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Abstract
Receiver Operating Characteristic (ROC) curves are useful for evaluating binary classification
models, but difficult to use for learning since the Area Under the Curve (AUC) is a piecewise
constant function of predicted values. ROC curves can also be used in other problems with false
positive and true positive rates such as changepoint detection. We show that in this more general
context, the ROC curve can have loops, points with highly sub-optimal error rates, and AUC
greater than one. This observation motivates a new optimization objective: rather than maximizing
the AUC, we would like a monotonic ROC curve with AUC=1 that avoids points with large values
for Min(FP,FN). We propose an L1 relaxation of this objective that results in a new surrogate loss
function called the AUM, short for Area Under Min(FP, FN). Whereas previous loss functions
are based on summing over all labeled examples or pairs, the AUM requires a sort and a sum
over the sequence of points on the ROC curve. We show that AUM directional derivatives can be
efficiently computed and used in a gradient descent learning algorithm. In our empirical study of
supervised binary classification and changepoint detection problems, we show that our new AUM
minimization learning algorithm results in improved AUC and speed relative to previous baselines.

Keywords: AUC, ROC, loss functions, gradient descent, optimization

1. Introduction

In supervised machine learning problems such as binary classification and changepoint detection,
the goal is to learn a function for accurately predicting presence or absence of a class label. In
binary classification there is a prediction for each example; in changepoint detection there is a
prediction (change or not) in between each data point in a sequence. There are numerous ways to
analyze prediction performance, but the simplest way is to calculate accuracy, which is the number
or proportion of correctly classified labels. However using accuracy as the evaluation metric can be
problematic for data sets with imbalanced labels or for which the desired weighting of the labels is
unknown (Cortes and Mohri, 2004; Menon et al., 2013).

A popular approach for comparing models in this context is by analyzing their Receiver Operating
Characteristic (ROC) curves, which are plots of True Positive Rate (TPR) versus False Positive Rate
(FPR) that have long been used in the signal processing literature (Egan and Egan, 1975). For data
with n labeled examples, most algorithms compute a predicted value ŷi ∈ R for each labeled example
i ∈ {1, . . . , n}. In binary classification the predicted value ŷi is then compared to the threshold
of zero to classify the example as either positive or negative. True positives are examples i with
positive labels and positive predictions, whereas false positives are examples i with negative labels
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Figure 1: Example labeled changepoint detection data for which the FN function is non-monotonic.
Left: a data sequence (black dots) with one label (grey rectangle) in which there should
be exactly one predicted changepoint (false negative for no changes when segments=3,
false positive for two changes when segments=15). Right: selected number of segments
(top) and number of label errors (bottom) as a function of predicted values, with vertical
violet lines indicating the models shown on the left, and vertical black lines for breakpoints
in the piecewise constant error functions (v for predicted value, ∆FP,∆FN for changes in
error functions at that value).

and positive predictions. A vector of predicted values ŷ = [ŷ1 · · · ŷn]ᵀ ∈ Rn, one element for each
labeled example i, can be mapped to a single (FPR,TPR) point in ROC space. Each different point
on the ROC curve is obtained by adding a real-valued constant c ∈ R to each prediction in that
vector, ŷ + c. Large constants c result in FPR=TPR=1 and small constants result in FPR=TPR=0.
Therefore the Area Under the Curve (AUC) is an evaluation metric which accounts for all possible
constants or possibilities for thresholding the prediction vector. In binary classification, a perfect
model has an AUC of 1, a constant model has an AUC of 0.5, and the minimum AUC is 0.

When AUC is used as the evaluation metric in machine learning, the best algorithm is typically
defined as the one that maximizes test AUC. In such experiments, we would also like to use the AUC
as the objective function for training the model (under the assumption that if the train and test sets
are similar, maximizing train AUC should result in maximizing test AUC). However, since the AUC
is a piecewise constant function of the predicted values, its gradient is zero almost everywhere, and it
is therefore impossible to directly optimize using gradient descent algorithms.

In addition to studying binary classification, we also study supervised changepoint detection, in
which we can also compute FPR and TPR. For binary classification, we can compute a prediction
vector which maximizes AUC in the same way as maximizing accuracy — predict a positive value
for each positive label, and a negative value for each negative label. For changepoint detection, it
is also trivial to compute a prediction vector that maximizes accuracy, but it can be non-trivial to
compute a prediction vector that maximizes AUC. The previous observations motivate this paper,
which explores a new loss function and corresponding learning algorithm which we empirically show
results in AUC maximization.
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1.1 Contributions and organization

Our main contribution is the AUM, which is a new surrogate loss function defined as the Area
Under the Minimum of false positives and false negatives as a function of the prediction threshold.
Whereas previously proposed loss functions for binary classification can be interpreted as convex
surrogates of the zero-one loss (summed over examples) or Mann-Whitney statistic (summed over
pairs of examples), our proposed AUM loss is an L1 relaxation of the total Min(FP,FN) (summed
over points on the ROC curve, or distinct intervals of prediction thresholds).

In Section 2 we give precise definitions of the AUC and our new AUM loss function. In Section 3
we give an efficient algorithm for computing directional derivatives of the AUM with respect to
predicted values, which we propose using in gradient descent learning algorithms. In Section 4 we
provide an empirical study of supervised binary classification and changepoint detection problems,
showing that minimizing the AUM corresponds to optimizing the points in the ROC curve. (with
respect to train and test sets). Section 5 concludes with a discussion of the significance and novelty
of our findings.

1.2 Related work

Evaluating learned binary classification models. ROC curve analysis is a classical evaluation
technique with origins in the signal processing literature (Egan and Egan, 1975). Provost and Fawcett
(1997) introduced a ROC convex hull method for evaluation. Ling et al. (2003) provide a proof of
AUC consistency, whereas Hand (2009) showed that it is incoherent with respect to classification
costs, and proposed the “H measure” as an alternative. Mart́ınez-Camblor et al. (2017) proposed a
generalization to predicted values which have a non-monotone relationship with the desired class
label.

Margin losses for binary classification. Margin losses can be interpreted as weighted convex
surrogates of the zero-one loss, summed over all examples. Ferri et al. (2002); Cortes and Mohri (2004)
proposed expressions for the expected value and the variance of the AUC for a fixed error rate, in an
attempt to maximize the AUC with different nonlinear algorithms. Wang et al. (2015) incorporated
unlabeled data to make an unsupervised AUC maximization algorithm. Other algorithms have
been proposed to obtain approximations of the global AUC value (Rakotomamonjy, 2004; Herschtal
and Raskutti, 2004; Herschtal et al., 2006; Calders and Jaroszewicz, 2007). Han and Zhao (2010)
proposed an active learning algorithm for computing a linear model that maximizes the AUC. Zhao
et al. (2011) implemented an online learning algorithm that maximizes the AUC. Menon et al. (2013)
analyzed statistical consistency under class imbalance, using a mean of true positive and true negative
rates. Scott (2012) studied calibration for margin-based losses for binary classification.

Pairwise losses for binary classification. Bamber (1975) is credited as the first to prove the
equivalence of the ROC-AUC and the Mann-Whitney test statistic (Mann and Whitney, 1947). This
equivalence has led many authors to propose algorithms based on loss functions that are convex
surrogates of the Mann-Whitney statistic. Yan et al. (2003) proposed a global approximation of
AUC which was then used in several other algorithms. For example, Castro and Braga (2008) used
that approxmation to propose the AUCtron algorithm which learns a linear model. Joachims (2005)
proposed a quadratic time support vector machine algorithm for AUC maximization based on a
pairwise loss function, and Freund et al. (2003) proposed a similar approach based on boosting.
Narasimhan and Agarwal (2013) extended this approach to the partial AUC, which is defined as
the area under the curve between two false positive rates (not necessarily 0 and 1). Kotlowski et al.
(2011) analyze how much risk and regret is increased for balanced margin-based losses, compared
with pairwise losses. Rudin et al. (2005) showed that in some cases margin-based losses yield the
same solution as a pairwise loss. For stochastic optimization of the AUC, Ying et al. (2016) proposed
solving a saddle point problem involving a pairwise square loss, and Yuan et al. (2020) proposed to
extend this approach to the squared hinge loss.
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Figure 2: Synthetic example showing how non-monotonic total FP/FN functions (left) can result
in a looping ROC curve (right). The q values are indices in the sequence of points on
the ROC curve (and corresponding intervals of the FP/FN functions). Left: the AUM
(grey area) is defined as the area under the minimum of total FP and FN functions,
Mŷ(c) = min{FPTŷ(c),FNTŷ(c)}. For each interval q ∈ {1, . . . , 7} of constant total error,
the τ(ŷ)q is the largest threshold in that interval. Right: AUC ≥ 1 due to the loop which
results in double counting the dark grey area (but single counting the red area which is
positive counted twice and negative counted once).

Changepoint detection. There are many algorithms for unsupervised changepoint detection
(Aminikhanghahi and Cook, 2017; van den Burg and Williams, 2020). In supervised changepoint
detection, learning is often limited to grid search (Hocking et al., 2013, 2016; Liehrmann et al., 2021).
More sophisticated learning algorithms use linear models and non-linear decision trees that minimize
convex surrogates of the label error (Rigaill et al., 2013; Hocking et al., 2014, 2015; Drouin et al.,
2017; Hocking and Bourque, 2020). ROC curves and AUC are used to evaluate prediction accuracy
of learned penalty functions (Maidstone et al., 2016; Hocking et al., 2020).

2. Models and Definitions

We begin by reviewing supervised binary classification and changepoint detection, then give definitions
for AUC and the new AUM loss function.

2.1 Review of supervised binary classification

In supervised binary classification we are given a set of n labeled training examples, {(xi, yi)}ni=1

where xi ∈ Rp is an input feature vector for one example and yi ∈ {−1, 1} is a binary output/label.
The goal of binary classification is to learn a function f : Rp → R which is used to compute real-valued
predictions ŷi = f(xi) with the same sign as the corresponding label yi. Margin-based learning
algorithms such as logistic regression and support vector machines involve minimizing a convex
surrogate loss function ` : R→ R, summed over all training examples:

L(f) =

n∑
i=1

`[yif(xi)]. (1)

Large margin values yif(xi) > 0 yield correct predictions, whereas small values yif(xi) < 0 yield
incorrect predictions. Pairwise loss functions involve minimizing a convex loss summed over all pairs
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of positive and negative examples,

L(f) =
∑

i:yi=−1

∑
j:yj=1

`[f(xj)− f(xi)]. (2)

Large pairwise difference values f(xj)−f(xi) > 0 yield correctly ranked pairs, whereas small pairwise
difference values f(xj) − f(xi) < 0 yield incorrectly ranked pairs. Typical choices for the convex
surrogate loss function `(z) include logistic log[1 + exp(−z)], linear hinge (1− z)+, and squared hinge
(1 − z)2+, where (·)+ is the positive part function. After a function f has been learned using the
training data, it can be evaluated by computing non-convex evaluation metrics such as the zero-one
loss or the AUC with respect to a held-out test set.

2.2 Review of supervised changepoint detection

Supervised changepoint detection is a problem that occurs in various fields of study such as genomics
(Hocking et al., 2014) neuroscience (Jewell et al., 2019), and electrocardiogram data analysis (Fo-
toohinasab et al., 2021). The goal is to accurately detect changepoints which are consistent with
the partial labels that are given in a set of data sequences measured over space or time. Here we
give a brief overview of supervised changepoint detection; for details see (Rigaill et al., 2013; Truong
et al., 2017). We assume for each labeled training example i ∈ {1, . . . , n} there is a corresponding
data sequence vector zi and label set Li. For example in Figure 1 we show a data sequence zi with
a label set Li that contains one positive label (grey region in which there should be exactly one
predicted changepoint). Dynamic programming algorithms can be used on the data sequence zi to
compute a path of optimal changepoint models m̂k

i for different model sizes k ∈ {1, 2, . . . } (Maidstone
et al., 2016). For example in Figure 1 (left) we show four models in the path (with k = 2, 3, 4, 15
segments). The label set Li can be used to compute the number of false positive and false negative
labels with respect to any predicted set of changepoints (false positives for too many changepoints,
false negatives for not enough changepoints). Each example i also has a model selection function

k∗i : R+
0 → {1, 2, . . . } which maps a non-negative penalty value λ̂i to a selected model size k∗i (λ̂i)

(Figure 1, right bottom). We assume there is a fixed feature map φ which can be used to compute a
feature vector xi = φ(zi) ∈ Rp for each labeled example (typical features include measures of data
sequence size, estimates of variance/noise, etc).

We want to learn a function f : Rp → R which inputs a feature vector and outputs a real-valued
prediction that is used as a negative log penalty value, f(xi) = − log λ̂i. The goal is to predict model

sizes k∗i (λ̂i) that result in minimal label errors. Since the label error function is non-convex like the
zero-one loss in binary classification (Figure 1, right top), previous learning algorithms instead use
the gradient with respect to a convex surrogate such as a hinge loss (Rigaill et al., 2013; Drouin
et al., 2017) or a censored regression loss (Barnwal et al., 2020).

2.3 Definition of false positive and negative functions

In this paper, we assume the following general learning context in which supervised binary classification
and changepoint detection are specific examples. For each labeled training example i, we have one
or more labels such that there are at most FNPi ∈ Z+ = {0, 1, . . . } false negatives possible and
FPPi ∈ Z+ false positives possible. Given a real-valued prediction ŷi = f(xi) ∈ R, we can use
the labels to compute the number of predicted false positives FPi(ŷi) ∈ {0, . . . ,FPPi} and false
negatives FNi(ŷi) ∈ {0, . . . ,FNPi}. The FPi,FNi functions return the number of false positive and
false negative labels for a given predicted value ŷi.

Exact representation using breakpoints. By convention we assume that the FPi,FNi functions
are piecewise constant and right continuous; that the FPi functions start at zero, limx→−∞ FPi(x) = 0;
and the FNi functions end at zero, limx→∞ FNi(x) = 0. These assumptions ensure that (1) our
proposed AUM loss function will always be finite, and (2) it can be computed efficiently by representing
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the error functions exactly using a finite set of breakpoints. For each breakpoint tuple (v,∆FP,∆FN),
v ∈ R is a predicted value threshold where there are changes ∆FP,∆FN (discontinuity) in the error
functions, FPi(v)− limx→v− FPi(x) = ∆FP and similar for FN. For example, in Figure 1 the error
functions can be exactly represented by a set of four such breakpoints. These breakpoints will be
used when computing our proposed loss function and learning algorithm.

Case of binary classification. In the case of binary classification, for all positive examples
i : yi = 1 we have FPPi = 0, FNPi = 1, FPi(ŷ) = 0, FNi(ŷ) = I(ŷ < 0), where I is the indicator
function (outputs 1 if argument is true, 0 otherwise). For all negative examples i : yi = −1,
FPPi = 1, FNPi = 0, FPi(ŷ) = I(ŷ ≥ 0), FNi(ŷ) = 0. Note that FPi is either constant/zero
(for positive examples) or non-decreasing (for negative examples), and FNi is either constant/zero
(for negative examples) or non-increasing (for positive examples). Since the prediction threshold is
always zero in binary classification, these functions can be exactly represented by the breakpoint
(v = 0,∆FP = 0,∆FN = −1) for all positive examples, and (v = 0,∆FP = 1,∆FN = 0) for all
negative examples.

Case of changepoint detection. In changepoint detection, we have more general FPi and FNi

functions that can be non-monotonic, with data-dependent thresholds v that can be computed in
advance of learning f . For example, in Figure 1, we show a data sequence with one positive label
(in which there should be exactly one predicted changepoint). Predicting no changepoint in this
label results in a false negative, and predicting two changepoints in this label results in a false
positive. Therefore, we have FPPi = FNPi = 1 for this particular example i; the false positive
function is non-decreasing, FPi(ŷi) ≈ I(ŷi ≥ 3.001), and the false negative function is not monotonic,
FNi(ŷi) ≈ I[ŷi ∈ (∞,−1.929)∪(−1.388,−1.136)]. When the false negative function is non-monotonic,
the true positive rate is also non-monotonic (the ROC curve can move down as well as up when
prediction constant is increased). Given a pre-computed path of changepoint models with loss/size
values, the exact breakpoints (v,∆FP,∆FN) in such error functions can be efficiently computed
using a linear time algorithm (Hocking and Vargovich, 2020).

2.4 Definition of ROC curve and AUC

In this section, we show how the previously defined functions can be used to define the ROC curve
and the AUC. Given a vector of predictions ŷ ∈ Rn, and a constant c ∈ R added to that vector, we
define the False Positive Total (FPT) and False Negative Total (FNT) functions as

FPTŷ(c) =

n∑
i=1

FPi(ŷi + c), (3)

FNTŷ(c) =

n∑
i=1

FNi(ŷi + c). (4)

The corresponding False Positive Rate (FPR) and True Positive Rate (TPR) functions are

FPRŷ(c) =
1∑n

i=1 FPPi
FPTŷ(c), (5)

TPRŷ(c) = 1− 1∑n
i=1 FNPi

FNTŷ(c). (6)

The ROC curve for a given prediction vector ŷ is the plot of TPRŷ(c) versus FPRŷ(c) as the constant
c is varied from −∞ to ∞. The AUC is the integral,

AUC(ŷ) =

∫
TPRŷ(c)dFPRŷ(c). (7)
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Assuming the FPTŷ(c) and FNTŷ(c) functions are piecewise constant (as in binary classification
and changepoint detection) then the ROC curve can be described as a sequence of Q points

{(fpr(ŷ)q, tpr(ŷ)q)}Qq=1 in ROC space (note that this sequence of points depends on the predicted
values ŷ). The first point q = 1 corresponds to prediction threshold t = −∞ which results in TPR=0
and FPR=0; the last point q = Q is for t =∞ which results in TPR=1 and FPR=1 (Figure 2). The
AUC can be computed using this sequence,

AUC(ŷ) =

Q∑
q=2

(fpr(ŷ)q − fpr(ŷ)q−1)(tpr(ŷ)q−1 + tpr(ŷ)q)/2. (8)

In binary classification we have fpr(ŷ)q−1 ≤ fpr(ŷ)q which means while tracing the ROC curve from
FPR=TPR=0 to FPR=TPR=1 there are no moves to the left, and all the terms in the sum above are
positive. In fact this is also true of changepoint detection problems for which all the FPi functions are
non-decreasing. In these cases the ROC curve is monotonic, with AUC(ŷ) ∈ [0, 1] for any predicted
values ŷ.

2.5 Looping curves motivate optimizing ROC points in changepoint problems

In the context of changepoint detection, it is possible to have non-monotonic ROC curves with loops,
when there are data sequences with non-hierarchical changepoint models. For example, Figure 1 (left)
shows a data sequence with a non-hierarchical changepoint model, because the changepoint which
was detected for a model size of two segments is not present at the model size of three segments.
Because there is a positive label for that changepoint, the FNi function is non-monotonic (FN=1
for model sizes of 1 and 3 segments, FN=0 for model sizes of 2 and 4 segments). In this case while
tracing the ROC curve from FPR=TPR=0 to FPR=TPR=1, there are moves up as usual, but also
down. Similarly, if some of the FPi functions are not monotonically increasing, then it is possible
to have fpr(ŷ)q−1 > fpr(ŷ)q which results in a move to the left, and a negative term in the AUC
equation (8). If there are non-monotonic FNi and FPi functions, then it is possible to have loops in
the ROC curve, and the AUC is therefore not necessarily bounded between 0 and 1.

For a simple synthetic example, consider the FP/FN functions and corresponding ROC curves
in Figure 2. In this example, the ROC curve has area ≈ 1.22 because it contains a loop which
double-counts a large portion of ROC space. This looping implies existence of ROC points q which
are highly sub-optimal in terms of TPR and/or FPR (for example, q ∈ {2, 3, 4, 5} in Figure 2). By
“sub-optimal” we mean ROC points that occur more toward the bottom right of ROC space, where
both FP and FN are large, as is min{FP,FN}. Thus we observe an association between looping
ROC curves, AUC greater than one, and existence of some thresholds or points on the ROC curve
with highly sub-optimal error rates.

Although this seems like a rare phenomenon, we have seen this occur in real data. For example,
in Figure 3 (left) we show error curves for two labeled examples from another real changepoint
detection data set. One example has a positive label that results in a non-monotonic false negative
function, and the other example has a negative label that results in a non-monotonic false positive
function. When the predicted value for the negative example is about 5 greater than the predicted
value for the positive example, we observe AUC=2 (Figure 3, right). This is the result of a loop
in ROC space, indicating that there is some prediction threshold that results in (FPR=1,TPR=0)
which corresponds to 100% error and 0% accuracy. Therefore, unconstrained maximization of the
AUC may not be a desirable optimization objective, because it can result in ROC curves with loops
and points in the lower right, with large min{FP,FN} values. Instead, we would prefer to maximize
the AUC subject to the constraint that the ROC curve is monotonic, so that there are no highly
sub-optimal ROC points in the lower right. We therefore propose as an optimization objective to
minimize the total min{FP,FN} over all ROC points, which we interpret as attempting to maximize
AUC subject to a monotonicity constraint on the sequence of ROC points. This objective means
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that ideal ROC points would be moved away from the lower right, toward the upper left, with the
best case being a monotonic ROC curve with AUC=1. We formalize this idea in the next section,
and provide a new surrogate loss function for this objective.

2.6 Proposed surrogate loss function (AUM)

In this section we propose the AUM loss function, which is short for Area Under Min(FP,FN). The
intuition behind the AUM is that we want to minimize the number of prediction thresholds that
result in large error rates. To formally define the AUM we must first define the minimum of total
false positives and false negatives for a given constant c added to predicted values,

Mŷ(c) = min{FPTŷ(c),FNTŷ(c)}. (9)

Note that the definition above uses total counts of false positives and false negatives; this corresponds
to the AUM.count method we study in the results section. Another variant, which we call AUM.rate
in the results, defines the min using normalized rates (between 0 and 1) rather than absolute counts,

Mŷ(c) = min{FPRŷ(c),FNRŷ(c)}. (10)

Using either of the two definitions of the min above, we define the AUM as

AUM(ŷ) =

∫ ∞
−∞

Mŷ(c) dc. (11)

The definition (11) says that the AUM is computed by integrating the min function Mŷ(c) over all
possible constants c ∈ R that could be added to predicted values. Geometrically, this corresponds to
the area under the minimum of total false positive and false negative functions (Figure 2, left). Note
that the AUM is well-defined and can be computed for any FPi,FNi functions (even those which are
non-monotonic, which can occur with non-hierarchical changepoint models).

2.7 Interpretation as L1 relaxation of total Min(FP,FN) over ROC points

Computing the AUM is similar to the AUC, in that we must compute error/accuracy rates for each

possible constant c which could be added to predicted values. First let {(fpt(ŷ)q, fnt(ŷ)q, τ(ŷ)q)}Qq=1

be a sequence ofQ tuples, each of which corresponds to a point on the ROC curve (Figure 2, right). The
fpt/fnt are false positive/negative totals whereas τ are values such that there is a change/threshold at
Mŷ(τ). As shown in Figure 2 we assume these values are increasing, −∞ = τ(ŷ)0 < · · · < τ(ŷ)Q =∞.
For each q ∈ {1, . . . , Q} there is a corresponding interval of values c between τ(ŷ)q−1 and τ(ŷ)q such
that FPTŷ(c) = fpt(ŷ)q and FNTŷ(c) = fnt(ŷ)q for all c ∈ (τ(ŷ)q−1, τ(ŷ)q) (Figure 2, left). Then
we define the minimum for interval/ROC point q as m(ŷ)q = min{fpt(ŷ)q, fnt(ŷ)q}. Because the
first and last minima are zero, m(ŷ)1 = m(ŷ)Q = 0, the area under the first and last intervals is zero,
and the AUM can be computed by summing over all of the other intervals,

AUM(ŷ) =

Q−1∑
q=2

[τ(ŷ)q − τ(ŷ)q−1]m(ŷ)q. (12)

For example, in Figure 2 there are Q = 7 tuples/intervals (points on the ROC curve), five of which
result in a positive AUM value, resulting in a total AUM of 75.

The AUM can be interpreted as an L1 relaxation of the following non-convex Sum of Min(FP,FN)
function,

SM(ŷ) =

Q−1∑
q=2

I[τ(ŷ)q 6= τ(ŷ)q−1]m(ŷ)q =
∑

q:τ(ŷ)q 6=τ(ŷ)q−1

m(ŷ)q. (13)
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Figure 3: Real data example with AUC greater than one. Left: error functions for two labeled
examples in a real changepoint detection data set. Right: AUC, AUM, and SM values as a
function of the difference in predicted values between the two labeled examples. When the
difference is around 5, we have AUC=2. The AUC and SM are piecewise constant functions
of the predicted values, whereas the AUM is a continuous piecewise linear function. At
differentiable points, AUM=0 implies AUC=1 (but the converse is false).

The difference is that the L1 norm of τ(ŷ)q−τ(ŷ)q−1 in (12) has been changed to the L0 pseudo-norm
in (13). The indicator function I takes values in zero and one, which means the SM is the sum
of m(ŷ)q values over all distinct ROC points q. Geometrically, the SM function measures total
distance of distinct points on the ROC curve from the left (FPR=0) or top (TPR=1, FNR=0) of
ROC space (whichever is smaller). A visualization of the piecewise constant SM loss as a function of
the predicted values ŷi shows that the AUM is indeed a continuous relaxation that is differentiable
almost everywhere (Figure 3, right).

2.8 Properties of AUM

A few interesting properties of the AUM should be immediately apparent.

Finite. Since FPi(−∞) = 0 and FNi(∞) = 0 for all i (by assumption), we have M(ŷ ±∞) = 0,
which means the AUM integral (11) is finite, AUM(ŷ) <∞.

Non-negative. Since the label error is never negative, the AUM integral is never negative, AUM(ŷ) ≥
0.

Convexity. If all of the FPi and FNi functions are monotonic, then the AUM is convex.

Other properties. The AUM is continuous, piecewise linear, and differentiable almost everywhere.

It can be seen that non-differentiable points in the AUM coincide with discontinuities in AUC
(Figure 3, right). Furthermore at differentiable points, we see that AUM(ŷ) = 0 implies AUC(ŷ) = 1.
However at non-differentiable points it is possible to have AUM=0 with sub-optimal AUC (for example
AUC=0.5 at the left-most orange dot in Figure 3, right). Additionally there are differentiable points for
which AUC=1 or 2, and we have AUM > 0, which means there are some prediction thresholds which
result in FP=FN=1 (for example in Figure 3, right, at prediction difference=5 we have AUM=0.1
and AUC=2). These observations suggest modifying the learning objective from maximizing AUC,
to instead minimizing AUM, which results in AUC=1 (at differentiable points). We therefore propose
an AUM gradient descent learning algorithm in the next section.
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3. Algorithms

In this section we propose algorithms for computing the AUM and its gradient, and for learning
predictive models using gradient descent. Throughout we use n as the number of examples for which
we want to compute predictions and AUM; note that this can be the full data set size (full gradient
descent algorithm), or the size of a minibatch (stochastic gradient descent algorithm).

3.1 Details of AUM computation

In previous sections we have assumed that a sequence of Q points on the ROC curve (or equivalently
intervals of FP/FN functions) can be computed, and in this section we explain how to do that. Recall
from Section 2.3 that the FPi,FNi functions have an exact representation in terms of breakpoints.
Let there be a total of B breakpoints in the error functions over all n labeled training examples, where
each breakpoint b ∈ {1, . . . , B} is represented by the tuple (vb,∆FPb,∆FNb, Ib). The Ib ∈ {1, . . . , n}
is an example index, so there are changes ∆FPb,∆FNb at predicted value vb ∈ R in the error functions
FPIb ,FNIb (Figure 1). For example in binary classification, there are B = n breakpoints (same as
the number of labeled training examples); for each breakpoint b ∈ {1, . . . , B} we have vb = 0 and
Ib = b. For breakpoints b with positive labels yb = 1 we have ∆FP = 0,∆FN = −1, and for negative
labels yb = −1 we have ∆FP = 1,∆FN = 0. In changepoint detection we have more general error
functions, which may have more than one breakpoint per example. For example the labeled data
sequence shown in Figure 1 is a single labeled training example i with error functions that can be
represented by four breakpoints b with the same Ib = i value.

Given a prediction vector ŷ = [ŷ1 · · · ŷn]ᵀ ∈ Rn we can compute a prediction threshold tb = vb−ŷIb
for each breakpoint b ∈ {1, . . . , B}. The prediction thresholds t ∈ {t1, . . . , tB} are where there are
changes in the total error functions FPTŷ(t),FNTŷ(t) defined in equations (3–4). These functions
can be exactly represented by the sequences of b ∈ {1, . . . , B} error values

FPb =
∑

j:tj<tb

∆FPj , (14)

FPb =
∑

j:tj≤tb

∆FPj , (15)

FNb =
∑

j:tj≥tb

−∆FNj , (16)

FNb =
∑

j:tj>tb

−∆FNj . (17)

The FPb,FNb are the error values before the threshold tb, whereas FPb,FNb are the error values
after the threshold. We sort the breakpoints by threshold, yielding a permutation {s1, . . . , sB}
of the indices {1, . . . , B} such that for every q ∈ {2, . . . , B} we have tsq−1

≤ tsq . All of the error

values FPb,FPb,FNb,FNb, for every b ∈ {1, . . . , B}, can then be computed via a modified cumulative
sum (in the forward direction starting with FP1 = 0, and in the backward direction starting with
FNB = 0). In terms of the notation of Section 2.7, we have Q = B+ 1 points (not necessarily unique)
on the ROC curve such that τ(ŷ)q = tsq and m(ŷ)q = min{FPsq ,FNsq

} = min{FPsq−1
,FNsq−1

}.
The AUM can then be computed via

AUM(ŷ) =

B∑
q=2

(tsq − tsq−1) min{FPsq−1 ,FNsq−1}, (18)

=

B∑
q=2

(tsq − tsq−1
) min{FPsq ,FNsq

}. (19)
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The equations above state that the AUM can be computed by multiplying each threshold difference
tsq − tsq−1 by the minimum below breakpoint sq (19) or above breakpoint sq−1 (18). Since the slowest
operation is the sort, the overall time complexity for computing the AUM is O(B logB).

3.2 Algorithm for computing directional derivatives

First we note that the AUM function is not differentiable everywhere, so the gradient is not defined
everywhere (for example, orange dots in Figure 3, right). Second we note that the AUM function
can be non-convex, in which case the sub-differential from convex analysis is not defined (Rockafellar,
1970). Instead, we propose an algorithm for computing the AUM directional derivatives, which are
defined everywhere. We recall the general definition of a directional derivative.

Definition 1 Given vectors x,v ∈ Rn and a function f : Rn → R, the directional derivative of f at
x in the direction of v is the function ∇vf : Rn → R given by

∇vf(x) = lim
h→0

f(x + hv)− f(x)

h
. (20)

We would like to compute ∇vAUM(ŷ), for a set of directions v. We are interested in computing
the directional derivative along a single dimension i ∈ {1, . . . , n}, in either the negative or positive
direction, which correspond to using direction vectors v with −1 or 1 at the i-th position, and zeros
at each other position,

v(−1, i) =
[

0 · · · −1 · · · 0
]ᵀ
, (21)

v(1, i) =
[

0 · · · 1 · · · 0
]ᵀ
. (22)

The intuition of these direction vectors is that each will give us the rate of change of AUM, if a single
prediction i is either increased or decreased. We propose an algorithm for efficiently computing the
following n× 2 matrix of directional derivatives,

Df (x) =

[
∇v(−1,1)f(x) · · · ∇v(−1,n)f(x)
∇v(1,1)f(x) · · · ∇v(1,n)f(x)

]ᵀ
. (23)

We will compute DAUM(ŷ), which is the matrix of directional derivatives for a given prediction vec-
tor. If we have equality of elements of all rows of this matrix, i.e., ∇v(−1,i)AUM(ŷ) = ∇v(1,i)AUM(ŷ)
for all i, then the gradient does exist at ŷ and is equal to that value. The following theorem shows
how to compute the elements of this matrix.

Theorem 2 The AUM directional derivatives for a particular example i ∈ {1, . . . , n} can be computed
using the following equations.

∇v(−1,i)AUM(ŷ) =
∑
b:Ib=i

min{FPb,FNb} −min{FPb −∆FPb,FNb −∆FNb}, (24)

∇v(1,i)AUM(ŷ) =
∑
b:Ib=i

min{FPb + ∆FPb,FNb + ∆FNb} −min{FPb,FNb}. (25)

Proof We can compute AUM using either (18) or (19). To compute a directional derivative we
need to evaluate AUM[ŷ + hv(d, i)]. To do that we must use (18) if d = −1 and (19) if d = 1.
First consider the case of d = 1, if tsq−1

= tsq , and Isq−1
= i. In that case the analogous term in

AUM[ŷ + hv(d, i)] will have vsq−1
− ŷsq−1

− h < vsq − ŷsq . Then the min in the corresponding term

11
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Algorithm 1 AUM and Directional Derivatives

1: Input: Predictions ŷ ∈ Rn, breakpoints in error functions vb,∆FPb,∆FNb, Ib for all b ∈
{1, . . . , B}.

2: Initialize to zero the AUM ∈ R and directional derivative matrix D ∈ Rn×2.
3: tb ← vb − ŷIb for all b.
4: s1, . . . , sB ← SortedIndices(t1, . . . , tB).
5: Compute FPb,FPb,FNb,FNb for all b using s1, . . . , sB and (14–17).
6: for b ∈ {2, . . . , B} do
7: AUM += (tsb − tsb−1

) min{FPb,FNb}.
8: for b ∈ {1, . . . , B} do
9: DIb,1 += min{FPb,FNb} −min{FPb −∆FPb,FNb −∆FNb}

10: DIb,2 += min{FPb + ∆FPb,FNb + ∆FNb} −min{FPb,FNb}
11: Output: AUM and matrix D of directional derivatives.

must be min{FPsb−1
+ ∆FPsb−1

,FNsb−1
+ ∆FPsb−1

} and so

∇v(1,i)AUM(ŷ) =

B∑
b=2

I[Isb−1
= i] min{FPsb−1

+ ∆FPsb−1
,FNsb−1

+ ∆FPsb−1
}

−
B∑
b=2

I[Isb = i] min{FPsb−1
+ ∆FPsb−1

,FNsb−1
+ ∆FPsb−1

}, (26)

=

B∑
b=1

I[Isb = i] min{FPsb + ∆FPsb ,FNsb
+ ∆FPsb}

−
B∑
b=1

I[Isb = i] min{FPsb ,FNsb
}. (27)

The first equality comes from the definition of the directional derivative and the second re-writes
some of the b− 1 indices as b. The sum can be extended to start at b = 1 since FPs1 = 0 (the first
min is zero). Finally, re-writing the sums and removing the indicator functions obtains the desired
result. The proof for the case of d = −1 is analogous.

3.3 Pseudocode and complexity analysis

We propose to compute the matrix of directional derivatives using Algorithm 1 which inputs a
prediction vector ŷ ∈ Rn and an exact description of the error functions in terms of breakpoints
vb,∆FPb,∆FNb, Ib. The first step is to compute thresholds tb = vb − ŷIb in the total error functions
(line 3) which are then sorted (line 4). The sorted indices are then used to compute modified
cumulative sums of false positives and false negatives, FPb,FPb,FNb,FNb, for each breakpoint b
(line 5). Note that for FP we start with FP1 = 0 and add in the forward direction, whereas for FN
we start with FNB = 0 and subtract in the reverse direction. Each iteration of the for loop over
intervals of threshold values (line 6) adds to the AUM (line 7). Each iteration of the for loop over
breakpoints b (line 8) adds to row Ib of the directional derivative matrix. The first column stores
the derivative in the negative direction (line 9) and the second column stores the derivative in the
positive direction (line 10). The time complexity of Algorithm 1 is log-linear O(B logB) because
of the sort (line 4). Since there is at least one breakpoint in each of the n example-specific error
functions, the total number of breakpoints B ≥ n. Therefore, computing the AUM and its directional
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derivatives is O(n log n) time, asymptotically slower than O(n) margin-based loss functions by only
a small log factor, and substantially faster than O(n2) pairwise loss functions.

3.4 Gradient descent algorithm for predicted values

We propose gradient descent optimization algorithms that use the AUM directional derivatives
computed using Theorem 2 and Algorithm 1. First to study how minimizing the train AUM affects
the train AUC, we propose to optimize the n-vector of predictions ŷ. When the AUM is non-convex
(in the case of changepoint problems with non-monotonic FPi and FNi functions), the initialization
of the algorithm is important, because the algorithm will converge to a local (not global) minimum.
Therefore when optimizing the vector of predictions, we propose initializing each ŷi to a value with
minimum label errors,

ŷ
(0)
i = arg min

x
FPi(x) + FNi(x). (28)

After initialization we need to compute a descent direction; typically the negative gradient is
used. Recall that since the AUM has non-differentiable points, the gradient is not defined at
these points. The “gradient” we propose to use is the mean of the two columns of the directional
derivative matrix, D̄AUM(ŷ) ∈ Rn, with each element i ∈ {1, . . . , n} of this vector defined as
[∇v(−1,i)AUM(ŷ) + ∇v(1,i)AUM(ŷ)]/2. When running our gradient descent algorithm, we have
observed that it empirically almost always stays at differentiable points (that is, columns of directional
derivative matrix are equal). However, we have observed a few cases where the gradient descent
algorithm visits non-differentiable points, for which there is at least one row in the directional
derivative matrix with entries that are not equal. Examples of such directional derivative rows
[∇v(−1,i)AUM(ŷ),∇v(1,i)AUM(ŷ)] that we have observed include [−0.0019,−0.0011] and [−0.0006, 0],
both of which indicate that the loss would increase if the predicted value is decreased. We also
perform line search via grid search in order to obtain a step size α(j) which results in the largest
decrease in AUM. Also let β(j) be an intercept or threshold with minimal error after taking the line
search step (it only affects the label error/accuracy and not the AUM). Note that this intercept can
be efficiently computed at the same time as the AUM and its directional derivative matrix, by a
simple linear scan over all thresholds. We then perform gradient descent updates for each iteration
j ∈ {0, 1, . . . } via

ŷ(j+1) = ŷ(j) − α(j)D̄AUM(ŷ(j)) + β(j). (29)

3.5 Gradient descent learning algorithms for making predictions

In the context of making predictions on a held-out test set using a linear model f(x) = wᵀx + β, the
parameters to learn are a weight vector w ∈ Rp to optimize via gradient descent, and an intercept
β ∈ R which can be optimized via a linear scan to find a threshold with minimum label error. Let
X ∈ Rn×p be the feature/input matrix, so Xw + β ∈ Rn is the vector of predicted values on the
train set. In the context of binary classification problems we use an initialization w(0) near zero. In
the context of changepoint detection problems we consider an intialization w(0) based on minimizing
a convex squared hinge loss with L1 regularization (Rigaill et al., 2013). This convex loss function
has a minimum for each example at predicted values that achieve minimum label errors, so we expect
this initialization to have large accuracy but not necessarily large AUC. Again let α(j) be the line
search step size, and let β(j) be an intercept with minimal train error. We perform gradient descent
for each iteration j ∈ {0, 1, . . . } via

w(j+1) = w(j) − α(j)XᵀD̄AUM(Xw(j) + β(j)). (30)

In the context of a more complex model such as a neural network, the AUM “gradient” D̄AUM can
be used with back-propagation to obtain gradients with respect to all of the weights in the neural
network. To regularize the model for the experiments in this paper, we use early stopping (number of
iterations chosen by minimizing AUM or maximizing AUC with respect to a held-out validation set).
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Figure 4: In a real changepoint detection problem with n = 54 labeled examples, minimizing the
AUM tends to increase train AUC and label error rates. Left: we used AUM gradient
descent on the n-vector of predicted values ŷ in the train set (initial predictions chosen by
minimizing label errors for each example). Decreases in AUM happen during the same
iterations as increases in AUC and label error rates. Middle: ROC curves before and after
using AUM gradient descent on the n-vector of predicted values (dot shows a point on
each ROC curve with minimum label errors). Although the AUM minimization resulted in
higher label error rates, the ROC curve after the gradient descent appears much smoother
(less sub-optimal points) than the initial ROC curve. Right: optimizing the p-vector of
weights in a linear model (p = 27 features, initial weights minimize an un-regularized
squared hinge loss summed over labeled examples). Note that AUC=0.85 is unchanged by
the optimization but AUM decreases and error rate increases.

4. Empirical Results

We empirically study AUM minimization in the context of binary classification and changepoint
detection problems. Our goal is to demonstrate that AUM minimization can result in AUC maximiza-
tion with respect to train and test data. Note that for simplicity, we limit most of our comparisons to
full gradient algorithms (each gradient computed using all training examples), although it is possible
to use AUM with minibatch stochastic gradient algorithms (see Section 4.4).

4.1 AUM gradient descent increases train AUC and label errors in changepoint
problems

In this experiment our goal was to demonstrate that minimizing the AUM results in maximizing the
AUC in the train set. We used the chipseq data (a benchmark for labeled changepoint detection) from
the UCI repository (Asuncion and Newman, 2007), treating each (set.name, fold) as a different train
set, with pre-processing as previously described.1 In brief, for each labeled example, changepoint
models were computed for a range of penalty values, which resulted in models with a range of
changepoints (some with few changepoints, others with many). Then the label error rate for

each model was computed, along with a penalty λ̂i which resulted in minimum label errors for
each labeled example i. Finally these penalty values were used as the initial prediction vector
ŷ = [− log λ̂1 · · · − log λ̂n], which was used as the optimization variable in an AUM gradient descent
algorithm. A line search was used for the step size so that the AUM was guaranteed to decrease
at each iteration. Overall there were 68 different train sets with the number of labeled examples

1. https://github.com/tdhock/feature-learning-benchmark
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Figure 5: Test AUC is inversely correlated with test AUM values, when learning a linear model by
AUM gradient descent. Algorithm (y axis) shows how number of iterations was chosen, by
minimizing validation AUM, maximizing validation AUC, or taking the initial iteration.
Each of five columns from left to right shows results for four random seeds on a given data
set and test fold (n,p=number of examples and features for that entire data set).

ranging from n = 7 to 1011, and the total number of breakpoints in error functions ranging from
B = 47 to 3104.

We expected that by using the predicted values directly as the optimization variable in gradient
descent, we should be able to obtain ROC curves that were significantly different from the initialization
(hopefully with larger AUC, even though the initialization came from minimizing the label error
independently for each example). In a small number of train sets we observed that the optimization
resulted in little or no change to both AUM and AUC; this happened when the initialization was
close to or at a stationary point of the AUM (for example, when AUM=0 and AUC=1). However in
most of the train sets we observed that minimizing the AUM results in increased AUC (on the train
set).

In one representative train set (H3K4me3 XJ immune fold 4 which has n = 54 labeled examples
with a total of B = 347 breakpoints in error functions), we observed that the AUC and label error
rate increases during the same iterations that the AUM decreases (Figure 4, left). Before optimization
the ROC curve was highly non-monotonic with AUC=0.84 and a sharp point in the upper left
corner; after AUM optimization the ROC curve became more regular with increased AUC=0.89
(Figure 4, middle). Interestingly, the AUC stayed below 1 after optimization, which suggests that
AUM optimization does not result in looping ROC curves. This result suggests that AUM gradient
descent can be used to maximize the AUC, although the label error rate also increases.

We performed a second experiment, this time optimizing p = 27 weights in a linear model
parameter vector which was used to compute a prediction for each of the n = 54 labeled examples.
The weights were initialized by using a gradient descent algorithm to minimize an un-regularized
squared hinge loss that is a convex relaxation of the label error (Rigaill et al., 2013). We expected
the constraints of the linear model to reduce the accuracy with respect to the previous experiment
(direct optimization of predicted values). We observed that after optimizing the weights using AUM
gradient descent, the train AUC remained the same, but the train error rate increased (Figure 4,
right). This experiment shows that the constraints of a linear model can prevent AUM minimization
from resulting in AUC maximization (even in a data set for which it is possible to achieve larger
AUC values).

4.2 Test AUM inversely correlated with test AUC in changepoint problems

In these experiments, the goal was to demonstrate that test AUC is inversely correlated with test
AUM using our proposed linear model based on AUM minimization. We considered supervised

15



Hillman and Hocking

Figure 6: Test AUC in binary classification (zip data, images of 0/1 digits). Fixed test set with
balanced classes (50% positive, 50% negative labels), and three train sets with different
class imbalance (1%, 5%, 50% positive labels). Left (a): AUM count is more accurate
than AUM rate. Right (b): AUM count minimization can result in poorer results with
imbalanced datasets, but it is still at least as accurate as baselines, and sometimes more
accurate.

changepoint detection data sets from a public repository.2 It included pre-defined fold IDs that we
used to define train/test splits over labeled examples of changepoint detection problems. In the five
train sets that we analyzed (Figure 5), the number of labeled examples ranged from n = 216 to 3322,
the number of features from p = 26 to 117, and the total number of error function breakpoints from
B = 1275 to 7732. As explained in Section 3.5, our initialization and baseline was a linear model
learned via gradient descent on a convex squared hinge loss with L1 regularization (Rigaill et al.,
2013). To determine the extent to which the result depends on random initialization, we used four
different seeds to select four different initial models. Some of the random seeds resulted in the same
initial weights, despite having different seeds.

For each train set and random seed we used AUM gradient descent and selected the number
of iterations via 4-fold cross-validation (take mean validation AUC/AUM over folds, then select
iterations by maximizing AUC or minimizing AUM). In general we observed that both methods for
selecting the number of iterations resulted in increased test AUC and decreased test AUM (middle
three columns of Figure 5). One exception was for a single random initialization (fourth column,
H3K4me3 XJ immune, Min.Valid.AUM), both test AUC and test AUM decreased. For some data,
the AUM gradient descent did not improve over the initialization (left and right columns). In one
case there were very different train and test sets (left column, ATAC JV adipose Test Fold 4), so test
AUM increased and test AUC decreased, consistent with our claim that AUM and AUC are inversely
correlated. In another case (right column, systematic Test Fold 1), the selected number of gradient
descent iterations was zero, so the test AUC/AUM of the learned model were the same as the initial
model. In the cases where the AUC increased, the AUC values remained below 1, which provides
evidence that AUM minimization does not create looping ROC curves. Overall these experiments
in changepoint problems indicate that our proposed AUM gradient descent algorithm often results
in increased test AUC, with respect to the initial/baseline linear model learned by minimizing a
surrogate of the label error.

4.3 Test AUC in binary classification with linear model in zip data

The goal in this section was to study the accuracy of our proposed AUM loss function in unbalanced
binary classification problems. Our experiment used the zip.train and zip.test image classification
data3 from (Hastie et al., 2009). Each input is a 16 × 16 image which is represented by a vector

2. https://github.com/tdhock/neuroblastoma-data
3. https://web.stanford.edu/~hastie/ElemStatLearn/
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x ∈ [ − 1, 1]256. There are 10 classes (one for each digit), but we only used two classes (0/1) in
order to study binary classification. For both the zip.train and zip.test files, we discarded some
yi = 0 labels in order to obtain sets with equal numbers of positive and negative labels (total 2010 in
train, 528 in test). Then we generated 10 different train sets by randomly selecting 1000 examples
with a class balance in {1%, 5%, 50%}. The goal is to learn from the unbalanced train set data and
then provide accurate predictions (as measured by AUC) on the balanced test set. The learning
algorithms that we considered in our comparison were all based on gradient descent with constant
step size and early stopping regularization. The step size and number of iterations hyper-parameters
were chosen using grid search on a held-out validation set. For simplicity, we limit our comparisons
in this section to other full gradient methods (not stochastic) which use other loss functions.

In our first comparison we wanted to understand if it is beneficial to normalize the AUM (use
relative error rates rather than absolute error counts). In equations (11–12) we defined the AUM as
the area under the minimum of false positive and false negative counts, but we could instead use
rates. To compute AUM using rates, we need only change FPT/FNT functions in the minimum
function (9) to FPR/FNR. In Figure 6 we refer to this variant as AUM.rate, and the original version
as AUM.count. It is clear from Figure 6(a) that the AUM.count loss function variant has consistently
larger test AUC than AUM.rate. The advantage of AUM.count becomes greater as the class imbalance
is increased. For example, with no class imbalance median test AUC for AUM.count is 0.9993 and
for AUM.rate is 0.9979 (p = 0.03 in one-sided t9-test); for large class imbalance with 1% positive
labels median test AUC for AUM.count is 0.9979 and for AUM.rate is 0.9928 (p = 0.004). These
results suggest that it is not beneficial to normalize the AUM, and it is more accurate to simply
minimize the absolute min(FP,FN) counts.

In our second comparison we wanted to compare AUM optimization to standard baseline loss
functions for binary classification. As a baseline for margin loss functions (summed over labeled
examples), we used a weighted version of the logistic loss wi log[1 + exp(yif(xi))]. The weights
wi ∈ R are defined in order to ensure that the sum of weights over all negative/positive examples is
the same (Menon et al., 2013). The total number of positive examples is N1 = |{i : yi = 1}| and
negative examples is N−1 = |{i : yi = −1}|; the weights are therefore wi = 1/Nyi . For example when
the class balance is 10%, there are N1 = 100 positive examples and N−1 = 900 negative examples.
Each positive example i has a weight of wi = 1/100, and each negative example i has a weight of
wi = 1/900. The total weight over each class y ∈ {1,−1} is

∑
i:yi=y

wi = 1, which makes both classes
equally important in the loss function. As a baseline for pairwise loss functions (summed over all pairs
of positive yj = 1 and negative yi = −1 examples), we used a squared hinge loss, [1− f(xj) + f(xi)]

2
+.

Both baselines were chosen because they are supposed to maximize AUC (rather than the accuracy
rate). We observed in Figure 6(b) that the learning algorithm using the AUM loss had test AUC
values consistently better than or competitive with the baselines. The AUM loss had median test
AUC that was consistently larger than the weighted logistic loss, with the largest difference for 1%
positive labels (AUM=0.9979, logistic=0.9950, p < 0.06). There were smaller differences in median
test AUC between the AUM loss and the squared hinge all pairs loss, with the largest difference for
balanced labels (AUM=0.9993, pairs=0.9991, p < 0.19). Overall these experiments demonstrate that
the AUM loss is highly competitive with the baseline loss functions, even when the train data set has
large class imbalance.

4.4 Stochastic optimization of AUM for large binary classification problems using a
convolutional neural network

In this section we show that our proposed loss functions can be used for learning using batched
stochastic gradient descent in binary classification of large image data sets.

Implementation in PyTorch. We implemented the AUM loss functions (both count and rate)
in PyTorch (Paszke et al., 2019), which supports automatic differentiation. We therefore only needed
to implement the loss computation, and the gradient computation was provided automatically. Since
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Figure 7: Test AUC in image classification experiments: test set was balanced (about 50% positive
labels), whereas train set was imbalanced (about 1% positive labels).

the gradient is not defined everywhere for the AUM, PyTorch returns a subgradient in those cases.
For example a simple non-differentiable point occurs for labels y1 = 0, y2 = 1 with predictions
ŷ1 = ŷ2 = 0. In this case the directional derivatives are [0, 1] for observation 1 and [−1, 0] for
observation 2, whereas PyTorch returned a derivative of -0 for each observation.

Data sets and algorithms used for comparison. We used MNIST and FashionMNIST data
sets for these experiments (LeCun et al., 1998; Xiao et al., 2017). These data sets each have ten
output classes to predict, so we created new binary labels by assigning label 0 to classes 0–4, and label
1 to classes 5–9. We used the test set of 10000 observations which was pre-defined, and we created
train sets consisting of a subset of 1% of the positive examples (about 300), and all of the negative
examples (about 30000). We then split each train set into 80% subtrain (about 24500 examples), and
20% validation (about 6100 examples). We used a version of the LeNet5 neural network architecture
(LeCun et al., 1998), modified to use average pooling and ReLU activation functions.

Test AUC analysis. In this experiment we wanted to analyze the extent to which AUM mini-
mization could result in effective learning under time constraints in large data. We therefore ran
stochastic gradient descent for a maximum of 10 epochs, which means about 250 iterations/steps.
We expected that AUM should result in highly accurate predictions as long as the batch size is large
enough to allow one example of each class. We therefore used a batch size of 1000 (in order to ensure
there is at least one positive example in each batch) and constant step sizes {10−4, . . . , 102}. We
choose the best number of iterations of gradient descent, and the step size, by maximizing AUC
on the validation set. We observed that in both MNIST and FashionMNIST data sets, using the
AUM loss resulted in test AUC values which were comparable to, or better than, the logistic loss
(Figure 7). In the case of the MNIST data, the AUM.rate method shows a small but consistent
improvement over the other methods (AUM.count mean test AUC difference = 0.027, p-value in
one-sided t3 test = 0.018; logistic.weighted difference = 0.051, p-value = 0.099; logistic.unweighted
difference = 0.068, p-value = 0.061; logistic.unweighted means weight of wi = 1 in the loss for each
observation i). Overall these data provide convincing evidence that AUM can be used for highly
accurate learning using neural networks in large data sets.

4.5 Speed comparison

The goal of this section is to show that AUM gradient computation has comparable speed to existing
loss functions. In the case of binary classification, we compared the gradients of three loss functions,
as shown in (Figure 8, left): squared hinge all pairs O(n2), AUM O(n log n), and logistic O(n). For
a fixed budget of computation time (1 second), the gradient of the AUM loss can be computed for
much larger problems (n = millions) than the näıve square hinge all pairs approach (n = thousands).
As expected, we observed that the AUM has a slightly slower asymptotic runtime (larger slope on
log-log-plot) than the logistic loss.

We also did a speed test in the context of real changepoint detection problems, by comparing the
AUM to a squared hinge loss summed over each of the n labeled examples (Rigaill et al., 2013). We
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Figure 8: Speed comparison, time to compute gradient of various loss functions for data sets with
variable number n of labeled examples. Left: for binary classification our timings sug-
gest that AUM is O(n log n), faster than a O(n2) squared hinge loss summed over all
pairs of positive/negative examples, and slower than O(n) Logistic loss summed over all
labeled examples. Right: for changepoint detection problems we observed that AUM
is asymptotically similar to, but slower than, a squared hinge loss summed over labeled
examples.

observed that the AUM gradient (log-linear time) is slightly slower than the squared hinge (linear
time) in terms of asymptotic complexity (Figure 8, right). For example we observed about 10ms
for AUM versus 1ms for the squared hinge for about n ≈ 5000 examples with approximately 5
breakpoints in each example-specific error function. Overall these data show that the AUM has
comparable speed to previously proposed loss functions for AUC optimization in binary classification,
and changepoint detection.

5. Discussion and conclusions

In this paper we proposed the new AUM loss function which can be used in the context of prediction
problems with false positive/negative rates such as in supervised binary classification and changepoint
detection. We showed that the AUM can be interpreted as an L1 relaxation of a loss function that
sums the min(FP,FN) rate/count over all distinct points on the ROC curve. The AUM is highly
novel with respect to previous loss functions, which either sum over all labeled examples (margin
losses), or sum over all pairs of positive and negative examples (pairwise losses). Minimizing the
AUM encourages the points on the ROC curve to be in the upper left of the (FPR,TPR) space. In
section 2.8 we discussed an example of how AUM=0 (minimal) implies AUC=1 at differentiable points,
which suggested using AUM as a surrogate loss for ROC curve optimization. We also discussed an
example of how it is technically possible to have AUM=0 but AUC sub-optimal (at non-differentiable
points). This degenerate case is not problematic in practice, because it is highly unlikely for the
gradient descent learning algorithm to visit non-differentiable points.

We proposed a new algorithm for efficiently computing the AUM and its directional derivatives.
For n labeled training examples and B total breakpoints in all error functions, our algorithm for
computing the n × 2 directional derivative matrix is O(B logB) time, which is much faster than
previous O(n2) loss functions that näıvely sum over all pairs of positive and negative examples. In
our empirical comparisons with several previous/baseline gradient descent learning algorithms, we
observed comparable or better test AUC using our proposed method. We have shown that in large
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imbalanced binary classification data sets, the AUM loss can be used with mini-batch stochastic
gradient descent algorithms, and often out-performs baseline margin and pairwise losses. We have also
observed that both the rate and count variants of AUM are promising surrogate loss functions; one
or the other may result in more accurate learning, depending on the particular binary classification
data set used. Overall for binary classification, our proposed AUM loss function gave comparable (if
not better) results in terms of test AUC/AUM, with a much faster runtime than other algorithms
that sum over all pairs of examples.

We observed that in changepoint detection problems with non-monotonic FP/FN functions, there
is a tradeoff between AUC and accuracy that does not exist in binary classification problems. If
maximizing accuracy with respect to the labels is important, we can use existing convex surrogates
for label error such as the squared hinge loss (Rigaill et al., 2013). If maximizing AUC is important
in labeled changepoint detection problems, then we suggest learning by minimizing our new AUM
loss function which we have shown empirically results in AUC maximization (but lower accuracy).
This tradeoff between AUC and accuracy means that the max accuracy model results in a highly
non-monotonic ROC curve with many sub-optimal points, whereas the max AUC model has a more
regular ROC curve (Figure 4). Overall our results showed that the AUM is a useful surrogate loss
function for optimizing ROC curves in both binary classification and changepoint detection.

For future work, we have already started exploring the connection between AUM and other AUC
relaxations, in order to create new AUC optimization algorithms. In fact, using an L1 relaxation
pairwise loss (hinge with margin of zero) is quite similar to our approach (AUM integrates the min
of FP and FN over all thresholds, whereas pairwise loss integrates the product). This suggests that
it should be possible to compute a pairwise loss and gradient in log-linear time, so we are currently
exploring a new algorithm based on that idea. Additionally, we would like to consider several variants
of our new AUM loss function. It would be interesting to see if AUM could be effective for learning
in the context of accelerated gradient descent algorithms such as SAGA (Gower et al., 2018), even
though the AUM is not separable over training observations. Finally our current algorithm used
either constant step size or a grid search, but a faster learning algorithm could potentially be obtained
by exploiting the piecewise linear nature of the AUM during the step size computation.
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