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Abstract

Statistical modeling and inference problems with sample sizes substantially smaller than
the number of available covariates are challenging. Chakraborty et al. (2012) did a full
hierarchical Bayesian analysis of nonlinear regression in such situations using relevance
vector machines based on reproducing kernel Hilbert space (RKHS). But they did not
provide any theoretical properties associated with their procedure. The present paper
revisits their problem, introduces a new class of global-local priors different from theirs,
and provides results on posterior consistency as well as on posterior contraction rates.
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1. Introduction

Regression techniques are widely used virtually in any field demanding quantitative anal-
ysis. Even until today, much of this analysis relies on a linear relationship between the
predictors and the response variables. This, however, is often more a convenience than
reality. There is no dearth of problems of applied interest where the linearity assumption
fails, and non-linear regression is called for. Fortunately, recent advancement in computer
capability has allowed statisticians to tackle such non-linear regression problems. In addi-
tion, statisticians are now able to handle data where the number of covariates (say, p) far
exceeds the sample size (say, n), a situation of natural ocurrence, for example in microarray
experiments, image analysis, and a variety of commonly encountered problems in medicine,
business, economics, sociology and others.

Chakraborty et al. (2012) considered one such problem arising from near infrared (NIR)
spectroscopy where spectral measurements typically produce many more covariates (wavelets,
channels) than calibration measurements (samples). They considered a full hierarchical
Bayesian analysis of such data using relevance vector machines (RVM’s). RVM’s are ma-
chine learning techniques, originally introduced by Tipping (1999, 2001) and Bishop and
Tipping (2013). These authors essentially used an empirical Bayes procedure involving
Type II maximum likelihood (Good et al., 1966) estimators of prior parameters. Unlike
them, Chakraborty et al. (2012) used a hierarchical Bayesian procedure by assigning dis-
tributions to the prior parameters. Hierarchical Bayes procedures typically hold advantage
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over empirical Bayes procedures in that unlike the latter, they can model the uncertainty
in estimating the prior parameters, thus are particularly useful for prediction.

The RVM regression approach of Chakraborty et al. (2012) was based on reproducing ker-
nel Hilbert space (RKHS). While they could implement their procedure via Markov chain
Monte Carlo (MCMC), they did not establish any theoretical properties of their method.
The basic objective of this paper is to provide theoretical underpinnings to the problem
introduced by Chakraborty et al. (2012). We have introduced a class of global-local priors
different from the ones of Chakraborty et al. (2012). Global-local priors are widely used in
high-dimensional statistics, for example, by Carvalho et al. (2010), Polson and Scott (2010)
and many others. One of the attractive features of our priors is that they can handle both
sparse and dense situations, and the asymptotics are based on the sample size n tending to
infinity.

Our paper essentially consists of two parts. In the first part of this paper, we have proved
under minimal assumptions posterior consistency as well as posterior contraction rate for a
bounded kernel which includes the well-used Gaussian kernel under some mild conditions.
As mentioned, the results are very general where the number of covariates can far exceed
the sample size n. The prior used is a certain class of global-local priors, and the global
parameter plays a key role in establishing posterior consistency as well as posterior contrac-
tion. With appropriate choice of this parameter, we are able to obtain asymptotic minimax
posterior contraction rate as well. The second part of the paper deals with polynomial
kernels where we are able to establish posterior consistency as well as posterior contraction
rates.

The outline of the remaining sections is as follows. We have introduced the hierarchical
Bayesian model in Section 2 for bounded kernels with fixed kernel parameter and have de-
rived the marginal posterior of the regression parameter of interest. Section 3 deals with
the bounded kernel and posterior consistency and contraction are established under the
proposed model. Section 4 deals with results involving polynomial kernels with fixed kernel
parameters. Some final remarks are made in Section 5.

2. Hierarchical Regression Model Based on RKHS

In this section we introduce the reproducing kernel Hilbert space (RKHS) and hierarchical
Bayesian model based on RKHS.

2.1 Regression Model Based on RKHS

For a regression model, we have a training set {yi,xi}, i = 1, 2, · · · , n, where yi is the
response variable and xi = (xi1, · · · , xip)T is the vector of covariates of size p corresponding
to yi. Given the training data our goal is to find an appropriate function f to predict the
response y in the test set based on the covariates x. This can be viewed as a regularization
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problem of the form

min
f∈H

[Σn
i=1L(yi, f(xi)) + λJ(f)] (1)

where L(y, f(x)) is a loss function, J(f) is a penalty functional, λ > 0 is the smoothing pa-
rameter, and H is a space of functions on which J(f) is defined. In this article, we consider
H to be a reproducing kernel Hilbert space (RKHS) with kernel K, and we denote it byHK .
A formal definition of RKHS is given in Aronszajn (1950), Parzen (1970) and Wahba (1990).

If f ∈ HK , we take J(f) =‖ f ‖HK and rewrite (1) as

min
f∈HK

[

n∑
i=1

L(yi, f(xi)) + λ ‖ f ‖HK ]. (2)

The estimate of f is obtained as a solution of (2). It can be shown that the solution can be
written as a finite sum (Wahba, 1990) and leads to a representation of f (Kimeldorf and
Wahba, 1971; Wahba et al., 1999) as

f(x) = Σn
j=1βjK(x,xj). (3)

It is also a property of RKHS that

‖
n∑
j=1

βjK(x,xj) ‖HK=
n∑

i,j=1

βiβjK(xi,xj).

To obtain the estimate of f we substitute above equation and equation (3) in (2) and then
minimize it with respect to (βi, · · · , βn) and the smoothing parameter λ.

There are a wide variety of kernels in literature, and according to Duvenaud (2014) three ba-
sic kernels among them are the Gaussian Kernel(or squared-exponential kernel): K(xi, xj) =

σ2f exp(−(xi − xj)2/θ)), periodic kernel: K(xi, xj) = σ2f exp
(
− 2
l2

sin2
(
π
xi−xj
p

))
and linear

kernel: K(xi, xj) = σ2f (xi − c)(xj − c). There are many ways to combine known kernels
to get new kernels with different properties. This allows us to include as much high-level
structure as necessary into our models. Two popular ways to combine kernels are addition
and multiplication. A thorough discussion on the topic can be found in Duvenaud (2014),
Hofmann et al. (2008), Shawe-Taylor and Cristianini (2004) and Slavakis et al. (2014).

In this paper we study the following two reproducing kernels K:
(a) The Gaussian kernel Kθ(xi,xj) = exp{−‖xi − xj‖2/θ}, θ > 0,
(b) The polynomial kernel Kθ(xi,xj) = (xi · xj + 1)θ, θ > 0.

We can see that the Gaussian kernel is stationary, meaning that its value only depends
on the difference xi−xj and the RKHS generated by the Gaussian kernel is infinite dimen-
sional (Slavakis et al., 2014), while the polynomial kernel is nonstationary and the dimension
of RKHS generated by polynomial kernel is finite.
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2.2 Hierarchical Bayes Relevance Vector Machine

Begin with the model yi|θ,Xn,βn, σ
2 ind∼ N (KT

inβn, σ
2) withKT

in = (Kθ(xi,x1), · · · ,Kθ(xi,xn)),
i = 1, · · · , n. We also let Yn = (y1, · · · , yn)T ,XT

n = (x1, · · · ,xn) andKT
n = (K1n, · · · ,Knn).

We call Kn the matrix associated with kernel K. In the following, we always assume the
parameter θ is fixed.

The following hierarchical prior is assigned for the unknown parameters βn, σ2:
Model 1:
(i) βn|σ2,Λ2

n ∼ N (0, σ2τ2nΛ2
n),Λ2

n = diag(λ21, · · · , λ2n) ,
(ii) σ2 ∼ IG(a/2, b/2),

(iii) λ2i
i.i.d∼ p(λ2i ) ,

where a, b > 0 are constants not depending on n, parameter τn and prior distribution p(λ2)
will be specified in the following theorems.

Remark 1 Here we assign a global local shrinkage prior to the coefficient βn, and the
parameter τ2n is called the global shrinkage parameter. The λi on the other hand are local
shrinkage parameters. Global local shrinkage prior is widely used in high dimensional regres-
sion problems nowadays, and it can lead to posterior consistency, see Ghosh and Chakrabarti
(2017), Van Der Pas et al. (2014) and Song and Liang (2023). Our model is essentially a
linear model, and Kn in our case becomes the design matrix with coefficient βn. We need
to add some regularization conditions on Kn and also on the prior distributions of λ2i . Our
model is similar to that of Ghosh and Chakrabarti (2017), but we assume σ2 is unknown,
which makes our analysis more complicated.

With these priors we get

π(βn, σ
2,Λ2

n|Yn,Xn)

∝(σ2)−n−a/2−1π(Λ2
n)|Λ2

n|
−1/2

exp[
−b− βnT (τ−2n Λ−2n )βn − (Yn −Knβn)T (Yn −Knβn)

2σ2
];

(4)

βn|σ2,Λ2
n,Yn,Xn ∼ N((K2

n + τ−2n Λ−2n )−1KnYn, σ
2(K2

n + τ−2n Λ−2n )−1); (5)

π(σ2,Λ2
n|Yn,Xn)

∝(σ2)−n/2−a/2−1π(Λ2
n)|Λ2

n|
−1/2|K2

n + τ−2n Λ−2n |
−1/2

× exp[
−b− YnT (In −Kn(K2

n + τ−2n Λ−2n )−1Kn)Yn
2σ2

];

(6)

π(Λ2
n|Yn,Xn)

∝π(Λ2
n)|K2

nΛ
2
n + τ−2n In|

−1/2
(b+ Yn

T [In −Kn(K2
n + τ−2n Λ−2n )−1Kn]Yn)

−n/2−a/2
;

(7)

2.3 Notations

For a vector v ∈ Rn, ‖ v ‖2,n= (Σn
i=1vi

2)
1
2 denote the l2 norm. Let λmax = max{λ1, · · · , λn},

λmin = min{λ1, · · · , λn}. dn 4 qn denotes dn = O(qn).
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3. Hierarchical Bayesian Model with Bounded Kernel

In this section, we consider the case where Model 1 has a bounded kernel with fixed param-
eter θ. Before studying the property of the posterior distribution, we state some regularity
conditions on the matrix Kn and the true model parameters β0n, σ20 .

Regularity conditions:
(A1)(Bounded Kernel) The design matrix Xn satisfies

c1In ≤Kn ≤ c2In

for sufficiently large n, where c1, c2 > 0 do not depend on n.

We now verify that (A1) holds for the RKHS with Gaussian kernel if the different columns
xi are sufficiently apart.

Lemma 2 Let Kn be the matrix associate with Gaussian kernel , if ‖xi − xj‖2 ≥ k(n) =
2θ log n for sufficiently large n for i 6= j, then there exists N > 0 such that when n > N ,
(1− 1

n)In ≤Kn ≤ (1 + 1
n)In.

Proof: It suffices to show that for every c 6= 0, cTKnc ≤ (1 + 1
n)cTc for large n. But

cTKnc

≤Σn
i=1ci

2 + Σ1≤i 6=j≤n|ci||cj |/ exp(k(n)/θ)

=(Σn
i=1ci

2 + [(Σn
i=1|ci|)2 − Σn

i=1ci
2]/(2 exp(k(n)/θ))

≤
[
1− 1

2 exp(k(n)/θ)

]
Σn
i=1ci

2 +
nΣn

i=1ci
2

2 exp(k(n)/θ)

≤
[
1 +

n− 1

2 exp(k(n)/θ)

]
Σn
i=1ci

2

≤
(

1 +
1

n

)
cTc,

for sufficiently large n. Similarly, we have cT (p−θKn)c ≥
(
1− 1

n

)
cTc.

Remark 3 The condition that different columns xi are sufficiently apart as n→∞ seems
counter-intuitive. This condition will not hold if the data points xi are in a compact set
in Rd, d is a fixed integer. However, the dimension p of xi in our paper also goes to
infinity as n → ∞, and we do not restrict our data points on a compact set. So condition
‖xi − xj‖2 ≥ k(n) = 2θ log n for sufficiently large n for i 6= j is attainable, and will be
satisfied if p� n.

Remark 4 In contrast to Ghosh and Chakrabarti (2017), who assumed Kn = In, condi-
tion(A1) requires only boundedness of Kn in both directions.
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We now introduce the true model Yn = Knβ0n + εn, where β0n = (β01, · · · , β0n)T and
εn ∼ N(0, σ20In). We define qn as the number of nonzero elements in β0n. Our objective
is to evaluate the performance of our proposed procedure in relation to the true model. In
particular, we demonstrate mean squared error consistency of the hierarchical Bayes esti-
mator under certain regularity conditions. To this end, we first make there assumptions
(A2)- (A4) in addition to (A1):
(A2) ‖β0n‖22 = O(qn),
(A3) qn = o(n),
(A4) σ20 = O(1).

Remark 5 Condition (A2) is called sparsity assumption, it is reasonable in RVM model,
because as shown in Tipping (2001), they find in practice the posterior distributions of
many of the weights(βi in our settings) are sharply peaked around zero, and they term those
training vectors associated with the remaining non-zero weights ’relevance’ vectors.

Remark 6 Regularity condition (A3) and condition |β0i,n| = O(1) will imply regularity
condition (A2), so we can also make condition |β0i,n| = O(1) as regularity condition(A2)
to get all of our results in this paper, however, condition ‖β0n‖22 = O(qn) seems more nat-
ural here. Indeed, when the regression function f(x) =

∑n
j=1 βjK (xj ,x), the assumption

‖f‖H ≤ Cf can be rewritten βTKnβ ≤ Cf and by Assumption (A1), we only have to assume
that ‖β‖22 ≤ Cf/c2. This improves the connection to Gaussian processes and nonparametric
estimation in RKHS.

Theorem 7 Assume conditions (A1)-(A4) hold. Consider the priors assigned to Λn and
σ2 in Section 2.2. Then if τ2n = O(n−2) and

∫
λ4p(λ2)dλ2 <∞,

E0 ‖ E(Knβn|Yn,Xn)−Knβ0n ‖22,n= o(n)

as n→∞, where E0 denotes expectation under the true model.

Remark 8 This theorem holds for both p ≤ n and p > n.
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Proof of Theorem 7: First we calculate

E(Knβn|Yn,Xn)−Knβ0n

=E(E(Knβn|σ2,Λ2
n,Yn,Xn)|Yn,Xn)−Knβ0n

=E[Kn(K2
n + τ−2n Λ−2n )−1KnYn|Yn,Xn])−Knβ0n

=E[Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

+ E[Kn(K2
n + τ−2n Λ−2n )−1K2

nβ0n|Yn,Xn]−Knβ0n

=E[Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

+ E[Kn(K2
n + τ−2n Λ−2n )−1(K2

n + τ−2n Λ−2n − τ−2n Λ−2n )β0n|Yn,Xn]−Knβ0n

=E[Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

− E[Kn(K2
n + τ−2n Λ−2n )−1τ−2n Λ−2n β0n|Yn,Xn]

=I − II,

(8)

where we let the first term in the second last equality in (8) be I and the second term be II.

In view of (8), it suffices to show that E0 ‖ I ‖22,n= o(n) and E0 ‖ II ‖22,n= o(n).

In order to prove these results, first we recall the matrix result that if A ≥ B, that is
A−B is nonnegative definite, then CACT ≥ CBCT .

Next recalling (A1),

‖ I ‖22,n
≤E[(Yn −Knβ0n)TKn(K2

n + τ−2n Λ−2n )−1K2
n(K2

n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

≤c22E[(Yn −Knβ0n)TKn(K2
n + τ−2n Λ−2n )−2Kn(Yn −Knβ0n)|Yn,Xn]

=c22E[(Yn −Knβ0n)TKn(K2
n + τ−2n Λ−2n )−1/2(K2

n + τ−2n Λ−2n )−1

· (K2
n + τ−2n Λ−2n )−1/2Kn(Yn −Knβ0n)|Yn,Xn]

≤c22E[(Yn −Knβ0n)TKn(K2
n + τ−2n Λ−2n )−1/2(K2

n)−1

· (K2
n + τ−2n Λ−2n )−1/2Kn(Yn −Knβ0n)|Yn,Xn]

≤(c22/c
2
1)E[(Yn −Knβ0n)TKn(K2

n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

≤(c22/c
2
1)E[(Yn −Knβ0n)T (Knτ

2
nΛ2

nKn)(Yn −Knβ0n)|Yn,Xn]

≤τ2n(c22/c
2
1)E[(Yn −Knβ0n)Tλ2maxK

2
n(Yn −Knβ0n)|Yn,Xn]

≤c
4
2τ

2
n

c21
E[λ2max|Yn,Xn] · ‖Yn −Knβ0n‖22,n.

(9)
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Next applying the Cauchy-Schwarz inequality and the fact that ‖Yn −Knβ0n‖22,n ∼ σ20χ
2
n

under the true model Yn ∼ N (Knβ0n, σ
2
0In),

E0[E[λ2max|Yn,Xn] · ‖Yn −Knβ0n‖22,n]

≤E1/2
0 (E2[λ2max|Yn,Xn])E1/2

0 [‖Yn −Knβ0n‖42,n]

≤E1/2
0 (E[λ4max|Yn,Xn]) · E1/2

0 (σ20χ
2
n)2

=E1/2
0 (λ4max) ·

√
n(n+ 2)σ40

≤E1/2
0 (

n∑
i=1

λ4i ) ·
√
n(n+ 2)σ40

=(
n∑
i=1

E0λ
4
i )

1/2 ·
√
n(n+ 2)σ40

=
√
nE1/2

0 (λ41) ·
√
n(n+ 2)σ40,

(10)

The result now follows from (9) and (10) since τ2n = O(n−2) .

Next using c21In ≤K2
n ≤ c22In and assumption (A2),

‖ II ‖22,n
≤E[‖Kn(K2

n + τ−2n Λ−2n )−1τ−2n Λ−2n β0n‖22,n|Yn,Xn]

=τ−4n E[βT0nΛ
−2
n (K2

n + τ−2n Λ−2n )−1K2
n(K2

n + τ−2n Λ−2n )−1Λ−2n β0n|Yn,Xn]

≤c22τ−4n E[βT0nΛ
−2
n (K2

n + τ−2n Λ−2n )−2Λ−2n β0n|Yn,Xn]

≤c22τ−4n E[βT0nΛ
−2
n (c21In + τ−2n Λ−2n )−2Λ−2n β0n|Yn,Xn]

≤c22τ−4n E[βT0nΛ
−2
n τ4nΛ4

nΛ
−2
n β0n|Yn,Xn]

=c22‖β0n‖22,n = O(qn) = o(n).

(11)

This completes the proof of the theorem.

Remark 9 The assumption of finiteness of the second moment of λ2 can be weakened. All
we need is the finiteness of the (1+δ)th moment of λ2, where δ > 0. To see this, one applies
Holder’s inequality to get

E0[E[λ2max|Yn,Xn] · ‖Yn −Knβ0n‖22,n]

≤E
1

1+δ

0 (E1+δ[λ2max|Yn,Xn])E
δ

1+δ

0 [‖Yn −Knβ0n‖
2· 1+δ

δ
2,n ]

≤E
1

1+δ

0 (E[λ2·(1+δ)max |Yn,Xn])E
δ

1+δ

0 [‖Yn −Knβ0n‖
2· 1+δ

δ
2,n ]

=E
1

1+δ

0 (λ2·(1+δ)max )E
δ

1+δ

0 [‖Yn −Knβ0n‖
2· 1+δ

δ
2,n ].

(12)

Since ‖Yn −Knβ0n‖22,n ∼ σ20χ2
n,

E0[‖Yn −Knβ0n‖
2· 1+δ

δ
2,n ] = (σ20)

1+δ
δ (χ2

n)1+1/δ = (2σ20)
1+δ
δ Γ(n/2 + 1/δ + 1)/Γ(n/2).
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Using Stirling’s formula, Γ(n/2 + 1/δ + 1)/Γ(n/2) ≤ Cn1/δ+1, so that the second term in
the right hand side of (12) is bounded above by a constant multiple of n, also

E(λ2·(1+δ)max )E
1

1+δ (λ2·(1+δ)max ) ≤ n
1

1+δE
1

1+δ

(
λ
2·(1+δ)
1

)
. (13)

By (12) and (13),

E0[E[λ2max|Yn,Xn] · ‖Yn −Knβ0n‖22,n] ≤ Cn1+
1

1+δE
1

1+δ

(
λ
2·(1+δ)
1

)
. (14)

Then Theorem 1 still holds since τ2n = O(n−2).

Remark 10 The assumption of (1 + δ)th moment of λ2 holds for several distributions.
Examples include the common Gamma distribution, the inverse Gaussian distribution, Stu-
dent’s t-distribution with finite second moment, the inverse gamma distribution with shape
parameter greater than 1 + δ and the beta prime priors p(λ2) ∝ (λ2)a−1(1 + λ2)−a−b with
b > 1 + δ.

Remark 11 Checking the proof of Theorem 7, we can reformulate it as follows:
Assume conditions (A1)-(A4) hold. Consider the priors assigned to Λn and σ2 in Section
2.2. Then if τ2n 4 n−3/2qn and ∫

λ4p(λ2)dλ2 <∞,

E0 ‖ E(Knβn|Yn,Xn)−Knβ0n ‖22,n4 qn

as n→∞.

Theorem 12 Assume conditions (A1)-(A4) hold. Consider the priors assigned to Λn and
σ2 as in Section 2.3. Then if τ2n = O(n−2) and∫

λ4p(λ2)dλ2 <∞,

then
E0{tr[V(Knβn|Yn,Xn)]} = o(n)

as n→∞.
Proof of Theorem 12: By (6) we have E(σ2|Λn,Yn,Xn) = b+Yn

T (In−Kn(K2
n+τ

−2
n Λ−2

n )−1Kn)Yn
n+a−2 ,

tr[V(Knβn|Yn,Xn)]

=trE[V(Knβn|σ2,Λn,Yn,Xn)|Yn,Xn]

+ trV[E(Knβn|σ2,Λn,Yn,Xn)|Yn,Xn]

=trE[
b+ Yn

T (In −Kn(K2
n + τ−2n Λ−2n )−1Kn)Yn

n+ a− 2
Kn(K2

n + τ−2n Λ−2n )−1Kn|Yn,Xn]

+ trV[Kn(K2
n + τ−2n Λ−2n )−1KnYn|Yn,Xn]

=III + IV,

(15)
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where we let the first term in the second last equality in (15) be III and the second term
be IV .

Since K2
n ≤ c22In, tr(Kn

2) ≤ nc22. Hence, by Cauchy-Schwartz inequality,

III ≤trE[
b+ Yn

TYn
n+ a− 2

(τ2nλ
2
maxK

2
n)|Yn,Xn] ≤ nc22τ2nE[λ2max|Yn,Xn]

b+ Yn
TYn

n+ a− 2

≤nc22τ2nE1/2(λ4max|Yn,Xn)
E1/2(b+ Yn

TYn)2

n+ a− 2

(16)

We may note that under the true model Yn ∼ N (Knβ0n, σ
2
0In), Y T

n Yn/σ
2
0 is a noncentral

chisquared distribution with degrees of freedom n and noncentral parameter (βT0nK
2
nβ0n)/σ20.

Hence, E(Y T
n Yn/σ

2
0) = n + (βT0nK

2
nβ0n)/σ20 and V(Y T

n Yn/σ
2
0) = 2n + 8(βT0nK

2
nβ0n)/σ20.

Thus

E1/2
0 (b+ Yn

TYn)2 ≤E1/2
0 [2b2 + 2(Yn

TYn)2] ≤
√

2b2 + E1/2
0 [2(Yn

TYn)2]

=
√

2b+
√

2[2nσ20 + 8σ20(βT0nK
2
nβ0n) + (nσ20 + (βT0nK

2
nβ0n))2]1/2

≤
√

2b+
√

2[2nσ20 + 8c22qn + (nσ20 + c22qn)2]1/2 = O(n)

(17)

Combining (16) and (17)

E0III ≤nc22τ2nE0[nE(λ41)]
1/2O(n)/(n+ a− 2)

4c22n
3/2τ2n = o(n).

IV = trV[Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n +Knβ0n)|Yn,Xn]

≤ 2trV[Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

+ 2trV[Kn(K2
n + τ−2n Λ−2n )−1K2

nβ0n|Yn,Xn].

(18)

Now noting that tr[V(X)] ≤ E‖X‖2, the 1st term in the RHS of (18)

≤ 2E[‖Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)‖22,n|Yn,Xn].

Then by (9), (10),we have

E0{trV[Kn(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]} 4 qn = o(n). (19)

The 2nd term in the RHS of (18)

≤2E[‖Kn(K2
n + τ−2n Λ−2n )−1K2

nβ0n‖22,n|Yn,Xn]

≤2c22β
T
0nK

2
n(K2

n + τ−2n Λ−2n )−2K2
nβ0n

=2c22β
T
0nK

2
n(K2

n + τ−2n Λ−2n )−1/2(K2
n + τ−2n Λ−2n )−1(K2

n + τ−2n Λ−2n )−1/2K2
nβ0n

≤2(c22/c
2
1)β

T
0nK

2
n(K2

n + τ−2n Λ−2n )−1K2
nβ0n

≤2(c22/c
2
1)β

T
0nK

2
n(K2

n)−1K2
nβ0n

≤2
c42
c21
‖β0n‖22,n = O(qn) = o(n).

10
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Hence,
E0{trV[Kn(K2

n + τ−2n Λ−2n )−1K2
nβ0n|Yn,Xn]} = o(n). (20)

The theorem follows from (15)-(20).

Remark 13 Checking the proof of Theorem 12, we can reformulate it as follows:
Assume conditions (A1)-(A4) hold. Consider the priors assigned to Λn and σ2 as in Section
2.3. Then if τ2n 4 n−3/2qn and ∫

λ4p(λ2)dλ2 <∞,

E0{tr[V(Knβn|Yn,Xn)]} 4 qn

as n→∞.

Combining Remark 11 and Remark 13, we can get:

Corollary 14 Assume conditions (A1)-(A4) hold. Then with the prior assigned to Λn and

σ2 in model 1, if τ2n 4 n−
3
2 qn and ∫

λ4p(λ2)dλ2 <∞,

E0P (‖Knβn −Knβ0n‖22,n ≥Mnqn|Yn,Xn)→ 0

as n→∞, where Mn →∞ as →∞.

In particular, one may take Mn = log(n/qn) to get the asymptotic minimax contraction
bound.

4. Hierarchical Bayesian Model with Polynomial Kernel

For a polynomial kernel, we can not apply Theorem 7 directly, because the regularity condi-
tion (A1) does not generally hold. For example, for polynomial kernel with fixed parameter
θ > 0, if the design matrix Xn satisfies the orthogonality condition, namely, XnX

T
n = pIn,

then p−θKn − In → 0 as n → ∞ so that 1
2p
θIn ≤ Kn ≤ 2pθIn for sufficiently large n,

which does not satisfy condition (A1). In this section, we consider the case when the design
matrix Xn satisfies t1(n)In ≤Kn ≤ t2(n)In, t2(n)/t1(n) = O(1), where t1(n) and t2(n) are
functions depending solely on n.

We have the following posterior contraction result for polynomial kernels.

Theorem 15 Assume conditions (A2)-(A4) hold. Then with the prior assigned to Λn

and σ2 in Model 1, if t1(n)In ≤ Kn ≤ t2(n)In, t2(n)/t1(n) = O(1), t22(n) 4 log( nqn ) ,

τ2n 4 n−3/2qn and ∫
λ4p(λ2)dλ2 <∞,

11
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E0 ‖ E(Knβn|Yn,Xn)−Knβ0n ‖22,n4 qn log(
n

qn
)

as n→∞.

Proof of Theorem 15: This proof is almost the same as of Theorem 7. It suffices to show
that E0 ‖ I ‖22,n4 qn log( nqn ) and E0 ‖ II ‖22,n4 qn log( nqn ) as n→∞.

Substituting t1(n) and t2(n) for c1 and c2 in Theorem 7, we get

E0 ‖ I ‖22,n≤
√
n
t42(n)τ2n
t21(n)

E1/2
0 (λ41) ·

√
n(n+ 2)σ40 4 n3/2τ2nt

2
2(n) 4 qn log(

n

qn
) (21)

and

E0 ‖ II ‖22,n4 t22(n)‖β0n‖22,n 4 qn log(
n

qn
). (22)

Theorem 16 Assume conditions (A2)-(A4) hold. Then with the same priors assigned to
Λn and σ2 in Section 2.2, if t1(n)In ≤Kn ≤ t2(n)In, t2(n)/t1(n) = O(1), t22(n) 4 log( nqn ),

τ2n 4 n−3/2qn and ∫
λ4p(λ2)dλ2 <∞,

then

E0{tr[V(Knβn|Yn,Xn)]} 4 qn log(
n

qn
)

as n→∞.

Proof of Theorem 16: This proof is almost the same as of Theorem 12. Substitute c1,
c2 in the proof of Theorem 12 by t1(n), t2(n).

Combining Theorems 15 and 16 we get minimax contraction rate for our model.

Corollary 17 Assume conditions (A2)-(A4) hold. Then with the same priors assigned to
Λn and σ2 in Section 2.2, if t1(n)In ≤Kn ≤ t2(n)In, t2(n)/t1(n) = O(1), t22(n) 4 log( nqn ),

τ2n 4 n−3/2qn and ∫
λ4p(λ2)dλ2 <∞,

E0P (‖Knβn −Knβ0n‖22,n ≥ qn log(
n

qn
)|Yn,Xn)→ 0

as n→∞.

12
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Remark 18 For polynomial kernels with fixed parameters, if the design matrix is approx-
imately orthogonal , then we still have t1(n)In ≤ Kn ≤ t2(n)In, t2(n)/t1(n) = O(1).

Theorems 15 , 16 and Corollary 17 hold if pθ 4
√
qn log( nqn ), then p < n. Actually we have

the following lemma which describes the behavior of the kernel K when the design matrix
is approximately orthogonal.

Lemma 19 Let K be a polynomial kernel with parameter θ ∈ [aL, aU ], aL > 1/2, and the
design matrix Xn satisfies

|xi · xi + 1

p
− 1| ≤ 1

h(n)
and

|xi · xj + 1

p
| ≤ 1

k(n)
, 1 ≤ i 6= j ≤ n,

h(n) = 2aU · n, k(n) = n4. Then for sufficiently large n, there exists N > 0 such that when
n > N , (1− 1

n)In ≤ p−θKn ≤ (1 + 1
n)In for all θ ∈ [aL, aU ].

Proof: It suffices to show that for every c 6= 0, cT (p−θKn)c ≤ (1 + 1
n)cTc for large n. But

cT
(
p−θKn

)
c

≤Σn
i=1ci

2

(
1 +

1

h(n)

)θ
+ Σ1≤i 6=j≤n|ci||cj |/kθ(n)

=

(
1 +

1

h(n)

)θ
Σn
i=1ci

2 + [(Σ2
i=1|ci|)2 − Σ2

i=1ci
2]/(2kθ(n))

≤

[(
1 +

1

h(n)

)θ
− 1

2kθ(n)

]
Σn
i=1ci

2 +
nΣ2

i=1ci
2

2kθ(n)

≤

[(
1 +

1

h(n)

)θ
− 1

2n4θ
+

1

2n4θ−1

]
Σn
i=1ci

2

≤
(

1 +
1

n

)
cTc, (since θ > 1/2).

Similarly, we have cT (p−θKn)c ≥ (1− 1
n)cTc.

Although we have to assume p < n to get posterior contraction results for polynomial
kernels, we can still get posterior consistency for the p > n case for polynomial kernels.

Theorem 20 Assume conditions (A2)-(A4) hold. Consider the same priors assigned to Λn

and σ2 as in Section 2.2, If t1(n)In ≤ Kn ≤ t2(n)In, t2(n)/t1(n) = O(1) and t1(n) � 1,
τ2n 4 n−3/2qn , ∫

λ4p(λ2)dλ2 <∞,
∫
λ−2p(λ2)dλ2 <∞,

then
E0P (‖βn − β0n‖22,n ≥Mnqn|Yn,Xn)→ 0

as n→∞, where Mn →∞ as n→∞.

13
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Remark 21 For polynomial kernels, condition t1(n) � 1 implies p � 1, that is p → ∞ as
n→∞.

Proof of Theorem 20: First calculate

E(βn|Yn,Xn)− β0n =E(E(βn|σ2,Λ2
n,Yn,Xn)|Yn,Xn)− β0n

=E((K2
n + τ−2n Λ−2n )−1KnYn|Yn,Xn)

− E[(K2
n + τ−2n Λ−2n )−1(K2

n + τ−2n Λ−2n )β0n)]

=E[(K2
n + τ−2n Λ−2n )−1Kn(Yn −Knβ0n)|Yn,Xn]

− E[(K2
n + τ−2n Λ−2n )−1τ−2n Λ−2n β0n|Yn,Xn]

=V1 − V2.

(23)

where we let the first term in the second last equality in (23) be V1 and the second term be V2.

First, we show that E0 ‖ V1 ‖22,n4 qn. Similar to (9) and (10) in the proof of Theorem
7, we get

E0 ‖ V1 ‖22,n≤
√
n
t22(n)τ2n
t21(n)

E1/2
0 (λ41) ·

√
n(n+ 2)σ40 4 n3/2τ2n 4 qn. (24)

Next we show E0 ‖ V2 ‖22,n4 qn, since K4
n ≥ t41(n)In,

E0 ‖ V2 ‖22,n
≤E0E[‖(K2

n + τ−2n Λ−2n )−1τ−2n Λ−2n β0n‖22,n|Yn,Xn]

≤t−41 (n)E0E[βT0n(τ−2n Λ−2n )(K2
n + τ−2n Λ−2n )−1K4

n(K2
n + τ−2n Λ−2n )−1(τ−2n Λ−2n )β0n|Yn,Xn]

=t−41 (n)E0E[βT0n(K−2n + τ2nΛ2
n)−2β0n|Yn,Xn]

=t−41 (n)E0E[βT0n(K−2n + τ2nΛ2
n)−1/2(K−2n + τ2nΛ2

n)−1(K−2n + τ2nΛ2
n)−1/2β0n|Yn,Xn]

≤t−41 (n)E0E[βT0n(K−2n + τ2nΛ2
n)−1/2K2

n(K−2n + τ2nΛ2
n)−1/2β0n|Yn,Xn]

≤(t22(n)/t41(n))E0E[βT0n(K−2n + τ2nΛ2
n)−1β0n|Yn,Xn]

≤(t22(n)/t41(n))E0E[βT0nK
2
nβ0n|Yn,Xn] ≤ (t42(n)/t41(n))‖β0n‖22,n � qn.

(25)

Then we have
E0 ‖ E(βn|Yn,Xn)− β0n ‖22,n4 qn.

as n→∞.

Now we will show
E0{tr[V(βn|Yn,Xn)]} 4 qn,

as n→∞.

14



Posterior Consistency for Bayesian Relevance Vector Machines

The method of proof is similar to that in Theorem 12. We only provide some details
of the key steps here.

tr[V(βn|Yn,Xn)]

=trE[V(βn|σ2,Λn,Yn,Xn)|Yn,Xn] + trV[E(βn|σ2,Λn,Yn,Xn)|Yn,Xn]

=trE[
b+ Yn

T (In −Kn(K2
n + τ−2n Λ−2n )−1Kn)Yn

n+ a− 2
(K2

n + τ−2n Λ−2n )−1|Yn,Xn]

+ trV[(K2
n + τ−2n Λ−2n )−1KnYn|Yn,Xn]

(26)

trV[(K2
n + τ−2n Λ−2n )−1K2

nβ0n|Yn,Xn]

≤2E[‖(K2
n + τ−2n Λ−2n )−1K2

nβ0n‖22,n|Yn,Xn]

≤2βT0nK
2
n(K2

n + τ−2n Λ−2n )−2K2
nβ0n

=2βT0nK
2
n(K2

n + τ−2n Λ−2n )−1/2(K2
n + τ−2n Λ−2n )−1(K2

n + τ−2n Λ−2n )−1/2K2
nβ0n

≤2(1/t21(n))βT0nK
2
n(K2

n + τ−2n Λ−2n )−1K2
nβ0n

≤2(1/t21(n))βT0nK
2
n(K2

n)−1K2
nβ0n

≤2
t22(n)

t21(n)
‖β0n‖22,n = O(qn) = o(n).

(27)

Combining above equations, we prove this theorem.

5. Discussion

Tipping (2001), Williams and Rasmussen (2006) pointed out that RVM is a special case
of Gaussian process. van der Vaart and van Zanten (2008) and Ghosal and Van der Vaart
(2017) obtained several posterior concentration results for Gaussian process models. They
considered estimating a regression function f based on observations y1, · · · , yn in a normal

regression model with fixed covariates yi = f(xi) + εi, where εi
i.i.d∼ N (0, σ20) and the covari-

ates x1, · · · ,xn are fixed elements from a set X .

A prior on f is induced by setting f(x) = Wx for a Gaussian process (Wx : x ∈ X ).
Any Gaussian element in a separable Banach space can be expanded as an infinite series∑

i Zihi for i.i.d standard normal variables Zi and elements hi from its RKHS. van der
Vaart and van Zanten (2008) truncated this infinite series at a sufficient high level to get
a new Gaussian process prior. If this series converges to the infinite series quickly, then by
Theorem 2.2 in van der Vaart and van Zanten (2008), the same posterior rate of contraction
is attained. Since finite sums may be easier to handle, it is interesting to investigate special
expansions and the number of terms that need to be retained in order to obtain the same
contraction rate. van der Vaart and van Zanten (2008) illustrated this by an example of the
truncated wavelet expansion of functions in L2([0, 1]d). Ghosal and Van Der Vaart (2007)
considered the truncated B-spline expansion in their Theorem 12. These truncated series
are quite similar to our model if set p = d fixed, Kn = In and the prior βn ∼ N (0, In).
However in their case, the number of terms in the random series is O(nα), α < 1, while ours
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is n. Hence, adding global shrinkage parameter τn to accommodate sparsity seems reason-
able, meanwhile we also introduce hierarchical model to make the prior of βn have heavy
tail, which helps to detect nonzero coefficients. Also, the Gaussian process prior related to
RVM is data dependent (Williams and Rasmussen, 2006), which is likely to add flexibility
to prediction.

In our model, we assume the parameters in kernel K is fixed, however, in Tipping (2001),
they argue that for Gaussian kernel, the data set can become more probable at some interme-
diate width(θ in our paper), so we could put priors on kernel parameters as in Chakraborty
et al. (2012), and its posterior contraction properties remain to be explored.
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