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Abstract

Measuring conditional dependence is one of the important tasks in statistical inference and
is fundamental in causal discovery, feature selection, dimensionality reduction, Bayesian
network learning, and others. In this work, we explore the connection between conditional
dependence measures induced by distances on a metric space and reproducing kernels
associated with a reproducing kernel Hilbert space (RKHS). For certain distance and kernel
pairs, we show the distance-based conditional dependence measures to be equivalent to
that of kernel-based measures. On the other hand, we also show that some popular kernel
conditional dependence measures based on the Hilbert-Schmidt norm of a certain cross-
conditional covariance operator, do not have a simple distance representation, except in
some limiting cases.

Keywords: Conditional independence test, distance covariance, energy distance, Hilbert-
Schmidt independence criterion, reproducing kernel Hilbert space

1. Introduction

Measuring conditional dependence between random variables plays a fundamental role in
many statistical inference tasks such as causal discovery (Pearl, 2000; Spirtes et al., 2000),
supervised dimensionality reduction (Cook and Li, 2002; Fukumizu et al., 2004), conditional
independence testing (Su and White, 2007; Gretton et al., 2012), and others. Formally,
for random variables (X,Y, Z), X is said to be conditionally independent of Y given Z,
denoted as X Y |Z, if PXY |Z = PX|ZPY |Z a.s.-PZ , where the notation PX|Z denotes a
regular conditional probability defined as PX|Z(·) = E[1(X ∈ ·)|Z] a.s.-PZ , with PZ being
the marginal distribution of Z. Given a distance measure D on the space of probability
measures, D(PXY |Z , PX|ZPY |Z) measures the degree of conditional dependence between X
and Y given Z, with X Y |Z if and only if D(PXY |Z , PX|ZPY |Z) = 0 a.s.-PZ . Some popular
choices for D include the Kullback-Leibler divergence (more generally f -divergence), total
variation distance, Hellinger distance, Wasserstein distance, among others.
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Recently, a class of distances on probability measures induced by a Euclidean metric
on Rd—more generally by metrics of strongly negative type—, called the energy distance
(Székely and Rizzo, 2004) and distance covariance (Székely et al., 2007; Székely and Rizzo,
2009; Lyons, 2013) has gained popularity in nonparametric hypothesis testing (e.g., two-
sample and independence testing), because of their computational simplicity and elegant
interpretation. Wang et al. (2015) extended distance covariance to conditional distributions
on Rd to obtain a measure of conditional dependence, called conditional distance covariance
(CdCov) and has been applied in conditional independence testing. We refer to these class
of probability metrics as distance-based measures and point the reader to Section 3 for
preliminaries on distance-based measures.

On the other hand, in the machine learning literature, measures of dependence have
been formulated based on embedding of probability distributions into a reproducing kernel
Hilbert space (RKHS; Aronszajn, 1950). This embedding into RKHS allows to capture the
properties of distributions and has been used in many applications including homogeneity,
independence, and conditional independence testing (for example, see Muandet et al., 2017
and references therein). Formally, given a probability measure ν defined on a measurable
space X , and a RKHS Hk with the reproducing kernel k, ν can be embedded into Hk as

ν 7→
∫

X
k(·, x) dν(x) := µk(ν) ∈Hk,

where µk(ν) is called the mean element or kernel mean embedding of ν. Using this notion,
the kernel distance, also called as the maximum mean discrepancy (MMD) between two
probability distributions P and Q is defined as the distance between their mean elements
(Gretton et al., 2007), i.e., D(P,Q) = ‖µk(P)− µk(Q)‖Hk

. The kernel embedding and the
kernel distance are well-studied in the literature and their mathematical theory is well-
developed (Sriperumbudur et al., 2010, 2011; Sriperumbudur, 2016; Szabó and Sriperumbudur,
2018; Simon-Gabriel and Schölkopf, 2018; Simon-Gabriel et al., 2020). Generalizing this
notion of kernel embedding to distributions defined on product spaces yields a kernel measure
of dependence, called the Hilbert-Schmidt independence criterion (HSIC; Gretton et al., 2005,
Gretton et al., 2008, Smola et al., 2007), which can then be used as a measure of conditional
dependence by employing it to conditional probability distributions (Fukumizu et al., 2004,
2008). Fukumizu et al. (2004); Gretton et al. (2005) provided an alternate interpretation for
HSIC in terms of the Hilbert-Schmidt norm of a certain cross-covariance operator, based on
which the Hilbert-Schmidt norm of a conditional cross-covariance operator (we refer to it as
HSC̈IC) is then proposed as a measure of conditional dependence. We point the reader to
Sections 4 and 5 for details and refer to these class of probability metrics as kernel-based
measures.

Sejdinovic et al. (2013) established an equivalence between distance-based and kernel-
based dependence measures (i.e., distance covariance and HSIC) by showing that a repro-
ducing kernel that defines HSIC induces a semi-metric of negative type which in turn defines
the distance covariance (Székely et al., 2007, 2009), and vice-versa. However, despite the
striking similarity, the relationship between conditional distance covariance and related
kernel measures is not known. The goal of this work is to investigate the relationship
between distance and kernel-based measures of conditional independence, and in particular,
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understand whether these measures are equivalent (i.e., the distance measure can be obtained
from the kernel measure and vice-versa).

As our contributions, first, in Theorem 1 (Section 4.2), we generalize the conditional
distance covariance of Wang et al. (2015) to arbitrary metric spaces of negative type—we
call this as generalized CdCov (gCdCov)—and develop a kernel measure of conditional
dependence (we refer to it as HSCIC) that is equivalent to gCdCov. Therefore, it follows from
Theorem 1 that CdCov introduced by Wang et al. (2015) is a special case of the HSCIC. In
fact, the HSCIC we obtain is exactly the conditional dependence measure recently proposed
by Park and Muandet (2020). Second, in Theorem 2 (Section 5), we consider the kernel
measure of conditional dependence based on the Hilbert-Schmidt norm of the conditional
cross-covariance operator (i.e., HSC̈IC) and obtain its distance-based interpretation. We
show that this distance-based version of HSC̈IC does not have an elegant interpretation,
except in limiting cases where it is related to CdCov and gCdCov (see Corollaries 3 and 4).

The paper is organized as follows. Definitions and notation that are widely used
throughout the paper are collected in Section 2. The preliminaries on distance-based and
kernel-based measures are presented in Sections 3 and 4.1, respectively, while main results
are presented in Sections 4.2 and 5.

2. Definitions & Notation

For a non-empty set X , a function ρ : X ×X → [0,∞) is called a semi-metric on X if it
satisfies (i) ρ(x, x′) = 0 ⇔ x = x′ and (ii) ρ(x, x′) = ρ(x′, x). Then (X , ρ) is said to be a
semi-metric space. The semi-metric space, (X , ρ) is said to be of negative type if ∀n ≥ 2,
{xi}ni=1 ∈ X , and {αi}ni=1 ∈ R, with

∑n
i=1 αi = 0,

∑n
i=1

∑n
j=1 αiαjρ(zi, zj) ≤ 0. (X , ρ) is

said to be of strongly negative type if for all finite signed measures µ such that µ(X ) = 0,∫ ∫
ρ(x, y) dµ(x) dµ(y) < 0 for all µ 6= 0. A real-valued symmetric function k : X ×X → R

is called a positive definite (pd) kernel if, for all n ∈ N, {αi}ni=1 ∈ R and {xi}ni=1 ∈X , we
have

∑n
i,j=1 αiαjk(xi, xj) ≥ 0. A function k : X ×X → R, (x, y) 7→ k(x, y) is a reproducing

kernel of the Hilbert space (Hk, 〈·, ·〉Hk
) of functions if and only if (i) ∀x ∈X , k(·, x) ∈H

and (ii) ∀x ∈X , ∀f ∈Hk, 〈k(·, x), f〉Hk
= f(x) hold. If such a k exists, then Hk is called

a reproducing kernel Hilbert space.

X , Y and Z denote Polish spaces endowed with Borel σ-algebras. X, Y and Z denote
random elements in X , Y and Z , respectively. Ẍ is defined as (X,Z), which is a random
element in X × Z . The probability law of a random variable X is denoted by PX , the
joint probability law of random variables X and Z is denoted by PXZ and the regular
conditional probability of X given Z is defined as PX|Z(·) = E[1(X ∈ ·)|Z] a.s.-PZ such
that PX|Z=z is a probability measure on X for all z ∈ Z . The symbol X Y |Z indicates
the conditional independence of X and Y given Z. φX and φY denote the characteristic
functions of X and Y respectively and their joint characteristic function is denoted as φXY .
The conditional characteristic functions of X, Y and (X,Y ) given Z are denoted as φX|Z ,
φY |Z and φXY |Z respectively. A measurable, positive definite kernel on X is denoted as kX

and its corresponding RKHS as HX . Similarly we define kY , HY , kZ , HZ , kẌ and HẌ .
In this paper we assume that all involved RKHS’s are separable.

The space of r-integrable functions w.r.t. a σ-finite measure, µ on Rd is denoted as
Lr(Rd, µ) and if µ is a Lebesgue measure on Rd, we denote it as Lr(Rd).
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3. Conditional Distance Covariance

Distance covariance was proposed by Székely et al. (2007) as a new measure of dependence
between Euclidean random vectors in arbitrary dimension. An interesting feature of distance
covariance is that unlike the classical covariance, it is zero only if the random vectors are
independent. Formally, the distance covariance (dCov) between two random vectors is
defined as the weighted L2 norm between the joint characteristic function and the product
of marginal characteristic functions, i.e.,

V2(X,Y ) = ‖φXY − φXφY ‖2L2(w) =
1

cpcq

∫ ∫
|φXY (t, s)− φX(t)φY (s)|2

‖t‖p+1‖s‖q+1
dt ds,

where φXY denotes the joint characteristic function of random variables X ∈ Rp and
Y ∈ Rq with φX and φY denoting their respective marginal characteristic functions. Here

cp = π(p+1)/2

Γ((p+1)/2) , cq = π(q+1)/2

Γ((q+1)/2) and w(t, s) = ‖t‖−p−1‖s‖−q−1 with ‖t‖2 =
∑p

i=1 t
2
i for

t = (t1, . . . , tp). A particular advantage of distance covariance is its compact representation
in terms of certain expectation of pairwise Euclidean distances (Székely et al., 2007):

V2(X,Y ) = E[E[‖X −X ′‖‖Y − Y ′‖|X,Y ]] + E‖X −X ′‖E‖Y − Y ′‖
−2E[E[‖X −X ′‖|X]E[‖Y − Y ′‖|Y ]], (1)

where X
i.i.d.∼ X ′, Y

i.i.d.∼ Y ′, which leads to straightforward empirical estimates by replacing
the expectations with empirical estimators. Such an estimator has been used as a test statistic
in independence testing and the resulting test is shown to be consistent if the marginal
distributions have finite first moment (Székely et al., 2007). As a natural generalization, Lyons
(2013) extended (1) to metric spaces of negative type and showed that the corresponding
distance covariance—obtained by replacing the Euclidean metric by a metric of strongly
negative type—is zero if and only if X and Y are independent.

Extending the idea of distance covariance, recently, Wang et al. (2015) proposed a
conditional version to measure conditional independence between random vectors of arbitrary
dimension. To elaborate, let X ∈ Rp, Y ∈ Rq and Z ∈ Rr be random vectors. The
conditional distance covariance (CdCov) V(X,Y |Z) between random vectors X and Y with
finite moments given Z is defined as

V2(X,Y |Z) = ‖φXY |Z − φX|ZφY |Z‖2L2(w) =

∫ ∫ |φXY |Z(t, s)− φX|Z(t)φY |Z(s)|2

cpcq‖t‖p+1‖s‖q+1
dt ds,

where

φXY |Z(t, s) = E
[
e
√
−1〈t,X〉+

√
−1〈s,Y 〉|Z

]
, φX|Z(t) = φXY |Z(t, 0) and φY |Z(s) = φXY |Z(0, s).

As a crucial property, CdCov is zero PZ-almost surely if and only if X Y |Z. Similar
to distance covariance, one advantage of this measure is that its sample version can be
expressed elegantly as a V - or U -statistic, based on which Wang et al. (2015) proposed a
statistically consistent conditional independence test.

The conditional distance covariance defined above can also be computed in terms of the
conditional expectations of pairwise Euclidean distances:

V2(X,Y |Z) = E[E[‖X −X ′‖‖Y − Y ′‖|X,Y, Z]|Z] + E[‖X −X ′‖|Z]E[‖Y − Y ′‖|Z]

−2E[[E[‖X −X ′‖|X,Z]E[‖Y − Y ′‖|Y,Z]|Z], (2)
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where (X,Y ) and (X ′, Y ′) are independent copies given Z. In the similar spirit of Lyons
(2013), CdCov can be extended to metric spaces of negative type through conditional
expectations so that (2) can be written as

V2
ρX ,ρY

(X,Y |Z) = E[E[ρX (X,X ′)ρY (Y, Y ′)|X,Y, Z]|Z]

+E[ρX (X,X ′)|Z]E[ρY (Y, Y ′)|Z]

−2E[E[ρX (X,X ′)|X,Z]E[ρY (Y, Y ′)|Y,Z]|Z], (3)

=: G[ρX (X,X ′)ρY (Y, Y ′)] =: G ◦ [ρX ρY ], (4)

where ρX and ρY are metrics of strongly negative type defined on spaces X and Y
respectively with E[ρ2

X (X,x0)|Z] < ∞ a.s.-PZ and E[ρ2
Y (Y, y0)|Z] < ∞ a.s.-PZ for some

x0 ∈X and y0 ∈ Y . The moment conditions ensure that the expectations are finite. When
ρX and ρY are strongly negative, then clearly (3) is zero if and only if X Y |Z.

4. Kernel Measures of Conditional Dependence

First, in Section 4.1, we present preliminaries on RKHS embedding of probability measures
and introduce kernel measures of dependence. Based on this discussion, in Section 4.2, we
develop a kernel measure of conditional dependence (we call it as Hilbert-Schmidt conditional
independence criterion—HSCIC) that is related to gCdCov (and therefore CdCov) discussed
in Section 3. We also present an interpretation for gCdCov through conditional cross-
covariance operator formulation for HSCIC.

4.1 RKHS embedding of probabilities

In the machine learning literature, the notion of embedding probability measures in an
RKHS has gained lot of attention and has been applied in goodness-of-fit (Balasubramanian
et al., 2021), two-sample (Gretton et al., 2007, 2012), independence (Gretton et al., 2008) and
conditional independence (Fukumizu et al., 2008; Zhang et al., 2011) testing. To elaborate,
given a probability measure P such that

∫
X

√
k(x, x) dP (x) < ∞, its RKHS embedding

(Smola et al., 2007) is defined as

P 7→ µP :=

∫
X
k(·, x) dP (x) ∈Hk,

where Hk is an RKHS with k as the reproducing kernel. Based on this embedding, a distance
on the space of probabilities can be defined through the distance between the embeddings,
i.e., Dk(P,Q) = ‖µP − µQ‖Hk

, called the kernel distance or maximum mean discrepancy
(Gretton et al., 2007). If the map P 7→ µP is injective, then the kernel k that induces µP is
said to be characteristic (Fukumizu et al., 2009; Sriperumbudur et al., 2010) and therefore

Dk(P,Q) induces a metric on M1/2
k (X ) := {P ∈ M1

+(X ) :
∫
X

√
k(x, x) dP (x) < ∞},

where M1
+(X ) denotes the set of all probability measures on X . Using the reproducing

property of the kernel, it can be shown that

D2
k(P,Q) = EXX′k(X,X ′) + EY Y ′k(Y, Y ′)− 2EXY k(X,Y ),

where X,X ′
i.i.d.∼ P and Y, Y ′

i.i.d.∼ Q. Extending this distance to probability measures on
product spaces, particularly the joint measure PXY and product of marginals PXPY , yields
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a measure of dependence between two random variables X and Y defined on measurable
spaces X and Y , called the Hilbert-Schmidt Independence Criterion (HSIC), which is
defined (Gretton et al., 2005) as

D2
kX kY

(PXY , PXPY ) = EXY EX′Y ′kX (X,X ′)kY (Y, Y ′)

+EXEX′kX (X,X ′)EY EY ′kY (Y, Y ′)

−2EXY [EX′kX (X,X ′)EY ′kY (Y, Y ′)] (5)

=

∫
(kX kY )(x, y, x′, y′) d[PXY − PXPY ]2(x, y, x′, y′).

If the kernels kX and kY are characteristic, then HSIC characterizes independence (Szabó
and Sriperumbudur, 2018), i.e., DkX kY

(PXY , PXPY ) = 0 if and only if X Y . An empirical
version of (5) has been used as a test statistic in independence testing and the resultant test
is shown to be consistent against all alternatives as long as kX and kY are characteristic
(Gretton et al., 2008). An interesting connection between kernel-based HSIC and distance-
based dCov is shown by Sejdinovic et al. (2013) that dCov in (1) is in fact a special case of
HSIC and HSIC is equivalent to the generalized dCov introduced by Lyons (2013). This
result provides a unifying framework for the distance and kernel-based dependence measures.
With this background, in the rest of the paper, we explore the relation between distance
and kernel-based measures of conditional dependence.

4.2 Hilbert-Schmidt conditional independence criterion

For appropriate choice of kernels and distances, the following result provides a kernel-
equivalent of gCdCov, which we refer to as the Hilbert-Schmidt conditional independence
criterion (HSCIC).

Theorem 1 Let (X , ρX ) and (Y , ρY ) be semi-metric spaces of negative type. Suppose
E[ρ2

X (X,x0)|Z] < ∞ and E[ρ2
Y (Y, y0)|Z] < ∞ a.s.-PZ for some x0 ∈ X , y0 ∈ Y . If kX

and kY are pd kernels on X and Y that are distance-induced, i.e.,

kX (x, x′) = ρX (x, θ) + ρX (x′, θ)− ρX (x, x′)

and
kY (y, y′) = ρY (y, θ′) + ρY (y′, θ′)− ρY (y, y′)

for some θ ∈X and θ′ ∈ Y . Then

V2
ρX ,ρY

(X,Y |Z) = G ◦ [ρX ρY ] = D2
kX kY

(PXY |Z , PX|ZPY |Z), a.s.-PZ (6)

with
D2
kX kY

(PXY |Z , PX|ZPY |Z) = G ◦ [kX kY ] ,

where G is defined in (4).
On the other hand, let kX and kY be pd kernels on X and Y respectively. Suppose

E[k2
X (X,X)|Z] <∞ and E[k2

Y (Y, Y )|Z] <∞ a.s.-PZ . If ρX and ρY are semi-metrics on
X and Y that are kernel-induced, i.e.,

ρX (x, x′) =
kX (x, x) + kX (x′, x′)

2
− kX (x, x′)
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and

ρY (y, y′) =
kY (y, y) + kY (y′, y′)

2
− kY (y, y′),

then (6) holds.

Proof Suppose kX and kY are distance-induced. Then

D2
kX kY

(PXY |Z , PX|ZPY |Z)

= G ◦ [kX kY ] = G[kX (X,X ′)kY (Y, Y ′)]

= G
[(
ρX (X, θ) + ρX (X ′, θ)− ρX (X,X ′)

) (
ρY (Y, θ′) + ρY (Y ′, θ′)− ρY (Y, Y ′)

)]
= G

[
ρX (X,X ′)ρY (Y, Y ′)

]
= V2

ρX ,ρY
(X,Y |Z)

a.s.-PZ , where we used the fact that G[g(X,Y,X ′, Y ′)] = 0 a.s.-PZ when g does not depend
on one or more of its arguments (for example, a constant function). On the other hand,
suppose ρX and ρY are kernel-induced. Clearly they are of negative type. Then

V2
ρX ,ρY

(X,Y |Z)

= G[ρX (X,X ′)ρY (Y, Y ′)]

= G
[(

kX (X,X) + kX (X ′, X ′)

2
− kX (X,X ′)

)(
kY (Y, Y ) + kY (Y ′, Y ′)

2
− kY (Y, Y ′)

)]
= G[kX (X,X ′)kY (Y, Y ′)] = D2

kX kY
(PXY |Z , PX|ZPY |Z),

a.s.-PZ , where we again used the above mentioned facts about G.

Note that, while the quantities θ and θ′ induce a family of kernels as θ and θ′ range
over X and Y respectively, all these kernels are equivalent in the sense that they induce
the same HSCIC as shown by the equivalence in (6). This means, CdCov is induced by
kernels of the form kX (x, x′) = ‖x − θ‖+ ‖x′ − θ‖ − ‖x − x′‖, x, x′ ∈ Rp and kY (y, y′) =
‖y− θ′‖+ ‖y′− θ′‖−‖y− y′‖, y, y′ ∈ Rq with θ = θ′ = 0 being a popular choice—this choice
leads to covariance function of a fractional Brownian motion.

We would like to mention that a concurrent and independent work by Park and Muandet
(2020) proposed a criterion with the same name HSCIC, which is defined as the distance
between the conditional mean embedding of PXY |Z and the product of marginal conditional
mean embeddings of PX|Z and PY |Z , where the conditional mean embedding of PX|Z is
denoted by µPX|Z and µPX|Z = E[kX (X, ·)|Z] (the conditional mean embedding of PY |Z and
PXY |Z can be similarly defined). It is easy to verify that

V2
ρX ,ρY

(X,Y |Z) = G[ρX (X,X ′)ρY (Y, Y ′)] = G[kX (X,X ′)kY (Y, Y ′)]

= ‖E[kX (X, ·)⊗ kY (Y, ·)|Z]− E[kX (X, ·)|Z]⊗ E[kY (Y, ·)|Z]‖2HX⊗HY

=
∥∥∥µPXY |Z − µPX|Z ⊗ µPY |Z

∥∥∥2

HX⊗HY

. (7)

While HSCIC is a natural measure of conditional dependence, in the kernel literature,
however, a different measure has been widely used (Fukumizu et al., 2004, 2008; Zhang et al.,
2011), which is based on the Hilbert-Schmidt norm of a certain conditional cross-covariance
operator. Before we introduce the conditional cross-covariance operator and these other
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measures of conditional dependence (which we do in Section 5), first we will briefly discuss
how HSIC is related to the Hilbert-Schmidt norm of a cross-covariance operator so that its
extension to the conditional version is natural.

For random variables X ∼ PX and Y ∼ PY with joint distribution PXY such that
E[kX (X,X)] < ∞ and E[kY (Y, Y )] < ∞, there exists a unique bounded linear operator,
called the cross-covariance operator (Baker, 1973; Fukumizu et al., 2004), ΣY X : HkX

→
HkY

such that ∀ f ∈HkX
, g ∈HkY

,

〈g,ΣY Xf〉HkY
= E[f(X)g(Y )]− E[f(X)]E[g(Y )].

In fact, using the reproducing property that f(x) = 〈f, kX (·, x)〉HkX
, ∀x ∈X and g(y) =

〈g, kY (·, y)〉HkY
, ∀ y ∈ Y , it follows that

ΣY X =

∫ ∫
kY (·, y)⊗ kX (·, x) dPXY (x, y)−

∫
kY (·, y) dPY (y)⊗

∫
kX (·, x) dPX(x), (8)

where ⊗ denotes the tensor product. Clearly, ΣY X is a natural generalization of the finite-
dimensional covariance matrix between two random vectors X ∈ Rp and Y ∈ Rq. Based on
(8) and the reproducing property, it can be verified that

‖ΣY X‖2HS =

∥∥∥∥∫ ∫ kX (·, x)⊗ kY (·, y) d(PXY − PXPY )(x, y)

∥∥∥∥2

HS

=

∫ ∫ ∫ ∫
〈kX (·, x)⊗ kY (·, y), kX (·, x′)⊗ kY (·, y′)〉HS d(PXY − PXPY )(x, y)

× d(PXY − PXPY )(x′, y′)

= D2
kX kY

(PXY , PXPY ), (9)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. Since HSCIC is a conditional version
of HSIC and since the latter is the Hilbert-Schmidt norm of the cross-variance operator,
it is natural to extend ΣY X to its conditional version as a PZ-measurable bounded linear
operator Σ̇Y X|Z : HkX

→HkY
such that ∀ f ∈HkX

, g ∈HkY
,

〈g, Σ̇Y X|Zf〉HkY
= E[f(X)g(Y )|Z]− E[f(X)|Z]E[g(Y )|Z], a.s.-PZ ,

thereby yielding

Σ̇Y X|Z = E[kX (·, X)⊗ kY (·, Y )|Z]− E[kX (·, X)|Z]⊗ E[kY (·, Y )|Z].

Similar to (9), it is easy to verify that

‖Σ̇Y X|Z‖2HS = D2
kX kY

(PXY |Z , PX|ZPY |Z)

a.s.-PZ . Therefore if kX and kY are characteristic, then X Y |Z ⇐⇒ Σ̇Y X|Z = 0, PZ-a.s.
However, in the kernel literature, to the best of our knowledge, besides the concurrent

and independent work by Park and Muandet (2020) in which a quantity similar to HSCIC
is proposed, HSCIC has not been used as a measure of conditional independence probably
because it is a random operator. We can obtain a single measure of conditional dependence
by considering the expectation of HSCIC over Z ∼ PZ , i.e.,

DPZ
(PXY |Z , PX|ZPY |Z) := EZ [‖Σ̇Y X|Z‖2HS ]. (10)

This single measure of conditional dependence by taking HSCIC over Z is not discussed in
Park and Muandet (2020).
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5. Relation between RKHS and Distance-based Conditional Dependence
Measures

Instead of Σ̇Y X|Z , Fukumizu et al. (2004) considered an alternate operator, called the
conditional cross-covariance operator, which is defined as follows. Suppose EX [kX (X,X)] <
∞, EY [kY (Y, Y )] <∞ and EZ [kZ (Z,Z)] <∞. Then there exists a unique bounded linear
operator ΣY X|Z such that

〈g,ΣY X|Zf〉HkY
= E[f(X)g(Y )]− E[E[f(X)|Z]E[g(Y )|Z]]

= E[Cov(f(X), g(Y )|Z)]

for all f ∈HkX
and g ∈HkY

. As above, using the reproducing property, it can be shown
that

ΣY X|Z = E[E[kY (·, Y )⊗ kX (·, X)|Z]− E[kX (·, X)|Z]⊗ E[kY (·, Y )|Z]] = EZ [Σ̇Y X|Z ].

However, unlike Σ̇Y X|Z , the conditional cross-covariance operator ΣY X|Z does not character-
ize conditional independence since ΣY X|Z = 0—assuming kX and kY to be characteristic—

only implies PXY = EZ [PX|ZPY |Z ] and not Σ̇Y X|Z = 0, a.s.-PZ (Fukumizu et al., 2004,
Theorem 8). Therefore, Fukumizu et al. (2004, Corollary 9) considered Z as a part of X
by defining Ẍ := (X,Z) and showed that ΣY Ẍ|Z = 0 if and only if X Y |Z, assuming
kX , kY and kZ to be characteristic. This is indeed the case since if kX , kY and kZ are
characteristic, then ΣY Ẍ|Z = 0 implies EZ [Σ̇Y Ẍ|Z ] = 0 and therefore

E[E[1{X ∈ A, Y ∈ B,Z ∈ C}|Z]]

−E[E[1{X ∈ A,Z ∈ C}|Z]EY |Z [1{Y ∈ B}|Z]]

= E[1{X ∈ A, Y ∈ B,Z ∈ C}]− E[E[1{X ∈ A,Z ∈ C}|Z]E[1{Y ∈ B}|Z]]

= E[E[1{X ∈ A, Y ∈ B}|Z]1{Z ∈ C}]
−E[E[1{X ∈ A}|Z]1{Z ∈ C}]E[1{Y ∈ B}|Z]]

= E[[PXY |Z(A×B|Z)− PX|Z(A|Z)PY |Z(B|Z)]1{Z ∈ C}] = 0,

for all A ∈ BX , B ∈ BY and C ∈ BZ , where BX , BY and BZ are the Borel σ-algebras
associated with X , Y and Z respectively. This implies,

PXY |Z(A×B|Z)− PX|Z(A|Z)PY |Z(B|Z) = 0, a.s.-PZ ,

implying X Y |Z, a.s.-PZ . Hence ‖ΣY Ẍ|Z‖
2
HS can be used as a measure of conditional

independence, which we refer to it as HSC̈IC.
The goal of this section is to explore the distance counterpart of HSC̈IC and understand

how it is related to CdCov, gCdCov, and DPZ
defined in (10). To this end, we first provide

an expression for ‖ΣY Ẍ|Z‖
2
HS in terms of kernels, using which we obtain an expression in

terms of distances.

Theorem 2 Suppose EX [k2
X (X,X)] < ∞, EY [k2

Y (Y, Y )] < ∞ and EZ [k2
Z (Z,Z)] < ∞.

Denote Ẍ = (X,Z) Then

‖ΣY Ẍ|Z‖
2
HS = EZEZ′

[
kZ (Z,Z ′)

〈
Σ̇Y X|Z , Σ̇Y X|Z′

〉
HS

]
= EZEZ′ [kZ (Z,Z ′)h(Z,Z ′)], (11)

9
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where h(Z,Z ′) := FY X|ZFY ′X′|Z′ [kX (X,X ′)kY (Y, Y ′)], FY X|Z := EXY |Z − EY |ZEX|Z and
EXY |Z := E[·|Z] (EY |Z and EX|Z are defined similarly).

Suppose kX and kY are distance-induced, i.e.,

kX (x, x′) = ρX (x, θ)+ρX (x′, θ)−ρX (x, x′) and kY (y, y′) = ρY (y, θ′)+ρY (y′, θ′)−ρY (y, y′)

for some θ ∈X and θ′ ∈ Y . Then h(Z,Z ′) = FY X|ZFY ′X′|Z′ [ρX (X,X ′)ρY (Y, Y ′)].

Proof Note that

ΣY Ẍ|Z = E[Σ̇Y Ẍ|Z ]

= E[E[kY (·, Y )⊗ (kX kZ )(·, Ẍ)|Z]]− E[E[kY (·, Y )|Z]⊗ E[(kX kZ )(·, Ẍ)|Z]]

= E[E[kY (·, Y )⊗ kX (·, X)|Z]⊗ kZ (·, Z)]

−E[E[kY (·, Y )|Z]⊗ E[kX (·, X)|Z]⊗ kZ (·, Z)]

= EZ [Σ̇Y X|Z ⊗ kZ (·, Z)].

Therefore,

‖ΣY Ẍ|Z‖
2
HS =

∥∥∥E[Σ̇Y X|Z ⊗ kZ (·, Z)]
∥∥∥2

HS

=
〈
EZ [Σ̇Y X|Z ⊗ kZ (·, Z)],EZ [Σ̇Y X|Z ⊗ kZ (·, Z)]

〉
HS

= EZEZ′

〈
Σ̇Y X|Z ⊗ kZ (·, Z), Σ̇Y X|Z′ ⊗ kZ (·, Z ′)

〉
HS

= EZEZ′

〈
Σ̇Y X|Z , Σ̇Y X|Z′

〉
HS
〈kZ (·, Z), kZ (·, Z ′)〉HkZ

= EZEZ′

〈
Σ̇Y X|Z , Σ̇Y X|Z′

〉
HS

kZ (Z,Z ′). (12)

Note that Σ̇Y X|Z = FY X|Z [kY (·, Y )⊗ kX (·, X)]. Therefore,〈
Σ̇Y X|Z , Σ̇Y X|Z′

〉
HS

=
〈
FY X|Z [kY (·, Y )⊗ kX (·, X)] ,FY X|Z′ [kY (·, Y )⊗ kX (·, X)]

〉
HS

=
〈
FY X|Z [kY (·, Y )⊗ kX (·, X)] ,FY ′X′|Z′

[
kY (·, Y ′)⊗ kX (·, X ′)

]〉
HS

= FY X|ZFY ′X′|Z′
[〈
kY (·, Y )⊗ kX (·, X), kY (·, Y ′)⊗ kX (·, X ′)

〉
HS

]
= FY X|ZFY ′X′|Z′

[〈
kY (·, Y ), kY (·, Y ′)

〉
HkY

〈
kX (·, X), kX (·, X ′)

〉
HkX

]
= FY X|ZFY ′X′|Z′ [kX (X,X ′)kY (Y, Y ′)] = h(Z,Z ′),

using which in (12) yields the result. If kX and kY are distance-induced, then using the
fact that FY X|ZFY ′X′|Z′ [g(X,X ′, Y, Y ′)] = 0 when g does not depend on one or more of its
arguments—basically, the same argument that we carried out in the proof of Theorem 1—we
have

h(Z,Z ′) = FY X|ZFY ′X′|Z′ [ρX (X,X ′)ρY (Y, Y ′)],

and the result follows.

While h(Z,Z ′) has a distance interpretation as shown in Theorem 2, ‖ΣY Ẍ|Z‖
2
HS does not
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have an elegant representation in terms of distances. Suppose kZ is also distance-induced,
i.e., kZ (z, z′) = ρZ (z, θ

′′
) + ρZ (x′, θ

′′
)− ρZ (z, z′) for some θ

′′ ∈ Z . Then

‖ΣY Ẍ|Z‖
2
HS =

∫ ∫
h(z, z′)kZ (z, z′) dPZ(z) dPZ(z′)

=

∫ ∫ [
ρZ (z, θ

′′
) + ρZ (X ′, θ

′′
)− ρZ (z, z′)

]
h(z, z′) dPZ(z) dPZ(z′). (13)

Unfortunately, (13) cannot be related in a simple manner to gCdCov or HSCIC. However,
some simplifications occur based on certain assumptions on kZ , as shown in the following
corollaries. Under an appropriate choice of kZ , Corollary 3 shows HSC̈IC to be asymptotically
equivalent to the weighted average of HSCIC (equivalently, the weighted average of gCdCov)
defined in (10) while Corollary 4 shows the asymptotic equivalence between HSC̈IC and
CdCov.

Corollary 3 Suppose the assumptions of Theorem 2 hold and PZ has a density pZ w.r.t. the
Lebesgue measure on Rd such that h(z, ·)pZ is uniformly continuous and bounded for all
z ∈ Rd. For t > 0, let

kZ (z, z′) =
1

td
ψ

(
z − z′

t

)
, z, z′ ∈ Rd,

where ψ ∈ L1(Rd) is a bounded continuous positive definite function with
∫
Rd ψ(z) dz = 1.

Then

lim
t→0
‖ΣY Ẍ|Z‖

2
HS = EZ [‖Σ̇Y X|Z‖2HS pZ(Z)] = DP 2

Z
(PXY |Z , PX|ZPY |Z).

Proof Define ψt(z) := t−dψ
(
z
t

)
. From (11), it follows that

‖ΣY Ẍ|Z‖
2
HS = EZEZ′ [ψt(Z − Z ′)h(Z,Z ′)]

=

∫
pZ(z)

(∫
ψt(z − z′)h(z, z′)pZ(z′) dz′

)
dz

=

∫
pZ(z)(ψt ∗ (h(z, ·)pZ)(z) dz,

where ∗ denotes convolution. Taking the limit on both sides as t→ 0 and applying dominated
convergence theorem, we obtain

lim
t→0
‖ΣY Ẍ|Z‖

2
HS = lim

t→0

∫
pZ(z)(ψt ∗ (h(z, ·)pZ)(z) dz =

∫
pZ(z) lim

t→0
(ψt ∗ (h(z, ·)pZ)(z) dz.

The result follows from Folland (1999, Theorem 8.14) which yields limt→0(ψt∗(h(z, ·)pZ)(z) =
h(z, z)pZ(z) for all z ∈ Rd and by noting that h(Z,Z) = ‖Σ̇Y X|Z‖2HS .

Corollary 4 Suppose the assumptions of Theorem 2 hold with ρX (x, x′) = ‖x− x′‖, x, x′ ∈
Rp and ρY (y, y′) = ‖y − y′‖, y, y′ ∈ Rq. Let kZ (z, z′) = η(z)η(z′), z, z′ ∈ Rd for some
real-valued function η on Rd and

EZ
[
|η(Z)|

∥∥φXY |Z − φX|ZφY |Z∥∥L2(w)

]
<∞. (14)

11
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Then

‖ΣY Ẍ|Z‖
2
HS =

∥∥EZ [η(Z)
(
φXY |Z − φX|ZφY |Z

)]∥∥2

L2(w)
, (15)

where w(t, s) = 1
cpcq
‖t‖−p−1‖s‖−q−1, t ∈ Rp, s ∈ Rq. In particular, for t > 0 and some

a ∈ Rd, if η(z) = 1
td
θ
(
a−z
t

)
, z ∈ Rd where θ is a bounded continuous function with∫

θ(z) dz = 1 and PZ has a bounded uniformly continuous density pZ on Rd such that∫
ess sup

Z

∣∣φXY |Z(t, s)− φX|Z(t)φY |Z(s)
∣∣2 dw(t, s) <∞, (16)

then

lim
t→0
‖ΣY Ẍ|Z‖

2
HS = p2

Z(a)V2(X,Y |Z = a). (17)

Proof In the following, we show that

h(Z,Z ′) =
〈
φXY |Z − φX|ZφY |Z , φXY |Z′ − φX|Z′φY |Z′

〉
L2(w)

(18)

and therefore (15) follows by using (18) in (11) with k(z, z′) = η(z)η(z′) and applying
dominated convergence theorem through (14). We now prove (18). Consider〈

φXY |Z − φX|ZφY |Z , φXY |Z′ − φX|Z′φY |Z′
〉
L2(w)

=

∫ ∫
w(t, s)

[
φXY |Z(t, s)− φX|Z(t)φY |Z(s)

] [
φXY |Z′(t, s)− φX|Z′(t)φY |Z′(s)

]
dt ds

=

∫ ∫
w(t, s)Λ(t, s) dt ds, (19)

where

Λ(t, s, Z, Z ′) =
[
φXY |Z(t, s)− φX|Z(t)φY |Z(s)

] [
φXY |Z′(t, s)− φX|Z′(t)φY |Z′(s)

]
=
[
E
[
ei(〈t,X〉+〈s,Y 〉)|Z

]
− E

[
ei〈t,X〉|Z

]
E
[
ei〈s,Y 〉|Z

]]
·
[
E
[
ei(〈t,X〉+〈s,Y 〉)|Z ′

]
− E

[
ei〈t,X〉|Z ′

]
E
[
ei〈s,Y 〉|Z ′

]]
= EXY |ZEX′Y ′|Z′ei(〈t,X−X

′〉+〈s,Y−Y ′〉) − EXY |ZEX′|Z′EY ′|Z′ei(〈t,X−X
′〉+〈s,Y−Y ′〉)

−EX|ZEY |ZEX′Y ′|Z′ei(〈t,X−X
′〉+〈s,Y−Y ′〉)

+EX|ZEY |ZEX′|Z′EY ′|Z′ei(〈t,X−X
′〉+〈s,Y−Y ′〉)

= FY X|ZFY ′X′|Z′ei(〈t,X−X
′〉+〈s,Y−Y ′〉), (20)

where FY X|Z := EXY |Z − EY |ZEX|Z . Using (20) in (19), we obtain∫ ∫
w(t, s)Λ(t, s, Z, Z ′) dt ds =

∫ ∫
FY X|ZFY ′X′|Z′ cos〈t,X−X ′〉 cos〈s, Y −Y ′〉w(t, s) dt ds

(21)

12
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by noting that sin〈t,X −X ′〉 and sin〈s, Y − Y ′〉 are odd functions w.r.t. t and s respectively.
Since cos〈t,X −X ′〉 cos〈s, Y − Y ′〉 = 1− (1− cos〈t,X −X ′〉)− (1− cos〈s, Y − Y ′〉) + (1−
cos〈t,X −X ′〉)(1− cos〈s, Y − Y ′〉) and

FY X|ZFY ′X′|Z′ · [f(X,X ′, Y, Y ′)] = 0

for f(X,X ′, Y, Y ′) = 1, f(X,X ′, Y, Y ′) = 1 − cos〈t,X − X ′〉 and f(X,X ′, Y, Y ′) = 1 −
cos〈s, Y − Y ′〉, (21) reduces to∫ ∫

w(t, s)Λ(t, s, Z, Z ′) dt ds

=

∫ ∫
FY X|ZFY ′X′|Z′

[
1− cos〈t,X −X ′〉

cp‖t‖p+1
· 1− cos〈s, Y − Y ′〉

cq‖s‖q+1

]
dt ds

= FY X|ZFY ′X′|Z′ [‖X −X ′‖‖Y − Y ′‖]
= h(Z,Z ′),

where the last equality follows from Lemma 1 of Székely et al. (2007) through
∫ 1−cos〈t,x〉

cp‖t‖p+1 dt =

‖x‖, thereby proving the result in (15). By defining θt(z) = t−dθ
(
z
t

)
, we have

EZ [η(Z)
(
φXY |Z − φX|ZφY |Z

)
] = θt ∗

((
φXY |Z − φX|ZφY |Z

)
pZ
)

(a),

which by (Folland, 1999, Theorem 8.14) converges to
(
φXY |Z=a − φX|Z=aφY |Z=a

)
pZ(a) as

t→ 0. Using these in (15) along with dominated convergence theorem combined with (16)
yields (17).

Remark 5 Informally, the result of Corollary 3 can be obtained by choosing kZ (z, z′) =
δ(z − z′), z, z′ ∈ Rd, where δ(·) is the Dirac distribution. Since such a choice does not corre-
spond to a valid reproducing kernel—Dirac distribution is not a function but a distribution
that does not belong to an RKHS—, the rigorous argument involves considering a family of
kernels indexed by bandwidth t which in the limiting case of t→ 0 achieves the behavior of
the Dirac distribution. Similar argument applies to Corollary 4 as well.

6. Discussion

Conditional distance covariance is a commonly used metric for measuring conditional
dependence in the statistics community. In the machine learning community, a conditional
dependence measure based on reproducing kernels is popularly used in applications such as
conditional independence testing. In this work, we have explored the connection between
these two conditional dependence measures where we showed the distance-based measure to
be a limiting version of the kernel-based measure, where we may view conditional distance
covariance as a member of a much larger class of kernel-based conditional dependence
measures. This may enable to design more powerful conditional independence tests by
choosing a richer class of kernels.

Having understood the relation between these various measures of conditional dependence,
an important question to understand is the statistical behavior of conditional independence
tests based on these measures. Fukumizu et al. (2004, Proposition 5) provides an alternate
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representation for the conditional covariance operator, ΣY Ẍ|Z in terms of only covariance

operators (this is reminiscent of the situation when (X,Y, Z) are jointly normal so that
the conditional covariance matrix can be represented in terms of the joint covariance
matrices) as ΣY Ẍ|Z = ΣY Ẍ − ΣY ZΣ̃−1

ZZΣZẌ where Σ̃−1
ZZ is the right inverse of ΣZZ on

(Ker(ΣZZ))⊥. The advantage of this alternate form is that ΣY Ẍ|Z can be estimated from

data (Xi, Yi, Zi)
n
i=1

i.i.d.∼ PXY Z by simply estimating the (cross) covariance operators ΣY Ẍ ,

ΣY Z , ΣZẌ , and replacing Σ̃−1
ZZ by an inverse of the regularized version of an empirical

estimator of ΣZZ . Using these, a plug-in (biased) estimator ‖Σ̂Y Ẍ|Z‖
2
HS of HSC̈IC (i.e.,

‖ΣY Ẍ|Z‖
2
HS), can be shown to be consistent and to have a computational complexity of

O(n3), where Σ̂Y Ẍ|Z := Σ̂Y Ẍ−Σ̂Y Z(Σ̂ZZ+λI)−1Σ̂ZẌ and λ > 0—these claims can be proved

using the ideas in Fukumizu et al. (2008) where such claims are proved for a normalized
version of ΣY Ẍ|Z . Similar results are shown for the kernel version of HSCIC (see (7)) by

Park and Muandet (2020). To elaborate, (Park and Muandet, 2020, Section 5.2) proposed a
biased estimator of HSCIC (see r.h.s. of (7)), which is based on Gram matrices on X , Y and
Z and associated regularized inverse, yielding a computational complexity of O(n3). On the
other hand, Wang et al. (2015) proposed a (biased) estimator of CdCov—the same idea can
be used to estimate gCdCov and therefore HSCIC—based on a Nadarya-Watson type density
estimator of PXY |Z , where it can be shown that HSCIC can be consistently estimated with
a computational complexity of O(n3). This means, all these different estimators of HSCIC
and HSC̈IC are consistent and have same computational complexity. However, the statistical
performance of these estimators as test statistics to test for conditional independence remains
open.
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G. Székely and M. Rizzo. Testing for equal distributions in high dimension. InterStat, (5),
2004.
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