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Abstract

Traditional centralized multi-agent reinforcement learning (MARL) algorithms are some-
times unpractical in complicated applications due to non-interactivity between agents, the
curse of dimensionality, and computation complexity. Hence, several decentralized MARL
algorithms are motivated. However, existing decentralized methods only handle the fully
cooperative setting where massive information needs to be transmitted in training. The
block coordinate gradient descent scheme they used for successive independent actor and
critic steps can simplify the calculation, but it causes serious bias. This paper proposes a
flexible fully decentralized actor-critic MARL framework, which can combine most of the
actor-critic methods and handle large-scale general cooperative multi-agent settings. A
primal-dual hybrid gradient descent type algorithm framework is designed to learn indi-
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vidual agents separately for decentralization. From the perspective of each agent, policy
improvement and value evaluation are jointly optimized, which can stabilize multi-agent
policy learning. Furthermore, the proposed framework can achieve scalability and stabil-
ity for the large-scale environment. This framework also reduces information transmission
by the parameter sharing mechanism and novel modeling-other-agents methods based on
theory-of-mind and online supervised learning. Sufficient experiments in cooperative Multi-
agent Particle Environment and StarCraft II show that the proposed decentralized MARL
instantiation algorithms perform competitively against conventional centralized and decen-
tralized methods.

Keywords: cooperative MARL, decentralized, actor-critic, primal-dual method

1. Introduction

Multi-agent reinforcement learning (MARL, Zhang et al. (2019)) has shown remarkable
performance in interactive and complicated cooperative multi-agent environments, e.g.
multi-robot controlling (Matignon et al., 2012) and multi-player games (Peng et al., 2017).
MARL algorithms generally model a cooperative multi-agent learning system as a Markov
game (Littman, 1994a) (or a stochastic game, (Guillermo, 1982)), where the joint actions
of multiple agents influence a shared environment. In particular, each agent can access
the full observation of the environment and takes action according to its current policy.
These actions together determine the successive states of the environment (Lowe et al.,
2017; Foerster et al., 2018a; Rashid et al., 2018).

However, the global assumption that each agent can fully observe the environment is
usually difficult to satisfy in many practical applications, such as intelligent connected ve-
hicle (Adler and Blue, 2002). Hence, a more reasonable solution is to model the problem as
a more general formulation, i.e., cooperative partially observable stochastic game (POSG)
(Hansen et al., 2004). Various MARL methods have been proposed, including value-based
(Jiang et al., 2018; Rashid et al., 2018), actor-critic-based (Foerster et al., 2018a; Wei et al.,
2018; Iqbal and Sha, 2019). However, these methods are designed to solve a fully cooper-
ative POSG with another global assumption, i.e., all agents share a global cost function.
Therefore, some works try to solve the more general cooperative POSG problem, where the
cost functions of the agents might correspond to different tasks, and are only known to the
corresponding agent. The collective goal of the agents is to minimize the globally summed
return (Jiang and Lu, 2018; Yang et al., 2018b; Li et al., 2019). This paper is focused on
this general cooperative setting.

Existing MARL algorithms for cooperative POSG mostly follow two frameworks (Fig-
ure 1): Centralized Training Decentralized Execution (CTDE) (Oliehoek et al., 2008) and
Decentralized Training Decentralized Execution (DTDE). CTDE assumes that a powerful
central controller can receive and process all agents’ information. The left of Figure 1 shows
the CTDE framework of actor-critic-based MARL methods, where centralized training ex-
plicitly takes into account the observations, policies, and costs of all agents in the learning
phase, thereby effectively solving the non-stationary environment problem in multi-agent
reinforcement learning. However, CTDE suffers from some limitations. First, as the number
of agents increases, the amount of information for the centralized controller to process will
increase exponentially, eventually leading to the curse of dimensionality. This will bring
heavy space-time overhead to the entire system. Second, the centralized assumption for
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Figure 1: Centralized training decentralized execution (CTDE) and decentralized training
decentralized execution (DTDE) actor-critic frameworks. The gray dotted arrow
indicates that the relevant information of the agents is no longer scheduled by a
centralized controller but is passing between agents by communication.

training is unrealistic in many real-world scenarios. Besides, the presence of a centralized
controller also degrades the system’s capability to resist malicious attacks.

Many recent works try to follow the DTDE framework (Figure 1) to decentralize cooper-
ative MARL (Zhang et al., 2018c; Doan et al., 2019a,b; Suttle et al., 2019). Unfortunately,
existing decentralized cooperative MARL methods either only focus on the policy evalua-
tion stage in fully observable small-scale multi-agent problems or only could handle the fully
cooperative POSG setting where massive information needs to be transmitted in decentral-
ized training. Therefore, our motivation is to design a more general DTDE framework for
general cooperative POSG problems. To achieve a fully decentralized MARL algorithm, the
main challenge need to be tackled is: How to effectively utilize partial observation of each
agent to make the global decision in a fully decentralized scheme? In other words, it needs
to drive the performance of decentralized MARL equal or close to the centralized one.

In this paper, we propose a Flexible Fully-decentralized Approximate Actor-critic (F2A2)
algorithm for DTDE cooperative MARL under a novel and general joint actor-critic frame-
work in Figure 2. A fully decentralized mechanism is designed based on consensus con-
straints and primal-dual optimization, whose benefit is that it can introduce a parameter
sharing mechanism to increase the efficiency and adaptability for different settings. More-
over, to reduce the effect of the information loss caused by decentralized settings, a novel
modeling-other-agents (MOA) technique is adopted based on theory-of-mind (TOM) (Ra-
binowitz et al., 2018) and online supervised learning, which enables the agent to estimate
the information of other agents while making decisions based on local information, and im-
proves the robustness and performance of the F2A2. Several decentralized versions of typical
MARL algorithms are devised in the proposed framework, i.e., F2A2-COMA, F2A2-DDPG,
F2A2-TD3, and F2A2-SAC. Extensive experiments on Cooperative Multi-agent Particle
Environment and StarCraft II show that the proposed fully decentralized algorithms can
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Figure 2: The F2A2 architecture. Compared with the upper traditional centralized train-
ing methods, F2A2 solves general cooperative POSG by a novel additive joint
policy optimization objective and decentralizes via a separable primal-dual algo-
rithm. The flexibility and superiority of the joint actor-critic framework allow
it to combine any on/off-policy actor-critic algorithms with the advantages of
the trust region. F2A2 contains a novel agent modeling scheme in decentralized
training to improve the communication efficiency. Parameter sharing mechanism
and consensus constraints enhance generality and scalability.

obtain competitive performance against conventional centralized and decentralized meth-
ods. Overall, the main contributions of this paper are:

• Fully decentralized framework. We reformulate actor-critic for general cooperative
POSG problems in an additive joint form. Its separable characteristics lead to a
novel fully decentralized actor-critic framework cooperating with separable primal-
dual optimization. This is the first fully decentralized MARL to our knowledge.

• Flexibility. The proposed novel actor-critic framework is compatible with various
actor-critic algorithms, and the general decentralizing mechanism can transform them
into fully decentralized versions. Besides, the proposed framework has a flexible
parameter-sharing and regularization mechanism, which makes F2A2 suitable for dif-
ferent kinds of settings, including small- and large-scale cooperative scenarios, on- and
off-policy training schemes.

• Performance. A sufficient comparison is made between existing centralized and decen-
tralized algorithms with F2A2. The proposed decentralized solutions have achieved
remarkable performance with a more general setting even compared with its central-
ized version.

The following is the roadmap of this paper. Section 2 provides a brief but complete
introduction to related works in centralized MARL and decentralized MARL and provide the
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background material on cooperative POSG and actor-critic algorithm in Section 3. Section
4 describes the proposed model. The fully decentralized actor-critic MARL algorithms and
related analysis from various aspects are presented in Section 5. Extensive experiments are
presented in Section 6, and we conclude this paper in Section 7.

2. Related Work

The cooperative multi-agent problem exists widely in real world, such as multi-robot con-
trol (Matignon et al., 2012), multi-player games (Peng et al., 2017) and etc. In this section,
existing cooperative multi-agent reinforcement learning methods is divided into centralized
and decentralized methods based on their training mechanism. In this paper, the decentral-
ized algorithm means it satisfies decentralization in both training and execution stages.

2.1 Centralized Cooperative MARL.

Most of the recent centralized cooperative MARL algorithms are follow the centralized
training decentralized execution (CTDE) mechanism. The rise of the CTDE framework
mainly has two-fold reasons. At early stages, the cooperative multi-agent problem is of-
ten modeled as a sizeable single-agent problem via joint action learning (JAL) (Claus and
Boutilier, 1998), by learning a centralized policy based on global state or joint observation
and then executing the joint action. It has to assume that the agents can access the global
state, or there is a communication channel to integrate the individual information of all
agents, no matter for training or execution. Even if the above problems can be solved by
technical means, when the number of agents grows, the joint action space’s size will increase
exponentially, leading to the centralized policy learning infeasible. By contrast, independent
learning (IL) (Tan, 1993) can learn decentralized policies, but it results in nonstationarity
as each agent treats the other agents as part of its environment. To solve the infeasible pol-
icy learning and the non-stationary problem, Oliehoek et al. (2008) introduces the CTDE
mechanism. Specifically, in the training stage, the agents can freely share individual obser-
vations, parameters, and/or gradients, similar to JAL. However, in the execution stage, the
policies are decentralized carried out with local observations, just similar in IL.

The algorithms that follow the CTDE mechanism can be divided into two categories:
value-based methods and actor-critic-based methods. For value-based methods, some works
(Rashid et al., 2018; Son et al., 2019) obtain a decomposable joint Q-value function through
centralized training and only use the local Q-value function for each agent in the execution
stage. The graph convolutional method (Jiang et al., 2018) introduces the graph neural
networks (GNN) (Scarselli et al., 2008) to factorize the joint Q-value function without
decomposable assumption. Yang et al. (2018a) and Wang et al. (2020) introduce the mean-
field approximation to mitigate the curse of dimentionality of joint Q-value function. The
actor-critic-based algorithms are more suitable for the CTDE training mechanism than the
value-based methods because of their unique structure composed of the actor and the critic.
Actor-critic-based multi-agent reinforcement learning algorithms generally train a central-
critic (based on individual observations and policies of all agents) centrally and use the
actor, which is only based on the local observation during decentralized execution for each
agent. COMA (Foerster et al., 2018a) learns a shared centralized counterfactual baseline
for all agents, which addresses the credit assignment problem in cooperative multi-agent
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learning. Wei et al. (2018) extends the Soft Q-Learning (Haarnoja et al., 2017) to multi-
agent to solve relative over-generalization problem. A line of works (Lowe et al., 2017;
Li et al., 2019; Reddy et al., 2019) extend the DDPG(Lillicrap et al., 2016) algorithm to
multi-agent scenarios. Unlike previous methods, MADDPG (Lowe et al., 2017) centrally
trains a central critic for each agent. M3DDPG (Li et al., 2019) introduces the minimax
method to maximize the expected returns when the other agents have the lowest returns.
RC-MADDPG (Reddy et al., 2019), in addition to maximizing the expected return of the
agent, additionally introduces the variation of return (VOR) as an optimization goal, making
the policy performance of the agent more stable. Ryu et al. (2018) introduced an additional
generative cooperative policy network, which is used to generate the more diverse samples
via maximizing the expected return of other agents, to encourage the exploration based
on Lowe et al. (2017). MAAC (Iqbal and Sha, 2019), which is also based on MADDPG,
introduces the attention mechanism (Bahdanau et al., 2015) to model centralized non-shared
critic in actor-critic framework, enabling the agent to self-identify information quality.

In recent years there has been another main line of work to solve the cooperative POSG
problem under CTDE framework, i.e. learning to communicate (Foerster et al., 2016;
Sukhbaatar et al., 2016; Peng et al., 2017; Jiang and Lu, 2018; Sheng et al., 2020) and
(Chu et al., 2020). The cooperation between agents is accomplished by passing information
to each other, and the information is generated by a shared message generator which is
training centrally.

2.2 Decentralized Cooperative MARL.

For the current mainstream CTDE framework, the existence of an unavoidable central
controller during training makes the framework have many performance limitations, such
as single points of failure, high communication requirements, massive computing burden,
and limited flexibility and scalability. In order to solve the problems caused by the CTDE
framework, there are also some works on fully decentralized frameworks in recent years.
From the perspective of optimization goals, these methods are divided into two categories:
policy evaluation and optimal policy learning. For methods that belong to policy evaluation,
their purpose is to learn the optimal value function corresponding to a fixed multi-agent
policy (the fixed policy does not have to be optimal). For the methods that belong to
the optimal policy learning, the goal is the same as all the above-mentioned centralized
methods, to learn an optimal control policy for all agents. Therefore, the policy evaluation
method can be regarded as a component of the optimal policy learning method.

For policy evaluation methods, the objective of all agents is to jointly minimize the
mean square projected Bellman error (MSPBE). Macua et al. (2015) and Stanković and
Stanković (2016) are fully decentralized multi-agent extensions of gradient temporal differ-
ence (GTD-2) (Sutton et al., 2009) and linear temporal-difference with gradient correction
(TDC) (Sutton et al., 2009). Lee et al. (2018) also develops a fully decentralized multi-
agent extension of GTD-2 and using the ordinary differential equation (ODE) method to
establish the asymptotic convergence. Wai et al. (2018) proposes a double averaging scheme
that combines the dynamic consensus (Qu and Li, 2017) and the SAG algorithm (Schmidt
et al., 2017) to solve the distributed saddle-point version of MSPBE and achieving the linear
convergence rate. More recently, standard TD learning (Tesauro, 1995), instead of gradient-
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TD, has been generalized to this MARL setting, with particular focuses on finite-sample
analyses (Doan et al., 2019a).

For optimal policy learning methods, some early value-based multi-agent reinforcement
learning algorithms include Team Q-learning (Littman, 2001), Distributed Q-learning (Lauer
and Riedmiller, 2000), FMQ (Kapetanakis and Kudenko, 2002), Hyper-Q learning (Tesauro,
2003), OAB (Wang and Sandholm, 2002), Hysteretic Q-learning (Matignon et al., 2007) and
Lenient Q-learning (Panait et al., 2008). All these works are based on tabular Q-learning.
Littman (2001); Lauer and Riedmiller (2000); Kapetanakis and Kudenko (2002); Wang and
Sandholm (2002); Matignon et al. (2007); Panait et al. (2008) only consider the fully co-
operative POSG setting and works Lauer and Riedmiller (2000); Matignon et al. (2007);
Panait et al. (2008) have the limitation that they only work in deterministic environments.

In recent years, Kar et al. (2013) combines the idea of consensus and innovation to the
standard Q-learning algorithm, proposes the QD-learning algorithm. Arslan and Yüksel
(2017) proposed a decentralized Q-learning algorithm for fully observable stochastic games
with weakly acyclic and verified its effectiveness in some tabular cases. The algorithm
is fully decentralized in that each decision-maker has access to only its local information,
the global state information, and the local cost function. Zhang et al. (2018a) proposed
two decentralized Q-learning algorithms which extended the fitted-Q iteration algorithm for
single-agent RL into a multi-agent tabular-based scenario with both the cooperative and the
competitive settings. Each agent maintains a local estimation of the global average value
function by exchanges local information over a communication network to keep the decen-
tralization. Yongacoglu et al. (2019) proposed a variant of Q-learning algorithm for fully
observable and fully cooperative stochastic games, which is conduct policy evaluation and
policy improvement at two-timescale, and verified its team optimality in some tabular cases
under the same decentralized settings as in Arslan and Yüksel (2017). Cassano et al. (2019)
also proposed a decentralized tabular Q-learning algorithm, in which each agent maintains
a local estimation of the global average value function for fully observable stochastic games
under the same communicable settings as in Zhang et al. (2018a,c). Zeng et al. (2020)
proposed a similar MARL algorithm with the value function consensus constraint as Zhang
et al. (2018a,c), expect that it is a Q-learning algorithm and is to solve the multi-task fully
observable stochastic game.

Compared with the value-based MARL methods, the actor-critic-based algorithms are
also more applied to decentralized works. Some works follow a local actor and a consensus
critic update scheme. Cassano et al. (2018) and Suttle et al. (2019) propose a fully decen-
tralized policy gradient and actor-critic method to solve fully cooperative POSG problems
separately. Zhang et al. (2018c) derives two multi-agent actor-critic algorithms for pol-
icy optimization, which employs a distributed evaluation strategy by combining diffusion
learning (Sayed, 2014) and TD, to solve the fully observable stochastic games. This method
introduces each agent’s local estimation of the counterfactual baseline and uses a consensus
constraint to make the local estimation as accurate as possible compared to the centralized
counterfactual baseline. Although the above methods are decentralized for fully cooperative
POSG (except for Zhang et al. (2018c), which is proposed for general cooperative problem),
they still assume that all agents share value functions. The massive information exchange
makes the above method unable to extend to large-scale multi-agent scenarios. Zhang and
Zavlanos (2019) is not the same as Zhang et al. (2018c) to learn the local estimate of the
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centralized optimal critic and then learn the optimal policy independently. Instead, it learns
the local estimate of the optimal centralized policy and then learns the optimal critic inde-
pendently. Later in Zhang et al. (2018b), the same idea as Zhang et al. (2018c) is extended
to the continuous control setting. Zhang et al. (2018b) develop an on-policy actor-critic
algorithm, using the recent development of the expected policy gradient method (Ciosek
and Whiteson, 2018). Qu et al. (2019) is also working under the problem setting of Zhang
et al. (2018c), which extends Dai et al. (2018) to the multi-agent scenario. To solve a MARL
problem with safety constraints, Lu et al. (2021) formulate the problem as a distributed
constrained Markov decision process with networked agents and proposes a decentralized
policy gradient method based on Zhang et al. (2018c). Qu et al. (2022) extends Zhang et al.
(2018c) to large-scale multi-agent scenarios by introducing truncated Q-functions and Hu
et al. (2021) further introduces reward machines on the basis of Qu et al. (2022) to solve
complex cooperation problems.

Remark 1. Although these actor-critic-based methods are decentralized, they still assume
that all agents share value functions or policies. The massive information exchange makes
them unable to extend to large-scale multi-agent scenarios. Meanwhile, the above actor-
critic-based methods optimize the actor and critic seperately via block coordinate gradient
descent (BCGD) type methods according to the their related problem formulations. This
formulation is composed of successive independent actor and critic steps and ignores the
influence between each other, which can introduce bias. The biggest difference between
these methods and the proposed algorithm framework is that a primal-dual hybrid gradient
(PDHG) type method is introduced to jointly optimize the actor and critic, thereby avoiding
error accumulation and the unstable problem in practical deployment of methods above.
As will be shown, the proposed method not only solves the more general cooperative POSG
problem, but also avoid direct sharing of policies between agents via a novel MOA module.

3. Preliminaries

3.1 Markovian and Non-Markovian Policies and Values

Under a few conditions (Puterman, 2014), for any given MDP, there exists an optimal policy
which is deterministic and Markovian (that maps agent’s immediate or current observation
of the environment to actions). In contrast, when dealing with partially observed MDPs
(POMDPs), we might be interested in the class of non-Markovian and history-dependent
policies (that map the state-action trajectory history to distributions over actions). In this
paper, we do not employ non-Markovian policies for several reasons.

Firstly, tackling non-Markovian and history dependent policies can be computationally
undicidable (Madani et al., 1999) for the infinite horizon, or PSPACE-Complete (Papadim-
itriou and Tsitsiklis, 1987) in the finite horizon POMDPs. When extended to the POSG,
this problem will become more serious. To avoid undesirable computational burdens, we
focus on Makovian policies.

Secondly, indeed, many prior works study Markovian policies for POMDPs (Baxter and
Bartlett, 2001; Littman, 1994b; Baxter et al., 2000; Azizzadenesheli et al., 2016) where, in
general, the optimal policies are stochastic (Littman, 1994b; Singh et al., 1994; Montufar
et al., 2015). Acknowledging the computation complexity of Markovian policies (Vlassis
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et al., 2012), this line of work highlights the broad interest, importance, and applicability
of Markovian policies.

Thirdly, one could alternatively consider history-dependent policies, which is a richer
function class than Markovian policies. However, utilizing history-dependent policies re-
quires turning a given POMDP problem to a potentially non-stationary MDP with states
as concatenations of the historical data. As such, a thorough theoretical treatment of
history-dependent policies for POMDPs would likely require leveraging theoretical analyses
for non-stationary MDPs. When extended to the POSG, the theoretical analysis of non-
stationarity of POSG is still in a very preliminary stage. So much discussion in this area is
beyond the scope of this paper, and we will delve into this in future work.

Fourthly, and most importantly, the expressiveness of general policy classes is mainly
entangled with the definition of the observation. Under some regularity conditions, for any
given class of history-dependent policies on a POMDP, there exists a class of Markovian
policies on a new POMDP (Littman, 1994b; Castro et al., 2009; Hausknecht and Stone,
2015; Azizzadenesheli et al., 2018) such that: (1) the observations of the new POMDP are
the (typically) discrete concatenations of the historical data in the former POMDP; and (2)
the two policy classes are equivalent, i.e., the repsective policies result in the same behavior
(e.g., action sequence). In other words, instead of making the policies non-Markovian and
history-dependent, we can keep them Markovian and instead enrich the observation space.
Similarly, for any limited-memory policy class (depending on a fixed window of history
instead of the whole history, e.g., the policies in MDPs of order more than one), there is
an enrichment of the observation that results in an equivalent class of Markovian policies.
This viewpoint is known as the emergentism approach (O’Connor, 2021).

Similar to the policy class, in this paper, we also focus on the Markovian value function.
Recent work (Mao et al., 2020) in cooperative POSG has shown that, with appropriate en-
richment of the observation space, the optimal state-value function (V ) or state-action-value
function (Q) obtained under the newly constructed POSG can approximate the optimal one
obtained under the original POSG. However, Mao et al. (2020) adopts a value-based ap-
proach. Fortunately, after enriching the observation space, we can naturally extend the
policy gradient theorem under MDP to POMDP based on Mao et al. (2020) as the basis
for the subsequent theoretical derivation of this paper1.

The above reasoning implies that, by considering the class of Markovian policies and
value functions in episodic POMDPs, we often will not restrict the generality of the results
in this paper and similar conclusions can also be obtained by extending to the POSG.
Therefore, despite focusing on Markovian policies and value functions, our results also hold
for both classes of limited-memory as well as history-dependent policies and value functions
through representing histories as observations. So in this paper, both o and O refer to the
enriched observation spaces unless specified.

3.2 Problematic Instances of POMDPs

Certain aberrant instances of worst-case scenarios in POMDP can potentially render the
proposed F2A2 computationally infeasible. Specifically, in the realm of POMDPs, the
identification of the system dynamics is hindered by pathological instances. Such cases are

1. For the specific derivation process, please refer to the Appendix. C
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characterized by observations that offer no valuable information for discerning the system’s
behavior. The arduousness of the situation was proven by Krishnamurthy et al. (2016),
who demonstrated that, in the worst-case scenario, the discovery of a near-optimal policy
for a POMDP necessitates an exponential number of samples proportional to the horizon.
This result is formally expressed through the following proposition, where A represents the
joint action space with a cardinality of |A| = A.

Proposition 1 (Krishnamurthy et al. 2016; Jin et al. 2020) There exists a class of
2-states T -horizon POMDPs whose observations reveal no information about the underlying
states up to the end, such that any algorithm requires at least AΩ(T ) samples to learn an
O(1)-optimal policy with a probability of 1/2 or higher.

A running example can be found in Liu et al. (2022, §3.1 Hard instances of POMDPs).
For POMDPs with more than two states, the proposition presented earlier can be easily
extended to situations where two mixtures of latent states with disjoint support exist,
causing observations to fail to differentiate between the two mixtures. A mixture of states
is represented by a probability vector ν ∈ ∆S , where ν1 and ν2 are considered to have
disjoint support if supp (ν1) ∩ supp (ν2) = ∅.

To avoid the aforementioned pathological instances, a simple approach is to assume that
any two latent state mixtures ν1 and ν2 with disjoint support yield distinct distributions
over observations, meaning that Otν1 6= Otν2 for all t ∈ [T ], where Oh is the O×S emission
matrix at step h. Here, S and O denote the state and joint observation spaces, respectively,
with cardinalities of |S| = S and |O| = O. It can be shown using a linear algebraic argument
that this condition is equivalent to the rank of the emission matrix Ot being S.

Proposition 2 (Jin et al. 2020) The emission matrix Oh is rank S if and only if the
induced distributions over observations are distinct for any two mixtures of latent states
with disjoint support.

Building upon the proposition discussed earlier, Jin et al. (2020) suggested a more robust
assumption to guarantee that observations possess adequate information to differentiate any
two-state mixtures, given a sufficiently large number of samples.

Assumption 1 (α-weakly revealing condition, Liu et al. 2022) There exists α > 0,
such that mint σS (Ot) ≥ α.

Liu et al. (2022) refer to Assumption 1 as the “weakly” revealing condition, in contrast
to the rich observation or block MDP setup in the literature. However, it should be noted
that Assumption 1 implicitly assumes that S ≤ O, as Ot is a matrix of size O × S. Thus,
it only holds in the undercomplete setting. To ensure the generality of F2A2, we adopt the
overcomplete version assumption proposed by (Liu et al., 2022) where S > O.

Observations in a single step are insufficient to distinguish between any two mixtures
of latent states due to information-theoretic limitations. Instead, we must examine the
distribution of observations for a sequence of m consecutive steps corresponding to the
enriched observation space in F2A2. It is worth noting that the number of possible joint
observable sequences of length m, (o1,a1, . . . ,am− 1,om), is OmAm−1, which is greater
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than S when m ≥ Ω(logS). To formalize this, we define the m-step emission-action matrices{
Mt ∈ R(Am−1Om)×S

}
t∈[T−m+1]

, and introduce the following assumption.

Assumption 2 (m-step α-weakly revealing condition, Liu et al. 2022) There exists
m ∈ N, α > 0 such that mint∈[T−m+1] σS (Mt) ≥ α.

Assumption 2 guarantees that the observable sequence in the next m consecutive steps
contains enough information to distinguish any two mixtures of states when a sufficiently
large number of enriched observations is available. This assumption encompasses Assump-
tion 1 as a specific case with m = 1.

3.3 Cooperative Partially Observable Stochastic Games

Partially observable stochastic game (POSG) (Hansen et al., 2004) is denoted as a tuple
based on Markov Game as follows:

〈X ,S,
{
Ai
}n
i=1

,
{
Oi
}n
i=1

,P, E ,
{
Ci
}n
i=1
〉,

where n is the total number of agents, X represents the agent space, S is a finite set of
states, Ai is a finite action set of agent i, A = A1 × A2 × · · · × An is the finite set of
joint actions, P(s′|s,a) is the Markovian state transition probability function, Oi is a finite
observation set of agent i, O = O1 × O2 × · · · × On is the finite set of joint observations,
E(o|s) is the Markovian observation emission probability function, and Ci : S ×A×S → R
is the cost function of agent i.

The game in POSG unfolds over a finite or infinite sequence of stages (or timesteps),
where the number of stages is called horizon. This paper considers the episodic infinite
horizon problem. The objective for each agent is to minimize the expected discounted
cumulative cost received during the game. For a cooperative POSG, the definition in (Song
et al., 2020) is quoted,

∀x ∈ X , ∀x′ ∈ X\{x},∀πx ∈ Πx,∀πx′ ∈ Πx′ ,
∂Cx′

∂Cx > 0,

where x and x′ are a pair of agents in agent space X ; πx and πx′ are the corresponding
policies in the policy space Πx and Πx′ separately. Intuitively, this definition means that
there is no conflict of interest for any pair of agents. The most common example of coop-
erative POSG is the fully cooperative POSG (also called decentralized partially observable
Markov decision process, Dec-POMDP), that all the agents share the same global cost at
each stage, and C1 = C2 = · · · = Cn.

This paper aims to solve the general cooperative POSG. Each agent completes a common
task based on their local observations, cost, and learning process. Without loss of generality,
the optimization goal of the general cooperative POSG problem is defined as follows

min
Ψ

n∑

i=1

∞∑

t=0

Es0∼p0,o∼E,a∼πΨ

[
γtcit+1

]
, (3.1)

where Ψ := {ψi}ni=1 denotes parameters of the approximated policy πi
ψi

: Oi → Ai of all

agents and πΨ :=
∏n
i=1 π

i
ψi

represents the factorizable joint policy of all agents. γ is the
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discount factor. Note p0 is the distribution of the initial state s0. cit+1 represents the reward
received by the agent i at timestep t+ 1 after executes action ait in local observation oit.

3.4 Single-agent Actor-critic-type Algorithms for POMDP

Single-agent actor-critic methods optimize actor π(·|o;ψ) directly by minimizing the ex-
pected discounted accumulated cost:

∞∑

t=0

Es0∼p0,o∼E,a∼πψ
[
γtct+1

]
, (3.2)

where ψ is the parameters of the approximated policy, p0 is the distribution of the initial
state s0. However, this may lead to a high estimation variance with policy gradient meth-
ods. Instead, a critic Vφ(o) is introduced to estimate the expected accumulate cost. The
optimization formulation of the vanilla actor-critic algorithm (Sutton et al., 2000) can be
reformalized into a bi-level problem as follows (Yang et al., 2018c, 2019; Hong et al., 2020):

ψ∗ = arg min
ψ
Jactor(ψ, φ

∗(ψ)) := Es0∼p0,o0∼E
[
V π
φ∗(o0)

]
,

where φ∗(ψ) = arg min
φ
Jcritic(ψ, φ) := Es∼dψ ,o∼E

[(
V π
φ (o)− V π

tg(o)
)2]

,
(3.3)

where V π
tg(o) := Ea∼πψ ,s′∼P,o′∼E

(
Cs′s,a + γV π

φ (o′)
)

and Cs′s,a is equivalent to Ci(s, a, s′) defined

in previous subsection. dψ is the distribution of the state-occupancy measure of policy πψ.
Note the second term of the right side of the Eq. (3.3) is the bellman error and the

Vtg(·) stands for the temporal difference target in it. It can be seen that the first term of
the right side of the Eq. (3.3) is equivalent to Eq. (3.2). The critic Vφ(·) is introduced to
estimate the expected accumulated cost to reduce the variance. Moreover, correspondingly
the second term, bellman error term, is used to fit the introduced critic Vtg(·). Traditional
actor-critic algorithms (Lillicrap et al., 2016; Schulman et al., 2015, 2017; Haarnoja et al.,
2018; Fujimoto et al., 2018), minimizes Eq. (3.3) where updates the actor and the critic
parameters alternatively as follows,

min
ψ
Jactor(ψ, φ) := Es0∼p0,o0∼E

[
V π
φ (o0)

]
, (3.4a)

min
φ
Jcritic(ψ, φ) := Es∼dψ ,o∼E

[(
V π
φ (o)− V π

tg(o)
)2]

. (3.4b)

The algorithm scheme (3.4) can be considered as applying the block coordinate gradient
descent (BCGD) type algorithm on (3.3).

It is worth noting that when solving (3.4b), the bootstrapping method is generally
used (Sutton and Barto, 2018). Bootstrapping methods are not in fact instances of true
gradient descent (Barnard, 1993). They take into account the effect of changing the param-
eter φ on the estimated value, but ignore its effect on the target. They include only a part
of the gradient and, accordingly, are called semi-gradient methods. Although semi-gradient
(bootstrapping) methods do not converge as robustly as gradient methods, they do converge
reliably in important cases such as the linear case (Sutton and Barto, 2018). Moreover, they
offer important advantages that make them ofter clearly preferred. One reason for this is
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that they typically enable significantly faster learning. Another is that they enable learning
to be continual and online, without waiting for the end of an episode. This enables them
to be used on continuing problems and provides computational advantages.

4. Joint Actor-Critic MARL Framework

Actor-critic type algorithms are popular for MARL, which combines the advantages of
both policy gradient and value-based methods, often being more tractable and efficient
in either high-dimensional or continuous action space. Therefore, many existing MARL
methods (Foerster et al., 2018a; Wei et al., 2018; Iqbal and Sha, 2019) are based on the
actor-critic framework.

For general cooperative POSG, this paper first draw on the work of Yang et al. (2018c),
Yang et al. (2019) and Hong et al. (2020) to look at the actor-critic algorithm from a bi-level
perspective and extend it to multi-agent scenarios,

min
{ψi}

n∑

i=1

E
[
V π,i
φi,?

(o0)
]

s.t. {φi,?} = arg min
{φi}

n∑

i=1

E

[(
V π,i
φi

(o)− V π,itg (o)
)2
]
, (4.1)

where the expectations are taken on s0 ∼ d0, s ∼ dΨ,o0,o ∼ E ; {φi} and {ψi} denotes the
critic parameters and the actor parameters of all agents respectively, which are alternatively
optimized; V π,itg (o) is defined as

Ea∼πΨ,s′∼P,o′∼E

(
Cs′,is,a + γV π,i

φi

(
o′
))
.

Then, the above bi-level form can be simplified to a single-level problem with a penalty
term and obtain the standard optimization formulation for multi-agent cases:

min
{ψi},{φi}

{
Jac({ψi}, {φi}) := α1

n∑

i=1

E
[
V π,i
φi

(o0)
]

+ α2

n∑

i=1

E

[(
V π,i
φi

(o)− V π,itg (o)
)2
]}

.

(4.2)
For each agent i, the critic V π,i

φi
(o) is determined by all π =

∏n
i=1 π

i
ψi

and the specific φi

based on joint observation o; πi represents the policy of each agent i. It is worth noting
that each agent’s critic V π,i

φi
(o) defined in Equation (4.2) are only based on their critic

parameters φi but on all agents’ actor parameters {ψi}. The reason is that in the general
cooperative POSG problem, each agent has an independent cost function Ci mentioned in
Section 3.1 but this cost function is based on the policy of all agents. Further, the objective
function for each agent i in actor and critic parameter updating phases can be defined as
follows respectively:

J iactor({ψi}, φi) := E
[
V π,i
φi

(o0)
]
,

J icritic({ψi}, φi) := E

[(
V π,i
φi

(o)− V π,itg (o)
)2
]
.

(4.3)
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Therefore, the optimization problem (4.2) can be reformulated into

min
w
J (w) :=

Jac(w)︷ ︸︸ ︷

α1

n∑

i=1

J iactor({ψi}, φi)
︸ ︷︷ ︸

Jactor(w)

+α2

n∑

i=1

J icritic({ψi}, φi)
︸ ︷︷ ︸

Jcritic(w)

+R(w), (4.4)

where w := ({ψi}, {φi}) denotes all the parameters; α1 and α2 denote penalty factors in
actor and critic, respectively; R(·) denotes an optional regularizer to prevent over-fitting or
for sparsity and etc., and it is assumed with separable structure in the proposed framework.
Some works (Farebrother et al., 2018; Liu et al., 2019) have shown that model regulariza-
tion techniques have a significant impact on the performance of single-agent reinforcement
learning models. The scale of multi-agent reinforcement learning models is generally much
larger than that of single-agent models. Thus the impact of regularization should not be
ignored. Therefore, the regularization term R(·) is usually added to the multi-agent actor-
critic objective function to make the proposed framework more generalizable.

When solving the general cooperative POSG problem, in order to learn the decentralized
policies to achieve global collaboration, the following three types of techniques are mainly
used (Heider and Simmel, 1944; Rasouli et al., 2017; Schroeder de Witt et al., 2019). (1)
common knowledge based algorithms (Brafman and Tennenholtz, 2003; Schroeder de Witt
et al., 2019) use the common knowledge protocol to achieve global collaboration by estab-
lishing common knowledge about other agents’ actions or observations, based on the global
common knowledge generator; (2) explicit communication based algorithms (Peng et al.,
2017; Jiang and Lu, 2018) achieve certain consensus by explicit exchanging information in
the decision phase. But the information exchanged need to be able to be understood by
all agents, so the message generation module also needs to be shared between agents; (3)
implicit communication algorithms (Foerster et al., 2018a; Iqbal and Sha, 2019) directly
share individual action and/or observation between agents. At the same time, similar to
the explicit communication-based algorithms, the model of each agent to process this global
information must also be consistent with maintaining the same understanding of the envi-
ronment for the achievement of global collaboration.

In order to propose an effective framework to be compatible with these collaboration
skills, and considering that the core modules in these methods can be accessed globally,
the flexible parameter sharing mechanism is introduced to the proposed framework. In
addition, the parameter sharing mechanism also can be used for better algorithm scalabil-
ity (Yang et al., 2018b). Recent work (Terry et al., 2020; Christianos et al., 2021; Grupen
et al., 2021) also shows that parameter sharing plays a crucial role in improving algorithm
performance. To achieve highly integration of the parameter sharing mechanism and the
general cooperative POSG optimization objective, without loss of generalization, the pa-
rameters are reformulated and divided into shared and non-shared parts, denoted as win and
wsh respectively(“in” and “sh” denote “individual” and “shared” parameters, respectively).
Then, the problem (4.4) can be reformulated into a more general form, i.e.,

min
win,wsh

J (win,wsh) = α1Jactor(win,wsh) + α2Jcritic(win,wsh) +R(win,wsh), (4.5)
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Algorithm
win wsh Jactor, Jcritic

ψiin φiin ψsh φsh J iactor

(
{{ψiin}, φiin, ψsh, φsh

)
J icritic

(
{ψiin}, φiin, ψsh, φsh

)

MADDPG πi(oi) ∅ ∅ Q(o,a) E
[
Qπ,iφsh

(o,a)
]

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]

COMA πi(oi)(GRUs2) ∅ ∅ Q(o,a)
V (o)(MLP3)

E
[
Qπ,iφsh

(o,a)− B(o,a\i)
]

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]

MAAC πi(oi)(MLP) ζi,zi ∅
{
Vh,W

key
h ,W que

h

}H
h=1

E
[
Qπ,i
φiin,φsh

(o,a) + αH(·|πi
ψiin

(oi))− B(o,a\i)
]

E
[(
Qπ,i
φiin,φsh

(o,a)−Qπ,itg

)2
]

Table 1: Summary of MADDPG, COMA and MAAC algorithms.

where the general form of Jactor,Jcritic and R(win,wsh) are as follows:

Jactor(win,wsh) =
n∑

i=1

J iactor

(
{ψiin}, φiin, ψsh, φsh

)
,

Jcritic(win,wsh) =

n∑

i=1

J icritic

(
{ψiin}, φiin, ψsh, φsh

)
,

R(win,wsh) =
n∑

i=1

(
rseψ (ψiin) + rseφ (φiin)

)
︸ ︷︷ ︸

Rin(win)

+ rshψ (ψsh) + rshφ (φsh)
︸ ︷︷ ︸

Rsh(wsh)

,

with win = ({ψiin}, {φiin}) and wsh = (ψsh, φsh); the regularizer R(·) is separable with
rseψ , r

se
φ , r

sh
ψ and rshφ be related regularization functions. Many existing MARL algorithms

are equivalent to solve this general optimization formulation (4.5). Some state-of-the-art
algorithms, i.e. MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018a), MAAC (Iqbal
and Sha, 2019) and etc are summarized in the following Table 1, which include all elements
win, wsh, Jactor, Jcritic in framework (4.5) for them. More detailed derivation can be found
in supplemental material.

Most MARL methods solve the actor-critic framework based on the block coordinate
gradient descent (BCGD) type techniques, whose standard procedure is composed of suc-
cessive independent actor and critic steps, i.e.,





Critic-step:

(
φiin
φsh

)
←
(
φiin
φsh

)
− γ

( ∇φiinJcritic(win,wsh)

∇φshJcritic(win,wsh)

)
;

Actor-step:

(
ψiin
ψsh

)
←
(
ψiin
ψsh

)
− γ

( ∇ψiinJactor(win,wsh)

∇ψshJactor(win,wsh)

)
,

(4.6)

while the actor parameters (
{
ψiin
}
, ψsh) and the critic parameters (

{
φiin
}
, φsh) are fixed

in critic and actor steps respectively. By the way, the three sate-of-the-art MARL algo-
rithms mentioned above follow this iterative scheme (4.6), and the details are presented
in supplemental material. In this case, together with the existence of sharing parameters,
most typical MARL algorithms are included in the CTDE algorithm framework. These
algorithms have to maintain a globally accessible shared module in order to handle the pa-
rameter sharing. More important, when optimizing actor and critic parts separately, they
ignored the influence between each other. Although this separation optimization scheme
simplifies the solution calculation, it also introduces serious bias.
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5. Flexible Fully-decentralized Approximate Actor-critic Framework

Current decentralized multi-agent actor-critic algorithms (Zhang et al., 2018b,c; Zhang and
Zavlanos, 2019; Suttle et al., 2019) also use BCGD-type procedure to optimize actor and
critic of each agent. For example, Zhang et al. (2018c) can be regarded as a distributed
version of the COMA. The core idea of Zhang and Zavlanos (2019) is the opposite of Zhang
et al. (2018c), and it also uses the same procedure as the former. In centralized training,
the concentrative information collection and process might guarantee the global convergence
to a certain degree (Konda and Tsitsiklis, 2000). However, in decentralized training, the
hysteretic information exchange would cause error accumulation and an unstable problem
in many practical deployments. The standard procedure needs to be modified to a more
rational and flexible form to achieve full decentralization, satisfying the demand for the
mutual observation, reward assignment, and policy interaction between agents, and syn-
chronize the optimization. At the same time, the above algorithms generally assume that
the local observations and policies of other agents are known when performing decentral-
ized optimization. This constraint requires a large amount of inter-agent communication
so that the above-mentioned decentralized algorithms cannot be extended to a large-scale
multi-agent environment.

Based on the analysis above, the following issues need to be considered to propose a
fully decentralized multi-agent actor-critic algorithm. First, the algorithm can solve error
accumulation and instability problems caused by the BCGD-type procedure of the current
multi-agent actor-critic algorithms under decentralized training. Second, it can work with
fewer constraints. It does not require the precise policies of all other agents, thereby avoiding
the high communication costs. Third, it can be flexibly combined with most actor-critic
algorithms and compatible with on-policy and off-policy techniques.

Therefore, the fully decentralized algorithm framework is proposed to solve the gen-
eral formulation above (4.5). Firstly, the consensus variables

{
w̃i
sh

}
are introduced to

help achieve the fully decentralized structure. Recall the definition of Jactor(win,wsh),
Jcritic(win,wsh) and the regularizer R(win,wsh), the comprehensive formulation can be
obtained as follows:

min
win,{w̃i

sh},wsh

α1

n∑

i=1

J iactor

(
win, w̃

i
sh

)
+ α2

n∑

i=1

J icritic

(
win, w̃

i
sh

)
+R(win,wsh),

s.t. wsh = w̃i
sh, i = 1, · · · , n. (5.1)

This can be considered as an equivalent reformulation of the general formulation (4.5). (5.1)
is a typical linear constrained optimization problem while the consensus constraints only
relate to the shared parameters for all n agents.

{
w̃i
sh

}
are introduced to help communicating

the shared parameters and each w̃i
sh belongs to agent i respectively. As a result, the

primal-dual hybrid gradient (PDHG) type method (or inexact alternating direction method
of multipliers (ADMM) type method) is utilized to solve (5.1) because the PDHG-type
method naturally has decentralized computing architecture. The augmented Lagrangian
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function is defined as follows,

L
(
win,

{
w̃i
sh

}
,wsh, {λi}

)
=

∑n
i=1 J

i
ac(win,w̃

i
sh)︷ ︸︸ ︷

α1

n∑

i=1

J iactor

(
win, w̃

i
sh

)
+ α2

n∑

i=1

J icritic

(
win, w̃

i
sh

)
+R(win,wsh)

−
n∑

i=1

〈
λi,wsh − w̃i

sh

〉
+
β

2

n∑

i=1

∥∥wsh − w̃i
sh

∥∥2
, (5.2)

where {λi} denote the Lagrangian dual variables concerning the consensus linear constraints
with a unified penalty parameter β (in order to express more clearly, a unified penalty pa-
rameter is used, and it can also be modified into separate and different parameters). Moti-
vated by the popular ADMM, the PDHG algorithm framework can be designed by alterna-
tively calculate the primal variables win,

{
w̃i
sh

}
,wsh and the dual variables {λi}. Similar

to the definition win = ({ψiin}, {φiin}) and wsh = (ψsh, φsh), we have w̃i
sh = (ψ̃ish, φ̃

i
sh). The

augmented Lagrangian L
(
win,

{
w̃i
sh

}
,wsh, {λi}

)
can be denoted equivalently as

L
({(

φiin, φ̃
i
sh

)}
,
{(
ψiin, ψ̃

i
sh

)}
, (ψsh, φsh) , {λi}

)
. (5.3)

The classical ADMM framework works on this augmented Lagrangian function L, and

in each iteration it minimizes variable blocks
{(
φiin, φ̃

i
sh

)}
,
{(
ψiin, ψ̃

i
sh

)}
and (ψsh, φsh)

based on Gauss-Seidel scheme and further updates the Lagrangian multiplier {λi}. Instead
of minimizing the Lagrangian function directly, the gradient descent technique is employed
to approximately updating primal variable blocks progressively, and as a result, the brief
primal-dual hybrid gradient algorithm framework is proposed in the following calculation
scheme (Boyd et al., 2011; Chambolle and Pock, 2011)

[
φiin
φ̃ish

]
←
[
φiin
φ̃ish

]
− βφ

[
∇φiinL

(
win,

{
w̃i
sh

}
,wsh, {λi}

)

∇φ̃ishL
(
win,

{
w̃i
sh

}
,wsh, {λi}

)
]
, i = 1, · · · , n; (5.4a)

[
ψiin
ψ̃ish

]
←
[
ψiin
ψ̃ish

]
− βψ

[
∇ψiinL

(
wi
in,
{
w̃i
sh

}
,wsh, {λi}

)

∇ψ̃ishL
(
win,

{
w̃i
sh

}
,wsh, {λi}

)
]
, i = 1, · · · , n; (5.4b)

[
ψsh
φsh

]
←
[

(1/n)
∑n

i=1 ψ̃
i
sh

(1/n)
∑n

i=1 φ̃
i
sh

]
; (5.4c)

λi ← λi − β
(
wsh − w̃i

sh

)
, i = 1, · · · , n. (5.4d)

The update step (5.4a) calculates the critic parameters φiin together with the splitting
shared critic parameters φ̃ish, and (5.4b) updates the actor parameters ψiin with the splitting
shared actor parameters ψ̃ish. (5.4c) aims to update the shared parameters (φsh, ψsh) by
averaging all the splitting shared critic and actor respectively. It is evident that each agent
i computes its actor and critic parameters and its splitting shared parameters. The overall
shared parameters are updated through (5.4c) and broadcast to all agents. (5.4) can be
decentralized implemented and full details can be found in Algorithm 1.

Noting that if no shared parameters is used in formulation (4.5) and (5.1), then the
whole problem is degenerated to a simplified version, i.e.,

min
win

J (win) = α1Jactor(win) + α2Jcritic(win) +Rin(win). (5.5)
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Algorithm 1 The F2A2 Algorithm Framework.

1: Initialize independent parameters win, shared parameters w̃i
sh. Set consensus pa-

rameters w̃s, dual parameters {λi} and the unified penalty parameter β to zero.
For each agent i, initialize all other policies estimation parameters ψij,in for j =
1, · · · , i− 1, i+ 1, · · · , n.

2: for each episode do
3: for t = 1 to the pre-defined max length of the episode do
4: Each agent observes initial observation oti;
5: For agent i, select action ati by current policy πi;
6: Execute at = (at1, · · · , atN ) and get the cost ct+1

i and next observation ot+1
i ;

7: Store (ot,at, ct+1,ot+1) to replay buffer D;
8: for each agent i do
9: Sample a batch tuple {(ok,ak, ck+1,ok+1)} from replay buffer D;

10: For each tuple sample the next action ak+1 according to the estimated policies
π̃ of all other agents;

11: Critic-step: Update independent critic parameters and consensus critic param-

eters
{
φiin, φ̃

i
sh

}
:

[
φiin
φ̃ish

]
←
[
φiin
φ̃ish

]
− βφ

[
∇φiinL

(
win,

{
w̃i
sh

}
,wsh, {λi}

)

∇φ̃ishL
(
win,

{
w̃i
sh

}
,wsh, {λi}

)
]
,

and use the formula in Prop. 4 or its variants to calculate the sampled off-policy
policy gradient and α is the step-size of gradient descent method.

12: Actor-step: Update independent actor parameters and consensus actor param-

eters
{
ψiin, ψ̃

i
sh

}
by minimizing the loss:

[
ψiin
ψ̃ish

]
←
[
ψiin
ψ̃ish

]
− βψ

[
∇ψiinL

(
win,

{
w̃i
sh

}
,wsh, {λi}

)

∇ψ̃ishL
(
win,

{
w̃i
sh

}
,wsh, {λi}

)
]
,

where use the recent obtained
{
φiin, φ̃

i
sh

}
into critic-step; and use the formula in

Prop. 4 or its variants to calculate the sampled off-policy policy gradient; and α
is the step-size of gradient descent method.

13: Consensus-step: Eq. 5.4 can be implemented in a decentralized manner.
Specifically, agent i broadcast the recent obtained consensus parameter φ̃ish, ψ̃

i
sh

and receive all others recent obtained consensus parameter φ̃jsh, ψ̃
j
sh for all j 6= i.

Then update shared parameter wsh:

[
ψsh
φsh

]
←
[

(1/n)
∑n

i=1 ψ̃
i
sh

(1/n)
∑n

i=1 φ̃
i
sh

]
,

14: and update the dual multiplier parameters {λi}: λi ← λi − β
(
wsh − w̃i

sh

)

15: if t mod the update frequency of the policy estimation model == 0 then
16: Sample a batch tuple {(ok,ak, ck+1,ok+1)} from replay buffer D;
17: Update the estimated policies π̃ of all others by supervised learning.
18: end if
19: end for
20: end for
21: end for

18



F2A2: Flexible Fully-decentralized Approximate Actor-critic

The scheme (5.4) with be simplified into

φiin ← φiin −∇φiinJ (win), i = 1, · · · , n; (5.6a)

ψiin ← ψiin −∇ψiinJ (win), i = 1, · · · , n. (5.6b)

(5.6) can be considered to minimize (5.5) concerning the critic parameters
{
φiin
}

and actor
parameters

{
ψiin
}

alternatively. This basic scheme is different from traditional multi-agent
actor-critic algorithms (e.g., 3.4), while the BCGD-type scheme is employed on the jointly
MARL framework (5.5).

Remark 2. Although some previous value-based multi-agent reinforcement learning algo-
rithms (Lauer and Riedmiller, 2000; Matignon et al., 2007; Panait et al., 2008; Arslan and
Yüksel, 2017) do not pass any messages between agents during the learning process and
belong to pure decentralization, it is still reasonable to name the proposed framework as
“fully decentralized” similar with Zhang et al. (2018c). These messages transmit between
agents in the learning procedure are not uniformly collected and distributed by a centralized
controller, but each agent sends and receives them individually.

Remark 3. There are two key formulations in this paper, i.e., Equation 4.1 and 4.2. As
discussed above, problem (4.1) is the core problem that actor-critic type methods aim to
solve, and problem (4.2) can be considered as an approximation version of problem (4.1).
Problem (4.2) has the separable structure which motivated us to design the proposed Al-
gorithm 1. The optimal solutions of problem (4.1) and (4.2) seems to be different, however
the optimal solution set of problem (4.1) is more difficult to guarantee because of its bi-level
programming structure. Very few works have discussed the theoretical analysis of the RL
algorithm to solve the bi-level formulation, while nearly all of them focused on the single-
agent case. For instance, Yang et al. (2018c), Yang et al. (2019) and Hong et al. (2020)
consider the single-agent actor-critic algorithm as a specific solution to the correspond-
ing bi-level problem, and give some convergence results on linear function approximation
case. As for the multi-agent case, Zhang et al. (2018c) proposes two decentralized actor-
critic algorithms with function approximation, and convergence analyses of the algorithms
are provided when the value functions are approximated within the class of linear func-
tions. Zhang et al. (2018c) still could not guarantee the convergence to the stationary
point of the bi-level programming problem (4.1). For the stability of the training, a regu-
larization term is added to the problem (4.2) to make the problem into the more general
problem (4.5), which can be equivalent converted into problem (5.1). In this paper, some
convergence results of the proposed Algorithm 1 can be further established. Expressly,
Algorithm 1 can be incorporated into the algorithm framework of Hong et al. (2016) for
solving the problem (4) (5.1 in the modified version). If Algorithm 1 can satisfy (Hong
et al., 2016, Assumption A) then theoretical results similar to can (Hong et al., 2016,
Theorem 2.4) be obtained, i.e., Any limit point {{φi,∗in }, {ψ

i,∗
in }, {φ∗sh}, {ψ∗sh}, {λi,∗}} of the

sequence {{φi,kin }, {ψ
i,k
in }, {φksh}, {ψksh}, {λi,k}} which is obtained from Algorithm 1 is a sta-

tionary point of problem (5.1). Because problem (5.1) is equivalent with problem (4.5), we
have that {{φi,∗in }, {ψ

i,∗
in }, {φ∗sh}, {ψ∗sh}, {λi,∗}} is a stationary point of problem (4.5). The

policy or value approximation functions are not limited to the linear case, and the local

19



Li, Jin, Wang, Yan, and Zha

convergence of the obtained sequence for general cases in Algorithm 1 can be proved. To
emphasize, the convergence to the stationary point of the bi-level programming formulation
problem (4.1) could not be guaranteed.

5.1 Instantiation Algorithms

In the proposed PDHG algorithm framework, the gradient of the augmented Lagrangian
function L concerning the primal variables (see Eq. 5.4a and 5.4b) need to be calculated to
optimize the actors and critics of each agent. The proposed optimization objective functions
are different from traditional centralized and decentralized MARL algorithms. Therefore,
the related results in these algorithms cannot be directly used. This section will give the
detailed form of the gradient of the Lagrangian function L. In Section 4, it can be seen that
the proposed algorithm framework has good flexibility, so the proposed framework could
introduce various single-agent reinforcement learning algorithms as the backbone.

Specifically, one on-policy algorithm, i.e. COMA (Foerster et al., 2018a), and three
state-of-the-art single-agent off-policy actor-critic algorithms, i.e. DDPG (Lillicrap et al.,
2016), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) are incorporated into
the proposed decentralized framework.

5.1.1 On-policy F2A2 Instantiation Algorithms

For the on-policy methods, the current state-of-the-art algorithm COMA is chosen as the
backbone algorithm. The corresponding proposition for the COMA algorithm is proposed
to calculate the on-policy joint gradient.

Proposition 3 (On-Policy COMA-Based Joint Gradient) dπ represents the
distribution of the state-occupancy measure of policy π, and δ is the TD(0)-error.
The counterfactual baseline B(o,a\i) also be introduced from COMA. So the gradient
of J iac

(
win, w̃

i
sh

)
is

∇ψiinJ
i
ac

(
win, w̃

i
sh

)
=

Es∼dπ ,o∼E,a∼π

[
α1∇ψiin log πiψiin

(ai|oi)
(
Qπ,i
φ̃ish

(o,a)− B(o,a\i) +
α2

α1
δ2

)]
,

∇φ̃ishJ
i
ac

(
win, w̃

i
sh

)
= Es∼dπ ,o∼E,a∼π

[
(α1 + 2α2δ)∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

For other single-agent on-policy actor-critic algorithms need to be incorporated, we just
need to replace the J iactor and J icritic part in J iac

(
win, w̃

i
sh

)
with the corresponding form and

derive their corresponding on-policy joint gradients. The specific forms of F2A2-COMA and
the proof of Proposition 3 are given in supplemental material. With the gradient calculated
above, below, the F2A2-COMA algorithm is formally proposed.

F2A2-COMA. COMA (Counterfactual Multi-Agent Policy Gradient) method learns a
centralized critic with a counterfactual baseline which is inspired by difference rewards to
solve the multi-agent credit assignment problem. The COMA algorithm is introduced into
the F2A2 framework, and the F2A2-COMA algorithm is then proposed accordingly. F2A2-
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COMA focuses on settings with discrete actions but can be easily extended to continuous
action spaces by estimating counterfactual baseline with Monte Carlo samples or using
functional forms that render it analytical, e.g., Gaussian policies and critic. In the F2A2-
COMA algorithm, all agents share a centralized counterfactual baseline function, but the
policy functions are independent of each other. All the other settings are the same as the
COMA algorithm.

5.1.2 Off-policy F2A2 Instantiation Algorithms

The following proposition for off-policy methods is firstly proposed since the above single-
agent off-policy algorithms are either based on or related to the DDPG algorithm.

Proposition 4 (Off-Policy DDPG-Based Joint Gradient) π0 represents the
data collection policy sampled from experience replay buffer, d0 represents the dis-
tribution of the state-occupancy measure of policy π0, and δ is the TD(0)-error.
ε, α1, α2 are hyperparameters. ψi := {ψiin, ψ̃ish}, φi := {φiin, φ̃ish}, the gradients of
J iac
(
win, w̃

i
sh

)
w.r.t. {ψiin, ψ̃ish} and {φiin, φ̃ish} are

∇ψiinJ
i
ac

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π

[
(α1 + 2α2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]
,

∇φ̃ishJ
i
ac

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π0

[(
α1

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
+ 2α2δ

)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
+

Es∼d0,o∼E,a∼π

[(
α1 + 2α2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

))
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

The J iactor and J icritic part in J iac
(
win, w̃

i
sh

)
can be replaced with the corresponding

form of the single-agent off-policy actor-critic algorithm need to be incorporated, and their
corresponding joint gradients can be derived accordingly. The specific forms of F2A2-
DDPG, F2A2-TD3, and F2A2-SAC are shown in Figure 10 in the supplementary material.
The proof of Proposition 4 and its variants (of F2A2-TD3 and F2A2-SAC) are given in
supplemental material. With the gradient calculated above, below, three off-policy F2A2
instantiation algorithms are proposed formally.

F2A2-DDPG. The DDPG algorithm is introduced into the F2A2 framework, and the
F2A2-DDPG algorithm is proposed accordingly. In F2A2-DDPG, all agents share a central-
ized value function, but the policy functions are independent. At the same time, considering
that the simulated environments in this paper are all designed with discrete action space,
DDPG cannot directly deal with the above situation. So this paper learns from the ideas
of Lowe et al. (2017), rather than using policies that deterministically output an action,
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policies that produce differentiable samples through a Gumbel-Softmax distribution (Jang
et al., 2017) is then used.

F2A2-TD3. While DDPG can achieve excellent performance sometimes, it is frequently
brittle concerning hyperparameters and other kinds of tuning. For example, a standard
failure mode for DDPG is that the learned Q-function begins to dramatically overestimate
Q-values, leading to policy breaking because it exploits the errors in the Q-function. TD3
(Twin Delayed DDPG) is an algorithm that addresses this issue by introducing three critical
tricks, clipped double Q-learning, delayed policy updates, and target policy smoothing. In
the F2A2-TD3 algorithm, all agent’s two centralized Q-value functions share each other,
and the policy function is independent. Each agent has a different policy update frequency
and policy smoothing noise for better exploration. Since TD3 cannot be applied to discrete
action space, the same approach as F2A2-DDPG is adopted to modify the TD3 algorithm.

F2A2-SAC. SAC (Soft Actor Critic) is an algorithm that optimizes a stochastic policy
in an off-policy way, forming a bridge between stochastic policy optimization and DDPG-
style approaches. It is not a direct successor to TD3 (having been published roughly con-
currently). However, it incorporates the clipped double-Q trick, and due to the inherent
stochasticity of the policy in SAC, it also winds up benefiting from something like tar-
get policy smoothing. Same as F2A2-TD3, all agents have the same centralized Q-value
function and independent policy function.

Remark 4. In the practical implementation, we use the truncated importance sampling
ratio inspired by Munos et al. (2016) for all off-policy instantiation algorithms (F2A2-
DDPG, F2A2-TD3, F2A2-SAC) to stabilize the training process, i.e.,

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
→ min

(
ε,
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
, and

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
→ min

(
ε,

πi0(ai|oi)
πi
ψiin

(ai|oi)

)
,

and we set ε = 1 in all experiments. Compared to original importance sampling ratio,
it does not suffer from the variance explosion of the product of importance sampling ra-
tios. Truncated importance sampling ratio has other theoretical advantages and interested
readers can refer to the original paper (Munos et al., 2016).

5.2 Modeling Other Agents

Existing decentralized reinforcement learning works (Zhang et al., 2018c; Doan et al., 2019b;
Suttle et al., 2019) assume that each agent can observe others’ actions. While such an
assumption is too strict, and the more realistic assumption is that the agent has to model
other agents’ policies and predict other agents’ actions based on their historical observations.
Some further improvements are involved into the proposed algorithm framework to make the
proposed framework still works better under such a more general assumption. Specifically,
in this more general assumption the symbol π, in Proposition 4, 3 and their variants, are
changed to π̃ and the symbol a is changed to ã := π̃(o). Another important issue is
that the approximate policy π̃ and action ã may lead to distorted gradients in Algorithm
1. However, gradients with noise may help optimization algorithms converge to global
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Figure 3: Modeling other agents’ policies. Character and Mental networks are used to
encode the historical and instant information of the agent. Natural Prediction and
Impromptu Prediction networks obtain the final prediction via online supervised
learning with previous outputs and the current state.

optimal solution (Jastrzebski et al., 2017; Neelakantan et al., 2017; Smith and Topin, 2019).
Although the estimated policy might bring bias, it could reduce the algorithm’s variance,
which further improves the robustness of the system. This will be demonstrated later in
the experiments.

To better estimate the policies of other agents in complex multi-agent environments, a
novel modeling other agents (MOA) approach is devised based on theory-of-mind (TOM)
inspired by Rabinowitz et al. (2018), and similar approach have also been found in other
works (Jaques et al., 2019). The method is further connected with online supervised learn-
ing. The algorithm architecture is shown in Figure 3. Specifically, each agent first randomly
samples a fixed number of trajectories in the environment before training and encode each
trajectory using an LSTM. Then, the average of all the trajectories encoding is taken as the
character of the agent. After training starts, for each current unfinished trajectory, another
LSTM is used to encode its historical segment as the current mental of the agent. On the
one hand, the current state, the character, and the current mental of the agent are used
together as input to the natural prediction network ; on the other hand, the impromptu pre-
diction network is proposed to predict the action of agents only relying on the current state.
The outputs of the two networks are combined to produce the final predictions. Note that
the entire network’s training process is performed together with the reinforcement learning
algorithm, and the training data is periodically collected online.

Finally, as detailed in Figure 4, we propose the fully decentralized algorithm framework,
which follows the primal-dual hybrid gradient scheme and simultaneously splits joint tasks
with the divide-and-conquer strategy. Algorithm 1 is the corresponding pseudocode.

5.3 Information Setting Comparison

Finally, to clearly show the differences among the proposed F2A2, the MARL algorithms
in the CTDE framework, and existing decentralized MARL algorithms, the information
settings of the above algorithms is summarized and the details are shown in Table 2.
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Figure 4: Flowchart corresponding to Algorithm 1.

Schemes Algorithms Joint Observation Joint Policy Joint Cost Shared Actor Shared Critic

Centralized
Algorithms

MADDPG (Lowe et al., 2017) Accessible Accessible - - Accessible
COMA (Foerster et al., 2018a) Accessible Accessible Accessible - Accessible
MAAC (Iqbal and Sha, 2019) Accessible Accessible - - Accessible

Decentralized
Algorithms

MA-AC (Zhang and Zavlanos, 2019) Accessible Communication - Communication -
MA-AC (Zhang et al., 2018c) Accessible Communication - - Communication

F2A2 Accessible Estimation - Communication Communication

Table 2: The information settings of typical centralized, decentralized algorithms, and
F2A2. Dashes indicate that certain elements do not exist.

For centralized MARL algorithms (i.e., MADDPG, COMA, MAAC), each agent must
use joint observations (and the joint actions taken by all agents under the current joint pol-
icy) as input when calculates the joint Q-value (and trains the joint Q-value function), due
to the existence of the centralized critic. Therefore, the joint observations and joint policy
must be accessible for each agent during the algorithm training process. For MADDPG
and MAAC, because they solve the general cooperative POSG problem, each agent only
needs to optimize its own expected cumulative costs. Therefore, each agent does not need
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Environment Scenario Scale Agent #

Cooperative MPE
(Iqbal and Sha, 2019)

Cooperative Treasure Collection Small-Scale 8
Rover Tower Small-Scale 8

StarCraft II
Micromanagement

(Samvelyan et al., 2019)

Map 2s3z Small-Scale 5
Map 3m Small-Scale 3
Map 8m Small-Scale 8

MAgent (Zheng et al., 2018) Battle Large-Scale 256

Table 3: Attributes of the experiment environments.

to access the joint cost. However, for the COMA algorithm, it is necessary to access the
joint cost because it solves the fully cooperative MARL problem.

Existing decentralized algorithms achieve global access to some centralized modules
(e.g., joint policy, centralized critic, centralized actor) by communicating with each other.
However, for the partially observed multi-agent environment, to make the agent’s policy
have a more robust representation ability, its policy function is often modeled by a recurrent
neural network. Transmission of such a large amount of parameters through communication
will make the algorithm less scalable. Therefore, F2A2 estimates the policies of the other
agents by introducing the MOA module.

6. Experiments

The numerical experiments of the proposed framework are conducted from the following
three aspects: effectiveness, performance, and scalability. Specifically, the effectiveness
of F2A2 is verified in two general cooperative POSG environments designed in Iqbal and
Sha (2019) first. Then, F2A2 is combined with the recurrent neural network to verify
the performance on the more challenging cooperative Starcraft II unit micromanagement
tasks (Samvelyan et al., 2019). Finally, the scalability is verified in a large-scale general
cooperative POSG environment MAgent(Zheng et al., 2018). Table 3 contains the concise
introduction for each environments.

In the above environments, the corresponding centralized baseline method MADDPG,
MAAC, and COMA is set for the F2A2-framework instantiation F2A2-DDPG, F2A2-SAC,
and F2A2-COMA. Like MAAC, the counterfactual baseline proposed by COMA is also
introduced in F2A2-SAC. For fairness, the attentional critic is used as same as the MAAC
algorithm in F2A2-SAC. In addition, as far as we know, there is no published centralized
MARL algorithm using TD3 as the backbone. Therefore, the performance of the F2A2-TD3
is used as an indicator to measure the adaptability of the F2A2 framework to the single-
agent algorithm instead of setting a corresponding baseline for the F2A2-TD3 algorithm.
Specifically, because the TD3 algorithm is generally better than DDPG when the F2A2
framework adopts these single agent algorithms as the backbone, it can keep the relative
order of performance after instantiation (that is, F2A2-TD3 should be better than F2A2-
DDPG). For decentralized works, MA-AC (Zhang et al., 2018c) is chosen as the baseline.
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Figure 5: Cooperative Multi-agent Particle Environment. The solid line represents the av-
erage under 10 seeds, and the shaded part represents the 95% confidence interval.

6.1 Cooperative Multi-agent Particle Environments

The Multi-agent Particle Environments (MPE) was first used in Lowe et al. (2017). How-
ever, the MPE includes cooperative tasks, competitive tasks, and cooperative-competitive-
hybrid tasks, and the number of agents is small. To this end, the larger-scale collaborative
environment based on the MPE environment proposed by Iqbal and Sha (2019), which is
denoted as Cooperative Multi-agent Particle Environments (Cooperative MPE), is used to
more effectively verify the effectiveness of the algorithm. The two cooperative environments
are introduced in Appendix in detail.

Figure 5(a) and 5(b) plot F2A2 instantiations’ performance relative to their centralized
baselines and the decentralized baseline against the training episodes in Cooperative MPE.
It can be seen that the algorithms instantiated by F2A2 can reach or exceed the performance
of their corresponding centralized baselines, which shows that the F2A2 framework can ef-
fectively make global decisions based on local observations and also reflects the effectiveness
of PDHG and MOA. At the same time, the performance of the F2A2-TD3 algorithm can
exceed the F2A2-DDPG algorithm, which shows that the F2A2 framework can flexibly
integrate the single-agent algorithms and guarantee their original advantages.

Specifically, from Figure 5(a) and 5(b), it can be seen that in the Rover-Tower environ-
ment, the performance gaps between the F2A2 instantiated algorithms and corresponding
centralized baselines are greater than the Cooperative Treasure Collection environment. We
believe this is due to the characteristics of the environments. Compared with the Cooper-
ative Treasure Collection environment, the interaction between agents in the Rover-Tower
environment is more sparse. Therefore, too much consideration of the behavior of other
agents can easily cause the algorithm to overfit other agents and converge to a poor local
optimal. The MOA module in F2A2 can play a role in regularization, allowing the algorithm
to ignore other agents’ effects partially.

We mentioned earlier that MA-AC could be seen as a decentralized version of the cen-
tralized algorithm COMA. From the performance comparison of the two in the figure, it can
be seen that if joint training and MOA are lacking, the performance of the decentralized
algorithm cannot exceed the performance of the centralized algorithm. It should be noted
here that, in theory, if the centralized algorithm can find the optimal global solution, then
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(a) StarCraft II 3m map.
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(b) StarCraft II 8m map.
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Figure 6: StarCraft II Environment. The solid line represents the average under 10 random
seeds, and the shaded part represents the corresponding 95% confidence interval.

the decentralized algorithm cannot exceed the performance of the centralized algorithm.
However, the current centralized MARL algorithms can only achieve local optimal.

6.2 StarCraft II Micromanagement

This section focuses on the decentralized micromanagement problem in StarCraft II. The
combat scenarios where two groups of identical units are placed symmetrically on the map
are considered. The units of the first group, allied, are controlled by the proposed algo-
rithms. The enemy units are controlled by a built-in StarCraft II AI, which makes use
of handcrafted heuristics. The initial placement of units within the groups varies across
episodes. The difficulty of the computer AI controlling the enemy units is set to medium.
The results on a set of maps where each unit group consists of 3 Marines (3m), 8 Marines
(8m), and 2 Stalkers and 3 Zealots (2s3z) are compared with baselines.

Similar to the work of Foerster et al. (2018a) and Rashid et al. (2018), the action space
of agents consists of the following set of discrete actions: move[direction], attack[enemy id],
stop, and noop. Agents can only move in four directions: north, south, east, or west. A unit
is allowed to perform the attack[enemy id] action only if the enemy is within its shooting
range. This facilitates the decentralization of the problem. The introduction of the unit
sight range achieves partial observability. Moreover, agents can only observe others if they
are alive and cannot distinguish between units that are dead or out of range. At each time
step, the agents receive a joint cost equal to the total negative damage dealt on the enemy
units. In addition, agents receive a bonus of 10 points after killing each opponent and 200
points after killing all opponents. These costs are all normalized to ensure the maximum
cumulative cost achievable in an episode is −20.

Figure 6(a), 6(b) and 6(c) plot F2A2 instantiations’ win rate in test environment rel-
ative to their centralized baselines against the environmental steps in three StarCraft II
micromanagement maps. It can be seen from the figure that even if the Starcraft II environ-
ment is more complicated than Cooperative MPE, the instantiation algorithms of the F2A2
framework can still reach or exceed its corresponding centralized baseline in performance.
This demonstrates the robustness of the F2A2 framework. In addition, the performance
comparison between MA-AC and COMA shows similar results to the Cooperative MPE.
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Figure 7: MAgent training. (a-b) the negative cost (reward) and convergence performance
of F2A2 for 12 − 256 agents, the solid line represents the average under 10 ran-
dom seeds. (c-e), F2A2 is first trained in the environment with 256 agents and
then transferred to a larger environment with 625 agents directly. Here some
interesting patterns that the agents show after transfer are shown.

6.3 Large-scale MAgent Environment

The Battle scenario in the MAgent platform provided by Zheng et al. (2018) is chosen
as the simulation environment. The Battle game is a general cooperative POSG scenario
with two armies fighting against each other in a grid world, each empowered by a dif-
ferent RL algorithm. Each army consists of 12 − 256 homogeneous agents. The goal of
each army is to get fewer costs by collaborating with teammates to destroy all the oppo-
nents. The agent can take action to either move to or attack nearby grids. Ideally, the
agent should learn skills such as chasing to hunt after training. The default cost setting is
adopted: 0.005 for every move, −0.2 for attacking an enemy, −5 for killing an enemy, 0.1
for attacking an empty grid, and 0.1 for being attacked or killed. Since the proposed F2A2-
DDPG/TD3/SAC/COMA are similar to MADDPG, they can only be run on a small scale
due to global critic. Hence F2A2 is extended to a large-scale off-policy fully-decentralized
actor-critic method, i.e. F2A2-ISAC, which combines F2A2-SAC with IQL (Tan, 1993). It
differs from F2A2-SAC only in the input accepted by the critic. The former requires ob-
servations and (estimated) policies of all agents, while F2A2-ISAC only requires individual
local observation and individual policy. Therefore, the MOA module is no longer required
in F2A2-ISAC. Although the MAgent environment scale is enormous, each agent’s task is
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ctc
MAAC F2A2-SAC
MAAC F2A2-SAC-0 F2A2-SAC-20 F2A2-SAC-40 F2A2-SAC-60 F2A2-SAC-80 F2A2-SAC-100

148(±8) 23(±4) 37(±4) 45(±5) 112(±4) 142(±8) 147(±9)

rt
MAAC F2A2-SAC
MAAC F2A2-SAC-0 F2A2-SAC-20 F2A2-SAC-40 F2A2-SAC-60 F2A2-SAC-80 F2A2-SAC-100
121(±5) 52(±7) 52(±7) 78(±5) 126(±6) 135(±5) 139(±6)

3m
MAAC F2A2-SAC
MAAC F2A2-SAC-0 F2A2-SAC-20 F2A2-SAC-40 F2A2-SAC-60 F2A2-SAC-80 F2A2-SAC-100

0.88(±0.11) 0.65(±0.08) 0.68(±0.07) 0.70(±0.08) 0.76(±0.09) 0.91(±0.10) 0.92(±0.09)

8m
COMA F2A2-COMA
COMA F2A2-COMA-0 F2A2-COMA-20 F2A2-COMA-40 F2A2-COMA-60 F2A2-COMA-80 F2A2-COMA-100

0.97(±0.01) 0.83(±0.01) 0.82(±0.01) 0.85(±0.02) 0.84(±0.01) 0.94(±0.01) 0.96(±0.02)

2s3z
MAAC F2A2-SAC
MAAC F2A2-SAC-0 F2A2-SAC-20 F2A2-SAC-40 F2A2-SAC-60 F2A2-SAC-80 F2A2-SAC-100

0.48(±0.02) 0.35(±0.02) 0.35(±0.03) 0.41(±0.02) 0.43(±0.02) 0.55(±0.01) 0.57(±0.02)

Table 4: The performance comparison of each algorithm under different communication
topologies. The numbers following the F2A2 algorithm represent the proportions
of edges added in the ring topology, and 0 means that no edges exist in the com-
munication topology. “ctc” and “rt” represent the Cooperative Treasure Collection
task and the Rover Tower task in the Cooperative MPE environment, respectively.
The data in the Cooperative MPE environment represents the mean episode re-
ward of all agents in the last 1k timesteps; And “3m”, “8m”, “2s3z” represent
different maps in SC II environment. The data in the SC II environment repre-
sents the mean test win rate of all agents in the last 10k timesteps. Numbers in
parentheses indicate 95% confidence intervals, obtained under 5 random seeds and
blacked numbers indicate best results.

relatively simple so that F2A2-ISAC can achieve good results. The parameters in actor and
critic for all agents are shared, similar to (Gupta et al., 2017).

In Figure 7(a), as the number of agents increases, the cost curves have a similar trend,
which indicates that the decentralized learning ability is not affected by the large-scale
setting. In Figure 7(b), the convergence time does not increase significantly as the num-
ber of agents grows. The curve shows that the proposed algorithms have good scalability.
Algorithms also learn some interesting patterns. In figure 7(c), in the early stage of con-
frontation, the rear agents explore the environment because they cannot directly engage
the enemy; in 7(d), when a small maniple of enemies escape, agents are splitted to chase;
in 7(e), the large forces use the means of encirclement to conquest.

6.4 More Analysis

F2A2 reduce the information transmission during the decentralized algorithm
learning. We only consider the information transmission between the agents of the decen-
tralized algorithm here. For the centralized algorithm, all the information transmission is
carried out on one physical machine, so it is meaningless to count the amount of information
transmission. We count the appropriate parameter amount and information transmission
amount of the decentralized algorithm involved in the experiment in the two simulation
environments. After statistics, it can be seen that F2A2 dramatically reduces the transfer
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ctc
MAAC F2A2-SAC
MAAC F2A2-SAC-N (∞, 0) F2A2-SAC-N (2000, 1000) F2A2-SAC-N (200, 100) F2A2-SAC-N (20, 10) F2A2-SAC-N (8, 4) F2A2-SAC-N (1, 0)

148(±8) 23(±4) 24(±4) 33(±7) 139(±7) 146(±9) 147(±9)

rt
MAAC F2A2-SAC
MAAC F2A2-SAC-N (∞, 0) F2A2-SAC-N (2000, 1000) F2A2-SAC-N (200, 100) F2A2-SAC-N (20, 10) F2A2-SAC-N (8, 4) F2A2-SAC-N (1, 0)
121(±5) 52(±7) 52(±8) 56(±8) 136(±6) 139(±5) 139(±6)

3m
MAAC F2A2-SAC
MAAC F2A2-SAC-N (∞, 0) F2A2-SAC-N (2000, 1000) F2A2-SAC-N (200, 100) F2A2-SAC-N (20, 10) F2A2-SAC-N (8, 4) F2A2-SAC-N (1, 0)

0.88(±0.11) 0.65(±0.08) 0.65(±0.07) 0.74(±0.06) 0.91(±0.09) 0.91(±0.10) 0.92(±0.09)

8m
COMA F2A2-COMA
COMA F2A2-COMA-N (∞, 0) F2A2-COMA-N (2000, 1000) F2A2-COMA-N (200, 100) F2A2-COMA-N (20, 10) F2A2-COMA-N (8, 4) F2A2-COMA-N (1, 0)

0.97(±0.01) 0.83(±0.01) 0.83(±0.02) 0.83(±0.02) 0.93(±0.02) 0.95(±0.01) 0.96(±0.02)

2s3z
MAAC F2A2-SAC
MAAC F2A2-SAC-N (∞, 0) F2A2-SAC-N (2000, 1000) F2A2-SAC-N (200, 100) F2A2-SAC-N (20, 10) F2A2-SAC-N (8, 4) F2A2-SAC-N (1, 0)

0.48(±0.02) 0.35(±0.02) 0.37(±0.01) 0.42(±0.01) 0.53(±0.01) 0.57(±0.02) 0.57(±0.02)

Table 5: The performance comparison of each algorithm under different parameter exchange
frequencies. The normal distribution followed by the F2A2 algorithm indicates
that each agent samples the time interval for executing the next consensus step
from the normal distribution after each execution of the current consensus step,
where ∞ indicates the predefined maximum executable update step of the algo-
rithm. “ctc” and “rt” represent the Cooperative Treasure Collection task and the
Rover Tower task in the Cooperative MPE environment, respectively. The data
in the Cooperative MPE environment represents the mean episode reward of all
agents in the last 1k timesteps; And “3m”, “8m”, “2s3z” represent different maps
in SC II environment. The data in the SC II environment represents the mean test
win rate of all agents in the last 10k timesteps. Numbers in parentheses indicate
95% confidence intervals, obtained under 5 random seeds and blacked numbers
indicate best results.

of parameters in addition to shared parameters caused by policy sharing and only requires
one-tenth of the transmissions.

The PDHG-type methods have advantages over the BCGD-type methods. To
verify the superiority of the PDHG-type method, we select the corresponding optimal algo-
rithms in two multi-agent environments and conduct comparative experiments. It can be
seen from Figure 8(a) and Figure 8(b) that the PDHG-type jointly optimization methods
(*-with-JOINT) have a significant performance improvement compared to the BCGD-type
separately optimization methods (*-w/o-JOINT).

The MOA module further improves the performance of the decentralized MARL
algorithm. In the previous section, we argue that the MOA module can prevent the agent
from overfitting other agents’ policies by introducing noise, and increase exploration, thereby
ultimately improving algorithm performance. Moreover, in some scenarios, it can exceed
the centralized algorithms. To quantify the effect of the MOA module, the comparative ex-
periments are also conducted. The experimental results show in Figure 8(b) and Figure 8(a)
are clearly support the above conclusions.

Finally, to delve into why the F2A2 algorithm can outperform the centralized algorithm
in some cases, we conduct a fine-grained comparison between centralized and decentral-
ized methods for various levels of communication budgets. Specifically, the communication
budget of the algorithm is constrained in the following two ways:
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Figure 8: The ablation study of F2A2-SAC algorithm in two multi-agent environments.

• Communication topology. The above experiments assume that the communication
topology is a fully connected graph. In order to add the communication budget, we
construct the communication topology as follows. For experiments under each random
seed, we first sort all agents in random order to construct a ring topology (guarantee
that there is exactly one connected component in the whole graph). Then randomly
add edges between agents in different predefined proportions at each update step,
and the upper limit of the number of edges is the total number of edges in the fully
connected graph. Furthermore, we also consider an extreme case where there are no
edges in the graph.

• Parameter exchange frequency. At each consensus step, each agent samples the
time interval to execute the next consensus step from a normal distribution. The mean
of this normal distribution is set to different values from small to large to represent
the change in communication budget from large to small. The variance of the normal
distribution is fixed, and for each communication budget, different agents sample from
the same normal distribution. We also consider an extreme case where the mean of the
normal distribution is greater than the total number of update steps in the algorithm,
and the variance is 0.

For each task, we select the best performing centralized algorithm and its corresponding
decentralized version for comparison. The experimental results are shown in Table 4 and Ta-
ble 5. It can be seen from the table that with the increase of the communication budget, the
performance of the F2A2 algorithms present a step-wise growth rather than a smooth and
gradual improvement. Moreover, it can be seen from the last few columns of the table that
the F2A2 algorithm can still maintain good performance under the weak communication
budget constraint.

7. Conclusion and Limitations

A flexible fully decentralized approximate actor-critic MARL framework is devised to achieve
applicability and scalability in interactive multi-agent environments. A primal-dual opti-
mization and joint actor-critic learning are carefully designated to guarantee full decen-
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tralization and scalability, with agents modeling to increase the robustness. The proposed
approach can even exceed state-of-the-art centralized algorithms in various categories and
various scales simulated cooperative environments. In the future, we plan to introduce
communication in the training process to promote more efficient cooperation to be more
adaptable to complex scenarios.

Below we briefly analyze the limitations of F2A2. We ensured the Markov property of the
policy through the enrichment of the observation space, avoiding the use of non-Markovian
and history-dependent policy classes. Although this approach facilitates theoretical anal-
ysis and engineering implementation, the resulting vast belief space and infinite hierarchy
of belief render the Markov policy class intractable in more complex problems, further
constraining its generality. We shed light on the limitations that affect this policy class
concerning crucial factors such as the error of the approximated information state and the
infinite hierarchy belief representation capabilities in Appendix I. Careful consideration of
these factors is essential to enhance the tractability and generality of the Markovian policy
within the enriched observation space.
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Appendix A. Environments

Cooperative Treasure Collection. The cooperative environment in Figure 9(a) in-
volves 8 total agents, 6 of which are ”treasure hunters” and 2 of which are “treasure banks”,
which each correspond to a different color of treasure. The role of the hunters is to collect
the treasure of any color, which re-spawn randomly upon being collected (with a total of
6), and then “deposit” the treasure into the correctly colored “bank”. The role of each
bank is to gather as much treasure as possible from the hunters simply. All agents can see
each others’ positions concerning their own. Hunters receive a global cost for the successful
collection of treasure, and all agents receive a global cost for the depositing of treasure.
Hunters are additionally penalized for colliding with each other. As such, the task contains
a mixture of shared and individual costs.

Rover Tower. The environment in Figure 9(b) involves 8 total agents, 4 of which are
“rovers” and another 4 which are “towers”. In each episode, rovers and towers are randomly
paired. The pair is punished by the distance of the rover to its goal. The task can be thought
of as a navigation task on an alien planet with limited infrastructure and low visibility. The
rovers are unable to see in their surroundings. They must rely on communication from
the towers, which can locate the rovers and their destinations and send one of five discrete
communication messages to their paired rover. Note that communication is highly restricted
and different from centralized policy approaches (Jiang and Lu, 2018), which allow for the
free transfer of continuous information among policies. In our setup, the communication
is integrated into the environment (in the tower’s action space and the rover’s observation
space), rather than being explicitly part of the model. It is limited to a few discrete signals.
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Figure 9: The Cooperative Multi-agent Particle Environments.

StarCraft II Map 2s3z. This map contains mixed unit types, where both the learn-
able agent and the built-in AI each control two Stalkers and three Zealots. Stalkers are
ranged-attack units that take heavy damage from melee-type Zealots. Consequently, a win-
ning strategy needs to dynamically coordinate between letting one’s Zealots attack enemy
Stalkers and backtrack to defend one’s Stalkers against enemy Zealots.
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StarCraft II Map 3m and 8m. The first, map 3m, presents both sides with three
Marines, which are medium-ranged infantry units. The coordination challenge on this map
is to reduce enemy firepower as quickly as possible by focusing unit fire to defeat each enemy
unit in turn. Secondly, map 8m scales this task up to eight Marines on both sides. The
relatively large number of agents involved poses additional scalability challenges.

Appendix B. Relationship with Trust-region Methods

The proposed F2A2 algorithm contains two learning processes: the learning of multi-agent
policies and the learning of MOA modules. Moreover, the performance of the latter will
affect the former. Once the MOA modules are too inaccurate, the entire F2A2 algorithm
training process will fall into a vicious circle. In order to make the training of the entire
system more robust, the intuitive idea is to make the multi-agent policies update more
conservative, which can effectively improve the accuracy of MOA modules. Trust-region
methods, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) have been
demonstrated as efficient and robust RL algorithms via maximally searching the new policy
in a trust region. Coincidentally, in comparing the PPO with the F2A2, we found that
the proposed F2A2 framework is closely related to trust-region methods. This means that
F2A2 naturally has the conservativeness of policy updating by jointly optimizing actors and
critics. More specifically, the simplified objective of PPO is as follows,

L (s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)A

πθk (s, a), g (ε, Aπθk (s, a))

)
,

where

g(ε, A) =

{
(1 + ε)A, A ≥ 0;
(1− ε)A, A < 0.

PPO deals with the advantage function Aπ(s, a), while our F2A2 deals with the gradient
of value Qπ(o, a). Note that PPO and F2A2 have a clipping regularizer to prevent the new
policy beyond the trust region. The hyperparameter ε corresponds to the distance that the
new policy can go away and still profits the objective (Schulman et al., 2017). Besides, the
coefficient α1−2α2δ in the gradient of F2A2 makes the actor update more conservative when
the current critic is not accurate enough(and the accuracy of the current critic is greatly
affected by the accuracy of the MOA modules). To sum up, our F2A2 framework has a
similar protective trust-region mechanism, which enhances the robustness of our algorithm.

Appendix C. Policy Gradient Theorem in POMDPs

After enriching the observation space, we can naturally extend the policy gradient theo-
rem under MDP to POMDP based on Mao et al. (2020) as the basis for the subsequent
theoretical derivation of this paper. In the previous version of manuscript, we omitted this
derivation process and make an addition here. Notice that here o refer to the enriched
observation unless specified. Let p(τ ; θ) denote the probability distribution of trajectories
τ under policy πθ, i.e.,

f(τ ; θ)dτ := P (s0)

∞∏

t=0

E (ot | st)πθ (at | ot) C (ct | ot, at)P (st+1 | st, at) dτ,
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For a trajectory τ , a random variable R(τ) represent the cumulative γ-discounted costs in
τ , i.e., R(τ) =

∑∞
t=0 γ

tct. Therefore, solving a POMDP is to find a policy πθ that minimizes
the following optimization objectives

η(θ) := Eτ∼f [R(τ)] =

∫

τ
f(τ ; θ)R(τ)dτ −→ θ∗ ∈ arg min

θ∈Θ
η(θ).

And let Vθ (ot) := Eτ∼f
[∑∞

t′=t γ
t′−tct′ | ot

]
, Qθ (ot, at) := Eτ∼f

[∑∞
t′=t γ

t′−tct′ | ot, at
]
.

Now we extend the main Policy Gradient Theorem (Sutton et al., 2000) to episodic POMDPs,
derive by simple modifications in their predecessors.

Theorem C.1 (Policy Gradient in POMDPs) For a given policy πθ on a
POMDP, ∇θη(θ) = Eτ∼f [

∑∞
t=0∇θ log πθ (at | ot)Qθ (ot, at)] .

Proof For a given policy πθ, lets restate the value function at a given enriched
observation o0 : Vθ (o0) =

∫
a0
πθ (a0 | o0)Qθ (o0, a0) da0. For this value function, we

compute the gradient with respect to parameters θ, i.e.,

∇θVθ (o0) =

∫

a0

∇θπθ (a0 | o0)Qθ (o0, a0) da0 +

∫

a0

πθ (a0 | o0)∇θQθ (o0, a0) da0.

To further expand this gradient, consider the definition of Qθ (o0, a0) using Bell-
man equation (the enriched observation space satisfies Markov property (Mao et al.,
2020)),

Qθ (o0, a0) =

∫

s1

P(s1 | s0, a0)C(c0 | s0, a0, s1)ds1

+ γ

∫

s1,o1

P(s1 | s0, a0)E(o1 | s1)Vθ (o1) ds1do1,

resulting in, ∇θQθ (o0, a0) = γ
∫
s1,o1
P(s1 | s0, a0)E(o1 | s1)∇θVθ (o1) ds1do1, since

the first term in the definition of Qθ (o0, a0) does not depend on the parameters θ.
Following these steps, we derive ∇θVθ (o1),

∇θVθ (o1) =

∫

a1

∇θπθ (a1 | o1)Qθ (o1, a1) da1 +

∫

a1

πθ (a1 | o1)∇θQθ (o1, a1) da1.

We recursively compute the gradient of the value functions for later time steps and
conclude that,

∇θVθ (ot) =

∫

at

∇θπθ (at | ot)Qθ (ot, at) dat

+ γ

∫

at

πθ (at | ot)
(∫

st+1,ot+1

P(st+1 | st, at)E(ot+1 | st+1)∇θVθ (ot+1) dst+1dot+1,

)
dat.
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and repeating this decomposition results in

∇θη(θ) =

∫

s0,o0

P(s0)E(o0 | s0)∇θVθ (o0) ds0do0

=

∫

s0,o0

P(s0)E(o0 | s0)∇θ
∫

a0

πθ (a0 | o0)Qθ (o0, a0) da0ds0do0

=

∫

s0,o0,a0

P(s0)E(o0 | s0)∇θπθ (a0 | o0)Qθ (o0, a0) da0ds0do0

+

∫

s0,o0,a0

P(s0)E(o0 | s0)πθ (a0 | o0)∇θQθ (o0, a0) da0ds0do0

=

∫

τ

∞∑

t=0

γtf (τ0..t−1, st, ot; θ)∇θπθ (at | ot)Qθ (ot, at) dτ

=

∫

τ

∞∑

t=0

γtf (τ0..t−1, st, ot; θ)πθ (at | ot)∇θ log πθ (at | ot)Qθ (ot, at) dτ

=

∫

τ

∞∑

t=0

γtf (τ0..t; θ)∇θ log πθ (at | ot)Qθ (ot, at) dτ

=Eτ∼f

[ ∞∑

t=0

γt∇θ log πθ (at | ot)Qθ (ot, at)

]
.

It is worth noting that in most open-source implementations (Dhariwal et al., 2017;
Raffin et al., 2021) of reinforcement learning algorithms based on policy gradient theo-
rem, the term γt in the policy gradient is ignored, and a biased policy gradient estimator
Eτ∼f [

∑∞
t=0∇θ log πθ (at | ot)Qθ (ot, at)] is obtained. However, it has remained the most

popular estimator of the policy gradient due to its effectiveness when applied to practical
problems. The precise reason for this effectiveness, especially in the episodic setting, re-
mains an open question (Nota and Thomas, 2020). An in-depth exploration of this issue
is beyond the scope of this paper, and we still use a biased policy gradient estimator in all
algorithm implementations.

It is worth noting that the on-policy policy gradient have two different but equivalent
forms: trajectory-oriented and state-oriented. The detailed derivation process of the former
in the POMDP has been developed above. We now derive the second form in the POMDP,
which is also the standard form of Sutton’s policy gradient theorem. Since this form is more
compact, this paper mainly derives the relevant policy gradient based on it. Specifically, we
can write the optimization objective of reinforcement learning in another equivalent form

J(θ) =

∫

s,o
dπ(s)E(o | s)Vθ(o)dsdo =

∫

s,o,a
dπ(s)E(o | s)πθ(a | o)Qθ(o, a)dsdoda,

where dπ represents the distribution of the state-occupancy measure of policy π. Then we
have following theorem:
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Theorem C.2 (Policy Gradient in POMDPs) For a given policy πθ on a
POMDP, ∇θJ(θ) ∝ Eπ [∇θ log πθ (a | o)Qθ (o, a)] , where Eπ refers to Es∼dπ ,o∼E,a∼πθ
when both state, enriched observation and action distributions follow the policy πθ
(on policy).

Proof We first start with the derivative of the state value function:

∇θVθ(o)
= ∇θ

(∫
a πθ(a | o)Qθ(o, a)da

)

=
∫
a (∇θπθ(a | o)Qθ(o, a) + πθ(a | o)∇θQθ(o, a)) da

=
∫
a (∇θπθ(a | o)Qθ(o, a) + πθ(a | o)
∇θ
(∫

s′,o′,c P (s′ | s, a) E(o′ | s′) (C(c | s, a, s′) + Vθ (o′))
)
ds′do′dc

)
da

=
∫
a

(
∇θπθ(a | o)Qθ(o, a) + πθ(a | o)

(∫
s′,o′ P (s′ | s, a) E(o′ | s′)∇θVθ (o′)

)
ds′do′

)
da.

This equation has a nice recursive form and the future value function Vθ (o′) can be
repeated unrolled by following the same equation.
Let’s consider the following visitation sequence and label the probability of transi-
tioning from obervation o to observation x with policy πθ after k step as ρπ(o→ x, k).

o
o∼πθ(.|o)−−−−−−→ o′

a∼πθ(.|o′)−−−−−−→ o′′
a∼πθ(.|o′′)−−−−−−→ . . .

• When k = 0 : ρπ(o→ o, k = 0) = 1.

• When k = 1, we scan through all possible actions and sum up the transi-
tion probabilities to the target observation: ρπ (o→ o′, k = 1) =

∫
a,s′ πθ(a |

o)P (s′ | s, a) E(o′ | s′)dads′.

• Imagine that the goal is to go from observation o to x after k+1 steps while fol-
lowing policy πθ. We can first travel from o to a middle point o’ (any observation
can be a middle point, o′ ∈ O ) after k steps and then go to the final observa-
tion x during the last step. In this way, we are able to update the visitation
probability recursively: ρπ(o→ x, k + 1) =

∫
o′ ρ

π (o→ o′, k) ρπ (o′ → x, 1) do′.

Then we go back to unroll the recursive representation of ∇θVθ(o). Let φ(o) =∫
a∇θπθ(a | o)Qθ(o, a)da to simplify the maths. If we keep on extending ∇θVθ(·)

infinitely, it is easy to find out that we can transition from the starting observation o
to any observation after any number of steps in this unrolling process and by summing
up all the visitation probabilities, we get ∇θVθ(o).

∇θVθ(o)

=φ(o) +

∫

a

(
πθ(a | o)

(∫

s′,o′
P
(
s′ | s, a

)
E(o′ | s′)∇θVθ

(
o′
))

ds′do′
)
da

=φ(o) +

∫

s′,o′,a
πθ(a | o)P

(
s′ | s, a

)
E(o′ | s′)∇θVθ

(
o′
)
ds′do′da
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=φ(o) +

∫

o′
ρπ
(
o→ o′, 1

)
∇θVθ

(
o′
)
do′

=φ(o) +

∫

o′
ρπ
(
o→ o′, 1

) [
φ(o′) +

∫

o′′
ρπ
(
o′ → o′′, 1

)
∇θVθ

(
o′′
)
do′′
]
do′

=φ(o) +

∫

o′
ρπ
(
o→ o′, 1

)
φ(o′)do′ +

∫

o′′
ρπ
(
o→ o′′, 2

)
∇θVθ

(
o′′
)
do′′

=φ(o) +

∫

o′
ρπ
(
o→ o′, 1

)
φ(o′)do′ +

∫

o′′
ρπ
(
o→ o′′, 2

)
φ(o′′)do′′+

∫

o′′′
ρπ
(
o→ o′′′, 3

)
∇θVθ

(
o′′′
)
do′′′

=

∫

x

∞∑

k=0

ρπ(o→ x, k)φ(x)dx

The nice rewriting above allows us to exclude the derivative of Q-value function,
∇θQθ(o, a). By plugging it into the objective function J(θ), we are getting the
following:

∇θJ(θ) =

∫

s0,o0

P(s0)E(o0 | s0)∇θVθ(o0)ds0do0

=

∫

s0,o0

P(s0)E(o0 | s0)

∫

o′

∞∑

k=0

ρπ(o0 → o′, k)φ(o′)do′ds0do0

=

∫

s0,o0

P(s0)E(o0 | s0)

∫

o′
η(o′)φ(o′)do′ds0do0

=

∫

s0,o0

P(s0)E(o0 | s0)

(∫

o′
η(o′)do′

)∫

o′

η(o′)∫
o′ η(o′)do′

φ(o′)do′ds0do0

∝
∫

s0,o0

P(s0)E(o0 | s0)

∫

o′

η(o′)∫
o′ η(o′)do′

φ(o′)do′ds0do0

=

∫

s0,o0

P(s0)E(o0 | s0)

∫

o′
dπ(o′)φ(o′)do′ds0do0

=

∫

o′
dπ(o′)φ(o′)do′ =

∫

s,o,a
dπ(s)E(o | s)∇θπθ (a | o)Qθ (o, a) dsdoda

=

∫

s,o,a
dπ(s)E(o | s)πθ (a | o) ∇θπθ (a | o)

πθ (a | o) Qθ (o, a) dsdoda

= Eπ [∇θ log πθ (a | o)Qθ (o, a)] .

It can be seen that the terms within the two different policy gradient expectations are
the same (when γt is ignored), but the distributions on which the expectations are based

38



F2A2: Flexible Fully-decentralized Approximate Actor-critic

are different. The former is based on trajectory distribution and the latter is based on
stationary state distribution.

When there are partial observations, policy gradient theorem can be a bit subtle and
the derivations in this work might require more careful scrutiny. Fortunately, after proper
enrichment of the observation space of the original POMDP, we can naturally extend the
policy gradient theory under MDP to POMDP with minor modification, and use it as the
basis for the derivation of the policy gradient of the proposed MARL algorithm under POSG
in this paper.

Appendix D. Missing Proofs

D.1 Proof of the Proposition 3

Proof We proof the first equation first. Extend the COMA algorithm, we have (for
convenience here we suppose state space, observation space and action space are discrete)

J iactor

(
win, w̃

i
sh

)
= Es∼dπ ,o∼E,a∼π

[
Qπ,i
φ̃ish

(o,a)− B(o,a\i)
]

=
∑

s dπ(s)
∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)− B(o,a\i)
]

J icritic

(
win, w̃

i
sh

)
= Es∼dπ ,o∼E,a∼π

[(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2
]

=
∑

s dπ(s)
∑
o Eos

∑
a πΨin(a|o)

[(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2
]
,

where the specific form of Qπtg is described in Section 4.2. We hypothesis joint policy πΨin

is the product of local policy functions
∏n
i=1 π

i
ψiin

. Hence the actor part gradient w.r.t.

each parameter ψiin becomes:

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= ∇ψiin

∑
s dπ(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)− B(o,a\i)
]

=
∑

s dπ(s)
∑
o E(o|s)∑a∇ψiinπΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)− B(o,a\i)
]

=
∑

s dπ(s)
∑
o E(o|s)∑a πΨin(a|o)∇ψiin log πi

ψiin
(ai|oi)

[
Qπ,i
φ̃i1,sh

(o,a)− B(o,a\i)
]

= Es∼dπ ,o∼E,a∼π

[
∇ψiin log πiψiin

(ai|oi)
(
Qπ,i
φ̃i1,sh

(o,a)− B(o,a\i)
)]

.

For the critic part, the gradient sampled by current policy is calculated by:

∇ψiinJ
i
critic

(
win, w̃

i
sh

)
= Es∼dπ ,o∼E,a∼π

[
∇ψiin log πiψiin

(ai|oi)δ2

]
.

where δ = Qπ,i
φ̃ish

(o,a)−Qπtg.
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Finally, we get the following on-policy joint gradient w.r.t. actor parameters:

∇ψiinJ
i
ac

(
win, w̃

i
sh

)
= α1∇ψiinJ

i
actor

(
win, w̃

i
sh

)
+ α2∇ψiinJ

i
critic

(
win, w̃

i
sh

)

=Es∼dπ ,o∼E,a∼π

[
α1∇ψiin log πiψiin

(ai|oi)
(
Qπ,i
φ̃ish

(o,a)− B(o,a\i) +
α2

α1
δ2

)]
.

The above is the proof of the first equation, below we prove the second. For actor
part, we have

∇φ̃ishJ
i
actor

(
win, w̃

i
sh

)
= ∇φ̃ish

∑
s dπ(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)− B(o,a\i)
]

=
∑

s dπ(s)
∑
o E(o|s)∑a πΨin(a|o)∇φ̃ishQ

π,i

φ̃ish
(o,a)

= Es∼dπ ,o∼E,a∼π

[
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

For critic part, we have

∇φ̃ishJ
i
critic

(
win, w̃

i
sh

)
= ∇φ̃i1,sh

∑
s dπ(s)

∑
o Eos

∑
a πΨin(a|o)

(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2

=
∑

s dπ(s)
∑
o Eos

∑
a πΨin(a|o)2δ∇φ̃ishQ

π,i

φ̃ish
(o,a)

= Es∼dπ ,o∼E,a∼π

[
2δ∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

Finally, we get following on-policy joint gradient w.r.t. the first critic parameters

∇φ̃ishJ
i
ac

(
win, w̃

i
sh

)
= α1∇φ̃ishJ

i
actor

(
win, w̃

i
sh

)
+ α2∇φ̃ishJ

i
critic

(
win, w̃

i
sh

)

= Es∼dπ ,o∼E,a∼π

[
(α1 + 2α2δ)∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

D.2 Proof of Proposition 4

Proof We proof the first equation first. Extend the DDPG algorithm, we have4

J iactor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[
Qπ,i
φ̃ish

(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)

]

J icritic

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2
]

4. Actually, there is no expectation of action because the policy is deterministic, i.e., a = πΨin(o). However,
in order to keep the form of the gradient consistent with other algorithms, we still retain the expectation
of the action here, which does not affect the calculation of the gradient.

40



F2A2: Flexible Fully-decentralized Approximate Actor-critic

=
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)

[(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2
]
,

where Qπtg =
∑

s′ Ps
′
s,a

(
Ci,s′s,a + γ

∑
o′ Eo

′
0,s′
∑
a′ πΨin(a′|o′)Qπ,i

φ̃ish
(o′,a′)

)
. Note that the joint

policy πΨin is a deterministic policy.
We hypothesis joint policy πΨin is the product of local policy functions

∏n
i=1 πψiin

. Hence

the gradient concerning each parameter ψiin becomes

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= ∇ψiin

∑
s d0(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
∇ψiinQ

π,i

φ̃ish
(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]

= Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]
.

Note that here we need to resample to calculate the unbias policy gradient so that we can’t
use the off-policy data directly. We solve the above problem by importance sampling. For
off-policy data saved in experience replay buffer we have

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]
= 0.

combined the gradient calculated by the data which is resampled by current
policy, we get the joint off-policy policy gradient associated with the actor:

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
=Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]
.

On the contrary, we directly use the off-policy data when calculate the value function
gradient, so that we can’t use the above resampled data. For the critic part, we use
above trick in reverse. For off-policy data saved in experience replay buffer we have

∇ψiinJ
i
critic

(
win, w̃

i
sh

)
= ∇ψiin

∑
s d0(s)

∑
o Eo0,s

∑
a π0(a|o)

[(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2
]

= 0.

Combining the gradient calculated by data which is resampled by current policy,
we get the joint off-policy policy gradient associates with the critic part5:

∇ψiinJ
i
critic

(
win, w̃

i
sh

)
=Es∼d0,o∼E,a∼π

[
2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇ψiinπ

i
ψiin

(ai|oi)
(
∇aiQπ,iφ̃ish

(o,a)

)]
.

5. Since the policy is deterministic, we cannot directly get the specific values of the denominator in the
importance ratio during implementation. Fortunately, we can draw on a probabilistic reinforcement
learning framework (Levine, 2018) to estimate the denominator.
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where δ = Qπ,i
φ̃ish

(o,a)−Qπtg. We denote the clipped importance sampling term min

(
ε,
πi
ψi
in

(ai|oi)

πi0(ai|oi)

)

as CIMε(π
i
ψiin

;πi0) and min

(
ε,

πi0(ai|oi)
πi
ψi
in

(ai|oi)

)
as CIMε(π

i
0;πi

ψiin
). Finally, we get following off-

policy joint gradient w.r.t. actor parameters

∇ψiinJ
i
ac

(
win, w̃

i
sh

)
= α1∇ψiinJ

i
actor

(
win, w̃

i
sh

)
+ α2∇ψiinJ

i
critic

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π

[
(α1 + 2α2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]

' Es∼d0,o∼E,a∼π

[
(α1 + 2α2δCIMε(π

i
0;πiψiin

))∇ψiinπ
i
ψiin

(ai|oi)∇aiQπ,iφ̃ish
(o,a)

]
.

The above is the proof of the first equation, below we prove the second. For actor
part, we first calculate the gradient use the data resampled by the current policy

∇φ̃ishJ
i
actor

(
win, w̃

i
sh

)
= ∇φ̃ish

∑
s d0(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃ish

(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)∇φ̃ishQ

π,i

φ̃ish
(o,a)

= Es∼d0,o∼E,a∼π

[
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

For calculate the gradient use off-policy data we also introduce importance sampling,
then we have

∇φ̃ishJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

We then combine the above two part gradient:

∇φ̃ishJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
+

Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

For critic part, we first calculate the gradient use the off-policy data

∇φ̃ishJ
i
critic

(
win, w̃

i
sh

)
= ∇φ̃ish

∑
s d0(s)

∑
o Eo0,s

∑
a π0(a|o)

[(
Qπ,i
φ̃ish

(o,a)−Qπtg
)2
]

=
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)2δ∇φ̃ishQ

π,i

φ̃ish
(o,a)

= Es∼d0,o∼E,a∼π0

[
2δ∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.
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Then, for resampled data, we have:

∇φ̃ishJ
i
critic

(
win, w̃

i
sh

)
' Es∼d0,o∼E,a∼π

[
2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

Combining the above two parts’ gradient, we have:

∇φ̃ishJ
i
critic

(
win, w̃

i
sh

)
=Es∼d0,o∼E,a∼π0

[
2δ∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

Finally, we get following off-policy joint gradient w.r.t. the critic parameters

∇φ̃ishJ
i
ac

(
win, w̃

i
sh

)
= α1∇φ̃ishJ

i
actor

(
win, w̃

i
sh

)
+ α2∇φ̃ishJ

i
critic

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π0

[(
α1

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
+ 2α2δ

)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
+

Es∼d0,o∼E,a∼π

[(
α1 + 2α2δ

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

))
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]

' Es∼d0,o∼E,a∼π0

[(
α1CIMε(π

i
ψiin

;πi0) + 2α2δ
)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
+

Es∼d0,o∼E,a∼π

[(
α1 + 2α2δCIMε(π

i
0;πiψiin

)
)
∇φ̃ishQ

π,i

φ̃ish
(o,a)

]
.

Appendix E. Extend Proposition 4 to Other Off-policy Algorithm

E.1 F2A2-TD3: Extend Proposition 4 to TD3

The Twin-Delayed Deep Deterministic Policy Gradient algorithm is similar to the DDPG
algorithm, just adding a twin Q-value function to a stable training process except for some
tricks for implementation. Formally, we can extend it to the fully decentralized multi-agent
scenario use the variant of Proposition 4.

Proposition 5 (Off-Policy TD3-Based Joint Gradient) We set π0 the data
collection policy sampled from experience replay buffer, d0 represents the distribution
of the state-occupancy measure of policy π0 and δ the TD(0)-error. So the gradient

43



Li, Jin, Wang, Yan, and Zha

of J iac
(
win, w̃

i
sh

)
is:

∇ψiinJ
i
ac

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)
(

(α1 + 2α2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
)∇aiQπ,iφ̃i1,sh

(o,a)+

2α2δ2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇aiQπ,iφ̃i2,sh

(o,a)

)]
.

∇φ̃i1,shJ
i
ac

(
win, w̃

i
sh

)

=Es∼d0,o∼E,a∼π0

[
(α1

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
+ 2α2δ1)∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
(α1 + 2α2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
)∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]

∇φ̃i2,shJ
i
ac

(
win, w̃

i
sh

)

=Es∼d0,o∼E,a∼π0

[
2α2δ2∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
2α2δ2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
.

Proof We proof the first equation first. Extend the TD3 algorithm, we have

J iactor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[
Qπ,i
φ̃i1,sh

(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)

]

J icritic

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
]

=
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)

[(
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
]
,

where Qπtg =
∑

s′ Ps
′
s,a

(
Ci,s′s,a + γ

∑
o′ Eo

′
0,s′
∑
a′ πΨin(a′|o′)

(
minj=1,2Q

π,i

φ̃ij,sh
(o′,a′)

))
. Note

that the joint policy πΨin is a deterministic policy.
We hypothesis joint policy πΨin is the product of local policy functions

∏n
i=1 πψiin

. Hence

the gradient concerning each parameter ψiin becomes

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= ∇ψiin

∑
s d0(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
∇ψiinQ

π,i

φ̃i1,sh
(o,a)

]
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=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃i1,sh
(o,a)

]

= Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃i1,sh
(o,a)

]
.

Note that we need to resample to calculate the unbiased policy gradient so that we cannot
use the off-policy data directly. We solve the above problem by importance sampling. For
off-policy data saved in experience replay buffer we have:

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃i1,sh
(o,a)

]
= 0.

Combining the gradient calculated by data which is resampled by current policy,
we get the joint off-policy policy gradient associates with the actor

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
=Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)∇aiQπ,iφ̃i1,sh
(o,a)

]
.

On the contrary, we directly use the off-policy data when calculating the value function
gradient so that we cannot use the above-resampled data. For the critic part, we use the
above trick in reverse. For off-policy data saved in experience replay buffer we have

∇ψiinJ
i
critic

(
win, w̃

i
sh

)

= ∇ψiin
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)

[(
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
]

= 0,

combined the gradient calculated by the data which is resampled by current
policy, we get the joint off-policy policy gradient associates with the critic part

∇ψiinJ
i
critic

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π

[
2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇ψiinπ

i
ψiin

(ai|oi)
(
δ1∇aiQπ,iφ̃i1,sh

(o,a) + δ2∇aiQπ,iφ̃i2,sh
(o,a)

)]
.

where δj = Qπ,i
φ̃ij,sh

(o,a)−Qπtg. We denote the clipped importance sampling term min

(
ε,
πi
ψi
in

(ai|oi)

πi0(ai|oi)

)

as CIMε(π
i
ψiin

;πi0) and min

(
ε,

πi0(ai|oi)
πi
ψi
in

(ai|oi)

)
as CIMε(π

i
0;πi

ψiin
). Finally, we get following off-

45



Li, Jin, Wang, Yan, and Zha

policy joint gradient w.r.t. actor parameters:

∇ψiinJ
i
ac

(
win, w̃

i
sh

)
= α1∇ψiinJ

i
actor

(
win, w̃

i
sh

)
+ α2∇ψiinJ

i
critic

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)
(

(α1 + 2α2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
)∇aiQπ,iφ̃i1,sh

(o,a)+

2α2δ2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇aiQπ,iφ̃i2,sh

(o,a)

)]
.

' Es∼d0,o∼E,a∼π

[
∇ψiinπ

i
ψiin

(ai|oi)
(

(α1 + 2α2δ1CIMε(π
i
0;πiψiin

))∇aiQπ,iφ̃i1,sh
(o,a)+

2α2δ2CIMε(π
i
0;πiψiin

)∇aiQπ,iφ̃i2,sh
(o,a)

)]
.

The above is the proof of the first equation, below we prove the second. For actor
part, we first calculate the gradient use the data resampled by the current policy

∇φ̃i1,shJ
i
actor

(
win, w̃

i
sh

)
= ∇φ̃i1,sh

∑
s d0(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

= Es∼d0,o∼E,a∼π

[
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.

For calculating the gradient use off-policy data we also introduce importance sam-
pling, then we have

∇φ̃i1,shJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.

We then combine the above two part gradient:

∇φ̃i1,shJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.

For critic part, we first calculate the gradient use the off-policy data

∇φ̃i1,shJ
i
critic

(
win, w̃

i
sh

)

=∇φ̃i1,sh
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)

((
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
)

=
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)2δ1∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

=Es∼d0,o∼E,a∼π0

[
2δ1∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.
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Then, for resampled data, we have

∇φ̃i1,shJ
i
critic

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[
2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.

Combining above two parts’ gradient, we have:

∇φ̃i1,shJ
i
critic

(
win, w̃

i
sh

)
=Es∼d0,o∼E,a∼π0

[
2δ1∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.

Finally, we get the following off-policy joint gradient w.r.t. the first critic parameters:

∇φ̃i1,shJ
i
ac

(
win, w̃

i
sh

)
=α1∇φ̃i1,shJ

i
actor

(
win, w̃

i
sh

)
+ α2∇φ̃i1,shJ

i
critic

(
win, w̃

i
sh

)

=Es∼d0,o∼E,a∼π0

[
(α1

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
+ 2α2δ1)∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
(α1 + 2α2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
)∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]

'Es∼d0,o∼E,a∼π0

[
(α1CIMε(π

i
ψiin

;πi0) + 2α2δ1)∇φ̃i1,shQ
π,i

φ̃i1,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
(α1 + 2α2δ1CIMε(π

i
0;πiψiin

))∇φ̃i1,shQ
π,i

φ̃i1,sh
(o,a)

]
.

For the third equation and use resampled data to calculate the actor part gra-
dient, we have

∇φ̃i2,shJ
i
actor

(
win, w̃

i
sh

)
= ∇φ̃i2,sh

∑
s d0(s)

∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)

]
= 0.

Similarly, for off-policy data the gradient also is 0. For critic part the gradient is similar
as the second equation

∇φ̃i2,shJ
i
critic

(
win, w̃

i
sh

)
=Es∼d0,o∼E,a∼π0

[
2δ2∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
2δ2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
.

Finally, we get following off-policy joint gradient w.r.t. the second critic parameters:

∇φ̃i2,shJ
i
ac

(
win, w̃

i
sh

)
= α1∇φ̃i2,shJ

i
actor

(
win, w̃

i
sh

)
+ α2∇φ̃i2,shJ

i
critic

(
win, w̃

i
sh

)

=Es∼d0,o∼E,a∼π0

[
2α2δ2∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
2α2δ2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
.
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E.2 F2A2-SAC: Extend Proposition 4 to SAC

Soft Actor Critic (SAC) is an algorithm that optimizes a stochastic policy in an off-policy
way. A central feature of SAC is entropy regularization. The policy is trained to maximize a
trade-off between expected return and entropy, a measure of randomness in the policy. We
only used one Q-value function and omitted the estimation of the state-value(V ) function.
Formally, we can extend it to the fully decentralized multi-agent scenario use the variant of
Proposition 4:

Proposition 6 (Off-Policy SAC-Based Joint Gradient) We set π0 the data
collection policy sampled from experience replay buffer, d0 represents the distribution
of the state-occupancy measure of policy π0 and δ the TD(0)-error. So the gradient
of J iac

(
win, w̃

i
sh

)
is:

∇ψiinJ
i
ac

(
win, w̃

i
sh

)

=Es∼d0,o∼E,a∼π0

[
α1

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇ψiin log πiψiin

(ai|oi)

(
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

)]
+

Es∼d0,o∼E,a∼π

[
α1∇ψiin log πiψiin

(ai|oi)

(
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

)]
+

Es∼d0,o∼E,a∼π

[
α2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇ψiin log πiψiin

(ai|oi)
(
δ2

1 + δ2
2

)
]
.

∇φ̃i1,shJ
i
ac

(
win, w̃

i
sh

)

= Es∼d0,o∼E,a∼π0

[
(α1

(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
+ 2α2δ1)∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[(
α1 + 2α2δ1

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

))
∇φ̃i1,shQ

π,i

φ̃i1,sh
(o,a)

]
.

∇φ̃i2,shJ
i
ac

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[
2α2δ2∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
+

Es∼d0,o∼E,a∼π

[
2α2δ2

(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇φ̃i2,shQ

π,i

φ̃i2,sh
(o,a)

]
.

48



F2A2: Flexible Fully-decentralized Approximate Actor-critic

Proof We proof the first equation first. Extend the SAC algorithm, we have (for
convenience here we suppose state space, observation space and action space are discrete)

J iactor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

]

=
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)− α log πi
ψiin

(ai|oi)− B(o,a\i)
]

J icritic

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
]

=
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)

[(
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
]
,

where

Qπtg =
∑

s′

Ps′s,a

(
Ci,s′s,a + γ

∑

o′

Eo′0,s′

∑

a′

πΨin(a′|o′)
(

min
j=1,2

Qπ,i
φ̃ij,sh

(
o′,a′

)
− α log πiψiin

(a′,i|o′,i)
))

.

We assume joint policy πΨin is the product of local policy functions
∏n
i=1 π

i
ψiin

. Hence

the actor part gradient concerning each parameter ψiin becomes:

∇ψiinJ
i
actor

(
win, w̃

i
sh

)

=∇ψiin
∑

s d0(s)
∑
o E(o|s)∑a πΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)− α log πi
ψiin

(ai|oi)− B(o,a\i)
]

=
∑

s d0(s)
∑
o E(o|s)∑a∇ψiinπΨin(a|o)

[
Qπ,i
φ̃i1,sh

(o,a)− α log πi
ψiin

(ai|oi)− B(o,a\i)
]

=Es∼d0,o∼E,a∼π

[
∇ψiin log πiψiin

(ai|oi)
(
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

)]
.

Note that we need to resample to calculate the unbias policy gradient so that we cannot
use the off-policy data directly. We solve the above problem by importance sampling. For
off-policy data saved in experience replay buffer we have

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇ψiin log πiψiin

(ai|oi)

(
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

)]
,
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combined the gradient calculated by the data which is resampled by current
policy, we get the joint off-policy policy gradient associates with the actor part:

∇ψiinJ
i
actor

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π0

[(
πi
ψiin

(ai|oi)
πi0(ai|oi)

)
∇ψiin log πiψiin

(ai|oi)

(
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

)]
+

Es∼d0,o∼E,a∼π

[
∇ψiin log πiψiin

(ai|oi)
(
Qπ,i
φ̃i1,sh

(o,a)− α log πiψiin
(ai|oi)− B(o,a\i)

)]
.

On the contrary, we directly use the off-policy data when calculating the value function
gradient so that we cannot use the above-resampled data. For the critic part, we use the
above trick in reverse. For off-policy data saved in experience replay buffer we have

∇ψiinJ
i
critic

(
win, w̃

i
sh

)

= ∇ψiin
∑

s d0(s)
∑
o Eo0,s

∑
a π0(a|o)

((
Qπ,i
φ̃i1,sh

(o,a)−Qπtg
)2

+

(
Qπ,i
φ̃i2,sh

(o,a)−Qπtg
)2
)

= 0,

combined the gradient calculated by the data which is resampled by current
policy, we get the joint off-policy policy gradient associates with the critic part

∇ψiinJ
i
critic

(
win, w̃

i
sh

)
= Es∼d0,o∼E,a∼π

[(
πi0(ai|oi)
πi
ψiin

(ai|oi)

)
∇ψiin log πiψiin

(ai|oi)
(
δ2

1 + δ2
2

)
]
.

where δj = Qπ,i
φ̃ij,sh

(o,a)−Qπtg. We denote the clipped importance sampling term min

(
ε,
πi
ψi
in

(ai|oi)

πi0(ai|oi)

)

as CIMε(π
i
ψiin

;πi0) and min

(
ε,

πi0(ai|oi)
πi
ψi
in

(ai|oi)

)
as CIMε(π

i
0;πi

ψiin
). Finally, we get the following

off-policy joint gradient w.r.t. actor parameters:
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The above is the proof of the first equation, below we prove the second. For actor
part, we first calculate the gradient use the data resampled by the current policy
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For calculate the gradient use off-policy data we also introduce importance sampling,
then we have
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We then combine the above two part gradient:
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For critic part, we first calculate the gradient use the off-policy data
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Then, for resampled data, we have
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Combining above two part gradient, we obtain:
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Finally, we get following off-policy joint gradient w.r.t. the first critic parameters
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For the third equation and use resampled data to calculate the actor part gra-
dient, we have
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Similarly, for off-policy data the gradient also is 0. For critic part the gradient is similar
as the second equation
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Finally, we get following off-policy joint gradient w.r.t. the second critic parameters
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Appendix F. The Specific Forms of Instantiation Algorithms

The specific forms of F2A2-COMA, F2A2-DDPG, F2A2-TD3 and F2A2-SAC are shown in
Figure 10.

Appendix G. Training procedure

Cooperative MPE. For all algorithms expect for COMA and F2A2-COMA, our training
procedure consists of performing 12 parallel rollouts, and adding a tuple of (ot, at, ct, ot+1)1...N

to a replay buffer (with maximum length 1e6) for each timestep. We reset each environ-
ment after every 100 steps for Cooperative Treasure Collection and 25 steps for Rover Tower
(across all rollouts), we perform 4 updates for the all actors and critics. For each update,
we sample mini-batches of 1024 timesteps from the replay buffer (for COMA and F2A2-
COMA, we used the most recent 1024 timesteps) and then perform gradient descent on the
corresponding loss objective, using Adam (Kingma and Ba, 2015) as the optimizer with
a learning rate of 0.001. After the updates are complete, we update the target network
parameters(if there are) to move toward our learned parameters, as in (Haarnoja et al.,
2018): Θ = (1 − τ)Θ + τΘ, where tau is the soft update rate (set to 0.005). We use a
discount factor, γ, of 0.99. All networks use a hidden dimension of 128 and Leaky Rectified
Linear Units as the nonlinearity. We use 0.01 as our temperature setting for MAAC and
F2A2-SAC. We use 4 attention heads in MAAC and F2A2-SAC.

StarCraft II. All policies are implemented as two-layer recurrent neural networks (GRUs)
with 64 hidden units, while the critic is the same as the settings of Cooperative Multi-agent
Particle Environments. For exploration, we use a bounded softmax distribution in which
the agent samples from a softmax over the policy logits with probability (1−ε) and samples
randomly with probability ε. We anneal ε from 0.5 to 0.01 across the first 50k environment
steps. Episodes are collected using eight parallel SCII environments. Optimization is carried
out on a single GPU with Adam and a learning rate of 0.0005 for both the agents and the
critics. The policies are fully unrolled and updated in a large mini-batch of TB entries,
where T = 60 and B = 8. By contrast, the critic is optimized in small mini-batches of
size 8, one for each time-step, looping backward in time. We found that this stabilized and
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Figure 10: Extensions of off-policy and on-policy actor-critic joint gradient.
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accelerated training compared to full batch updates for the critic. The target network for
the critic is updated after every 200 critic update.

MAgent Environment. For the MAgent environment, we fix the model of the enemy
agents to IQL after a fixed number (2000) of self-play training rounds. The learning rate
for actors and critics is 0.0001. The discount factor is set to 0.95, and the mini-batch size is
128. The size of the replay buffer is 500000. And the temperature for F2A2-ISAC is 0.08.

While for the algorithm to model other agents, we first collect 1000 trajectories randomly
to construct the past trajectories dataset and fixed it. We keep the most recent 1200 state-
action pairs of all agents; thus, the mini-batches size of the impromptu prediction net is also
1200. The char-net and mental-net are 2-layer GRU networks with 64 hidden dimensions,
and two prediction net are MLP networks with 128 hidden dimensions. The length of the
former is fixed to the length of the episode, 25, and the latter is fixed at 5. The update
frequency of the whole network is the same as the reinforcement learning part, and the
mini-batches size of the natural prediction net is 1600. The optimizer and learning rate are
also set the same as those in the reinforcement learning part.

Except that the F2A2-ISAC algorithm uses the Tensorflow (Abadi et al., 2015) frame-
work, the other algorithms we proposed use the PyTorch (Paszke et al., 2017) framework.
We run all the experiments on a machine with 44 CPU cores, 128G RAM, and 4 Nvidia
1080Ti GPUs. We use the original papers ’ open-source code for all of the simulation
environments involved in the experiments.

Appendix H. More Case Studies

In the following, we will discuss more state-of-the-art MARL algorithms to motivate the
above optimization formulation (4.5) and the following proposed algorithm framework.
There contain to the communication learning algorithm (Jiang and Lu, 2018) and com-
mon knowledge based algorithm (Schroeder de Witt et al., 2019).

H.1 Attentional Communication (ATOC)

The communication learning algorithms advocate learning collaborative policies through
communication. However, for early communication learning algorithms(Foerster et al., 2016;
Peng et al., 2017; Sukhbaatar et al., 2016), information sharing among all agents or in
predefined communication architectures, these methods adopt can be problematic. When
there is a large number of agents, agents cannot differentiate valuable information that helps
cooperative decision making from globally shared information, and hence communication
barely helps and could even jeopardize the learning of cooperation. Moreover, in real-
world applications, it is costly that all agents communicate with each other since receiving
a large amount of information requires high bandwidth and incurs long delay and high
computational complexity(Jiang and Lu, 2018).

ATOC(Jiang and Lu, 2018) propose an attentional communication model to solve the
above problems. ATOC introduces a shared attention unit so that the communication
architecture between agents can dynamically change according to needs; at the same time, in
a self-organized communication group, the message is generated through a shared Bi-LSTM
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win wsh Functions: J iactor and J icritic

ψiin φiin ψish φish J iactor (ψsh, φsh) J icritic (ψin, φsh)

∅ ∅ {θenc, θram, θlstm, θactor} πi(oi)(MLP) E
[
Qπ,iφsh

(oi, πiψsh(oi))
]

E
[(
Qπ,iφsh

(oi, ai)−Qπ,itg

)2
]

Table 6: Algorithm elements about ATOC.

network, the message generation module. In a word, ATOC sharing all actor parameters
and all critic parameters for all agents, which means φsh = ∅ and ψsh = ∅. The ATOC
algorithm uses the DDPG(Lillicrap et al., 2016) as the backbone, and the objective function
for each agent i in actor and critic phases can be reformulated as

J iactor (ψsh, φsh) = E
[
Qπ,iφsh

(oi, πiψsh(oi))
]
,

J icritic (ψsh, φsh) = E
[(
Qπ,iφsh

(oi, ai)−Qπ,itg

)2
]
,

where the expectations are take on oi, ai, ci, o′i ∼ D because the DDPG algorithm are

off-policy algorithm, and D is the shared experience replay buffer; π :=
{
πiψsh

}
represents

the joint policy of all agents; ψsh and φsh represent the sharing actor parameter and critic

parameter respectively; Qπ,itg := ci + γQπ,iφsh

(
o′, πiψsh(o′)

)
;

The detailed calculation process of πiψsh(oi) is as follows: Firstly, the observation of agent
i is encoded by an observation encoder which is parameterized by θenc. Then the observation
embedding is fed into a recurrent attention model, which is parameterized by θram, and
output a two-valued variable, indicating whether or not agent i becomes the founder of
the communication group. If the output value is 1, then agent i becomes the founder of
a new communication group; otherwise, agent i chooses an existing communication group
to join according to a pre-defined strategy. After that, all messages in the communication
group are fed into an LSTM network which is parameterized by θlstm, and the output
corresponding to the agent i is used as a fusion representation of the message sent by the
remaining agents in the communication group. Finally, this fusion representation is fed into
the actor-network, which is parameterized by θactor, to obtain the final policy. It can be
seen that ψsh := {θenc, θram, θlstm, θactor} and ψiin := ∅, φsh is the critic sharing between all
agents and φiin := ∅.

The overall optimization problem specified from (4.5) can be formulated as

min
ψsh,φsh

α1

n∑

i=1

E
[
Qπ,iφsh

(oi, πiψsh(oi))
]

+ α2

n∑

i=1

E
[(
Qπ,iφsh

(oi, ai)−Qπ,itg

)2
]
. (H.1)

Note that here we omit the parameters regularization term R(win,wsh) in (4.5). In
the practical implementation of the ATOC algorithm, the regularization of the parameters
is generally implemented by L2 regularization or gradient norm clipping. All detailed ele-
ments about ATOC are summarized in Table 6, and the algorithm framework of ATOC for
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formulation (4.5) is show as the following form





φk+1
sh = φksh − α1

1
M

∑M
m=1

∑n
i=1∇φsh

(
Qπ

k,i

φksh
(oi,m, ai,m)−Qπk,itg

)2

≈ arg min
φsh

α1

n∑
i=1

E
[(
Qπ,iφsh

(oi, ai)−Qπ,itg

)2
]
,

{θenc, θactor}k+1 = {θenc, θactor}k − α2
1
M

∑M
m=1

∑n
i=1

∇{θenc,θactor}
(
Qπ,i
φk+1
sh

(oi,m, πi
ψksh

(oi,m))

)

≈ arg min{θenc,θactor} α2

n∑
i=1

E
[
Qπ,iφsh

(oi, πiψsh(oi))
]
,

θk+1
lstm = θklstm − α2

1
M

∑M
m=1

∑n
i=1∇θlstm

(
Qπ,i
φk+1
sh

(oi,m, πi
ψksh

(oi,m))

)

≈ arg minθlstm α2

n∑
i=1

E
[
Qπ,iφsh

(oi, πiψsh(oi))
]
,

which can be considered to employ block coordinate gradient descent on formulation (H.1).

H.2 Multi-Agent Common Knowledge (MACKRL)

For the cooperative POSG, in the absence of common knowledge, complex decentralized co-
ordination has to rely on implicit communication, i.e., observing each other’s actions or their
effects (Heider and Simmel, 1944; Rasouli et al., 2017). However, implicit communication
protocols for complex coordination problems are challenging to learn and, as they typically
require multiple timesteps to execute, can limit the agility of control during execution (Tian
et al., 2018). By contrast, coordination based on common knowledge is simultaneous and
does not require learning communication protocols (Halpern and Moses, 1990).

MACKRL (Schroeder de Witt et al., 2019) is a novel stochastic policy actor-critic al-
gorithm that can learn complex coordination policies end-to-end by exploiting common
knowledge between groups of agents at the appropriate level. MACKRL uses a hierarchi-
cal policy tree in order to select the right level of coordination dynamically. Specifically,
MACKRL is learning a centralized actor and centralized critic. However, due to the use of
hierarchical policies, the centralized actor can be calculated efficiently. In other words, just
like ATOC, MACKRL sharing all actor parameters and all critic parameters for all agents,
which means φsh = ∅ and ψsh = ∅.

MACKRL is based on Central-V (Foerster et al., 2018a) and approximately solves the
Eq. (4.5) by iteratively optimizing the same two subproblems as above algorithms, and the
specific form of J iactor and J icritic of agent i in MACKRL algorithm are as follows:

J iactor (ψsh, φsh) = E
[
Qπ,iφsh

(o,a)
]
,

J icritic (ψsh, φsh) = E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

where the expectations are taken on s ∼ dΨ,o ∼ E , a ∼ πΨ and Ψ := {ψsh}; π := πψsh
represents the joint policy of all agents; ψsh and φsh represent the sharing actor parameter
and critic parameter respectively; MACKRL also uses TD(λ) algorithm to learn the shared
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win wsh Functions: J iactor and J icritic

ψiin φiin ψish φish J iactor (ψsh, φsh) J icritic (ψsh, φsh)

∅ ∅ {ψgroup, ψagent}(GRUs)
The parameter of
Q and V (MLP)

E
[
Qπ,iφsh

(o,a)
]

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]

Table 7: Algorithm information about MACKRL.

critic and it will not be repeated here because it was mentioned in the previous introduction
of the COMA algorithm.

The way that MACKRL effectively calculates joint policy is similar to hierarchical rein-
forcement learning. It divides joint policy into common-knowledge-based group-level policies
and common-knowledge-based agent-level policies, so ψsh can be decomposed into ψgroup
and ψagent. MACKRL allows multi-agent policies to introduce common knowledge while
training end-to-end efficiently naturally (see the original paper (Schroeder de Witt et al.,
2019) for details).

The overall optimization problem specified from (4.5) can be formulated as

min
ψsh,φsh

α1

n∑

i=1

E
[
Qπ,iφsh

(o,a)
]

+ α2

n∑

i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
. (H.2)

Note that here we omit the parameters regularization term R(win,wsh) in (4.5). In the
practical implementation of the MACKRL algorithm, the regularization of the parameters is
generally implemented by L2 regularization or gradient norm clipping. All detailed elements
about MACKRL are summarized in Table 7, and the algorithm framework of MACKRL
for formulation (4.5) is show as the following form





φk+1
sh = φksh − α1

1
M

∑M
m=1

∑n
i=1∇φsh

(
Qπ

k,i

φksh
(om,am)−Qπk,itg

)2

≈ arg min
φsh

α1

n∑
i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

ψk+1
sh = ψksh − α2

1
M

∑M
m=1

∑n
i=1∇ψsh

(
Qπ

k,i

φk+1
sh

(om,am)

)

≈ arg min
ψsh

α2

n∑
i=1

E
[
Qπ,iφsh

(o,a)
]
,

which can be considered to employ block coordinate gradient descent on formulation (H.2).

H.3 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

MADDPG algorithm adopting the framework of CTDE. Thus, it allows the policies to use
extra information to ease training so long as it is not used at test time. However, it is
unnatural to do this with Q-learning, as the Q function generally cannot contain different
information at training and test time. Thus, MADDPG proposes a simple extension of
actor-critic methods based on the DDPG algorithm, where the critic is augmented with
extra information about other agents’ policies.

Since the MADDPG algorithm is directly extended on the DDPG, the difference from
the DDPG algorithm is that additional information of the other agents is introduced when
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win wsh Functions: J iactor and J icritic

ψiin φiin ψish φish J iactor

(
{ψiin}, φsh

)
J icritic

(
{ψiin}, φsh

)

πi(oi) ∅ ∅ Q(o,a) E
[
Qπ,iφsh

(o,a)
]

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]

Table 8: Algorithm information about MADDPG.

train the centralized critic. For each agent, it is still essentially completing a single-agent
task. Therefore, there is no shared parameter between agents, which means ψsh = ∅ and
φsh = ∅. Because this paper focuses on the collaboration problem, minor modifications to
MADDPG are made here. That is, all agents share a centralized Q-value function, which
means φiin = ∅. The objective function for each agent i in actor and critic phases can be
reformulated as

J iactor

(
{ψiin}, φsh

)
= E

[
Qπ,iφsh

(o,a)
]
,

J icritic

(
{ψiin}, φsh

)
= E

[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

where the expectations are take on o,a, c,o′ ∼ D because the DDPG algorithm are off-

policy algorithm, and D is the shared experience replay buffer; π :=
{
πi
ψiin

}
represents the

policy of each agent; ψiin and φsh represent the independent actor parameter and shared

critic parameter respectively; Qπ,itg := ci + γQπ,iφsh
(o′,π(o′)).

The overall optimization problem specified from (4.5) can be formulated as

min
ψsh,φsh

α1

n∑

i=1

E
[
Qπ,iφsh

(o,a)
]

+ α2

n∑

i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
. (H.3)

All detailed information about MADDPG is summarized in Table 8, and the algorithm
framework of MADDPG for formulation (4.5) is show as the following form





φk+1
sh = φksh − α1

1
M

∑M
m=1

∑N
i=1∇φsh

(
Qπ

k,i

φksh
(om,am)−Qπk,itg

)2

≈ arg min
φsh

α1

n∑
i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

{ψiin}k+1 = {ψiin}k − α2
1
M

∑M
m=1

∑N
n=1∇{ψiin}

(
Qπ

k,i

φk+1
sh

(om,am)−Qπk,itg

)2

≈ arg min
{ψiin}

α2

n∑
i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

which can be considered to employ block coordinate gradient descent for formulation (H.3).

H.4 Counterfactual Multi-Agent Policy Gradients (COMA)

In fully cooperative POSG, joint actions typically generate only the global cost (i.e., the
same cost function sharing between agents), making it difficult for each agent to deduce its
contribution to the team’s success. In some cases, it is possible to design an individual cost
function for each agent. However, these costs are not generally available in a collaborative
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win wsh Functions: J iactor and J icritic

ψiin φiin ψsh φsh J iactor

(
{ψiin}, φsh

)
J icritic

(
{ψiin}, φsh

)

πi(oi)(GRUs6) ∅ ∅ Q(o,a) and V (o)(MLP7) E
[
Qπ,iφsh

(o,a)− B(o,a\i)
]

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]

Table 9: Algorithm elements about COMA.

setting and usually fail to encourage individual agents to sacrifice to obtain better global
performance.This will substantially impede multi-agent learning in challenging tasks, even
with a relatively small number of agents (Foerster et al., 2018a). This crucial challenge is
called multi-agent credit assignment problem (Chang et al., 2004). COMA (Foerster et al.,
2018a) solves this problem by learning a centralized critic with a counterfactual baseline
which is inspired by difference rewards (Wolpert and Tumer, 2002).

In the COMA algorithm, for the reason that a centralized critic is employed, so that all
the parameters in critic are shared, which means φiin = ∅ for all agents. However there is
no shared parameter in actors, which means ψsh = ∅. Further, the objective function for
each agent i in actor and critic phases can be reformulated as

J iactor

(
{ψiin}, φsh

)
= E

[
Qπ,iφsh

(o,a)− B(o,a\i)
]
,

J icritic

(
{ψiin}, φsh

)
= E

[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

where where the expectations are taken on s ∼ dΨ,o ∼ E , a ∼ πΨ and Ψ := {ψiin};
π :=

{
πi
ψiin

}
represents the joint policy of all agents; φsh represents the sharing parameter of

the centralized critic; ψiin represents the independent actor parameter of each agent; COMA

introduces TD(λ) (Sutton and Barto, 2018) for critic learning, thus Qπ,itg is also denoted as

Gλt := (1− λ)
∑∞

n=1 λ
n−1G

(n)
t ; when n = 1, we have G1

t := Es′∼P,o′∼E

(
Cs′s,a + γV π,iφsh

(o′)
)
,

and V represents the approximated state-value function (Sutton and Barto, 2018); B(o,a\i)
denotes the multi-agent counterfactual baseline that is used to solve the credit assignment

problem, B(o,a\i) = Eai∼πi(oi)
[
Qπ,iφsh

(o, (ai,a\i))
]
. The overall optimization problem spec-

ified from (4.5) can be formulated as

min
{ψiin},φsh

α1

n∑

i=1

E
[
Qπ,iφsh

(o,a)− B(o,a\i)
]

+ α2

n∑

i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
. (H.4)

Note that here we omit the parameters regularization term R(win,wsh) in (4.5). In the
practical implementation of the COMA algorithm, the regularization of the parameters is
generally implemented by L2 regularition or gradient norm clipping. All detailed elements
about COMA are summarized in Table 9. Further the algorithm framework of COMA
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algorithm is shown follows, i.e.,




φk+1
sh = φksh − α1

1
M

∑M
m=1

∑n
i=1∇φsh

(
Qπ

k,i

φksh
(om,am)−Qπk,itg

)2

≈ arg min
φsh

α1

n∑
i=1

E
[(
Qπ,iφsh

(o,a)−Qπ,itg

)2
]
,

{ψi,k+1
in } = {ψi,kin } − α2

1
M

∑M
m=1

∑n
i=1∇{ψiin}

(
Qπ

k,i

φk+1
sh

(om,am)− B(om,a\i,m)

)

≈ arg min
{ψiin}

α2

n∑
i=1

E
[
Qπ,iφsh

(o,a)− B(o,a\i)
]
,

which can be considered to employ block coordinate gradient descent on formulation (H.4).

H.5 Multi-Actor-Attention-Critic (MAAC)

A large-scale cooperative multi-agent system is complicated and unnecessary for an agent
to surveillance all agents’ states and behavior. Meanwhile, the decision of each agent may
only be affected by these strongly related agents, not all agents. Considering too much other
agents’ information will make proper signals inevitably submerged in the background noise.
Therefore, the multiple attention actor-critic (MAAC) algorithm (Iqbal and Sha, 2019)
introduces the effective attention mechanism to avoid the instability problem of estimating
other agents’ policy in MADDPG (Lowe et al., 2017). MAAC follows the learning procedure
of centralized training with decentralized execution. Based on the popular Soft-Actor-Critic
(SAC) algorithm (Haarnoja et al., 2018), MAAC considers an additional attention layer to
avoid directly using other agents’ policies, and the policy is determined by maximizing a
trade-off between expected return and the entropy regularization.

The MAAC algorithm introduces a shared attention module in the modeling of each
agent’s critic, so that φiin and φsh both non-empty parameter sets. Moreover, same as
COMA, there is no shared parameter in actors, which means ψsh = ∅. The objective
function for each agent i in actor and critic phases can be reformulated as

J iactor

(
{ψiin}, φiin, φsh

)
= E

[
Qπ,i
φiin,φsh

(o,a) + αH(·|πiψiin(oi))− B(o,a\i)
]
,

J icritic

(
{ψiin}, φiin, φsh

)
= E

[(
Qπ,i
φiin,φsh

(o,a)−Qπ,itg

)2
]
,

where the expectations are take on o,a, c,o′ ∼ D because the SAC algorithm are off-policy

algorithm, and D is the shared experience replay buffer; π :=
{
πi
ψiin

}
represents the joint

policy of all agents; φsh represents the sharing attention parameter of the centralized critic
and φiin represents the rest independent critic parameter of each agent; ψiin represents the
independent actor parameter of each agent; H(·|πi

ψiin
(oi)) denotes the entropy of the policy

at state oi; B(o,a\i) is the multi-agent counterfactual baseline that is same as COMA; Qπ,itg

is defined as
ci + γEa′∼π(o′)

[
Qπ,i
φiin,φsh

(o′,a′)− α log
(
πiψiin

(
a′i|o′i

))]
.

Finally, the detailed form of critic with attention mechanism is denoted as

Qπ,i
φiin,φsh

(o,a) = ζi


zi(oi, ai),

H∑

h=1

∑

j 6=i
αjhΥ(Vhzj(oj , aj))


 ,
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win wsh Functions: J iactor and J icritic

ψiin φiin ψish φish J iactor

(
{ψiin}, φiin, φsh

)
J icritic

(
{ψiin}, φiin, φsh

)

πi(oi)(MLP) ζi,zi ∅
{
Vh,W

key
h ,W que

h

}H
h=1

E
[
Qπ,i
φiin,φsh

(o,a) + αH(·|πi
ψiin

(oi))− B(o,a\i)
]

E
[(
Qπ,i
φiin,φsh

(o,a)−Qπ,itg

)2
]

Table 10: Algorithm elements about MAAC.

where φiin := {ζi,zi} and ζi,zi are two-layer multi-layer perceptron (MLP) and one-layer
MLP encoding function respectively. Υ denotes a specific nonlinear activation function, and

φsh :=
{
Vh,W

key
h ,W que

h

}H
h=1

,

where Vh represents attention module parameters and αj 6=ih ∝ exp((zj 6=i)T (W key
h )TW que

h zi)
represents the attention factor. H denotes the number of attention heads.

The overall optimization problem specified from (4.5) can be formulated as

min
{ψiin},φiin,φsh

α1

n∑

i=1

E
[
Qπ,i
φiin,φsh

(o,a) + αH(·|πiψiin(oi))− B(o,a\i)
]

+

α2

n∑

i=1

E
[(
Qπ,i
φiin,φsh

(o,a)−Qπ,itg

)2
]
.

(H.5)

Note that here we omit the parameters regularization term R(win,wsh) in (4.5). In the
practical implementation of the MAAC algorithm, the regularization of the parameters is
generally implemented by L2 regularization or gradient norm clipping. All detailed elements
about MAAC are summarized in Table 10.

Futher the algorithm framework of MAAC for formulation (H.5) is shown as follows,




{
Vh,W

key
h ,W que

h

}k+1

=
{
Vh,W

key
h ,W que

h

}k
− α1

1
M

∑M
m=1

∑n
i=1

∇{Vh,W
key
h ,W que

h }
(
Qπ

k,i

φi,k
in ,φ

k
sh

(om,am)−Qπ
k,i

tg

)2

≈ arg min{Vh,W
key
h ,W que

h } α1

n∑
i=1

E
[(
Qπ,i
φi
in,φsh

(o,a)−Qπ,itg

)2]
,

{
ζi,zi

}k+1
=
{
ζi,zi

}k − α1
1
M

∑M
m=1∇{ζi,zi}

(
Qπ

k,i

φi,k
in ,φ

k
sh

(om,am)−Qπ
k,i

tg

)2

≈ arg min{ζi,zi} α1

n∑
i=1

E
[(
Qπ,i
φi
in,φsh

(o,a)−Qπ,itg

)2]
,

{ψi,k+1
in } = {ψi,kin } − α2

1
M

∑M
m=1

∑n
i=1

∇{ψi
in}

(
Qπ

k,i

φi,k+1
in ,φk+1

sh

(om,am) + αH(·|πi
ψi,k

in

(oi,m))− B(om,a\i,m)
)

≈ arg min
{ψi

in}
α2

n∑
i=1

E
[
Qπ,i
φi
in,φsh

(o,a) + αH(·|πi
ψi

in
(oi))− B(o,a\i)

]
,

which can be considered to employ block coordinate gradient descent on formulation (H.5).

Appendix I. Limitations

We ensured the Markov property of the policy through the enrichment of the observation
space, avoiding the use of non-Markovian and history-dependent policy classes. Although
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this approach facilitates theoretical analysis and engineering implementation, the resulting
vast belief space and infinite hierarchy of belief render the Markov policy class intractable
in more complex problems, further constraining its generality. We shed light on the lim-
itations that affect this policy class concerning crucial factors such as the error of the
approximated information state and the infinite hierarchy belief representation capabilities.
Careful consideration of these factors is essential to enhance the tractability and generality
of the Markovian policy within the enriched observation space.

I.1 Error of the Approximated Information State

Lifting POMDPs to an MDP over the belief states would require estimating the belief
states based on the whole history. This estimation is prone to the curse of dimensionality
due to the ample space of belief states. To analyze the theoretical impact of this curse on
algorithm performance, we adopt the perspective of information state based on existing
work (Subramanian et al., 2022).

It is pertinent to mention that the concepts and theories related to the information state
in POSG (Mao et al., 2020) are an extension of those in POMDP (Subramanian et al., 2022).
A comprehensive description of these concepts would require a significant amount of space,
and it is not the primary focus of this paper. Instead, we will concentrate on a specific
agent in a POSG and gradually deduce the limitations of Markovian policies from a single-
agent perspective. This approach allows us to omit the discussion of common and private
information and their relevant content (Tavafoghi et al., 2021; Mao et al., 2020) while
retaining the generalizability of our analysis. Concretely, we have the following definition
(for a single agent in POSG):

Definition 3 (Subramanian et al. 2022) Let {Zt}Tt=1 be a pre-specified collection of Ba-
nach spaces, Ht := {O1:t−1,A1:t−1, } be the past (joint) observations and actions. A collec-
tion {σt : Ht → Zt}Tt=1 of history compression functions is called an information state gen-

erator and {Zt}Tt=1 is called an information state, if the process {Zt}Tt=1, where Zt = σt (Ht),
satisfies the following properties:
(P1) Sufficient for performance evaluation, i.e., for any timestep t, any realization
ht of Ht and any choice at of At, we have

E [Rt | Ht = ht,At = at] = E [Rt | Zt = σt (ht) ,At = at] .

(P2) Sufficient to predict itself, i.e., for any time t, any realization ht of Ht and any
choice at of At, we have that for any Borel subset B of Zt+1,

P (Zt+1 ∈ B | Ht = ht,At = at) = P (Zt+1 ∈ B | Zt = σt (ht) ,At = at) .

It is evident that the history Ht is a trivial information state for any partially observed
model Subramanian et al. (2022). In F2A2, we enrich the observation space based on all
histories to create an information state space. However, for computational efficiency, F2A2
learns a Markovian policy in the approximated information state space. To accomplish this,
we first perform a finite memory compression (FMC) of the entire history by maintaining a
fixed window of the local history as an approximate information state. We then use LSTM, a
type of recurrent neural network, to encode the truncated/approximated information state.
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Nevertheless, truncating and embedding the information state leads to errors. As per
theoretical results from Subramanian et al. (2022) and Mao et al. (2020), the distance
between the optimal Markovian policy learned in the approximated information state space
and the actual optimal Markovian policy is bounded by (T − t + 1)(ε + LV δ), where LV
represents the upper bound of the Lipschitz constant of the policy and value function. The
values of (ε, δ) are defined as follows:

Definition 4 Let
{
Ẑt

}T
t=1

be a pre-specified collection of Banach spaces, F be a proba-

bility metrics with a ζ-structure (Zolotarev, 1983), and (ε, δ) be pre-specified positive real

numbers. A collection {σ̂t : Ht → Ẑt

}T
t=1

of history compression functions, along with ap-

proximate update kernels
{
P̂t : Ẑt× A→ ∆

(
Ẑt+1

)}T
t=1

and reward approximation func-

tions
{
r̂t : Ẑt ×A→ R

}T
t=1

, is called an (ε, δ) approximate information state generator

and {Zt}Tt=1 is called an approximate information state if the process
{
Ẑt

}T
t=1

, where

Ẑt = σ̂t (Ht), satisfies the following properties:

(AP1) Sufficient for approximate performance evaluation, i.e., for any time t, any
realization ht of Ht and any choice at of At, we have

|E [Rt | Ht = ht,At = at]− r̂t (σ̂t (ht) ,at)| ≤ ε

(AP2) Sufficient to predict itself approximately, i.e., for any time t, any realiza-
tion ht of Ht, any choice at of At, and for any Borel subset B of Ẑt+1, define µt( B) :=

P
(
Ẑt+1 ∈ B | Ht = ht,At = at

)
and νt( B) := P̂t (B | σ̂t (ht) ,at) ; then

dF (µt, νt) ≤ δ.

The theoretical upper bound for the (ε, δ) values remains uncertain due to the need
for quantifying the expressiveness of the LSTM. As the state space, action space, and task
horizon increase, the error caused by using FMC to estimate the information state will
likely amplify, resulting in a more significant gap between the policy converged by F2A2
and the optimal policy. Therefore, our future research will focus on more efficient methods
of estimating the information state based on existing work Mao et al. (2020).

Furthermore, the infinite hierarchy of beliefs in the POSG provides an alternative per-
spective that can be used to analyze the upper bound for the (ε, δ) values and the limitations
of the Markovian policy, as discussed in the next section.

I.2 Infinite Hierarchy Belief Representation Capabilities

In the preceding section, our analysis begins with the information state. It aims to theoreti-
cally examine how the curse of dimensionality arises from the enriched observation space in
POSG and its impact on the Markovian policy. Bayesian RL frameworks represent another
approach to addressing partially observed problems that are discussed in the literature (Za-
mir, 2008; Ross et al., 2007; Katt et al., 2018; Foerster et al., 2018b). These frameworks
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maintain a posterior distribution over environment models, where at each step, a model is
sampled from the posterior, and its corresponding optimal policy is learned and executed.

In practice, it is reasonable for each agent in a POSG to compute a belief state that
captures their uncertainty about the environment’s state, following the logic of POMDPs.
In this context, such a belief state is called a ”zeroth-order belief,” as discussed in Moreno
et al. (2021). When viewed from a single agent’s perspective, assuming that other agents’
policies are fixed, the POSG can be regarded as a POMDP. The presence of other agents
transforms these agents into part of the environment, causing the unknown state of the
world to encompass not only the environment state but also the knowledge state of other
agents. Consequently, agent i must create a belief about the other agent’s beliefs, known as
”first-order” beliefs. This recursive process can continue, allowing agents to form ”second-
order” beliefs about other agents’ ”first-order” beliefs, and so on. Ultimately, each agent
maintains an ”infinite hierarchy” of beliefs.

It is apparent that F2A2 must possess the ability to express the infinite hierarchy belief
if it uses finite memory compression and LSTM models to generate small (ε, δ) values.
However, representing an infinite hierarchy of beliefs is theoretically unfeasible. Fortunately,
agents do not need to consider an infinite hierarchy of beliefs to exhibit robust decision-
making and generalization abilities. This fact is exemplified by human beings, with the
Keynes Beauty Contest (Keynes, 1937) being a classic illustration. In a simplified version
of this experiment, players are asked to select a number between 0 and 100, with the player
whose guess is closest to half of the average declared the winner. According to the theory
of Nash equilibrium (NE), selecting 0 is the only rational choice for each player in the
Keynes Beauty Contest. This reasoning is as follows: ”If all players make random guesses,
then the average of those guesses would be 50 (level-0). Therefore, I should guess at most
1/2 ∗ 50 = 25 (level- 1). If other players think similarly, I should not guess more than
1/2 ∗ 25 = 13 (level-2),” and so on. In this manner, the level of beliefs can continue to
develop until all players choose 0, which is the only NE in this game.

However, experimental evidence reveals that most human players select numbers be-
tween 13 and 25 (Coricelli and Nagel, 2009), contradicting this theoretical result. This
discrepancy is because not all human players exhibit perfect rationality; they are bounded
by the levels of recursion they prefer to reason with (i.e., bounded rationality). Further-
more, in constrained scenarios, Wen et al. (2021) demonstrated that endowing agents with
higher-level reasoning capabilities did not significantly enhance performance.

To this end, we can comprehend the limitations of Markovian policies based on the
previous analysis by examining whether finite memory compression (FMC) and LSTM can
represent a finite hierarchy of beliefs. In this regard, Moreno et al. (2021) introduces a scal-
able approach to approximate hierarchical belief structures using recursive deep generative
models and leverages these belief models to obtain representations useful for complex tasks.
For belief approximation at each level, they employ a Markovian policy based on finite
memory compression and two independent RNNs. This implies that multi-layer RNNs may
be capable of representing a finite hierarchy of beliefs. However, in F2A2, only a single-
layer LSTM is used in the Markovian policy, which likely imposes significant limitations on
representing multi-layer beliefs and leads to large (ε, δ) values. Therefore, in future work,
we intend to conduct more comprehensive research on designing a more effective network
structure to estimate multi-layer beliefs.
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Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated multi-
robot exploration under communication constraints using dcentralized Markov decision
processes. In AAAI, 2012.

Guido Montufar, Keyan Ghazi-Zahedi, and Nihat Ay. Geometry and determinism of opti-
mal stationary control in partially observable markov decision processes. arXiv preprint
arXiv:1503.07206, 2015.

70



F2A2: Flexible Fully-decentralized Approximate Actor-critic

Pol Moreno, Edward Hughes, Kevin R McKee, Bernardo Avila Pires, and Théophane We-
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