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Abstract
This paper presents an inverse reinforcement learning (IRL) framework for Bayesian stopping
time problems. By observing the actions of a Bayesian decision maker, we provide a necessary
and sufficient condition to identify if these actions are consistent with optimizing a cost function.
In a Bayesian (partially observed) setting, the inverse learner can at best identify optimality wrt
the observed strategies. Our IRL algorithm identifies optimality and then constructs set-valued
estimates of the cost function. To achieve this IRL objective, we use novel ideas from Bayesian
revealed preferences stemming from microeconomics. We illustrate the proposed IRL scheme
using two important examples of stopping time problems, namely, sequential hypothesis testing
and Bayesian search. As a real-world example, we illustrate using a YouTube dataset comprising
metadata from 190000 videos how the proposed IRL method predicts user engagement in online
multimedia platforms with high accuracy. Finally, for finite datasets, we propose an IRL detection
algorithm and give finite sample bounds on its error probabilities.
Keywords: Inverse Reinforcement Learning (IRL), Bayesian Revealed Preferences, Stopping Time
Problems, Inverse Detection, Sequential Hypothesis Testing (SHT), Bayesian Search, Finite Sample
Complexity

1. Introduction

In a stopping time problem, a decision maker obtains noisy observations of a random variable (state
of nature) x sequentially over time. Based on the observation history (sigma-algebra generated by the
observations), the decision maker decides at each time whether to continue or stop. If the decision
maker chooses the continue action, it pays a continuing cost and obtains the next observation. If
the decision maker chooses the stop action at a specific time, then the problem terminates, and the
decision maker pays a stopping cost. In a Bayesian stopping time problem, the decision maker knows
the prior distribution of state of nature x and the observation likelihood (conditional distribution of
the observations) p(y|x) given the state x, and uses this information to update its belief and choose

*. A short version of partial results has appeared in the Proceedings of the International Conference on Information
Fusion, July 2020.
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its continue and stop actions. Finally, in an optimal Bayesian stopping time problem, the decision
maker chooses its continue and stop actions to minimize an expected cumulative cost function.

Inverse reinforcement learning (IRL) aims to estimate the costs/rewards of a decision maker by
observing its actions and was first studied by Ng et al. (2000) and Abbeel and Ng (2004). This paper
considers IRL for Bayesian stopping time problems. Suppose an inverse learner observes the actions
of a decision maker performing Bayesian sequential stopping in multiple environments. The decision
maker has a fixed observation likelihood and observation cost, and incurs a different stopping cost in
each environment1. The inverse learner does not know the realizations of the observation sequence
nor the observation likelihood of the decision maker; the inverse learner only knows the true state x
and observes the stopping action a of the decision maker. The two main questions we address are:

1. How can the inverse learner check if the actions of a Bayesian decision maker are consistent
with optimal stopping?

2. If the decision maker’s actions are consistent with optimal stopping, how can the inverse
learner estimate the stopping costs of the multiple environments?

1.1 Main results and context

The key results in this paper are summarized as follows:
1. Inverse RL for Bayesian sequential stopping: Theorem 3 in Sec. 2 is our first key IRL result.
Theorem 3 specifies a set of convex inequalities that are simultaneously necessary and sufficient for
the actions of a Bayesian decision maker in multiple environments to be consistent with optimal
stopping. If so, then Theorem 3 provides an algorithm for the inverse learner to generate set-valued
estimates of the decision maker’s costs in the multiple environments. Theorem 3 is especially
useful in scenarios where the inverse learner has no knowledge of the decision maker’s observation
likelihood or observation sample paths, and yet can construct a set-valued estimate of the costs
incurred by the decision maker.
2. Inverse RL for SHT and Search: Sec. 3 and Sec. 4 construct IRL algorithms for two specific
examples of Bayesian stopping time problems, namely, Sequential Hypothesis Testing (SHT) and
Search. The main results, Theorem 6 and Theorem 9 specify necessary and sufficient conditions for
the decision maker’s actions to be consistent with optimal SHT and optimal search, respectively. If
the conditions hold, Theorems 6 and 9 provide algorithms to estimate the incurred misclassification
costs (for SHT) and search costs (for Bayesian search). In Sec. 3 for inverse SHT, we also propose
an IRL algorithm to compute a point-estimate of the decision maker’s costs. The point-estimate
is computed by maximizing the regularized margin of the convex feasibility test for inverse SHT
proposed in Theorem 6 and estimates the misclassification costs with up to 95% accuracy. Also,
in Sec. 3.6, we compare numerically the performance of the IRL algorithm in Theorem 3 with two
existing IRL algorithms (Choi and Kim, 2011) in the literature. This numerical comparison highlights
how the IRL approach in this paper complements the results of Choi and Kim (2011). Theorem 6
achieves IRL when the inverse learner has partial information about the decision maker’s costs.
3. Illustration of Inverse RL for Bayesian stopping on Real-World Dataset: One important
use case of IRL is to extract preferences from expert human agents (Lee et al., 2014; Gombolay
et al., 2016). In Sec. 5, we illustrate how our IRL algorithms extend to predicting human-level
online multimedia user engagement using a massive YouTube dataset comprising video metadata

1. We refer the reader to Rust (1994, Ch. 3.5) and Rolland et al. (2022) for motivating the need to for multiple environments
for identifiability of Markov decision processes (MDPs).
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from approximately 190000 videos.2 From the set of costs that pass the convex feasibility test in
Theorem 3 for optimal Bayesian stopping, we chose two point-valued IRL costs for IRL prediction,
namely, max-margin IRL and entropy-regularized IRL. The main finding is that both point estimates
accurately predict YouTube commenting behavior. Also, we observe that the max-margin estimate
yields a more accurate prediction compared to the entropy-regularized estimate (in terms of the
chi-square and total variation distance).
4. Sample Complexity for IRL: In Sec. 6, we propose IRL detection tests for optimal stopping,
optimal SHT and optimal search under finite sample constraints. Theorems 11, 13 and 15 in Sec. 6
comprise our sample complexity results that characterize the robustness of the detection tests by
specifying Type-I and Type-II error bounds for the IRL detection tests. To the best of our knowledge,
our finite sample complexity results for the IRL detector, namely, the sample size required to achieve
a Type-I or Type-II error probability below a specified value for IRL, are novel.

The proofs of all theorems are provided in the Appendix. For a practitioner’s perspective, our key IRL
algorithms are Theorems 3, 6 and 9, and finite sample complexity results for IRL error bounds are
Theorems 11, 13 and 15. The MATLAB codes and the YouTube dataset for our real-world numerical
experiment in Sec. 5 are available on Github and are completely reproducible.

1.2 Identifiability. Why IRL for a decision maker in multiple environments?

An important aspect of our IRL framework is that the inverse learner observes the decision maker in
multiple environments.3 The purpose of this section is to motivate this framework.

We consider a decision maker operating over M environments. In each environment, the decision
maker solves a stopping time problem with a distinct stopping cost. The decision maker has a fixed
observation likelihood (sensor accuracy) and sensing cost (operating cost), where both variables are
invariant across multiple environments. Therefore, there are up to M distinct strategies exhibited by
the decision maker, one for each environment. Let J(µm, sm) denote the expected cost incurred by
the decision maker when it chooses stopping strategy µm in environment m with stopping cost sm.

Consider now the inverse learner that observes the decision maker. Assume that the inverse learner
does not know the stopping costs sm, but only observes4 the set of strategies {µm,m = 1, 2, . . . ,M}.
To achieve IRL, the inverse learner must first establish if the decision maker’s strategy in each
environment is consistent with minimizing an expected cost. Equivalently, the inverse learner must
check if the expected cost incurred by the decision maker in environment m by choosing strategy
µm is less than that incurred by all other (infinitely many) stopping strategies. However, the inverse
learner does not observe infinitely many strategies, but only M strategies. Given the decision maker’s
strategies in M , each with a distinct stopping cost, the inverse learner’s procedure to identify if the
decision maker is optimal or not is defined below:
IRL identifiability of optimal stopping agent. Consider a Bayesian stopping agent that chooses

2. Although understanding YouTube commenting behavior was the main focus of our previous work (Hoiles et al.,
2020), the inference methodology and numerical experiments in this paper are new; see Appendix G and https:
//github.com/KunalP117/YouTube-Commenting-Analysis for details.

3. The inverse learner in this paper can be viewed as a passive analyst that does not control the environment variables,
that is, the agent’s stopping costs. An interesting extension of this paper (for future work) is to consider an active
inverse learner that purposefully adapts the environment variables to minimize IRL detection errors.

4. We are deliberately simplifying the IRL framework here for explanatory reasons. Our main result assumes the inverse
learner only observes the actions of the decision maker, and not the strategy.
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strategy µm in environment m, over multiple environments m = 1, 2, . . . ,M . Then, identifying an
optimal Bayesian stopping time agent is equivalent to checking if the following inequalities have a
feasible solution:

There exists s1, s2, . . . , sM such that: J(µm, sm) ≤ J(µn, sm), ∀m,n. (1)

Here, J(µm, sn) is the decision maker’s cumulative expected cost when the decision maker chooses
strategy µm and incurs a stopping cost sn.
The solution of the feasibility problem in (1) is the set-valued IRL estimate of the stopping costs
incurred by the decision maker. The comparison in (1) between the performance of the decision
maker’s strategy in each environment to the strategies chosen in all other (finitely many) environments
is formalized in Lemma 2 and is achieved by the inverse learner via the IRL procedure in Theorem 3.
We also refer the reader to the seminal work of Rust (1994, Ch. 3.5) and Kim et al. (2021) on
identifiability of MDPs for further justification of multiple environments. The above framework of a
Bayesian stopping time agent operating in multiple environments arises in several applications; see
Sec. A.1 for details.

1.3 Context. Bayesian revealed preference for IRL

The formalism used in this paper to achieve IRL is Bayesian revealed preferences studied in microe-
conomics by Martin (2014); Caplin and Martin (2015) and Caplin and Dean (2015); see Sec. A.2 for
more details. This Bayesian revealed preference-based approach complements existing IRL results
for partially observed Markov decision processes (POMDP) including Choi and Kim (2011). This
paper considers a subset of POMDPs, namely, Bayesian stopping time problems. Due to the problem
structure, we show that our IRL algorithms do not require knowledge of the observation likelihood
of the decision maker and also do not require solving a POMDP.

We now briefly discuss how the Bayesian revealed preference based IRL approach differs from
classical IRL.

1. The classical IRL frameworks (Ng et al., 2000; Abbeel and Ng, 2004) assume the observed
agent is a reward maximizer (or equivalently, cost minimizer) and then seeks to estimate its
cost function. The approach in this paper is more fundamental. We first identify if the decisions
of a single decision maker in multiple environments are consistent with optimality and if so, we
then generate set-valued estimates of the costs that are consistent with the observed decisions.

2. Classical IRL assumes complete knowledge of the decision maker’s observation likelihood.
We assume the inverse learner only knows the state of nature and the action chosen when
the decision maker stops, and does not know its observation likelihoods or the sequence of
observation realizations. Two important scenarios where this situation arises are:
(i) Multimedia Datasets. In online multimedia datasets such as the YouTube dataset analyzed
in Sec. 5, it is impossible to know the attention span (observation likelihood) of the online user.
All that is available are the online user’s actions (interactions such as comments and comment
ratings) and the underlying state of nature (video metadata such as viewcount, thumbnail and
video description); see also Hoiles et al. (2020).
(ii) Adversarial Signal Processing. In adversarial signal processing and sensing applications, it
is not realistic for the inverse learner to know the model dynamics of the agent. An important
example is IRL for radars (Krishnamurthy, 2020), where the radar is the adversary and so it is
impossible to know its sensing modes (observation likelihood); however, the inverse learner

4



INVERSE REINFORCEMENT LEARNING FOR OPTIMAL BAYESIAN STOPPING

records the electromagnetic waveforms (response) emitted by the radar.
Additional applications where only the agent decisions are available for IRL (and not the obser-
vation likelihood) include consumer insights and advertisement design research, interpretable
ML in smart healthcare and electronic warfare. These are discussed in Appendix A.

3. Algorithmic Issues: In classical IRL (Abbeel and Ng, 2004), the inverse learner solves the
Bayesian stopping time problem iteratively for various choices of the cost. This can be
computationally prohibitive since it involves stochastic dynamic programming over a belief
space which is PSPACE hard (Papadimitriou and Tsitsiklis, 1987). The IRL procedure in this
paper does not require solving a POMDP and only requires testing for the feasibility of a set
of convex inequalities.

For brevity, we discuss related IRL literature and applications of IRL for Bayesian stopping problems
in Appendix A.

2. Identifying optimal Bayesian stopping and reconstructing agent costs

Our IRL framework comprises a decision maker’s actions in a stopping time problem over M
environments, and an inverse learner that observes these actions. This section defines the IRL
problem that the inverse learner faces and then presents two results regarding the inverse learner:

1. Identifying Optimal Stopping. Theorem 3 below provides a necessary and sufficient condition
for the inverse learner to identify if the Bayesian decision maker chooses its actions as the
solution of an optimal stopping problem.

2. IRL for Reconstructing Costs. Theorem 3 is also constructive. It shows that the continue
and stopping costs of the Bayesian decision maker can be reconstructed by solving a convex
feasibility problem.

This section provides a complete IRL framework for Bayesian stopping time problems and sets the
stage for subsequent sections where we formulate generalizations and examples.

2.1 Bayesian stopping agent

A Bayesian stopping time agent is parametrized by the tuple

Ξ = (X , π0,Y,A, B, µ) (2)

where
• X = {1, 2, . . . X} is a finite set of states.
• At time 0, the true state xo ∈ X is sampled from prior distribution π0. xo is unknown to the

agent.
• Y ⊂ R is the observation space. Given state xo, the observations y ∈ Y have conditional

probability density B(y, xo) = p(y|xo).
• A = {1, 2, . . . A} is the finite set of stopping actions.
• Finally, µ denotes the agent’s stopping strategy. The stopping strategy operates sequentially on

a sequence of observations y1, y2, . . . as discussed below in Protocol 1.

Protocol 1 Sequential Decision-making protocol: Assume the agent knows Ξ.

1. Generate xo ∼ π0, at time t = 0. Here xo is not known to the agent.

5



PATTANAYAK AND KRISHNAMURTHY

2. At time t > 0, agent records observation yt ∼ B(·, xo).

3. Belief Update: Let Ft denote the sigma-algebra generated by observations {y1, y2, . . . yt}.
The agent updates its belief (posterior) πt(x) = P(xo = x|Ft), x ∈ X using Bayes formula as

πt =
B(yt)πt−1

1′B(yt)πt−1
, (3)

where B(y) = diag({B(y, x), x ∈ X}). The belief πt is an X-dimensional probability vector
in the X − 1 dimensional unit simplex

∆(X )
def.
= {π ∈ RX

+ : 1′π = 1}. (4)

4. Choose action at = µ(πt, t) from the set A ∪ {continue}. If at ∈ A, then stop, else if
at = continue, set t = t+ 1 and go to Step 2.

The stopping strategy µ is a (possibly randomized) time-dependent mapping from the agent’s belief
at time t ∈ Z+ to the set A ∪ {continue} and belongs to µ, the set of admissible stopping strategies:

µ = {µ : ∆(X )× Z+ → A∪ {continue}}. (5)

We define the random variable τ as the time when the agent stops and takes a stop action from A.

τ = inf{t ≥ 0| µ(πt, t) ̸= {continue}}. (6)

Clearly, the set {τ = t} is measurable wrt Ft, the sigma-algebra generated by observations
{y1, y2, . . . yt}. Hence, the random variable τ is adapted to the filtration {Ft}t≥0. In the fol-
lowing sub-section, we will introduce costs for the agent’s stop and continue actions. We will use τ
for expressing the expected cumulative cost of the agent.

To summarize, a Bayesian stopping agent is parameterized by Ξ and operates according to
Protocol 1. Several decision problems such as SHT and sequential search fit this formulation.

2.2 Optimal Bayesian stopping agent in multiple environments

So far we have defined a Bayesian stopping agent. Our main IRL result is to identify if a Bayesian
stopping agent’s behavior in a set of environments M is optimal. The purpose of this section is to
define optimal Bayesian stopping (Bertsekas, 2015) in multiple environments. For identifiability
reasons (see assumption (A2) below) we require at least two environments (M ≥ 2).

An optimal Bayesian stopping agent in multiple environments is defined by the tuple

Ξopt = (Ξ,M, C, s,µ∗). (7)

In (7),
• M is the set of M environments.
• The parameters X ,Y,A, π0, p in Ξ (2) and continue cost C (defined below) are the same for

all environments in M.
• C = {ct}t≥0, ct(x) ∈ R+ is the continue cost incurred in any environment m ∈ M at time t

given state xo = x.
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• s = {sm(x, a), x ∈ X , a ∈ A,m ∈ M}, sm(x, a) < ∞ is the cost for taking stop action a
when the state xo = x in the mth environment.

• µ∗ = {µ∗
m,m ∈ M} is the set of optimal stopping strategies of the Bayesian stopping agent

over the set of environments M, where the optimality is defined in Definition 1 below. In
environment m, the Bayesian stopping agent employs its stopping strategy µ∗

m,m ∈ M and
operates according to Protocol 1.

Definition 1 (Optimal Stopping Strategy) For each environment m ∈ M, strategy µ∗
m is optimal

for stopping cost sm(x, a) iff the following conditions hold:

µ∗
m(π, τ) = argmin

a∈A
π′s̄m,a, (8)

J(µ∗
m, sm) = inf

µ∈µ
J(µ, sm), (9)

Recall µ (5) denotes the set of all stopping strategies. Also J(µ, sm) is the expected cumulative cost
defined as:

J(µ, sm) = G(µ, sm) + C(µ), where

G(µ, sm) = Eµ

{
π′
τ s̄m,µ(πτ ,τ)

}
, C(µ) = Eµ

{ τ−1∑
t=0

π′
tc̄t

}
, µ ∈ µ. (10)

Eµ denotes expectation parametrized by µ wrt the probability measure induced by y1:τ . Also, s̄a, c̄t
are the stopping and continue5 cost vectors, respectively, vectorized over states x ∈ X .

Definition 1 is standard for the optimal strategy in a sequential stopping problem (Krishnamurthy,
2016). The optimal strategy naturally decomposes into two steps: choosing whether to continue or
stop according to (9); and if the decision is to stop, then choose a specific stopping action from A
according to (8). The optimal stopping strategies µm,m ∈ M that satisfy the conditions (8), (9) can
be obtained by solving a stochastic dynamic programming problem (Krishnamurthy, 2016). It is a
well-known result (Lovejoy, 1987) that the set of beliefs for which it is optimal to stop is convex.

RELATION TO BAYESIAN CONTEXTUAL BANDITS

For readers familiar with the multi-armed bandit problem, optimal Bayesian stopping can be viewed
as an instance of the partially-observed regularized contextual Bayesian bandit problem; contex-
tual (Agrawal and Goyal, 2013) since the agent faces multiple ground truths x (context), partially
observed (Krishnamurthy and Wahlberg, 2009) since the agent observes a sequence of noisy mea-
surements of the underlying context x, Bayesian (Hong et al., 2022) since the agent minimizes its
expected cumulative cost per context averaged over all contexts sampled from a prior distribution π0,
and regularized (Fontaine et al., 2019) since the agent minimizes the sum of expected stopping cost
and a regularization term, namely, the expected continue cost. Loosely speaking, this paper addresses
the problem of IRL for partially-observed regularized contextual bandits. Although our IRL results
are introduced in subsequent sections, we remark here that there is ample scope to extend the results
in this paper to typical RL decision frameworks that allow underlying state transitions. At a high
level, this can be made possible by constructing feasibility tests in terms of the state-occupancy
measure induced by the decision maker’s policy in multiple environments.

5. Since the continue cost is a positive real, the stopping time τ (6) is finite a.s.
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2.3 IRL for inverse optimal stopping. Main result

We now discuss an inverse learner-centric view of the Bayesian stopping time problem and the main
IRL result. Suppose the inverse learner observes the actions of a Bayesian stopping agent in M
environments, where each environment is characterized by the stopping costs incurred by the agent.
Suppose the agent performs several independent trials of Protocol 1 in all M environments. We make
the following assumptions about the inverse learner performing IRL.

(A1) The inverse learner knows the dataset

DM = (π0,p), where p = {pm(a|x), x ∈ X , a ∈ A,m ∈ M}. (11)

In (11), pm(a|x) is the Bayesian stopping agent’s conditional probability of choosing stop
action a at the stopping time given state xo = x in the mth environment. We call pm(a|x) as
the agent’s action selection policy.
Note that:
(i) The inverse learner does not know the stopping times; it only has access to the conditional
density of which stop action a was chosen given the true state xo.
(ii) We assume the decision maker visits all states in the support of the prior pmf π0 (11)
infinitely often. In Sec. 6, we address the case where the decision maker visits the states finitely
often and provide IRL performance guarantees via finite sample complexity.

(A2) Dataset DM is generated by a Bayesian agent acting in at least M ≥ 2 environments, where
each environment has distinct stopping costs.

Both assumptions are discussed below after the main theorem, but let us make some preliminary
remarks at this stage. (A1) implies the inverse learner observes the stopping actions chosen by
a Bayesian stopping agent in a finite number (M ) of environments, where the agent performs an
infinite number of independent trials of Protocol 1 in each environment; see discussion in Sec. 2.5 for
asymptotic interpretation. In Sec. 6 we will consider finite sample effects where the inverse learner
observes the agent performing a finite number of independent trials of Protocol 1. Assumption (A2)
is necessary for the inverse optimal stopping problem to be well-posed.

Let µm denote the policy chosen by the agent in the mth environment, and µM = {µm,m ∈ M}
denote the set of chosen strategies.6 The finite assumption on |M| in (A1) imposes a restriction on
our IRL task of identifying optimality of a Bayesian stopping agent formalized below:

Lemma 2 (IRL identifiability of optimal Bayesian stopping agent.) Given the dataset DM (11),
the inverse learner can identify an optimal Bayesian stopping agent (7) acting in M environments if
and only if (8) and the following relaxation of (9) holds:

Gm,m + Cm ≤ Gn,m + Cn, ∀m, n ∈ M, m ̸= n. (12)

In (12), Gn,m = G(µn, sm) is the expected stopping cost and Cm = C(µm) is the expected
cumulative continue cost for the policy µm chosen in environment m, m ∈ M.

6. Recall that µ is a generic variable of a stopping policy, µ is the space of admissible policies, µ∗
m is the optimal policy

in environment m and µm is a realization of the agent’s policy.
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C unknown C ∈ C convex in p(a|x) C ∈ C non-convex in
p(a|x)

Identifiability Absolute Optimality Absolute Optimality Relative Optimality
Conditions (8), (9) in Def. 1 (8), (9) in Def. 1 (8), (12) in Lemma 2

IRL Example −−
Inverse Optimal Stop-
ping with Entropic Run-
ning Cost

Inverse SHT (Sec. 3)

Reconstruction
Convex reconstruction
(94)

Convex reconstruction
(94)

Reconstructed cost for a
finite set of strategies/

Table 1: IRL Identifiability of Optimal Bayesian stopping.

The proof of Lemma 2 is in Appendix B. Lemma 2 formalizes the IRL identification procedure
of the inverse learner in (1). Since the inverse learner only observes the agent’s actions from M
strategies chosen by the stopping agent, the best the inverse learner can do is check if µm is optimal
for environment m out of the finite strategies in µM. Indeed, the expected stopping cost Gn,m is a
function of the policy µn. However, in Appendix C, we show how the expected stopping cost can
be expressed only in terms of the observed variables in DM , namely, the action selection policies
{pm(a|x)}Mm=1 of the agent induced by the stopping strategies {µm}Mm=1. This is precisely what
Theorem 3 below achieves when the inverse learner has access to the agent’s action selection policies.

Remarks:
(1) If the analyst does not know a priori the structure of the expected continue cost in (10), then
the IRL identifiability can be generalized from testing for relative optimality (8), (12) to testing
for absolute optimality (8), (9) in Definition 1. Specifically, we show a certain reconstruction of
the expected continue cost (see (94) in Appendix C) ensures if relative optimality (12) holds, then
absolute optimality (9) holds.
(2) In contrast to remark (1) above, if the analyst does know a functional form of the expected
continue cost, IRL identifiability cannot be improved from testing for relative optimality. One
example is IRL for inverse SHT discussed in Sec. 3 below where the expected continue cost is
known to be the expected stopping time of the agent. On a deeper and more subtle level, knowledge
of the structure of the expected continue cost imposes an implicit constraint on the reconstructed
cost. Ensuring the reconstructed expected continue cost (94) in Appendix C satisfies this implicit
constraint is non-trivial and beyond the scope of this paper.

We now present our first main IRL result. The result specifies a set of inequalities that, given
the inverse learner’s specifications in assumptions (A1) and (A2), are simultaneously necessary and
sufficient for the inverse learner to identify a Bayesian stopping agent’s actions to be optimal in the
sense of Lemma 2. For readability, we provide the exact expressions for the feasibility inequalities
introduced below after the main theorem.

Theorem 3 (IRL for inverse Bayesian optimal stopping (Caplin and Dean, 2015)) Consider the
inverse learner with dataset DM (11) obtained from a Bayesian stopping agent’s actions over M
environments. Assume (A1) and (A2) hold. Then:
1. Identifiability: The inverse learner can identify if the dataset DM is generated by an optimal
Bayesian stopping agent, i.e. , (8) and (9); see Lemma 2.

9
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2. Existence: There exists an optimal stopping agent parameterized by tuple Ξopt (7) , if and only if
there exists a feasible solution to the following convex (in stopping costs) inequalities:

Find sm(x, a) ∈ R+ ∀m ∈ M s.t.

NIAS(DM , {sm(x, a), x ∈ X , a ∈ A,m ∈ M}) ≤ 0, (13)

NIAC(DM , {sm(x, a), x ∈ X , a ∈ A,m ∈ M}) ≤ 0. (14)

The NIAS (No Improving Action Switches) and NIAC (No Improving Action Cycles) inequalities are
defined in (16), (17) below, and are convex in the stopping cost sm(x, a),m ∈ M.
3. Reconstruction of costs:
(a) If the inverse learner knows the agent’s expected continue cost Cm for all environments m, the set-
valued IRL estimate of the agent’s stopping costs is the set of all feasible costs {sm(x, a),m ∈ M}
that satisfy the NIAS (13), NIAC (14) and SUMCOST inequalities below:

SUMCOST(DM , {sm(x, a), Cm,m ∈ M}) ≤ 0, (15)

where SUMCOST is defined in (18), and Cm is the expected cost of the Bayesian stopping agent in
environment m.
(b) Suppose the inverse learner knows the agent’s stopping costs, and the NIAS (13) and NIAC (14)
inequalities are feasible. Then, the set-valued IRL estimate of the agent’s expected continue cost
is given by the set of all feasible costs Cm that satisfy the SUMCOST inequality (15). Also, if the
inverse learner knows the agent’s expected continue cost is convex, then the SUMCOST inequality
structure permits a convex reconstruction of the cost outlined in Definition 4. ■

Theorem 3 is proved in Appendix C. It says that identifying if a set M comprising stopping
actions of a Bayesian stopping agent in multiple environments is optimal and then reconstructing the
costs incurred in the environments is equivalent to solving a convex feasibility problem. Theorem 3
provides a constructive procedure for the inverse learner to generate set valued estimates of the
stopping cost sm(x, a) and expected cumulative continue cost Cm for all environments m ∈ M.
Algorithms for convex feasibility such as interior points methods (Boyd and Vandenberghe, 2004)
can be used to check feasibility of (13) and (14) (defined in (16) and (17) below) and construct a
feasible solution.

The inequalities NIAS, NIAC and SUMCOST denoted abstractly in Theorem 3 are defined
below:

Definition 4 (NIAS, NIAC and SUMCOST inequalities) Given dataset DM , stopping costs
{sm(x, a),m ∈ M} and expected continue costs {Cm,m ∈ M}:

NIAS :
∑
x∈X

pm(x|a)(sm(x, a)− sm(x, b)) ≤ 0, ∀a,m. (16)

NIAC :
∑
m∈M̂

Ea∼
∑

x π0(x)pm(·|x)

{
min
a′∈A

Ex∼pm(·|a){sm(x, a)− sm+1(x, a
′)}
}

≤ 0,

for any subset of indices M̂ ⊆ M, where mk + 1 = mk+1 if k < l and ml + 1 = m1. (17)

SUMCOST : Ex∼π0,a∼pm(·|x){sm(x, a)}+ Cm ≤ Ea∼pn(a){min
a′∈A

Ex∼pn(·|a){sm(x, a′)}}+ Cn,

∀m,n ∈ M. (18)

10
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Reconstruction of expected cumulative continue cost. If NIAS, NIAC and SUMCOST inequalities
defined above have a feasible solution, the following convex reconstruction of the agent’s expected
continue cost is consistent with optimal Bayesian stopping (8), (9), a stronger condition compared to
relative optimality (8), (12):

Ĉ(µ) = max
m=1,2,...,M

{
Cm +Gm,m − G̃(µ, sm)

}
, where (19)

G̃(µ, sm) =
∑
a∈A

(∑
x∈X

pµ(a|x)π0(x)

)
min
b∈A

∑
x∈X

pµ(x|a)sm(x, b), and (20)

Gm,m =
∑

x∈X ,a∈A
π0(x)pm(a|x)sm(x, a) (21)

The above reconstruction assumes the agent’s mapping from the sequence of observations y1:τ(µ) to
the space of actions is one-to-one, and is valid if and only if the agent’s expected cumulative continue
cost is convex.

Let us now provide an intuitive explanation for the abstract inequalities of Theorem 3.
NIAS (13): NIAS applies to each of the M environments in M. NIAS checks if, for every environ-
ment, the agent chooses the optimal stop action given its stopping belief and stopping strategy.
NIAC (14): NIAC checks for optimality of the agent’s stopping strategies in M environments. Since
the stopping agent chooses its strategies in a finite number (M ) environments, NIAC checks if the
agent’s strategy in the mth environment performs at least as well as the strategies of the agent in
all other environments given the environment’s stopping cost sm(x, a), for all m ∈ M. If so, it
constructs a feasible set of stopping costs in the M environments so that the chosen strategies are
consistent with an optimal stopping agent.
SUMCOST (15): If the Bayesian agent is an optimal stopping agent (NIAS and NIAC have a feasible
solution), SUMCOST constructs a set of feasible expected continue costs incurred by the Bayesian
agent in the multiple environments. The feasibility of NIAS and NIAC ensures that the SUMCOST
inequalities have a feasible solution. In (18), the RHS term is the expected cumulative cost of the
agent in environment n given the stopping costs in environment m. The feasibility inequality (18)
checks for feasible expected cumulative continue costs so that the agent’s stopping strategies in M are
identified as optimal by the inverse learner, i.e. , (12) is satisfied. The reconstructed cost Ĉ (19) is a
convex interpolation of expected stopping costs and feasible scalars Cm (18) such that conditions (8)
and (9) for optimal Bayesian stopping hold; see Appendix C for a detailed discussion. We remark
that the reconstruction in (19) is only valid when (a) the inverse learner has no information about
the agent’s observation likelihood, and (b) the inverse learner does not know the agent’s expected
continue cost. In Table 1, we highlight the subtle issues underpinning IRL identifiability for optimal
Bayesian stopping in more detail. In Sec. 3 below, we discuss IRL for optimal Bayesian stopping
when the inverse learner knows the agent’s expected continue cost; hence, the reconstruction (19) is
no more required for achieving IRL.

2.4 Discussion of Theorem 3

We now discuss the implications of Theorem 3 and contextualize the NIAS and NIAC feasibility
inequalities (13), (14) of Theorem 3.
(i) Necessity and Sufficiency.
The NIAS and NIAC conditions (13), (14) are necessary and sufficient for the inverse learner to

11



PATTANAYAK AND KRISHNAMURTHY

identify an optimal stopping agent. This makes Theorem 3 a remarkable result. If no feasible solution
exists, then the dataset DM cannot be rationalized by an optimal Bayesian stopping agent. Also, if
there exists a feasible solution, then the dataset DM must be generated by an optimal stopping agent
in multiple environments (Lemma 2).
(ii) Set valued estimate vs point estimate.
An important consequence of Theorem 3 is that the reconstructed utilities are set-valued estimates
rather than point valued estimates even though the dataset DM has K → ∞ samples. Estimating the
costs from the solution of a cost minimization problem is an ill-posed problem. Put differently, all
points in the feasible set of rationalizing costs explain the dataset DM equally well.
(iii) Consistency of Set-Valued Estimate.
The NIAS and NIAC inequalities are both necessary and sufficient for optimal Bayesian stopping.
The necessity implies that the true stopping costs and expected continue costs incurred by the agent
are feasible wrt the convex NIAS and NIAC inequalities. Hence, the IRL procedure is consistent in
that the set-valued estimator contains the true generating model.
(iv) Context: NIAS and NIAC.
The inequalities (8), (12) for the inverse learner to identify an optimal stopping agent can be written
in abstract notation as (22), (23), respectively, in terms of the variables {sm, Cm}Mm=1:

NIAS({{p(y1:τ(µm)|x), x ∈ X}, sm,m ∈ M}, π0) ≤ 0, (22)

NIAC∗({{p(y1:τ(µm)|x), x ∈ X}, sm, Cm,m ∈ M}, π0) ≤ 0. (23)

The inverse learner in our setup does not know the agent’s observation sequences {y1:τ ,m ∈ M},
observation likelihood B or the continue cost C. Hence, as shown in Appendix C, the best the
inverse learner can do is check for the feasibility of the NIAC (17) that does not depend on Cm.
Otherwise, the IRL task is equivalent to using optimality equations (8), (12) expressed abstractly as
NIAS and NIAC∗ above to reconstruct the costs. Eq. 13 and 14 in Theorem 3 specialize to (22) and
(23) by replacing the action selection policy pm(a|x) with the unknown likelihood p(y1:τ(µm)|x).
Put differently, (13) and (14) defined in (16), (17) can be viewed as surrogates of the feasibility
conditions (22) and (23), respectively. However, as discussed in the proof in Appendix C, the
action selection policy pm(a|x) suffices for both necessity and sufficiency of Bayes optimality (22),
(23) in spite of being a Blackwell noisy measurement of p(y1:τ(µm)|x). Also, observe the NIAC
inequality (17) is independent of Cm and expressed only in terms of stopping costs sm. However,
as shown in Appendix C, the feasibility of both inequalities (23) and (17) are equivalent. Finally,
in some examples of stopping time problems such as SHT discussed in Sec. 3, the inverse learner
knows the agent’s expected cumulative continue cost and hence, can use the NIAC∗ inequality as is
to identify optimality and achieve IRL.
NIAS and NIAC with ε-feasibility. One trivial solution that satisfies both NIAS and NIAC inequalities
in Theorem 3 is the degenerate cost of all zeros. Such degeneracy is common in IRL literature due
to the fundamental ill-posedness of the inverse optimization problem. In practice, one can ensure
only non-trivial solutions pass the NIAS and NIAC feasibility inequalities by introducing a margin
constraint:

NIAS(·) ≤ −ε, NIAC(·) ≤ −ε, ε > 0. (24)

Margin constraints for ensuring non-degenerate solutions to feasibility tests are common practices in
IRL (Ratliff et al., 2006). In complete analogy, using the ϵ restriction of (24), we can ensure only
non-trivial informative costs pass the NIAS and NIAC feasibility test of Theorem 3.
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(v) Private and Public Beliefs.
The stopping belief πτ in (9) can be interpreted as the private belief evaluated by the agent after
measuring y1:τ in the sense of Bayesian social learning (Krishnamurthy, 2016; Chamley, 2004).
Since πτ is unavailable to the inverse learner, it uses the public belief p(x|a) as a result of the agent’s
stop action to estimate its incurred costs.
(vi) IRL for stopping agent whose observation likelihood changes with the environment. For
notational convenience, we assume the Bayesian agent’s observation likelihood is fixed across differ-
ent environments. However, in Appendix C, we discuss under what conditions the inverse learner
can achieve IRL when the Bayesian agent’s observation likelihoods change with the environment.
We provide a specific example of the agent continue cost, namely, the entropic continue cost that
facilitates the inverse learner to achieve IRL for different agent observation likelihoods in different
environments. The agent’s stopping cost in this case is a logistic function in terms of its action
selection policy; the logistic function also arises in Max-Entropy IRL (Ziebart et al., 2008). This
resemblance is not surprising; the agent in (Ziebart et al., 2008) maximizes its cumulative expected
reward subject to a bound on the mutual information between the prior and the distribution of beliefs
induced by its policy. The objective function in (9) where C is the mutual information between
the prior and the stopping belief is simply the Lagrangian form of the objective the agent aims to
optimize in Ziebart et al. (2008). The IRL problem for agents that Maximize their expected terminal
rewards with a mutual information penalty has also been studied in the Bayesian revealed preference
literature by Caplin et al. (2019).
(vii) IRL for boundedly-rational forward learner.
For general POMDPs, it is difficult7 for a Bayesian sequential decision maker to compute the optimal
policy µ∗ in (8), (9). We say that a strategy µ̂ is ϵ-optimal if the following condition holds:

ϵ-optimal Bayesian stopping: J(µ̂)− J(µ∗) ≤ ϵ, for some ϵ ≥ 0. (25)

Eq. 25 arises when the forward learner uses sub-optimal procedures for solving the POMDP such as
approximate value iteration, open loop feedback and finite state controllers. When both the stopping
cost and the expected continue cost are free variables like in Theorem 3, detecting ϵ-optimality is
non-identifiable and a difficult task. However, if either the stopping cost or the expected continue
cost, (such as in the case of SHT discussed in Sec. 3) is known to the inverse learner, one can identify
ϵ-optimality based on the feasibility of the IRL inequalities. We briefly discuss identification of
ϵ-optimality after Theorem 6; a general framework is beyond the scope of this paper and the subject
of future work. Indeed, more precise knowledge of the agent’s sub-optimality allows the inverse
learner to achieve IRL; see Brown et al. (2019) for a discussion on how to achieve IRL when the
inverse learner has access to a ranked set of forward learner’s decision trajectories, ranked according
to the extent of sub-optimality in each trajectory.
(viii) No knowledge of observation likelihood by the inverse learner. This paper assumes the
inverse learner has no knowledge of the agent’s observation likelihood. The sufficiency proof of
Theorem 3 exploits this zero-knowledge assumption and posits that the inverse learner can thus
assume a one-to-one mapping from the space of observation sequences y1:τ(µ) to the space of
stopping actions. Indeed, one can show that if the instantaneous continue cost has an entropic form,
for example, the Shannon-Gibbs entropy, Rényi entropy or Tsallis entropy, the optimal mapping

7. Papadimitriou and Tsitsiklis (1987) show that solving partially observed Markov decision processes are in general
PSPACE hard. The SHT and Search problems discussed in this paper are special cases where the optimal stopping
strategy is stationary due to the problem structure and characterized as a threshold policy in the belief space.
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from observation sequences to stopping actions is one-to-one due to the strongly concave nature of
these costs; see Caplin et al. (2019) for a discussion of IRL for entropic costs.

(ix) Partial knowledge of agent costs. If the Bayesian agent’s instantaneous continue cost is zero,
then it is optimal to never stop sensing, i.e., the agent observe infinitely many samples and the
posterior belief approaches the Dirac delta function centered at the state x8. Hence, the optimal
pm(a|x) has non-zero weights if and only if a ∈ argmina′∈A sm(x, a′). Then checking for optimal
Bayesian stopping with zero running cost is equivalent to identifying feasible stopping costs that
satisfy the following condition:

pm(a|x) ̸= 0 ⇐⇒ a ∈ argmin
a′∈A

sm(x, a′). (26)

Sec. 3 considers the case where the instantaneous continue cost is a constant, hence the cumulative
expected continue cost is proportional to the expected stopping time of the agent. If the inverse
learner knows the expected continue cost, IRL is achieved by checking for the existence of feasible
stopping costs that satisfy the NIAS (16) and SUMCOST (18) inequalities with Cm set to the agent’s
expected continue cost in environment m.
(x) IRL with ε-feasibility. If neither the stopping costs nor the expected continue costs are known to
the inverse learner, the NIAS, NIAC and SUMCOST inequalities are trivially feasible by choosing
the degenerate solution of constant costs. In this case it makes sense to construct the inverse learner’s
non-trivial IRL cost estimate as the set of feasible costs {sm(x, a), Cm,m ∈ M} that are ϵ-feasible
wrt the NIAC, NIAC and SUMCOST inequalities:

• Choose feasibility margins ϵNIAS , ϵNIAC , ϵSUMCOST ≥ 0, not all zero.

• Construct the set-valued IRL estimate as the set of all tuples {sm(x, a), Cm,m ∈ M} that satisfy

NIAS(·) ≤ ϵNIAS , NIAC(·) ≤ ϵNIAC and SUMCOST(·) ≤ ϵSUMCOST . (27)

2.5 Discussion of (A1) and (A2)

(A1): To motivate (A1), suppose for each environment m ∈ M, the inverse learner records the
Bayesian stopping agent’s true state xok,m, stopping action ak,m and stopping time τk(µm) over
k = 1, 2, . . . ,K independent trials. Then the pmf pm(a|x) in (11) is the limit pmf of the empirical
pmf p̂m(a|x) as the number of trials K → ∞ defined as:

p̂m(a|x) =
∑K

k=1 1{xok,m = x, ak,m = a}∑K
k=1 1{xok,m = x}

. (28)

Specifically, since for each m ∈ M the sequence {xok,m, ak,m} is i.i.d for k = 1, 2, . . .K, by
Kolmogorov’s strong law of large numbers, as the number of trials K → ∞, p̂m(a|x) converges
with probability 1 to the pmf pm(a|x). In the remainder of the paper (apart from Sec. 6), we will
work with the asymptotic dataset DM for IRL. In Sec. 6 we analyze the effect of finite sample size K

8. It follows from Bernstein-von Mises theorem (Le Cam, 1953) that, under mild smoothness conditions, the agent’s
posterior belief converges asymptotically to a normal distribution centered around the maximum likelihood estimate
with covariance limt→∞(t I(x))−1, where I denotes the Fisher information matrix.
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Figure 1: Given tuple (Ξ, C, {sm(x, a),m ∈ M}), the set of stopping strategies (12) of a stopping
agent identified as an optimal stopping agent by the inverse learner (Lemma 2) contains
the stopping strategies of an absolutely optimal agent defined by (8), (9). Such strategies
can be obtained by small perturbations of the absolute optimal strategies such that the
Bayesian stopping agent’s strategy in each environment still performs better than that
chosen by the agent in any other environment in M. Like Sec. 2, Sec. 3 and 4, deals with
identifying such optimal strategies for the SHT and search problems. In Sec. 6, we will
detect if the agent’s strategies corrupted by noise (due to finite sample constraints) belong
to the set of strategies identified as optimal strategies by the inverse learner.

on the inverse learner using concentration inequalities.

(A2): (A2) is necessary for the identification of an optimal stopping agent (Lemma 2) to be well-
posed. Suppose (A2) does not hold. Then, for M = 2 and true stopping costs s1 = s2, we have
p1(a|x) = p2(a|x) in DM . This implies the set of feasible solutions (C1, C2) for the feasibility
inequality (18) is the set {(C1, C2) : C1 = C2, C1, C2 ∈ R+} and is hence, unidentifiable. 9

2.6 Outline of proof of Theorem 3

The proof of Theorem 3 in Appendix C involves two main ideas. The first key idea is to specify
a fictitious likelihood Pµ(ỹπ|x) parametrized by the stopping strategy so that given strategy µ,
observation likelihood B and prior π0, the observation trajectory y1:τ of the stopping time problem
yields an identical stopping belief πµ, i.e.,

P(ỹπ|x, µ) = P ({y1:τ} : πτ = π|x) .

A more precise statement is given in (75). In other words, a one-step Bayesian update using the
likelihood P(ỹπ|x, µ) is equivalent to the multi-step Bayesian update (3) of the state till the stopping
time. This idea is shown in Fig. 2. Recall that the cumulative expected cost of the agent comprises
two components, the stopping cost and cumulative continue cost. A useful property of this fictitious
likelihood is that it is a sufficient statistic for the expected stopping cost G(·).

The second main idea is to formulate the agent’s expected cumulative cost using the observed
action selection policy p(a|x) of the agent instead of the unobserved fictitious likelihood p(y1:τ(µm)|x)

9. The condition M = 1 (or equivalently, M = 2 with equal stopping costs) is analogous to probing an agent with the
same probe vector in classical revealed preferences (Afriat, 1967; Varian, 2012). The obtained dataset of probes and
responses can be rationalized by any concave, locally non-satiated, monotone utility function thus leading to loss of
identifiability of the agent’s utilities.

15



PATTANAYAK AND KRISHNAMURTHY

that determines the expected stopping cost. pm(a|x) (11) is a stochastically garbled (noisy) version
of p(y1:τ(µm)|x). We use this concept to formulate the NIAS and NIAC inequalities whose feasibility
given DM is necessary and sufficient for identifying an optimal stopping by a Bayesian stopping
agent in multiple environments.

Showing that feasibility of the NIAS and NIAC inequalities (13), (14) is a necessary condition
for the stopping strategies chosen by the Bayesian stopping agent to be optimal, (8), (12) is straight-
forward. The key idea in the sufficiency proof is to note that the elements of the garbling matrix that
maps the fictitious observation likelihood to the action selection policy is unknown to the inverse
learner. Hence, the inverse learner can arbitrarily assume pm(a|x) to be an accurate measurement of
p(y1:τ(µm)|x). We then show that for a feasible set of viable stopping costs {sm(x, a), Cm,m ∈ M}
that satisfy the NIAS and NIAC inequalities, there exist a set of positive reals {Cm,m ∈ M}
that satisfy (8), (9) with the expected cumulative continue cost incurred by the agent in the mth

environment set to Cm.
The NIAS and NIAC inequalities are convex in the stopping costs sm,m ∈ M. The inverse

learner can solve for these convex feasibility constraints to obtain a feasible solution. Thus, we have
a constructive IRL procedure for reconstructing the stopping and expected cumulative continue costs
for the inverse optimal stopping time problem.

Figure 2: Schematic illustration of first main idea of proof of Theorem 3 for the case when X = 2.
The key idea is to construct a fictitious observation likelihood Pµ(ỹπ|x) for compact
representation of the agent’s expected stopping cost. The probability of generating the
fictitious observation ỹπ is equal to the probability of a sequence of observations yielding
a stopping belief π for a given stopping time µ.

2.7 Summary

This section has laid the groundwork for IRL of a Bayesian stopping time agent. Specifically,
we discussed the dynamics of the Bayesian stopping time agent in a single environment (2) and
multiple environments (7). We then described the IRL problem that the inverse learner aims to
solve. Theorem 3 gave a necessary and sufficient condition for a Bayesian stopping time agent to be
identified as an optimal stopping agent when its decisions in multiple environments are observed
by the inverse learner. The agent’s stopping cost in each environment can be estimated by solving a
convex feasibility problem. Theorem 3 forms the basis of the IRL framework in this paper. Next, we
develop IRL results for 2 examples of stopping time problems, namely, sequential hypothesis testing
and Bayesian search.
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3. Example 1. IRL for sequential hypothesis testing (SHT)

We now discuss our first example of IRL for an optimal Bayesian stopping time problem, namely,
inverse Sequential Hypothesis Testing (SHT). Our main result below (Theorem 6) specifies a
necessary and sufficient condition for IRL in SHT. The SHT problem is a special case of the optimal
Bayesian stopping problem discussed in Sec. 2.2 since the continue cost ct (2) is a constant for all
time t in the SHT problem. For our IRL task, the continue cost can be chosen as 1 WLOG.

3.1 Sequential hypothesis testing (SHT) Problem

Let y1, y2, . . . be a sequence of i.i.d observations. Suppose the Bayesian agent knows that the pdf
of yi is either p(y|x = 1) or p(y|x = 2). The aim of classical SHT is to decide sequentially on
whether x = 1 or x = 2 by minimizing a combination of the continue (measurement) cost and
misclassification cost. In analogy to Sec. 2.2, we now define a set of SHT environments in which a
Bayesian stopping agent operates.

Definition 5 (Optimal SHT in multiple environments) The set M of optimal SHT in multiple en-
vironments is a special case of optimal stopping in multiple environments Ξopt (7) with:

• X = {1, 2}, Y ⊂ R , A = X .
• C = {ct}t≥0, ct(x) = c ∈ R+, ∀x ∈ X is the constant continue cost.
• {µm,m ∈ M} are the SHT stopping strategies chosen by the Bayesian agent over M SHT

environments defined below.
• sm(x, a) is the stopping cost incurred by the agent in the mth SHT environment parametrized

by misclassification costs (L̄m,1, L̄m,2).

sm(x, a) =


L̄m,1, if x = 1, a = 2,

L̄m,2, if x = 2, a = 1,

0, if x = a ∈ {1, 2}.

The SHT stopping strategies in the above definition satisfy the optimality conditions in Definition 1
and can be computed using stochastic dynamic programming (Krishnamurthy, 2016). The solution
for µm for the mth SHT environment is well-known (Lovejoy, 1987) to be a stationary policy with
the following threshold rule parameterized by scalars αm, βm ∈ (0, 1):

µm(π) =


choose action 2, if 0 ≤ π(x = 2) ≤ βm

continue, if βm < π(x = 2) ≤ αm

choose action 1, if αm < π(x = 2) ≤ 1.

(29)

Remark: Since the SHT dynamics can be parameterized by c, L̄1, L̄2, we can set c = 1 without loss
of generality since the optimal policy is unaffected. Also, the expected cumulative continue cost of
the agent is simply the expected stopping time of the agent.

3.2 IRL for inverse SHT. Main assumptions

Suppose the inverse learner observes the actions of a Bayesian stopping agent in M SHT envi-
ronments. In addition to assumptions (A2), we assume the following about the inverse learner
performing IRL for identifying an SHT agent:
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(A3) The inverse learner has the dataset

DM (SHT ) = (DM , {Cm,m ∈ M}), (30)

where DM is defined in (11), Cm = Eµm{τ} is the expected continue cost incurred by the
Bayesian agent in the mth environment.

(A4) The stopping strategies {µm,m ∈ M} are stationary strategies characterized by the threshold
structure in (29).

(A5) There exist reals δ1, δ2 ∈ (0, 1) such that the following conditions are satisfied:

(i) βm ≤ δ1 ≤ δ2 ≤ αm, ∀m ∈ M, (ii) δ1/(1− δ1) ≤ L̄m,1/L̄m,2 ≤ δ2/(1− δ2),

where αm, βm are the threshold values of the stationary strategy µm chosen by the Bayesian
agent in environment m.

Remarks: (i) Assumption (A3) specifies additional information the inverse learner has for
performing IRL for SHT by recording the agent decisions over K → ∞ independent trials. Since
the continue cost is 1, the expected cumulative continue cost is simply the expected stopping time of
the agent. The inverse learner obtains an a.s. consistent estimate of the expected stopping time by
computing the sample average of the K stopping times. Since the expected continue cost is simply
the expected stopping time of the agent and known to the inverse learner, it is no more a feasible
variable in the feasibility equations (17). This yields a smaller feasibility set for the stopping costs.
(ii) Assumption (A4) comprises partial information the inverse learner has about the stopping
strategies chosen by the agent and its observation likelihood. Since the optimal stopping strategy is
well-known to have a threshold structure Lovejoy (1987), the inverse learner only needs to compare
the expected cost incurred from threshold policies to check for optimality and achieving IRL.
(iii) Assumption (A5) ensures the expected stopping cost of the SHT agent G(µm, s) (9) that depends
on the unobserved strategy µm can be expressed in terms of the induced action selection policy
pm(a|x) for any stopping cost s, i.e. , G(µm, sn) = Epm(a){Ex∼pm(·|a){s(x, a)}}.

3.3 IRL for inverse SHT. Main result

Our main result below specifies a set of linear inequalities that are necessary and sufficient for the
Bayesian agent’s actions observed by the inverse learner to be identified as that of an optimal SHT
agent (Lemma 2). Any feasible solution constitutes a viable SHT misclassification cost for the M
SHT environments in which the Bayesian agent operates.

Theorem 6 (IRL for inverse SHT) Consider the inverse learner with dataset DM (SHT) (30) ob-
tained from a Bayesian agent taking actions in M SHT environments. Assume (A2) holds. Then:
1. Identifiability: The inverse learner can identify if the dataset DM (SHT) is generated by an
optimal SHT agent (Lemma 2).
2. Existence: There exists an optimal SHT agent parameterized by tuple Ξopt (7), if and only if there
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exists a feasible solution to the following convex (in stopping costs) inequalities:

Find sm(x, a) > 0, sm(x, x) = 0, ∀x, a ∈ X , m ∈ M s.t.

NIAS :
∑
x∈X

pm(x|a)(sm(x, a)− sm(x, b)) ≤ 0,∀a, b,m.

NIAC∗ :

(∑
x,a

π0(x)pm(a|x)sm(x, a) + Cm

)
−

(∑
a

pn(a)min
b

∑
x

pn(x|a)sm(x, b) + Cn

)
≤ 0,

∀m,n ∈ M,m ̸= n. (31)

(Recall that Cm = Eµm{τ} is known to the inverse learner, and hence is not a free variable).
3. Reconstruction: The set-valued IRL estimates of the SHT misclassification costs
{L̄m,m ∈ M} are defined below where L̄m = (L̄1,m, L̄2,m):

L̄1,m = sm(1, 2), L̄2,m = sm(2, 1) ∀m ∈ M,

where {sm(x, a),m ∈ M} is any feasible solution to the NIAS and NIAC∗ inequalities.■

Theorem 6 is a special instance of Theorem 3 for identifying an optimal stopping agent operating
in multiple environments. The NIAC∗ resembles SUMCOST (18) with the only difference that Cm

is the expected stopping time of the agent in environment m instead of being a feasible variable
like in (18). We note that since the expected stopping time is non-convex in the agent’s action
selection policy pm(a|x), the inverse learner cannot use the convex reconstruction procedure of (19)
to estimate the expected stopping time for any other policy.
Remarks:
1. Inverse SHT is an IRL task with partially specified costs: out of the continue and stopping costs,
the continue cost incurred by the Bayesian agent is already known to the inverse learner. As a conse-
quence, the feasibility test for identifying an optimal SHT agent imposes tighter restrictions (fewer
feasible variables) compared to identifying optimal stopping in Theorem 3 and avoids degenerate
feasible solutions that trivially satisfy the inequalities (31) of Theorem 6.
2. IRL for Multi-state SHT. Theorem 6 is independent of the number of states X . When X > 2, IRL
for inverse SHT comprises estimating the misclassification costs {L̄m,x,a, x ̸= a, x, a ∈ X}, and is
achieved by solving the feasibility inequalities (16) and (31) of Theorem 6.10

3. Inverse SHT for boundedly-rational forward learner. In Sec. 2.4, we discussed the concept of
ϵ-optimality for a forward learner. Below, we briefly discuss how the NIAS and NIAC∗ feasibility
inequalities of Theorem 6 can identify if an agent performs ϵ-optimal SHT when the inverse learner
knows the agent’s expected continue cost.
If NIAS and NIAC∗ (31) are feasible, then one cannot say if the dataset DM (30) is generated from
an absolutely optimal Bayesian agent (Definition 1) or an ϵ-optimal Bayesian agent (25). However,
if DM fails the feasibility test (31) of Theorem 6, then it is clear DM results from an ϵ-optimal
Bayesian agent, where a bound on ϵ can be obtained by finding the minimum relaxation needed for
passing the feasibility test (31):

min
ϵrelax≥0

ϵrelax, such that NIAS(DM , {sm(x, a)}) ≤ ϵrelax, NIAS(DM , {sm(x, a)}) ≤ ϵrelax. (32)

10. Since the state and environment index suffice to denote the misclassification cost when X = 2, the subscript ‘a’ is
dropped from the misclassification cost notation in Lemma 2 for notational clarity.
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The ϵ-relaxation in (32) arises frequently in microeconomic theory in robustness tests to measure
how far an economic agent is from satisfying economics-based rationality. Some examples of widely
used robustness measures in economics literature include the Houtman index (HM-Index) (Houtman
and Maks, 1985), Afriat measure (Afriat, 1972) and Varian measure (Varian et al., 1991).

3.4 Numerical example illustrating IRL for inverse SHT

We now present a toy numerical example for inverse SHT with 3 SHT environments and 3 states.
The aim of this example is to illustrate the consistency property of Theorem 6. That is, that the true
misclassification costs lie in the set of feasible costs computed by the inverse learner by solving the
convex feasibility test of Theorem 6.

SHT environments. We consider M = 3 SHT environments with:
• Prior π0 = [0.5 0.5]′.
• Observation likelihood: p(y|x = 1) = N (1, 2), p(y|x = 2) = N (−1, 2), where N (µ, σ2)

denotes the normal distribution with mean µ and variance σ2.
• Misclassification costs:

Environment 1: (L̄1,1, L̄1,2) = (2, 2.5), Environment 2: (L̄2,1, L̄2,2) = (4, 3), Environment 3:
(L̄3,1, L̄3,2) = (6, 6).

Inverse Learner specification. Next we consider the inverse learner. We generate K = 105

samples for the 3 SHT environments using the above parameters. Recall from Theorem 6 that the
inverse learner uses the dataset DM (SHT) to perform IRL for inverse SHT, where DM (SHT) is
defined as:

DM (SHT) = (π0, (p̂m(a|x),
K∑
k=1

τk(µm)/K),m ∈ {1, 2, 3}), (33)

where K = 105, the second and third terms are the empirically calculated action selection policy
and expected stopping time for SHT environments m from the 105 generated samples. We denote
the action selection policy in (33) as p̂m(a|x) and not pm(a|x) since the numerical example uses an
empirical estimate.

IRL Result. The inverse learner performs IRL by using the dataset DM (SHT) (33) to solve the
linear feasibility problem in Theorem 6. The result of the feasibility test is shown in Fig. 3. The
blue region is the set of feasible misclassification costs for each SHT environment. The feasible
set of costs is {(L̄m,1, L̄m,2),m ∈ {1, 2, 3}} ⊆ R6

+. Fig. 3 displays the feasible misclassification
costs for a single environment keeping the costs for the other two environments fixed at their true
values. The need to fix costs for the other two environments for plotting the set of feasible costs is
only for visualization purposes. It is not possible to plot a 6 dimensional point (vector of estimated
misclassification costs for 3 SHT environments) on the 2-d plane.

The true misclassification costs for each SHT environment are highlighted by a yellow point.
The key observation is that these true costs belong to the set of feasible costs (blue region) computed
via Theorem 6. Thus, Theorem 6 successfully performs IRL for the SHT problem and the set of
feasible misclassification costs can be reconstructed as the solution to a linear feasibility problem.
Also, all points in the set of misclassification costs explain the SHT dataset equally well.

3.5 Numerical example. Regularized max-margin IRL for inverse SHT.
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Figure 3: Inverse SHT numerical example with parameters specified in Sec. 3.4. The key observation
is that the true misclassification costs (yellow points) lie in the feasible set (blue region) of
costs computed via Theorem 6. This follows from the necessity proof of Theorem 6 which
says if the Bayesian agent is an optimal SHT agent, then the true costs lie in the feasible
set of costs that satisfy the NIAS and NIAC∗ inequalities. Highlighting the advantage of
the set-valued estimate of our IRL algorithm, we note that all points in the blue feasible
region rationalize the observed stop actions of the Bayesian agent equally well. Indeed,
the feasible region shrinks with the number of environments M .

We now present a numerical example for inverse SHT involving M = 100 environments where
we compute a point-valued IRL estimate of the SHT misclassification costs. This inference task is in
contrast to the set-valued IRL flavor considered thus far in the paper. Given dataset DM (SHT) (33),
we compute a point estimate L̄∗ of misclassification costs that maximizes the L2-regularized margin
of the NIAC∗ feasibility inequalities of Theorem 6. The point estimate L̄∗ is inspired by max-margin
IRL methods in the literature (Abbeel and Ng, 2004; Ratliff et al., 2006) and defined as:

L̄∗ = argmin
L̄

M∑
m,n=1,m̸=n

MarginDM (SHT)(m,n, L̄)− λ∥L̄∥22, (34)

MarginDM (SHT)(m,n, L̄) =
(
G(p̂n, L̄m) + Ĉn

)
−
(
G(p̂m, L̄m) + Ĉm

)
, (35)

where G(p̂, L̄m) is the expected misclassification cost for SHT with action selection policy p̂ and
misclassification costs L̄m, and Ĉm =

∑K
k=1 τk(µm)/K) is the agent’s expected continue cost

in environment m computed empirically from K independent trials. In simple terms, (35) is the
difference in expected cumulative cost between action policies p̂m and p̂n for a fixed misclassification
cost L̄m. The objective function in (34) is the L2-norm regularized margin with which the candidate
SHT misclassification costs pass the NIAC∗ convex feasibility test of (31). In (34), λ > 0 is a tunable
regularization parameter and G(·) is the expected misclassification cost defined in (12). Setting λ to
0 yields the max-margin IRL estimate of the stopping agent’s misclassification costs and lies within
the feasible set of costs generated by Theorem 6. The other extreme is setting λ to ∞ which results
in L̄∗ = 0.

The following numerical example illustrates regularized IRL (34) for inverse SHT.
SHT environments. We consider M = 100 SHT environments with:

21



PATTANAYAK AND KRISHNAMURTHY

Figure 4: Inverse SHT numerical example for 100 SHT environments, with parameters specified
in Sec. 3.5. The main takeaway is that regularized max-margin IRL for inverse SHT (34)
can estimate the misclassification costs incurred by the stopping agent in the 100 SHT
environments with up to 95% accuracy by varying the regularization parameter λ in (34).

• Prior π0 = [1/4 1/4 1/4 1/4]′ (The state space is now X = {1, 2, 3, 4}).
• Observation likelihood: p(y|x = 1) = N (−2, 8), p(y|x = 2) = N (0, 8),

, p(y|x = 3) = N (2, 8) and p(y|x = 4) = N (4, 8).
• Misclassification costs: The misclassification costs L̄ = {L̄m,x,a} in the M environments is

uniformly sampled from the interval [4, 10]M×X×(X−1).

Inverse Learner Specification: The inverse learner aggregates the dataset DM (SHT) according to
the procedure described in (33) by generating K = 107 independent trials for the SHT agent in
all M = 100 environments. Then, the inverse learner computes the regularized max-margin IRL
estimate L̄∗ by solving the optimization problem (34).
IRL Results: The inverse learner performs IRL by using the dataset DM (SHT) to solve the optimiza-
tion problem (34). Recall the dataset DM (SHT) is generated by observing the actions of an SHT
agent in multiple environments with misclassification costs L̄. Figure 4 shows the estimation error
∥L̄∗ − L̄∥2/∥L̄|∥2 of the inverse learner’s IRL estimate L̄∗ (34) computed by the inverse learner
as the regularization parameter λ in (34) is varied. The error is normalized wrt the L2-norm of the
true misclassification costs in multiple environments incurred by the Bayesian agent whose actions
comprise DM (SHT).

The least estimation error obtained by varying λ over the interval [0, 100] was observed to be
0.042. In other words, the point IRL estimate obtained by solving the optimization problem (34) can
estimate the true misclassification costs of the SHT environments with up to 95% accuracy. Indeed,
the estimation accuracy increases with the number of environments at the cost of greater computation
resources. Second, we observed that the error starts increasing sharply from λ ∼ 75. This is expected
since the regularization term in (34) dominates the margin term at large values of λ.

3.6 Performance Comparison. IRL for Inverse SHT and existing IRL methods for POMDPs

In this section, we compare the IRL performance of Theorem 6 for inverse SHT against two well-
known algorithms for IRL of POMDPs, namely, Max-Margin between Values (MMV) (Choi and
Kim, 2011, Alg. 4) and Max-Margin between Feature Expectations (MMFE) (Choi and Kim, 2011,
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Alg. 5). We compare the performance of MMV and MMFE algorithms against max-margin inverse
SHT (34) with regularization parameter λ set to 0.

Recall from (30) that our inverse SHT result of Theorem 6 requires state-terminal action pairs
of the SHT agent over several independent trials and the expected stopping time of the SHT agent.
In comparison, MMV and MMFE do not require the expected stopping time, but instead require
complete knowledge of: (a) the observation likelihood of the Bayesian agent, and (b) the beliefs of
the SHT agent at every time step. Moreover, MMV and MMFE require a POMDP solver for IRL.

To compare the performance of our IRL scheme (34) against MMV and MMFE, we perform two
sets of numerical experiments with different specifications of the agent’s observation likelihood:
Case 1: Perfect Knowledge of SHT Model Dynamics. MMV and MMFE have perfect knowledge of
the SHT agent’s observation likelihood.
Case 2: Misspecified SHT Model Dynamics. MMV and MMFE have misspecified knowledge of
the SHT agent’s observation likelihood. For environment m the observation likelihood pm(y|x) is
misspecified to be the agent’s action policy pm(a|x).

EXPERIMENTAL SETUP

For our numerical experiments, we consider M = 4 SHT environments with:
• Prior π0 = [1/2 1/2]′ (The state space is X = {1, 2}).
• Observation likelihood: p(y|x = 1) = N (+2, 4), p(y|x = 2) = N (−2, 4),
• Misclassification costs: The misclassification costs L̄ = {L̄m,m ∈ M} in the M environ-

ments are uniformly sampled from the interval [5, 25] for all states and actions in X . Recall
that we assume the continue cost is set to 1 WLOG.

For every environment m = 1, 2, 3, 4, we computed L̄m,MMV, L̄m,MMFE and L̄m,Margin, the
point-valued IRL estimate of the agent’s misclassification cost from MMV, MMFE and max-margin
inverse SHT (defined in (34) with regularization parameter λ = 0), respectively. For estimated
misclassification cost L̄m,est ∈ {L̄m,MMV, L̄m,MMFE, L̄m,Margin} with true cost L̄m and chosen
stopping strategy µm (Lemma 2), the normalized IRL estimation error is defined as:

IRL Estimation Error =
|J(µm, L̄m)− J(µm, L̄m,est)|

J(µm, L̄m)
, (36)

where J(·) is the expected cumulative cost defined in (9).
Our experimental results are displayed in Fig. 5. Our results show that our proposed IRL

algorithm yields a lower IRL estimation error (36) than MMV and MMFE algorithms when model
dynamics are misspecified. We observe that, on average, our max-margin IRL algorithm yields 60%
lower estimation error compared to MMV and MMFE algorithms with misspecified model dynamics,
and yields 27% higher estimation error compared to MMV and MMFE algorithms with accurate
model dynamics.

KEY FINDINGS

Our key findings from the numerical experiments11 can be summarized as:
• For the case of perfect knowledge of model dynamics (case 1), we observed that the MMV

and MMFE algorithms of Choi and Kim (2011) perform better than max-margin IRL (34), and

11. All our numerical results are completely reproducible and can be accessed from the GitHub repository https:
//github.com/KunalP117/YouTube-Commenting-Analysis
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Figure 5: Inverse SHT Performance Comparison. Max-Margin NIAS-NIAC Test of Theorem 6
versus MMV and MMFE (Choi and Kim, 2011)

yield approximately 27% lower IRL estimation error compared to max-margin IRL. This is
expected since both MMV and MMFE have access to private information the forward learner
uses for decision-making and hence generates a more accurate IRL estimate.

• When the model dynamics are misspecified (case 2), our max-margin IRL algorithm outper-
forms both MMV and MMFE algorithms and yields approximately 60% lower IRL estimation
error compared to MMV and MMFE.

Indeed, when no assumptions are placed on the underlying POMDP structure like in Choi and Kim
(2011), achieving IRL requires perfect knowledge of the model dynamics. Hence, MMV and MMFE
fail when model dynamics are misspecified.

PERSPECTIVE

Cases 1 and 2 highlight the fact that our approach is complementary to that of Choi and Kim (2011).
Choi and Kim (2011) achieve IRL where the model dynamics are perfectly specified (case 1). In
comparison, our IRL methods yield necessary and sufficient methods for optimal Bayesian stopping
when no knowledge of model dynamics is provided to the inverse learner.

3.7 Summary

Theorem 6 specified necessary and sufficient conditions for identifying an optimal SHT agent acting
in multiple environments. These conditions constitute a linear feasibility program that the inverse
learner can solve to estimate SHT misclassification costs of the environments. The IRL task of
solving the inverse SHT problem is more structured than the inverse optimal stopping problem in
Sec. 2, since the agent’s costs are partially known (expected continue cost is known) to the inverse
learner. Hence, the feasible set of costs generated using Theorem 6 is smaller than that generated
by Theorem 3 for the inverse SHT problem. We also proposed an IRL algorithm for point-valued
estimation of the environments’ misclassification costs and illustrated its performance in Sec. 3.5.
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Our key finding is that this point-valued IRL algorithm reconstructs the misclassification costs with
up to 95% accuracy. Recall from Sec. A.1 that an online user in multimedia platforms can be viewed
as a Bayesian agent performing SHT. In the context of online multimedia platforms, the continue and
stopping cost of the SHT agent can be viewed as the online user’s sensing cost (attention to visual
cues) and preference for viewing the online content, respectively. Hence, the numerical example
in Sec. 3.5 can be viewed as an IRL methodology to reconstruct an online user’s preferences for
advertisements/movie thumbnails by observing his/her actions in multiple environments (webpages).
We illustrate this claim in Sec. 5 with an IRL analysis on a real-world dataset. Finally, in Sec. 3.6
we compared our inverse SHT algorithm to two existing algorithms in the literature for IRL for
POMDPs, namely, MMV and MMFE Choi and Kim (2011). Our key observation was that our
inverse SHT algorithm outperforms MMV and MMFE in scenarios where the inverse learner has
limited information about the forward learner, i.e. , the learner’s model dynamics are misspecified.

4. Example 2. IRL for inverse search

In this section, we present a second example of IRL for an optimal Bayesian stopping time problem,
namely, inverse Bayesian Search. In the search problem, a Bayesian agent sequentially searches over
a set of target locations until a static (non-moving) target is found. The optimal search problem is a
special case of a Bayesian multi-armed bandit problem, and also of the optimal Bayesian stopping
problem discussed in Sec. 2.2 since the continue cost (2) is the cost of searching a location and the
stopping cost is 0 in the Bayesian search problem. Our IRL task in this section will be to estimate
the search costs.

The optimal search problem is a modification of the sequential stopping problem in Sec. 2 with
the following changes:

• There is only 1 stop action but multiple continue actions, namely, which of the X locations to
search at each time. We will call the continue actions as search actions, or simply, actions.

• The observation likelihood B depends both on the true state xo and the continue action a.
Suppose an inverse learner observes the decisions of a Bayesian search agent over M search
environments. The aim of the inverse search problem is to identify if the search actions of the agent
are optimal and if so, estimate their search costs. Our IRL result for Bayesian search (Theorem 9
below) gives a necessary and sufficient condition for identifying an optimal search agent (formalized
in Lemma 8 below) as equivalent to the existence of a feasible solution to a set of linear inequalities.

4.1 Optimal Bayesian search agent in multiple search environments

Suppose an agent searches for a target location x ∈ X . When the agent chooses action a ∈ X to
search location a, it obtains an observation y. Assume the agent knows the set of conditional pmfs of
y, namely, {p(y|xo = x), x ∈ {1, 2, . . . X}}. The aim of optimal search is to decide sequentially
which location to search at each time to minimize the cumulative search cost until the target is found.

We define an optimal Bayesian search agent in M search environments as

Ξopt = (X , π0,Y,A,α, {lm, µm,m ∈ M}) (37)

where
• X = {1, 2, . . . X} is a finite set of states (target locations).
• At time 0, the true state xo ∈ X is sampled from prior pmf π0. This location x is not known to

the agent but is known to the inverse learner (performing IRL).
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• Y = {0, 1}, where y = 1 (found) and y = 0 (not found) after searching a location.
• The set of actions A = X , a ∈ A is the location searched by the agent.
• The Bayesian agent in search environments m incurs instantaneous cost lm(a) > 0 for

searching location a.
• α = {α(a), a ∈ A}, α(a) is the reveal probability for location a, i.e. , the probability that

the target is found when the agent searches the target location (x = a) in search environment
m ∈ M. α characterizes the action dependent observation likelihood B(y, x, a).

B(y, x, a) = p(y|x, a) =


α(a), y = 1, x = a

1− α(a), y = 0, x = a

1, y = 0, x ̸= a.

(38)

For IRL identifiability, we assume that the reveal probabilities are the same for all search
environments in M.

• {µm,m ∈ M} are the optimal search strategies of the Bayesian agent over all environments in
M, when the agent operates sequentially on a sequence of observations y1, y2, . . . as discussed
below in Protocol 2.

Protocol 2 Sequential Decision-making protocol for Search:

1. Generate xo ∼ π0 at time t = 0.

2. At time t ≥ 1, agent records observation yt ∼ B(·, at−1, x
o).

3. If yt = 1, then stop. Otherwise, if yt = 0:
(i) Update belief πt−1 → πt (described below).
(ii) For search policy µ, agent takes action at = µ(πt). (Note the first action is taken at time
t = 0, while the first observation is at t = 1).
(iii) Set t = t+ 1 and go to Step 2.

Belief Update: Let Ft denote the sigma-algebra generated by the action and observation sequence
{a1, y1, . . . at, yt}. The agent updates its belief πt = P(xo = x|Ft), x ∈ X using Bayes formula as

πt =
B(yt, at−1)πt−1

1′B(yt, at−1)πt−1
, (39)

where B(y, a) = diag({B(y, x, a), x ∈ X}). The belief πt is an X−dimensional probability vector
belonging to the (X − 1) dimensional unit simplex (4).

Remark: The search agent’s stopping region is simply the set of distinct vertices of the X − 1
dimensional unit simplex.

We define the random variable τ as the time when the agent stops (target is found).

τ = inf {t > 0| yt = 1} (40)

Clearly, the set {τ = t} is measurable wrt Ft, hence, the random variable τ is adapted to the filtration
{Ft}t≥0. Below, we define the optimal search strategies {µm,m ∈ M}.
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Definition 7 (Search strategy optimality) The optimal search strategy µm of the Bayesian agent
operating according to Protocol 2 in environment m ∈ M that minimizes the agent’s cumulative
expected search cost is well known (Krishnamurthy, 2016) to be a stationary policy as defined below:

J(µm, lm) = min
µ

J(µ, lm) = Eµ

{
τ−1∑
t=0

lm(µ(πt))

}
, (41)

µm(π) = argmax
a∈A

(
π(a)α

lm(a)

)
. (42)

Here, Eµ{·} denotes expectation parametrized by µ induced by the probability measure {at, yt+1}τ−1
t=1 ,

J(·) denotes the expected search cost and µ belongs to the class of stationary search strategies.

Remarks. (1) Note that the minimization in (41) is over stationary search strategies. It is well known
that the optimal search strategy has a threshold structure (Krishnamurthy, 2016). Since the set of all
threshold strategies forms a compact set, we can replace the ‘inf’ in (9) for generic optimal stopping
problems by ‘min’ in (41).
(2) Since the expected cumulative cost of an agent depends only on the search costs (for constant
reveal probabilities), we can set lm(1) = 1, ∀m ∈ M WLOG.

4.2 IRL for inverse search. Main result

In this subsection, we provide an inverse learner-centric view of the Bayesian stopping time problem
and the main IRL result for inverse search. Suppose the inverse learner observes a search agent
taking actions over M search environments where the agent performs several independent trials of
Protocol 2 for Bayesian sequential search in each environment. We make the following assumptions
about the inverse learner performing IRL to identify if M comprises an optimal search agent.

(A6) The inverse learner knows the dataset

DM (Search) = (π0, {gm(a, x),m ∈ M}). (43)

Here, gm(a, x) is the average number of times the agent searches location a when the target is
in x in environment m:

gm(a, x) = Eµm

{
τ∑

t=1

1{µm(πt) = a}|x

}
. (44)

We call gm(a, x) as the agent’s search action policy in search environment m.

(A7) In dataset DM (Search), there are at least M ≥ 2 environments with distinct search costs.

Assumption (A6) is discussed after the main result. In complete analogy to (A2), assumption
(A7) is needed for identifiability of the search costs. We emphasize that the inverse learner only
has the average number of times the agent searches a particular location in any environment. The
inverse learner does not know the stopping time or the order in which the agent search the locations.
In completely analogy to Lemma 2, Lemma 8 below specifies the inverse learner’s identifiability of
an optimal search agent under assumptions (A6) and (A7):
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Lemma 8 (IRL identifiability of optimal Bayesian search agent) The inverse learner identifies
the tuple Ξopt (37) as an optimal Bayesian search agent iff (45) holds.

J(µm, lm(a)) ≤ J(µn, lm(a)), ∀m,n ∈ M, m ̸= n. (45)

In complete analogy with (12) in Lemma 2 for identifying an optimal stopping time agent, J(·) in the
above equation is the expected cumulative search cost of the agent.

We omit the proof of Lemma 8 since it is identical to that of Lemma 2. Eq. 45 in Lemma 8 is
analogous to (12) in Lemma 2. The inverse learner simply checks if the expected cumulative search
cost for environment m is the smallest possible given the finite strategies {µm,m ∈ M}. We are
now ready to present our main IRL result for the inverse search problem. The result specifies a set
of linear inequalities that are simultaneously necessary and sufficient for a search agent’s actions in
multiple environments M to be identified as that of an optimal search agent (45).

Theorem 9 (IRL for inverse Bayesian search) Consider the inverse learner with dataset DM (Search)
(43) obtained from a search agent acting in multiple environments M. Assume (A6) holds. Then:
1. Identifiability: The inverse learner can identify if the dataset DM (Search) is generated by an
optimal search agent (Definition 8).
2. Existence: There exists an optimal search agent parameterized by tuple Ξopt (37) if and only if
there exists a feasible solution to the following linear (in search costs) inequalities:

Find lm(a) ∈ R+, lm(1) = 1 s.t. NIAC†(DM (Search)) ≤ 0, where

NIAC† :
∑
x∈X

π0(x)(gm(a, x)− gn(a, x)) lm(a) < 0 ∀m,n ∈ M, m ̸= n. (46)

3. Reconstruction: The set-valued IRL estimate of the agent’s search costs in environments M is the
set of all feasible solutions to the NIAC† inequalities. ■

The proof of Theorem 9 is in Appendix D. Theorem 9 provides a set of linear inequalities
whose feasibility is equivalent to identifying the optimality of a Bayesian search agent in multiple
environments with different search costs. Note that Theorem 9 uses the search action policies
{pm(a|x),m ∈ M} to construct the expected cumulative search costs of the agent in multiple
environments and verify if the inequality for identifying optimality (45) for Bayesian search holds.
The key idea for the IRL result is to express the expected cost of the search agent in environment
m in terms of its chosen search action policy gm(a, x) (43). Algorithms for linear feasibility such
as the simplex method (Boyd and Vandenberghe, 2004) can be used to check feasibility of (46) in
Theorem 9 and construct a feasible set of search costs for the optimal search agent.
Discussion of assumption (A6). To motivate (A6), suppose for each environment m ∈ M, the inverse
learner records the state xk,m and agent actions {a1:τk,m,k,m} over k = 1, 2, . . .K independent trials.
Then, the variable gm(a, x) in DM (Search) (43) is the limit pmf of the empirical pmf ĝm(a, x) as
the number of trials K → ∞.

ĝm(a, x) =

∑K
k=1

∑τk,m
t=1 1{xk,m = x, at,k,m = a}∑K

k=1 1{xk,m = x}
. (47)

In complete analogy to Sec. 2.5, almost sure convergence holds by Kolmogorov’s strong law of large
numbers. gm(a, x) is the average number of times the agent searches location a when the target is in
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location x in environment m. More formally, for a fixed state x, gm(a, x) is the number of times the
posterior belief of the agent visits the region in the unit simplex of pmfs where it is optimal to choose
action a. In Appendix D, we discuss how the search action policy gm(a, x) can be used to express
the agent’s cumulative expected search cost (41) in the mth environment.

Remark: Analogous to the action selection policy (28) for stopping problems with multiple
stopping actions, the inverse learner uses the search action policy to identify Bayes optimality in
stopping problems with multiple continue actions (and single stop action).

4.3 Numerical example illustrating IRL for inverse search

We now present a numerical example for inverse search with 3 search environments and 3 search
locations. The aim of this example is to illustrate the consistency property of Theorem 9. That is,
that the true search costs lie in the set of feasible costs computed by the inverse learner by solving
the feasibility test of Theorem 9.

Search environments. We consider M = 3 search environments with:
• Prior π0 = [1/3 1/3 1/3]′.
• Search locations: X = A = 3.
• Reveal probability: α(1) = 0.7, α(2) = 0.68, α(3) = 0.6.
• Search costs:

Environment 1: l1(1) = 1, l1(2) = 3, l1(3) = 4,
Environment 2: l2(1) = 1, l2(2) = 1, l2(3) = 2,
Environment 3: l3(1) = 1, l3(2) = 0.5, l3(3) = 3.

(Recall that WLOG the search cost lm(1) can be set to 1 for all m ∈ {1, 2, 3}.)
Inverse Learner specification. Next we consider the inverse learner. We generate K = 106

samples for the search agent in all 3 environments using the above parameters. Recall from Theorem 9
that the inverse learner uses the dataset DM (Search) to perform IRL for search. Here

DM (Search) = (π0, (ĝm(a, x),m ∈ {1, 2, 3}), (48)

where K = 106, the second term in the dataset is the empirically calculated search action policy (47)
of the agent in environment m from the 106 generated samples.

IRL Result. The inverse learner performs IRL by using the dataset DM (Search) (48) to solve
the linear feasibility problem in Theorem 9. The result of the feasibility test is shown in Fig. 6. The
blue region is the set of feasible search costs for each environment. The feasible set of costs is
{(lm(2), lm(3),m ∈ {1, 2, 3}} ⊆ R6

+. For visualization purposes, Fig. 6 displays the feasible search
costs for each environment in a different sub-figure. In complete analogy to Fig. 3, the feasible search
costs for each environment are shown in each sub-figure by keeping the search costs of the other 2
environments fixed at their true values. The true search cost for every environment is highlighted
by a yellow point. The key observation is that these true costs belong to the set of feasible costs
(blue region) computed via Theorem 9. Thus, Theorem 9 successfully performs IRL for the search
problem and the set of feasible search costs can be reconstructed as the solution to a linear feasibility
problem.

5. Inverse Optimal Stopping for Predicting YouTube Commenting Behavior

In this section, we illustrate our IRL results for Bayesian stopping time problems on a real-world
YouTube dataset. Although we use the same dataset in previous work (Hoiles et al., 2020), our IRL
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Figure 6: Numerical example for inverse search with parameters specified in Sec. 4.3. The key
observation is that the true search costs (yellow points) lie in the feasible set (blue region)
of costs computed via Theorem 9. This follows from the necessity proof of Theorem 9
which says if the agent is an optimal search agent, then the true costs lie in the feasible set
of costs that satisfy the NIAC† inequalities.

methodology and experimental results are new. For brevity, we discuss the key differences compared
to Hoiles et al. (2020) and justify our choice of Bayesian stopping for modeling user engagement on
YouTube in Appendix G.

We consider a YouTube dataset comprising approximately 140000 videos across 25, 000 channels
spanning 18 video categories and over 9 millions users from April 2007 to May 2015. The diversity
of videos in YouTube is immense; it is intuitive to exploit this diversity for understanding how groups
of YouTube users exposed to different classes of video content engage differently with YouTube.
Hence, by analyzing groups of YouTube users indexed by video category, our aim is to:
(1) Identify if YouTube user engagement is consistent with Bayesian optimal stopping, and if so,
(2) Reconstruct the stopping costs of user engagement using the IRL results in this paper, and
(3) Use the reconstructed costs to predict user engagement in videos.

Our YouTube dataset does not contain any information (visual cues) about what the human user
perceives from the video webpage before choosing to engage on the YouTube platform. Recall from
Theorem 3 that our IRL approach does not depend on the unobserved model dynamics that generate
the IRL dataset (11). This makes our IRL methodology well-suited to scenarios where the parameters
of the underlying decision making process are not available in the IRL dataset. Our main conclusions
from our IRL analysis of the YouTube dataset can be summarized as:

• YouTube user engagement is consistent with optimal Bayesian stopping. Based on our IRL
analysis on groups of YouTube users, where each group consists of approximately 3500
viewers, the YouTube dataset (described below in (49)) satisfies the NIAS and NIAC feasibility
inequalities of Theorem 3 for optimal Bayesian stopping with a high margin.

• By choosing two representative points from the feasible set of costs generated by IRL (16), (17),
namely, max-margin estimate and entropy-regularized estimate defined below, we show our
reconstructed IRL costs predict user engagement with high accuracy. Figure 8 illustrates the
predictive performance of our IRL methodology.

5.1 YouTube Dataset and Model Parameters

Categories in YouTube (e.g. News, Gaming, Music etc.) are numbered from 1 − 18 (See Fig. 7
for the full listing). The video categories have mean numbers of users ranging from 149 to 4596
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for high viewcount (greater than 10000) videos and 8 to 1801 for low viewcount videos (less than
10000). Figure 7 lists each video category along with the total number of views. Note that the
video categories “Unavailable” or “Removed” are videos flagged by YouTube as being suspected of
violating YouTube’s video policies.

Figure 7: YouTube Dataset Overview. Viewcount summed over all videos (vertical axis) of M = 18
video categories. The 18 categories are listed on the horizontal axis.

The YouTube dataset contains the view counts, comment counts, likes, dislikes, thumbnail, title,
and category of each video. To relate to our main IRL result of Theorem 3, we define the following:
1. Agent: Group of users interacting with videos in each video segment. User engagement in different
video categories can be interpreted as the agent acting in multiple environments. In the rest of the
section, we will use the terms ‘user engagement’ and ‘commenting behavior’ interchangeably.
2. State (x): In the YouTube dataset, the state x of each video is the viewcount 1 day after the video
was published. Specifically, state x = 1 is high viewcount (more than 10, 000 views) and x = 2
otherwise. In YouTube, video viewcount is the independent quantity which governs the commenting
behavior since videos need to be viewed first before users can comment or rate the video.
3. Terminal Action (a): In the YouTube dataset, the terminal action a is related to the overall
commenting behavior12 of the users, which is computed using the comment counts, like count, and
dislike count 2 days after the video is published. The possible actions are: a = 1 denotes low
comment count with negative sentiment, a = 2 denotes low comment count with neutral sentiment,
a = 3 denotes low comment count with positive sentiment, a = 4 denotes high comment count
with negative sentiment, a = 5 denotes high comment count with neutral sentiment, and a = 6
denotes high comment count with positive sentiment. Here negative sentiment occurs if the difference
between the like count and dislike count is less than −25, neutral sentiment occurs if the difference

12. By overall commenting behavior in YouTube, we mean both the comment count and the video ratings (likes and
dislikes). Another term used in the literature (Khan, 2017) is “user engagement”.
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lies between −25, 25, and positive sentiment occurs if the difference is greater than 25. A low
comment count is said to occur if there are less than 100 comments, otherwise the comment count is
defined to be high.
4. Observation (y): The observation y for a YouTube user abstracts the visual cues a user perceives
that depends on video metadata such as thumbnail, title, category etc. The observation likelihood
is indicative of the attention expended by the user on a video. We note that although neither the
observations y nor the observation likelihood p(y|x) are contained in the YouTube dataset, our IRL
algorithm abstracts away these unobserved model parameters, and still yields necessary and sufficient
conditions for Bayes optimality.
4. Environment (m): Environment m corresponds to each of the M = 18 video categories in our
YouTube dataset. Fig. 7 lists each video category with the total number of views. Note that the
video categories “Unavailable” or “Removed” are videos flagged by YouTube as being suspected of
violating YouTube’s video policies13.

Recall from Sec. 2.3 that the inverse learner requires knowledge of the dataset DM = (π0,p) (11)
for identifying optimal Bayesian stopping via Theorem 3. In the YouTube context, the variables
π0,p = {pm(a|x),m ∈ M} dataset DM can be constructed as:

π0(x) =
1

I

I∑
i=1

1{xi = x}, pm(a|x) =
∑I

i=1 1{xi = x, ai = a, categoryi = m}∑I
i=1 1{xi = x, categoryi = m}

, (49)

where 1{·} is the indicator function, variable i indexes the YouTube videos, I = 140000 is the
total number of YouTube videos in the dataset, and environment m ∈ {1, 2, . . . , 18} indexes the
video categories. Also, xi, ai, categoryi denote the state, action and category of the YouTube video
indexed by i, where the state and action interpretations for the YouTube videos are discussed above.

5.2 YouTube Data Analysis Results

We now discuss our experimental findings from our IRL analysis on the YouTube dataset.14 Our
main task is to predict YouTube’s commenting behavior, that is, the action selection policy pm(a|x)
in video category m using the IRL algorithms in this paper. Our first observation is that the dataset
DM (49) comprising YouTube commenting behavior over M = 18 categories passes the convex
feasibility test (16) and (17) of Theorem 3 with a high margin of 1.85 × 10−3, where the margin
is normalized by the maximum feasible cost maxm,x,a sm(x, a). This shows that there exists a
Bayesian stopping model that rationalizes YouTube commenting behavior.

We now illustrate how well the reconstructed costs from the feasibility test of Theorem 3 predict
the commenting behavior of YouTube videos in different categories. For our prediction task, first,
we randomly divided the YouTube dataset into two parts - training data (80%) and testing data
(20%). Also, we consider only a subset of the 18 video categories for which the number of videos
exceeds 200. This extra condition results in 9 out of 18 video categories considered for our IRL
prediction analysis. For predicting commenting behavior via IRL, we first consider the training data
and compute two point-valued estimates of the agent stopping costs that satisfy the NIAS and NIAC

13. Refer to https://www.youtube.com/yt/about/policies/#community-guidelines for details
14. All our numerical results are completely reproducible and can be accessed from the GitHub repository https:

//github.com/KunalP117/YouTube-Commenting-Analysis.
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inequalities of Theorem 3, namely, max-margin IRL and entropy-regularized IRL defined below:

Max-Margin IRL :

{SMM-IRL, ϵ
∗} = argmax

ϵ≥0,S≥0
ϵ, such that NIAS(DM ,S) ≤ −ϵ, NIAC(DM ,S) ≤ −ϵ, (50)

Entropy-Regularized IRL :

SEnt-IRL = Any feasible cost S ≡ {sm(x, a), x ∈ X , a ∈ A}Mm=1, that satisfies (51)

(a) sm(x, a1) = 1, ∀ x ∈ X (Normalization), and

(b) NIAS(DM ,S) ≤ 0, NIAC(DM ,S) ≤ 0, SUMCOST(DM ,S, {MI(π0; pm(a|x))}Mm=1) ≤ 0.

In (50) and (51) above, S = {sm(x, a),m ∈ M, x ∈ X , a ∈ A} denotes the set of stopping costs
over all environments M, states X and actions A; the NIAS, NIAC and SUMCOST feasibility
inequalities are defined in (16), (17) and (18), respectively. In (51), MI(π0; pm(a|x)) denotes the
mutual information between the agent’s prior π0 and action selection policy pm(a|x) defined as:

MI(π0; pm(a|x)) =
∑
x,a

π0(x) pm(a|x) log

(
pm(a|x)∑

x π0(x) pm(a|x)

)
The intuition behind (50) is clear: choose the stopping costs that pass the feasibility inequalities of
Theorem 3 with the largest margin. In (51), we impose the additional constraint that the expected
continue cost is the mutual information between the prior and the action selection policy. The
inspiration for this information-theoretic cost stems from the seminal work of Sims (2003) who
modeled human attention as a limited-capacity communication channel, and from Max-Entropy
IRL (Ziebart et al., 2008) in IRL literature. Eq. 51 yields a softmax structure for the feasible stopping
costs (see Appendix C.3 for a more detailed explanation); the key idea is that entropy-regularized
IRL for Bayesian stopping yields a set of constant stopping costs, constant up to an affine monotone
transformation.

For predicted cost {sm(x, a), x ∈ X , a ∈ A,m ∈ M} and action selection policies {pm(a|x),m ∈
M} from the training dataset, the predicted action selection policy p̂m(a|x) for the test dataset is
straightforwardly computed as:

p̂m(a|x) =
∑
a′

1{a = argmax
b

∑
x

p̂m(x|a′) sm(x, b)} pm(a′|x), where (52)

the probability p̂m(x|a′) =
π0,test(x) pm(a|x)∑
x π0,test(x) pm(a|x) is the predicted posterior belief of the state given

action a′ for the test dataset. Observe that all terms in the RHS of (52) pertain to the training dataset
except for the prior π0,test that is empirically computed from the test dataset. Intuitively, (52) assumes
the observation likelihood for the YouTube user in the test dataset is simply the action selection
policy pm(a|x) from the training dataset. In words, the predicted action selection policy p̂m(a|x)
in (52) is obtained by simply summing the likelihoods of all actions a′ ∈ A for which action a is
optimal given posterior belief p̂(x|a′).

Using (52), we obtained two sets of predicted action selection policies, namely, p̂MM-IRL =
{p̂m(a|x),m ∈ M}MM-IRL and p̂Ent-IRL = {p̂m(a|x),m ∈ M}Ent-IRL for the test dataset, cor-
responding to stopping costs SMM-IRL (50) and SEnt-IRL (51), respectively. To comment on the
prediction accuracy, we computed the chi-squared distance and total variation distance between the
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true and predicted action selection policies for each video category m. 15 Figure 8 shows the IRL
prediction results. We observed that for 7 out of the 9 video categories considered for IRL prediction
analysis, the chi-squared and total variation distance for both sets of estimated action selection
policies lie under 0.3. Hence, for 7 out of 9 video categories, our IRL algorithm successfully predicts
the action selection policies in the test dataset with high accuracy. Another observation from Fig. 8 is
that the max-margin IRL estimate is a more accurate predictor compared to the entropy-regularized
IRL estimate and outperforms the entropy-regularized IRL in 2 out of 9 video categories.

Summary: We illustrated the predictive performance of our IRL algorithms (50), (51) on a
real-world YouTube dataset. We chose two point-valued IRL estimates of stopping costs from the
set of feasible costs that pass the NIAS (13) and NIAC (14) inequalities of Theorem 3, namely,
max-margin IRL (50) and entropy-regularized IRL (51). We observed that both these cost estimates
accurately predict YouTube commenting behavior (in terms of chi-squared and total variation distance
as displayed in Fig. 8). Moreover, the max-margin IRL estimate yields a more accurate prediction
compared to the entropy-regularized estimate.

Entropy-regularized IRL
Max-margin IRL

Entropy-regularized IRL
Max-margin IRL

Figure 8: IRL Prediction Error for YouTube Dataset. The main takeaway is that point-valued IRL
estimates that satisfy the feasibility test of Theorem 3 predict YouTube commenting behav-
ior with high accuracy (low statistical distance between true and predicted distributions).
For reconstructing the stopping costs, we choose two distinct point-valued stopping costs,
namely, entropy-regularized IRL (51) and max-margin IRL (50) and performed our nu-
merical experiments on 9 out of 18 video categories for which the video count exceeded
250. For both sets of estimated stopping costs, we observed that for 7 out of 9 YouTube
video categories considered for analysis, both the chi-squared distance and total variation
distance between the true and predicted action policy is less than 0.3.

15. Both chi-squared and total variation distance are normalized by definition since they take values in the interval [0, 1].
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6. Finite sample performance analysis of IRL decision test

Thus far, our IRL framework assumes (A1), namely, that the inverse learner has access to infinite
trials of the stopping agent in M environments in order to solve the convex feasibility problem in
Theorem 3. Suppose the inverse learner records only a finite number of trials and constructs its IRL
dataset (7) comprising the agent’s prior and empirically computed action selection policies in M
environments. In this section, we address the following question: How robust is the IRL decision test
in Theorem 3 to finite sample datasets? We now view Theorem 3 as a detector that takes in as input a
noisy (empirical) dataset and outputs whether or not the observed agent is identified as an optimal
stopping agent. Our aim is to provide bounds on the IRL detector’s error probability in terms of the
number of trials recorded by the inverse learner. We then obtain finite sample IRL results for the
examples of inverse SHT and inverse search.

6.1 Finite sample statistical test for IRL

Suppose the inverse learner observes the actions of a Bayesian stopping agent in M environments. In
addition to assumption (A2), we assume the following about the inverse learner for our finite sample
result stated in Theorem 11 below.

(F1) The inverse learner knows the finite dataset

D̂M (K) = {π0, {p̂m(a|x),m ∈ M}}, where K = {Kx,m,m ∈ M, x ∈ X}. (53)

In (53), K = {Kx,m,m ∈ M, x ∈ X}, Kx,m is the number of trials recorded by the inverse
learner for environment m and state x. p̂m(a|x) is the empirical action selection policy of the
agent in environment m computed for Kx,m trials via (28).

(F2) The finite dataset D̂M (K) satisfies the following inequality.

ε1(D̂M (K)), ε2(D̂M (K)) ≥

(∑
x,m

A

2Kx,m

)(
ln(2Kx,m/A)−min

x,m
ln (2Kx,m/A)

)
(54)

In (54), Km =
∑

xKx,m, K̄ = K/τ2max and K̃ = K−1. Eq. 54 imposes a lower bound on
the number of samples needed for our sample complexity result of inverse optimal stopping.
Eq. 54 is a sufficient condition for obtaining the constants of the sample complexity bound
as the solution of a convex optimization problem; see (106) in the Appendix for more details.
Variables ε1(·), ε2(·) are the minimum perturbations needed for the finite dataset D̂M (K) to
satisfy and not satisfy, respectively, the NIAS and NIAC inequalities in Theorem 3, and defined
formally in (57), (58) for readability.

For the reader’s convenience, we discuss the assumptions (F1) and (F2) after the finite sample
complexity result, Theorem 11. The feasibility test of Theorem 3 given a finite number of trials K
can be equivalently formulated as a statistical hypothesis detection test that takes as input the finite
dataset D̂M (K) and accepts one of the two hypotheses, H0 or H1.

• H0: Null hypothesis that the observed stopping agent is identified as an optimal agent, i.e. , the
true dataset DM is feasible wrt the NIAS and NIAC inequalities (13), (14) in Theorem 3.

• H1: Alternative hypothesis that the observed stopping agent is not optimal.
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Definition 10 (IRL detector for inverse optimal stopping) Consider the inverse learner with dataset
D̂M (K). Assume (A2) and (F1) hold. The IRL decision test TestIRL(·) for inverse optimal stopping
is given by:

TestIRL(D̂M (K)) =

{
H0, if IRL(D̂M (K)) ̸= ∅
H1, if IRL(D̂M (K)) = ∅.

(55)

Here, IRL(D) is the set of feasible solutions to the convex NIAS and NIAC inequalities (13), (14)
given dataset D.

The statistical test defined above is a detector that accepts the null hypothesis H0 if the finite dataset
passes the feasibility test of Theorem 3 and accepts the alternative hypothesis H1 it otherwise. Our
main result stated below characterizes the performance of the feasibility test in identifying optimality
given finite sample constraints, namely, provide bounds on the detector’s Type-I/II error probabilities.

6.2 Main result. Finite sample analysis for IRL

Our main result below (Theorem 11) characterizes the following error probabilities of the statistical
test in Definition 10:

Type-I error prob. : P(H0| IRL(D̂M (K) = ∅), Type-II error prob. : P(H1| IRL(D̂M (K) ̸= ∅) (56)

In (56), D̂M (K)) = ∅ means that the finite dataset fails the convex feasibility test for NIAC and
NIAS inequalities (13), (14) and so the agent is identified as not an optimal agent. Our finite sample
result in Theorem 11 below uses the dataset statistics variables ε1(·), ε2(·), g(·) from the finite dataset
D̂M (K) and are defined below. The quantities ε1(·) and ε2(·) are the minimum perturbations needed
for the finite dataset to satisfy and not satisfy, respectively, the NIAS and NIAC inequalities in
Theorem 3, and variable g is the constant for the error probability bounds.

NOTATION

Theorem 11 below uses the following variables:

ε1(D̂M (K)) = min
{p̂′m,m∈M}

∑
m

∥p̂m − p̂′m∥22 such that IRL({π0, {p̂′m(a|x)}}) ̸= ∅. (57)

ε2(D̂M (K)) = min
{p̂′m,m∈M}

∑
m

∥p̂m − p̂′m∥22 such that IRL({π0, {p̂′m(a|x)}}) = ∅. (58)

g(D̂M (K)) =

(
A
∑
x,m

K̃x,m

)∏
x.m

(
2Kx,m

A

) K̃x,m∑
x,m K̃x,m

, where K̃x,m = K−1
x,m (59)

Having defined our notation for error probability bounds, let us now state our first sample complexity
result for the IRL detector (55).

Theorem 11 (Sample complexity for IRL detector) Consider an inverse learner with finite dataset
D̂M (K) (53). The inverse learner aims to detect optimality of the stopping agent’s actions using the
statistical test in Definition 10. Assume (A2), (F1) and (F2) hold. Then, the Type-I and Type-II error
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probabilities (56) of the IRL detector (Definition 10) are bounded as:

Type-I error probability ≤ g(D̂M (K)) exp
(
−KH · ε1(D̂M (K))

)
, (60)

Type-II error probability ≤ g(D̂M (K)) exp
(
−KH · ε2(D̂M (K))

)
. (61)

In (59), KH =
(∑

x,mK−1
x,m

)−1
, and variables ε1(·), ε2(·) and g are defined in (57), (58) and (59),

respectively.

The proof of Theorem 13 is in Appendix E. Below, we provide a sketch of the proof. Theorem 11
characterizes the robustness of the IRL detector in Definition 10 to finite sample constraints. It
provides an upper bound on the detector’s error probabilities in terms of the number of trials recorded
by the inverse learner. Observe that since KH is simply the unnormalized harmonic mean of
K (68), the error rate is exponential in the harmonic mean of the number of trials recorded over M
environments and X states.

The proof of Theorem 11 uses the two-sided Dvoretzky-Kiefer-Wolfowitz (DKW) concentration
inequality (Van der Vaart, 2000; Kosorok, 2007) as the fundamental result to show that these error
probabilities can be tightly bound in terms of the sample size K of the finite dataset D̂M (K). The
DKW inequality provides a probabilistic bound on the deviation of the empirical cdf from the true
cdf for i.i.d random variables. The i.i.d assumption holds for our detector in Definition 10 since the
observed actions of the agent for a fixed state are independent and identically distributed over trials for
all environments M. To obtain our Type-I/II error bounds, we use the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality to probabilistically bound ∥p(a|x)− p̂(a|x)∥2, the L2-error between the empirical
and true action selection policy for each environment m ∈ M and state x ∈ X , followed by the
union bound to bound the sum of L2-errors due to finite sample size over all states and environments.
Discussion of Assumptions.
(F1): Given the finite dataset D̂M (K) in (53), (F1) says that the inverse learner checks if the convex
feasibility test of Theorem 3 has a feasible solution to detect an optimal stopping agent.
(F2): Abstractly, (F2) says that the inverse learner observes sufficiently many trials of the agent over
all environments M such that the condition (54) is met.
First, for a given dataset D, note that only one out of ε1(D), ε2(D) is non-zero and positive. Hence,
(54) involves only the non-zero variable out of ε1(D̂M (K)), ε2(D̂M (K)). Some words about the RHS
of (54). q(K)− j(K) is a measure of how far is Kmin = minx,mKx,m from the remaining elements
in K\Kmin. Since the RHS terms are of the form ln(z)/z, it is easy to check that q(K) − j(K)
decreases as the elements of K increase uniformly. As the number of samples go to infinity, the RHS
in (54) tends to 0, hence the condition is almost surely satisfied for infinite samples. For finite K,
checking if (54) holds requires the inverse learner to solve an optimization problem (for the LHS)
and perform MX multiplication operations and MX addition operations to compute the RHS of
(54). As a practical estimate, for the inverse SHT task in Sec. 3.5 for 100 SHT environments, we
observed that the inequality in (54) is satisfied if the samples exceeded ∼ 103 for each environment.

6.3 Example 1. Finite sample effects for IRL in inverse SHT

We next turn to a finite sample analysis of IRL for inverse sequential hypothesis testing (SHT).
Recall from Theorem 6 that identifying optimality of SHT is equivalent to feasibility of the linear
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inequalities NIAS and NIAC∗. The inverse learner’s SHT dataset comprises both the agent action
selection policies and the expected stopping times to perform IRL compared to only the action
selection policies for inverse optimal stopping. Hence, in addition to the DKW inequality, our main
result, Theorem 13 also uses the Hoeffding’s inequality (Boucheron et al., 2013) to account for the
finite sample effect16 on the computation of the expected stopping time.

Assumptions and Detection Test. Suppose the inverse learner observes the actions of the Bayesian
stopping agent over M SHT environments. We assume the following about the inverse learner for
our finite sample result stated below for the inverse SHT problem.

(F3) The inverse learner uses the finite SHT dataset

D̂M (K) = {π0, {p̂m(a|x), Ĉm,m ∈ M}} (62)

to detect if the stopping agent is an optimal SHT agent or not. The variable K defined in (53)
is the number of trials recorded by the inverse learner, Ĉm is the sample average of the agent’s
stopping time in the mth environment. p̂m(a|x) is the agent’s empirical action selection policy
computed for Kx,m trials via (28) in the mth environment.

(F4) The inverse learner knows τmax = inf {t > 0 | P(τ ≤ t) = 1,∀m ∈ M}, an upper bound on
the stopping time of the SHT strategies chosen by the agent in all environments M.

(F5) The finite dataset D̂M (K) satisfies the following inequality.

ε1(D̂M (K)), ε2(D̂M (K)) ≥ q(K)− j(K), where

q(K) =
∑
x,m

ln(2Kx,m/A)

2Kx,m/A
+
∑
m

ln(2K̄m)

2K̄m
,

j(K) = min
m

(
min
x

ln

(
2Kx,m

A

)
, ln

(
K̄m

τ2max

))(
A
∑
x,m

K−1
x,m

2
+
∑
m

K−1
m

2

)
(63)

In (63), Km =
∑

xKx,m, K̄ = K/τ2max and K̃ = K−1. Analogous to (54) in assumption (F2)
for finite sample complexity of IRL for optimal stopping, (63) imposes a lower bound on the
number of samples needed for our sample complexity result of inverse SHT. Eq. 63 is a sufficient
condition for obtaining the constants of the sample complexity bound as the solution of a convex
optimization problem. ε1(·), ε2(·) are the minimum perturbations needed for the finite dataset to
satisfy and not satisfy, respectively, the linear NIAS and NIAC∗ inequalities in Theorem 6, and
defined formally in 65). The quantities q(·), j(·) are decreasing functions of the sample size K. For
the reader’s convenience, we discuss the assumptions (F3)-(F5) after the finite sample complexity
result, Theorem 13. Analogous to Definition 10, the statistical detection test for the inverse SHT
problem is defined below. It takes in as input a finite (noisy) dataset and outputs one of the two
hypotheses- H0 (agent is an optimal SHT agent) or H1 (agent is not an optimal SHT agent).

Definition 12 (IRL decision test for inverse SHT) Consider the inverse learner with dataset D̂M (K)
(62). Assume (A2) (A4), (A5) and (F3) hold. The IRL detector TestIRL(·) for the inverse SHT problem

16. Hoeffding’s inequality applies to bounded r.v.s , and is true for SHT since the stopping time τ is finite almost surely.
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is given by:

TestIRL(D̂M (K)) =

{
H0, if IRLSHT(D̂M (K)) ̸= ∅
H1, if IRLSHT(D̂M (K)) = ∅.

(64)

Here, IRLSHT(D) is the set of feasible solutions to the linear NIAS and NIAC∗ inequalities (16), (31)
in Theorem 6 given dataset D.

Main Result. Finite Sample analysis for inverse SHT
We now present our finite sample result for IRL of the inverse SHT problem. It provides bounds for
the Type-I/II error probabilities of the IRL detector (64) in terms of the sample size of D̂M (K) (62).

Notation. Theorem 13 below uses the following variables:

ε1(D̂M (K)) : min
{p̂′m,Ĉ′

m}

∑
m

∥p̂m − p̂′m∥22 + (Ĉm − Ĉ ′
m)2, IRLSHT({π0, {p̂′m, C ′

m}}) ̸= ∅

ε2(D̂M (K)) : min
{p̂′m,Ĉ′

m}

∑
m

∥p̂m − p̂′m∥22 + (Ĉm − Ĉ ′
m)2, IRLSHT({π0, {p̂′m, C ′

m}}) = ∅

i(D̂M (K)) = KH(SHT) · h(D̂M (K)), where KH(SHT) = A
∑
x,m

K−1
x,m + τ2max

∑
m

K−1
m , and

h(D̂M (K)) =
∏
m

((
2K̄m

)K̄−1
m
∏
x

(
2K̄x,m

A

)AK̃x,m
)K−1

H (SHT)

.

(65)

In (65), Km =
∑

xKx,m, K̄ = K/τ2max and K̃ = K−1. Analogous to the finite sample result
for inverse optimal stopping, ε1(·), ε2(·) defined above are the minimum perturbations needed for
the finite SHT dataset to satisfy and not satisfy, respectively, the NIAS and NIAC∗ inequalities in
Theorem 6. Compared to the minimum perturbations defined in (57) and (58) for inverse optimal
stopping, the key distinction is that ε1(·) and ε2(·) in (65) also involve perturbations in the expected
continue cost of the agent. The variable i in (65) is the error constant for the finite sample error
bounds for inverse SHT; variable KH(SHT) can be interpreted as a weighted harmonic mean of the
recorded trials K (62).

Theorem 13 (Sample complexity for inverse SHT) Consider an inverse learner with dataset D̂M (K)
(53) detecting if the agent acting in multiple environments M is an optimal SHT agent using the sta-
tistical test in Definition 12. Assume (F3)-(F5) hold. Then, the Type-I and Type-II error probabilities
of the IRL detector (Definition 12) are bounded as:

Type-I error probability ≤ i(D̂M (K)) exp
(
−2 KH(SHT) · ε1(D̂M (K))

)
, (66)

Type-II error probability ≤ i(D̂M (K)) exp
(
−2 KH(SHT) · ε2(D̂M (K))

)
. (67)

The proof of Theorem 13 is in Appendix E. Theorem 13 characterizes the robustness of the linear
feasibility test in Theorem 6 to finite sample constraints. Compared to Theorem 11, the finite sample
result of Theorem 15 requires accounting for the empirical estimate of the agent’s expected continue
cost. Hence, in addition to the DKW inequality, the proof of Theorem 13 uses Hoeffding’s inequality
to bound the empirical estimation error for the expected continue cost.
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Discussion of Assumptions.
(F3): (F3) specifies the inverse learner’s dataset for the inverse SHT problem computed from a finite
number of trials.
(F4) says the inverse learner knows the upper bound of the agent’s stopping times over all environ-
ments. This assumption is crucial for our main result since the Hoeffding’s inequality (for bounding
the finite sample effect of the expected stopping time) requires this knowledge.
(F5): The condition (63) in (F5) is analogous to assumption (F2) for the finite sample result for
IRL of optimal stopping. (F5) admits a close form expression for the error bounds in Theorem 13.
Abstractly, (F5) says that the number of samples recorded by the inverse learner is sufficiently large
so that the condition (63) is satisfied.

6.4 Example 2. Finite sample effects for IRL in inverse search

We now analyze the finite sample effect of IRL for inverse search. Recall from Theorem 9 that
optimal search is equivalent to feasibility of the linear NIAC† inequalities. Our main result below,
namely, Theorem 15, characterizes the robustness of the feasibility test (wrt the NIAC† inequality)
for detecting optimal search under finite sample constraints. It turns out that Theorem 15 is a special
case of Theorem 11, our finite sample complexity result for IRL of inverse optimal stopping.

Main assumptions and detection test. Suppose the inverse learner observes the actions of a
Bayesian stopping agent. We assume the following about the inverse learner:

(F6) Instead of (A6), the inverse learner uses the finite dataset

D̂M (K) = {π0, {ĝm(a, x),m ∈ M}} (68)

to detect if the agent performs optimal search or not. ĝm(a, x) is the empirical search action
policy of the agent defined in (47) and K = {Kx,m, x ∈ X ,m ∈ M} denotes the number of
trials recorded by the inverse learner in state x, where m indexes the search environment.

(F7) The prior belief of the targets π0 is a uniform prior, i.e. , π0(x) = 1/X . Also, the reveal
probability α(a) is the same for all actions a ∈ A, i.e. , α(a) = α. Although the variable α is
unknown to the inverse learner, it satisfies the following inequality.

α ≥ max

{
α∗, 1− mina∈A lm(a)

maxa∈A lm(a)
, ∀m ∈ M

}
(69)

For the reader’s convenience, we discuss the assumptions (F6) and (F7) after the finite sample
complexity result, Theorem 15. We now define the statistical detection test for the inverse search
problem. It takes in as input the finite (noisy) dataset D̂M (K) (68) and detects one of the two
hypotheses- H0 (agent performs optimal search) or H1 (agent does not perform optimal search).

Definition 14 (IRL decision test for inverse search) Consider the inverse learner with dataset
D̂M (K) (68). Assume (A7), (F6) holds. The IRL detector TestIRL(·) for the inverse search problem
is given by:

TestIRL(D̂M (K)) =

{
H0, if IRLSearch(D̂M (K)) ̸= ∅
H1, if IRLSearch(D̂M (K)) = ∅.

(70)

Here, IRLSearch(D) is the set of feasible solutions to the linear NIAC† inequalities (46) in Theorem 9
given dataset D.
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Main Result. Finite Sample Result for Inverse Search.
We now present Theorem 15, our finite sample result for IRL of the inverse search problem. The-
orem 15 provides bounds for the Type-I/II and posterior Type-I/II error probabilities of the IRL
detector in Definition 14 in terms of the sample size of the finite search dataset and uses the following
variables.

ε1(D̂M (K)) = min
{ĝ′m,m∈M}

∑
m

∥ĝm − ĝ′m∥22, IRLSearch({π0, ĝ′m(a, x),m ∈ M}) ̸= ∅.

ε2(D̂M (K)) = min
{ĝ′m,m∈M}

∑
m

∥ĝm − ĝ′m∥22, IRLSearch({π0, ĝ′m(a, x),m ∈ M}) = ∅.

The variables ε1(·), ε2(·) are the minimum perturbations needed for the finite search dataset to
satisfy and not satisfy, respectively, the linear NIAC† inequalities (46) in Theorem 9.

Theorem 15 (Sample complexity for inverse search) Consider an inverse learner with dataset
D̂M (K) (53) detecting if a Bayesian stopping agent is performing optimal search by using the
statistical test in Definition 14. Assume (F6) and (F7) hold. Then, the Type-I and Type-II error
probabilities for the IRL detector (Definition 14) are bounded as:

Type-I error probability ≤ (1− α∗)A

ε1(D̂M (K))(α∗)2

(∑
x,m

K−1/2
x,m

)2

, (71)

Type-II error probability ≤ (1− α∗)A

ε2(D̂M (K))(α∗)2

(∑
x,m

K−1/2
x,m

)2

. (72)

The proof of Theorem 15 is in Appendix D. Theorem 15 characterizes the robustness of the linear
feasibility test in Theorem 9 to finite sample constraints. It upper bounds the probability of incorrectly
detecting the Bayesian agent as an optimal search agent or not an optimal search agent, in terms of
the number of trials recorded by the inverse learner.

Discussion of assumptions.
(F6): Assumption (F6) specifies the inverse learner’s dataset for the inverse search problem computed
from a finite number of trials.
(F7): (F7) says that the agent has the same reveal probability for all locations for all environments
and the inverse learner knows this reveal probability is greater than a certain value. This assumption
can be viewed as an analogy of having the same instantaneous continue cost for the agent solving the
SHT problem. The condition (69) results in the optimal search strategy of the agent to be periodic
for all environments - the agent searches each location exactly once in a particular order (depends on
the agent’s search costs) and repeats this cycle till the target is located. This allows the search action
policy gm(a, x) to be written in terms of the conditional pdf of the stopping time Pµm(τ |x) (see
Appendix F). By analyzing the finite sample effects of the stopping time due to the added structure,
Theorem 15 results. Note that Theorem 15 does not require the inverse learner to have information
about the true stopping time of the agent, but only the empirical search action policy.

Summary

For finite sample observations, this section presented an IRL detector for optimality of a Bayesian
stopping agent (Definition 10) and provided error bounds of the detector (Theorems 11). We also
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presented finite sample IRL detectors for optimality in SHT and Bayesian search (Definitions 12, 14)
and obtained error bounds of the detector in terms of the sample size (Theorem 13, 15). The key idea
behind the sample complexity results is the construction of a probabilistic bound on the minimum
perturbation needed to satisfy and not satisfy, respectively, the feasibility inequalities for optimality
to bound the Type-I and Type-II error probabilities of the IRL detector, respectively.

7. Discussion and extensions

This paper has proposed Bayesian revealed preference methods for inverse reinforcement learning
(IRL) in partially observed environments. Specifically, we considered IRL for a Bayesian agent
performing multi-horizon sequential stopping. The results in this paper achieve IRL under the
following restrictions on the inverse learner: (1) The inverse learner does not know if the decision
maker is an optimal Bayesian stopping agent (2) The inverse learner does not know the agent’s
observation likelihood and (3) IRL for noisy datasets. Our IRL algorithms first identify if the
agent is behaving in an optimal manner, and if so, estimate their stopping costs. The inverse
learner can at best identify optimality of an agent’s strategy wrt to its strategies chosen in other
environments, a notion intuitively explained in the introduction and defined formally in Lemma 2. To
illustrate our IRL approach, we considered two examples of sequential stopping problems, namely,
sequential hypothesis testing (SHT) and Bayesian search and provided algorithms to estimate their
misclassification/search costs.

Our main results were:
1. Specifying necessary and sufficient conditions for the decisions taken by a Bayesian agent in

multiple environments to be identified as optimal sequential stopping and generating set-valued
estimates of their stop costs (Theorem 3). To the best of our knowledge, our IRL results for
Bayesian stopping time problems when the inverse learner has no knowledge of the agent’s
dynamics is novel.

2. Constructing convex feasibility based IRL algorithms for set-valued estimation of misclas-
sification for an SHT agent (Theorem 6) and search costs for a search agent (Theorem 9)
when decisions from infinite trials of the agent are available in multiple SHT and search
environments, respectively. These results are special cases of Theorem 3 due to additional
structure of the SHT and search problem compared to generic sequential stopping problems.

3. Proposing IRL detection tests for detecting optimality of sequential stopping, SHT and search
when only a finite number of agent decisions are observed.

4. Providing sample complexity bounds on the Type-I/II and posterior Type-I/II error probabilities
of the above detection tests under finite sample constraints (Theorems 11, 13 and 15).

EXTENSIONS

This paper identifies optimal stopping behavior in a Bayesian agent by observing their actions without
external interference. A natural extension is to consider the controlled IRL setting where the inverse
learner is an active entity that can influence/control the actions of the agent. This leads to the question:
How to influence the agent’s actions so as to better identify optimal stopping behavior and estimate
the agent costs more efficiently?

Another question is: How to formulate conditions under which the set-valued cost estimates
for an agent in finitely many environments tends to a point-valued estimate as the number of
environments tend to infinity? In classical revealed preference theory, the papers Reny (2015);
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Mas-Colell (1978) characterize properties of utility functions that rationalize infinite datasets. It is
worthwhile generalizing these results to a Bayesian IRL setting.

Recent advances in deep IRL (Wulfmeier et al., 2015b; You et al., 2019) use deep neural networks
as function approximators for the underlying feature space. Our current research aims to extend the
results in this paper to deep-IRL for inverse optimal stopping where the inverse learner does not
know the underlying state space and relies on neural networks for feature space approximation.

The IRL methodology of the paper assumes the analyst has no knowledge of the agent’s obser-
vation likelihood. If the inverse learner knows a priori that the agent must choose its observation
likelihood from a finite set, the inverse learner cannot rely on NIAS and NIAC in Theorem 3 for
checking optimal Bayesian stopping. Instead, one must adapt adaptive search techniques for identify-
ing the optimal observation likelihood that is (a) consistent with the inverse learner’s dataset and (b)
optimizes the agent’s objective. If the agent’s observation likelihood is known to be multi-variate
Gaussian, then one can use the tree search approach that has seen success in applications such as
adversarial tracking (Lan and Schwager, 2013) and motion planning (Bry and Roy, 2011). Extending
the IRL results in this paper to tree-based adaptive search techniques is a subject of current research.

Finally, it is worthwhile exploring IRL for stopping time problems using the iterative update
approach of Abbeel and Ng (2004) and the MCMC based sampling approach of Ziebart et al. (2008).
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Appendix A. Context and Perspective. IRL for Bayesian stopping problems

A.1 Literature and Applications. IRL in Bayesian stopping problems

IRL methods have been successfully applied to areas like robotics (Kretzschmar et al., 2016), user
engagement in multimedia social networks such as YouTube (Hoiles et al., 2020), autonomous
navigation by Abbeel and Ng (2004); Ziebart et al. (2008) and Sharifzadeh et al. (2016) and inverse
cognitive radar (Krishnamurthy, 2020; Krishnamurthy et al., 2020). Below we discuss several
real-world examples where an analyst aggregates data from a Bayesian stopping time agent, and has
no knowledge of the agent’s observation likelihood for solving the IRL problem.

• Consumer Insights and Ad Design Research: Online multimedia are sequential Bayesian
decision makers (Ratcliff and Smith, 2004; Krajbich et al., 2010); they accumulate evidence
sequentially from audio-visual cues on the screen and then take an action (for example, playing
a video, clicking on an ad etc. ). In advertisement design, an analyst observes how an online
user (stopping time agent) reacts to a pop-up advertisement in multiple environments, where
the environment is characterized by the current web-page, content and position of the ad etc.
In consumer research for online movie platforms, the analyst observes whether an online user
clicks on a movie thumbnail or not in multiple scenarios, where the scenario depends on factors
like user’s past history of movies watched and neighboring movie thumbnails. The decision
process of the online user (forward learner) in both these examples can be embedded into an
SHT framework, where the sensing cost is the cost of attention to visual cues and the stopping
(terminal) cost measures the online user’s preferences for viewing the advertisement/movie.
By characterizing the content reactivity of online users in different multimedia platforms, IRL
for stopping time problems is useful for targeted ad-design and content recommendation.

• Electronic counter-countermeasures in electronic Warfare: Sequential Bayesian jamming
models are extensively used in Electronic Counter Measures (ECM) for mitigating radar
systems; see Arik and Akan (2015); Song et al. (2016) and Arasaratnam et al. (2006) for
details. The proposed IRL algorithms can be used for Electronic Counter Counter Measures
(ECCM) by the radar system to reverse engineer the adversarial ECM algorithms and avoid
performance mitigation, hence extending the paper Krishnamurthy et al. (2020) to the Bayesian
case. For instance, suppose an adversarial radar uses Bayesian search to identify valuable
targets like in Bourgault et al. (2003). Using IRL for inverse search, a radar analyst can use the
estimated search costs of the adversarial radar for effectively designing the targets to avoid
being easily detected. Self et al. (2019); Xue et al. (2021) develop inverse optimal control
(IOC) based IRL algorithms for reconstructing adversary intent for tracking control. Our work
complements Xue et al. (2021) since it allows one to still achieve IRL without knowledge of
model dynamics, as is common to assume in the literature.

• Interpretable ML for Smart Healthcare: Recently, sequential Bayesian models for assisting
medical diagnoses have been aggressively used in smart healthcare like in Nishio et al. (2018);
Oniśko and Druzdzel (2013); Exarchos et al. (2013); Jack Lee and Chu (2012) and Thakor et al.
(1994). These trained models are usually only accessible in an abstracted black-box format in
an executable software application. Our IRL algorithm provides an interpretable Bayesian
decision model for these assistive algorithms. Interpretability in AI-enabled healthcare (Ahmad
et al., 2018) facilitates informed decisions for the debugging and improvement of assistive
diagnoses.
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A.2 Related works in IRL

We now summarize the key IRL works in the literature and compare them to our paper.
(a) IRL in fully observed environments: Traditional IRL (Ng et al., 2000; Abbeel and Ng, 2004)

aims to estimate an unknown deterministic reward function of an agent by observing the optimal
actions of the agent in a Markov decision process (MDP) setting. The key assumption is the existence
of an optimal policy. Our convex feasibility approach for IRL in stopping time problems can be
viewed as a generalization of the feasibility inequalities in Ng et al. (2000, Theorem 3). Ng et al.
(2000, Theorem 3) compute a feasible set of rewards that ensure the agent’s policy outperforms all
other policies. Since the set of policies for an MDP is finite, Ng et al. (2000, Theorem 3) comprises
a finite set of linear inequalities. In comparison, the set of policies for a partially observed MDP
(POMDP) is infinite. From the feasible set of rewards, Ng et al. (2000); Ratliff et al. (2006) choose
the max-margin reward, i.e. , the reward that maximizes the regularized sum of differences between
the performance of the observed policy and all other policies. In Sec. 3.4, we compute a regularized
max-margin estimate of costs for inverse SHT and plot the reconstruction error. Abbeel and Ng
(2004) achieve IRL by devising iterative algorithms for estimating the agent’s reward function.
Abstractly, the key idea is to terminate the iterative process once the value function of the rewards
converges to an ϵ interval.
Ziebart et al. (2008) use the principle of maximum entropy for achieving IRL of an optimal agent,
wherein the agent’s policy is subject to a Shannon mutual information regularization. This regular-
ization facilitates expressing the optimal policy in closed form; the optimal policy turns out to be
softmax in terms of the Q-function of the MDP. Jeon et al. (2020) extend Ziebart et al. (2008) to a
more general regularization setup that also admits a closed form solution to the optimal policy in
terms of strongly convex functions for regularization, for examples, the Tsallis entropy (Lee et al.,
2020) that generalizes Shannon entropy. Solving the IRL task with zero dynamics knowledge has
also been explored in the literature. Herman et al. (2016) append the IRL task with simultaneous
learning of model dynamics, specifically, the agent’s transition kernel. The key idea in the approach
is to maximize the log-likelihood of sampled trajectories wrt the appended parameter space that
parametrizes the agent’s rewards and transition kernel. Our problem setting differs from Herman
et al. (2016) in that we operate in the non-parametric partially observed setting regime where the
observation likelihood of the agent is unknown and not necessarily parametrizable. Indeed, our
results can be specialized to parameter families of observation likelihood known to the analyst, and
is a subject of current research.

Levine and Koltun (2012) generalize IRL to continuous space processes and circumvent the
problem of finding the optimal policy for candidate reward functions. Recently Fu et al. (2017);
Wulfmeier et al. (2015a); Sharifzadeh et al. (2016) and Finn et al. (2016) used deep neural networks
for IRL to estimate agent rewards parametrized by complicated non-linear functions. Ramachandran
and Amir (2007) achieve IRL when the agent’s rewards are sampled from a prior distribution and the
demonstrator’s trajectories update the posterior belief of the reward. Building on the seminal work
of Rust (1994), Kim et al. (2021); Cao et al. (2021) study identifiability of parameters for structure
MDPs in IRL. In analogy, in this paper, we provide identifiability conditions for a subset of POMDPs,
namely, Bayesian stopping problems.

(b) IRL in partially observed environments: The influential works of Choi and Kim (2009, 2011)
and Makino and Takeuchi (2012) are the first works on IRL in a POMDP setting. They extend
traditional IRL (Ng et al., 2000; Abbeel and Ng, 2004) to an infinite state space (space of posterior
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beliefs of the agent). Makino and Takeuchi (2012) extend Bayesian IRL (Ramachandran and Amir,
2007) for MDPs to the POMDP setting. In analogy to Bayesian IRL, the aim is to compute the
posterior distribution of reward functions given an observation dataset. The assumption of a softmax
action policy suffices to compute the likelihood of the observation dataset given a reward function,
and hence, bypasses the need to compare the agent’s performance with respect to other candidate
policies.
Since our work is closely related to Choi and Kim (2009, 2011), we briefly review their approach. In
Choi and Kim (2009, 2011), the inverse learner first checks if the agent chooses the optimal action
given a particular posterior belief, for finitely many beliefs aggregated from the observed trajectories
of belief-action pairs. This is analogous to our NIAS condition (16) in Theorem 6, where we check
if the agent’s terminal action is optimal given its terminal belief. Next, the inverse learner check if
the agent’s policy is optimal with respect to a finite set of policies that deviate from the observed
policy by a single step. This resembles our NIAC condition (31) in Theorem 3 where we check for
optimality of the Bayesian decision maker’s actions in multiple environments.
As Choi and Kim (2009, 2011) mention, this approach to checking for optimality only gives rise to a
necessary condition, and not a necessary and sufficient condition like in Ng et al. (2000); Abbeel and
Ng (2004), where the number of policies are finite. In other words, without prior information about
the nature of the Q-function given a policy, it is impossible to check for global optimality, that is,
find a reward function that outperforms all other policies (infinitely many policies).

Our Bayesian revealed preference based approach is complementary to Choi and Kim (2011).
While Choi and Kim (2011) develop IRL methods for POMDPs with no assumption on problem
structure, we consider a subset of POMDPs, namely, Bayesian stopping time problems. Due to the
structure of stopping time problems, we show that our IRL algorithms do not require knowledge of
the observation likelihood of the decision maker, nor require solving a POMDP. Indeed, IRL for
generic POMDPs is non-identifiable if the inverse learner does not know the model dynamics, nor
can solve a POMDP. To test for optimality, our IRL algorithms rely on the decision maker’s strategies
from multiple environments, where every environment differs in the terminal cost. Decision strategy
in multiple environments can be viewed as a surrogate for performance wrt different policies. To
summarize, our work builds on the seminal work of Choi and Kim (2011) with the key discerning
features of our IRL methodology being: (1) Unobservability of agent dynamics, (2) No assumptions
on decision optimality, and (3) IRL generalization for empirical (noisy) datasets with performance
guarantees via finite sample complexity.

(c) Inverse Rational Control (IRC). IRC (Kwon et al., 2020) is a closely related field to IRL in
partially observed environments. IRC models sub-optimality in decision makers as a misspecified
reward function and aims to estimate this reward. The IRC task comprises two sub-tasks:
First, the inverse learner constructs a map from a continuous space of reward functions parameterized
by θ to the reward’s optimal policy.
Second, based on a finite observation dataset D, the underlying hyperparameter θ is estimated as the
maximum likelihood estimate argmaxθ P(D|θ).
In comparison, our approach bypasses the first sub-task in IRC by checking the feasibility of a finite
set of convex inequalities. Given the information available to the inverse learner, these inequalities
are both necessary and sufficient conditions for identifying optimality of a decision maker’s decisions
in multiple environments. Indeed, increasing the number of environments in which the decision
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maker’s actions are observed decreases the size of the feasible set of rationalizing rewards, and hence
increases the precision of our set-valued IRL cost estimate.17

(d) Revealed Preference. The key formalism used in this paper to achieve IRL is Bayesian
revealed preferences studied in microeconomics by Martin (2014); Caplin and Martin (2015); Caplin
and Dean (2015); Caplin et al. (2019). Non-parametric estimation of cost functions given a finite
length time series of decisions and budget constraints is the central theme in the area of classical
(non-Bayesian) revealed preferences in microeconomics, starting with Afriat (1967); Samuelson
(1938) where necessary and sufficient conditions for constrained utility maximization are given; see
also Varian (1982, 2012); Woodford (2012) and more recently in machine learning (Lopes et al.,
2009).

(e) Examples of Bayesian stopping time problems. After constructing an IRL framework for
general stopping time problems, this paper discusses two important examples, namely, inverse
sequential hypothesis testing and inverse Bayesian search. Below we briefly motivate these examples.
Example 1. Inverse Sequential Hypothesis Testing (SHT). Sequential hypothesis testing (SHT) (Poor,
1993; Ross, 2014) is widely studied in detection theory. The inverse SHT problem of estimating
misclassification costs by observing the decisions of an SHT agent has not been addressed. Estimating
SHT misclassification costs is useful in adversarial inference problems. For example, by observing
the actions of an adversary, an inverse learner can estimate the adversary’s utility and predict its
future decisions.
Example 2. Inverse Bayesian Search. In Bayesian search, each agent sequentially searches locations
until a stationary (non-moving) target is found. Bayesian search (Ross, 2014) is used in vehicular
tracking (Wong et al., 2005), image processing (Pele and Werman, 2008) and cognitive radars (Good-
man et al., 2007). IRL for Bayesian search requires the inverse learner to estimate the search costs
by observing the search actions taken by a Bayesian search agent in multiple environments with
different search costs.

Bayesian search is a special case of the Bayesian multi-armed bandit problem (Gittins, 1989;
Bubeck et al., 2012). A promising extension of our IRL approach would be to solve inverse Bayesian
bandit problems, namely, estimate the Gittins indices of the bandit arms. Regarding the literature in
inverse bandits, Chan et al. (2019) propose a real-time assistive procedure for a human performing a
bandit task based on the history of actions taken by the human. Noothigattu et al. (2021) solve the
inverse bandit problem by assuming the inverse learner knows the variance of the stochastic reward;
in comparison out setup assumes no knowledge of the rewards.

Appendix B. Proof of Lemma 2

Proof. Suppose DM is generated by a Bayesian agent performing optimal stopping (Definition 1) in
M environments. By definition, the following conditions hold:

µm(π, τ) = argmin
a∈A

π′s̄m,a, J(µm, sm) = inf
µ∈µ

J(µ, sm), (73)

where J(·) (10) is the expected cumulative cost comprising the expected stopping cost G(·) and
expected cumulative continue cost C(·) Since the set of chosen strategies µM ⊂ µ, the set of all

17. Revealed preference micro-economics (Mas-Colell, 1978; Reny, 2015) have studied the consistency of the set-valued
approach to eliciting agent rewards. Mas-Colell (1978) specifies conditions under which the feasible set of utility
functions reconstructed from a dataset of agent actions converges to a point for infinite datasets. Reny (2015) constructs
a quasi-concave utility function that rationalizes an infinite dataset.
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admissible policies, the feasibility of (73) implies the following conditions hold:

µm(π, τ) = argmin
a∈A

π′s̄m,a,

J(µm, sm) = min
µ∈µM

J(µ, sm). (74)

Since µM is finite, the ‘inf’ in (73) can be replaced with ‘min’ in (74). The second condition in (74)
is simply a reformulation of (12). Hence, the ‘if’ statement of Lemma 2 is proved.

We now prove the ‘only if’ direction. Suppose the inverse learner has access to DM aggregated
from a Bayesian agent’s actions in M environments. Specifically, the inverse learner only knows the
agent’s incurred expected costs finitely many policies µm ∈ µM. Alternatively, the sole knowledge
of DM implies that the inverse learner does not know the agent’s expected stopping cost, nor the
expected cumulative continue cost if the agent chooses any policy µ ∈ µ\µM. Condition (8) is
independent of the agent’s policy, and only depends on the agent’s stopping belief. However, (10)
requires the inverse learner to compare the expected cost of the agent’s strategy µm in environment
m against infinitely many strategies µ ∈ µ. Due to inverse learner’s limited knowledge, the best the
inverse learner can do to check if (10) holds is to check the feasibility of (74). ■

Appendix C. Proof of Theorem 3

We first introduce an observation likelihood αm over a fictitious observation space Yπ with generic
element ỹπ for stopping strategy µm,m ∈ M:

αm(ỹπ|x) =
∑

ȳ:πτ=π

(
τ∏

t=1

B(yt, x)

)
(75)

Here ȳ denotes a sequence of observations y1, y2, . . . and τ is the random stopping time for strategy
µm defined in (6). αm(ỹπ|x) is the likelihood of all observation sequences ȳ such that given true state
xo = x and stopping strategy µm, the agent’s belief state at the stopping time τ is π. Equivalently,
αm(ỹπ|x) is the conditional probability density of the agent’s stopping belief for strategy µm. By
definition, the mapping from ỹπ to stopping belief π is one-to-one. Hence, |Yπ| = |∆(X )|, where
∆(X ) denotes the X − 1 dimensional unit simplex of pmfs.

Next, we re-formulate the expected stopping cost G(µm, sm) defined in (10) for stopping cost
sm in terms of the fictitious observation likelihood defined in (75).

G(µm, sm) = Eµm

{
π′
τ s̄m,aτ

}
=

∫
Yπ

(∑
x∈X

αm(ỹπ|x)π0(x)

)
︸ ︷︷ ︸

Marginal distribution of ỹπ

min
a∈A

π′s̄m,a dỹπ (76)

In the above equation, the summation within the parentheses is the unconditional probability density
of the stopping belief π given stopping strategy µm. Also, as described above, αm(ỹπ|x) is the
likelihood of all observation sequences ȳ such that given true state xo = x and stopping strategy
µm, the agent’s belief state at the stopping time τ is π. We are now ready to prove necessity and
sufficiency of the NIAS, NIAC inequalities (13), (14) in Theorem 3 for identifying an optimal
stopping agent (Lemma 2).
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C.1 Necessity of NIAS, NIAC inequalities

Recall from Theorem 3 that the analyst knows the agent’s action selection policy in multiple
environments. The action selection policy pm(a|x) in DM is a stochastically garbled version of
αm(ỹπ|x) defined in (75) and pm(x|a) is a stochastic garbling of the agent’s stopping belief π when
the stop action is a. The action selection policy can be rewritten as follows

pm(a|x) =
∫
Yπ

pm(a|ỹπ)αm(ỹπ|x) dỹπ (77)

=⇒ pm(x|a) =
∫
Yπ

pm(a|ỹπ)αm(ỹπ|x)π0(x)
pm(a)

dỹπ =

∫
Yπ

pm(ỹπ|a) π(x) dỹπ, (78)

where π is the agent’s stopping belief and pm(ỹπ|a) is the probability density of the fictitious
observations ỹπ conditioned on the stop action a.

C.1.1 NIAS

Let action a be the optimal stop action (8) for stopping belief π of the mth agent in A. Then,∑
x∈X

π(x)(sm(x, a)− sm(x, b)) ≤ 0, ∀a, b ∈ A (79)

=⇒
∫
Yπ

∑
x∈X

π(x)(sm(x, a)− sm(x, b)) pm(ỹπ|a)dỹπ ≤ 0 (80)

=⇒
∑
x∈X

(∫
Yπ

pm(ỹπ|a) π(x) dỹπ
)
(sm(x, a)− sm(x, b)) ≤ 0 (81)

=⇒
∑
x∈X

pm(x|a)(sm(x, a)− sm(x, b)) ≤ 0. (82)

Eq. 79 says that the expected stop cost given belief π is minimum for stop action a. Here, the
expectation is taken over the finite state set X . The LHS of (80) is the expected value of the LHS of
(79) taken over the space of fictitious observations Yπ wrt the probability density pm(ỹπ|a). Since
|sm(x, a) − sn(x, a)| is bounded, the integral on the LHS of (80) is finite. Hence, by Fubini’s
theorem, we can change the order of summation to get (81). The first term in the integral of (81) is
equal to pm(x|a) from (78) which results in the final NIAS inequality (82).

C.1.2 NIAC

Define G̃m,n as expected stopping cost when the fictitious observation likelihood is pm(a|x) and
stopping cost is sn(x, a). Then:

G̃n,m =
∑
a∈A

(∑
x∈X

pn(a|x)π0(x)

)
min
b∈A

∑
x∈X

pm(x|a)sm(x, b). (83)

It follows from Blackwell dominance (Blackwell, 1953) that:

G̃n,m ≥ G(µn, sm) for all m, n, (84)
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since the kernel pm(y1:τ(µm)|x) Blackwell dominates the action selection policy pm(a|x). A key
observation is that, in (84), equality holds for m = n and is straightforward to show using Jensen’s
inequality. To summarize, we have the following inequality:

Gm,m = G̃m,m, Gn,m ≤ G̃n,m (85)

For any set of environment indices {m1,m2, . . .mI} ⊂ M, (mI+1 = m1), we have the following
inequality from (12) in Lemma 2:

I∑
i=1

G(µmi+1 , smi)−G(µmi , smi) ≥
I∑

i=1

C(µmi)− C(µmi+1) = 0

Combining the inequalities (84) with the above inequality, we get the NIAC inequality:
I∑

i=1

G̃mi+1,mi − G̃mi,mi ≥ 0 (86)

C.2 Sufficiency of NIAS, NIAC inequalities for Bayes optimal stopping

The inverse learner only has access to the agent’s prior π0 over the state space X and action
selection policy pm(a|x) induced by the agent’s policy in environment m. For a finite set of fictitious
observations, the sufficiency proof assumes that there exists a one-to-one correspondence between
the fictitious observation ỹπ to the terminal action a. If the observation space Y is continuous-valued,
the sufficiency proof assumes there exist disjoint subsets Yπ(a) ⊂ Yπ and pdfs fa with support
Yπ(a) such that the fictitious observation likelihood αm(ỹπ|x) can be expressed as:

αm(ỹπ|x) = fa(ỹπ) pm(a|x), ∀x ∈ X , ỹπ ∈ Yπ(a), a ∈ A. (87)

It follows straightforwardly from the fictitious observation likelihood expression in (87) that, for all
ỹπ ∈ Yπ(a), the belief is simply p(·|a):

pm(x|ỹπ) =
(from (87))

fa(ỹπ) pm(a|x)π0(x)∑
x′ fa(ỹπ) pm(a|x′)π0(x′)

=
pm(a|x)π0(x)∑
x′ pm(a|x′)π0(x′)

= pm(x|a) (88)

The important but subtle consequence of this assumption is that the expected stopping cost (12) Gm,n

is equal to the surrogate cost G̃m,n (83) for all m,n ∈ {1, 2, . . . ,M}.

C.2.1 NIAS

Suppose NIAS inequality holds, that is, for all m ∈ M,

a = argmin
b∈A

∑
x∈X

pm(x|a)sm(x, b), ∀a ∈ A. (89)

Since the set {pm(x|a), a ∈ A} constitutes the set of all stopping beliefs when αm(ỹπ|x) = pm(a|x),
the following condition holds from (89).

µm(π, τ) = argmin
a∈A

π′s̄m,a. (90)

Eq. 90 is precisely (8), which says the agent chooses the stop action that minimizes its stopping cost
given its stopping belief. Hence, it only remains to show that (12) in Lemma 2 holds to complete our
sufficiency proof.
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C.2.2 NIAC

Assuming the NIAS condition (82) holds, we use the concept of KKT multipliers from duality
theory (Boyd and Vandenberghe, 2004, Sec. 5.5) to show that NIAC (86) is sufficient for (12) in
Lemma 2 for optimal Bayesian stopping to hold. To do so, we use Lemma 16 below for linear
assignment problems to show the existence of scalars Cm that satisfy (12); the feasibility inequality
of interest is stated in (93) below. We now state Lemma 16 which can be viewed as a variational
form of the NIAC inequality:

Lemma 16 Suppose NIAC (86) holds. Then:
(a) The solution of the following linear assignment problem is the identity map, that is, the optimal
assignment map x∗m,n is given by x∗m,n = 1 if m = n, and 0 otherwise:

minimizexm,n

M∑
m,n=1

xm,n G̃m,n, subject to: (91)

∑
n

xm,n ≥ 1,
∑
m

xm,n ≥ 1, xm,n ≥ 0 ∀m,n ∈ {1, 2, . . . ,M}.

(b) The KKT multipliers corresponding to the solution of the above assignment problem solve the
feasibility condition of (12) in Lemma 2.

Proof.
(a) Let x∗m,n denote the optimal solution to the optimization problem (91). Indeed, since (91) is an LP,
x∗m,n ∈ {0, 1}. We can prove by contradiction that if NIAC (86) holds, then the optimal assignment
variables x∗m,n is Kronecker delta, that is, x∗m,n = 1 if m = n and 0:
Choose any arbitrary feasible xm,n ∈ {0, 1}. Consider the sequence of indices I ≡ {1, hx(1), hx ◦
hx(1), . . . , (hx◦)M−2h(1)}, where hx(m) = m′ is the unique (due to assignment constraints in
(91)) index m′ ∈ M for which xm,m′ = 1 and ‘◦’ denotes the function composition operator. From
invoking NIAC (86) on the index sequence I , we observe that

∑M
m,n=1 xm,nG̃m,n ≤

∑
m G̃m,m =∑M

m,n=1 x
∗
m,nG̃m,n, where x∗m,n = 1 if m = n and 0 otherwise. Hence, the identity map solves the

assignment problem (91).

(b) We now write down the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Vandenberghe, 2004,
pg. 121) for the assignment problem (91) at the optimal solution {x∗m,n}Mm,n=1 that are first-order
necessary conditions for optimality:

There exist scalars λ1,m, λ2,m, λ3,m,n ≥ 0, m, n ∈ {1, 2, . . .M}, such that:

(i) For n = m : G̃m,m = λ1,m + λ2,m, (ii) For n ̸= m : G̃n,m = λ1,m + λ2,n + λ3,n,m. (92)

The scalars λ1,m and λ2,n in (92) correspond to KKT multipliers associated with the inequality
constraints (−

∑
n xm,n) ≤ −1 and (−

∑
m xm,n) ≤ −1 in (91), respectively. We note that both

sets of inequalities are active at {x∗m,n}Mm,n=1, the solution of (91). The scalar λm,n is the KKT
multiplier associated with the inequality constraint (−xm,n) ≤ 0, where the inequality is active only
for x∗m,n, m ̸= n. For any pair of environments m,n ∈ {1, 2, . . . ,M}, the following inequalities
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result due to the KKT conditions in (92):

G̃m,m − λ2,m = G̃n,m − λ2,n − λ3,n,m ≤ G̃n,m − λ2,n (since λ3,n,m ≥ 0)

⇔ G̃m,m + (max
m′

λ2,m′ − λ2,m) ≤ G̃n,m + (max
m′

λ2,m′ − λ2,n)

⇔ G̃m,m + Cm ≤ G̃n,m + Cn (93)

(by replacing (max
m′

λ2,m′ − λ2,m) with the variable Cm for all m ∈ M)

We now reconstruct an estimate of the agent’s expected continue cost Ĉ below and show (12)
holds for Bayes optimal stopping. With pµ = pµ(a|x) denoting the action selection policy induced
by a stopping strategy µ, consider the following reconstructed estimate of the agent’s expected
continue cost Ĉ(µ) in terms of the feasible variables {Cm}Mm=1 (93):

Ĉ(µ) = max
m=1,2,...,M

{
Cm +Gm,m − G̃(µ, sm)

}
, where

G̃(µ, sm) =
∑
a∈A

(∑
x∈X

pµ(a|x)π0(x)

)
min
b∈A

∑
x∈X

pµ(x|a)sm(x, b) (94)

In (94), G̃(µ, sm) denotes the expected stopping cost of the Bayesian agent with strategy µ and
stopping costs sm(x, a) assuming a one-to-one map between the set of observations y1:τ(µ) to action
a.18 The variable pµ(x|a) is the posterior belief of the state computed using Bayes rule as:

pµ(x|a) =
π0(x)pµ(a|x)∑
x′ π0(x′)pµ(a|x′)

Indeed, if the mapping from the fictitious observation set Yπ to the action set A is assumed to be
one-to-one, the expected stopping cost can be expressed in terms of the action selection policy pµ

induced by the stopping strategy µ. From (93), it is straightforward to show that C(µm) = Cm.
Hence, replacing Cm in (93) with Ĉ(µm) yields the following inequalities:

G̃m,m + Ĉ(µm) ≤ G̃n,m + Ĉ(µn)

⇔ A cumulative running cost can be reconstructed (94) such that condition (12) in Lemma 2

holds with expected stopping costs G̃n,m, m, n ∈ {1, 2, . . . ,M}. ■
(95)

In words, for a feasible set of stopping costs {sm}Mm=1 such that NIAS and NIAC hold, the Bayesian
agent’s (unobserved) strategies satisfy optimal Bayesian stopping (12). Moreover, for every feasible
set of costs {sm}Mm=1, the term (maxm′ λ2,m′ − λ2,m) denotes the expected continue cost incurred
by the Bayesian agent due to choosing strategy µm, and G̃m,n denotes the agent’s incurred expected
stopping cost in environment n if it chooses strategy µm.

18. While it may seem counter-intuitive to assume a one-to-one mapping from the fictitious observation space to action
space, one can show for convex costs like entropic costs (Shannon-Gibbs, Rényi and Tsallis) that the optimal mapping
is one-to-one. The key idea is to show that having a many-to-one map with the same expected stopping cost is
sub-optimal in that the agent incurs a strictly larger expected continue cost; see Matějka and McKay (2015, Lemma 1)
for a more detailed explanation.
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C.3 Remarks

1. IRL for inverse SHT. For the inverse SHT problem discussed in Sec. 3, the inverse learner knows
Cm, the expected cumulative continue cost for the agent in environment m. Hence, the inverse
learner can identify optimal SHT simply by checking if the NIAS inequality (82) and the following
inequality is feasible:

G̃m,m − G̃n,m ≤ Cn − Cm, ∀m,n ∈ M, (96)

where G̃(·) is the expected stop cost defined in (83) and Cm is the expected continue cost of the
agent in environment m now known to the inverse learner. Due to (A5), G̃m,· = Gm,·. Hence, (96)
is equivalent to (12) in Lemma 2. We term the inequality in (96) as NIAC∗ and use it in Theorem 6
for IRL for inverse SHT.
2. Different observation likelihoods for different environments. Theorem 3 is a purely data-centric
approach for IRL that makes no assumptions on the agent’s observation likelihood. If the NIAS and
NIAC inequalities have a feasible solution, then the inverse learner’s dataset DM can be rationalized
by a Bayesian agent that acts optimally (in the sense of Lemma 2) and has a fixed observation
likelihood over all M environments. It may very well be the case that the Bayesian agent has a
different observation likelihood in different environments, but Theorem 3 is opaque to this condition.

If the inverse learner knows a priori that the Bayesian agent uses a different observation likelihood
for different environments, we need stronger conditions to achieve IRL. A sufficient condition for
identifying optimal Bayesian stopping with distinct observation likelihoods in different environments
is to assume the expected cumulative continue cost of the agent is independent of the observation
likelihood. One example that satisfies this assumption is the entropic continue cost:

ct = λ (H(πt)− E{H(πt+1)|πt}), t ≥ 0, λ > 0 (97)

where H(p) = −
∑

i pi log(pi) is the entropy of pmf p. The above choice of continue cost has two
advantages:
(i) The expected cumulative continue cost for agent m is simply H(π0)− Ea{H(pm(a|x))}, and is
independent of the observation likelihood; see Matějka and McKay (2015, Lemma 1) for a discussion
on how conditioned on state x, the optimal mapping from the space of fictitious observations ỹπ (75)
to the space of actions A is one-to-one due to the convexity of the entropic cost.
(ii) The inverse learner can test for ‘absolute optimality’ (8), (9) of the Bayesian agent’s decisions
and does not require observing the agent’s behavior in multiple environments. Using the method of
Lagrange multipliers, it is straightforward to show that for environment m, the following relation
holds between the agent’s stopping costs and its observed decisions for optimal Bayesian stopping:

pm(a|x) = pm(a) exp(−sm(x, a)/λ)∑
b∈A pm(b) exp(−sm(x, b)/λ)

, ∀ a, x,m, (98)

where λ > 0 is a feasible variable that parametrizes the continue cost (97), and pm(a) is the marginal
distribution of the action a in environment m. IRL is achieved by checking for the feasibility
condition of Caplin et al. (2019, Eq. 3, Proposition 1) and solving the above set of equations (98) for
sm(x, a); observe that there is no assumption of a fixed observation likelihood for the Bayesian agent
across environments and the IRL estimate returns an ordinal estimate of the agent’s stopping costs.
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Appendix D. Proof of Theorem 9

We will show (46) is equivalent to the condition for identifying search optimality (45) in two steps.
For a fixed stationary search strategy µ : π → a and search cost {l(a), a ∈ A}, we first express the
expected cumulative search cost in terms of the search action policy g(x, a) (43) and the prior π0.

J(µ, l) = Eµ

{
τ∑

t=1

l(µ(πt))

}
= Eµ

{∑
a∈A

l(a)

(
τ∑

t=1

1{µ(πt) = a}

)}

=
∑
a∈A

l(a)
∑
x∈X

π0(x)Eµ

{
τ∑

t=1

1{µ(πt) = a}|x

}
=

∑
x∈X ,a∈A

π0(x)g(x, a)l(a).

Now, consider the set of search strategies {µm,m ∈ M}.

(45) ≡ µm ∈ argmin
{µn,n∈M}

J(µn, lm) ⇐⇒ J(µm, lm)− J(µn, lm) ≤ 0, m, n ∈ M.

⇐⇒
∑

x∈X ,a∈A
π0(x)(gm(a, x)− gn(a, x)) lm(a) ≤ 0 ≡ (46).

■

Appendix E. Proof of Theorem 13

We divide the proof of Theorem 11 into 4 steps:
Step 1. Using Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Kosorok, 2007) to bound the deviation
of the empirically computed action selection policy p̂m(a|x) from pm(a|x).
The DKW inequality (Van der Vaart, 2000) provides a finite sample characterization of the asymptotic
result of Glivenko-Cantelli theorem by quantifying the convergence rate of the empirical cdf to the
true cdf. Let Fm(a|x) and F̂m(a|x) denote the cdfs of pm(a|x) and p̂m(a|x), respectively. From the
two-sided DKW inequality, the following inequalities result:

1− 2 exp
(
−2Kx,mε2

)
≤ P

(
max
a∈A

|F̂m(a|x)− Fm(a|x)| < ε

)
≤ P

(
max
a∈A

|F̂m(a|x)− Fm(a|x)| ≤ ε

)
≤ P (|pm(a|x)− p̂m(a|x)| ≤ ε, ∀a) ≤ P

(∑
a∈A

|pm(a|x)− p̂m(a|x)|2 ≤ Aε2

)
.

For a fixed state x and environment m, let εx,m bound the error |p̂m(a|x)− pm(a|x)|, ∀a ∈ A. With
ε2max = A(

∑
x,m ε2x,m), we have the following probabilistic bound on the L2-error between the true

and empirical action selection policies, summed over all states, actions and environments:

P

(∑
a,x,m

|pm(a|x)− p̂m(a|x)|2 ≤ ε2max

)
≥
∏
x,m

1− 2 exp
(
−2Kx,mε2x,m

)
. (99)

Step 2. Using Hoeffding’s Inequality (Boucheron et al., 2013) to bound the deviation of the sample
average of the SHT stopping times Ĉm from the true value Cm.
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The inverse learner knows the agent’s stopping time τ ∈ [1, τmax] for all M environments. Analogous
to (99), for a fixed environment m, let ηm bound the error |Ĉm−Cm|. With η2max =

∑
m η2m, we have

the following probabilistic bound on the L2-error between the true and empirical expected stopping
times of the agent, summed over all M environments via the two-sided Hoeffding’s inequality:

P(|Ĉm − Cm| ≤ ηm) ≥ 1− 2 exp
(
−2Kmη2m/τ2max

)
=⇒ P(

∑
x,m

|Ĉm − Cm|2 ≤ η2max) ≥ P(|Ĉm − Cm| ≤ ηm, ∀m ∈ M)

=⇒ P(
∑
x,m

|Ĉm − Cm|2 ≤ η2max) ≥
∏
m

1− 2 exp

(
−2Kmη2m

τ2max

)
, where Km =

∑
x

Kx,m

(100)

Step 3. Using the union bound on error bounds from steps 1 and 2 to bound the cumulative
deviation of empirically computed action selection policies and expected stopping times.
Our aim is to construct a tight bound on the probability of the event Epert(δmax), where Epert(δmax)
is defined as:

Epert(δmax) ≡ { {p̂m(a|x), Ĉm}
∣∣∑
x,m

|pm(a|x)− p̂m(a|x)|2 +
∑
x

|Cm − Ĉm|2 ≤ δ2max}, (101)

We note that P(Epert(δmax)) bounds the Type-I and Type-II IRL error probabilities for suitable
choices of δmax. The Type-I error probability is bounded by 1− P(Epert) when δ2max in (101) is set
to ε1(D̂M (K)). Also, the Type-II error probability is bounded by 1− P(Epert) when δ2max in (101)
is set to ε2(D̂M (K)). Recall from (57), (58) that ε1(D̂M (K)) and ε2(D̂M (K)) correspond to the
minimum L2-perturbation needed for the finite IRL dataset D̂M (K) (53) to pass and fail, respectively,
the NIAS and NIAC conditions of Theorem 3 for inverse optimal Bayesian stopping.

For a fixed error tuple {εx,m, ηm}, consider the surrogate event E({εx,m, ηm}) defined as:

E({εx,m, ηm}) ={ {p̂m(a|x), Ĉm}
∣∣ p̂m(a|x)− pm(a|x)| ≤ εx,m, |Ĉm − Cm| ≤ ηm, ∀ a, x,m}.

(102)

Clearly, E({εx,m, ηm}) ⊆ Epert(δmax) if δ2max in (101) is equal to A
∑

x,m ε2x,m +
∑

m η2x,m.
Combining the error bounds in (99) and (100) via a union bound to bound P(E({εx,m, ηm})) yields
the following inequality:

P(Epert(δmax)) ≥ P(E({εx,m, ηm}))

≥
∏
x,m

1− 2 exp
(
−2Kx,mε2x,m

)∏
m

1− 2 exp
(
−2Kmη2m/τ2max

)
(103)

≥ 1−
∑
x,m

2 exp
(
−2Kx,mε2x,m

)
−
∑
m

2 exp
(
−2Kmη2m/τ2max

)
(104)

=⇒ P(Epert(δmax)) ≥ 1−
∑
x,m

2 exp
(
−2Kx,mε2x,m

)
−
∑
m

2 exp
(
−2Kmη2m/τ2max

)
, (105)

where δ2max = A
∑

x,m ε2x,m +
∑

m η2m. The inequality in (103) is simply a union bound on the
error bounds in (99) and (100). The inequality in (104) holds due to Assumption (F5) that says the
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analyst observes the agent’s stopping action over sufficiently many trials. If the expected stopping
time is known accurately, that is, Ĉm = Cm for all m ∈ M, Assumption (F5) specializes to
Assumption (F2).
Step 4. Obtaining a tight bound on the error probability computer in step 3.
Eq. 105 provides a probabilistic bound on the perturbation of the empirical dataset D̂M (K) from
the asymptotic dataset DM in terms of the sample size K = {Kx,m, x ∈ X ,m ∈ M}, for a
fixed error sequence {εx,m, ηm}. Our final step is to maximize the RHS in (105) subject to the
constraint A(

∑
x,m ε2x,m) +

∑
m η2m = δ2max to obtain the tightest bound on P(Epert(δmax)) (105).

Equivalently, our aim is to minimize the following objective function:

min
{ε2x,m,η2m}≥0

∑
x,m

2 exp
(
−2Kx,mε2x,m

)
+
∑
m

2 exp
(
−2Kmη2m/τ2max

)
, s.t. A

∑
x,m

ε2x,m +
∑
m

η2m = δ2max .

(106)

We observe that the terms exp
(
−2Kx,mε2x,m

)
and exp

(
−2Kmη2m/τ2max

)
are convex in ε2x,m and

η2m, respectively. Also, Assumption (F4) ensures the values of the terms ε2x,m, η2m are bounded away
from 0 at the local optimum of (106) computed via the method of Lagrange multipliers. Assumption
(F5) ensures the ε2x,m, η2m in (107) satisfy the Slater’s condition for regularity. Since the equality
constraint is linear, and the objective function is convex in the feasible variables ε2x,m and η2m, (106)
constitutes a convex optimization problem whose solution can be computed using the method of
Lagrange multipliers (since Assumption (F4) ensures inactive inequality constraints at the optimal
solution). Finally, the solution of the optimization problem (106) can be expressed as:

ε2x,m = (AK̃x,m/2) (ln(λ) + ln(2Kx,m/A)) , η2x,m = ( ˜̄Km/2)(ln(λ) + ln(2K̄m)) , where

ln(λ) =
δ2max −A

∑
x,m ln((2Kx,m/A)AK̃x,m/2)−

∑
m ln(2K̄

˜̄Km/2
m )

(A
∑

x,m K̃x,m +
∑

m∈M
˜̄Km)/2

. (107)

In the above equations, K̄(·) = K(·)/τ
2
max, K̃ = K−1. Subtracting the objective function of (106)

evaluated at the optimal values of ε2x,m and η2m (107) from 1, and setting δ2max to ε1(D̂M (K)) and
ε2(D̂M (K)), respectively, yield lower bounds for Type-I and Type-II error probabilities of the IRL
detector, respectively. ■

Remark. The proof of Theorem 11 for finite sample complexity of Theorem 3 is identical to the
above proof structure (except that there is no step 2) and hence, omitted for brevity.

Appendix F. Proof of Theorem 15

To prove Theorem 15, we first state and prove an auxiliary result, namely, Proposition 17, below.
Theorem 15 is a special case of Proposition 17 as discussed below.

Proposition 17 Given dataset D̂M (K) and (F7), the deviation of the finite sample search action
policy ĝm(a, x) and the true search action policy gm(a, x) can be bounded in terms of the number of
samples K = {Kx,m} as follows.

P

(∑
a,x,m

|gm(a, x)− ĝm(a, x)|2 ≤ ϵ

)
≥ 1−

∑
x,m

u(D̂M (K))

ϵK
1/2
x,m

, (108)
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where u(D̂M (K)) = (1−α∗)
(α∗)2 X

∑
x,mK

−1/2
x,m and ĝm(a, x) is the sample average of the number of

times the agent searches location a given state x in environment m.

Proof. Assumption (F7) implies that for any environment m ∈ M, given prior π0, the agent’s
optimal search sequence a0, a1, a2, . . . is periodic, i.e. , at = at+A. In other words, in any interval of
A time steps, the agent searches each location exactly once in a particular (unknown to the inverse
learner) order.

Consider the agent’s search policy gm(a, x) defined in (43). Below we express gm(a, x) in terms
of the pdf of the stopping time of the search process.

gm(a, x) = Eµm

{
τ∑

t=1

1{µm(πt) = a}|xo = x

}
=

∞∑
t=1

Pµm (τ = t|xo = x) (⌊t/X⌋+ r(x, a)).

=

∞∑
t=1

⌊t/X⌋Pµm (τ = t|xo = x) + r(x, a) = Eµm{⌊τ/X⌋ |x}+ rm(x, a) =
1

α
+ rm(x, a).

Here, α denotes the reveal probability of the agent and ⌊·⌋ denotes the floor function. r(x, a) = 1
if agent searches location a prior to location x in one search cycle from time t = 0 → X − 1 in
environment m, and 0 otherwise. The final equality follows from the fact that conditioned on the
true state xo = x, the random variable ⌊τ/X⌋ follows a geometric distribution with parameter α
(unknown) due to (F7).

Consider now the quantity |ĝm(a, x)− gm(a, x)|. Define Êµm{τ/X} =
∑Kx,m

k=1 ⌊τx,m,k/X⌋
Kx,m

, the

sample average of the normalized stopping time ⌊τ/X⌋ computed from D̂M (K). Then,

|ĝm(a, x)− gm(a, x)| = |Eµm{⌊τ/X⌋ |x}+ rm(x, a)− Êµm{⌊τ/X⌋ |x} − rm(x, a)|

=

∣∣∣∣ 1α − Êµm{⌊τ/X⌋ |x}
∣∣∣∣ (equal for all a for a fixed x).

Êµ{⌊τ/X⌋|x} is an unbiased estimator of Eµ{⌊τ/X⌋|x} with variance (1 − α)/Kx,mα2. Using
Chebyshev’s inequality for random variables with finite variance to bound |ĝm(a, x)− gm(a, x)| for
fixed a, x,m, the following inequality results

P (|ĝm(a, x)− gm(a, x)| ≤ ε) ≥ 1− (1− α)

Kx,m(αε)2
(109)

For any set of positive reals {εx,m, x ∈ X ,m ∈ M} s.t. |gm(a, x) − ĝm(a, x)| ≤ εx,m and
(A
∑

x,m ε2x,m) ≤ ε2max, we have

P(
∑
x,m

|ĝm(a, x)− gm(a, x)|2 ≤ ε2max) ≥
∏
x,m

1− (1− α)

Kx,m(αεx,m)2

≥1−
∑
x,m

(1− α)

Kx,m(αεx,m)2
≥ 1−

∑
x,m

(1− α∗)

Kx,m(α∗εx,m)2
. (110)

Since (1−α)
Kx,m(αεx,m)2

is decreasing in εx,m, the tightest lower bound is achieved for the above inequality
when

∑
x,m ε2x,m = ε2max and is the solution to the following constrained optimization problem.

min
{εx,m,x∈X ,m∈M}

∑
x,m

(1− α∗)

Kx,m(α∗εx,m)2
s.t. A

∑
x,m

ε2x,m = ε2max. (111)
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Moreover, since the objective function in (111) is convex in ε2x,m and constraint is affine in ε2x,m,
the method of Lagrange multipliers (Boyd and Vandenberghe, 2004) yields necessary and sufficient
conditions for an optimal solution to the above optimization problem if the solution obtained is

positive for all x ∈ X ,m ∈ M. The optimal value of ε2x,m =
ε2maxK

−1/2
x,m

A
∑

x,m K
−1/2
x,m

> 0 and thus minimizes

the objective function in (111). Plugging this value in (110) and setting ε2max = ϵ yields the bound in
the RHS of (108) and completes the proof for Proposition 17.

To obtain the error bounds (71), note that setting ε = ε1(D̂M (K)) in (108) and subtracting the
objective function from 1 bounds from below the Type-I error probability (see Sec. 6.2 for a detailed
explanation). Similarly, setting ε = ε2(D̂M (K)) in (108) and subtracting the objective function from
1 bounds from below the Type-II error probability of the IRL detector which completes the proof. ■

Appendix G. Context. IRL For Predicting YouTube Commenting Behavior

Our previous work (Hoiles et al., 2020) analyzes YouTube user engagement from a behavioral
economics viewpoint. Although we use the same dataset for our numerical experiments in this paper,
we emphasize that the IRL approach in this paper is new and differs from Hoiles et al. (2020) as:
(1) In Hoiles et al. (2020), we check if YouTube engagement is consistent with rationally inattentive
utility maximization behavior Caplin and Martin (2015), a static decision model studied widely in
behavioral and information economics. In comparison, our aim here is to test if the YouTube dataset
satisfies Bayes optimal stopping, a dynamic decision model.
(2) The inference algorithms in Hoiles et al. (2020) considers pairs of video categories to reconstruct
the underlying utility function of the YouTube user. In this paper, our IRL approach considers all
18 YouTube video categories (described in Sec. 5.1 below) simultaneously in the feasibility test for
reconstructing the underlying stopping costs of the YouTube user, and hence, fully exploits the
diversity in engagement behavior.
(3) In Hoiles et al. (2020), we perform a naive prediction analysis of YouTube user engagement
using a maximum a posteriori (MAP) approach. In this paper, we predict the distribution of user
engagement behavior via two representative point estimates of the recovered stopping costs and show
the statistical similarity of the predicted distribution to the true engagement distribution.
YouTube user engagement and Bayesian stopping.
YouTube is a social multimedia platform where human users interact with video content on YouTube
channels by posting comments and rating videos. Empirical studies (Khan (2017); Kwon and Gruzd
(2017); Alhabash et al. (2015); Aprem and Krishnamurthy (2017)) show that the comments and
ratings from users are influenced by the thumbnail, title, category, and perceived popularity of each
video. Models for human decision making in the context of online multimedia platforms have been
studied extensively in the literature. Two widely-used classes of models that motivate us to understand
YouTube user engagement from the lens of Bayesian stopping are ‘parallel constraint satisfaction
models’ and ‘evidence accumulation models’. Parallel constraint satisfaction models (Glöckner and
Betsch (2008); McClelland and Rumelhart (1989)) assume that information is screened sequentially
to highlight salient alternatives and final choice is made when the decision maker reaches sufficient
internal coherence. Evidence accumulation models (Krajbich et al. (2010); Ratcliff and Smith (2004))
model consumers’ attention by drift-diffusion models that accumulate evidence based on whether
they are fixating their gaze on either the product or its price. The decision is taken when any of the
alternatives’ evidence threshold level is achieved.
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Both classes of models described above have one aspect in common - the decision maker makes
a final choice after sequentially accumulating information, and naturally fits our Bayesian stopping
time framework. In terms of YouTube webpage parameters, we hypothesize the YouTube user is
a Bayesian agent that sequentially consumes webpage cues such as thumbnail, title and perceived
popularity and incurs a cost of attention, followed by engaging on the YouTube platform and incurring
a terminal cost. Our IRL aim in this section is to identify using the YouTube dataset, if YouTube
users engage ‘optimally’ in a Bayesian stopping sense.
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