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Abstract

In the optimization of dynamic systems, the variables typically have constraints. Such
problems can be modeled as a Constrained Markov Decision Process (CMDP). This pa-
per considers the peak Constrained Markov Decision Process (PCMDP), where the agent
chooses the policy to maximize total reward in the finite horizon as well as satisfy con-
straints at each epoch with probability 1. We propose a model-free algorithm that converts
PCMDP problem to an unconstrained problem and a Q-learning based approach is ap-
plied. We define the concept of probably approximately correct (PAC) to the proposed
PCMDP problem. The proposed algorithm is proved to achieve an (ϵ, p)-PAC policy when

the episode K ≥ Ω( I
2H6SAℓ

ϵ2 ), where S and A are the number of states and actions, respec-
tively. H is the number of epochs per episode. I is the number of constraint functions, and
ℓ = log(SAT

p ). We note that this is the first result on PAC kind of analysis for PCMDP with
peak constraints, where the transition dynamics are not known apriori. We demonstrate
the proposed algorithm on an energy harvesting problem and a single machine scheduling
problem, where it performs close to the theoretical upper bound of the studied optimization
problem.

Keywords: Markov Decision Process, Model-free Algorithm, Peak Constraints, Rein-
forcement Learning

1. Introduction

Optimization of dynamic systems typically has constraints, e.g., battery capacity for robots.
As an example, if a robot is powered by a battery, which is also being charged with an
external power supply, the amount of energy used at each time is limited by the battery
capacity. The dynamical systems are typically modeled as a Markov Decision Process
(MDP), while the transition probabilities may not be known apriori (or maybe dynamic). In
the absence of knowledge of transition probabilities, the MDP is modeled as a Reinforcement
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Learning (RL) problem which aims to maximize the total reward in the finite horizon by
making actions given the state of the process to be controlled. RL algorithms can be
divided into model-based and model-free, where the model-based approaches estimate the
transition probabilities, while model-free approaches do not. In this paper, we consider
a model-free approach to RL in the presence of peak constraints, which is an important
constraint in many dynamical systems. For instance, algorithms with peak constraints
have been studied for communications Shamai and Bar-David (1995), flow-shop scheduling
Fang et al. (2013), thermostatically-controlled systems Karmakar et al. (2013), economics
Bailey (1972), robotics Li et al. (1997), etc. The constrained optimization problems have
been considered for Markov Decision Processes Altman (1999). However, these require
complete knowledge of the transition probabilities. Without such knowledge, algorithms
have been proposed Geibel and Wysotzki (2005); Geibel (2006). However, to the best of
our knowledge, none of the algorithms so far has considered MDPs with peak constraints
and provably given PAC analysis for objective and constraint violations.

Contributions: In this work, we assume that the transition probability is unknown,
the reward and constraint functions can be observed but are not known in closed form.
We extend the concept of probably approximately correct (PAC) for the proposed PCMDP
problem. We introduce an Approximated PCMDP to propose a novel model-free algo-
rithm with stochastic policy. The proposed algorithm is shown to achieve an (ϵ, p)-PAC

policy when the number of episodes are K ≥ Ω( I
2H6SAℓ

ϵ2
). Finally, the proposed algorithm

is evaluated on an energy-harvesting transmitter studied in Wang et al. (2014) and a single
machine scheduling problem with deadlines studied in Koulamas and Kyparisis (2001). It
is found that the proposed algorithm performs close to the genie-aided upper bound for the
problem.

2. Related Work

Online Convex Optimization (OCO): OCO problem is an extension of the constrained
convex optimization. In this problem, we wish to optimize

∑T
t=1 ft(x) for given functions

ft, t ∈ {1, · · · , T}, such that x ∈ K. In online convex optimization, we select xt at time t,
such that the regret in objective is minimized, which is defined as

Regret(T ) =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (1)

Further, xt may not satisfy constraints, and thus there will be a constraint violation.
By changing the problem into an online convex-concave optimization problem, The authors
of Mahdavi et al. (2011) proposed an algorithm which achieves the O(

√
T ) bound for the

regret and O(T 3/4) bound on the violation of constraints. Further, they proposed another
algorithm based on the mirror-prox method (Nemirovski, 2004) that achieves O(T 2/3) bound
on both regret and constraints when the domain can be described by a finite number of
linear constraints. The authors of Jenatton et al. (2016) proposed an algorithm which
achieves O(Tmax(β,1−β)) objective regret and O(T 1−β/2) constraint violations for β ∈ (0, 1).
Further, the authors of (Yu and Neely, 2016) proposed an algorithm with O(

√
T ) regret

bound for objective with finite constraint violations. However, CMDP is different from OCO

2



Provably Sample-Efficient Model-Free Algorithm for MDPs with Peak Constraints

because the reward function depends both on the state and action and the previous action
can influence current state and thus change the reward function. Further, the functions and
constraints are not known explicitly in reinforcement learning (RL). Thus, the analysis of
CMDP doesn’t directly follow from that of OCO.

Constrained Markov Decision Process (CMDP): When the system model (the
transition probability distribution, the reward function, and constraint functions) is known,
the problem is generally considered as CMDP. CMDP in the form of discounted and average
reward has been studied in Altman (1999). It is well known that CMDP problem is convex
and can be converted into an equivalent unconstrained MDP problem by using the method
of Lagrange multipliers. Thus, when the model is known, CMDP can be solved using linear
programming (LP). In addition to the LP method, Three different algorithms, WeiMDP,
AugMDP, and RecMDP, are proposed to solve CMDP in different settings Geibel (2006).
Constrained Upper Confidence Reinforcement Learning (C-UCRL) Zheng and Ratliff (2020)
algorithm achieves O(T 3/4

√
log(T/δ)) regret on the reward and satisfies the constrains even

during learning process with probability at least 1− δ.

The key difference between these works and reinforcement learning (RL) approach is that
the transition probabilities for the next state given the previous state and action are assumed
to be known in CMDP approaches, while are not known apriori in RL approaches. They may
be learnt in model-based RL, while not learnt at all in model-free RL approaches. Recently,
the authors of Efroni et al. (2020) proposed OptCMDP, OptCMDP-bonus, OptDual-CMDP,
and OptPrimalDual-CMDP algorithms to achieve both O(

√
T ) bound on the reward and

constraint violations. However, all of these four algorithms are model-based. A model-
free algorithm is provided in Ding et al. (2020) and also achieve O(

√
T ) bound on both

the objective and constraint violation. In this paper, we consider model-free reinforcement
learning based approaches for the peak constraint problem which is different from the above
paper in the average expected setting.

Regret Bounds for Reinforcement Learning: Regret Analysis for the Reinforce-
ment Learning has been considered for both the model-based approaches Jaksch et al.
(2010); Agrawal and Jia (2017); Azar et al. (2017); Kakade et al. (2018) and the model-free
approaches Kearns and Singh (2002); Strehl et al. (2006); Jin et al. (2018). Our paper
extends the epsiodic reinforcement learning setup with the addition of peak constraints.

Model-free Reinforcement Learning Algorithm for CMDP with Peak Con-
straints: Q-learning based methods with peak constraints has been studied Bouton et al.
(2019); Wang et al. (2014), where the Q function in each epoch is projected to the constraint
set. These algorithms involve knowledge of constraint functions explicitly (since projection
to the constraint set is needed) to make decisions at each time. In contrast, we do not require
knowledge of constraint function. Recently, based on the primal-dual method, The authors
of Paternain et al. (2019) proposed an algorithm with policy descent and showed that the
algorithm is 1− δ safe ( P (∩t≥0{st ∈ S0}|πθ) ≥ 1− δ, where S0 is the safe region). Besides,
Gattami (2019) related PCMDP to unconstrained zero-sum game where the objective is the
Lagrangian of the optimization problem, and applied max-min Q-learning to PCMDP to
prove convergence. However, none of the works in this direction have given a PAC kind of
analysis for objectives and constraints, which is the focus of our paper. To the best of our
knowledge, this paper provides the first PAC analysis for model-free reinforcement learning
with peak constraints.

3



Bai, Aggarwal, Gattami

3. Problem Formulation and Assumption

We consider an episodic setting of the PCMDP with finite state and action space, defined
by PCMDP (S,A, H,P, r, fi, s1), where S is the state space with |S| = S, A is the set of
actions with |A| = A > 1, H is the number of epochs in each episode, and P is the transition
matrix such that Ph(·|s, a) gives the probability distribution over next state based on the
state and action pair (s, a) at epoch h. Further, r : S ×A → R is the deterministic reward
function and fi : S×A → R, i = 1, · · · , I, are peak constraint functions. s1 is a fixed initial
state. In the RL setting, the transition dynamics Ph, the reward function r and constraint
functions fi are unknown to the agent but can be measured when a state action pair (s, a)
is observed. If we know the model of MDP (which means that the transition dynamics,
the reward and constraint functions are known), we can solve the problem by solving the
optimal Bellman Equation.

Q̃∗
h(s, a) = rh(s, a) + [PhṼ

∗
h+1(s, a)] Ṽ ∗

h (s) = max
a∈Asafe

h (s)
Q̃∗

h(s, a) (2)

where Q̃(s, a) is the state-action value function for reward function r(s, a) such that

Q̃π
h(s, a) = E[

H∑
h′=h+1

rh′(sh′ , πh′sh′)|sh = s, ah = a] (3)

and Asafe
h (s) = {a : fi(s, a) ≥ 0,∀i ∈ [I]}. As a result, the problem can be considered as an

unconstrained MDP problem with specified action set for each s ∈ S and h ∈ [H]. In this
paper, we make the following assumptions.

Assumption 1 The absolute values of the reward function r and constraint functions
fi, i = 1, · · · , I are strictly bounded by a constant known to the agent. Without loss of
generality, we let this constant be 1.

Assumption 2 The values of the reward function r is non-negative, i.e., 0 ≤ r(s, a) ≤
1,∀(s, a).

These assumptions on reward function are typical in reinforcement learning Jin et al. (2018);
Ni et al. (2019); Azar et al. (2017), and the bound of reward function can be normalized.
Further, the reward can be shifted up by adding a constant to make the reward function
non-negative.

Remark 1 (Nonidentical Initial State) Despite that the MDP model is defined with a fixed
initial state for all episodes, the result in this paper still works for random initial state with
a simple modification. Denote the distribution for the initial state as d such that s1 ∼ d.
Then, we artificially add an extra state s0 and define r(s0, a) = 0, ∀a ∈ A, fi(s0, a) = 0, ∀a ∈
A,∀i ∈ [I] and P0(s1|s0, a) = d(s1), ∀a ∈ A. Also, we modify Ph(s0|s, a) = 0,∀(s, a) ∈ S×A.
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By this modification, s0 is considered as a dummy state, which will not influence future
epochs. Thus, the proposed algorithm can start from s0 in this setting. Thus, a fixed initial
state is without loss of generality.

We define the policy as a function that maps a state s ∈ S to a probability distribution
of the actions with a probability assigned to each action a ∈ A. In an episodic setting,
the policy π is a collection of H policy functions πh at each epoch, that is πh(s) = a
with probability Pr(a|s, h). Constrained RL problem is concerned with finding the optimal
policy to achieve the highest total reward subject to a set of constraints, which can be
formally stated as

Original PCMDP : max
π

E

[ H∑
h=1

r(sh, πh(sh))

]
s.t. E[f−

i (sh, πh(sh))] ≥ 0 ∀h ∈ [H], ∀i ∈ [I]

(4)

where the expectation is taken with respect to both the policy π and the transition
probability Ph, and x− ≜ min{x, 0}. In the following parts, we use E instead of Eπ,P
for simplicity, which is the expectation value on the randomness of policy and transition
dynamics. The formulated problem in Eq. (4) is called Original PCMDP in this paper,
which optimizes the total reward and satisfies the peak constraints simultaneously.

Remark 2 Since this paper considers the episodic setting with a tabular MDP. For a fixed
h, there exists a discrete distribution for each state action pair (sh, ah) where ah ∼ πh(·|sh)
and sh ∼ Ph−1(·|sh−1, ah−1). Denote this distribution as λ(s, a). Thus, the constraint in
Eq. (4) can be expressed as

E[f−
i (sh, πh(sh))] =

∑
s∈S,a∈A

λ(s, a)f−
i (s, a) (5)

If fi(s, a) < 0 with a positive probability, then
∑

s∈S,a∈A λ(s, a)f−
i (s, a) < 0, which gives a

contradiction with Eq. (4). Thus, the constraint in Original PCMDP can be considered
as fi(sh, ah) ≥ 0 with probability 1, equivalently.

We emphasis that the proposed PCMDP problem is a special case of Constrained MDP
problem mentioned in Altman (1999). The difference is that constraint functions need to
be satisfied in each epoch h in our formulation, while it is only needed to be satisfied on
an average along one episode in Altman (1999). In the proof of Lemma 12, it can be seen
that PCMDP can be converted to the standard CMDP with HI constraints. A standard
approach for constrained MDP would use HI Q-tables, one for each constraint. However,
in this work, we provide a low space-time complexity approach that uses a single Q-table.

In order to make the problem non-trivial, we assume that the problem has a feasible
solution. More formally,

Assumption 3 (Feasibility) There exists a policy π such that E[f−
i (sh, πh(sh))] ≥ 0 for

all h ∈ [H] and i ∈ [I].
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We will make use of all the three assumptions in the remainder of the paper.
We note that based on the definition of x− = min{x, 0}, Slater Condition Lempio

(1974) will not hold for Eq. (4). Thus, we introduce a new slack variable ξ > 0 and define
gi,ξ(s, a) = f−

i (s, a) + ξ to formulate the Approximated PCMDP as follows.

Approximated PCMDP: max
π

E

[ H∑
h=1

r(sh, πh(sh))

]
s.t. E[gi,ξ(sh, πh(sh))] ≥ 0 ∀h ∈ [H], ∀i ∈ [I]

(6)

We notice that the introduction of approximation parameter ξ > 0 relaxes constraints
and makes the feasible region larger. In the next lemma, it is shown that the Slater Con-
dition always holds for Approximated PCMDP.

Lemma 3 There exists a set of γh,i, h ∈ [H], i ∈ [I] satisfying 0 < γh,i ≤ ξ,∀h, i and a
policy π such that

E[gi,ξ(sh, πh(sh))] ≥ γh,i, ∀h, i (7)

Proof By Assumption 3, we have

E[gi,ξ(sh, πh(sh))] = E[f−
i (sh, πh(sh))] + ξ ≥ ξ ≥ γh,i (8)

We define the state value function V π
h : S → R at epoch h under policy π as follows

V π
h (s) := E

[ H∑
h′=h

r(sh′ , πh′(sh′))|sh = s

]
(9)

Denote the set Π as the constraint set in which the policy satisfies the constraints in the
Eq. (4). We denote an optimal policy as π∗, which gives the optimal value function for the
original problem as

V ∗
h (s) = sup

π∈Π
V π
h (s), (10)

for all s ∈ S and h ∈ [H]. Note that the introduction of approximation parameter ξ would
change the optimal policy and thus the optimal value function for the relaxed problem is a
function of ξ which is denoted by V ∗

1,ξ(s1). In this paper, we extend the concept of PAC to
define a concept of ϵ-optimal policy for both the reward function and constraint violation,
which is given as follows.

Definition 4 ((ϵ, p)-PAC policy) For any p ∈ (0, 1), if a policy π̄ satisfies the following
equations with probability at least 1− p, then we call it an (ϵ, p)-PAC policy

V ∗
1 (s1)− V π̄

1 (s1) ≤ ϵ

H∑
h=1

I∑
i=1

E

∣∣∣∣f−
i (sh, π̄h(sh))

∣∣∣∣ ≤ ϵ
(11)
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By this definition, an (ϵ, p)-PAC policy is a policy for which the value function is ϵ close to
the optimal and the total constraint violation is less than ϵ. Moreover, due to the definition
of x− and the absolute notation in Eq. (11), we know that the peak constraint violation is
less than ϵ for each epoch h. Notice that the (ϵ, p)-PAC policy is defined with respect to
Original PCMDP.

4. Proposed Algorithm

For any state action pair (s, a), we define a modified reward function as

Rξ(s, a) = r(s, a) +
η

I

I∑
i=1

g−i,ξ(s, a) (12)

where g−i,ξ := min{gi,ξ, 0}, η = 2HI
γ and γ = minh,i γh,i. This modified reward function

gives nearly the original reward function r(s, a) when all constraints function are satisfied
because f−

i (s, a) = 0 in this case. Further, this provides a penalty function when any of the
constraints is larger than ξ. Based on the modified reward function, we define a counterpart
of the value function W π

h,ξ(s) as

W π
h,ξ(s) := E

[ H∑
h′=h

Rξ(sh′ , πh′(sh′))|sh = s

]
(13)

Further, letW ∗
1,ξ(s1) = maxπ W

π
1,ξ(s1). W with the notation [PhVh+1](s, a) := Es′∼Ph(·|s,a)Vh+1(s

′),
we define a counterpart of the state-action function Qπ

h(s, a) as

Qπ
h,ξ(s, a) := Rξ(s, a) +E

[ H∑
h′=h+1

Rξ

(
sh′ , πh′(sh′)

)∣∣∣∣sh = s, ah = a

]
= (Rξ + PhW

π
h+1,ξ)(s, a)

(14)
With these notations, we are able to define a modified unconstrained MDP problem, Mod-
ified MDP, as

Modified MDP : max
π

E

[ H∑
h=1

Rξ(sh, πh(sh))

]
(15)

Recalling the assumption that the original reward function r(·) is bounded, we show the
absolute value of the modified reward function Rξ is also bounded.

Lemma 5 If γ < min{ξ, 2HI(1 − ξ)}. the absolute value of the modified reward function
R(s, a) is bounded. Formally,

|R(s, a)| ≤ η ∀(s, a) ∈ S ×A (16)

Proof If fi(s, a) ≥ −ξ, then Rξ(s, a) = r(s, a) and thus 0 ≤ Rξ(s, a) ≤ 1. Otherwise, we
have from (12) that

Rξ(s, a) = r(s, a) +
η

I

I∑
i=1

[
f−
i (s, a) + ξ] (17)
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Algorithm 1 Constrained Q-Learning Algorithm

1: Initialize Qh(s, a)← ηH, Wh(s, a)← ηH, Nh(s, a)← 0, µh(s, a)← 0, σh(s, a)← 0 and
β0(s, a, h)← 0 for all (s, a, h) ∈ S ×A× [H]. Initial parameter ξ and η

2: for episode k = 1, ...K do
3: Observe s1
4: for step h = 1, ...H do
5: Take action ah ← argmax

a′
Qh(sh, a

′) and observe sh+1

6: t = Nh(sh, ah)← Nh(sh, ah) + 1
7: µh(sh, ah)← µh(sh, ah) +Wh+1(sh+1)
8: σh(sh, ah)← σh(sh, ah) + (Wh+1(sh+1))

2

9: βt(sh, ah, h)← min{c1(
√

H
t (

σh(sh,ah)−(µh(sh,ah))2

t + ηH)ℓ+ η
√
H7SAℓ

t ), c2η
√

H3ℓ
t }

10: bt ← βt(sh,ah,h)−(1−αt)βt−1(sh,ah,h)
2αt

11: Qh(sh, ah)← (1−αt)Qh(sh, ah)+αt[Rh(sh, ah)+Wh+1(sh+1)+bt] (Rh as defined
in Eq. (12))

12: Wh(sh)← min{ηH,max
a′∈A

Qh(sh, a
′)}

13: end for
14: end for

Notice that −η ≤ η
I

∑I
i=1 f

−
i (s, a) ≤ 0. Thus, we have −η + ηξ ≤ Rξ(s, a) ≤ 1 + ηξ. Since

γ < min{ξ, 2HI(1− ξ)}, we have −η ≤ Rξ(s, a) < η. Then, the two cases together provide
the result in the statement of the Lemma.

We use the modified reward function to provide a Q-learning based algorithm as described
in Algorithm 1. The basic steps of Q-learning follow from that in Jin et al. (2018), while are
adapted to incorporate constraints. In line 1, the agent initializes the Q-table and Nh(s, a),
which is the notation for the number of times that the state-action pair is taken at epoch h.
In line 3, the agent is given an initial state at the beginning of each episode. Then, in line
5, the agent takes an action to maximize the current state-value function Qh(sh, ah) and
observes the next state. Nh(s, a) is updated in line 6. Line 7 to line 10 gives an efficient way
to compute a Bernstein type UCB. Q-table and the W-table are then updated according to
the line 11 and line 12, where bt is the upper confidence bound and αt is the learning rate
defined as αt :=

H+1
H+t .

Using Algorithm 1, we find the policy πk
h at the step h in episode k is deterministic, and

is defined as

πk
h(a|skh) =

{
1 a = argmina′ Q

k
h(s

k
h, a

′)

0 otherwise
(18)

Given a Markov Decision Problem with peak constraints, this paper shows that an ϵ-optimal
policy can be extracted from Algorithm 1. The guarantees of the proposed algorithm will
be analyzed in the next section.

8
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5. PAC Analysis

In this section, we will show that the proposed algorithm gives an ϵ-optimal policy for K
large enough. In order to prove the result, we first provide connections among the original
problem Original PCMDP, the approximated problem Approximated PCMDP and
modified unconstrained problem Modified MDP. Then, we derive the sub-linear result for
Modified MDP. The main result can be derived by the guarantees for Modified MDP
and its relation with Original PCMDP and Approximated PCMDP

Two following results, Lemma 6 and 7, describe the relationship of optimal value func-
tion between Modified MDP and Original PCMDP/Approximated PCMDP, re-
spectively.

Lemma 6 The optimal value function V ∗
1 for Original PCMDP is equal to the optimal

value function W ∗
1,ξ for Modified MDP. More formally,

V ∗
1 (s1) = W ∗

1,ξ(s1) (19)

Proof Considering the optimal policy π∗ in Original PCMDP in Eq. (4), we have

V ∗
1 (s1) = E

[ H∑
h=1

r(sh, π
∗
h(sh))

]
(a)
= E

[ H∑
h=1

Rξ(sh, π
∗
h(sh))

]
≤W ∗

1,ξ(s1) (20)

Step (a) holds because with feasible optimal policy in Original PCMDP, fi(sh, ah) ≥ 0
for any possible trajectories and thus gi,ξ(sh, ah) = f−

i (sh, ah) + ξ = ξ, which means

Rξ(sh, ah) = r(sh, ah) +
η

I

I∑
i=1

[
g−i,ξ(sh, ah)

]
= r(sh, ah) (21)

Moreover, the final inequality holds because the optimal policy for Modified MDP may
be different from the Original PCMDP and any other policy will achieve less reward. For
the other direction, consider the optimal policy πW∗ in the Modified MDP and follow the
same step,

W ∗
1,ξ(s1) = E

[ H∑
h=1

Rξ(sh, π
W∗
h (sh))

]
≤ E

[ H∑
h=1

r(sh, π
W∗
h (sh))

]
(a)

≤ V ∗
1 (s1) (22)

The first inequality holds by g−i,ξ ≤ 0 in Eq. (21). Thus, this gives the result as in the
statement of the Lemma.

Lemma 7 The optimal value function V ∗
1,ξ for Approximated PCMDP and the optimal

value function W ∗
1,ξ for Modified MDP have the following relation:

W ∗
1,ξ(s1) ≤ V ∗

1,ξ(s1) ≤W ∗
1,ξ(s1) + ηHξ (23)

9
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Proof Considering the optimal policy π∗ in Approximated PCMDP in Eq. (6), define

a distribution dπ
∗,P

h such that (sh, ah) ∼ dπ,Ph with policy π∗ and transition dynamics P, then

E[g−i,ξ(sh, π
∗
h(sh))] =

∑
s,a

g−i,ξ(s, a)d
π∗,P
h (s, a)

=
∑

gi,ξ(s,a)>0

g−i,ξ(s, a)d
π∗,P
h (s, a) +

∑
gi,ξ(s,a)<0

g−i,ξ(s, a)d
π∗,P
h (s, a)

=
∑

gi,ξ(s,a)<0

gi,ξ(s, a)d
π∗,P
h (s, a)

= E[gi,ξ(sh, π
∗
h(sh))]−

∑
gi,ξ(s,a)>0

gi,ξ(s, a)d
π∗,P
h (s, a) ≥ −ξ

(24)

where the last step holds because E[gi,ξ(sh, πh(sh))] ≥ 0 by the formulation (6) and gi,ξ ≤ ξ
by the definition. Thus,

E[Rξ(sh, π
∗
h(sh))] = E[r(sh, π

∗
h(sh))] +

η

I

I∑
i=1

E
[
g−i,ξ(sh, π

∗
h(sh))

]
≥ E[r(sh, π

∗
h(sh))]− ηξ

(25)
Finally, by the definition of value function in (9), we have

V ∗
1,ξ(s1) = E

[ H∑
h=1

r(sh, π
∗
h(sh))

]
≤ E

[ H∑
h=1

Rξ(sh, π
∗
h(sh))

]
+ ηHξ ≤W ∗

1,ξ(s1) + ηHξ

(26)
where the final inequality holds because the optimal policy for Modified MDP may be
different from the Approximated PCMDP and any other policy will achieve less re-
ward. For the other direction, recall that Approximated PCMDP is a relaxed version
of Original PCMDP and thus

V ∗
1,ξ(s1) ≥ V ∗

1 (s1) = W ∗
1,ξ(s1) (27)

The following lemma describes the relationship of value function with a certain policy
between Modified MDP and Original PCMDP.

Lemma 8 The value function with policy π in Modified MDP, W π
1,ξ, can be expressed by

the value function with policy π in Original PCMDP, V π
1 , with a gap term describing the

violation of constraints. More formally,

W π
1,ξ(s1) = V π

1 (s1) +
η

I

H∑
h=1

I∑
i=1

E
[
g−i,ξ(sh, πh(sh))

]
(28)

10
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Proof According to the definition of function W , we expand it as follows.

W πk
1,ξ(s

k
1) = E

[ H∑
h=1

Rξ(s
k
h, π

k
h(s

k
h))

]

= E

[ H∑
h=1

r(skh, π
k
h(s

k
h))

]
+

η

I

H∑
h=1

I∑
i=1

E
[
g−i,ξ(s

k
h, π

k
h(s

k
h))

]
= V πk

1,ξ (s
k
1) +

η

I

H∑
h=1

I∑
i=1

E
[
g−i,ξ(s

k
h, π

k
h(s

k
h))

]
(29)

which is the result as in the statement of the Lemma.

The following lemma gives the sub-linear regret for Modified MDP.

Lemma 9 For any p ∈ (0, 1), let ℓ = log(SAT/p), where T = KH. Then, for K ≥
H5S2A2ℓ3, the bound on the regret for Modified MDP with Algorithm 1 is given as

K∑
k=1

[W ∗
1,ξ(s1)−W πk

1,ξ (s1)] ≤ O(η
√
H3SATℓ) (30)

with probability at least 1− p.

Proof The proof follows from Theorem 2 in (Jin et al., 2018), noting that the modified
reward is bounded by η and not 1 as in (Jin et al., 2018).

Combining results of the above lemmas, the next theorem shows that the proposed
algorithm is ϵ-optimal.

Theorem 10 For any p ∈ (0, 1), H ≥ 2, and any ϵ > 0, take K = Ω( I
2H6SAℓ

ϵ2
), ξ = ϵ

6HI ,
and ℓ = log(SAT/p), where T = KH. Further, define π̄ as a policy which is given as

π̄(s) =



π1(s) with probability 1/K

· · · · · ·
πk(s) with probability 1/K

· · · · · ·
πK(s) with probability 1/K

(31)

Note that π̄ chooses the different policies πk for k ∈ [K] uniformly at random. If H ≥ 2,
then, the policy π̄ is an (ϵ, p)-PAC policy.

Proof The detailed proof is provided in the Appendix A.

11
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Remark 11 The above result shows that we obtain an (ϵ, p)-PAC policy if the number of

episodes satisfies K ≥ Ω( I
2H6SAℓ

ϵ2
). Thus, K ≥ Ω(1/ϵ2), which is the best result for the

problem even without constraints Jin et al. (2018).

We also note that even though the Theorem statement mentions H ≥ 2, the result also
holds when H = 1, where we obtain 2ϵ-optimal strategy. Thus, the (ϵ, p)-PAC policy will
hold by replacing ϵ with ϵ/2.

6. Simulations

6.1 Energy Harvesting Communication System

Battery
Bh

Transmitter
Transmitting	power:Ph

Receiver

Harvested	Energy:	Eh

AWGN
channel

Figure 1: Energy Harvesting Communication System

In this section, we evaluate the proposed algorithm on a communication channel, where
the transmitter is powered by renewable energy. Such a model has been studied widely in
communication systems Tutuncuoglu et al. (2015); Blasco et al. (2013); Yang and Ulukus
(2012); Wang et al. (2015); Wang et al. (2014). In this model, we assume that the time is
divided into time-slots. As shown in Fig. 1, in each time-slot, the transmitter can send data
over an Additive Gaussian White Noise (AWGN) channel, where the signal transmitted
by the transmitter gets added by a noise given by complex normal with zero mean and
unit variance CN(0, 1) at each time instance within the time-slot. We assume that the
transmitter can use a power of Ph in time-slot h, where the transmission is limited by a
maximum power of P̄ .

We assume that the transmitter is powered by a renewable energy source, where energy
Eh arrives during time-slot h− 1 and can be used for time-slot h. Further, the transmitter
is attached to a battery, which has a capacity of B̄. The transmitter can use the energy
from the existing battery capacity at the start of time-slot h, Bh, or the new energy arrival
Eh. The energy from Eh that is not utilized is stored in the battery. Thus, the battery
state evolves as

Bh+1 = min{B̄, Bh + Eh − Ph}. (32)

We wish to optimize an upper bound on the reliable transmission rate Wang et al. (2015),
given as C =

∑
h log(1 + Ph). We note that the transmission constraints can be modeled as

12
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peak constraints. Thus, the overall optimization problem is given as

max
Ph,h=1,··· ,H

E
[ H∑
h=1

log(1 + Ph)

]
(33)

s.t. Bh+1 = min{B̄, Bh + Eh − Ph} (34)

Bh ≥ 0 (35)

Ph ≤ P̄ w.p.1 (36)

We note that the expectation in the above is over the energy arrivals Eh, which makes
the choice of Ph stochastic. If the energy arrivals Eh are known non-causally (known at
h = 1 for the entire future), the problem is convex and can be solved efficiently using the
dynamic water-filling algorithm proposed in Wang et al. (2015) or dynamic programming
based solutions Blasco et al. (2013); Wang et al. (2014). However, in realistic systems, Eh

is only known at time-slot h.
We will now model the problem as an MDP. The state at time-slot h is given as Sh =

(Bh, Eh), which are the current battery level and the energy arrival. The energy Eh is
known causally, and the distribution is unknown. The action is the transmission power Ph.
Eq. (34) gives the state evolution and the Eh may evolve based on some Markov process
in general. Eq. (35) restricts battery level must be positive and indirectly gives the action
space for Ph such that A = {0, 1, ..., Bh + Eh}. Finally, the objective is given in (33) and
the peak power constraint is given in Eq. (36). Notice that the the constraint function is
not known in advance.

We set the distribution of Eh as truncated Gaussian with mean µ and standard deviation
σ, where the truncation levels are 0 and Ē, and we let it be independent across episodes.
The problem is discretized to integers in order to apply the proposed algorithm. According
to the selection of the parameters in Wang et al. (2014), we set the horizon H = 20 time-
slots, battery capacity B̄ = 20, power constraint P̄ = 8, maximal harvest energy Ē = 20,
mean and standard deviation µ = 10, σ = 5, respectively.

In the simulation, 1000 trajectories are generated by the above MDP. In Fig. 2, we plot
the mean and variance for the sum of the transmission rate V π̄k

1 and constraint violations
defined in Eq. (11) and compare the learning speed for different choice of ξ = 0.1, 0.01, 0.001.
The Slater parameter for γ is chosen to be ξ

2 . Note that in each episode k, we evaluate
the policy π̄k, which is the ‘averaged’ policy by π1, π2, · · · , πk as defined in Theorem 10. It
can be seen that the sum of transmission rate converges to the optimal and the constraint
violation converge to 0 as the number of episodes increases. Moreover, we can find that
larger γ gives a higher convergence speed while the difference between convergence speed
for different γ is quite small.

In order to compare the proposed algorithm, we consider three other baseline algorithms:
the greedy policy, the balanced policy, and the optimal non-causal algorithm. The greedy
policy tries to consume the harvested energy as much as possible in each slot, as calculated
by Ph = min(P̄ , Bh + Eh). We also consider a balanced policy that consumes the fixed
amount of energy in each slot if available, where the fixed value is calculated by

∑H
h=1Eh/H,

while that is limited by the available energy at each time. However, the balanced algorithm
uses the future energy arrivals and is not a causal strategy. Further, the optimal strategy
when all future energy arrivals are non-causally known is also used to show the performance

13
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Figure 2: Convergence of Reward Function
and Constraint Violations for the
Proposed Algorithm

Figure 3: Performance Comparison Be-
tween Different Algorithms

of the proposed algorithm. We note that the proposed algorithm only assumes that the
constraint function in state s and action a can be queried, but the function is not explicitly
known, thus, the algorithms that project to the constraint function are not considered as
they require complete knowledge of the function.

In Fig. 3, we set the mean of the harvested energy as 8, 9, 10, 11, 12 and compare
the performance of different algorithms. In order to illustrate the policy convergence to
the optimal, we choose K = 50000 for the proposed algorithm. P̄ is set to 15 in this
comparison. We see the balanced policy achieves higher performance than greedy policy
because the energy can be allocated more reasonably while requiring non-causal information
of energy arrival. The performance of the non-causal convex solver achieves the highest
reward since it is an upper bound on the performance. However, the proposed algorithm
achieves nearly the same performance as the upper bound, which shows that our algorithm
is able to achieve the optimal solution. Furthermore, the proposed algorithm doesn’t need
any prior knowledge of the harvested energy and the constraint functions, which is a great
advantage over the convex solver.

6.2 Single machine scheduling problem with deadlines

In this subsection, we evaluate our proposed algorithm on another problem, single machine
scheduling with deadline. We adopt the problem formulated in Koulamas and Kyparisis
(2001). In this scheduling problem, we assume there are a total of n jobs and each job is
released at the beginning. Each job i has a process time pi, due time di, and deadline d̄i.
Notice that the deadline is different from due time in the sense that the deadline cannot
be violated. The tardiness of each job is computed by Ti = max{0, Ci − di}, where Ci is
the completion time of job i. The preemption is not allowed in this problem. We want to
minimize the maximal tardiness Tmax = maxi∈N Ti and satisfy each deadline at the same
time. This problem is written as 1|d̄i|Tmax in the standard scheduling notation. If the
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Table 1: Information of jobs in the 1st example of Single Machine Scheduling
Processing time (pi) 3 5 7 9 10

Due Time (di) 22 30 33 15 18

Deadline (d̄i) 30 28 35 18 21

Table 2: Information of jobs in 2nd example of Single Machine Scheduling
Processing time (pi) 2 3 5 8 13 21 34 17 19

Due Time (di) 75 70 65 60 88 35 59 100 100

Deadline (d̄i) 70 70 70 100 90 40 60 130 110

information of this problem, the process time pi, the due time di, and deadline d̄i are given
in advance, there exists an optimal algorithm DT proposed in Koulamas and Kyparisis
(2001) and thus the DT algorithm can be considered as an offline baseline.

The scheduling problem with the deadline which cannot be violated is an important
setting in the field of scheduling. This problem has several applications in practice such as
the chemical industry Koulamas and Kyparisis (2001), energy efficient packet transmission
Shan et al. (2014), workflow scheduling Abrishami and Naghibzadeh (2012), etc. In order
to solve this problem with the proposed algorithm, it needs to be first formulated as a
PCMDP.

The state of CMDP s in this problem consists of three parts, time t, job states js, and
maximal tardiness maxT such that s = [t, js,maxT ]. The job states js are made of state
of each job such that js = [js1, js2, · · · , jsN ] where jsi = 0 means the job i has not been
started and jsi = 1 means the job i has been completed. maxT here stands for the current
maximal tardiness which can be defined as maxT = maxi∈At Ti and At is the set including
all completed jobs until time t. The action space of CMDP is the list of uncompleted jobs.
Denote a as the action, t′, js′, maxT ′ as the state of CMDP in next time. The dynamics
of this PCMDP is written as follow

t′ = t+ pa

js′ = [js1, · · · , 1, · · · , jsN ](where 1 is at position a)

maxT ′ = max{maxT,max{0, t+ pa − da}}
(37)

Besides, according to the objective of problem setting which is to minimize the maximum
of tardiness, the reward function and constraint function are designed as

r(s, a) = −max{0, t+ pa − da −maxT}
f(s, a) = max{0, t+ pa − d̄a}

(38)

It can be seen that the dynamics, reward, and constraint functions are totally decided by
current state and action. Thus, the above formulation can be considered as a CMDP.

To test our algorithm and compare with the offline DT algorithm, we manually design
two setups with 5 jobs and 9 jobs, respectively. With 5 jobs, we consider two scenarios,
where the processing time of the jobs are deterministic or stochastic. For 9 jobs, we con-
sider deterministic processing times. We label the three examples here as Example 1: 5
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Table 3: Information of jobs in the 3rd example of Single Machine Scheduling
Processing time (pi) ∼ U(2, 4) ∼ U(4, 6) ∼ U(3, 8) ∼ U(8, 11) ∼ U(8, 11)

Due Time (di) 22 30 33 15 12

Deadline (d̄i) 30 28 35 18 23

Figure 4: Comparison of proposed algo-
rithm with DT and EDD in 1st
example

Figure 5: Comparison of proposed algo-
rithm with DT and EDD in 2nd
example

jobs, deterministic processing time, Example 2: 9 jobs, deterministic processing time, and
Example 3: 5 jobs, stochastic processing time. The details for these examples are listed in
Tables 1, 2 and 3, respectively.

The comparison among the proposed algorithm, offline DT algorithm and Earliest Dead-
line Date (EDD) algorithm for three examples are shown in Fig. 4, 5, and 6, respectively.
In Fig. 6, we run 100 independent tests and plot the average maximal tardiness and the
standard variance. It can be seen that EDD algorithm always selects the job which has
the earliest deadline at each time.Further, EDD algorithm in this setting is sub-optimal.
Furthermore, the total reward of the proposed algorithm converges to optimal DT value
and the constraint violation converges to 0, which matches the theoretical result. Notice
that the proposed algorithm is an online algorithm and thus doesn’t need any information
of job in advance, which is a great advantage over the offline DT algorithm.

Finally, it is noteworthy to see that the proposed algorithm can also be applied in the
other settings with deadline such as the total tardiness Koulamas and Kyparisis (2001),
total weight late work Chen et al. (2019) which has been shown as NP-hard and lack an
optimal algorithm. However, the proposed algorithm can achieve ϵ-optimal in finite time.

7. Conclusion

In this paper, we formulate a constrained MDP problem with a set of peak constraints. By
using a modified reward function, we convert the problem into an unconstrained RL problem
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Figure 6: Performance comparison between different algorithms in 3rd example

and propose a novel model-free algorithm. This paper proves our algorithm can achieve ϵ-
optimal objective and constraint violations. We note this is the first result of PAC analysis
for PCMDP when the state evolution and the constraint functions are unknown. The result
is applied to an energy harvesting communication link and a single machine scheduling
with deadline, and the proposed algorithm is shown to be close to the non-causal optimal
solution.
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Appendix A. Proof of Theorem 10

A.1 Bounding the Regret

Combining the results in Lemmas 6, 8, and 9, for large enough T , we have

K∑
k=1

[V ∗
1 (s1)−V πk

1 (s1)]−
η

I

K∑
k=1

H∑
h=1

I∑
i=1

E
[
g−i,ξ(s

k
h, π

k
h(s

k
h))

]
≤

K∑
k=1

W ∗
1,ξ(s1)−W πk

1,ξ (s1) ≤ O(η
√
H3SATl)

(39)
We note that the sum of terms g−i,ξ (Accumulation of constraint violations) on the left hand
side of (39) is non-positive, which gives

1

K

K∑
k=1

[V ∗
1,ξ(s1)− V πk

1 (s1)] ≤ O(
η

K

√
H3SATℓ) (40)

We define a new policy π̄ which uniformly chooses the policy πk for k ∈ [K]. By the

occupancy measure method, V πk

1 (s1) is linear in terms of an occupancy measure induced
by policy πk and initial state s1, thus:

1

K

K∑
k=1

V πk

1 (s1) = V π̄
1 (s1) (41)

Combining Eq. (40) with (41) and recalling our choice for η = 2HI
γ , we have

V ∗
1 (s1)− V π̄

1 (s1) ≤ O(I

√
H6SAℓ

K
) (42)

A.2 Bounding the Constraint Violations

Similar to Eq. (39), however, instead of Lemma 6, 8 and 9, using Lemma 7, 8 and 9, we
have

1

K

K∑
k=1

[V ∗
1,ξ(s1)− V πk

1 (s1)]−
1

K

η

I

K∑
k=1

H∑
h=1

I∑
i=1

E
[
g−i,ξ(s

k
h, π

k
h(s

k
h))

]
≤ O(

η

K

√
H3SATl) + ηHξ

(43)
Due to the concavity of the function x− = min{x, 0} and by Jensen Inequality, we have

η

I

1

K

K∑
k=1

H∑
h=1

I∑
i=1

E
[
g−i,ξ(s

k
h, π

k
h(s

k
h))

]
≤ η

I

H∑
h=1

I∑
i=1

E
[
g−i,ξ(sh, π̄h(sh))

]
(44)

Combining (43) with Eq. (41) and (44), we have

V ∗
1,ξ(s1)− V π̄

1 (s1)−
η

I

H∑
h=1

I∑
i=1

E
[
g−i,ξ(sh, π̄h(sh))

]
≤ O(

η

K

√
H3SATl) + ηHξ (45)

Notice that η = 2HI
γ satisfies the condition that C∗ ≥ 2Y ∗ in Lemma 15, thus,

H∑
h=1

I∑
i=1

E

∣∣∣∣g−i,ξ(sh, π̄h(sh))∣∣∣∣ ≤ O(
I

K

√
H3SATl) + 2HIξ = O(I

√
H4SAℓ

K
) + 2HIξ (46)
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A.3 ϵ-Optimal Policy

Choosing K = Ω( I
2H6SAℓ

ϵ2
), by Eq. (42) and (46), we have

V ∗
1 (s1)− V π̄

1 (s1) ≤ ϵ

H∑
h=1

I∑
i=1

E

∣∣∣∣g−i (sh, π̄h(sh))∣∣∣∣ ≤ ϵ

H
+ 2HIξ

(47)

Recalling the definition of gi,ξ = f−
i (s, a) + ξ, we have

H∑
h=1

I∑
i=1

E

∣∣∣∣f−
i (sh, π̄h(sh))

∣∣∣∣ ≤ ϵ

H
+ 3HIξ (48)

Since ξ = ϵ
6HI , the above shows that we obtain an ϵ-optimal strategy.

Appendix B. Supporting Lemmas from Optimization

We collect some standard results from the literature for readers’ convenience. The following
lemmas are mainly from (Ding et al., 2020), while are extended to the peak constraint
setting rather than average constraint in the prior work. First, we rewrite our constrained
problem (6) as,

max
π

E

[∑H
h=1 rh(sh, πh(sh))

]
s.t E

[
gi,ξ(sh, πh(sh))

]
≥ 0 ∀h, i (49)

Let the optimal solution be π∗ such that

V π∗
1,ξ (s1) = max

π
{V π

1 (s1) |E
[
gi,ξ(sh, πh(sh))

]
≥ 0 ∀h, i}. (50)

Let the Lagrangian be Lξ(π,λ) := V π
1 (s1)+

∑H
h=1

∑I
i=1 λh,iE

[
gi,ξ(sh, πh(sh))

]
, where λh,i ≥

0 is the Lagrange multipliers or dual variables. The associated dual function is defined as

Dξ(λ) := max
π
Lξ(π,λ) := V π

1 (s1) +

H∑
h=1

I∑
i=1

λh,iE
[
gi,ξ(sh, πh(sh))

]
(51)

and the optimal dual is λ∗ := argminλ≥0Dξ(λ),

Dξ(λ
∗) := min

λ≥0
Dξ(λ) (52)

We recall that the problem (6) enjoys strong duality under the standard Slater condition.
The proof is a special case of Ding et al. (2020) in finite-horizon for peak constraint.

Assumption 4 (Slater Condition) There exists γh,i > 0,∀h, i and π̂ such that E
[
gi,ξ(sh, π̂h(sh))

]
≥

γh,i.

Lemma 12 [Strong Duality]Ding et al. (2020) If the Slater condition holds, then the strong
duality holds for Eq. (6),

V π∗
1,ξ (s1) = Dξ(λ

∗).
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Proof This is an extension of Lemma 7 in Ding et al. (2020) to the peak constraint case. To
prove the strong duality still holds for peak constraint, we construct an equivalent problem
to Eq. (6) in the average constraint setting. Consider, for each fixed h ∈ [H] and i ∈ [I],
we define a new function g̃h′,i,ξ in the following way.

g̃h′,i,ξ(s, a) =

{
gi,ξ(s, a) if h′ = h

0 otherwise
(53)

By this way, the original constraint function can be written as

E[gi,ξ(sh, πh(sh))] = E

[ H∑
h′=1

g̃h′,i,ξ(sh′ , πh′(ah′))

]
=: V π

1,g̃h′,i,ξ
(s1) (54)

Thus, an equivalent problem to Eq. (6) is

max
π

E

[∑H
h=1 rh(sh, πh(sh))

]
s.t V π

1,g̃h′,i,ξ
(s1) ≥ 0 ∀h′, i (55)

It can be seen that Eq. (55) is the MDP problem with averaged constraints which is the
same setting as Ding et al. (2020). The strong duality holds for Eq. (55) and thus holds
for the Eq. (6)

It is implied by the strong duality that the optimal solution to the dual problem: minλ≥0D(λ, ξ)
is obtained at λ∗. Denote the set of all optimal dual variables as Λ∗.

Under the Slater condition, an useful property of the dual variable is that the sub-level
sets are bounded Ding et al. (2020).

Lemma 13 (Boundedness of Sublevel Sets of the Dual Function) Let the Slater con-
dition hold. Fix C ∈ R. For any λ ∈ {λ ≥ 0 | Dξ(λ) ≤ C}, define Y := maxh,i{λh,i} and
γ = minh,i γh,i, it holds that

Y ≤ 1

γ

[
C − V π̂

1 (s1)

]
.

Proof

C ≥ Dξ(λ) ≥ V π̂
1 (s1) +

H∑
h=1

I∑
i=1

λh,iE
[
gi,ξ(sh, π̂h(sh))

]
≥ V π̂

r (s1) + Y γ (56)

where we utilize the Slater point π̂ and Y ≤
∑

h,i λh,i in the last inequality. We complete
the proof by noting γ > 0.

Corollary 14 (Boundedness of Y ⋆) Let the Slater condition hold, if we take C = V π⋆

1,ξ (x1)
and by Strong Duality C = Dξ(λ

∗), then Λ⋆ = {λ ≥ 0 | Dξ(λ) ≤ C}. Thus, for any λ ∈ Λ⋆,
define Y ∗ := maxh,i{λh,i}

Y ∗ ≤ 1

γ

[
V π∗
1,ξ (s1)− V π̂

1 (s1)

]
≤ H

γ
.
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Another useful theorem from the optimization is given as follows. It describes that the
constraint violation

∑H
h=1

∑I
i=1E|g

−
i,ξ(sh, πh(sh))| can be bounded if we have some weak

bound. We next state and prove it for our problem, which is used in our constraint violation
analysis in Appendix A.

Lemma 15 (Constraint Violation) Let the Slater condition hold and λ⋆ ∈ Λ⋆. If C⋆ ≥
2Y ⋆ and for any π̃ we have

V π∗
1,ξ (s1)− V π̃

1 (s1)− C⋆
H∑

h=1

I∑
i=1

E
[
g−i,ξ(sh, π̃h(sh))

]
≤ δ (57)

Then,
H∑

h=1

I∑
i=1

E

∣∣∣∣g−i,ξ(sh, π̃h(sh))∣∣∣∣ ≤ 2δ

C∗ (58)

where x− = min(x, 0).

Proof Define τ := {τh,i}h∈[H],i∈[I] and let

vξ(τ ) ≜ max
π
{V π

1 (s1)|E
[
gi,ξ(sh, πh(sh))

]
≥ τh,i ∀h, i}. (59)

By definition, vξ(0) = V π∗
1,ξ (s1). By the Lagrangian and the strong duality,

Lξ(π,λ∗) ≤ max
π
Lξ(π,λ∗) = Dξ(λ

∗) = V π∗
1,ξ (s1) = vξ(0) (60)

For any τh,i ∈ R and π ∈ {π|E
[
gi,ξ(sh, πh(sh))

]
≥ τh,i ∀h, i}, we have

vξ(0)−
∑H

h=1

∑I
i=1 τh,iλ

∗
h,i ≥ Lξ(π,λ⋆)−

∑H
h=1

∑I
i=1 τh,iλ

∗
h,i

= V π
1 (s1) +

∑H
h=1

∑I
i=1 λ

∗
h,iE

[
gi,ξ(sh, πh(sh))

]
−
∑H

h=1

∑I
i=1 τh,iλ

∗
h,i

= V π
1 (s1) +

∑H
h=1

∑I
i=1 λ

∗
h,i[E

[
gi,ξ(sh, πh(sh))

]
− τh,i]

≥ V π
1 (s1).

If we maximize the right-hand side of above inequality over {π|E
[
gi,ξ(sh, πh(sh))

]
≥ τh,i ∀h, i},

we have

vξ(0)−
H∑

h=1

I∑
i=1

τh,iλ
∗
h,i ≥ vξ(τ ) (61)

On the other hand, if we define τ̃ = {τ̃h,i} and τ̃h,i := E
[
g−i,ξ(sh, π̃h(sh))

]
, notice that the

policy π̃ ∈ {π|E
[
gi,ξ(sh, πh(sh))

]
≥ τ̃h,i,∀h, i}. Thus,

V π̃
1 (s1) ≤ vξ(τ̃ ). (62)

Combining (61) and (62), we have

V π̃
1 (s1)− V π∗

1,ξ (s1) ≤ vξ(τ̃ )− vξ(0) ≤ −
H∑

h=1

I∑
i=1

τ̃h,iλ
∗
h,i (63)

21



Bai, Aggarwal, Gattami

By the assumption in the statement of the lemma, we have

V π∗
1,ξ (s1)− V π̃

1 (s1)− C⋆
H∑

h=1

I∑
i=1

E
[
g−i,ξ(sh, π̃h(sh))

]
≤ δ (64)

Combined with Eq. (63), we have

−C⋆
H∑

h=1

I∑
i=1

E
[
g−i,ξ(sh, π̃h(sh))

]
≤ δ −

H∑
h=1

I∑
i=1

τ̃h,iλ
∗
h,i (65)

Recalling the definition of τ̃h,i = E
[
g−i,ξ(sh, π̃h(sh))

]
above Eq. (62), we have

H∑
h=1

I∑
i=1

(λ∗
h,i − C∗)E

[
g−i,ξ(sh, π̃h(sh))

]
≤ δ (66)

Due to g−i,ξ(sh, π̃h(sh)) ≤ 0, we have

H∑
h=1

I∑
i=1

(C∗ − λ∗
h,i)E

∣∣g−i,ξ(sh, π̃h(sh))∣∣ ≤ δ (67)

Finally, due to C ≥ 2Y ∗ = 2maxh,i λ
∗
h,i, we have

H∑
h=1

I∑
i=1

E

∣∣∣∣g−i,ξ(sh, π̃h(sh))∣∣∣∣ ≤ 2δ

C∗ (68)
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reinforcement learning. In ICML, pages 263–272, 2017.

Elizabeth E Bailey. Peak-load pricing under regulatory constraint. Journal of Political
Economy, 80(4):662–679, 1972.

22

https://www.sciencedirect.com/science/article/pii/S1026309812000351
https://www.sciencedirect.com/science/article/pii/S1026309812000351


Provably Sample-Efficient Model-Free Algorithm for MDPs with Peak Constraints

P. Blasco, D. Gunduz, and M. Dohler. A learning theoretic approach to energy harvesting
communication system optimization. IEEE Transactions on Wireless Communications,
12(4):1872–1882, April 2013. ISSN 1558-2248. doi: 10.1109/TWC.2013.030413.121120.

M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M. Kochenderfer, and J. Tumova.
Reinforcement learning with probabilistic guarantees for autonomous driving. CoRR,
abs/1904.07189, 2019. URL http://arxiv.org/abs/1904.07189.

Rubing Chen, Jinjiang Yuan, C.T. Ng, and T.C.E. Cheng. Single-machine schedul-
ing with deadlines to minimize the total weighted late work. Naval Research Lo-
gistics (NRL), 66(7):582–595, 2019. doi: https://doi.org/10.1002/nav.21869. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.21869.

D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanović. Provably efficient safe exploration
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