ2M2 + n1χn1fn1

]

+
(1 + t0)(n1 + t0)fn1

2S1
+

2σ2M2

mS1
(T − n1 + t0 ln(T/n1))

=
1

mS1

[
υ1∆

0
n1

+
υ2
2
mfn1 + 2σ2M2(T − n1 + t0 ln(T/n1))

]
,

where x̂T =
∑T

t=1(t+t0)xt
S1

, S1 = T (T+t0)(t0+1)
2 , ∆0

n1
= ∥x1−x∗∥2

(n1+1)µm + 4σ2M2 + n1χn1fn1 , υ1 =

(n1 + t0 + 1) (n1 + 1− µm) and υ2 = (1 + t0)(n1 + t0).

Proof (of Theorem 3) In this case, we assume that η(t) satisfies conditions (A1) and
(B). Similar to Theorem 1, let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. We know n0 ≤ 2MLf ,
which is independent of T . Then for T > n0, the conclusion of Lemma 2 is true.

Let t∗ = 1 in (A1), we have

T∑
t=1

η(t) ≥ C ln(T + 1),

then Γ1
T defined by (9a) can be evaluated as follows

Γ1
T = exp

(
−µ

T∑
l=1

η(l)

)
∆0
n0

≤ 1

(T + 1)(µC)
∆0
n0
. (42)

Recalling the definition of Γ2
T in (9b), we have

Γ2
T = 2σ2

T∑
t=1

η(t)2 exp

(
−µ

T∑
u>t

η(u)

)
≤ 2σ2M2

T∑
t=1

1

t2
· exp

(
−µ

T∑
u>t

η(u)

)

≤ 2σ2M2
T∑
t=1

1

t2
· exp

(
−µC ln

(
T + 1

t+ 1

))
= 2σ2M2

T∑
t=1

(t+ 1)2

t2
· (t+ 1)(µC−2)

(T + 1)(µC)

≤ 8σ2M2

∑T
t=1(t+ 1)(µC−2)

(T + 1)(µC)
,

where the first inequality uses condition (B), the second inequality follows from condition
(A1) for t+ 1 = t∗, and the third inequality is derived from (t+ 1)2/t2 ≤ 4 for all t ≥ 1.

No matter whether µC > 2 or not, we have
∑T

t=1 t
(µC−2) ≤

∫ T+1
t=1 t(µC−2)dt + 1. When

C > 1
µ , then ΓT2 can be estimated by

Γ2
T ≤ 8σ2M2

(µC − 1)
· (T + 2)(µC−1) + µC − 2

(T + 1)(µC)
≤ 8σ2M2 exp(1)

(µC − 1)
· 1

T + 1
+

8σ2M2

(T + 1)(µC)
. (43)
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Combining (42) and (43) together, we have

E[∥xT+1 − x∗∥2] = Γ1
T + Γ2

T

≤
∆0
n0

(T + 1)(µC)
+

8σ2M2 exp(1)

(µC − 1)
· 1

T + 1
+

8σ2M2

(T + 1)(µC)

≤
∆0
n0

+ 8σ2M2

(T + 1)(µC)
+

8σ2M2 exp(1)

(µC − 1)
· 1

T + 1
.

Proof (of Theorem 4) In this case, we assume that

m1 ≤ η(t) ≤M1, for t ∈ [C1T
p] and

m2

t
≤ η(t) ≤ M2

t
, for t ∈ [T ]\[C1T

p],

where p ∈ (0, 1). Then we have

m1C1T
p ≤

C1T p∑
t=1

η(t) ≤M1C1T
p, (44a)

m2[ln(T + 1)− ln(C1T
p)− 1] ≤

T∑
C1T p+1

η(t) ≤M2[ln(T )− ln(C1T
p)], (44b)

where (44b) follows from inequalities (31b) and (32b). Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}.
In this case, we assume that n0 is a constant that is independent of T . Thus the results of
Lemma 2 hold.

Recalling the definition of ΓT1 in (9a) and applying (44a) and (44b), we have

ΓT1 = exp

(
−µ

T∑
t=1

η(t)

)
∆0
n0

≤ exp (−µ (m1C1T
p +m2(ln(T + 1)− ln(C1T

p)− 1)))∆0
n0

≤
exp(µm2)∆

0
n0

T (µm2(1−p)) exp(µm1C1T p)
≤

exp(µm2)∆
0
n0

T (µm2(1−p)) (µm1C1T p + 1)

≤ exp(µm2)

µm1C1
·

∆0
n0

T (µm2(1−p)+p)
, (45)

where the last inequality dues to the fact that exp(x) ≥ 1 + x for x ∈ R. After that, we
estimate ΓT2 , divided into two parts as follows.

ΓT2 = 2σ2
T∑
t=1

η(l)2 exp(−µ
T∑
u>t

η(u))

≤ 2σ2

C1T p∑
t=1

η(l)2 exp(−µ
T∑
u>t

η(u)) +

T∑
t=C1T p+1

η(l)2 exp(−µ
T∑
u>t

η(u))

 .
35



Wang and Yuan

Let

Θ1 =

C1T p∑
t=1

η(l)2 exp(−µ
T∑
u>t

η(u)), Θ2 =

T∑
t=C1T p+1

η(l)2 exp(−µ
T∑
u>t

η(u)). (46)

Then we have
ΓT2 ≤ 2σ2(Θ1 +Θ2).

To get the upper bound of ΓT2 , we will separately estimate Θ1 and Θ2. Let us evaluate Θ1

first.

Θ1 =

C1T p∑
t=1

η(l)2 exp

(
−µ

T∑
u>t

η(u)

)
≤M2

1

C1T p∑
t=1

exp

(
−µ

T∑
u>t

η(u)

)

≤M2
1

C1T p∑
t=1

exp(µm1t)

exp (µm1C1T p)
exp

−µ
T∑

u>C1T p

η(u)


≤M2

1 exp

−µ
T∑

u>C1T p

η(u)

 C1T p∑
t=1

exp(µm1t)

exp (µm1C1T p)

≤ M2
1 exp(µm2)(C1T

p)(µm2)

(T + 1)(µm2)
·
∫ C1T p+1
t=1 exp(µm1t)dt

exp(µm1C1T p)

≤ M2
1 exp(µm2)(C1T

p)(µm2)

(T + 1)(µm2)
· exp(µm1(C1T

p + 1))− exp(µm1)

µm1 exp(µm1C1T p)
≤ M2

1 exp(µm2)C
(µm2)
1

µm1T (µm2)(1−p)
,

where the fourth inequality follows from (44b). Next, we bound Θ2 as follows.

Θ2 =

T∑
t=C1T p+1

η(l)2 exp

(
−µ

T∑
u>t

η(u)

)
≤M2

2

T∑
t=C1T p+1

1

t2
· exp

(
−µm2

T∑
u>t

1

u

)

≤M2
2

T∑
t=C1T p+1

(
1

t

)2

exp (−µm2(ln(T + 1)− ln(t+ 1)− 1))

≤ M2
2 exp(µm2)

(T + 1)(µm2)
·

T∑
t=C1T p+1

t(µm2)

t2
≤ M2

2 exp(µm2)

(T + 1)(µm2)
·
∫ T+1

t=C1T p

t(µm2−2)dt

≤ M2
2 exp(µm2)

(T + 1)(µm2)
· (T + 1)(µm2−1) − (C1T

p)(µm2−1)

µm2 − 1

≤ M2
2 exp(µm2)

(µm2 − 1)
· 1

T + 1
,

where the fourth inequality follows from the fact that no matter whether µm2 > 2 or not,

we always have
∑T

t=C1T p+1
t(µm2)

t2
≤
∫ T+1
t=C1T p t

(µm2−2)dt. The last inequality holds since

κ := (µm2)(1− p) ≥ 1 and p ∈ (0, 1), we have µm2 ≥ 1
(1−p) > 1. Thus

ΓT2 = 2σ2(Θ1 +Θ2) ≤
2σ2M2

1 exp(µm2)C
(µm2)
1

µm1T κ
+

2σ2M2
2 exp(µm2)

(µm2 − 1)
· 1

T + 1
. (47)
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Hence, combining (45) and (47), we obtain the desired result.

Proof (of Corollary 5) In this case, we consider a class of cyclical step size defined by
(13) where the period T0 is fixed and the number of cycle N = T/T0. The lower bound
ηimin = ηmin = m is a fixed constant, and the upper bound ηimax is a decaying function with
cycle i. Let Si denote the enclosed area of the cyclical step size with its lower bound ηmin

and Qi be the area between the upper bound and lower bound each cycle. We assume that
Si/Qi ≥ ψ (i ∈ [N ]) where ψ ∈ (0, 1] is a constant. This assumption is easily satisfied by,
for example, the triangular step size (Smith, 2017) with ψ = 1/2 and the cosine decaying
step size (Loshchilov and Hutter, 2017) with ψ = 1/2. Under the same setting as Lemma
2, we have

E[∥xT+1 − x∗∥2] ≤ exp

(
−µ

N∑
i=1

Si − µmT

)
∆0

n0
+ 2σ2T0

N∑
i=1

(ηimax)
2 exp

(
−µ
∑
l>i

(Si +mT0)

)

≤ exp

(
−µψ

N∑
i=1

Qi − µmT

)
∆0

n0
+ 2σ2T0

N∑
i=1

(ηimax)
2 exp

(
−µ

N∑
l>i

(ψQi +mT0)

)
.

If the upper bound ηimax = M/2i−1, then we have Qi = T0(M/2i−1 −m) and
∑N

i=1Qi =
2MT0(1 − 1/2N ) −mT . Let N = ⌈log2 T ⌉, then T0 = T/N . As we know, to ensure that
ηmin = m ≤ ηimax for all t, the lower boundm is ought to sufficiently small thatm ≤ 2M/T .

E[∥xT+1 − x∗∥2] ≤ exp

(
−µψ

N∑
i=1

Qi − µmT

)
∆0

n0
+ 2σ2T0

N∑
i=1

(ηimax)
2 exp

(
−µ

N∑
l>i

(ψQi +mT0)

)

≤
∆0

n0

exp (2µψM(T − 1)/ log2 T )
+ σ2M2T0

N∑
i=1

2−2i exp

(
−µψMT

log2 T

2−i+1 − 2−N )

1− 2−1

)

≤
∆0

n0

exp (2µψM(T − 1)/ log2 T )
+ 2σ2M2T0

N∑
i=1

2−2i exp

(
−2µψMT

log2 T
(2−i+1 − 2−N )

)
(a)

≤
∆0

n0

exp (2µψM(T − 1)/ log2 T )
+O

(
log2 T

T

)
. (48)

where (a) follows the fact that the individual term of the sum is at most O((log2 T/T 2)

when i = max
{
0, ⌊log2

(
4µψM · T

log2 T

)
⌋
}
.

Next we consider the decaying pattern of ηimax is based on 1/t, that is ηimax = M
iT0

for

i ∈ [N ]. To make sure that ηmin = m ≤ ηimax for all i, we need m ≤ M/T . Similar to the
above case for the exponential decaying upper bound, we have

E[∥xT+1 − x∗∥2] ≤ exp (−µψM lnN)∆0
n0

+ 2σ2M2
N∑
i=1

1

i2T0
exp (−µψM(lnN − ln i))

≤
∆0
n0

NµMψ
+

2σ2M2

T0NµMψ

N∑
i=1

iµMψ

i2
≤

∆0
n0

NµMψ
+

2σ2M2

T0NµMψ

(∫ N

i=1

iµMψ

i2
+ 1

)
≤

∆0
n0

NµMψ
+

2σ2M2

T0NµMψ

(
NµMψ−1 − 1

µMψ − 1
+ 1

)
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≤ ∆0
n0

(
T0
T

)µMψ

+
2σ2M2

µMψ − 1

1

T
. (49)

The proof is complete.

Appendix C. Proofs of the Results in Section 4

Proof (of Theorem 5) In this case, we assume that η(t) satisfies the following condition:

mδ(t) ≤ η(t) ≤Mδ(t),

where δ(t) satisfies (H3). Since dδ(t)
dt ≤ 0, it follows that

t∑
u=1

δ(u) ≥
∫ t+1

u=1
δ(u)du, (50a)

t∑
u=l

δ(u) ≥
∫ t+1

u=l
δ(u)du. (50b)

Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. We assume that n0 is a constant. Thus the
conclusion of Lemma 2 holds. Now we invoke (8) and incorporate the lower and upper
bounds of η(t) into (8), then apply (50a) and (50b), consequently, for t > n0, we have

E[∥xt+1 − x∗∥2]

≤ exp

(
−µm

t∑
l=1

δ(t)

)
∆0
n0

+ 2σ2M2
t∑
l=1

δ(l)2 exp

(
−µm

t∑
u>l

δ(u)

)

≤ exp

(
−µm

t∑
l=1

δ(t)

)
∆0
n0

+ 2σ2M2
t∑
l=1

δ(l)2 exp

(
−µm

(
t∑
u=l

δ(u)− δ(l)

))

≤ exp

(
−µm

∫ t+1

u=1
δ(u)du

)
∆0
n0

+ 2σ2M2
t∑
l=1

δ(l)2 exp(µmδ(l))

exp
(
µm

∫ t+1
u=l δ(u)du

)
≤

∆0
n0

exp
(
µm

∫ t+1
u=1 δ(u)du

) + 2σ2M2 exp(µmδ(1))

t∑
l=1

δ(l)2

exp
(
µm

∫ t+1
u=l δ(u)du

) . (51)

We consider the following three cases.

1. limt→∞ δ(t)t = 0, that is for all ϵ > 0, there exists an integer constant tϵ > 0 such that
δ(t)t < ϵ for all t ≥ tϵ. To attain such a convergence rate, firstly, we want to prove
that for all t ≥ tϵ, there exists α ∈ (0, 12 ] such that the following inequality holds

exp

(
µm

∫ t

tϵ

δ(l)dl

)
< tα. (52)
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Otherwise, there exists t1 ≥ tϵ such that for all α1 ∈ (0, 12 ] such that

exp

(
µm

∫ t1

tϵ

δ(l)dl

)
≥ tα1

1 .

Thus, we have

µm

∫ t1

tϵ

δ(l)dl ≥ α1 ln(t1). (53)

We know that the integral of δ(t) from tϵ to t1 can be rewritten as∫ t

tϵ

δ(l)dl =

∫ t

tϵ

δ(l) · l · 1
l
dl.

Since δ(t)t < ϵ for t ≥ tϵ, then
∫ t
tϵ
δ(l) · l · 1

l dl < ϵ ln( t1tϵ ). This is contradictory with
(53) for small ϵ < α1

µm . Thus for all t ≥ tϵ, the inequality (52) holds for a constant

α ∈ (0, 12 ]. Then

t∑
l=1

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)

=

tϵ−1∑
l=1

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)
dl +

t∑
tϵ

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)

≤ δ(1)2 exp

(
−µm

∫ t+1

u=tϵ−1
δ(u)du

)
(tϵ − 1) +

∑t
tϵ

(
ϵ
l

)2
exp

(
µm

∫ l
u=tϵ

δ(u)du
)

exp
(
µm

∫ t+1
l=tϵ

δ(l)dl
)

≤ δ(1)2(tϵ − 1) exp

(
−µm

∫ t+1

u=tϵ−1
δ(u)du

)
+

∑t
tϵ
( ϵl )

2(l + 1)α

exp
(
µm

∫ t+1
l=tϵ

δ(l)dl
)

≤
[
δ(1)2(tϵ − 1) + 2ϵ2

]
exp

(
−µm

∫ t+1

l=tϵ

δ(l)dl

)
≤ δ(1)2(tϵ − 1) + 2ϵ2

exp
(
−µm

∫ tϵ
l=1 δ(l)dl

) exp

(
−µm

∫ t+1

l=1
δ(l)dl

)
,

where the third inequality follows from the fact that
∑t

tϵ
( ϵl )

2(l + 1)α ≤ 2ϵ2. Thus, in

this case, for t > n0, E[∥xt+1 − x∗∥2] is at most(
∆0
n0

+ 2σ2M2 exp(µmδ(1))
δ(1)2(tϵ − 1) + 2ϵ2

exp(−µ
∫ tϵ
l=1 δ(l)dl)

)
exp

(
−µm

∫ t+1

u=1
δ(u)du

)
.

2. limt→∞ δ(t)t = 1.

In this case, it is easy to show there exist m and M such that m
t ≤ η(t) ≤ M

t . Hence
the theorem follows from Theorem 1.
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3. limt→∞ δ(t)t = +∞, that is for any M1 > 0, there exists a constant TM ∈ N+ such
that for all t ≥ TM , δ(t)t > M1.

We suppose that there exists a constant c1 ≤ µm
2 such that for all t ≥ TM

−dδ(t)
dt

≤ c1δ(t)
2. (54)

Let P (l) := δ(l)2 exp
(
−µm

∫ t+1
u=l δ(u)du

)
for 1 ≤ l ≤ t, then

dP (l)

dl
= 2δ(l)

dδ(l)

dl
exp

(
−µm

∫ t+1

u=l
δ(u)du

)
+ µmδ(l)3 exp

(
−µm

∫ t+1

u=l
δ(u)du

)
= δ(l) exp

(
−µm

∫ t+1

u=l
δ(u)du

)[
2
dδ(l)

dl
+ µmδ(l)δ(l)

]
. (55)

Let Q(l) := 2dδ(l)dl +µmδ(l)δ(l). By (55), we know that the sign of dP (l)
dl is determined

by the sign of Q(l). If c1 ≤ µm
2 , from (54), we have Q(l) ≥ 0, then the sequence of

P (l) is increasing when l ≥ TM .

If P (u) is increasing for u ∈ [l, t], then

t∑
u=l

P (u) ≤
∫ t+1

u=l
P (u)du. (56)

Otherwise, if P (u) is decreasing for u ∈ [l, t], then

t∑
u=l

P (u) ≤ P (l) +

∫ t

u=l
P (u)du. (57)

By (56), we have

t∑
l=1

P (l) =

TM∑
l=1

P (l) +
t∑

l=TM+1

P (l) ≤
TM∑
l=1

P (l) +

∫ t+1

l=TM

P (l)dl. (58)

By integration by parts,
∫ t+1
l=TM

P (l)dl can be written as

µm

∫ t+1

l=TM

P (l)dl = µm

∫ t+1

l=TM

δ(l)2 exp

(
−µm

∫ t+1

u=l

δ(u)du

)
dl

=δ(t+ 1)− δ(TM ) exp

(
−µm

∫ t+1

u=TM

δ(u)du

)
−
∫ t+1

l=TM

dδ(l)

dl
exp

(
−µm

∫ t+1

u=l

δ(u)du

)
dl

≤δ(t+ 1)− δ(TM ) exp

(
−µm

∫ t+1

u=TM

δ(u)du

)
+ c1

∫ t+1

l=TM

δ(l)2 exp

(
−µm

∫ t+1

u=l

δ(u)du

)
dl,

where the above inequality holds because (54) satisfies. When c1 < µm, rearranging
the above inequality, we have∫ t+1

l=TM

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)
dl ≤

δ(t+ 1)− δ(TM ) exp
(
−µm

∫ t+1
u=TM

δ(u)du
)

(µm− c1)
.
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Hence,

t+1∑
l=1

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)
dl ≤

TM∑
l=1

P (l) +

∫ t+1

l=TM

P (l)dl

=

TM∑
l=1

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)
+

∫ t+1

l=TM

δ(l)2 exp

(
−µm

∫ t+1

u=l
δ(u)du

)
dl

≤ δ(1)2TM

exp
(
µm

∫ t+1
u=TM

δ(u)du
) +

δ(t+ 1)− δ(TM ) exp(−µm
∫ t+1
u=TM

δ(u)du)

(µm− c1)

=
δ(t+ 1)

(µm− c1)
+

δ(1)2TM − δ(TM )
(µm−c1)

exp
(
µm

∫ t+1
u=TM

δ(u)du
)

≤ δ(t+ 1)

(µm− c1)
+

δ(1)2TM

exp
(
−µm

∫ TM
u=1 δ(u)du

) exp

(
−µm

∫ t+1

u=1
δ(u)du

)
.

Finally, incorporating the above inequality into (51), we can show that E[∥xt+1 − x∗∥2]
is bounded by

ε2
(µm− c1)

δ(t+ 1) +

[
∆0
n0

+
ε2δ(1)

2TM

exp(−µm
∫ TM
u=1 δ(u)du)

]
exp

(
−µm

∫ t+1

u=1
δ(u)du

)
,

where ε2 = 2σ2M2 exp(µmδ(1)).

Proof (of Lemma 3) Suppose that there exists a constant c1 > 0 such that

−dδ(t)
dt

≤ c1δ(t)
2.

Let δ̂(t) = aδ(t) for a > 0. Of course, for the new function δ̂(t), there must be a constant
ĉ1 > 0 such that

−dδ̂(t)
dt

≤ ĉ1δ̂(t)
2.

Then we have

−dδ̂(t)
dt

= −adδ(t)
dt

≤ ĉ1δ̂(t)
2 = a2ĉ1δ(t)

2.

Thus,

−dδ(t)
dt

≤ aĉ1δ(t)
2.

Let 0 < a ≤ µm
2ĉ1

, we have aĉ1 ≤ µm
2 , which shows that there must be a constant c1 = aĉ1 ≤

µm
2 .
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Appendix D. Proofs of the Results in Section 5

Proof (of Theorem 6) We assume that η(t) satisfies the following condition

m

t+ 1
≤ η(t) ≤ M ln(t+ 1)

t+ 1
, ∀ 1 ≤ t ≤ T.

Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. For t ≥ (2LfM)2, we have

η(t) ≤ M ln(t+ 1)

t+ 1
≤ M

√
t+ 1

t+ 1
≤ 1

2Lf
. (59)

Then n0 must exist and is a constant that is independent of T . Thus the inequality (8) of
Lemma 2 holds, then we get

E[∥xt+1 − x∗∥2]

≤ exp

(
−µ

t∑
l=1

η(l)

)
∆0
n0

+ 2σ2
t∑
l=1

η(l)2 exp

(
−µ

t∑
u>l

η(u)

)

≤ exp

(
−µm

t∑
l=1

1

l + 1

)
∆0
n0

+ 2σ2M2
t∑
l=1

ln2(l + 1)

(l + 1)2
exp

(
−µm

t∑
u>l

1

u+ 1

)

≤
∆0
n0

exp(µm(ln(t+ 2)− ln 2))
+ 2σ2M2 exp(µm)

t∑
l=1

ln2(l + 1)

(l + 1)2
· exp(µm ln(l + 1))

exp(µm ln(t+ 2))

≤
2(µm)∆0

n0

(t+ 2)(µm)
+

2σ2M2 exp(µm)

(t+ 2)(µm)

t∑
l=1

ln2(l + 1)

(l + 1)2
(l + 1)(µm)

≤
2(µm)∆0

n0

(t+ 2)(µm)
+

2σ2M2 exp(µm)

(t+ 2)(µm)

[
ln(2)

2
+

∫ t+2

l=2

ln2(l)

l2
· (l)(µm)dl

]
, (60)

where the third inequality follows from (32a) and (32b), and the last inequality is obtained
from (58). If µm = 1, we have∫ t+2

l=2

ln2(l)

l2
· (l)(µm)dl =

ln3(t+ 2)

3
− ln3 2 <

ln3(t+ 2)

3
.

Otherwise, if µm ̸= 1, integrating by parts we get∫ t+2

l=2

ln2(l)

l2
· l(µm)dl

≤ (t+ 2)(µm−1) ln2(t+ 2)− 2(µm−1) ln2 2

(µm− 1)
+

2(µm) ln 2

(µm− 1)2
+

2[(t+ 2)(µm−1) − (2)(µm−1)]

(µm− 1)3
.

From the above inequality, we can see that if µm < 1, such an integral can be bounded by
a scalar∫ t+2

l=2

ln2(l)

l2
· l(µm)dl ≤ 2(µm)

(1− µm)3
+

2(µm) ln 2

(1− µm)2
+

2(µm−1) ln2 2

(1− µm)
≤ 2 + 2 ln 2 + ln2 2

(1− µm)3
.
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While µm > 1, then∫ t+2

l=2

ln2(l)

l2
· l(µm)dl ≤

[
ln2(t+ 2)

(µm− 1)
+

2

(µm− 1)3

]
(t+ 2)(µm−1) +

2(µm) ln 2

(µm− 1)2
.

Thus, collecting the results obtained above, let t = T , we can get the result as desired.

Proof (of Theorem 7) In this case, η(t) satisfies that

m

t
≤ η(t) ≤ M

tα
,

for α ∈ (1/2, 1]. Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. For t ≥ (2LfM)(1/α), we have

η(t) ≤ M

tα
≤ 1

2Lf
. (61)

Then n0 must exist and is a constant that is independent of T . Thus, in this case, the
inequality (8) of Lemma 2 holds. From (8) in Lemma 2, we have

E[∥xt+1 − x∗∥2] ≤ exp

(
−µ

t∑
l=1

η(l)

)
∆0
n0

+ 2σ2
t∑
l=1

η(l)2 exp

(
−µ

t∑
u>l

η(u)

)

≤ exp

(
−µm

t∑
l=1

1

l

)
∆0
n0

+ 2σ2M2
t∑
l=1

1

l2α
exp

(
−µm

t∑
u>l

1

u

)

≤
∆0
n0

(t+ 1)(µm)
+

2σ2M2 exp(µm)

(t+ 1)(µm)

t∑
l=1

l(µm−2α)

≤
∆0
n0

(t+ 1)(µm)
+

2σ2M2 exp(µm)

(t+ 1)(µm)

(∫ t+1

l=1
l(µm−2α)dl + 1

)
≤

∆0
n0

+ 2σ2M2 exp(µm)

(t+ 1)(µm)
+

2σ2M2 exp(µm)

(t+ 1)(µm)

∫ t+1

l=1
l(µm−2α)dl.

If µm = 2α− 1 > 0, it follows that∫ t+1

l=1
l(µm−2α)dl =

∫ t+1

l=1

dl

l
= ln(t+ 1).

Consequently,

E[∥xt+1 − x∗∥2] ≤
∆0
n0

+ 2σ2M2 exp(2α− 1)

(t+ 1)(2α−1)
+

2σ2M2 exp(2α− 1) ln(t+ 1)

(t+ 1)(2α−1)
.

If µm ̸= 2α− 1, we have ∫ t+1

l=1
l(µm−2α)dl =

(t+ 1)(µm−2α+1) − 1

(µm− 2α+ 1)
,
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then E[∥xt+1 − x∗∥2] is at most

∆0
n0

+ 2σ2M2 exp(2α− 1)

(t+ 1)(µm)
+

2σ2M2 exp(µm)

(µm− 2α+ 1)

[
1

(t+ 1)(2α−1)
− 1

(t+ 1)(µm)

]
.

Combing the above results and letting t = T , we obtain the desired result.

Proof (of Theorem 8) In this case, we assume that η(t) satisfies that

m

(t+ 1) ln(t+ 1)
≤ η(t) ≤ M

(t+ 1)α

for α ∈ (1/2, 1]. Let n0 := sup {t ∈ N+ : η(t) > 1/(2Lf )}. For t ≥ (2LfM)(1/α)−1, we have

η(t) ≤ M

(t+ 1)α
≤ 1

2Lf
. (62)

Therefore n0 must exist and is a constant. In this case, the inequality (8) of Lemma 2 holds.
By (8), we have

E[∥xt+1 − x∗∥2]

≤ exp

(
−µ

t∑
l=1

η(l)

)
∆0
n0

+ 2σ2
t∑
l=1

η(l)2 exp

(
−µ

t∑
u>l

η(u)

)

≤ exp

(
−µm

t∑
l=1

1

(l + 1) ln(l + 1)

)
∆0
n0

+ 2σ2M2
t∑
l=1

exp
(
−µm

∑t
u>l

1
(l+1) ln(l+1)

)
(l + 1)2α

≤
(ln 2)(µm)∆0

n0

(ln(t+ 2))(µm)
+

2σ2M2(ln 2)(µm)

(ln(t+ 2))(µm)

t∑
l=1

(ln(l + 1))(µm)

(ln(t+ 2))2α

≤
(ln 2)(µm)∆0

n0

(ln(t+ 2))(µm)
+

2σ2M2(ln 2)(µm)

(ln(t+ 2))(µm)

[
(ln 2)µm

22α
+

∫ t+1

l=1

(ln(l + 1))(µm)

(l + 1)2α
dl

]
, (63)

where the third inequality dues to the fact that
∑t

l=1
1

l ln(l) ≥
∫ t+1
l=1

1
(l+1) ln(l+1)dl = ln ln(t+

2)− ln ln 2 and the last inequality follows from (58).
We know that for any β ∈ (0, 1), there must be a constant tβ such that ln(t+1) ≤ (t+1)β

for all t ≥ tβ. Here we choose that 0 < β < 2α−1
µm . There exists a constant tβ such that

ln(t+ 1) ≤ (t+ 1)β for all t ≥ tβ. For sufficiently large t ≥ tβ, we have∫ t+1

l=1

(ln(l + 1))(µm)

(l + 1)2α
dl ≤

∫ tβ

l=1

(ln(l + 1))(µm)

(l + 1)2α
dl +

∫ t+1

tβ

(ln(l + 1))(µm)

(l + 1)2α
dl

≤ (ln(tβ + 1))(µm)

∫ tβ

l=1

dl

(l + 1)2α
+

∫ t+1

tβ

(l + 1)(βµm−2α)dl

≤ 2(1−2α)

2α− 1
+

(t+ 1)(βµm−2α+1) − (tβ + 1)(βµm−2α+1)

(βµm+ 1− 2α)
. (64)
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Thus, applying (64) into (63) and let t = T , we can bound E[∥xT+1 − x∗∥2] by

(ln 2)(µm)∆0
n0

(ln(t+ 2))(µm)
+

2σ2M2(ln 2)(µm)

(ln(t+ 2))(µm)

[
(ln 2)(µm)

22α
+

2(1−2α)

2α− 1
+

(tβ + 1)(βµm−2α+1)

(2α− 1− βµm)

]
.

Therefore, there exists a constant C2 > 0 such that

E[∥xT+1 − x∗∥2] ≤ C2

(ln(t+ 2))(µm)
.
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