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Abstract

Despite impressive results, deep learning-based technologies also raise severe privacy
and environmental concerns induced by the training procedure often conducted in data
centers. In response, alternatives to centralized training such as Federated Learning (FL)
have emerged. FL is now starting to be deployed at a global scale by companies that must
adhere to new legal demands and policies originating from governments and social groups
advocating for privacy protection. However, the potential environmental impact related to
FL remains unclear and unexplored. This article offers the first-ever systematic study of the
carbon footprint of FL. We propose a rigorous model to quantify the carbon footprint, hence
facilitating the investigation of the relationship between FL design and carbon emissions.
We also compare the carbon footprint of FL to traditional centralized learning. Our findings
show that, depending on the configuration, FL can emit up to two orders of magnitude
more carbon than centralized training. However, in certain settings, it can be comparable to
centralized learning due to the reduced energy consumption of embedded devices. Finally,
we highlight and connect the results to the future challenges and trends in FL to reduce its
environmental impact, including algorithms efficiency, hardware capabilities, and stronger
industry transparency.
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1. Introduction

Atmospheric concentrations of carbon dioxide, methane, and nitrous oxide are at levels not
seen in the last 800, 000 years (IPCC, 2014). Together with other anthropogenic drivers, their
effects have been detected throughout a network of distributed systems and are extremely
likely to have been the dominant cause of the observed global warming since the mid-
20th century (Pachauri et al., 2014; Crowley, 2000). Unfortunately, deep learning (DL)
algorithms keep growing in complexity, and numerous “state-of-the-art” models continue to
emerge, each requiring a substantial amount of computational resources and energy, resulting
in clear environmental costs (Strubell et al., 2019). Indeed, these models are routinely
trained for thousands of hours on specialized hardware accelerators in data centers that
are extremely energy-consuming (Berriel et al., 2017). As Amodei and Hernandez (2018)
showed, the amount of computing used by the largest machine learning (ML) training has
been exponentially increasing and grown by more than 300, 000× from 2012 to 2018, which
is equivalent to a 3.4-months doubling period – a rate that dwarfs the well-known Moore’s 2-
year doubling period. Even though the amount of energy per FLOPS has been exponentially
decreasing over time, making the deep learning model more and more computationally
efficient, the carbon footprint of ML models is still one of the big concerns in society.

The data centers that enable DL research and commercial operations are not often
accompanied by visual signs of pollution. In a few isolated cases, they are even powered
by environmentally friendly energy sources (Google, 2020b; AWS, 2020). Still, they are
responsible for an increasingly significant carbon footprint. Each year data centers use 200
terawatt-hours (TWh), which is more than the national electricity consumption of some
countries, representing 0.3% of global carbon emissions (Nature, 2018; Andrae and Edler,
2015). In comparison, the entire information and communications technology ecosystem
accounts for 2%. To put this issue in a more human perspective, each person on average on
the planet is responsible for 5 tonnes of emitted CO2-equivalents (CO2e) per year (Strubell
et al., 2019), while training a large Natural Language Processing (NLP) transformer model
with neural architecture search may produce 284 tonnes of CO2e (Strubell et al., 2019). Even
for smaller deep neural networks and routine research experiments, Parcollet and Ravanelli
(2021) demonstrated that the training process necessary to create a state-of-the-art speech
recognizer could produce more than 0.1 tonnes of CO2e with consumer-grade hardware.
Even though the number refers to one of the largest ML models, given the increasing interest
in Large Language Models (LLM), it is likely that this trend will continue and possibly
expand to tasks besides NLP. Understanding the carbon footprint of ML training will play a
paramount role in allowing people to develop more carbon-efficient models and hardware,
making the emission more transparent, and choosing renewable energy where possible.

Decentralized alternatives to a data center-based DL and other forms of machine learning
are emerging. Among these, the most prominent to date is Federated Learning (FL), first
formalized by McMahan et al. (2017). Under FL, training of models primarily occurs in a
distributed scenario, either across a large number of personal devices (cross-device), such
as smartphones; or across a small number of institutions that cannot share data among
themselves (cross-silo), such as private hospitals. Devices collaboratively learn a global
model but do so without uploading to a data center any of the locally stored sensitive data.
Then they send the locally trained models to a central server, where models get aggregated
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following a strategy such as FedAVG (McMahan and Ramage, 2017; Kairouz et al., 2019;
Konečnỳ et al., 2015). While FL is still a maturing technology, it is already being used
by millions of users on a daily basis; for example, Google uses FL to train models for:
predictive keyboard, device setting recommendation, and hot keyword personalization on
phones (McMahan and Ramage, 2017).

At present, data owners are holding more and more sensitive information, such as
individual activity data, life-logging videos, email conversations, and others (Nishio and
Yonetani, 2019), so keeping personal medical and healthcare data private recently became
one of the major ethical concerns (Kish and Topol, 2015). To this extent, and in response
to an increasing number of such privacy issues, policy-makers have responded with the
implementation of data privacy legislation such as the European General Data Protection
Regulation (GDPR) (Lim et al., 2020). Due to these regulations, moving data across national
borders becomes subject to data sovereignty law, making centralized training infeasible in
some scenarios (Hsieh et al., 2020).

Furthermore, there are nearly seven billion connected Internet of Things (IoT) devices
(Lim et al., 2020) and three billion smartphones around the world, potentially giving access
to an astonishing amount of training data and decentralized computing power for meaningful
research and applications. sing mobile sensing and smartphones to boost large-scale health
studies, such as in Pryss et al. (2015), Barrett et al. (2020) and Shen (2015), has caused
increased interest in the healthcare research field, and privacy-friendly framework including
FL are potential solutions to answer this demand.

Despite FL privacy being under great scrutiny from the scientific community, we currently
have little to no understanding of its impact on carbon emissions. This is a worrying situation,
given the increasing interest in this technology. Therefore, the carbon footprint of FL needs
to be assessed before vast systems are further deployed.

Whilst the carbon footprint for centralized learning has been studied in many previous
works (Anthony et al., 2020; Lacoste et al., 2019; Henderson et al., 2020; Uchechukwu
et al., 2014), the energy consumption and carbon footprint related to FL remains virtually
unexplored. This article provides the key step in attempting to fill this void by giving a first
look into the carbon analysis of FL. It expands upon our initial treatment of the area (Qiu
et al., 2021) with a more comprehensive study; our original paper, and this article, have also
prompted significant subsequent investigations within the community (Kim and Wu, 2021;
Savazzi et al., 2023; Pilla, 2023). Studies of this kind are essential because state-of-the-art
results in deep learning are usually determined by metrics such as the accuracy of a given
model or model size, while energy efficiency is often overlooked. Whilst accuracy remains
crucial, we hope to encourage researchers to also focus on other metrics that are in line with
the increasing societal global warming awareness. Recent research (Patterson et al., 2022)
indicates the approaches to reduce energy and carbon emissions in centralized training in
data centers. By quantifying carbon emissions for FL and demonstrating that very specific
FL setups may lead to a decrease of these emissions, we encourage the integration of the
released CO2e as a crucial metric to the FL deployment. The scientific contributions of this
work are as follows:

• Analytical Carbon Footprint Model for FL. We provide the first quantitative
CO2e emissions estimation method for FL (Section 3), including emissions resulting
from both hardware training and communication between server and clients.
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• Extensive Experiments. Carbon sensitivity analysis is conducted with this method
on real FL hardware under different settings, strategies, and tasks (Section 4). We
demonstrate that CO2e emissions depend on a wide range of hyper-parameters and
that emissions derived from communication between clients and server can represent
from 0.7% up to more than 96% of total emission. When compared to centralized
training, we show that for different tasks and settings, FL can emit from 72% to
hundreds of times more carbon than its centralized version.

• Analysis and Roadmap towards Carbon-friendly FL. We provide a compre-
hensive analysis and discussion of the results to highlight the challenges and future
research directions in developing carbon-friendly federated learning (Section 5).

2. Federated Learning Background

Traditional machine learning involves using a central server that hosts the machine learn-
ing models and all the data in one place. In contrast, in FL frameworks client devices
collaboratively learn a shared global model using their own local data. FL has distinct
privacy advantages over centralized training as the data are not transferred to the central
server for training. In fact, the only information transferred from clients to the server is
their respective updated model parameters obtained after each local training. To further
limit the leakage of client’s information in the model update, several mechanisms have been
proposed over the years including Secure Aggregation (Bonawitz et al., 2016) and Differential
Privacy (McMahan et al., 2018).

FL training occurs over multiple communication rounds. During each round, a fraction
of the clients are selected and receive the global model from the server. Those selected clients
then perform local training with their local data before sending the updated models back to
the central server. Finally, the central server aggregates these updated models, resulting in
a new global model. Then, this three-stage process is repeated for a fixed number of rounds.

There exists several aggregation strategies targeting to solve different FL problems. The
most widely adopted one is FedAvg (McMahan et al., 2017), in which the central server
aggregates the models by performing a weighted sum of the received parameters based on
the number of samples in each local dataset. More advanced strategies inspired by adaptive
momentum-based gradient descent optimizers have also been proposed e.g., FedADAM
(Reddi et al., 2021).

In addition, FL settings can be classified as either cross-silo or cross-device. In a cross-silo
scenario, clients are generally few, with high availability during all rounds, and are likely
to have similar data distribution for training, e.g. consortium of hospitals. This scenario
serves as motivation to consider Independent and Identically Distributed (IID) distributions.
On the other hand, a cross-device system will likely encompass thousands of clients having
very different data distributions (non-IID) participating in just a few rounds, e.g. training
of next-word prediction models on mobile devices. In practice, non-IID datasets not only
means class imbalance, but also feature imbalanced among clients. Indeed, many latent
factors can change such as the voice timbre in speech recognition (Gao et al., 2022).
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3. Quantifying CO2e emissions

Two major steps can be followed to quantify the carbon footprint of training deep learning
models either in data centers or on the edge. First, we perform an analysis of the energy
required by the method (Section 3.1), mostly accounting for the total amount of energy
consumed by the hardware. It includes training energy for centralized learning and training
and communication energy for FL (Section 3.2). Then, the latter amount is converted to
CO2e emissions (Section 3.3) based on geographical locations which, as it will be presented,
vary significantly depending on the sources of energy. This study does not include emissions
related to hardware manufacturing as such information is still largely unavailable.

3.1 Training Energy Consumption

First, we consider the energy consumption coming from GPU and CPU, which can be mea-
sured by sampling GPU and CPU power consumption at training time (Strubell et al., 2019).
For NVIDIA-based hardware, we can repeatedly query the NVIDIA System Management
Interface (NVIDIA-smi) to sample the GPU power consumption and report the average over
all processed samples while training. In the context of FL, not all clients are equipped with
a GPU, and this part can thus be removed from the equation if necessary. To this extent,
we propose to consider eclt as the power of a single client combining both GPU and CPU
measurements. Then, we can connect these measurements to the total training time of the
model. We define TFL(e,N,R) to be the total training energy consumption consisting of a
total of N clients in the pool with hardware power e for a total of R rounds in FL setup:

TFL(e,N,R) =
R∑

j=1

N∑
i=1

1{Clti,j} · ti · eclient,i, (1)

where 1{Clti,j} is the indicator function indicating if client i is chosen for training at round
j, ti the wall clock time per round and eclt,i the power of client i.

Hardware components, such as system memory and storage, are also responsible for
energy consumption. According to Hodak et al. (2019), one may expect a variation of around
10% while considering these parameters. However, they are also highly dependent on the
infrastructure considered and the device distribution that is unfortunately unavailable. We
exclude the energy costs of powering such components since they account for a small portion
of the total energy consumption during training.

The particular case of cooling in centralized training. Cooling in data centers
accounts for up to 40% of the total energy consumed (Capozzoli and Primiceri, 2015). While
this parameter does not exist for FL, it is crucial to consider it when estimating the cost of
centralized training. Such estimation is particularly challenging as it depends on the data
center efficiency. To this extent, we consider the use of Power Usage Effectiveness (PUE)
ratio. As reported in the 2019 Data Center Industry Survey Results (UptimeInstitue, 2019),
the world average PUE for the year 2019 is 1.67. As expected, observed PUE strongly
varies depending on the considered company. For instance, Google declares a comprehensive
trailing twelve-month PUE ratio of 1.11 (Google, 2020a) compared to 1.2 and 1.125 for
Amazon (AWS, 2020) and Microsoft (Microsoft, 2015) respectively. We also report a PUE
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ratio of a University-scale cluster (Avignon University, France) as an example. The PUE
ratio is reported to be 1.55 for a cluster containing 17 computing nodes with 4 to 8 GPUs
each. Therefore, Eq. (1) is adapted to centralized training setting as:

Tcenter = PUE ·(t · ecenter), (2)

with ecenter representing the power combining both GPUs and CPUs in a centralized
training setup, and t stands for the total training time.

3.2 Wide-area-networking (WAN) Emission

As clients continue to perform individual training on local datasets, their models begin to
diverge. To mitigate this effect, model aggregation must be performed by the server in a
process that requires frequent exchange of models between clients and the server.

According to Malmodin and Lundén (2018), the embodied carbon footprint for Infor-
mation and Communication Technology (ICT) network operators is mainly related to the
construction and deployment of the network infrastructure including digging down cable
ducts and raising antenna towers.

Regarding FL, we estimate the energy required to transferring model parameters between
the server and the clients following two parts. The first part is the energy consumed by routers
throughout the FL communication process, while the second part is the energy consumed
by the hardware when downloading and uploading the model parameters. We propose
to use country-specific download and upload speed as reported on Speedtest (Speedtest)
and router power reported on The Power Consumption Database (Database). Due to the
rapid development of ICTs, we propose to use the median power obtained from all data
submitted during 2021 to the database. We also take idle power consumption of hardware
into consideration while they are communicating model parameters. Let us define D and
U the download and upload speeds expressed in Mbps respectively. The communication
energy per round is defined as:

C(e,N,R) =
R∑

j=1

N∑
i=1

1{Clti,j} · S ·
(

1

D
+

1

U

)
· (er + eidle,i), (3)

with S the size of the model in Mb, er the power of the router, and eidle the power of
the hardware of the idle clients.

3.3 Converting to CO2e emissions

Realistically, it is challenging to compute the exact amount of CO2e emitted in a given
location since the information regarding the energy grid, i.e., the conversion rate from energy
to CO2e, is rarely publicly available (Lacoste et al., 2019; Hodak et al., 2019). Therefore,
we assume that all data centers and the edge devices are connected to their local grid
directly linked to their physical location. Electricity-specific CO2e emission factors are
obtained from official governmental websites and reports. Out of all these conversion factors
expressed in kg CO2e/kWh, we picked three of the most representative ones averages over a
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one year-period: Australia (0.656)1, the United Kingdom (0.281) 2 and France (0.054)3. The
estimation methodology provided takes into accounts both transmission and distribution
emission factors (i.e. energy lost when transmitting and distributing electricity) and the
efficiency of power plants. As expected, countries relying on carbon-efficient productions
are able to lower their corresponding emission factor (e.g. France, Canada). A heatmap
demonstrating different levels of conversion rates in various countries can be found in Fig. 1.

Figure 1: Global heat map of electricity to CO2e conversion rate (in kg/kWh). The conversion
rate are obtained from governmental sources or on the website Climate Transparency 4

Therefore, the total amount of CO2e emitted in kilograms for FL (EFL) and centralized
training (Ecenter) obtained from Eq. 1, 2 and 3 are:

EFL = crate ·[T(e,N,R) + C(e,N,R)], (4)

Ecenter = crate ·Tcenter, (5)

where crate is the conversion rate factor. It is worth noticing that when dealing with non-IID
partitions, the total training energy consumption (T(e,N,R)) and energy for communication
cost (C(e,N,R)) will often be larger than IID partitions, as it usually requires larger number
of communication rounds to reach certain model performance Karimireddy et al. (2020);
Zhao et al. (2018), and it is also shown in our experiments later in Section 4. In general,
crate will depend on the physical location of the hardware where the training takes place,
and it is possible that crate is not unique across the FL settings as clients can be scattered
around the globe. We will need to adjust the crate for each client based on their physical
locations. In our experiments, we assume that all FL clients are located at the same physical
locations for ease of comparison.

Carbon emissions may be compensated by carbon offsetting or with the purchases of
Renewable Energy Credits (RECs, in the US) or Tradable Green Certificates (TGCs, in

1. source:https://www.climate-transparency.org/countries/asia/australia
2. source:https://www.climate-transparency.org/countries/europe/the-united-kingdom
3. source:https://www.climate-transparency.org/countries/europe/france
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the EU). Carbon offsetting allows polluting actions to be mitigated directly via different
investments in carbon-friendly projects, such as renewable energies or massive tree planting
(Anderson, 2012). RECs and TGCs (Bertoldi and Huld, 2006), on the other hand, guarantee
that specifics volumes of electricity are generated from renewable energy sources. However,
in our analysis, carbon rates are obtained at country level and do not integrate industry
level carbon offsetting schemes or RECs.

4. Experiments

This article provides extensive estimates across different types of tasks and datasets, including
image classification with CIFAR10 (Krizhevsky et al., 2009), FEMNIST (LeCun, 1998; Cohen
et al., 2017), and ImageNet (Russakovsky et al., 2015), speech processing with keyword
spotting on Speech Commands (Warden, 2018) and speech recognition with CommonVoice
(Ardila et al., 2020). First, we provide an estimate of the carbon footprint following different
realistic FL setups. Then, we conduct an in-depth analysis of these results to highlight the
differences observed.

4.1 Experimental Protocol

Experiments are built on top of PyTorch (Paszke et al., 2019) and SpeechBrain (Ravanelli
et al., 2021). We make use of the Flower framework (Beutel et al., 2020) to implement and
parameterized different FL training pipelines. In addition to the carbon model (Section 3),
results are influenced by configurations of the hardware and systems of datacenters and FL
respectively.

Centralized training hardware. We run our experiments on a server equipped with
two Xeon 6152 22-core processors and NVIDIA Tesla V100 32GB GPUs. The CPU and
GPU have TDP of 240W and 250W, respectively. We use a single GPU per experiment and
measure the power drawn by both CPU and GPU through nvidia-smi monitoring and the
cross-platform psutil tools.

Federated learning hardware. We consider the use of NVIDIA Tegra X2 (Smith,
2017) and Jetson Xavier NX (Smith, 2019) devices as our FL clients. These devices can be
viewed as a realistic pool of FL clients since they can be found embedded in various IoT
devices including cars, smartphones, and video game consoles. NVIDIA Tegra X2 offers two
power modes with theoretical power limits of 7.5W and 15W and Xavier NX offers 10W
and 15W . Across our different runs, we use the lower power mode for each device, and we
employ the built-in utility tegrastats to report the overall power consumption. For both
power consumption and training time, we report averaged values across several FL rounds
for each experiment. We also measure the idle power consumption for both devices, which
was recorded as 1.35W and 2.25W for TX2 and NX respectively.

Datasets. We conduct our estimations on three image classification tasks of different
complexity both in terms of the number of samples and number of classes: CIFAR10,
FEMNIST, and ImageNet. FEMNIST, federated extended MNIST, is built by partitioning
the data in Extended MNIST (EMNIST) according to writer ids. It contains 671K 28×28
images of digits and letters. In addition, we also perform analysis on speech processing

4. Climate Transparency: https://www.climate-transparency.org/
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following the same complexity concern with the Speech Commands dataset for keyword
spotting and Common Voice for automatic speech recognition (ASR). Speech Commands
contains 65K 1-second long audio clips of 30 keywords, with each clip consisting of only one
keyword. Following the setup described in Zhang et al. (2017), we train the model to classify
the audio clips into one of the 10 keywords - “Yes”, “No”, “Up”,“Down”, “Left”, “Right”,
“On”, “Off”, “Stop”, “Go”, along with “silence” (i.e. no word spoken) and “unknown” word,
representing the remaining 20 keywords from the dataset. The training set contains a total
of 56, 196 clips with 32, 550 (57%) samples from the “unknown” class and around 1800
samples (3.3%) from each of the remaining classes, hence the dataset is naturally unbalanced.
Also, we used the Common Voice Italian (CV Italian) dataset (version 6.1) containing a
total of 84K utterances (132 hours) which were recorded by more than 10K Italian-speaking
participants. The train set consists of 748 speakers (89 hours of speech), while both valid
and test sets contain around 22 hours of speech from 1219 and 3404 speakers respectively.

Model Architectures. For CIFAR10 and ImageNet we make use of ResNet-18 (He
et al., 2016). For FEMNIST, we choose a much shallower CNN as proposed by (Caldas
et al., 2018). These architectures are kept the same for both centralized and FL experiments.
These models are trained with SGD but only the centralized setting makes use of momentum.
For the sake of completeness, we choose to use different deep learning model for the Speech
Commands dataset. We employ 4 layers of LSTM each with 256 nodes. The models are
trained using Adam optimization. Also, the hyper-parameters, such as learning rates, are
set to be the same as centralized learning without further tuning. For ASR task on CV
Italian dataset, the experiments are based on a encoder-decoder model trained with the joint
connectionist temporal classification (CTC)-attention objective (Kim et al., 2017). A typical
ASR model includes three modules: the encoder, the decoder and the attention mechanism.
The encoder has the following architecture: CNN — LSTM — DNN, and the decoder is a
single hidden layer GRU. Models are jointly trained with CTC and cross entropy (CE) loss.
Note that the federated training for ASR task starts from a pre-trained initialized model
since all the existing FL aggregation methods fail to converge without pre-training (Gao
et al., 2022; Dimitriadis et al., 2020).

Data partition methodology. As mentioned in Section 2, FL settings can usually
be classified as cross-silo or cross-devices. In cross-silo settings, data distribution in each
client will be the same as the global data distribution, hence training energy should be very
close to centralized training with additional communication cost. In this work, we focus the
experiments on cross-device settings, and the IID partition provides the best-case scenarios
and the baselines for comparison between centralized and FL settings.

We simulate different level of non-IID data distribution following the latent Dirichlet
allocation (LDA) partition method (Reddi et al., 2021; Yurochkin et al., 2019; Hsu et al.,
2019) ensuring that each client gets allocated the same number of training samples. Each
sample is drawn independently with class labels following a categorical distribution over
N classes parameterized with a vector q (qi ≥ 0, i ∈ [1,m] and

∑
qi = 1 for a total of m

classes from the dataset). Thus, to simulate the partition, we draw q ∼ Dir(αp) from a
Dirichlet distribution, where p stands for the prior distribution of the dataset, and α stands
for the concentration which controls the level of heterogeneity of the partition. As α→∞,
the partition becomes more uniform (IID), and as α → 0, the partition becomes more
heterogeneous. As the dataset is balanced across classes for both CIFAR10 and ImageNet,
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the prior distribution p is uniform. For ImageNet, we chose α = 1000 for the IID dataset
partition and α = 0.5 for non-IID following Yurochkin et al. (2019) and Hsu et al. (2019).
For CIFAR10, we choose α = 0.1 following the same protocol as Reddi et al. (2021). As for
Speech Commands, in light of the unbalanced nature of the dataset, we propose to change
the prior of LDA from uniform distribution to multinomial distribution. Hence the LDA
can be summarized as:

p =

(
N1

N
,
N2

N
, ...,

Nm

N

)
(6)

q ∼ Dir(αp), (7)

where Ni stands for the number of data from class i, N stands for total number of data
in the dataset. According to Yurochkin et al. (2019); Hsu et al. (2019), α is commonly set as
0.5 for a non-IID partition of balanced dataset. Given the aforementioned unbalanced nature
of the dataset, we propose to match the variance of 10 keywords classes with multinomial
prior to the variance of 10 keywords classes with a uniform prior by changing α to 1.0.

In practice, a non-IID dataset can mean both class-imbalance and feature-imbalance
among clients. Other latent factors can change such as the user accent or voice timbre in
speech recognition or different calligraphy styles in hand-written text. Therefore, we also
include two naturally partitioned datasets FEMNIST and CV Italian to capture the feature
imbalanced datasets.

For CV Italian, we first pre-train the model on half of the data samples in a centralized
fashion. We do this by partitioning the original dataset into a small subset of speakers (99)
for centralized training and a larger subset of speakers (649) for the FL experiment. Then, we
simulate a scenario of single speaker using their individual devices by naturally dividing the
training sets based on users ID into 649 partitions. We followed the paritioning methodology
in Caldas et al. (2018) to extract the FEMNIST dataset from EMNIST following a natural
partitioning by writer id.

Client pool. Following Reddi et al. (2021), we consider a pool of 500 client for
CIFAR10 with 10 active clients training concurrently per round.We split ImageNet and
SpeechCommands into 100 clients and randomly select 10 clients per round. As for FEMNIST
and CV Italian, there are 3597 and 649 natural clients respectively, and we select 35 and 10
clients in each communication round.

FL strategy. To better reflect realistic FL scenarios, we propose to investigate the
energy consumption with the common FedAVG strategy (McMahan et al., 2017), and
the more complex FedADAM strategy (Reddi et al., 2021). For CIFAR10, we follow the
experimental protocol proposed in Reddi et al. (2021) considering the suggested best values
for η, ηl, and τ in almost every experiment except for FedAVG, where we had to lower the
value of ηl to 10−3/2 to allow training. All other experiments used a server learning rate
η = 0.1 and τ = 0.001.

Local epoch (LE). We also propose to vary the number of local epochs done on each
client to better highlight the contribution of the local computations to the total emissions.
To be consistent, we choose to do 1 and 5 local epochs across all tasks except ASR task
(insisting with 5 local epochs to obtain acceptable performance).

Target accuracies. To make fair comparisons between different setups, we set the
target accuracies for each tasks and report the respective carbon emission. This is a common
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procedure when evaluating FL workloads. We set the target accuracies for CIFAR10,
FEMNIST and ImageNet to be 70%, 80% and 50% top-1 accuracy respectively. For Speech
Commands, the threshold is set to 70%, and for CV Italian, the target is set to be 25% of
Word Error Rate (WER).

4.2 Experimental Results

This section presents the experimental results. Power consumption and training times
obtained for all FL and centralized setups are reported in Table 1. Table 1 also shows the
power measurement and energy consumption for each setups. Both power usage and training
time per epoch reflect the mean value for each training tasks. The total energy is calculated
as the energy per device multiplied by the number of selected clients per communication
round for FL. In the centralized scenario it is equal to the energy per device. The numbers of
communication rounds required by each setup to reach their target accuracies are summarized
in Table 2. Table 3 shows the carbon emission for each training task in every experimental
setups, calculated by adding the energy consumption for communication and convert the
energy consumption to carbon emission by multiplying the country-specific conversion factor
as explained in Eq (4) and Eq (5).

As shown in Table 1, it is worth noting that centralized training (V100) took solely
2 epochs to achieve the target accuracy for CIFAR10, and 8 epochs for ImageNet, 1 for
FEMNIST and 10 for CV Italian. This translates to 48 seconds for CIFAR10, 3.2 hours for
ImageNet, 19 seconds for FEMNIST and 1.4 hours for CV Italian.

Table 2 reports the numbers of communication rounds required by each setup to reach
their target accuracies. We can see that standard FedAVG failed to converge within the
allotted 2000 rounds in the non-IID setting when using only 1 local epoch for CIFAR10,
while the more sophisticated FedADAM strategy was able to reach the target. For Speech
Commands experiments, it is interesting that FedAVG needs even more rounds for IID than
non-IID if we only do one local epoch, which might be due to the dataset being naturally
unbalanced. Similar as FEMNIST, CV Italian is a naturally partitioned dataset, so there
only exist non-IID results. As settings with only 1 local epoch does not converge, we only
show settings with 5 local epochs in the tables.

From Table 3 we can see that for image classification task (CIFAR10, ImageNet and
FEMNIST) we observe the centralized settings generally consume less energy compared to
their FL counterparts. The difference is the biggest when we compare CIFAR10 non-IID
with 1 local epoch settings with centralized training. In this comparison, FL emits more
than 10 times more carbon than centralized training. The difference is smaller when we
perform 5 local epochs in FL. However, for ImageNet, the outcome is the other way around.
FL with 5 local epochs emits more carbon compared to 1 local epoch settings. The difference
between FL and centralized training for ImageNet is smaller than CIFAR10. For FEMNIST,
as the dataset is naturally partitioned, there are only non-IID results. Similar as CIFAR10,
1 local epoch settings emits more carbon compared with 5 local epochs settings, and they
both more emits higher carbon compared to centralized training. More surprisingly is the
slower convergence rate of FedADAM for CIFAR10 and ImageNet to reach the specified
target accuracy. However, FedADAM often performed better in the longer term resulting
in higher final accuracies. For Speech Commands experiments, 3 also highlights the setups
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Costs to Reach Threshold Accuracy

Dataset
Training
Strategy

HW
Power

Usage
(W)

Local
Epochs

Time
per

Epoch(s)

Num.

Rounds
Time(s)

Energy Total
per device Energy

(Wh) (Wh)

CIFAR10

Centralized V100 160+42 1 24 2 48 2.7 2.7

FedAVG
TX2 4.7

5
0.8

580
2320 3.03 30.3

NX 6.3 0.6 1740 3.05 30.5

FedAdam
TX2 4.7

1
0.8

1800
1440 1.88 18.8

NX 6.3 0.6 1080 1.89 18.9

ImageNet

Centralized V100 220+84 1 1,440 8 11,520 973 971

FedAVG
TX2 6.5

1
474

339
160,686 290 2,901

NX 9.7 273 92,547 249 2,494

FedAdam
TX2 6.5

1
474

590
279,660 504 5,049

NX 9.7 273 161,070 434 4,340

FEMNIST

Centralized V100 96+20 1 19 1 19 0.6 0.6

FedAVG
TX2 2.4

1
0.24

205
29 0.03 1.1

NX 2.7 0.15 18 0.02 0.8

FedADAM
TX2 2.4

1
0.24

60
14 0.01 0.3

NX 2.7 0.15 9 0.007 0.2

Speech

Commands

Centralized V100 68+56 1 52 6 312 10.7 10.7

FedAVG
TX2 5.7

5
1.6

140
1,120 1.8 17.7

NX 7.9 0.9 630 1.4 13.8

FedAdam
TX2 5.7

1
1.6

193
309 0.5 4.9

NX 7.9 0.9 174 0.4 3.8

CV Italian

Centralized V100 170 + 48 1 509 10 5090 308.2 308

FedAVG
TX2 6.7

5
76

50
19,000 35.4 354

NX 9.8 48 12,000 32.7 327

Table 1: Energy consumption of centralized training using GPUs against FL settings where
each client trains on a small dataset partition using low-power GPU-enabled edge devices.
For FL rows, each strategy reports the lowest total energy among 1 and 5 local epochs
for non-IID partitions. For centralized setting, one “Local Epoch” is one standard epoch
using the entire dataset and, “Power Usage” is reported as GPU+CPU. The “Time” column
reports the total training time required, which is calculated by multiplying the “Time per
Epoch” and the “Number of Rounds”. For FL rows, the “Total Energy” is obtained by
multiplying the “Energy per Device” by the number of clients participating in each round.
Despite edge devices consuming an order of magnitude less power, the total energy required
for FL is often greater (but of the same order of magnitude) than centralized training. For
Speech Commands, a very lightweight workload, FL can reach the target accuracy while
requiring little energy. For datasets with variable amount of data per client (e.g. FEMNIST,
CV Italian), we report the time taken to train a client that contains the average data samples
observed in the whole dataset.

when FL emits less carbon compared to centralized training, which happens in France when
FL performs 5 local epochs. For the CV Italian experiments, it is worth noticing that all FL
settings emits less carbon when compared with centralized training in the data centers with
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Dataset
Training Local Partition

Strategy Epochs IID non-IID

CIFAR10

FedAVG
1 480 >2000
5 180 580

FedAdam
1 580 1800

5 250 800

ImageNet
FedAVG

1 232 339

5 95 114

FedAdam
1 550 590
5 180 200

FEMNIST
FedAVG

1 - 205

5 - 120

FedAdam
1 - 60
5 - 40

Speech
Commands

FedAVG
1 >1000 770

5 119 140

FedAdam
1 140 193

5 53 66

CV Italian FedAVG 5 - 50

Table 2: Number of FL rounds needed for each dataset-strategy pair to reach the target accuracy
when data is partitioned in IID and non-IID fashion. Note that there is only non-IID partition for
FEMNIST and CV Italian, as both datasets are naturally partitioned. We observe that increasing
the number of local epochs always results in fewer FL rounds to reach convergence. However, this
does not guarantee a smaller overall energy consumption.

the averaged PUE ratio of 1.67. It is even less than centralized training in the data centers
with PUE ratio of 1.55 in France.

5. Carbon Footprint of Federated Learning

5.1 CO2e Analysis

So far we have considered the energy required to achieve a given accuracy on different tasks
for various sets of hyper-parameters and optimizers. We now turn our attention to how this
translates into carbon emissions.

The first thing to notice is that there are some settings with Speech Commands and
CV Italian where FL emits slightly less carbon compared with centralized training. For
Speech Commands, the model architecture is light-weighted, hence both training using TX2
and NX consumed much less energy, as shown in Table 1. Since the model only has 5.3
million parameters, communication did not consume much energy either. As for CV Italian,
training energy for FL and centralized is about the same as shown in Table 1. Since the
process only requires 50 communication rounds to reach our target accuracy and because we
need to take into account the PUE ratio for data centers, the overall carbon emission for FL,
in this specific scenario, can be lower than centralized training. Therefore, emissions from
centralized and federated learning can be more comparable when using lightweight models,
typically of cross-device setups.

Due to the large difference between electricity-specific CO2e emission factors among
countries, the carbon footprint of both centralized training and FL can be highly dependent
on the geolocation of hardware. Training in France always has the lowest CO2e emissions
given their use of nuclear energy with the lowest energy to CO2e conversion rate. Geolocation
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CIFAR10 Centr. IID 5LE non-IID 1LE non-IID 5LE
Country/ PUE FedAVG FedADAM FedAVG FedADAM FedAVG FedADAM
CO2e(g) 1.67 1.55 1.11 TX2 NX TX2 NX TX2 NX TX2 NX TX2 NX TX2 NX

Australia 3.0 2.7 2.0 70.6 78.1 98.1 108.5 >730 >813 656.7 731.6 227.5 251.7 313.8 347.2
UK 1.3 1.2 0.8 29.4 32.5 40.8 45 >303 >337.7 272.8 303.9 94.7 104.8 130.6 144.5

France 0.2 0.2 0.2 2.1 2.3 3.0 3.2 >19 >21 17.4 19.3 6.9 7.5 9.5 10.4

ImageNet Centr. IID 5LE non-IID 1LE non-IID 5LE
Country/ PUE FedAVG FedADAM FedAVG FedADAM FedAVG FedADAM
CO2e(g) 1.67 1.55 1.11 TX2 NX TX2 NX TX2 NX TX2 NX TX2 NX TX2 NX

Australia 1066 989 708 2701 2330 5117 4415 2025 1771 3524 3083 3241 2796 5686 4905
UK 457 424 303 1156 998 2191 1890 866 757 1507 1317 1388 1197 2435 2100

France 88 81 59 220 190 418 359 160 138 278 240 265 228 464 399

FEMNIST Centr. non-IID 1LE non-IID 5LE
Country/ PUE FedAVG FedADAM FedAVG FedADAM
CO2e(g) 1.67 1.55 1.11 TX2 NX TX2 NX TX2 NX TX2 NX

Australia 0.7 0.6 0.4 140.9 156.9 41.2 45.9 84.2 93.1 28.1 30.1
UK 0.3 0.3 0.2 58.5 65.1 17.1 19.1 35.0 38.7 11.7 12.9

France 0.1 0.1 0.03 3.6 4.0 1.1 1.2 2.3 2.5 0.8 0.8

SpeechCmd Centr. IID 5LE non-IID 1LE non-IID 5LE
Country/ PUE FedAVG FedADAM FedAVG FedADAM FedAVG FedADAM
CO2e(g) 1.67 1.55 1.11 TX2 NX TX2 NX TX2 NX TX2 NX TX2 NX TX2 NX

Australia 11.8 10.9 7.8 30.5 30.8 13.6 13.7 146.4 159.1 36.7 39.9 35.9 36.2 16.9 17.1
UK 5.0 4.7 3.4 12.8 12.9 5.7 5.7 60.9 66.2 15.3 16.6 15.1 15.1 7.1 7.1

France 1.0 0.9 0.6 1.3 1.2 0.6 0.5 4.4 4.6 1.1 1.2 1.6 1.4 0.7 0.7

CV Italian Centr. non-IID 5LE
Country/ PUE FedAVG
CO2e(g) 1.67 1.55 1.11 TX2 NX

Australia 337.7 313.4 224.4 330.3 324.0
UK 144.6 134.2 96.1 140.2 137.3

France 27.8 25.8 18.5 21.6 20.4

Table 3: CO2e emissions (expressed in grams, i.e lower is better) for both centralized learning
and FL when they reach the target accuracies, with different tasks and setups. The tables report
results of both FedAvg and FedADAM in both IID and non-IID partitions. As non-IID is more
realistic, we report both 1 and 5 local epochs experiment results for this setup only. Results in bold
indicate lower carbon emissions overall.

also impacts the carbon footprint of training in FL via communication speed. If the physical
location has a slower Internet connection, the total time for communicating model parameters
back and forth from the clients to the server will be longer, hence more energy is consumed.

Hardware efficiency is also a critical factor when estimating the total carbon footprint.
As new AI applications for consumers are created every day, it is realistic to assume that
novel versions of chips like Tegra TX2 will soon be embedded in numerous devices, including
smartphones, tablets, and others. However, such specialized hardware is certainly not an
exact estimate of what is currently being used for FL. Therefore, to facilitate carbon impact
estimations of large-scale FL deployment, the industry must increase its transparency with
respect to its devices’ distribution over the market. As we can see from the results, even
though NX requires less training time compared to TX2, it also consumes more power both
during training and in an idle state. This leads to a trade-off between high-power hardware
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and actually training consumption. For example, training FEMNIST with 1 local epoch with
FedAVG in TX2 emits more carbon compared to NX, but it emits less carbon compared to
NX when we switch to FedADAM.

As explained in our estimation methodology, FL will always have an advantage in the
respect that FL does not require cooling as opposed to centralized learning in the data
centers. In fact, even though GPUs or even TPUs are getting more efficient in terms of
computational power delivered by the amount of energy consumed, the need for strong and
energy-consuming cooling remains; thus, the FL can always benefit more from the hardware
advancement. On the other hand, FL always has a drawback of communication when the
model parameters are communicated between clients and the central server.
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Figure 2: Growth of CO2e emissions (in log scale) with a PUE = 1.67 for centralized learning and
TX2 devices for FL in the UK (expressed in grams, i.e lower is better). Communication rounds
in FL are converted to centralized epochs for a fair comparison, and CO2e emissions are linearly
dependent on the number of centralized epochs. The break-even line is chosen at the level when the
centralized training reaches target accuracy. (a) For CIFAR10, 1 centralized epoch is equivalent to
50 communication rounds for 1 Local Epoch (LE) and 10 for 5 LE, as there are a total of 500 clients.
The green line shows that with an equal amount of emissions between FL and V100, FL would train
for 7.5 rounds with 5LE and 8 rounds with 1LE. (b) For ImageNet, due to the smaller size of the
total client pool (100), 1 centralized epoch is equivalent to 2 communication rounds with 5LE and 10
rounds with 1LE. The green line shows that with an equal amount of emissions, FL can only train
for 178 rounds with 1LE and 38 rounds with 5LE. (c) For Speech Commands, the total number of
clients is also 100. The green line shows that with an equal amount of emissions, FL can only train
for 47 rounds with 1LE and 64 rounds with 5LE.

Furthermore, CO2 emissions depend on the distribution of clients’ datasets. Our results
show that realistic training conditions for FL (i.e. non-IID data) are largely responsible for
longer training times, which in turn translates to a high level of CO2e emissions. While it is
well known that the simpler aggregation form of FL (e.g. FedAVG) performs reasonably
well on IID data, it definitely struggles with non-IID partitioned data in terms of accuracy
(Li et al., 2020; Qian et al., 2020). Interestingly, more complex strategies such as FedADAM
can enable a decrease of up to 75% and 70% of the emitted CO2e on Speech Commands and
FEMNIST, respectively, compared to FedAvg. It is worth pointing out that for CIFAR10,
FEMNIST, and Speech Commands non-IID partitions running 1LE produces more carbon
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than 5LE regardless of the aggregation strategy or devices. This is because communication
consumption plays a big role in the total energy consumption, and 5LE communication costs
less than using 1LE as fewer communication rounds are required.

Figure 2 shows the growth of carbon emission when the number of centralized epochs
increases. We first see that for CIFAR10, FL with 1LE has the highest slope, while for the
other two datasets, centralized learning has the highest slope. Normally centralized learning
should exhibit stronger slopes as TDPs of centralized learning hardware are much higher
than for FL. However, for CIFAR10, and due to the large model size, the communication
consumption is much higher than the actual training consumption, resulting in a very steep
slope suggesting that employing a complex model does not benefit FL.

In Figure 3, we compare equivalent carbon budgets on CIFAR for FL and V100s. The
former would only be able to train for 7.5 and 8 rounds with 5 and 1 local epochs, respectively,
resulting in degraded performances. The same goes for ImageNet. Indeed, FL would only
train for 178 rounds with 1 LE and 38 rounds with 5 LE. On the other hand, in Speech
Commands, FL did not outperform in the UK. Hence would only train for 64 rounds with
1 LE and 47 with 5 LE. However, we can see that the difference between the break-even
rounds and actual rounds required, as shown in Table 2, is much smaller than other tasks.
It is also interesting to note that, for ImageNet, the communication cost is negligible, hence
both FL curves look very similar.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

Accuracy

C
O

2
e

em
it

te
d

in
g

(a) CIFAR10

IID non-IID

0 0.1 0.2 0.3 0.4 0.5
0

500

1,000

1,500

2,000

Accuracy

(b) ImageNet

Figure 3: Growth of CO2e emissions in the UK using TX2 for CIFAR10 and ImageNet respects to
accuracies. The reported CO2e emissions is for FedADAM with 5 local epochs.

Furthermore, Fig. 3 demonstrates the growth of carbon emission with respect to
accuracies. Non-IID partitioning generally emits more carbon as it requires larger numbers
of communication rounds. Fig. 3 also shows that the marginal carbon emission for additional
accuracy gains is increasing exponentially. However, it is interesting to notice that carbon
emissions of IID and non-IID at the beginning of ImageNet training overlap, as they require
a similar number of rounds to reach certain accuracies.

Finally, it is also worth noticing that the percentage of CO2e emission resulting from
WAN changes across the dataset and FL setups. It highly depends on the size of the
model, the size of the dataset in each client, and the energy consumed by clients during
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training. More precisely, communications accounted for up to 0.7% (ImageNet with 5 local
epochs) and 96% (CIFAR10 with 1 local epoch) of the total emissions. With CIFAR10 tasks,
communication actually emits much more CO2e than training, while on the other hand,
WAN plays a very small role for ImageNet.

5.2 Road-map for FL

FL is still a maturing framework with a lot to improve in a different aspect. We would like
to highlight a few challenges and future research directions based on our analysis.

First, as carbon footprint largely depends on the physical location of hardware, either in
terms of training or communication, carbon emission can be immensely reduced by selecting
clients from greener locations or with faster internet connections. Obviously, there will be
practical concerns in choosing clients in certain locations more often. For example, clients
from greener locations might not have enough data samples for training or might represent a
skewed data distribution. This, however, could lead to a demographic bias and needs further
investigation.

Also, industrial statistics on the available fleet of devices are crucial to optimize the
carbon emissions of FL. Indeed, in the real world, hardware efficiency can vary vastly from
client to client. Similarly to the physical location, we would also like to choose clients with
more efficient hardware and comparable computing capability and such a selection also
induces potential biases.

As is the case in centralized training, hyper-parameter tuning is of great importance in
reducing training times. In our experiments, we decided only to modify optimizer-related
parameters (e.g. learning rate, momentum) to ensure a fair comparison and a sufficient
level of performance. Further tuning can be done to facilitate the training convergence
of FL. Nevertheless, with FL, hyper-parameter tuning becomes a more arduous task as it
potentially involves hundreds of different models (i.e. local clients models), each making use
of a small dataset that is likely to follow a very skewed distribution. In addition to client-side
tuning, the aggregation strategy (e.g. FedADAM) might also offer further parameterization,
therefore increasing the complexity of the tuning process. Therefore, novel hyper-parameter
tuning algorithms should carefully be designed to minimize carbon emission by jointly
maximizing the accuracy and minimizing the released CO2e.

The number of local epochs is also an important hyper-parameter that can surely impact
the overall carbon emission. As seen in Table 3, 5 local epochs settings often emit less
carbon than 1 local epoch settings for non-IID, apart from the ImageNet task. This is easily
explained by the hidden communication cost. Indeed, a single local epoch implies more
communication rounds and, therefore, energy to converge compared to five local epochs.
Furthermore, the number of communication rounds required for five local epochs usually is
less than five times the number of communication rounds required for one local epoch. In
the context of ImageNet, things are completely different as the local training becomes much
more energy-demanding. Therefore, simply finding the right number of local epochs also
clearly appears as a critical point in reducing FL carbon emissions.

Finally, carbon emission also depends on aggregation strategies. With more advanced
aggregation strategies, the number of communication rounds can be reduced, hence reducing
the overall carbon emissions.
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In summary, we quantify the carbon footprint based on the training energy consumption
and communication energy consumption, which depend on the physical locations of the
hardware, hardware efficiency, training hyper-parameters, and FL strategies. We found that
the carbon footprint of FL is hard to assess compared to centralized training without context,
due to the inherent complications in how FL is currently performed. The complications
might include data heterogeneity, client geographic distribution, and system heterogeneity.
We provide a comprehensive analysis in this section and highlight the challenges and future
research directions toward a more carbon-friendly FL.

6. Conclusion

Federated learning is an upcoming paradigm in the ML world that is often proposed as
an alternative to an already carbon-emitting centralized training. A number of recent
studies have begun to detail the environmental costs of their novel deep learning methods,
sometimes even integrating CO2e emissions as an objective to be minimized. Following this
important trend, this article takes a first look into the carbon footprint of an increasingly
deployed training strategy known as federated learning. In particular, this work introduces
a generalized methodology to systematically compute the carbon footprint of many FL
setups and conducts extensive experiments on real FL hardware under different settings,
models, strategies, and tasks. We highlight the carbon footprint of FL from different
perspectives and demonstrate that each element of FL can have an impact on the total CO2e
emission, including physical location, deep learning tasks, model architecture, FL aggregation
strategies, and hardware efficiency. Finally, we hope to emphasize the importance of taking
the carbon footprint into consideration for future research, and innovative research for both
deep learning and FL can integrate the carbon footprint as a novel metric.

Acknowledgments

This work was supported by the UK’s Engineering and Physical Sciences Research Council
(EPSRC) with grants EP/M50659X/1 and EP/S001530/1 and the European Research
Council via the REDIAL project.

References

Dario Amodei and Danny Hernandez. Ai and compute. Heruntergeladen von
https://openai.com/blog/ai-and-compute/, 2018.

Kevin Anderson. The inconvenient truth of carbon offsets. Nature, 484(7392):7–7, 2012.

Anders SG Andrae and Tomas Edler. On global electricity usage of communication technology:
trends to 2030. Challenges, 6(1):117–157, 2015.

Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker:
Tracking and predicting the carbon footprint of training deep learning models. arXiv
preprint arXiv:2007.03051, 2020.

18



A First Look into the Carbon Footprint of Federated Learning

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty,
Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4218–4222, 2020.

AWS. Aws and sustainability. https://aws.amazon.com/about-aws/sustainability/,
2020.

E. K. Barrett, C. M. Fard, H. N. Katinas, C. V. Moens, L. E. Perry, B. E. Ruddy, S. D.
Shah, I. S. Tucker, T. J. Wilson, M. Rucker, L. Cai, L. E. Barnes, and M. Boukhechba.
Mobile sensing: Leveraging machine learning for efficient human behavior modeling. In
2020 Systems and Information Engineering Design Symposium (SIEDS), pages 1–7, 2020.
doi: 10.1109/SIEDS49339.2020.9106648.

R. F. Berriel, A. T. Lopes, A. Rodrigues, F. M. Varejão, and T. Oliveira-Santos. Monthly
energy consumption forecast: A deep learning approach. In 2017 International Joint
Conference on Neural Networks (IJCNN), pages 4283–4290, 2017.

Paolo Bertoldi and Thomas Huld. Tradable certificates for renewable electricity and energy
savings. Energy policy, 34(2):212–222, 2006.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Hei Li Kwing, Titouan Parcollet, Pedro PB de Gusmão, and Nicholas D Lane.
Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation
for federated learning on user-held data. In NIPS Workshop on Private Multi-Party
Machine Learning, 2016. URL https://arxiv.org/abs/1611.04482.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings,
2018.

Alfonso Capozzoli and Giulio Primiceri. Cooling systems in data centers: state of art and
emerging technologies. Energy Procedia, 83:484–493, 2015.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 international joint conference on neural networks
(IJCNN), pages 2921–2926. IEEE, 2017.

Thomas J Crowley. Causes of climate change over the past 1000 years. Science, 289(5477):
270–277, 2000.

The Power Consumption Database. http://www.tpcdb.com/list.php?page=1&type=11.

Dimitrios Dimitriadis, Ken’ichi Kumatani, Robert Gmyr, Yashesh Gaur, and Sefik Emre
Eskimez. A federated approach in training acoustic models. In Interspeech, pages 981–985,
2020.

19

https://aws.amazon.com/about-aws/sustainability/
https://arxiv.org/abs/1611.04482
http://www.tpcdb.com/list.php?page=1&type=11


Qiu,Parcollet,Fernandez-Marques,Gusmao,Gao,Beutal,Topal,Mathur,Lane

Yan Gao, Titouan Parcollet, Salah Zaiem, Javier Fernandez-Marques, Pedro PB de Gusmao,
Daniel J Beutel, and Nicholas D Lane. End-to-end speech recognition from federated
acoustic models. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7227–7231. IEEE, 2022.

Google. Efficiency-data centres. https://www.google.co.uk/about/datacenters/
efficiency/, 2020a.

Google. 24/7 carbon-free energy by 2030. https://www.google.com/about/datacenters/
cleanenergy/, 2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle
Pineau. Towards the systematic reporting of the energy and carbon footprints of machine
learning. The Journal of Machine Learning Research, 21(1):10039–10081, 2020.

Miro Hodak, Masha Gorkovenko, and Ajay Dholakia. Towards power efficiency in deep
learning on data center hardware. In 2019 IEEE International Conference on Big Data
(Big Data), pages 1814–1820. IEEE, 2019.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data
quagmire of decentralized machine learning. In International Conference on Machine
Learning, pages 4387–4398. PMLR, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335,
2019.

IPCC. Climate change 2014 synthesis report. 2014.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
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