Journal of Machine Learning Research 24 (2023) 1-52 Submitted 11/20; Revised 7/23; Published 7/23

Comprehensive Algorithm Portfolio Evaluation using Item Response
Theory

Sevvandi Kandanaarachchi SEVVANDI.KANDANAARACHCHI@DATA61.CSIRO.AU
CSIRO’s Data61

Research Way, Clayton

VIC 3168, Australia

Kate Smith-Miles SMITH-MILES @ UNIMELB.EDU.AU
School of Mathematics and Statistics

University of Melbourne

Parkville, VIC 3010, Australia

Editor: Marc Schoenauer

Abstract

Item Response Theory (IRT) has been proposed within the field of Educational Psychometrics to
assess student ability as well as test question difficulty and discrimination power. More recently,
IRT has been applied to evaluate machine learning algorithm performance on a single classification
dataset, where the student is now an algorithm, and the test question is an observation to be
classified by the algorithm. In this paper we present a modified IRT-based framework for evaluating a
portfolio of algorithms across a repository of datasets, while simultaneously eliciting a richer suite of
characteristics - such as algorithm consistency and anomalousness - that describe important aspects
of algorithm performance. These characteristics arise from a novel inversion and reinterpretation
of the traditional IRT model without requiring additional dataset feature computations. We test
this framework on algorithm portfolios for a wide range of applications, demonstrating the broad
applicability of this method as an insightful algorithm evaluation tool. Furthermore, the explainable
nature of IRT parameters yield an increased understanding of algorithm portfolios.

Keywords: Item Response Theory, algorithm evaluation, algorithm portfolios, classification, ma-
chine learning, algorithm selection, instance space analysis, explainable algorithm evaluation.

1. Introduction

Evaluating a diverse set algorithms across a comprehensive set of test problems contributes to an
increased understanding of the interplay between test problem characteristics, algorithm mechanisms
and algorithm performance. Such an evaluation helps determine an algorithm’s strengths and
weaknesses, and provides a broad overview of the collective capabilities of an algorithm portfolio.
The drawback of many studies that evaluate only a small number of algorithms on a limited set
of test problems is that they fail to reveal where any algorithm belongs within a state-of-the-art
algorithm portfolio’s capabilities, or where the unique strengths and weaknesses of algorithms lie
considering a diverse range of test problem difficulties and challenges. After several decades of calls
for a more "empirical science" of algorithm testing (Hooker, 1994, 1995), research communities in

©2023 Sevvandi Kandanaarachchi, Kate Smith-Miles.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/20-1318.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/20-1318.html

KANDANAARACHCHI AND SMITH-MILES

many fields are now pulling together the components needed for rigorous evaluation of algorithms
- open source algorithms and shared test problem repositories - that provide the foundation for new
methodologies for empirical evaluations (McGeoch, 1996; Hall and Posner, 2010; Smith-Miles et al.,
2014; Casalicchio et al., 2019; Bischl et al., 2016).

In this paper we present a framework that evaluates a portfolio of algorithms based on a novel adap-
tation of Item Response Theory (IRT). The general premise of IRT is that there is a hidden “quality”
or a trait, such as verbal or mathematical ability, that cannot be directly measured (Hambleton and
Swaminathan, 2013) but can be inferred from responses to well-designed test questions that are suit-
ably difficult and discriminating. A test instrument such as a questionnaire or an exam containing
test items is used to capture participant responses. Using the participant responses to the test items,
an IRT model is fitted to estimate the discrimination and difficulty of test items and the ability of
participants. In an educational setting, the ability relates to the knowledge of the subject matter
tested on the exam; the discrimination of test items inform us which items are better at discriminating
between strong and weak students; and the difficulty parameters indicate the difficulty of each test
item given the response profile from the participants.

IRT’s ability to evaluate performance data and obtain useful insights has made it a natural fit for
adaptation to the machine learning domain. Martinez-Plumed et al. (2019) used IRT to evaluate
the performance of machine learning algorithms (students in the educational analogy) on a single
classification dataset (exam), with the individual observations in a classification dataset (exam
questions) used to assess algorithm performance. They train and test many classifiers on a single
dataset, and obtain insights about the individual observations and about the portfolio of classifiers on
that dataset. As a result they obtain a set of classifier characteristic curves for the dataset. Another
IRT based evaluation of algorithm portfolios was carried out by Chen et al. (2019). They proposed
a model called 8>-IRT, which extends the Beta IRT model for continuous responses discussed by
Yvonnick Noel and Bruno Dauvier (2007). Chen et al. (2019) consider new parametrizations so
that the resulting item characteristic curves are not limited to logistic curves and use their model
to assess machine learning classifiers. They too evaluate an algorithm portfolio on an individual
dataset and draw their conclusions about which algorithm is best for a given observation within a
dataset. Both Martinez-Plumed et al. (2019) and Chen et al. (2019) investigate IRT on an individual
dataset, which we call a test instance.

These exciting directions have motivated us to expand the use of IRT for understanding the strengths
and weaknesses of a portfolio of algorithms when applied to any dataset, not just a single dataset. In
this case, the test instance is an entire dataset comprising observations, and the ‘exam’ is comprised
of many datasets to evaluate the ability of an algorithm. Extending in this direction is important
because the limited amount of diversity contained within a single dataset can shed only a limited
amount of light on a portfolio of classifiers, and the classifier characteristic curves heavily depend
on the dataset. To obtain a better understanding of the strengths and weaknesses of a portfolio of
classifiers, indeed any type of algorithm, we need to evaluate the portfolio on a broader range of
datasets from diverse repositories. The excellent foundational work showing how IRT models -
with both discrete (Martinez-Plumed et al., 2019) and continuous (Chen et al., 2019) performance
metrics - can be used to study performance of machine learning algorithms is ripe for extension to
see how the insights that can be generated from an IRT perspective compare with recent advances
in algorithm portfolio evaluation and construction.

ALcorITHM PorTFOLIO EvaLUATION USING IRT

In recent decades the call for a more empirical approach to algorithm testing (Hooker, 1994)
has seen efforts to move beyond a standard statistical analysis to evaluate algorithm portfolios,
where strong algorithms have best “on-average" performance across a chosen set of test instances.
Machine learning approaches such as meta-learning (“learning to learn”) have been used to learn
how algorithm portfolios perform based on characteristics of the test instances (Vilalta et al., 2009),
with efforts encompassing a large body of research on topics such as algorithm selection, rankings,
recommendation, and ensembles to name a few (Lemke et al., 2015). Ffechette et al. (2016)
use Shapley values — a concept from coalition game theory measuring a component’s marginal
contribution to the portfolio — to gain insights into the value of an algorithm in a portfolio.

In a related but orthogonal direction, emphasis in the literature on dataset repository design to
facilitate unbiased algorithm evaluation is also a growing research area (Marcia and Bernad” o
Mansilla, 2014; Bischl et al., 2016), motivated by the fact that algorithms are frequently claimed to
be superior without testing them on a demonstrably broad range of test instances. Demonstrating
that a selected set of test instances or datasets is unbiased and sufficiently diverse is one of the major
contributions of the Instance Space Analysis methodology (Smith-Miles and Tan, 2012; Smith-Miles
et al., 2014; Smith-Miles and Bowly, 2015; Muiioz et al., 2018), developed by Smith-Miles and co-
authors by extending Rice’s algorithm selection framework (Rice et al., 1976). A 2D instance space
is constructed by projecting all test instances into the instance space in a manner that maximize
visual interpretation of the relationships between instance features and algorithm performance. The
mathematical boundary defining the instance space can be determined, and the diversity of the test
instances within the instance space can be scrutinized. Furthermore, the instance space analysis
methodology can be used to answer the question posed by the Algorithm Selection Problem (Rice
etal., 1976), “Which algorithm is best suited for my problem?”. This aspect is missed by the standard
statistical analysis, which focuses on average performances, and leaves hidden the unique strengths
and weaknesses of algorithms and relationships to test instance characteristics.

Our main contribution in this paper is proposing a novel framework for evaluating algorithm port-
folios across diverse suites of test instances based on IRT concepts. We call this framework AIRT —
Algorithmic IRT. The word airt is an old Scottish word which means “to guide”. By re-mapping the
educational analogies of students, exams and test questions in a manner that is essentially flipped from
the original approach on a single dataset of Martinez-Plumed et al. (2019), we propose an inverted
model that yields a richer set of evaluation metrics for algorithm portfolios. Adapting continuous
IRT models, we introduce measures for quantifying algorithm consistency, an algorithm’s difficulty
limit in terms of the instances it can handle, and the degree of anomalousness of an algorithm’s
behavior compared to others in the portfolio. We also explore the problem space and find regions of
good and bad performance, which are effectively algorithm strengths and weaknesses. These other
measures are not computed by standard statistical methodology used for ranking algorithms, nor are
they available from the standard IRT mapping (Martinez-Plumed et al., 2019; Chen et al., 2019).
For example, the algorithm with the best overall performance on a suite of test problems may not be
stable or consistent in the sense that a small change in a test instance may result in large changes in
performance. Or there may be an anomalous algorithm that performs well on test instances for which
other algorithms perform poorly, and such insights may be lost in standard ‘on-average’ statistical
analysis. Indeed, it is AIRT’s focus on revealing insights into algorithm strengths and weaknesses,
based on new methods for visual exploratory data analysis from empirical performance data results,
that adds significant value beyond standard statistical analysis or algorithm selection studies.

KANDANAARACHCHI AND SMITH-MILES

It is worthwhile noting that methodologies in social sciences focus on explanations as opposed to
accurate predictions (Shmueli, 2010). As such, quantitative models in social sciences only have a
handful of parameters which have meaningful interpretations. Explanations are often linked with
causality. Lewis (1986) states “Here is my main thesis: fo explain an event is to provide some
information about its causal history.” Miller (2019) presents an argument for linkages with social
sciences stating that “the field of explainable artificial intelligence can build on existing research,
and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology,
which study these topics.” Indeed, AIRT is such a linkage. In educational psychometrics IRT is
used to explain the student performance in terms of student ability and test item discrimination
and difficulty. For example, difficult test items generally yield lower scores than easy test items.
Similarly, students with high ability obtain higher scores compared to students with low ability. Thus,
IRT model parameters are used to explain the student and test item characteristics and have causal
interpretations. These explainable interpretations get translated to the algorithm evaluation setting
as follows: problems with high difficulty generally result in low performance values. Algorithms
with high difficulty limits can handle harder problems. Algorithms that are consistent give similar
results irrespective of the problem difficulty. Anomalous algorithms behave in an unusual fashion by
giving better results to harder problems compared to easier problems. We realise these statements
are simple and obvious. But that is an attribute of an explanation; Oxford English Dictionary (June
2016) defines it as a thing which explains, makes clear, or accounts for something. Therefore, AIRT
metrics come from an explainable model in educational psychometrics and contribute to increasing
the explainability of algorithm performance.

Beyond insights and explanations however, AIRT can also be used for algorithm selection to construct
a strong portfolio. In this paper we compare the predictive power of the AIRT portfolio to others
generated by Shapley values (Ffechette et al., 2016) and best on average performance. The AIRT
portfolio showcases algorithm strengths in different parts of the problem space. In addition to
introducing these measures that capture different aspects of algorithm performance and constructing
algorithm portfolios, we also assess the goodness of the IRT model by comparing the IRT predicted
performance with the actual performance. As a further contribution, we make this work available in
the R package airt (Kandanaarachchi, 2020). Another point of interest is that, unlike in instance
space analysis, we do not need to compute test instance features for AIRT, avoiding the additional
computational expense, as well as the somewhat arbitrariness of certain feature choices. AIRT
computes a 1-dimensional problem space based on dataset difficulty, which is calculated from the
performance results of the algorithm portfolio. Characteristics such as algorithm consistency and
anomalousness can be calculated as overall characteristics based only on an algorithm’s performance
metric, while the region of the problem space for which an algorithm shows superiority can be
revealed without the need for features. The fact that similar insights can be obtained from the case
studies presented in this paper without the need for feature calculation required by instance space
analysis is one of the main advantages of AIRT focused on the broader goal of generating insights
into algorithm performance, in addition to constructing strong algorithm portfolios, i.e. addressing
both questions of which algorithm should be used for a particular instance, and why?

The remainder of the paper is organized as follows: In Section 2 we provide an introduction to
polytomous and continuous IRT models and discuss the contextual differences between traditional
applications that use IRT for evaluating educational outcomes and adaptations to evaluate algorithms.
We then discuss our alternative adaptation, essentially an inverted model, which creates a rich new

ALcorITHM PorTFOLIO EvaLUATION USING IRT

set of algorithm evaluation metrics defined by reframing the interpretation of the IRT parameters in
Section 3. Using these new metrics, we can visualize the strengths and weaknesses of algorithms
in the problem space and construct algorithm portfolios using AIRT. Furthermore, to assess the
goodness of the models built within our AIRT framework, we define additional measures based
on model predicted performance and actual performance on test instances. AIRT expands on the
IRT framework to including such enhancements to enable its application to the broader challenge
of understanding algorithm strengths and weaknesses. In Section 5 we illustrate the complete
functionality of AIRT - including the algorithm metrics, problem space analysis, strengths and
weaknesses of algorithms, algorithm portfolio evaluation and model goodness results — using the
detailed case study of OpenML-Weka classification algorithms and test instances available at ASlib
repository (Bischl et al., 2016). We refer the reader to Appendix A where further results are
summarized on nine more case studies using a variety of ASlib scenarios including from satisfiability
(SAT) and constraint satisfaction problem domains. These case studies demonstrate the functionality
of AIRT as an exploratory data analysis tool for algorithm portfolio evaluation and how the user can
construct a competitive algorithm portfolio using AIRT with the objective of minimizing performance
gap. Finally, we discuss future work and present our conclusions in Section 6.

2. IRT: Traditional setting and new mapping

Item Response Theory (IRT) (Lord, 1980; Embretson and Reise, 2013; van der Linden and Ham-
bleton, 2013) refers to a family of latent trait models that is used to explain the relationship between
unobservable characteristics such as intelligence or political preference and their observed outcomes
such as responses to questionnaires. Attributes such as verbal or mathematical ability, racial prej-
udice and stress proneness, which cannot be measured directly can be modeled as latent variables.
The observed outcomes such as test items and questionnaire responses can be explained using latent
trait models. IRT builds a connection between the items of a bigger unit such as a test with the
participants’ latent traits, thus placing each participant in a latent trait continuum. IRT is commonly
used in psychometrics (Cooper and Petrides, 2010) and educational testing (Yen, 1986).

2.1 Dichotomous and polytomous IRT models

We introduce some IRT concepts for dichotomous and polytomous models using the notation of
Chalmers (2012) and Rizopoulos (2006). Leti = 1, ... N represent participants or testees, j = 1,...n
represent the test items with N > n, and let 6 denote the latent variable such as intelligence or ability.
An example includes a test with n questions, which is administered to a class of N students with the
aim of measuring their ability € to perform certain tasks. The response of the i participant for the
j™ item is denoted by x; . The discrimination parameter for test item j is denoted by «; and the
difficulty parameter by d;. These two parameters are used to build the 2-Parameter Logistic (2PL)
model, while an additional guessing parameter 7; is incorporated in the 3-Parameter Logistic (3PL)
model.

For dichotomous data researchers are interested in modeling the probability of correct response for
each item given the ability level 8;. The 3PL model defines the probability of a correct response for

KANDANAARACHCHI AND SMITH-MILES

participant i for item j as

L —vy;
+
1 +exp (-Da; (0; — d;))

@ (x;; = 1|0, 5, d;, 7)) = v, M

where D is the scaling adjustment traditionally set at 1.702. The role of D is to make the logistic
curve similar to the cumulative distribution function of the normal distribution (Reckase, 2009).
Figure 1 shows the resulting probability for a given item j with fixed @, d and y disregarding the
scaling constant D. The greater the ability 6; of the participant, the higher the probability of the
correct response.

guessing

difficulty 0

Figure 1: Probability of a correct response for a given item using a 3PL. model. Difficulty corresponds
to d;, discrimination to @; and guessing to ; in equation (1).

For polytomous data, we briefly present the multi-response ordinal models described in Samejima
(1969). For example, self-esteem surveys have questions such as [feel that I am a person of worth,
at least on an equal plane with others with responses {strongly disagree, disagree, neutral, agree,
strongly agree}. In this case the original responses, which are the participants answers, are used to
fit the IRT model (Gray-Little et al., 1997). By definition ordinal responses are ordered, i.e., strongly
disagree < disagree < neutral < agree < strongly agree. The responses need to be ordinal because
the resulting latent trait continuum is ordered from low ability to high ability. In educational testing
an accuracy measure such as marks, derived from the original responses are used to fit the IRT
model. For example, for each question in a test, the participants write their answers and marks are
derived by the person who grades them. For simplicity, suppose the marks for each question can
take the values {0, 1, 2, 3,4, 5}. The marks, which is a derived accuracy measure are the responses
in this case and is used to fit the IRT model. Similarly, for multiple choice questions with marks
taking the values {0, 1} a dichotomous IRT model is fitted. Whether a derived accuracy measure or
the original responses are used, these are called responses in IRT literature. We note that the word
response is confusing to non-IRT researchers when it refers to grades or other type of measures
derived from the original responses. However, as this is the standard term used in IRT literature, we
will use the same for easier cross-referencing. If there are C; unique response categories

ALcorITHM PorTFOLIO EvaLUATION USING IRT

foritem j with0 < 1 < --- < C; — 1, difficulty parameters d; = (dl,. . -,dc_,-—l) and discrimination
parameter «;, the cumulative probabilities are defined as
) (xij > 0|0,~,aj,dj) =1,
3 1
T 1+exp (=Da; (6; — dy))’
3 1
" l+exp(-Da; (6; - do))’

(] (xij > 1|0,~,aj,dj)

O] (xij > 2|9i,a/j, dj)

1
1 +exp (—Da/j (9; - dcj—l))
] (xij = le@i,(lj,dj) =0,

(O] (xij > Cj - 1|0,-,aj,dj) =

’

where x;; is the response of participant i for question j. This gives the probability of the response
x;j =k as

(] (xij = kl@i,a’j,d]‘) =0 (xij > k|9i,(1j,dj) -0 (xij > (k + 1)|9i,aj,dj) .

Figure 2: The probability of the response x;; = k for different k € {0, 1,2,3} with 6 on the horizontal
axis and @ on the vertical axis. The most likely outcome is different depending on the ability levels
0.

Figure 2 shows the probability density functions for different responses x;; = k for k € {0,...,(C; -
1)}. In the educational testing scenario discussed above, each curve denotes the probability that
marks are equal to k for k € {0,1,2,3}. From Figure 2 we see that the green curve, which gives
the probability density function for marks = 0, has high probability when the participant ability 8
is low. Similarly, the dark red curve corresponding to marks = 3 has a higher probability for high
participant ability. We see that a participant with a lower ability/latent trait is more likely to obtain
a response corresponding to a low value of k compared to a participant with a higher ability.

2.2 Continuous IRT models

In addition to the polytomous IRT models, Samejima (1973, 1974) introduced Continuous Response
Models (CRM) to extend polytomous models to continuous responses. Wang and Zeng (1998)

KANDANAARACHCHI AND SMITH-MILES

introduced an expectation-maximization (EM) algorithm for Samejima’s continuous item response
model. This EM algorithm was further optimized by Shojima (2005) by proposing a non-iterative
solution for each EM cycle.

In this section we use the notation used by Wang and Zeng (1998) and Shojima (2005). They consider
N examinees with trait variables 6; where i € {1,...,N} and n test instances with parameters
A; = (aj,Bj,v;)! for j € {1,...,n}. The item parameters a; represents discrimination, f; difficulty
and ; a scaling coefficient that defines a scaling transformation from the original rating scale to the
0 scale.

Using the normal density type CRM, Wang and Zeng (1998) considered the probability of an
examinee with an ability 6 obtaining a score of y; or higher on a given item j as

1 Vo2
P(Y = y;l0) = T‘/ e” 7 dt,)
V T —00

Vi
V:a’j (H_ﬁj_lenk-;,yj) .
J

where

and the continuous score range of y; is (0, k;). The continuous score range of (0, k;) is opened up to
(—00,) with the reparametrization

Yj
kj=yj

Zj=ln

Using this reparametrization they obtain the probability density function f (z;|6) by differentiating
the cumulative density function obtained using equation (2) as

2
d Vi %
£ (510) = d_Z] (1-P(Z > 2]0)) = aJ—\/;/_;eXp (—71 (60— B; _Vij)Z)) 3)

Comparing the parameters a;, B; and y; with those of Section 2.1 we note that the parameter «;
denotes discrimination as in Section 2.1 and the parameter ; denotes the difficulty level of item j,
which was denoted by d; in Section 2.1. However, the parameter 7, is quite different to the guessing
parameter used in Section 2.1, in that it denotes a scaling factor which we will inspect soon.

For every z € R, there is an associated probability density function given by f(z|6). Figure 3 shows
the item response functions obtained for z € {-2,0,1} for different items, which have different
CRM parameters. Figure 4 shows the heatmap of f(z|6) for the same items for continuous z and 6
values. The first pane in both Figures show the curves/heatmap for the first item, HaifaCSP-free, with
a =1.73, 8 = 1.16 and y = 2.72. The second item, iZplus-free, has CRM parameters @ = 0.65,
B = 2.6 and y = 1.65. The third item, MZN/Gurobi-free, has CRM parameters @ = 1.14, § = 1.15
and y = 2.49. We will give more context on these items later. The second item has a higher difficulty
level compared to the first and the third we see that 5 = 2.6 shifts the curves to the right in Figure 3
and the high density regions have moved to the right in Figure 4. The first item has higher a values
making the curves steeper in Figure 3 compared with items 2 and 3. Similarly, the high density
regions are narrower and sharper in Figure 4 due to higher discrimination.

Wang and Zeng (1998) estimated the item parameters used in equation (3) using an EM algorithm.
Shojima (2005) enhanced the algorithm by proposing a non-iterative step for the expectation cycle,

ALcorITHM PorTFOLIO EvaLUATION USING IRT

HaifaCSP—free iZplus—free MZN/Gurobi-free
2
2 1.5 z
[}
©
21.01
% 0.5
o]
o / \
0.0 - —— — \
-6 -3 0 3 6 -6 -3 0 3 6 -6 -3 0 3 6
0

Figure 3: Probability density curves for z = =2, z = 0 and z = 1 for three items with different CRM
parameters. The items are from CSP-Minizinc-2016 algorithm portfolio.

HaifaCSP-free iZplus—free MZN/Gurobi-free

pdf

15

Figure 4: The heatmap of probability density functions for the items in Figure 3

which made the item parameter computation much faster. However, in their estimation Shojima
(2005) only considers @,y > 0. As such, their algorithm does not accommodate negative dis-
crimination items. This reflects the current practice regarding negative discrimination items in
educational and psychometric testing. Negative discrimination items are generally considered as
non-value adding and as such revised or removed in traditional educational testing (Hambleton
and Swaminathan, 2013). However, in algorithm performance negative discrimination plays an
important role and we do not remove such items from the pool.

We accommodate negative discrimination items by modifying the existing algorithm discussed by
Shojima (2005). Before discussing these modifications we give a brief overview of their method.
First they rescale y;;, such that x;; = y;;/k; lies in (0,1) and consider z;; = Inx;;/(1 — x;;). They
denote the item response vector of examinee i by z;. Then they perform a marginal maximum
likelihood estimation with the expectation maximization algorithm (MML-EM). Using a normal
prior for 6;, i.e. N (6;|u, o) they obtain an estimate for the posterior distribution of 6;, given z; and

KANDANAARACHCHI AND SMITH-MILES

the current estimates of item parameters as
p(6:A0.2) = N (0:14".) |

T
where A®) = (A(t) .. /l(t)), /lj(.t) = (a](.t),ﬂ;”,y](.t)) and (¢) denotes the iteration. The parameters

() and 0¥ are given by

-1
)2 _ ()2 -2
a = (Z a/j + 0o) S
J
#Et) = g2 (Z ozj(.t)2 (ﬁy) + ')/J(-t)Zij) + ,U) ;

J
where p and o denote the initial prior parameters of 6;. Then they obtain the expectation of the
log-likelihood

N n
1 2
Egpin.z [Inp(A16,2)] = N m%+mn—i223?«@+w%—ﬁv+UW%MPMHmm

Jj=1 2 i=1
“)
where Z is the item response matrix of all examinees for n items and p denotes the probability. They
optimize this expectation with flat priors for item parameters and obtain

% (/J(t)) 4 o2

i = (1))
C (ZU H;)
1 1
B =M (1) =AM () (©)
-1/2
o = (Vi) -V (1) - 2))
where M, V and C denote the mean, variance and covariance terms defined by
Zz Zl]
M (ZU) N
()
o\ _ i Ky
M () = =5
2i Z,~2-
J 2
V(zj) = - M;j (z;)"
() _ Zik 0
(o) - 2w o)
i zii)
and C@WW§:_%L—%&QM@ﬂ.)
For each iteration using ;15.[) o®, and M, V and C quantities listed above, the parameter y(s

computed as in equation (5). This value of yj *Uis used to compute ﬁ; and aj *Din equations (6)

10

ALcorITHM PorTFOLIO EvaLUATION USING IRT

and (7). Using the parameter values a/](.Hl), ﬂyﬂ) and y}””, the log-likelihood given in equation (4)

is computed. This whole process is repeated until the difference in log-likelihoods for successive
iterations becomes smaller than a predefined level of convergence. We note that this is a brief
overview of this method and refer to Shojima (2005) for more details.

With the current formulation we see that if yj(.”l)

(0
i

equation (4) being incalculable as it requires Iny;. This forces the MML-EM algorithm to stop,
preventing convergence. As a result, this formulation only works when all test instances have a;; > 0

and y; > 0 as permitted by the assumption.

in equation (5) is negative due to a negative

covariance term C; (Zij,,u) computed as in equation (8), this results in the log-likelihood in

However, we see that the probability density function f(z;|0) in equation (3) contains the product
a;y; and is valid when both @; and y; have the same sign. Similarly, equation (4) can be rewritten
with the product In (@;y;) instead of the sum of log terms and is valid when both «; and y; have the
same sign.

Therefore, if we remove the assumption used by Shojima (2005), that @; > 0 and y; > 0 and update
it with a;y; > 0, we incorporate test items with «;, y; < 0 as well as test items with «;, y; > 0.
That is, effectively we are adding the assumption sign(a;) = sign(y;), instead of &; > 0 and y; > 0.
More importantly, we are opening the IRT model to negative discrimination items.

With the updated assumption we can rewrite the log-likelihood as

n

n N
1 2
Egipw 7 [Inp (Al6,Z)] = N)" (Inaj| +1n il =3 N ((/aj + iz - Mgn) + o'(t)2)+lnp (A)+const,
=1 i=1

J j=1
)
making the log-likelihood tractable for any a; and ;. Then following through the computation we
obtain

-1/2
a](_m) — sign (y;m)) (yj(_m)zvj (i) =V (ﬂf.’)) _ sz) .

The parameters yJ(.Hl) and ,8;”1) stay the same as given by equations (6) and (7) with the updated

assumption. These modifications allow us to fit both negative and positive discrimination items in
our continuous IRT model.

The causal interpretation of traditional IRT presumes that the attributes of participant i and test
question j give rise to marks x;;. The attributes are the discrimination and difficulty parameters of
question j and the ability of the participant i. This is shown in the Directed Acyclic Graph (DAG)
in Figure 5. While traditional IRT texts do not include DAGs, more recent work (Kelly et al., 2023)
makes these causal interpretations explicit.

2.3 Applications to machine learning and algorithm evaluation

In the traditional IRT setting N participants’ responses for n test instances are used to fit an IRT
model and obtain the discrimination and difficulty of test instances as well as the ability of the
participants. A natural way to use the IRT framework on algorithms and test instances is to consider
an algorithm as a participant and test instances as test questions/items. If we formulate our problem
this way, then we can obtain the test instance characteristics difficulty and discrimination using the

11

KANDANAARACHCHI AND SMITH-MILES

. Question -
Participant i Question j Participant Discrimina Question
4 J Ability 6; : Difficulty ;
\ / tion a;
Marks x;; J
Marks x;;

Figure 5: Left: A DAG showing participant i and question j giving rise to marks x;;. Right: The
DAG composed of participant and question attributes.

\ Dataset Algorithm
| characteristics characteristics
datasets ‘ IRT Model

i Difficulty Ability
/ " Discrimination

Figure 6: Standard IRT setting extended to algorithms working on datasets. The IRT model provides
the dataset characteristics of difficulty and discrimination, and algorithm ability, as outputs.

IRT framework. In addition, IRT will also give us the latent scores or the ability of the algorithms.
Martinez-Plumed et al. (2019) and Chen et al. (2019) formulated their problem this way and used
the IRT framework to evaluate observations in a dataset and obtain the ability of the classifiers for
that dataset.

Instead of using observations of a given dataset as test items, we can also use datasets as test items.
Then the parameters fitted by the IRT model would be dataset difficulty and discrimination. This
is illustrated in Figure 6. Recent investigations (Kandanaarachchi, 2022) showed the benefits of a
flipped approach in constructing an unsupervised anomaly detection ensemble for a single dataset
where observations were used as participants and algorithms as test items. In the current paper, we
explore this idea further for evaluating algorithms on many datasets, developing a full theory and
framework for comprehensive algorithm evaluation.

3. Algorithmic IRT (AIRT)

As a novel adaptation in this paper we now invert the intuitive IRT mapping discussed in the
previous paragraph and consider algorithms as items and test instances as participants. This is
shown in Figure 7. This inversion results in a loss of intuition momentarily. However, by persisting
with this less intuitive mapping we gain an elegant reinterpretation of the theory that enables us
to analyze the strengths and weaknesses of algorithms with far more nuanced detail. Firstly, we
note that this inversion produces two parameters describing algorithm properties compared to a
single parameter in the standard setting. As we will see shortly, we will derive three algorithm
characteristics from these two algorithm parameters. Thus, the inversion serves to offer a richer set

12

ALcorITHM PorTFOLIO EvaLUATION USING IRT

of metrics with which to evaluate algorithms, compared to the standard approach, which focuses more
on dataset/observation evaluation. Table 1 compares the classic IRT approach with the standard and
the inverted IRT approaches for algorithm evaluation. With this mapping, we presume that attributes
of the problem/dataset i and algorithm j give rise to the performance x;; as shown in the DAG in
Figure 8.

[_:
dataset N Algorithm Dataset
I~ \ characteristics characteristics
— —> IRT Model
/ Algo-Char-1 Dataset-Char-1
dataset 1] Algo-Char-2

Figure 7: Inverted IRT setting with datasets acting on algorithms. The IRT model provides two
algorithm characteristics in place of difficulty and discrimination, and one dataset characteristic in
place of ability as outputs.

Table 1: A comparison between the classic IRT with the standard and inverted IRT approaches for
algorithm evaluation.

Classic IRT Standard Approach | Inverted Approach | Inverted
for Algorithm for Algorithm Eval- | Characteristics
Evaluation uation
Setting Examinees doing | Algorithms work- | Datasets acting on
test items ing on datasets algorithms
Test item difficulty | Dataset difficulty Difficulty parame- | Algorithm diffi-
ter for algorithms culty limit
Parameters| Test item discrimi- | Dataset discrimina- | Discrimination ﬁai | AngrEtBIﬁ “anoma-
nation tion rameter for algo- | lousness and con-
rithms sistency
| Examinee ability | Algorithm ability | Ability trait of | Dataset difficulty
datasets

The inherent meaning of resulting IRT parameters and latent scores is changed when we map
algorithms to items and test instances to participants. For example, suppose Figure 9 originates
from an educational testing scenario. It shows the heatmap of a test question, the set of trace lines
with P1 < P2 < P3 < P4 and a histogram of latent scores. The y-axis in the heatmap labeled z
denotes the normalized score and examinee’s ability is denoted by 8. Then, as the examinee’s ability
increases, the probability of getting a better grade for this particular question also increases as seen
from the heatmap and the trace lines. For algorithm evaluation, let us also consider the performance
levels P1 < P2 < P3 < P4 with higher levels and larger z values indicating better performance. If
we consider the standard IRT approach discussed in Table 1, then the heatmap and the trace lines
give the performance of a specific dataset and the histogram of latent scores give algorithm abilities.

13

KANDANAARACHCHI AND SMITH-MILES

; X ; Dataset A}gor.lth.m Algorithm
|Dataset i | Algorithm j Ability 6; l?lscrlmlna— Difficulty 8;
\ / tion «;
Performance Jd
Xij Performance
Xij

Figure 8: Mapping IRT to the algorithm evaluation domain, a participant is mapped to a dataset and
a question is mapped to an algorithm. Left: The resulting DAG from the this mapping. Right: The
DAG composed of dataset and algorithm attributes.

If we consider the inverted IRT approach, the heatmap and the tracelines show the performance
of an algorithm and the histogram gives the latent scores of the datasets. What do these latent
scores represent? We know that algorithms gives better performance on easy test instances. For
example a classification algorithm such as logistic regression will give better classification accuracy
on a linearly separable dataset compared to a complex dataset. As such, in the inverted algorithm
evaluation setting the latent score 6 represents the easiness of the test instance.

pdf

— 0
— 1

probability density

204

154

104

count

3 2 -1 0 1 2
Latent Scores

Figure 9: The heatmap of LCG-Glucose-free on the top left and the trace lines for z € {-1,0, 1} for
that item on the top right. The histogram of the latent scores estimated by the model is shown at
the bottom. In the inverted IRT algorithm evaluation setting, the latent scores represent test instance
easiness.

Furthermore, this inverted setting gives rise to important algorithm characteristics that can now be
measured using the IRT parameters, as described in the following sections.

14

ALcorITHM PorTFOLIO EvaLUATION USING IRT

3.1 Framework

Our algorithmic IRT (AIRT) framework consists of three main stages:

1. Stage 1: Fitting an IRT model with inverted mapping
We input the performance results of n algorithms on N test instances to a continuous or a
polytomous IRT model, mapping test instances to participants and algorithms to items. The
R package airt fits the continuous IRT models described in Section 2.2 using the updated
log-likelihood function and assumption. To fit polytomous models airt uses the functionality
of the existing R package mirt (Chalmers, 2012).

2. Stage 2: Calculation of algorithm and dataset metrics
The second stage consists of reinterpreting the results of the IRT model, due to the inverted
mapping and inherent contextual differences, so that a richer set of metrics for algorithm
performance and dataset difficulty can be calculated.

3. Stage 3: Compute strengths and weaknesses and construct algorithm portfolios
Construct latent trait curves to enable algorithm ranking and strengths and weaknesses of
algorithm portfolios to be observed across test suites of varying difficulty.

A range of indicators are computed as additional measures that characterize algorithms and assess
the goodness of the IRT model, as presented in the following sections. AIRT is applicable to both
continuous and polytomous IRT models. Our results on various algorithm portfolios used to validate
the approach in Section 5 and Appendix A focus on continuous IRT models, however we note that
AIRT can be used to construct polytomous models. We present results for continuous scenarios
because they have higher variation and as such are more interesting. We note that the R package
airt has the functionality to handle polytomous data as well as continuous, and details of the
generalization to polytomous data are provided in Supplementary Materials.

We will use CSP-Minizinc-2016 algorithm portfolio from ASlib repository (Bischl et al., 2016)
to illustrate algorithm and dataset metrics. For all algorithms in the ASIib repository certain
hyperparameters and parameters were used which we do not vary. Any conclusions we draw about
algorithm performance are therefore dependent on the actual algorithm implementation they use.
Further conclusions about the strengths and weaknesses of any algorithm would need to thoroughly
explore the impact of its parameter values.

CSP-Minizinc-2016 contains the results of constrained satisfaction and optimization problems. The
original dataset contains the runtimes of each problem instance. As the IRT framework denotes
good performance by increasing values we have taken the reciprocal of the runtimes to fit the AIRT
model. Figure 10 shows the heatmaps of the probability density functions for all algorithms in the
portfolio. The items discussed in Figures 3 and 4 were algorithms taken from this portfolio.

3.2 Dataset metric: Difficulty score

As discussed previously, the latent trait denoted by 6 corresponds to dataset easiness and is given by

%, (BAJ + ?J'Zij)

0; = ; (10)

15

KANDANAARACHCHI AND SMITH-MILES

Choco-free | [Chuffed—free| Concrete—freq |G12FD—free| (Gecode—free HaifaCSP—fre

iZplus—free | | JaCoP-fd | G—Glucose—f| rGlucose-UQ MinisatiD-fre¢ | Mistral-free

pdf

N VNZN/Cbc—fre¢ IN/CPLEX—f1 ZN/Gurobi—fr{ |ZN/SCIP—frg PR—Tools—fre| [caR/CBLS—f

Picat—-CP-fd| licat—SAT-fre| [Stus—Prolog| | Yuck-free

Figure 10: The heatmap of probability density functions for all algorithms in CSP-Minizinc-2016
portfolio.

where &;, 8; and 7; are the estimated discrimination, difficulty and scaling parameters for algorithm
Jj, which are obtained by fitting the IRT model. Using 6; we define dataset difficulty as

g
I

-0;, arn

where §; denotes the difficulty of the i dataset. We see that dataset difficulty is a function of
discrimination, difficulty and scaling parameters of algorithms as well as the accuracy scores of the
datasets.

Shojima (2005) uses the normal density type CRM with normal priors making the posterior dis-
tribution of the trait parameter 8 normal. Thus, we can expect dataset difficulty ¢ to be normally
distributed. We refer to datasets/problems as easy if they have low difficulty values. Similarly, we
say datasets/problems are difficult if they have high difficulty values. The semi-difficult or semi-easy
instances are in the middle of the spectrum.

ALcorITHM PorTFOLIO EvaLUATION USING IRT

LCG-Glucose-free Modified (Anomalous)

pdf

-6

(o2}
|
w
o
w
(o2}

1
(=2}

|
w
o
w
o

LCG-Glucose-free Modified (Anomalous)

N
N

probability density
[
=

Figure 11: The left column shows the heatmap and the trace lines for LCG-Glucose-free, a typical
algorithm with increasing 6 corresponding to increased performance. The right column shows the
heatmap and the trace lines for an anomalous algorithm, which obtains high accuracy scores for
difficult test instances and low accuracy scores for easy test instances.

3.3 Algorithm metric: Anomalous indicator

Consider the heatmap and the trace lines shown in Figure 11. The left column represents the
algorithm LCG-Glucose-free and the second column represents a different type of algorithm. The
second algorithm is constructed using an algorithm in the Minizinc portfolio for illustrative purposes.
Suppose these figures were generated from an item in educational testing. Then the left column
shows the heatmap and the trace lines of a test item for which higher examinee ability corresponds
to higher grades. On the other hand the right column shows a test item for which examinees with
lower ability obtain higher grades than examinees with higher ability. Such a test item is said to have
negative discrimination. The standard premise in educational testing is that high grades correspond
to high ability. As such, a test item with negative discrimination is commonly revised to obtain a
positive discrimination or removed from the pool of questions (Hambleton and Swaminathan, 2013).

However, in algorithm evaluation such a heatmap or a set of trace lines represent an algorithm or
a dataset with an interesting quirk. For the standard IRT approach for algorithm evaluation, the
heatmap and the trace lines represent a dataset, which gives poor performances for high ability
algorithms and good performances for low ability algorithms. For the inverted IRT approach, the

17

KANDANAARACHCHI AND SMITH-MILES

heatmap and trace lines represent an algorithm that performs well on difficult test instances and
poorly on easy test instances. We describe such algorithms as “anomalous”. Indeed, the no free
lunch concept emphasizes that no single algorithm performs better than other algorithms for all
problems.

This is confirmed by the instance space analyses conducted by Smith-Miles and co-authors (Smith-
Miles and Tan, 2012; Kang et al., 2017; Muiioz and Smith-Miles, 2017). Furthermore, the instance
space analyses for different problems show that even though some algorithms perform poorly on
average, they often hold a niche in the instance space where they outperform other algorithms (Kan-
danaarachchi et al., 2019). As this is a unique strength of the algorithm, it should not be removed
from the dataset as practiced in educational testing.

For continuous and polytomous IRT models, the standard parameters for item j comprise the
discrimination parameter ; and the difficulty parameter §; for continuous models, and the intercepts
di = (dl,. dej- 1) for polytomous models. The discrimination parameter, which is present in
both continuous and polytomous models highlights two aspects of algorithm performance. The sign
of the discrimination parameter tells us if the algorithm is typical or anomalous. If a; < 0 then

algorithm j gives better performance values for difficult test instances and low performances for easy
test instances, and is considered anomalous. So we define the anomalous indicator as

TRUE q; <0,

anomalous(j) = { FALSE otherwise.

3.4 Algorithm metric: Algorithm consistency score

Choco-free Choco-free
6 - pdf - 0.5
3
34 g 0.4 z
009 o 03 -
N 0 2
0.06 S 0.2 — 0
s s
0.03 o 0.1 / 1
S
_6 L T 0 O T T T T
-6 -3 0 3 6 -6 -3 0 3 6
0 0

Figure 12: The heatmap and the trace lines for Choco-free, a relatively consistent algorithm in this
portfolio.

Consider the heatmap and the trace lines in Figure 12. Suppose these trace lines relate to a test item
in an educational testing scenario. Then this item does a poor job in discriminating examinees with
different abilities, because all examinees are most likely to obtain a similar score regardless of their
ability.

In algorithm evaluation using the standard IRT approach, such a heatmap and trace lines indicate
that the dataset in question does not discriminate between the algorithms. That is, the dataset might
be too difficult for all algorithms or too easy for all algorithms. Similarly, in algorithm evaluation

18

ALcorITHM PorTFOLIO EvaLUATION USING IRT

using the inverted IRT approach, such a heatmap and trace lines indicate that the algorithm does not
discriminate. That is, regardless of the easiness/difficulty of the test instance, this algorithm is most
likely to give a similar score, i.e. its sensitivity to test instances is quite low. Thus, the algorithm is
consistent and non-discriminative. The consistency or robustness of an algorithm is an important
characteristic that is sometimes overlooked in the quest for peak performance.

Stability or robustness can be defined in different ways. For example, Eiben and Smit (2011) discuss
3 types of robustness indicators: robustness with respect to parameters, problem specification and
random seeds. Often robustness or stability is defined as a measure of the change of the output
with respect to a small perturbation of the input. In our case, we do not perturb the input; however
datasets positioned close to each other in the latent trait continuum are considered to have similar
easiness/difficulty level. As such, a measure of the change of performance values across the latent
trait continuum is an indication of stability or robustness. However, stability or robustness are
positive attributes. The algorithm quality we want to encapsulate is slightly different in the sense
that some algorithms can consistently perform poorly irrespective of the problem while others can
consistently perform well. We capture this notion by defining algorithm consistency.

The absolute value of the discrimination parameter |a;| gives the discrimination power of the
algorithm, which is linked to the consistency of the algorithm. If |a;| is small, then the algorithm
will produce trace curves with slower transitions similar to those in Figure 12, signifying a more
consistent algorithm than one with a larger |a;|. As such, we define consistency as

consistency(j) = ﬁ
a:
J

Tying this back to the heatmaps, the discrimination power of the algorithm is connected with the
sharpness of the lines/bands on the heat map. In Figure 10 we see that some algorithms have sharp
lines while others have blurry lines. Algorithms with sharp lines are more discriminating than
algorithms with blurry lines, i.e., algorithms with blurry lines or no lines are more consistent than
algorithms with sharp lines.

3.5 Algorithm metric: Difficulty limit

Both consistency and anomalousness relate to the IRT discrimination parameter. Next, we discuss
the role of the item difficulty parameter in the inverted IRT algorithm evaluation approach. Suppose
Figure 13 represents two items in educational testing. The first and the second columns in Figure 13
show the trace lines and the heatmaps of two items, with the item in the left column having higher
difficulty. We see that for any given ability 6, the most probable score in the heatmap in the right
column is higher than that of the left column.

In the inverted IRT approach, the heatmaps and the tracelines represent algorithms with the algorithm
in the left column, Mistral-free, giving lower performance for similar datasets compared to the
algorithm in the right column, MZN/SCIP-free. When we consider dataset difficulty (—6), we see
that as datasets get more difficult the algorithm performance goes down. Thus, each algorithm has
an upper limit in terms of dataset difficulty. If the difficulty of a dataset is lower than this limit,
we expect the algorithm to give good results, but if it is higher than the limit, the algorithm would

19

KANDANAARACHCHI AND SMITH-MILES

Mistral-free MZN/SCIP—free

pdf
0.8

-3

0
Mistral-free MZN/SCIP-free

0.751
2
& z
3
> 0.50 A -2
3 — 0
©
Qo 1
S 0.25
o

0.00 A

-6 3 0 3 6 -6 3 0 3 6
0

Figure 13: Two algorithms with different difficulty limits. Mistral-free has a higher difficulty limit
than MZN/SCIP-free.

perform poorly. Therefore, we define the algorithm difficulty limit as

difficulty(j) = -8;,

where ; is the traditional IRT difficulty parameter. Higher values of difficulty(j) indicate better
algorithms that can handle more difficult datasets.

For polytomous IRT, as there are multiple difficulty parameters (d, do, . . .,dc -1), we use —d¢ -1
as the difficulty limit, because this denotes the threshold for the highest performance level.

4. Evaluating algorithm portfolios using AIRT

4.1 Modelling algorithm performance based on dataset difficulty

The dataset difficulty spectrum gives a way of ordering the performance values y;;. For each
algorithm j, we can consider the set of points (6;,y;;) fori € {1,...,N}. When ordered by &;, y;;
exhibits algorithm j’s performance as datasets get progressively difficult. Thus, for each algorithm
J, we can fit a model explaining the performance by dataset difficulty values. These models can
be denoted by functions {h j(é)};‘zl, where j denotes the algorithm and ¢ the dataset difficulty. For
simplicity our 4;’s are smoothing splines.

20

ALcorITHM PorTFOLIO EvaLUATION USING IRT

The smoothing spline /; minimizes the function

N

Z ()’ij - hj(éi))2 + A /]’lj”(l‘) dl‘,

i=1

where the first term denotes the sum of squared errors and the second term is a penalty for wiggliness.
It is the second term — the integral of the second derivative — that gives the smoothness to the spline.
The parameter A is a tuning parameter and is computed by using a closed-form expression that
minimizes the leave-one-out cross validation squared error (James et al., 2013).

An advantage of using smoothing splines is that we do not need to specify any parameters to fit
the splines. Furthermore, by graphing the splines we can visualize regions of the latent trait where
algorithms give good or weak performance.

We note that this is a feature-less way of exploring algorithm performance. For example, in instance
space analysis we compute features of datasets and explain algorithm performance using these
features. AIRT explains algorithm performance using dataset difficulty, which is computed from
fitting an IRT model without using external features.

CSP-Minizinc-2016 algorithm portfolio ordered by dataset difficulty and the fitted smoothing splines
are shown in Figure 14. From this diagram we see that different algorithms perform better for different
values of dataset difficulty.

4.2 Strengths and weaknesses of algorithms

We can compute the strengths and weaknesses of algorithms using the dataset/problem difficulty
spectrum. To find the algorithm strengths we first find the best algorithm performance for each value
¢ in the problem difficulty spectrum. That is,

hj*((S) = max h](6) .
J
Next, for a given € > 0 we define the strengths of algorithm j as

strengths(j, €) = {6 2 |hj(6) = hj (0)] < e})

That is, the strengths of algorithm j denote the regions in the problem difficulty spectrum where
algorithm j gives good performance. Here good is defined as close to best, specifically within e
from the best. As such, we can get multiple contiguous regions of strengths for some algorithms
while others may not have any strengths in the spectrum for a given e.

Algorithm weaknesses are found similarly. To compute the weaknesses we first find the poorest
algorithm performance for every point in the problem difficulty spectrum:

hj#((S) = mjn h](é) .
J
Then, we define the weaknesses of algorithm j as

weaknesses(j, €) = {6 2 |h;j(6) = h;, ()] < e} .

21

KANDANAARACHCHI AND SMITH-MILES

1.00 4 Algorithm
...‘ ° | === Choco-free
[] |
° | === Chuffed—free
° ° = Concrete—free
.l .: 0.9 == G12FD-free
[}
0.75 4 3 Gecode-free
[]
° = HaifaCSP-free
° o8 — iZplus-free
® 0o = JaCoP-fd
° = | CG-Glucose-free
[} @ 0.64
o ° o
c < c = LCG-Glucose-UC-free
£ 0.50 ot g i
5 S = MinisatID—free
5 ° 5 = Mistral-free
o ®e o
=== MZN/Cbc-free
[J
¢’ = MZN/CPLEX-free
(]
0.3 = MZN/Gurobi-free
0.251 . MZN/SCIP-free
:0 === QOR-Tools-free
¢ ‘1 — OscaR/CBLS-free
[4
: = Picat-CP-fd
*s 0.04 = Picat-SAT-free
9 . == S|CStus—Prolog—fd
0.00 1 l'-] g
= Yuck-free

-2 1 0 1 -2 -1 0 1
Dataset Difficulty Dataset difficulty

Figure 14: The dataset difficulty spectrum of CSP-Minizinc-2016 explored. Left: Algorithm
performance against dataset difficulty for all 4 algorithms. Right: Smoothing splines fitted to
algorithm performance values.

Weaknesses represent regions in the problem difficulty spectrum where algorithms give poor per-
formance.

Figure 15 shows the strengths and weaknesses of CSP-Mnizinc-2016 algorithm portfolio. The top
row shows the strengths and weaknesses for € = 0 and the bottom part for € = 0.01. The difference
between the two values of € is that when € = 0, for each value ¢ in the dataset difficulty spectrum
there is only one algorithm that is strong. When € # 0 multiple algorithms can display strengths for
the same 6.

In Figure 15 we see that when € = 0 LCG-Glucose-UC-free is strong for a large part of the
problem space, including difficult and medium-difficult problems. OR-Tools-free is better for more
difficult problems and LCG-Glucose-free and Chuffed-free for easy problems. For € = 0 only 5
algorithms have strengths. When € = 0.01 we see a little overlap. However, when € = 0.01 only 7
algorithms out of 22 algorithms exhibit strengths. In contrast, 16 algorithms have weaknesses when
€ = 0.01. Both LCG-Glucose-UC-free and LCG-Glucose-free have strengths for easier problems

22

ALcorITHM PorTFOLIO EvaLUATION USING IRT

but LCG-Glucose-UC-free remains the more powerful algorithm. In the weaknesses space, we see
Picat-CP-fd, OscaR/CBLS-free and Yuck-free displaying weaknesses for most of the problem space.
A large number of algorithms are weak for difficult problems as seen for € = 0.01.

Strengths Weaknesses

0=9

Algorithm

. Choco-free
Chuffed-free
Concrete—free
G12FD-free
Gecode-free
HaifaCSP-free
iZplus—free
LCG-Glucose—free

LCG-Glucose-UC-free

MinisatID—free

TO0

==}

Mistral-free
MZN/Cbc-free
MZN/CPLEX-free

MZN/SCIP-free
OR-Tools-free
OscaR/CBLS-free
Picat-CP-fd

Picat-SAT-free

Yuck-free

-2 -1 0 1 -2 -1 0
Dataset Difficulty

= -

Figure 15: Strengths and weaknesses of CSP-Minizinc-2016 algorithms for e = 0 and € = 0.01.

Using the strengths we compute the latent trait occupancy (LTO) for each algorithm. LTO gives the
proportion of datasets supported by each algorithm in the region of its strength. We define it as

|{i : i € strengths(j, €)}|

N)
where i and j denote the datasets and algorithms respectively. The total number of datasets/problems
is denoted by N. For the strengths shown in Figure 15 for € = 0, LCG-Glucose-UC-free occupies
the largest portion of the latent trait followed by Chuffed-free. When € > 0, the quantity >, LTO > 1
if the strengths of algorithms overlap as shown in Figure 15. The LTO values for both € = 0 and
€ = 0.01 is listed in Table 2.

LTO(j, €) =

Combining Figure 15 and Table 2 we see that for very easy problems (§ ~ —2) algorithms MZN/Cbc-
free and MZN/SCIP-free display strengths. However, we see that the latent trait occupancy LTO
= 0.02, which is very small. Therefore, even if these two algorithms have strengths for very easy

23

KANDANAARACHCHI AND SMITH-MILES

problems, it is risky to use them because of small LTO. For easy problems (§ < 0) we have
3 candidates: LCG-Glucose-UC-free, Chuffed-free and LCG-Glucose-free. The LTO of these
algorithms are 0.828, 0.141 and 0.111 respectively. Basically, this reiterates that LCG-Glucose-
UC-free is the most powerful algorithm. For very hard datasets (6 > 1), we have 3 candidates,
Choco-free, OR-Tools-free and LCG-Glucose-UC-free. Of these, Choco-free has an LTO of 0.04,
and thus can be disregarded. OR-Tools-free occupies the same position in the strengths diagram for
both € = 0 and € = 0.01 and thus has a unique strength for very difficult problems.

Table 2: AIRT Latent Trait Occupancy (LTO) for CSP-Minizinc-2016 algorithms.

Algorithm LTO (e =0) LTO (e =0.01)
LCG-Glucose-UC-free 0.717 0.828
Chuffed-free 0.121 0.141
LCG-Glucose-free 0.071 0.111
OR-Tools-free 0.071 0.071
MZN/Cbc-free 0.020 0.020
Choco-free 0 0.040
MZN/SCIP-free 0 0.020

4.3 Algorithm portfolio selection

The analysis in the previous section can be used understand the strengths and weaknesses of algo-
rithms, adding to the exploratory data analysis domain of algorithm portfolios. We can also use
AIRT for algorithm portfolio selection. We construct the airt portfolio by selecting the set of strong
algorithms for a given e.

Formally, the airt portfolio is defined as

Ale) = {j 2 |hi(8) — hj,(6)| < €, for alld} R
= {j : strengths(j, €) # 0} .

When e = 0 we obtain A(0) = | j., i.e., the strongest set of algorithms in the latent space.

We use lowercase letters ‘airt’” when describing portfolio specific results and uppercase AIRT when
describing more general aspects. The number of algorithms in the airt portfolio depends on e.
However, we do not directly specify the number of algorithms. It is a result of the smoothing
splines {/ j(é)};‘zl, which use the dataset difficulty spectrum ¢ as the input. But, ; = —6;, which is
computed using a;, B;, v; and z;; as dictated by equation (10). Therefore, the AIRT model has a
direct influence on the portfolio.

Of course, the airt portfolio, strengths and weaknesses and other indicators of algorithm performance

are only reliable if the IRT model providing the parameters has a good fit. In the following section
we provide some measures of goodness of the IRT model to support interpretation of the results.

24

ALcorITHM PorTFOLIO EvaLUATION USING IRT

4.4 IRT Model goodness measures

We are using IRT to model algorithm performance, that is the IRT model is effectively a meta-model.
Checking the accuracy or the goodness of the IRT model is important because it determines the
confidence we can place on the IRT model parameters, which describe the algorithms. If the IRT
model is accurate, then we can trust the relationships it has modeled between instances and algorithm
performances.

After fitting a continuous (polytomous) IRT model we define the predicted result (category) for a test
instance i, with latent score 6; as the result (category) with the highest probability for latent score
0;. We denote the predicted result (category) for test instance i and algorithm j by X;;. Then the
residuals e;; = x;; — £;; are of interest to us. For a fixed j, let e; = {e;; }il\i | denote the residuals of
the j algorithm. We consider the scaled absolute residuals p;; = cle;;|, such that p;; € [0,1]. As
we are interested in the algorithms we define p; = {p; j}f\; , and consider the empirical cumulative
distribution function (CDF) of p; for each j, which we denote by F(p;):

F(pj) = P(pj < p) for pe[0,1]. (12)

Figure 16 shows a histogram of the absolute residuals |e;;|, the empirical cumulative distribution
functions of |e;;|, and the scaled absolute residuals p;; for iZplus-free algorithm in CSP-Minizinc-
2016 portfolio. The only difference between the two CDFs is the x values, which are in the interval
[0, 1] for the scaled absolute residuals.

iZplus—free 1.001
§0.75-
S

s 0.501

o
i 0.25

0.00 1= ! ! !
0.0 0.2 0.4 0.6
Absolute residuals

204

154

1.00 1
2
£ 0.751
2
8 050
2 0.254
o

0.00 ! | . .
0.0 02 04 06 000 025 050 075 1.00

Absolute residuals Scaled absolute residuals p

Figure 16: The histogram of the absolute residuals |e;;| of iZplus-free is shown on the left. The
CDF of the absolute residuals is shown on the top right and the CDF of the scaled absolute residuals
is shown on the bottom right. Notice the difference in the domain for the two CDFs.

By rescaling the absolute residuals to [0, 1] we make sure that the area under the CDF F(p;), denoted
by AUCDF(p;), is bounded by 1. AUCDF(p;) provides a measure of goodness of the IRT model
for algorithm j. A higher AUCDF signifies better IRT model fit.

We compute the mean square error (MSE) of the residuals and AUCDF(p;) for each algorithm j.
IRT may fit some algorithms better than others. We note that the log-likelihood obtained from
fitting the IRT model is an aggregate and therefore does not show how well each algorithm is fitted.

25

KANDANAARACHCHI AND SMITH-MILES

By computing the residual metrics such as mean square error and AUCDF(p;) we gain a better
understanding of the IRT model in relation to each algorithm.

4.5 Predicted and actual effectiveness

We are interested in how well algorithms perform on test instances, especially the high performance
results. If an algorithm gives good performance results for most test instances, then that algorithm is
effective. As such, we focus on the performance results in decreasing order and study effectiveness
via the cumulative distribution function (CDF) for each algorithm. First we denote the algorithm
performance results for algorithm j by x; = {x,-j}il\:’ |- By defining #; = max(x;) — x; we reverse
the performance results so that small values of 7; denote high performance results. The variable ¢;
can be thought of as a tolerance parameter, i.e. small tolerances give better performance. Then we
compute the effectiveness of the algorithm by

Fi(t) = P(t; < 0),

where P denotes the probability. The function F;(¢) is also related to the complementary cumulative
distribution (CCDF), which is defined as

F(t) = P(x 2 0),
since,

P(tj <€) = P (max(xj) — x; < () ,
= P (x; > max(x;) -) .

As such, Fj(f) denotes the CCDF of x; with the x axis reversed.

We call the curve y = F'j(f), the effectiveness curve. By scaling 7; to lie in [0, 1], we make sure
that the area under the effectiveness curve is bounded by 1. For polytomous IRT with categories
{0,1,...,C; }, we consider a step size of A = & for the x axis with £ € {0, 1,. .. ,Cj_1}, sothat the
curve y = F;(¢) is defined by the points (0, F;(Cj_1)), (A, F;(Cj-2)),. .., (1, F;(0)). Figure 17 shows
the histogram, CDF of performance values (bottom-left) and the effectiveness curve (bottom-right)
of Chuffed-free algorithm in CSP-Minizinc-2016 portfolio.

Similarly, we can compute the effectiveness for the IRT predicted algorithm performance values by
defining £; = {%; j}i’\:' \» and f; = max X; — X; where £;; denotes the predicted result for algorithm j
and test instance i. This gives the predicted effectiveness

where we have indicated that it is a predicted quantity by using . We have denoted the effectiveness
by F for both predicted and actual values, while changing from ¢ to £ for predicted effectiveness.
We compute the area under the actual and predicted effectiveness curves as this is a measure of
an algorithm’s ability to produce high performance results. We denote the area under the actual
effectiveness curve y = Fj(¢) by AUAEC(j), and area under the predicted effectiveness curve
y = Fj(f) by AUPEC(j). A high AUAEC() indicates that algorithm j has a large proportion of high

26

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Chuffed-free 1.00
0.75

0.50
304

0.25

Probability

0.00

000 025 050 0.75

£ Performance
e}
© 1.00
104 E 0.751
3
g 0.50 -
e, £
04 |
T T T T 000- T T T T
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Performance Tolerance

Figure 17: The histogram of performance values Chuffed-free algorithm is shown on the left. The
graph on the top right shows the CDF of the performance values. The graph on the bottom right
shows the effectiveness curve y = F;({).

performance results and a high AUPEC() indicates that the IRT model predicts algorithm j to have
a large proportion of high performance results.

For a single algorithm the pair of values (AUAEC, AUPEC) gives an indication about the algorithm’s
actual and perceived ability to produce high performance results. If the absolute difference between
the predicted and actual effectiveness, |]AUAEC — AUPEC] is large, then the trustworthiness of the
IRT model is low for that algorithm. It may be the case that AUAEC ~ AUPEC for most algorithms
in a portfolio, but for one algorithm the absolute difference between AUAEC and AUPEC is higher.
A larger absolute difference between AUAEC and AUPEC will concur with a lower AUCDF for that
algorithm. For example if the IRT model over estimates the performance of an algorithm, AUPEC
will be higher than AUAEC. This will also result in lower agreement between the predicted and the
actual results giving rise to lower AUCDF. Table 3 gives the model goodness measures for each
algorithm. We see that the MSE is low for most algorithms apart from HaifaCSP-free, which also
has the highest]AUAEC — AUPEC]|. In terms of goodness of fit, we can say that the IRT model is a
good fit for mostly all algorithms, apart from HaifaCSP-free.

The measures we have proposed for algorithm consistency score, anomalous indicator and difficulty
limit are algorithm evaluation metrics while the absolute residuals curve, actual and predicted
effectiveness curves, along with AUCDF, |AUAEC - AUPEC| comprise AIRT’s model goodness
metrics. In the discussion that follows we refer to both AIRT and the underlying IRT model. AIRT
refers to the reinterpreted IRT model with the additional evaluation metrics discussed above. When
we discuss standard IRT concepts such as trace lines we refer to the IRT model.

This concludes the discussion on different aspects of the AIRT framework. The pseudocode given
in Algorithm 1 summarizes the steps and functionality of AIRT.

4.6 Computational complexity of AIRT

To fit the IRT model, we use the non-iterative item parameter solution proposed by Shojima (2005).
They use expectation maximization (EM) and in each EM cycle a non-iterative solution is found
by optimizing the expectation in equation (9) item-by-item. By computing partial derivatives and

27

KANDANAARACHCHI AND SMITH-MILES

Algorithm 1: AIRT framework.

input : The matrix Yyx,, containing accuracy measures of n algorithms for N
datasets/problem instances.
output: 1. AIRT indicators of algorithms and dataset/problem difficulty
2. The strengths and weaknesses of algorithms
3. airt algorithm portfolio
4. Model goodness measures
Stage 1 - Fitting the IRT model with inverted mapping
1. Transform the accuracy measures y;; by defining z;; = In

Yij
k=yij*
2. Let Z = {z;;} € RN*", where N denotes the number of problems/datasets and n denotes the
number of algorithms.
3. Fit a continuous IRT model to Z by maximizing the log-likelihood function

n

n N

1 2

Egiaw z [Inp(A]0,Z)] = NZ (In|e;| +In |7j|)_§ Z Z a{,2~ ((,3]‘ +Yizij — ,ugl)) + o-(z)2)+lnp(A)+const,
j=1 i=1 j=1

4. From this model we obtain (after ¢ iterations) the IRT discrimination and difficulty
parameters «; and 3; and the scaling parameter y; for algorithms j € {1,...,n} as follows:

()) ()2
(t+1) _ \% (,ui +0
J -
C_/ (le’ ﬂit))
1 1
g =m (#?)) — M ()
-1/2
1 . 1 12
o = sign () (5 PV () - v (1) = o 2)
5. Using these IRT parameters we compute the latent trait 0% as
Ry (ﬂj + ?iZij)

)
2

0;

Stage 2 - Calculation of algorithm and dataset metrics
6. For each algorithm j compute the anomalous indicator, algorithm consistency score and
difficulty limit using

TRUE 4, <0,

anomalous(j) = { FALSE otherwise. °

consistency(j) = —,
|aj]
difficulty(j) = -;,

7. For each dataset i compute the dataset difficulty using

0; = —0;.

Stage 3 - Computing strengths and weaknesses and construct airt portfolio

8. Using the dataset difficulty spectrum ¢ fit smoothing splines /;(5) to performance values y;;
for each algorithm j minimizing ., (yi; — hj((S,-))2 + /lfh;.’(t) dt .

28

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Algorithm
1.00 A gorit
=== Choco-free === Mistral-free
=== Chuffed-free === MZN/Cbhc—free
0.754 a
2 Q 0.751 = Concrete-free == MZN/CPLEX-free
4}
S g — G12FD-free —— MZN/Gurobi-free
= ©
g 0.50 é 0504 === Gecode-free MZN/SCIP—free
5 5']3 ' = HaifaCSP-free = OR-Tools-free
§ _{-"_j = iZplus—free == OscaR/CBLS-free
=
J 0.254 © 0251 — JaCoP-fd =~ Picat-CP-fd
o
=== | CG-Glucose—free = === Picat-SAT-free
=== | CG-Glucose-UC-free=== SICStus-Prolog-fd
0.00+ 0.00+ = MinisatiD—free — Yuck-free
T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 025 050 0.75 1.00
Effectiveness Tolerance Effectiveness Tolerance
1004 o Algorithm
04 ® Choco-free ® Mistral-free
47 °
e o ® Chuffed-free ® MZN/Cbc-free
0.75+ ® Concrete—free ® MZN/CPLEX-free
—_ 0.37 ® GI12FD-free ® MZN/Gurobi-free
&
e 8 ® Gecode-free MZN/SCIP-free
0.50 o ° .
L 2024 ® HaifaCSP-free ® OR-Tools-free
[a) < °
) ° ® iZplus—free ® OscaR/CBLS-free
0.25 014 : ® JaCoP-fd ® Picat-CP-fd
’ N ® LCG-Glucose-free ® Picat-SAT-free
e ® LCG-Glucose-UC-free ® SICStus-Prolog-fd
0.001 %< 0.0 se» ® MinisatiD-free ® Vuck-free
0.00 0.25 0.50 0.75 1.00 00 01 02 03 04 05
Scaled Absolute Error AUAEC

Figure 18: The model goodness graphs for CSP-Minizinc-2016 portfolio. The top row shows actual
and predicted effectiveness curves. The graph on the bottom left shows the CDF of the absolute
residuals and the graph on the bottom right shows the actual and predicted effectiveness of the
algorithms.

9. Compute the strengths and weaknesses of algorithms using

IA

strengths(j,e) = {6 |hj(6) = hj,(0)] e} ,
weaknesses(J, €) = {6 :|hi(6) = hj, ()] < e} ,

A

and use the strengths and weaknesses for exploratory data analysis purposes.

10. Construct the airt portfolio using A(e) = {j : strengths(j,€) # 0} .

11. Check the fit of the IRT model by computing model goodness measures MSE, AUCDF and
|AUAEC - AUPEC]|.

solving a set of simultaneous equations they find the exact solutions for item parameters «;, £,
and vy; in each cycle. The optimization stops when solutions of successive cycles converge or
when the maximum number of cycles is reached. Let ¢ denote the number of cycles. Hence, the
computation is repeated c times. For a N X n matrix Z, there are n items and N participants. The

29

KANDANAARACHCHI AND SMITH-MILES

Table 3: MSE, AUCDF, Area Under Actual Effectiveness Curve (AUAEC) and Predicted Effective-
ness Curves (AUPEC) and [AUAEC - AUPEC]| for CSP-Minizinc algorithms.

Algorithm MSE AUCDF AUAEC AUPEC |AUAEC - AUPEC]|
iZplus-free 0.046 0.823 0.133 0.179 0.046
MZN/SCIP-free 0.072 0.746 0.102 0.287 0.185
Chuffed-free 0.085 0.733 0.286 0.383 0.097
LCG-Glucose-UC-free 0.088 0.725 0.372 0.450 0.078
Concrete-free 0.003 0.974 0.022 0.000 0.022
JaCoP-fd 0.051 0.894 0.092 0.032 0.059
Mistral-free 0.027 0.892 0.083 0.098 0.016
OscaR/CBLS-free 0.000 0.995 0.002 0.000 0.002
HaifaCSP-free 0.100 0.690 0.168 0.392 0.224
Gecode-free 0.000 0.989 0.005 0.000 0.005
OR-Tools-free 0.037 0.951 0.043 0.000 0.043
SICStus-Prolog-fd 0.013 0.972 0.023 0.000 0.023
Picat-CP-fd 0.000 0.993 0.002 0.000 0.002
Picat-SAT-free 0.017 0.894 0.096 0.169 0.073
MZN/Gurobi-free 0.089 0.720 0.208 0.384 0.176
MZN/CPLEX-free 0.093 0.713 0.205 0.385 0.180
LCG-Glucose-free 0.089 0.722 0.336 0.450 0.114
MZN/Cbc-free 0.058 0.786 0.092 0.223 0.132
Yuck-free 0.000 0.995 0.002 0.000 0.002
Choco-free 0.021 0.944 0.050 0.000 0.050
MinisatID-free 0.022 0.898 0.081 0.115 0.034
G12FD-free 0.014 0.961 0.035 0.001 0.034
non-iterative solution is found for each item j € {1,...,n}. For a fixed j, solving for a;, B; and y;

involves computing various quantities such as mean, variance and covariance. The computational
complexity of these operations is O(N). When they are computed for each item j for ¢ cycles the
overall complexity of fitting the IRT model becomes O(Nnc). Of the three variables ¢ has an upper
bound of 200 and #n is much smaller than N. As such the most influencing variable is N.

After fitting the IRT model we compute the anomalous indicator, algorithm consistency score and
difficulty limit for each algorithm. These computations take a fixed amount of time for each algorithm
J. Therefore, computing the indicators have O(n) complexity. Computing dataset difficulty values
o; for N datasets using equations (10) and (11) takes O(N) complexity. Therefore, computing AIRT
indicators and dataset difficulty values have O(N + n) ~ O(N) complexity as n is much smaller
compared to N.

Smoothing splines can be fitted in O(N) computational time. In statistical software packages, they
are fitted using a much smaller number of points, approximately log(N) when N > 50 (Hastie et al.,
2009). Strengths and weaknesses of algorithms are computed mainly for visualization purposes. As
such, the strengths and weaknesses horizontal bar graph has a smaller number of points compared
to N; let us say it has M points. For each of these points we compute the strengths and weaknesses

30

ALcorITHM PorTFOLIO EvaLUATION USING IRT

of n algorithms. This computation involves O(Mn) complexity; however vectorized computations
make it much faster. The airt algorithm portfolio can be computed in fixed time as they take the
union of strong or weak algorithms.

Model goodness measures involve n algorithms with N data points for each algorithm. Computing
the MSE, and the CDF for p; as in equation (12) have O(nN) complexity. Computing the area under
the curve using trapezoidal integration takes O(N) time. Similarly, actual and predicted effectiveness
have O(nN) complexity.

5. Results

We now test AIRT on 10 algorithm portfolios hosted on ASlib data repository (Bischl et al.,
2016). ASIib hosts performance data and test instance features for a large number of algorithm
portfolios. Section 5.1 contains a detailed analysis of classification algorithms using AIRT. We
explore AIRT metrics, model goodness measures and the strengths and weakness of algorithms
using the dataset difficulty spectrum. In addition, we compare different algorithm portfolios. The
analysis of classification algorithms encompasses the full functionality of AIRT. We carry out more
concise analyses for other ASlib scenarios in Appendix A. We include the latent trait curves, strengths
and weaknesses and algorithm portfolio comparisons for each ASlib scenario.

5.1 Detailed case study: Classification

This scenario was introduced by van Rijn (2016) and uses a selection of WEKA algorithms (Hall
etal., 2009). It was later used in the 2017 algorithm selection challenge by Lindauer et al. (2017). The
dataset contains predictive accuracy results from 30 classification algorithms on 105 test instances.
The default parameters and hyperparameters used by the classification algorithms were not varied.
For ease of plotting graphs, we have shortened the names of many algorithms. For example, there are
3 multilayer perceptron algorithms; algorithm 8990_MultilayerPerceptron is renamed to 8990_MLP.

5.1.1 AIRT ALGORITHM METRICS

Figure 19 shows the heatmaps of AIRT fitted probability distribution functions for the classification
algorithms. We see that OLM and ConjunctiveRule are more stable comparatively. AIRT did not
find any algorithm to be anomalous.

Table 4 gives AIRT metrics for the classification algorithms. Even though OLM has the highest
algorithm consistency, it has the lowest difficulty limit. Therefore, OLM gives poor performances
consistently. Thus, algorithm consistency by itself is not an indicator of a good algorithm. The
RandomForest has the highest difficulty limit. Hence, the RandomForest can handle very difficult
instances. Algorithms LMT, NaiveBayes, SMO_PolyKernel, AdaBoostM1_J48 and BayesNet also
have high difficulty limits meaning that these algorithms can handle hard instances.

The RandomForest occupies the largest proportion in the latent trait (LTO) for € = 0 and the second
largest for € = 0.01. Therefore, it is an excellent algorithm suited for a large number of diverse
instances. Notably, LMT, the second best algorithm in terms of LTO for € = O surpasses the
RandomForest and becomes the best algorithm for € = 0.01. This means, that even though it is not
the topmost curve for most part of the latent trait, it is e-close to the top curve mostly, and coupled

31

KANDANAARACHCHI AND SMITH-MILES

with its own strengths on the latent trait it surpasses the RandomForest. Algorithm AdaBoostM1_J48
has a similar latent trait occupancy (LTO) as LMT when € = 0. Even though AdaBoostM1_J48’s
LTO increases when € = 0.01, it doesn’t increase as much as LMT’s LTO does. Curiously, REPTree
and 8990_MLP have a similar proportion on the latent trait for both € values. In contrast, algorithms
such as J48, JRip and Bagging_ REPTree, increase their LTO from O to values greater than 0.1
when € increases from 0 to 0.01 — a bigger increase than REPTree and 8990_MLP undergo with the
increase in €. This observation suggests the two algorithms REPTree and 8990_MLP have unique
strengths in the latent trait and not in other parts where more algorithms perform well.

2364 1Bk 2889 IBKk | | 8990 MLP || 8994 MLP || 8995 MLP || AdaB DSt

6
3_
0A
3
6

AdaB_J48 | laB_NaiveBay| pgging_REPTr BayesNet onjunctiveRul|{ [DecisionTable|

6
3_
0A
3
6

N\
-

df
FURIA HoeffdingTree| | HyperPipes Ja8 JRip LADTree P

©1 15
3 -

N 09 1.0
_3 -

-6 0.5

LMT Logistic LogitBoost_DS | NaiveBayes OoLM OneR 0.0

6_
3_
0
3
-6

RandomFores| | RandomTree REPTree SimpleCart | MO_PolyKern{ MO_RBFKern

6_

3_

O_

3

-6t i e b e e

-6-30 3 6-6-30 3 6-6-30 3 6-6-30 3 6-6-30 3 6-6-30 3 6
0

Figure 19: The heatmap of probability density functions for classification (OpenML-weka-2017)
algorithms by fitting a continuous IRT model

5.1.2 STRENGTHS AND WEAKNESSES OF ALGORITHMS VIA AIRT

Figures 20 and 21 show the latent trait analysis for OpenML Weka classification algorithms. Fig-
ure 20 shows the performance of the algorithms with respect to problem difficulty and the resulting
smoothing splines. The strengths and weaknesses of different algorithms are shown in Figure 21.
The strengths and weaknesses are calculated for two values of €, € = 0 and € = 0.01 as discussed in
Section 4.2.

ALcorITHM PorTFOLIO EvaLUATION USING IRT

1.004

0.754

Performance
o
[l
o
:

0.25

0.00

i
o
L
[]
o
[
°
L

®e

° [}

0@ ©

= ts
°

° % o

. .

° » %o

o !
[]
o °° N
co []
@ []
°
°
o °
°
°® o o
‘. g
] [}

1.004

0.754

0.50 1

Performance

0.254

Algorithm

2364_1BK
2889_1BK
8990_MLP

== 8994_MLP

8995_MLP
AdaB_DSt

0

Dataset difficulty

AdaB_J48
AdaB_NaiveBayes
Bagging_REPTree
BayesNet
ConjunctiveRule

DecisionTable

FURIA
HoeffdingTree
HyperPipes
J48

JRip

LADTree

LMT

Logistic
LogitBoost_DSt
NaiveBayes
OLM

OneR

RandomForest
RandomTree
REPTree
SimpleCart
SMO_PolyKernel
SMO_RBFKernel

Figure 20: Algorithm performance with dataset/problem difficulty for classification algorithms. Top:
Algorithm performance against dataset difficulty. Bottom: Latent trait curves for each algorithm
with AdaB_DSt, ConjunctiveRule, HyperPipes, g) M and OneR in dashed lines.

KANDANAARACHCHI AND SMITH-MILES

Table 4: AIRT Metrics: algorithm consistency Score, Anomalousness indicator, Difficulty Limit
and Latent Trait Occupancy (LTO) for classification algorithms.

Algorithm Consistency Difficulty Anomalousness LTO (e = LTO (e =
Limit 0) 0.01)
8990_MLP 1.401 1.427 FALSE 0.010 0.038
8994_MLP 1.349 1.271 FALSE 0.000 0.038
8995_MLP 1.201 1.842 FALSE 0.000 0.019
SMO_PolyKernel 0.655 1.950 FALSE 0.000 0.000
OneR 1.426 1.026 FALSE 0.000 0.000
J48 0.274 1.749 FALSE 0.000 0.162
2364_IBk 1.010 1.798 FALSE 0.000 0.000
REPTree 0.595 1.663 FALSE 0.029 0.076
RandomTree 0.709 1.457 FALSE 0.000 0.000
RandomForest 0.500 2.064 FALSE 0.410 0.790
LMT 0.467 1.994 FALSE 0.276 0.895
HoeffdingTree 0.757 1.553 FALSE 0.000 0.000
SMO_RBFKernel 0.842 1.508 FALSE 0.000 0.000
JRip 0.253 1.741 FALSE 0.000 0.124
2889_IBk 0.950 1.812 FALSE 0.000 0.000
HyperPipes 1.272 0.919 FALSE 0.000 0.000
NaiveBayes 1.173 1.968 FALSE 0.000 0.000
OLM 3.768 -1.176 FALSE 0.000 0.000
FURIA 0.281 1.806 FALSE 0.000 0.314
BayesNet 0.752 1.942 FALSE 0.000 0.000
ConjunctiveRule 2.473 0.845 FALSE 0.000 0.000
SimpleCart 0.643 1.819 FALSE 0.010 0.105
AdaBoostM1_NaiveBayes 0.819 1.750 FALSE 0.000 0.000
LADTree 0.852 1.793 FALSE 0.000 0.010
Logistic 0.669 1.824 FALSE 0.000 0.000
AdaBoostM1_DecisionStump 2.069 0.882 FALSE 0.000 0.000
AdaBoostM1_J48 0.408 1.947 FALSE 0.267 0.448
Bagging REPTree 0.660 1.837 FALSE 0.000 0.105
DecisionTable 0.645 1.532 FALSE 0.000 0.067
LogitBoost_DecisionStump 0.473 1.927 FALSE 0.000 0.000

Of the 30 algorithms, 6 have strengths on the dataset difficulty spectrum when € = 0. These
are 8990_MLP, AdaBoostM1_J48, LMT, RandomForest, REPTree and SimpleCart algorithms. In
contrast 14 algorithms exhibit strengths when € = 0.01 showing the competitiveness of algorithms.
The RandomForest displays strengths on a large region of the problem space followed by LMT when
€ = 0.01. We see that many algorithms have strengths for easy problems while not so many are
strong for difficult problems. For the region when dataset difficulty is between 0.5 and 1, only LMT
displays a strength. Similarly, when dataset difficulty is between 1.5 and 2, the RandomForest is the
only algorithm that displays an advantage. In terms of weaknesses, OLM is weak for most of the

34

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Strengths Weaknesses

I 1 Algorithm

8990_MLP

8994 _MLP

8995 MLP
AdaB_J48
Bagging_REPTree
DecisionTable
FURIA
HyperPipes

J48

JRip

LADTree

LMT

OLM
RandomForest
REPTree
SimpleCart
SMO_RBFKernel

TO'0=°

2 10 1 2 2 -1 0 1 2
Dataset Difficulty

Figure 21: Strengths and weaknesses of OpenML Weka classification algorithms. The top bar shows
the strengths and weaknesses for € = 0 and the bottom graph for € = 0.01.

problem space for both € values. Hyperpipes are weak for more difficult problems for both € values.
The latent trait curves lying relatively below are shown in dashed lines so that they can be identified
easier. These are AdaB_DSt, ConjunctiveRule, HyperPipes, OLM and OneR.

We can make some observations from Figure 21 and Table 4. The first is that the RandomForest

and LMT cover almost all of the latent trait in the strengths diagram for ¢ = 0.01. For € = 0,
these two algorithms coupled with AdaB_J48 cover most of the strengths spectrum. Thus, these

35

KANDANAARACHCHI AND SMITH-MILES

three algorithms, or even just RandomForest and LMT make a good combination in tackling diverse
datasets. The second observation is that when increasing € from 0 to 0.01, even though the number
of algorithms increased from 6 to 14, most of them have strengths for very easy problems. Of the
additional 8 algorithms, DecisionTable, 8994_MLP, 8995_MLP and LADTree have LTO < 0.1.
Thus, we can disregard some of the algorithms with small LTO when € = 0.01. Considering the key
algorithms, the main change from € = 0 to € = 0.01 is the increase in LTO for algorithm LMT.

5.1.3 AIRT MODEL GOODNESS METRICS

Table 5 gives the model goodness results for classification algorithms. The MSE is less than
0.1 for all algorithms apart from OLM. Furthermore, the difference between predicted and actual
effectiveness | AUPEC — AUAEC]| is less than 0.1 for all algorithms apart from OLM, NaiveBayes
and ConjunctiveRule. Figure 22 shows the effectiveness curves and the CDFs for this portfolio
of algorithms. We see that most points on the AUAEC-AUPEC plane are close to the AUAEC =
AUPEC line, which is shown by a dotted line. OLM is the exception. In general, the model has
fitted the algorithm performances well.

5.1.4 ALGORITHM PORTFOLIO SELECTION

We compare the airt portfolio with 2 additional algorithm portfolios:

1. Shapley-portfolio: a subset of algorithms selected using Shapley values (Ffechette et al.,
2016). Shapley values measure an algorithm’s marginal contribution to the portfolio by using
concepts from coalition game theory. For Shapley-portfolio we select algorithms with the
top-n Shapley values.

2. topset-portfolio: a subset of algorithms having the best on-average performance at a per-
instance level. The highest-ranked algorithm in the topset-portfolio gives the best performance
for the most number of instances. For topset-portfolio we select the top-n best on-average
algorithms

We construct Shapley, topset and airt portfolios with n algorithms and compare their performance
for different values of n. As the evaluation metric we use the performance gap. Performance gap
is computed using the best per-instance performance for each portfolio and the best per-instance
performance using all the algorithms. We define the difference as the performance gap at a per-
instance level. Let the best performance for instance i using the full set of algorithms be denoted by
b;. Let A,, S, and 7, denote airt, Shapley and topset portfolios having » algorithms. Let bz ; ,
denote the best performance for instance i using the airt portfolio with n algorithms. Similarly, let
bs.in and by ; , denote the best performance for instance i using Shapley and topset portfolios with
n algorithms. Then we define the performance gap for instance i for each portfolio as

Perf. gap 4 ; , = bi —ba,in, Perf gapg;,=bi—bs,;, and Perf. gaps;, =b;—brin.

For each algorithm portfolio and n we get an N X 1 vector of performance gap values. We compute
the mean performance gap for each n. For each algorithm scenario we use 10-fold cross validation
and report the average cross validated performance gap for Shapley, topset and airt portfolios.
Additionally, we compute the standard errors using different folds. We note that Perf. gap is the

36

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Table 5: MSE, AUCDF, Area Under Actual Effectiveness Curve (AUAEC) and Predicted Effective-
ness Curves (AUPEC) and [AUAEC - AUPEC] for classification algorithms.

Algorithm MSE AUCDF AUAEC AUPEC |AUAEC - AUPEC|
8990_MLP 0.032 0.863 0.758 0.730 0.028
8994_MLP 0.036 0.844 0.747 0.700 0.047
8995_MLP 0.029 0.899 0.776 0.809 0.033
SMO_PolyKernel 0.007 0.940 0.814 0.820 0.006
OneR 0.051 0.840 0.637 0.712 0.075
J48 0.004 0.944 0.810 0.782 0.028
2364_IBk 0.022 0.910 0.785 0.795 0.010
REPTree 0.010 0.932 0.794 0.769 0.025
RandomTree 0.007 0.939 0.754 0.754 0.000
RandomForest 0.006 0.938 0.845 0.816 0.029
LMT 0.007 0.928 0.848 0.800 0.048
HoeffdingTree 0.011 0.921 0.768 0.767 0.001
SMO_RBFKernel 0.017 0.899 0.750 0.759 0.009
JRip 0.003 0.950 0.805 0.787 0.018
2889_IBk 0.020 0.920 0.789 0.800 0.011
HyperPipes 0.040 0.846 0.629 0.683 0.054
NaiveBayes 0.029 0.868 0.751 0.881 0.130
OLM 0.164 0.681 0.411 0.171 0.240
FURIA 0.006 0.929 0.824 0.780 0.044
BayesNet 0.011 0.920 0.782 0.855 0.073
ConjunctiveRule 0.093 0.784 0.588 0.719 0.131
SimpleCart 0.009 0.943 0.811 0.794 0.017
AdaBoostM1_NaiveBayes 0.013 0.928 0.771 0.813 0.042
LADTree 0.012 0.938 0.774 0.818 0.044
Logistic 0.005 0.942 0.805 0.802 0.003
AdaBoostM!_DSt 0.082 0.794 0.611 0.698 0.087
AdaBoostM1_J48 0.006 0.934 0.837 0.798 0.039
Bagging REPTree 0.011 0.929 0.820 0.787 0.033
DecisionTable 0.009 0.931 0.761 0.764 0.003
LogitBoost_DSt 0.004 0.956 0.812 0.824 0.012

same as misclassification penalty discussed in Bischl et al. (2016). However, we have used the term
Perf. gap because we think it is more intuitive and applicable to non-classification scenarios.

Figure 23 shows the mean performance gap of the 3 portfolios using 10-fold cross validation for
OpenML Weka algorithms for different values of €. A lower gap is preferred as it indicates the
portfolio has better algorithms. The vertical lines at each point show the standard errors. We see that
airt generally has lower performance gaps. The number of algorithms in the airt portfolio changes
with €. For each ¢, as the limiting number of algorithms (the maximum x value) we select the
minimum number of algorithms from airt, Shapley and topset. For € = 0 airt selects 6 algorithms,

37

KANDANAARACHCHI AND SMITH-MILES

1.00 1.00 4 Algorithm
=== 2364_IBk = J48
— 2889 |Bk = JRip
== 8990_MLP == LADTree
0.754 m 0.754 — 8994_MLP — LMT
ﬁ § — 8995 MLP — Logistic
§ é’ — AdaB_DSt — LogitBoost_DSt
g E — AdaB_J48 — NaiveBayes
% 0507 '_"; 0507 —— AdaB_NaiveBayes == OLM
< _*E — Bagging_REPTree == OneR
g g == BayesNet === RandomForest
0.251 e 0.251 === ConjunctiveRule === RandomTree
=== DecisionTable === REPTree
=== FURIA === SimpleCart
=== HoeffdingTree === SMO_PolyKernel
0.004 0.004 === HyperPipes === SMO_RBFKernel
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Effectiveness Tolerance Effectiveness Tolerance
1.00 4 1.00 Algorithm
® 2364 1Bk ° J48
o e 2889 _IBk ® JRip
’ ® 8990_MLP ® L|ADTree
0.754 0757 » ® 8994 MLP o LMT
‘:". ® 8995 MLP ® Logistic
— ® AdaB_DsSt ® LogitBoost_DSt
T% (uﬂ ® AdaB_J48 ® NaiveBayes
w 7 S 0501 ® AdaB NaiveBayes ® OLM
[a] < _|
O ® Bagging_REPTree ® OneR
® BayesNet ® RandomForest
0254 0254 @ ConjunctiveRule ® RandomTree
® DecisionTable ® REPTree
° ® FURIA ® SimpleCart
- ® HoeffdingTree ® SMO_PolyKernel
0.004 0.00..." ® HyperPipes ® SMO_RBFKernel

0.00 0.25 0.50 0.75 1.00
AUAEC

0.00 0.25 0.50 0.75 1.00
Scaled Absolute Errol

Figure 22: Model goodness metrics for classification algorithms: the actual and predicted effective-
ness curves on the top row and the CDFs F(p;) and (AUAEC, AUPEC) on the bottom row.

which decides the limiting number of algorithms. For other € values Shapley decides the limiting
number of algorithms in this example. For each fold, different algorithms may get selected by
different portfolio selection methods. Thus, for n = 14 standard errors are not computed because 14
algorithms are selected only in 1 fold.

38

ALcorITHM PorTFOLIO EvaLUATION USING IRT

epsilon=0 epsilon=0.01 epsilon=0.05
0.100- 0.10-

0.075-

0.06 -)'\

g
8 | |
8 \ Portfolio
8 i !
£ 0.06 - 1 airt
L Y —e— shapley
(<] 1
% 0.050-] | topset
8
s 0.04 -
| 0.04- |
V ‘
0.025- v
0.02- + 0.02- !
2 4 6 5 10 5 10

Number of Algorithms in Portfolio

Figure 23: Performance analysis of Shapley, topset and airt portfolios for different e values. The
mean cross-validated performance gap is shown with standard errors denoted by vertical lines.

Table 6: Additional ASIib case studies. Mean Performance Gap (MPG) of a portfolio of 5 algorithms
is reported using 10-fold CV with the best in bold.

Scenario Measurement Num. Num. Al- airt MPG Shapley topset
Obs. gorithms MPG MPG
OPENML_WEKA accuracy 105 31 0.0553 0.0631 0.0556
ASP_POTASSCO runtime 1294 11 78.0 92.7 77.8
CSP_MINIZINC_2016 parl0O 100 21 1962 2371 2026
GRAPHS_2015 runtime 5725 8 1689346 6127229 6763210
MAXSAT_PMS_2016 parl0O 601 20 1019 1469 1305
PROTEUS_2014 runtime 4021 23 293 648 1125
SAT11_INDU runtime 300 19 882 826 855
SAT12_ALL runtime 1614 32 456 523 683
SAT18_EXP_ALGO runtime 353 38 1677 1823 1822
BNSL_2016 runtime 1179 9 1210 1448 2030

39

KANDANAARACHCHI AND SMITH-MILES

5.2 Additional case studies

We conduct shorter analyses for 9 additional ASIib scenarios, which are given in Appendix A. We
explore the latent trait curves, strengths and weaknesses of algorithms for € € {0,0.05} and compare
different algorithm portfolios. As each scenario other than OPENML-Weka has runtimes or par10
values as the evaluation metric, we transform these values by multiplying with -1 and scaling to the
interval [0, 1] with 1 denoting good performance and 0 denoting poor performance. Some summary
statistics of these analyses are given in Table 6. As it is difficult to encapsulate the strengths and
weaknesses or the latent trait curves by a single numeric value, we give the mean performance gap
of the portfolios with 5 algorithms in Table 6. Figures of the mean performance gap for different
number of algorithms with standard errors and other details are given in the Appendix.

For most scenarios airt performs well. Even though airt does not perform well for SAT11_INDU,
from the MPG curves in the Appendix we see that the standard errors of the different portfolios
overlap. We also see that the latent trait curves for SAT11_INDU are all bundled up together. This
tells us that SAT11_INDU algorithms are similar in performance. From other scenarios, we notice
that airt is better at identifying a good portfolio of algorithms when algorithms are diverse, i.e.,
when the latent trait curves display high variability. The construction of the latent trait 6 involves
IRT discrimination and difficulty parameters as well as the actual performance. Therefore, selecting
algorithms based on fitting splines to 6 takes into account this underlying hidden quantity uncovered
by IRT that denotes the dataset difficulty spectrum. This allows us to select a good portfolio of
algorithms when a diverse set of algorithms are present. This is another use of AIRT in addition to
its exploratory aspect.

6. Conclusions

Beyond standard statistical analysis, which often hides useful insights, there are not many techniques
that can be used to rigorously evaluate a portfolio of algorithms and identify their strengths and
weaknesses. One such technique is the instance space analysis methodology which can be used
to visualize the strengths and weaknesses of algorithms. As the instance space incorporates both
the algorithms and the test instances, computing features of test instances is an essential step to
constructing an instance space. Devising suitable features of test instances that capture their intrinsic
difficulties for algorithms is a significant challenge that can limit the applicability of the method. In
this paper we have taken a different approach to achieve the same goal that avoids the need to devise
instance features. We have presented AIRT, an IRT based algorithm evaluation method, which
evaluates algorithms using only performance results. We demonstrated its usefulness on a diverse
set of algorithm portfolios arising from a wide variety of problem domains. The scenarios used are
taken from the ASlib repository containing algorithm implementations with given parameter and
hyperparameter settings. We have not explored different parameter settings in this study and this is
a limitation. Each parameter setting would give rise to a different algorithm implementation that
would result in a different algorithm curve. Thus, by considering a single algorithm with different
parameter settings, AIRT has potential to select parameter settings that are advantageous for easy or
difficult problems.

Recasting the IRT framework as an inverted model, AIRT focuses on evaluating algorithm attributes
such as consistency, anomalousness and difficulty limit thereby helping to broaden the understanding

40

ALcorITHM PorTFOLIO EvaLUATION USING IRT

of algorithm behaviors and their dependence on test instances. AIRT can be used to visualize the
strengths and weaknesses of algorithms in different parts the problem space. Using algorithms
with strengths we construct an algorithm portfolio and show that it has a low performance gap
compared to other portfolios. In addition, IRT model goodness measures can be derived, showing
the level of trustworthiness of the underlying IRT model. Due to the fact that AIRT extends the
IRT framework, it also has the desirable mathematical and optimality properties inherited from the
embedded maximum likelihood estimation techniques. Furthermore, the explainable nature of IRT
parameters gets translated to the algorithm evaluation domain.

As future research avenues we plan to consider the role of AIRT in parameter selection and alternative
remappings of the IRT framework to increase understanding of the strengths and weaknesses of
dataset repositories, thereby providing means to select an unbiased yet diverse collection of datasets,
drawing deeper insights into their abilities to support meaningful conclusions about algorithm
strengths and weaknesses.

Acknowledgments

Funding was provided by the Australian Research Council through the Australian Laureate Fel-
lowship FL.140100012, and the ARC Training Centre in Optimisation Technologies, Integrated
Methodologies and Applications (OPTIMA) under grant IC200100009. The authors would like to
thank Prof Rob J. Hyndman for his suggestion of the name AIRT for our method.

Supplementary Material

The algorithm performance datasets used in this paper are found athttps: //github.com/coseal/
aslib_data and the programming scripts using AIRT are available at
https://github.com/sevvandi/airt-scripts.

References

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette,
Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren. ASlib:
A benchmark library for algorithm selection. Artificial Intelligence, 237:41-58, 2016. ISSN
00043702. doi: 10.1016/j.artint.2016.04.003.

Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke, Benjamin
Hofner, Heidi Seibold, Joaquin Vanschoren, and Bernd Bischl. Openml: An r package to connect
to the machine learning platform openml. Computational Statistics, 34(3):977-991, 2019.

R. Chalmers. mirt: A Multidimensional Item Response Theory Package for the R Environment.
Journal of Statistical Software, Articles, 48(6):1-29, 2012. ISSN 1548-7660. doi: 10.18637/jss.
v048.i06.

Yu Chen, Ricardo BC Prudéncio, Tom Diethe, Peter Flach, et al. 8>-IRT: A New Item Response
Model and its Applications. arXiv preprint, arXiv:1903.04016, 2019.

41

https://github.com/coseal/aslib_data
https://github.com/coseal/aslib_data
https://github.com/sevvandi/airt-scripts

KANDANAARACHCHI AND SMITH-MILES

Andrew Cooper and Konstantinos Vassilis Petrides. A psychometric analysis of the Trait Emotional
Intelligence Questionnaire—Short Form (TEIQue-SF) using item response theory. Journal of
Personality Assessment, 92(5):449-457, 2010.

A.E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing evolutionary algorithms.
Swarm and Evolutionary Computation, 1(1):19-31,2011. ISSN 22106502. doi: 10.1016/j.swevo.
2011.02.001.

Susan E Embretson and Steven P Reise. Item Response Theory. Psychology Press, 2013.

Alexandre Frechette, Lars Kotthoff, Tomasz Michalak, Talal Rahwan, Holger H. Hoos, and Kevin
Leyton-Brown. Using the shapley value to analyze algorithm portfolios. In 30th AAAI Conference
on Artificial Intelligence, AAAI 2016, pages 3397-3403, 2016. ISBN 9781577357605.

Bernadette Gray-Little, Valerie S.L. Williams, and Timothy D. Hancock. An item response theory
analysis of the Rosenberg self-esteem scale. Personality and Social Psychology Bulletin, 23(5):
443-451, 1997. ISSN 01461672. doi: 10.1177/0146167297235001.

M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, and I H Witten. The WEKA data
mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10-18, 2009. ISSN
1931-0145.

Nicholas G Hall and Marc E Posner. The generation of experimental data for computational testing in
optimization. In Experimental methods for the analysis of optimization algorithms, pages 73—-101.
Springer, 2010.

Ronald K Hambleton and Hariharan Swaminathan. Item Response Theory: Principles and Applica-
tions. Springer Science & Business Media, 2013.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

John N Hooker. Needed: An empirical science of algorithms. Operations research, 42(2):201-212,
1994.

John N Hooker. Testing heuristics: We have it all wrong. Journal of heuristics, 1(1):33-42, 1995.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical
learning, volume 112. Springer, 2013.

Sevvandi Kandanaarachchi. airt: Evaluation of Algorithm Collections Using Item Response Theory,
2020. URL https://cran.r-project.org/web/packages/airt/index.html. R package
version 0.1.0.

Sevvandi Kandanaarachchi. Unsupervised anomaly detection ensembles using item response the-
ory. Information Sciences, 587:142-163, 2022. ISSN 0020-0255. doi: https://doi.org/10.
1016/.ins.2021.12.042. URL https://www.sciencedirect.com/science/article/pii/
S0020025521012639.

42

https://cran.r-project.org/web/packages/airt/index.html
https://www.sciencedirect.com/science/article/pii/S0020025521012639
https://www.sciencedirect.com/science/article/pii/S0020025521012639

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Sevvandi Kandanaarachchi, Mario A Muifioz, Rob J] Hyndman, and Kate Smith-Miles. On normal-
ization and algorithm selection for unsupervised outlier detection. Data Mining and Knowledge
Discovery, 34:309—354, 2019. doi: https://doi.org/10.1007/s10618-019-00661-z.

Y. Kang, R.J. Hyndman, and K. Smith-Miles. Visualising forecasting algorithm performance using
time series instance spaces. International Journal of Forecasting, 33(2):345-358, 2017. ISSN
0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2016.09.004.

Markelle Kelly, Aakriti Kumar, Padhraic Smyth, and Mark Steyvers. Capturing Humans’ Mental
Models of Al: An Item Response Theory Approach. In FAccT ’23: 2023 ACM Conference on
Fairness, Accountability, and Transparency, Chicago, IL, USA, June 2023, pages 1723-1734,
2023. doi: 10.1145/3593013.3594111.

Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey of trends and
technologies. Artificial Intelligence Review, 44(1):117-130, 2015. ISSN 15737462. doi: 10.
1007/s10462-013-9406-y.

David Lewis. Causal Explanation. In Philosophical Papers Vol. Ii, pages 214-240. Oxford University
Press, 1986.

Marius Lindauer, Jan N. van Rijn, and Lars Kotthoff. Open Algorithm Selection Challenge 2017:
Setup and Scenarios. In Proceedings of the Open Algorithm Selection Challenge, volume 79 of
Proceedings of Machine Learning Research, pages 1-7. PMLR, 11-12 Sep 2017.

Frederic M Lord. Applications of Item Response Theory to practical testing problems. Routledge,
1980.

Nuria Marcia and Ester Bernad” o Mansilla. Towards UCI+: a mindful repository design. Information
Sciences, 261(10):237-262, 2014.

Fernando Martinez-Plumed, Ricardo BC Prudéncio, Adolfo Martinez-Usd, and José Hernandez-
Orallo. Item Response Theory in Al: Analysing machine learning classifiers at the instance level.
Artificial Intelligence, 271:18-42, 2019.

Catherine C McGeoch. Toward an experimental method for algorithm simulation. INFORMS
Journal on Computing, 8(1):1-15, 1996.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1-38, 2019. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2018.07.007.
URL https://www.sciencedirect.com/science/article/pii/S0004370218305988.

M.A. Muiioz and K.A. Smith-Miles. Performance analysis of continuous black-box optimization
algorithms via footprints in instance space. Evol. Comput., 25(4):529-554, 2017. doi: 10.1162/
EVCO_a_00194.

Mario A. Muifioz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. Instance spaces for
machine learning classification. Machine Learning, 107(1):109-147, 2018.

Oxford English Dictionary, June 2016. URL https://www.oed.com/view/Entry/66604. Ac-
cessed on 2023-07-17.

43

https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.oed.com/view/Entry/66604

KANDANAARACHCHI AND SMITH-MILES

Mark D Reckase. Multidimensional item response theory models. In Multidimensional item response
theory, pages 79-112. Springer, 2009.

John R. Rice et al. The algorithm selection problem. Advances in computers, 15(65-118):5, 1976.

Dimitris Rizopoulos. Itm: An R Package for Latent Variable Modeling and Item Response Analysis.
Journal of Statistical Software, Articles, 17(5):1-25, 2006. ISSN 1548-7660. doi: 10.18637/jss.
v017.i05.

Fumiko Samejima. Estimation of latent ability using a response pattern of graded scores. Psychome-
trika monograph supplement, 34:1-97, 1969.

Fumiko Samejima. Homogeneous case of the continuous response model. Psychometrika, 38(2):
203-219, 1973. ISSN 00333123.

Fumiko Samejima. Normal ogive model on the continuous response level in the multidimensional
latent space. Psychometrika, 39(1):111-121, 1974. ISSN 00333123. doi: 10.1007/BF02291580.

Galit Shmueli. To explain or to predict? Statistical Science, 25(3):289-310, 2010. ISSN 08834237.
doi: 10.1214/10-STS330.

Kojiro Shojima. A noniterative item parameter solution in each EM cycle of the continuous response
model. Educational technology research, 28(1):11-22, 2005. ISSN 0387-7434.

Kate Smith-Miles and Simon Bowly. Generating new test instances by evolving in instance space.
Computers & Operations Research, 63:102-113, 2015.

Kate Smith-Miles and Thomas T Tan. Measuring algorithm footprints in instance space. In 2012
IEEE Congress on Evolutionary Computation, pages 3446-3453. IEEE, 2012.

Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis. Towards objective
measures of algorithm performance across instance space. Computers & Operations Research,
45:12-24, 2014.

Wim J van der Linden and Ronald K Hambleton. Handbook of modern Item Response Theory.
Springer Science & Business Media, 2013.

J N van Rijn. Massively Collaborative Machine Learning. PhD thesis, 2016. URL https:
//openaccess.leidenuniv.nl/handle/1887/44814.

Ricardo Vilalta, Christophe Giraud-Carrier, and Pavel Brazdil. Meta-learning-concepts and tech-
niques. In Data mining and knowledge discovery handbook, pages 717-731. Springer, 2009.

Tianyou Wang and Lingjia Zeng. Item parameter estimation for a continuous response model using
an EM algorithm. Applied Psychological Measurement, 22(4):333-344, 1998. ISSN 01466216.

Lin Xu, Frank Hutter, Jonathan Shen, and HH Hoos. SATzilla2012: Improved Algorithm Selection
Based on Cost-sensitive Classification Models. In Proceedings of SAT, 2012.

Wendy M. Yen. the Choice of Scale for Educational Measurement: an Irt Perspective. Journal of
Educational Measurement, 23(4):299-325, 1986. ISSN 17453984. doi: 10.1111/j.1745-3984.
1986.tb00252 .x.

44

https://openaccess.leidenuniv.nl/handle/1887/44814
https://openaccess.leidenuniv.nl/handle/1887/44814

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Yvonnick Noel and Bruno Dauvier. A Beta Item Response Model for Continuous Bounded Re-
sponses. Applied Psychological Measurement, 31(1):47-73, 2007.

Appendix A. ASlib scenarios

In this section we explore 9 ASlib scenarios: ASP-POTASSCO, CSP-MiniZinc-Time-2016, GRAPHS-
2015, MAXSAT-PMS-2016, PROTEUS-2014, SAT11-INDU, SAT12-ALL, BNSL-2016 and SAT18-
EXP-ALGO. For each scenario we fit an AIRT model and conduct a smaller analysis compared to
the OpenML-Weka example in Section 5.1. Using the fitted model, we plot the latent trait curves.
Then we compute the strengths and weaknesses of algorithms on the dataset difficulty spectrum for
€ = 0 and € = 0.05. By visualizing this spectrum, we see which algorithms have strengths for easy
problems and which ones are better suited for difficult problems. Similarly, we see their weaknesses
as well. Using 10-fold cross validation, we evaluate airt, topset and Shapley algorithm portfolios
and examine the mean performance gap as explained previously.

A.0.1 ASP_POTASSCO

Figure 24 shows the analysis for ASP_POTASSCO scenario. Algorithm clasp/2.1.3/h3-nl is the
weakest in the portfolio as we can see from the strengths and weaknesses figure and the latent trait
curves. Algorithm clasp/2.1.3/h1-nl is better suited for difficult problems as seen by the hump in
the latent trait curve around ¢ ~ 1. Many algorithms perform well for very easy problems as seen by
the leftmost part of the strengths in the problem difficulty spectrum. A point of interest about these
curves is that some curves, including that of clasp/2.1.3/h1-nl, have a turning point around ¢ ~ 0.75
followed by a positive slope, signifying an improvement in performance, culminating at 6 ~ 1.25
before decreasing again. This shows locally anomalous behavior for ¢ in that region for certain
algorithms. The cross-validated mean performance gap of different algorithm portfolios show that
for n € {1,...,5} airt is similar to either Shapley or topset, but for n € {6,...,9} airt has a lower
mean performance gap. However, the standard errors show that the differences are not significant.

A.0.2 CSP_MintZinc_2016

Figure 25 shows the analysis for CSP_MiniZinc_2016. The latent trait curves are spread out well and
thus show high variability. This has resulted in a sparse set of strengths and weaknesses. Even though
there are many algorithms, only a few exhibit strengths and similarly only a few have weaknesses
at other places apart from the rightmost end, which has the most difficult problems. As seen from
the latent trait curves and the strengths and weaknesses figure, algorithm LCG-Glucose-UC-free
shows continued strength for difficult and semi-difficult problems. Algorithm MZN/Gurobi-free is
better suited for easy and very difficult problems. The weakest algorithm is Picat-CP-fd, which is
weak for easy and semi-difficult problems. While many algorithms are good for easy problems, both
LCG-Glucose-UC-free and LCG-Glucose-free displays strengths for a large region of the problem
space for € = 0.05. The cross-validated mean performance gap graphs show that airt and topset
behave similarly, while Shapley has higher mean performance gaps initially but converges with airt
and topset for higher n.

45

Performance

Mean Performance Gap

KANDANAARACHCHI AND SMITH-MILES

1.00 4

0.754

e

3

=}
L

0.254

0.001

Strengths Weaknesses

Portfolio —#— airt —e— shapley —*— topset

-1 0

3

Dataset difficulty

6
Number of Algorithms

2101 2-10 1
Dataset Difficulty

9

I
o

=3

S0°0

Algorithm

. clasp/2.1.3/h1-n1
clasp/2.1.3/h10-n1

clasp/2.1.3/h11-n1
clasp/2.1.3/h2-n1
clasp/2.1.3/h3-n1
clasp/2.1.3/h4-n1
clasp/2.1.3/h5-n1
clasp/2.1.3/h6-n1
clasp/2.1.3/h7-n1
clasp/2.1.3/h8-n1
clasp/2.1.3/h9-n1

Figure 24: Latent trait curves, strengths and weaknesses and 10-fold CV portfolio comparison for
ASP_POTASSCO scenario.

Performance

Mean Performance Gap

1.001

0.754

bt

o

o
L

0.254

0.004

Strengths Weaknesses

@
1l
o

2500 -

2000 -

1500 -

Portfolio —e— airt —-e— shapley —o— topset

Dataset difficulty

Number of Algorithms

S0'0=2

Dataset Difficulty

Algorithm

. Chuffed-free
Concrete—free
G12FD-free
Gecode-free
HaifaCSP-free
iZplus—free
LCG-Glucose-free
LCG-Glucose-UC-free
MinisatlD-free
Mistral-free
MZN/Cbc-free
MZN/CPLEX-free
MZN/Gurobi-free
MZN/SCIP-free
Picat-CP-fd
Picat-SAT-free
SICStus-Prolog-fd

Figure 25: Latent trait curves, strengths and weaknesses and 10-fold CV portfolio comparison for
CSP_MiniZinc scenario.

46

ALcorITHM PorTFOLIO EvaLUATION USING IRT

A.0.3 Grarus_2015

Figure 26 shows the analysis for Graphs_2015. From the latent trait curves and the strengths and
weaknesses figure we see that glasgow?2 and glasgow3 are suited for a large part of the problem
space. supplemantallad is good for easy and very difficult problems and many algorithms have
strengths for easy problems. The weakest algorithm is vf2 as seen from the weaknesses spectrum.
For dataset difficulty 6 < 0.5, all algorithms apart from vf2 perform well. However, after that point,
the algorithms diverge in their performance as seen from the curves. The cross-validated mean
performance gap of different portfolios show that airt has the smallest performance gap for most .

A.0.4 MAXSAT-PMS-2016

Figure 27 shows the analysis for MaxSAT-PMS-2016 scenario. Immediately we see variety in the
latent trait curves. Some curves have low performance values for most part of the space, which is
different from the other scenarios we examined so far. Some curves have varying behavior with
curved sections. In the strengths diagram, we see many algorithms having strengths for easier
problems. Of the algorithms, 15 have strengths for dataset difficulty 6 < 0 when € = 0.05. These are
the easy problems. For the easy problems, any of these algorithms would give good performances.
Only 8 algorithms have strengths for 0 < 6 < 1 and of these only 5 have strengths for 6 > 1.
LMHS-2016 and maxhs-b are better suited for harder problems. In the weaknesses space we see that
CCLS2akms and CCEHC2akms are very weak algorithms. The cross-validated mean performance
gap shows that airt performs better compared to the other two portfolios. The topset portfolio has
a sudden jump at n = 6, possibly due to including a volatile algorithm, which gets mitigated with
subsequent algorithm additions to the portfolio.

A.0.5 PROTEUS-2014

The latent curves of PROTUES-2014, shown in Figure 28 have many wiggles. Four curves achieve
local minima at dataset difficulty 6 =~ —0.2. After that point, their performance increase for some
part of the dataset difficulty spectrum, i.e., as the dataset difficulty increases, the performance of
these algorithms get better. Thus, these algorithms are locally anomalous. They are not anoma-
lous throughout the spectrum, but they have regions of locally anomalous behaviour. Algorithms
claspenf_support, claspenf_direct and claspenf _directorder display strengths for a large part of the
problem space including difficult problems. Algorithm gecode is the weakest algorithm as seen
by the latent trait curves and the strengths and weaknesses diagram. The cross-validated mean
performance gap curves show that airt performs better than the other two portfolios. The standard
errors for both topset and airt are very low making them not clearly visible in the diagram.

A.0.6 SAT11-INDU

Figure 29 shows the analysis of SAT11-INDU. We see that most algorithms have similar-shaped
latent trait curves. We do not know if the algorithms were preselected, which might account for
this behaviour. The similarity of the curves implies some similarity of performance between the
algorithms. In the strengths diagram many algorithms have strengths for easy and semi-difficult
problems. In the weaknesses diagram, we see a curious occurrence: many algorithms display weak-
nesses in the middle of the spectrum as well as on the difficult end of the spectrum. This is because
the curves are packed together for most part of the problem space. Algorithm glucose_2 occupies

47

KANDANAARACHCHI AND SMITH-MILES

Strengths Weaknesses
I .
S Algorithm
. glasgowl
- . glasgow2
. glasgow3
@
g, glasgow4
o
2l lad
supplementallad
o -

4
Dataset Difficulty

-

1.00 1 Portfolio —#— airt —e— shapley —*— topset
0.754 o 1.0e+07-
[} <
e O]
g ©
£ Q 7.5e+06 -
C
5 0.501 S
s E
a L 5.0e+06-
0.254 &
§ 2.5e+06
S “ e
0.00 =
' T T T l l l Ll I l U
2 3 4 5 6 7
Dataset difficulty Number of Algorithms

Figure 26: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for
Graphs_2015 scenario.

1.24 Strengths Weaknesses

(] 1§ .
Algorithm
-I I ahms-1.70

ahms-Is-1.70
CCEHC2akms

o
©
L

CCLS2akms

Performance
o
(2]
f

o
w
\

LMHS-2016

maxhs-b

0.0 maxino16-c10

maxinol16-dis
Dataset difficulty mscg2015a

mscg2015b

S0°0=2

Portfolio —e— airt —-e— shapley —o— topset Naps-1.02-ms

Open-WBO15

4000 -

3000 -

2000 -

1000 -
' ' ' ' ' '
2

Number of Algorithms Dataset Difficulty

Open-WBO16
Optiriss6

QMaxSAT14
QMaxSAT16UC
WMaxSatz+
WMaxSatz09
WPM3-2015-co

Mean Performance Gap

U S R B I '
-2-10 1 2-2-101 2

Figure 27: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for

MAXSAT_PMS 2016 scenario.
48

ALcorITHM PorTFOLIO EvaLUATION USING IRT

the highest proportion of the latent trait. From the strengths and weaknesses figure we see that
QuteRSat_2011-05-12_fixed is strong for difficult problems. Notably minisathackcontrasat_2011-
03-02 is weak for easy problems. The cross-validated performance gap curves show that Shapley
performs better than the others, but the standard errors of the 3 portfolios overlap for most values of
n.

A.0.7 SATI12-ALL

SAT12-ALL scenario contains SATzilla 2012 competition (Xu et al., 2012) results on algorithm
performance. Figure 30 shows the latent trait curves, strengths and weaknesses and performance
comparison of different portfolios. The curves have diverse characteristics: some curves have an
initial downward trend showing that they are weak for most part of the space but later trend upward
indicating that they perform better for more difficult test instances. Another set of curves give good
performances for easy problems with 6 < —1 and decrease in performance after that. Algorithms
mphaseSATm and mphaseSAT are strong for a large part of the problem space including difficult
instances. Algorithms spear-sw and eagleup are weak for most parts of the space. The cross-
validated mean performance gap curves show that airt has a lower gap compared to the other 2
portfolios.

A.0.8 BNSL-2016

Figure 31 shows the analysis for BNSL-2016 scenario. Algorithms ilp-141 and ilp-141-nc have
similar latent trait curves. Similarly, ilp-162 and ilp-162-nc are also similar. Furthermore, astar-ec
and astar-ed3 have similar curves. Lastly, cpbayes and astar-comp have somewhat similar curves.
Algorithms cpbayes and astar-comp display strengths for easy and very difficult problems while
astar-ec and astar-ed3 are weak for most of the problem space. Algorithms ilp-141, ilp-141-nc,
ilp-162 and ilp-162-nc have strengths for a large part of the problem space. Algorithm portfolio
comparison shows that airt achieves good performance.

A.0.9 SATI18-EXP-ALGO

Figure 32 shows the analysis for SAT18_EXP_ALGO scenario. The latent trait curves are somewhat
similar, but not too similar as in SAT11_INDU. The algorithm YalSAT, depicted by a gray shade,
is weak for easier instances and strong for difficult instances. Hence is comes up in both strengths
and weakness diagrams. Remarkably, the latent trait curve appears at the bottom on the left hand
side and bends and ends up at the top at the right-most side. Another upward bend is observed
at 6 = —0.5 by Maple_CM_Dist algorithm showing a unique strength of this algorithm. The airt
portfolio achieves good performance for this scenario.

49

KANDANAARACHCHI AND SMITH-MILES

Algorithm
Strengths Weaknesses
1} abscon glucose_support
choco lingeling_direct
[|
I — . claspenf_direct . lingeling_directorder
claspenf_directorder lingeling_support
? claspenf_support minisat22_direct
g cryptominisat_direct minisat22_directorder
o
— cryptominisat_directorder minisat22_support
. cryptominisat_support . mistral_nj
u ™ gecode riss3g_direct
; ; ; ; ; ; ; ; glucose_direct riss3g_directorder
-1 . glucose_directorder . riss3g_support
1.001 Portfolio —=— airt —e— shapley —— topset
0.754 %2000-
8 o
] ©
E 0.501 g 1500~
S]
= £
g S 1000
& 0251 5
a
g
500 -
0001 % .—.—Q/kfa__—.——./.
T T T T ' ' ' '
-1 0 1 2 2 4 6 8
ataset difficul umber of orithms
Dataset difficult Number of Algorith

Figure 28: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for
PROTEUS_2014 scenario.

Strengths Weaknesses

Algorithm

0=2

S0°0=3
I [I N N

CryptoMiniSat_Strange—-Night2-st_fixed_
EBGlucose_1.0

glucose_2

glueminisat_2.2.5
Lingeling_587f_fixed_

minisathackcir_minisat_2011-05-13_simp_

minisathackcontrasat_2011-03-02

minisathackEBMIiniSAT_2011-03-02
minisathackLR_GL_SHR_2011-03-02
minisathackMiniSAT_2.2.0-agile-26

minisathackminisat_psm_2011-04-01

minisathackreferenceminisat_2.2.0
MPhaseSAT64_2011-05-14_fixed_
QuteRSat_2011-05-12_fixed_
rcl_2011-04-01

RestartSAT_B95

. I SATO9referencesolverglucose_1.0
' ' SATO9referencesolverprecosat_236
-2 -1 0 1

-2 -1 0 1
Dataset Difficulty
1.004 Portfolio -#- airt —e— shapley —e- topset
1100-
0.75
g
Q
e O 1000-
g 3
£ 0.50 c
<] ©
s £ 900-
& g
fi}
0.25 a
c
8 800-
=
0.00
-2 -1 0 1 5 10 15
Dataset difficulty Number of Algorithms

Figure 29: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for
SAT11_INDU scenario.. 50

ALcorITHM PorTFOLIO EvaLUATION USING IRT

Strengths Weaknesses Algorithm
i
. claspl . mphaseSAT64
clasp2 mphaseSATm
cryptominisat2011 mxc09
. eagleup . picosat
ebglucose precosat
ebminisat qutersat
i glucose2 rcl
o
S glueminisat restartsat
. gnoveltyp2 . sapperlot
lingeling sattime
Irglshr sol
marchrw sparrow
minisatpsm spear-hw
. mphaseSAT . spear-sw
Portfolio —=- airt —e— shapley —e- topset
0.8+
700~
g
8 o
c
<3 8 600~
£ 0.4+ =1
S [
s £
o £ 500-
o
o
c
0.0- g
S 400-
300-
T T T T ' ' ' ' '
-2 -1 0 1 0 5 10 15 20
Dataset difficulty Number of Algorithms

Figure 30: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for
SAT12_ALL scenario.

Strengths Weaknesses

_—

[
2 - 4 0 1 2

Dataset Difficulty

Portfolio —#— airt —e— shapley —*— topset
0.94 2100-
1800-
0.64
0.34
1200 -
0.04 900 -
v v T T T
-2 -1 0 1 2

=3

Algorithm

astar-comp
astar-ec

astar-ed3

0:

£}

cpbayes

B ip-1a1

G0°0=

_ e
ilp-162-nc

-1 0 1

Performance
=
&
o
o
;

Mean Performance Gap

2 3 4 5
Dataset difficulty Number of Algorithms

o-

Figure 31: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for
BNSL_2016 scenario..

51

KANDANAARACHCHI AND SMITH-MILES

Strengths Weaknesses Algorithm
[—
L

|
S0'0=
EEEEEEE NN

abcdsat_r18 Maple_CM

CabDiCaL Maple_CM_Dist
Candy Maple_CM_ordUIP

cms55-main-all4fixed Maple_CM_ordUIP+

COMiniSatPS_Pulsar_drup Maple_LCM_M1

expGlucose Maple_LCM_Scavel_200_fix2

| expMC_LRB_VSIDS_Switch
expMC_LRB_VSIDS_Switch_2500
expMC_VSIDS_LRB_Switch_2500

GHackCOMSPS_drup

Maple_LCM_Scavel_fix2
Maple_LCM+BCrestart
Maple_LCM+BCrestart_M1

<]

MapleCOMSPS_CHB_VSIDS_drup
glu_mix MapleCOMSPS_LRB_VSIDS_2._fix
Glucose_Hack_Kiel_fastBVE
glucose-3.0_PADC_10

glucose-3.0_PADC_3

MapleCOMSPS_LRB_VSIDS_drup
MapleLCMDistChronoBT
Minisat-v2.2.0-106—ge2dd095

glucose3.0 Riss7.1-fix
|
- glucose4.2.1 smallsat
4 gluHack Sparrow2Riss—2018—fixfix
inIDGlucose YalSAT
' ' ' v ' ' '
-2 -1 0 1 -2 -1 0 1 Lingeling

Dataset Difficulty

Portfolio —*— airt —— shapley —— topset
2500-
g
g 8
c
IS o
£ e
S @ 2000-
£ :
g 15
3]
o b
g
@ 1500-
=
T T T \ \ ' .]
-1 0 1 0 5 10 15 20
Dataset difficulty Number of Algorithms

Figure 32: Strengths and weaknesses, latent trait curves and 10-fold CV portfolio comparison for
SAT18_EXP_ALGO scenario..

52

	Introduction
	IRT: Traditional setting and new mapping
	Dichotomous and polytomous IRT models
	Continuous IRT models
	Applications to machine learning and algorithm evaluation

	Algorithmic IRT (AIRT)
	Framework
	 Dataset metric: Difficulty score
	Algorithm metric: Anomalous indicator
	 Algorithm metric: Algorithm consistency score
	 Algorithm metric: Difficulty limit

	 Evaluating algorithm portfolios using AIRT
	Modelling algorithm performance based on dataset difficulty
	Strengths and weaknesses of algorithms
	Algorithm portfolio selection
	IRT Model goodness measures
	Predicted and actual effectiveness
	Computational complexity of AIRT

	Results
	 Detailed case study: Classification
	AIRT algorithm metrics
	Strengths and weaknesses of algorithms via AIRT
	AIRT model goodness metrics
	Algorithm portfolio selection

	Additional case studies

	Conclusions
	ASlib scenarios
	ASP_POTASSCO
	CSP_MiniZinc_2016
	Graphs_2015
	MAXSAT-PMS-2016
	PROTEUS-2014
	SAT11-INDU
	 SAT12-ALL
	 BNSL-2016
	 SAT18-EXP-ALGO

