Interpolating Classifiers Make Few Mistakes

Tengyuan Liang
Booth School of Business
University of Chicago
Chicago, IL 60637, USA

Benjamin Recht
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720, USA

Editor: Karthik Sridharan

Abstract

This paper provides elementary analyses of the regret and generalization of minimum-norm interpolating classifiers (MNIC). The MNIC is the function of smallest Reproducing Kernel Hilbert Space norm that perfectly interpolates a label pattern on a finite data set. We derive a mistake bound for MNIC and a regularized variant that holds for all data sets. This bound follows from elementary properties of matrix inverses. Under the assumption that the data is independently and identically distributed, the mistake bound implies that MNIC generalizes at a rate proportional to the norm of the interpolating solution and inversely proportional to the number of data points. This rate matches similar rates derived for margin classifiers and perceptrons. We derive several plausible generative models where the norm of the interpolating classifier is bounded or grows at a rate sublinear in \(n \). We also show that as long as the population class conditional distributions are sufficiently separable in total variation, then MNIC generalizes with a fast rate.

Keywords: Generalization, Regret, Mistake Bound, Interpolation, Least-squares classification.

1. Introduction

Using a squared loss for classification problems remains a controversial topic in machine learning. Though popular for regression, the squared loss makes little intuitive or semantic sense for classification problems. A squared loss appears to penalize models for being “too correct” when the prediction of a label is much greater than 1. Moreover, the labels in classification are arbitrary, so the minimum square error doesn’t convey much information about the latent prediction problem. Similarly, minimum-norm interpolation, the limiting solution of ridge regression as the regularization parameter tends to zero, appears to be a curious choice for a classifier. Forcing a function to be equal to an arbitrary label set could be unnecessarily aggressive if we only aim to have our classifier predict the correct sign on our data.

Despite these reservations, minimum-norm interpolation classifiers (MNIC) and regularized least-squares classification (RLSC) work exceptionally well in practice. Recent investigations by Shankar et al. (2020) demonstrated that there was no advantage to using...
more sophisticated classification techniques on popular contemporary data sets. From a theoretical perspective, stochastic gradient descent on a variety of empirical risk minimization problems will converge to the MNIC solution under mild assumptions. Jacot et al. (2018) and Heckel and Soltanolkotabi (2020) have derived specific scaling regimes where neural nets trained with stochastic gradient descent approximate the minimum-norm solutions of appropriate Reproducing Kernel Hilbert Spaces.

On top of these connections and empirical results, least-squares methods have many attractive features that argue in their favor. Their solutions can be written out algebraically, and we can lean on powerful linear algebra tools to compute them at large scale (see Avron et al. (2017); Ma and Belkin (2017); Rudi et al. (2017); Wang et al. (2019); Shankar et al. (2021), for example). Many auxiliary quantities such as the leave-one-out error can also be computed in closed form. If these methods are at all competitive, the machine learning community should encourage their use.

In this paper we provide an elementary analysis of MNIC, partially helping to explain the method’s success. We first present a mistake bound for minimum-norm interpolation classification that holds unconditionally of how the data was generated. The proof follows immediately from two applications of the matrix inversion lemma. Moreover, we present two simple geometric and algorithmic proofs that shed further insights into the properties of MNIC and RLSC and the structure of QR decompositions.

Adding the assumption that the data is generated i.i.d., our mistake bound and an application of Markov’s inequality implies that MNIC generalizes with a rate of B_n^2/n where B_n denotes the expected norm of the MNIC when interpolating n i.i.d. sampled data points. This compares favorably with the generalization bounds of Vapnik and Chervonenkis for the perceptron which show the generalization error scales as $\frac{1}{M_{n+1}^2 n}$ where M_{n+1} denotes the expected size of the margin for a sample of $n+1$ data points Vapnik and Chervonenkis (1974). Since for the maximum margin solution, the margin is the inverse of the norm of the separating hyperplane, our bound tracks a similar scaling as these classic margin-based results.

A key feature of MNIC and RLSC is that the expected norm can be estimated for a variety of probabilistic models of data. By leveraging concentration inequalities and random matrix tools, we can analyze a variety of plausible data generation schemes and show that as long as there is certain separation between the distributions of the two classes, then we can expect the interpolant norm to not grow too quickly.

2. Related Work

Using least-squares loss for classification has a long history in machine learning and statistics. Its modern popularization was by Suykens and Vandewalle (1999) and connections to general kernel machines were studied by Rifkin et al. (2003). While many authors use least-squares classification as their default tool (for example, Rudi et al. (2017); Shankar et al. (2020)), it is still not common practice to use a squared loss for classification. Theory bounds for regression with bounded labels do apply to least-squares classification, and such results exist. For example, Lee et al. (1998) showed agnostic learning is possible with a squared loss. The results in this work focus on a particular class of interpolators that are amenable to a simpler analysis.
While we focus on interpolating classifiers, our inspiration comes from work on maximum margin classifiers. Novikoff (1962) famously derived a mistake bound for the perceptron, and Vapnik and Chervonenkis (1974) used this bound and a leave-one-out argument to turn the perceptron mistake bound into a generalization bound. Vapnik and Chapelle (2000) prove a similar generalization bound for the maximum-margin classifier using a similar argument, though their proof requires a strong assumption about support vectors not changing when data is resampled. A more general theory of generalization for margin classifiers using Rademacher complexity was developed by Koltchinskii and Panchenko (2002). These bounds yielded suboptimal rates in the case when the data was separable, and Srebro et al. (2010) provided an argument to yield fast rates. All margin bounds require the size of the margin to not shrink too quickly as the number of data points increases.

A lesser known body of work, initiated by Bernstein, attempted to understand the complexity of estimating a planted linear model using online algorithms. Bernstein (1992), using an online algorithm identical to the one presented in Section 5, showed that the online error could be bounded by the norm of the planted solution times the maximum norm of the data points. This bound has a similar flavor to our bound, though necessarily assumes a planted solution that is observed via noiseless linear measurements. Later, Klasner and Simon (1995) showed how to extend Bernstein’s work to the noisy case by running an online version of ridge regression. Our work differs from this earlier work in several ways. We make no assumptions about the existence of a planted model. Rather, to bound the error with n data points, we merely assume that the interpolation problem is solvable for any data set of size at most n. That is, our labels y’s are completely arbitrary, and need not be realized by any finite dimensional linear model. Though our work focuses on interpolation, we show how to immediately extend it to ridge regression in Section 5, yielding improved extensions of Klasner and Simon’s bounds to kernel regression with arbitrary labels.

Many recent papers have used generative models to understand how such margins scale (see, for example, Deng et al. (2019); Montanari et al. (2019); Liang and Sur (2022); Chatterji and Long (2020)). In this work, we study scaling on the norm of the interpolating function using similar ideas. Leveraging recent developments in non-linear random matrices, Liang and Rakhlin (2020) and later in Liang et al. (2020) studied the generalization of kernel ridgeless regression. Bartlett et al. (2020) studied the generalization of minimum-norm interpolants in the context of infinite-dimensional Gaussian process regression. Hastie et al. (2019) applied precise asymptotic tools to analyze random non-linear feature regression. Though our generalization results can be extended to the case of regression, we focus here on generative models of classification, and show these generalize with mild separation assumptions on the data generating process.

Connections between the Perceptron for SVM and MNIC are recently investigated in Muthukumar et al. (2020) using a distinctive approach compared to ours. They construct generative models such that with sufficient overparametrization, all data points are support vectors. This means the SVM returns the same solution as MNIC under such models. However, our work directly works with MNIC and does not require a solution coincident with an SVM solution. Moreover, our generalization bounds involve a norm rather than a margin, and we demonstrate that these norms are often simple to calculate or bound for complex models in both theory and practice.
3. A Mistake Bound for MNIC

Let \mathcal{H} be a Reproducing Kernel Hilbert Space (RKHS) with embedding functions φ_x so that $k(x, z) = \langle \varphi_x, \varphi_z \rangle_K$. Suppose that we are given a data sequence $\{(x_j, y_j)\}_{j \in \mathbb{N}_+}$ with features $x \in \mathbb{R}^d$ and labels $y \in \{-1, +1\}$. Consider the MNIC optimization problem on the data set $S_i := \{(x_j, y_j)\}_{j=1}^i$

$$\begin{align*}
\text{minimize}_{f \in \mathcal{H}} & \quad \|f\|_K \\
\text{subject to} & \quad f(x_j) = y_j, \quad j = 1, \ldots, i,
\end{align*}$$

When it exists, let \hat{f}_{S_i} denote the optimal solution of this optimization problem.

The key to our analysis will be controlling the error of \hat{f}_{S_i} on the next data point in the sequence, x_{i+1}. To do so, we use a simple identity that follows from linear algebra. Let

$$s_i := \text{dist} \left(\text{span}(\varphi_{x_1}, \ldots, \varphi_{x_i-1}), \varphi_{x_i} \right),$$

where the distance measures the RKHS norm of the projected embedding function φ_{x_i} to the closure of the span of $\{\varphi_{x_1}, \ldots, \varphi_{x_{i-1}}\}$. Then we have the following

Lemma 1 For any $i \in \mathbb{N}_+$, and any data sequence $\{(x_j, y_j)\}_{j \in \mathbb{N}_+}$, suppose that the solutions $\hat{f}_{S_{i-1}}$ and \hat{f}_{S_i} in Problem (1) exist. Then they satisfy

$$(y_i - \hat{f}_{S_{i-1}}(x_i))^2 = s_i^2 (\|\hat{f}_{S_i}\|_K^2 - \|\hat{f}_{S_{i-1}}\|_K^2).$$

We hold off on proving this Lemma until the next section where we give several proofs that highlight multiple aspects of minimum norm interpolation. With the Lemma in hand, however, we can now state and prove our two immediate results. Given n data points, define in addition

$$s_{S_n \setminus i} := \text{dist} \left(\text{span}(\varphi_{x_1}, \ldots, \varphi_{x_{i-1}}, \varphi_{x_{i+1}}, \ldots, \varphi_{x_n}), \varphi_{x_i} \right).$$

Our first result is a deterministic mistake bound that makes no assumptions about the data, as long as MNIC is well defined.

Theorem 2 Let $R_n^2 = \max_{1 \leq i \leq n} \|\varphi_{x_i}\|_K^2$ and $r_n^2 = \min_{1 \leq i \leq n} s_{S_n \setminus i}^2$. Then we have the following regret bound

$$r_n^2 \cdot \|\hat{f}_{S_n}\|_K^2 \leq \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \leq R_n^2 \cdot \|\hat{f}_{S_n}\|_K^2,$$ \hspace{1cm} (2)

In the binary classification setting with $\mathcal{Y} = \{\pm 1\}$, we further have

$$\sum_{i=1}^{n} 1 \{y_i \hat{f}_{S_{i-1}}(x_i) \leq 0\} \leq R_n^2 \cdot \|\hat{f}_{S_n}\|_K^2.$$ \hspace{1cm} (3)

Proof Using the bounds $r_n^2 \leq s_i^2 \leq R_n^2$ for all $1 \leq i \leq n$ and Lemma 1, we have

$$r_n^2 (\|\hat{f}_{S_i}\|_K - \|\hat{f}_{S_{i-1}}\|_K^2) \leq (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \leq R_n^2 (\|\hat{f}_{S_i}\|_K^2 - \|\hat{f}_{S_{i-1}}\|_K^2).$$
Adding these inequalities together for $1 \leq i \leq n$ proves the inequalities in Equation (2). Equation (3) follows because the square loss upper bounds the zero-one loss.

Note that R_n^2 is uniformly bounded over n as long as $\operatorname{sup}_{x \in \mathcal{X}} K(x, x) < \infty$, since $R_n^2 = \max_{i} K(x_i, x_i)$. This theorem thus quantifies the difficulty of prediction with a single data-adaptive quantity: $\|\hat{f}_{S_n}\|_K^2$. In later sections, we study precisely how such a norm could grow with the sequence length n.

Again, we emphasize that this main result holds for arbitrary data sequences as long as the MNIC is well-defined. This is true, for example, when the empirical kernel matrix has full rank. Such a rank condition holds for any universal kernel, such as the Gaussian kernel.

The above theorem immediately yields the following corollary, a generalization bound for MNIC in the case where the $(x_i, y_i)_{i=1}^n$ are sampled i.i.d. from some distribution.

Theorem 3 Suppose that S_n consists of i.i.d. samples from \mathcal{D} and that y denotes a class label in $\{-1, 1\}$. Let (x, y) denote a new random draw from the same \mathcal{D}. Let R_n be defined as in Theorem 2 and let $B_n = \|\hat{f}_{S_n}\|_K$.

1. We have
 $$\min_{1 \leq i \leq n} \frac{n \cdot \mathbb{P}[y \hat{f}_{S_i}(x) < 0]}{\mathbb{E}[R_n^2 B_n^2]} \leq 1.$$

2. If either $\mathbb{E}[(1 - y \hat{f}_{S_i}(x))^2]$ or $\mathbb{P}[y \hat{f}_{S_i}(x) \leq 0]$ is a non-increasing sequence indexed by i, we have
 $$\mathbb{P}[y \hat{f}_{S_n}(x) \leq 0] \leq \frac{\mathbb{E}[R_n^2 B_n^2]}{n}.$$

3. If we denote the Polyak average of \hat{f}_{S_i} by
 $$\bar{f}_n = \frac{1}{n} \sum_{i=1}^n \hat{f}_{S_i}$$

then we have
 $$\mathbb{P}\left[y \bar{f}_n(x) \leq 0\right] \leq \frac{\mathbb{E}[R_{n+1}^2 B_{n+1}^2]}{n + 1}.$$

Remark 4 Item 1 can be strengthened and re-stated as
 $$\liminf_{n \to \infty} \mathbb{P}[y \hat{f}_{S_n}(x) < 0] \leq \lim_{n \to \infty} \frac{\mathbb{E}[R_n^2 B_n^2]}{n},$$

if the right-hand side has a proper limit. Therefore, the classic test error is dominated by the posterior estimate $R_n^2 B_n^2/n$, in the limit inferior sense.

Proof Taking expected values in Equation (2), we can drop the subscripts on (x_i, y_i) as they are identically distributed to $(x, y) \sim \mathcal{D}$ and is independent of S_{i-1}. This yields the bound
 $$\sum_{i=1}^n \mathbb{E}[(1 - y \hat{f}_{S_{i-1}}(x))^2] = \sum_{i=1}^n \mathbb{E}[(1 - y_i \hat{f}_{S_{i-1}}(x_i))^2] \leq \mathbb{E}[R_n^2 B_n^2].$$

(4)
Inequality (4) immediately proves

$$\min_{0 \leq i \leq n-1} \mathbb{E}[(1 - \hat{y}_{S_i}(x))^2] \leq \frac{\mathbb{E}[R_n^2B_n^2]}{n}.$$

Markov’s inequality implies that

$$\mathbb{P}[\hat{y}_{S_i}(x) \leq 0] \leq \mathbb{E}[(1 - \hat{y}_{S_i}(x))^2].$$

It is clear that $$\min_{1 \leq i \leq n} \mathbb{P}[\hat{y}_{S_i}(x) \leq 0] \leq \min_{1 \leq i \leq n-1} \mathbb{P}[\hat{y}_{S_i}(x) \leq 0].$$ Observe the right-hand side stays the same when the indices change to $$0 \leq i \leq n - 1$$ from $$1 \leq i \leq n - 1$$, as $$\hat{f}_{S_0} = 0$$. Therefore the first part of the theorem is proved. Similarly, assuming the sequence is non-increasing means that the minimum summand of (4) is $$\mathbb{E}[(1 - \hat{y}_{n}(x))^2]$$ (or respectively $$\mathbb{P}[\hat{y}_{S_i}(x) \leq 0])$$. This proves the second part of the theorem. The third part of the theorem follows by applying Jensen’s inequality to lower bound the left-hand-side of inequality (4) (with $$n + 1$$ substituting $$n$$), applying Markov’s inequality, and then rescaling by and then rescaling by $$\frac{n+1}{n}$$.

Finally, note that we could have derived a result similar to Theorem 3 for regression, replacing probability of error with expected squared loss. For example, the same argument would show

$$\min_{1 \leq i \leq n} \mathbb{E}[(y - \hat{f}_{S_i}(x))^2] \leq \frac{\mathbb{E}[R_n^2B_n^2]}{n}.$$

However, we note that the norm bound $$B_n$$ may grow rapidly for such regression problems. Whereas we will see several examples in the sequel where the norm bound $$B_n$$ grows slowly with $$n$$ for classification, we leave study of conditions under which these norms grow sublinearly in $$n$$ for regression to future work.

4. Proofs of Lemma 1: Algorithmic and Geometric Perspectives

Lemma 1 is the heart of our analysis and has several simple proofs. We present these varied views as they provide many useful algebraic, geometric, and algorithmic insights into least-squares classification and interpolation.

Algebraic proof. We first present a direct linear algebraic proof that applies formulae for inverses of partitioned matrices. This algebraic proof highlights some of the closed form expressions available to evaluate leave-one-out errors and related estimates in ordinary least squares. Let $$K$$ denote the kernel matrix for $$S_i$$. Partition $$K$$ as

$$K = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$

where $$K_{11}$$ is $$(i - 1) \times (i - 1)$$ and $$K_{22}$$ is a scalar equal to $$K(x_i, x_i)$$. Note that under this partitioning,

$$\hat{f}_{S_{i-1}}(x_i) = K_{21}K_{11}^{-1}y_{1:i-1},$$

where $$y_{1:i-1}$$ slices all but the last element of $$y$$.

6
First, note that
\[s_i^2 = K_{22} - K_{21}K_{11}^{-1}K_{12}. \]
Next, using the formula for inverting partitioned matrices, we have that
\[
K^{-1} = \begin{bmatrix}
(K_{11} - K_{12}K_{22}^{-1}K_{21})^{-1} & s_i^{-2}K_{11}^{-1}K_{12} \\
K_{21}^{-1}s_i^{-2}(K_{11}^{-1}K_{12})^\top & s_i^{-1}
\end{bmatrix}.
\]
By the Woodbury formula we have
\[
(K_{11} - K_{12}K_{22}^{-1}K_{21})^{-1} = K_{11}^{-1} + s_i^{-2}(K_{21}K_{11}^{-1})^\top(K_{21}K_{11}^{-1}).
\]
Hence,
\[
\|\hat{f}_S\|_K^2 = y^\top K^{-1}y = s_i^{-2}(y_i - 2y_i\hat{f}_{S_{i-1}}(x_i) + \hat{f}_{S_{i-1}}^2(x_i)) + y_{i;i-1}K_{11}^{-1}y_{i;i-1}.
\]
Rearranging the terms proves the lemma.

Geometric Proof. We can sketch a geometric proof of Lemma 1 which gives more light into the sequential nature of our regret bound. This proof naturally gives rise to an online algorithm for solving MNIC, demonstrating that at each step we only need to increment our function in a direction orthogonal to all of the previously seen examples.

\[
\Pi_{i-1}\hat{f}_i \equiv \hat{f}_{i-1},
\]

Figure 1: Illustration of the geometric proof.

Recall that \(\hat{f}_{S_i}(x)\) is a linear function in \(\varphi_x\)
\[
\hat{f}_{S_i}(x) = \langle \varphi_x, \hat{\beta}_i \rangle_K,
\]
where \(\hat{\beta}_i\) lies in the span(\(\varphi_{x_1}, \ldots, \varphi_{x_i}\)). Let us compare \(\hat{\beta}_i\) and \(\hat{\beta}_{i-1}\). Let \(\Pi_{i-1}\) denote the orthogonal projection onto span(\(\varphi_{x_1}, \ldots, \varphi_{x_{i-1}}\)). Observe that one must have
\[
\Pi_{i-1}\hat{\beta}_i = \hat{\beta}_{i-1}.
\]
This is because the function \(g_1(x) := \langle \varphi_x, \Pi_{i-1}\hat{\beta}_i \rangle_K\) has to interpolate the data set \(S_{i-1}\) as
\[
g_1(x_j) \equiv \hat{f}_{S_i}(x_j)
\]
for \(1 \leq j \leq i - 1\). On the span of \(\Pi_{i-1}\), there is a unique interpolating solution to \(S_{i-1}\), namely \(\hat{\beta}_{i-1}\), thus proving the observation. Therefore, since \(\hat{\beta}_i\) lies in the span of \(\{\varphi_{x_1}, \ldots, \varphi_{x_{i-1}}\} \cup \{\varphi_{x_i}\}\),
\[
\hat{\beta}_i = \hat{\beta}_{i-1} + \Pi_{i-1}\hat{\beta}_i = \hat{\beta}_{i-1} + c \cdot \Pi_{i-1}\varphi_{x_i}
\]
with some constant c. To compute the value of c, let us apply the function to the data point (x_i, y_i)

$$y_i = \hat{f}_{S_i}(x_i) = \langle \varphi_{x_i}, \hat{\beta}_i \rangle_K = \langle \varphi_{x_i}, \hat{\beta}_{i-1} \rangle_K + c \cdot \langle \varphi_{x_i}, \Pi_{i-1} \varphi_{x_i} \rangle_K$$

$$= \hat{f}_{S_{i-1}}(x_i) + c \cdot s_i^2 .$$

(9)

Thus, we have proven

$$\hat{\beta}_i = \hat{\beta}_{i-1} + \frac{y_i - \hat{f}_{S_{i-1}}(x_i)}{s_i^2} \cdot \Pi_{i-1} \varphi_{x_i} .$$

(10)

Evaluating the norm on both sides of the equation will conclude the proof, as

$$\|\hat{f}_{S_i}\|_K^2 = \|\hat{f}_{S_{i-1}}\|_K^2 + \frac{(y_i - \hat{f}_{S_{i-1}}(x_i))^2}{s_i^4} s_i^2 .$$

(11)

An Online Interpolation Algorithm. The geometric proof of Lemma 1 implies an algorithm for computing the MNIC (Algorithm 1).

Algorithm 1: Online Minimum-Norm Interpolation Algorithm.

Data: A sequence of data $\{z_i\}_{i=1}^n$. A feature embedding $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^p$ that corresponds to an RKHS.

Result: A min-norm interpolation function $\hat{f}_{S_{i-1}} : \mathcal{X} \rightarrow \mathcal{Y}$ on S_{i-1} for each $i = 1, \ldots, n$.

Initialization: Set $\hat{\beta}_0 = 0 \in \mathbb{R}^p$ and $\hat{f}_{S_0} = 0$, and $i = 0$;

while $i < n$ do

Set $i = i + 1$ and receive a new data $z_i = (x_i, y_i)$;

Make prediction based on the previous interpolator $\hat{f}_{S_{i-1}}$ and record the error $\epsilon_i = y_i - \hat{f}_{S_{i-1}}(x_i)$. Update the vector $\hat{\beta}_i$

$$\hat{\beta}_i = \hat{\beta}_{i-1} + \frac{\epsilon_i}{\|\Pi_{i-1} \varphi_{x_i}\|^2} \cdot \Pi_{i-1} \varphi_{x_i} ,$$

and the corresponding min-norm interpolation function $\hat{f}_{S_i}(x) = \langle \varphi_x, \hat{\beta}_i \rangle$;

end

Note that the function update can be written equivalently in the kernel form: define $g_i(x)$

$$g_i(x) = K(x, x_i) - K(x, X_{i-1})[K(X_{i-1}, X_{i-1})]^{-1} K(X_{i-1}, x_i)$$

(13)

with X_{i-1} concatenating $\{x_1, \ldots, x_{i-1}\}$, then

$$\hat{f}_{S_i}(x) = \hat{f}_{S_{i-1}}(x) + \frac{\epsilon_i}{g_i(x_i)} g_i(x) .$$

(14)

Theorem 2 can be interpreted as deriving a regret bound for this online algorithm.
Connections to the QR decomposition. The online algorithm defined by Algorithm 1 turns out to be equivalent to solving MNIC with a QR factorization. Recall that the QR factorization of a matrix A writes $A = QR$ where Q has orthonormal columns and R is upper triangular. If A is a data matrix with each column a data point, then Q is an orthonormal basis for the span of the data, and hence we can compute the projection matrices Π directly from Q. We formalize this observation in the following Proposition.

Proposition 5 Suppose φ maps into a p dimensional space and $K(x, x') = \langle \varphi(x), \varphi(x') \rangle$ with the inner product in \mathbb{R}^p. Define the $p \times n$ dimensional matrix Φ to have ith column equal to $\varphi(x_i)$. Let $\Phi = QR$ be a QR decomposition of Φ and denote the ith column of Q by q_i. Let $z = R^{-\top} y$. Then $\hat{\beta}_k = \sum_{i=1}^{k} q_i z_i$.

We defer the proof of this proposition to Appendix A. Proposition 5 also allows us to compute the average of $\hat{\beta}_k$ from the QR decomposition. Let D denote the diagonal matrix with kth diagonal entry $1 - \frac{k-1}{n}$. Then Proposition 5 immediately implies that

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_i = QD R^{-\top} y.
$$

This implies that computing the average of $\hat{\beta}$ merely requires only n floating point operations more than solving for the least-norm solution of $\Phi^\top \beta = y$.

We can also kernelize the computation of the average. With slight abuse of notation, we can still let Φ denote the semi-infinite dimensional data matrix consisting of concatenation of $\varphi(x_i)$. This Φ will have a QR decomposition. The kernel matrix $K = \Phi^\top \Phi$ will have Cholesky decomposition $R^\top R$ where R is the same matrix as in the QR decomposition of Φ. Our goal is to write $\hat{\beta}_k$ as $\sum_{i=1}^{n} c_i \varphi(x_i)$. Let P_k denote the diagonal matrix that projects onto the first k standard coordinates in \mathbb{R}^n. Then we have $\hat{\beta}_k = QP_k z$ and

$$
Kc = \Phi^\top QP_k z = R^\top P_k z.
$$

Hence, $\hat{\beta}_k = \Phi c$ with $c = R^{-1} P_k R^{-\top} y$ and $\frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_k = \Phi \bar{c}$ with $\bar{c} = R^{-1} DR^{-\top} y$.

5. Generalization to Ridge Regression

By replacing the matrix K with $K + \lambda I$ in Lemma 1, all of the results derived so far immediately generalize to kernel ridge regression and RLSC. Recall that ridge regression solves the optimization problem

$$
\sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_K^2.
$$

The optimal solution of the problem is

$$
\hat{f}_{S_n, \lambda} = \sum_{i=1}^{n} \alpha_i K(x_i, x), \text{ where } \alpha = (K + \lambda I)^{-1} y.
$$
Thus, the only thing distinguishing the solution of the minimum norm interpolation problem (1) is the addition of λI. Hence, Lemma 1 holds, with slightly different complexity measures. We need to replace the norm of $\hat{f}_{S_n,\lambda}$ with the complexity measure

$$B_{n,\lambda}^2 := y^T(K + \lambda I)^{-1} y.$$

This complexity measure upper bounds the norm of the ridge regression solution. To see this, observe

$$y^T(K + \lambda I)^{-1} y \geq y^T(K + \lambda I)^{-1} K(K + \lambda I)^{-1} y \geq \alpha^T K \alpha = \|\hat{f}_{S_n,\lambda}\|^2_K.$$

We additionally need to replace s_i^2 with $s_{i,\lambda}^2 := \min_{c \in \mathbb{R}^{i-1}} \| \varphi_{x_i} - \sum_{j=1}^{i-1} c_j \varphi_{x_j} \|^2_K + \lambda \|c\|^2_2 + \lambda$. With these substitutions, analogs of Theorems 2 and Theorem 3 follow without modification of the proofs.

6. Some Plausible Scenarios for Slow Norm Growth

We now turn to understanding the magnitude of the norm $\|\hat{f}_{S_n}\|^2_K$ under different generative models in a high-dimensional, over-parametrized setting. Provided there is some separation between the probability distributions of the two classes, we expect the norm to grow slowly as a function of the sample size. As we shall see, we need not assume that the data realizations are well separated or that there is no noise on the labels. Rather, we will only need that $p(x|y=1)$ and $p(x|y=-1)$ are sufficiently distinct at the population level.

We begin with a simple over-parametrized Gaussian mixture model in Section 6.1. In this case, the interpolant’s norm stays bounded almost surely, implying an $O(1)$ regret with probability one. This example is further extended to more general mixture models in Section 6.2. This concerns a much broader range of scenarios where a $o(n)$ regret (sublinear) is possible. In Section 7, we study general non-linear kernels with considerably weaker distributional assumptions. There, we relate the magnitude of the interpolant’s norm to the Total Variation distance between the class conditional distributions. We defer all proofs to the Appendix.

6.1 Over-parametrized Gaussian Mixture Model

The first case we consider is a linear kernel with $\varphi_x = x \in \mathbb{R}^d$ and $K(x, x') = \langle x, x' \rangle$. Assume

$$x_i = y_i \cdot \mu \cdot \vartheta_* + \epsilon_i$$ \hspace{1cm} (16)

where μ parametrizes the strength of the signal, ϑ_* the direction with $\|\vartheta_*\|_2 = 1$, and $\epsilon_i \sim \mathcal{N}(0, 1/d \cdot I_d)$ the noise (independent of y_i). We consider the over-parametrized regime with $d(n)/n = \psi > 1$.

Lemma 6 For i.i.d. data generated from the model defined by (16), $R_n^2 \leq (\mu + 1)^2$ a.s. and

$$\limsup_{n \to \infty} \||\hat{f}_{S_n}\|^2_K \leq \frac{\psi}{(\psi - 1)\mu^2}, \text{ a.s.}$$ \hspace{1cm} (17)

This Lemma and Theorem 2 immediately imply that for the Gaussian mixture model (16),

$$\limsup_{n \to \infty} \sum_{i=1}^n 1 \{ y_i \hat{f}_{S_{i-1}}(x_i) \leq 0 \} \leq (\mu + 1)^2 \frac{\psi}{(\psi - 1)\mu^2}, \text{ a.s.}$$ \hspace{1cm} (18)
In other words, we make at most a constant number of errors with probability one in the infinite sequence of problems.

We can also establish a lower bound of order $1/n$ on the quantity r_n^2 that appears in the lower bound of Theorem 2. This model thus shows that our upper bound in Theorem 2 cannot be significantly improved beyond a linear factor in n.

Lemma 7 The following bound holds under the same setting as in Lemma 6

$$r_n^2 \geq \frac{(\mu^2 + 1)}{1 + C_{\mu,\psi} \cdot n}, \text{ a.s.}$$

(19)

where $C_{\mu,\psi} > 0$ is a constant that does not depend on n.

6.2 Generalizations of the Mixture Model

We now turn to a more general mixture model where we allow for more general covariance structures. In doing so, we will find a variety of data generating processes that exhibit slow norm growth, but also show that there may be cases where this is not the case. Consider $\varphi_{x_i} \in \mathbb{R}^p$ and $K(x,x') = \langle \varphi_x, \varphi_{x'} \rangle$ with the inner product in \mathbb{R}^p. Suppose the following generative structure holds with a positive-definite covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$

$$\varphi_{x_i} = y_i \cdot \mu \cdot \vartheta_\star + \Sigma^{1/2} \epsilon_i,$$

(20)

where $\mu > 0$ is the signal strength and ϑ_\star is a unit vector in \mathbb{R}^p. Let $\lambda_1(\Sigma), \ldots, \lambda_p(\Sigma) > 0$ denote the non-increasing sequence of eigenvalues of Σ.

Assumption 8 (Weak Moment Conditions) $\epsilon_{ij}, 1 \leq i \leq n, 1 \leq j \leq p(n)$ are i.i.d. entries from a distribution with, zero first-moment, unit second-moment and uniformly-bounded m-th moment, with $m \geq 8$.

The zero first-moment and unit second-moment conditions can be assumed without loss of generality. The more significant assumptions made here are the requirement of bounded mth-moments and the i.i.d. entries in ϵ_i. We leave as future work relaxing this assumption with a small-ball analysis or some other more sophisticated random matrix theory.

Assumption 9 (Over-parametrization) For sufficiently large $C > 0$, we have $\frac{p}{\log p} > C \cdot n$.

This assumption ensures that the feature map is sufficiently over-parametrized such that the empirical kernel matrix is of full rank n.

With the above, the following non-asymptotic bound holds

Theorem 10 Under the Assumptions 8 and 9, the following bound holds almost surely,

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{n-1}}(x_i))^2 \leq R_n^2 \frac{\|f_{S_n}\|_K}{n} \leq c_1 \cdot (\mu^2 + \text{tr}(\Sigma) + \gamma_p) \frac{1}{\lambda_p(\Sigma) \cdot n} \left(1 + c_2 \cdot \frac{\vartheta_\star^\top \Sigma \vartheta_\star n}{\lambda_p(\Sigma) \cdot p} \right) \cdot \frac{1}{1 + c_3 \cdot \frac{\vartheta_\star^\top \Sigma \vartheta_\star n}{\lambda_1(\Sigma) \cdot p}} \cdot \frac{1}{n}$$

(21)

where $\gamma_p = p^{\frac{1}{2} + \frac{2}{m} (\log p)^{0.51}}$ and $c_j, 1 \leq j \leq 3$ are universal constants.
Corollary 11 Under the same assumptions and notations as in Theorem 10, now consider the ridge regularized predictor $\hat{f}_{S_{i-1}, \lambda}$ in Section 5, with an explicit regularization $\lambda^* \geq 0$. The following bound holds almost surely,

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}, \lambda}(x_i))^2 \leq R_{\lambda^*}^2 \frac{y^\top [K + \lambda^* I]^{-1} y}{n} \leq c_1 \cdot (\lambda^* + \mu^2 + \text{tr}(\Sigma) + \gamma_p) \frac{1}{\lambda_p} \frac{1 + c_2 \cdot \frac{\vartheta^\top \vartheta}{\lambda_p} n}{1 + c_3 \cdot \frac{(\mu^2 + \vartheta^\top \vartheta) n}{\lambda_p} n} \cdot \frac{1}{n} \cdot (22)$$

Let’s unpack the bound in Theorem 10 by exploring some examples, highlighting the impact of the signal strength μ, over-parametrization p, and error covariance Σ on the regret. Consider a range of problem instances with sub-Gaussian ϵ_{ij} where

1. $\lambda_i(\Sigma) = i^{-\alpha}, 1 \leq i \leq p$ with some $\alpha \in (0, 1/2)$,
2. $\mu^2 = n^x$ for $x \in (0, \infty)$,
3. $p = n^y$ for $y \in (1, \infty)$.

Figure 2: Illustration diagram on when slow norm growth is possible. x-axis corresponds to $\log(\mu^2)/\log(n)$, and y-axis corresponds to $\log(p)/\log(n)$. Red region shows when the upper bound in Theorem 10 is $o(1)$, the extended Yellow region demonstrates that with a properly chosen λ^*, the upper bound in Corollary 11 is $o(1)$.

Let’s unpack the bound in Theorem 10 by exploring some examples, highlighting the impact of the signal strength μ, over-parametrization p, and error covariance Σ on the regret. Consider a range of problem instances with sub-Gaussian ϵ_{ij} where

1. $\lambda_i(\Sigma) = i^{-\alpha}, 1 \leq i \leq p$ with some $\alpha \in (0, 1/2)$,
2. $\mu^2 = n^x$ for $x \in (0, \infty)$,
3. $p = n^y$ for $y \in (1, \infty)$.
For any fixed $\alpha \in (0, 1/2)$, Figure 2 illustrates the region on the x, y domain when the upper bounds in Theorem 10 and Corollary 11 are $o(1)$, asserting the plausible scenarios for slow norm growth. We emphasize that the colored regions only correspond to sufficient conditions for slow norm growth. The precise norm growth outside the colored regions potentially requires a sharper analysis (rather than only an upper bound), beyond the current scope. The boundaries marked by the blue dashed lines correspond to detailed upper bound calculations carried out in Appendix D, quantifying the rate of each term in Theorem 10 and Corollary 11. Conceptually, sufficient conditions for slow norm growth include certain signal separation in the mixture model and a well-conditioned empirical kernel matrix, illustrated by the blue lines. When eigenvalues decay fast, the empirical kernel matrix will become ill-conditioned, suggesting that the interpolant’s norm may grow rapidly. The region where such ill-conditioning is ruled out is colored red in Figure 2. Explicit regularization can mitigate the rapid norm growth, as shown in the yellow region.

7. Separation and Slow Norm Growth

We close by considering binary classification with general non-linear kernels. Let η_* denote the conditional expectation of y given x:

$$\eta_*(x) = \mathbb{P}(y = +1|x = x) - \mathbb{P}(y = -1|x = x).$$ \hspace{1cm} (23)

In this section, we assume that this function lies in the RKHS and has bounded norm.

$$\|\eta_*\|_K^2 \leq B_*^2.$$

We choose this particular assumption as a matter of convenience to highlight a particular analysis of nonlinear classification. We note that there are a variety of other assumptions about the distribution of (x, y) pairs that could also be analyzed using the tools of this section.

Lemma 12 Suppose S_n consists of i.i.d. data drawn from some distribution D. Denote X as the concatenated data matrix of $\{x_i\}_{i=1}^n$. Conditional on the design X, the following bound holds,

$$\mathbb{E} \left[\|\hat{f}_{S_n}\|_K^2 \mid X \right] \leq \|\eta_*\|_K^2 + \frac{1}{n^2} \sum_{i=1}^{n} (1 - \eta_*^2(x_i)).$$ \hspace{1cm} (24)

Lemma 12 and Theorem 2 together imply

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(y_i \hat{f}_{S_{i-1}}(x_i) \leq 0 \mid X) \leq \frac{R_n^2}{n^2} \cdot \frac{1}{n} \sum_{i=1}^{n} (1 - \eta_*^2(x_i)) + \frac{R_n^2 B_*^2}{n}.$$ \hspace{1cm} (25)

The second term here is a generalization error that tends to zero with n. The first term is proportional to the Bayes error

$$\mathcal{E}(X) = \frac{1}{n} \sum_{i=1}^{n} (1 - \eta_*^2(x_i))$$
Note that $E(X)$ is nonnegative and measures a form of the accuracy of the regression function on the sample. $E(X)$ is equal to zero when the regression function makes correct assignments for all data points and equal to 1 if all of the points are impossible to distinguish under the generative model. In order for the bound (25) to imply a low prediction error, we need the Bayes error to be small.

Two natural conditions under which the Bayes error can be further controlled are the Mammen-Tsybakov and Massart noise conditions. A slightly stronger version of Mammen-Tsybakov condition\(^1\) asserts that there exists some $\alpha \in [0, 1]$ and $C_0 > 0$ such that for all $t \in [0, 1]$

$$
P[|\eta_*(x)| \leq t] \leq C_0 \cdot t^{\frac{\alpha}{1-\alpha}}. \quad (26)$$

Under this noise condition, we have the following upper bound on the expected Bayes Error

$$
E[E(X)] = 1 - E[|\eta_*(x)|^2] = 1 - \int_0^1 P(|\eta_*(x)| > \sqrt{t}) dt
\leq 1 - \int_0^1 (1 - C_0 \cdot t^{\frac{\alpha}{1-\alpha}}) dt \leq C_0 \cdot \frac{2(1-\alpha)}{2-\alpha}. \quad (27)
$$

Note that when $\alpha = 1$ (i.e., under the Massart noise condition), the expected Bayes Error is 0.

We can construct more general conditions under which we expect $E(X)$ to be small. Let P_+ denote the conditional distribution of x given $y = +1$, and correspondingly define P_-. Let $d_{TV}(P_+, P_-)$ denote the total variation distance between these two distributions.

Lemma 13 For any $\epsilon > 0$,

$$
P[E(X) \leq 4\epsilon] \geq 1 - \frac{\epsilon^{-1} + 1}{2} n(1 - d_{TV}(P_+, P_-)) \quad (28)
$$

Lemma 13 gives a general way to bound the expected Bayes error by lower bounding the total variation between the class conditional distributions. For example, in the Gaussian mixture model in Section 6.1, we can choose $\epsilon = n^{-1}$ and have with probability at least $1 - n^2 \exp(-d\mu^2/2) = 1 - o(1)$ that the error is $O(1/n)$.

8. Conclusions and Future Work

The linear algebraic structure of MNIC and RLSC led to surprisingly simple generalization bounds. Moreover, this structure led to tractable analysis of the norms of the solutions of a variety of classification problems. As we mention in Section 3, our regret and generalization bounds apply to regression problems, but we do not know which data generating models will have solutions whose norm grows slowly with the number of data points. For instance, the standard planted model $y_i = x_i^\top \beta + \epsilon_i$, where x_i is isotropic Gaussian and ϵ_i is independent noise, results in an interpolating solution whose norm scales linearly with n. It would be fascinating to understand plausible models for regression where this norm grows sublinearly.

1. Mammen-Tsybakov condition requires (26) to hold for $t \in [0, t_0]$ with some $t_0 < 1$. One can see that this can easily extend to $t \in [0, 1]$ with a larger C_0 constant.
Future work should also investigate whether other ERM problems admit simple mistake bounds as we now see for the perceptron, the SVM, MNIC, and RLSC. Is there a general proof that connects these aforementioned algorithms? Is there a general theory yielding simple $1/n$ rates for models learned by Stochastic Gradient Descent when there is an empirical risk minimizer has zero loss?

References

Appendix A. Proof of Proposition 5

First note that by construction,

\[\varphi_{x_k} = \sum_{i=1}^{k} R_{ik} q_i. \]

Hence, \(\Pi_{k-1}^{\perp} \varphi_{x_k} = R_{kk} q_k \). From this same calculation, we have that \(s_k = R_{kk} \).

Consider the vector \(z = R^{-\top} y \). We have

\[z_k = y_k - \sum_{i=1}^{k-1} R_{ik} z_i. \]

Now let us proceed by induction. Certainly, for the base case, we have

\[\hat{\beta}_1 = \frac{y_1}{s_1^{1/2}} \varphi_{x_1} = \frac{y_1}{R_{11}^{1/2}} R_{11} q_1 = z_1 q_1. \]

Now, suppose the formula holds for \(i < k \) and consider

\[\hat{f}_{S_{k-1}}(x_k) = \langle \varphi_{x_k}, \hat{\beta}_{k-1} \rangle = \left\langle \sum_{j=1}^{k} R_{jk} q_j, \sum_{\ell=1}^{k-1} q_{\ell} z_{\ell} \right\rangle = \sum_{j=1}^{k-1} R_{jk} z_j. \]

Thus,

\[z_k = \frac{y_k - \hat{f}_{S_{k-1}}(x_k)}{s_k}. \]

and we have

\[\hat{\beta}_{k+1} - \hat{\beta}_k = \frac{y_k - \hat{f}_{S_{k-1}}(x_k)}{s_k^{2/2}} \Pi_{k-1}^{\perp} \varphi_{x_k} = z_k q_k, \]

which completes the proof.

Appendix B. Probabilistic Tools for Analyzing Generative Models

We will need two results from the literature. First, the following is Theorem 5.41 in Vershynin (2010).

Proposition 14 Let \(A \) be an \(p \times n \) random matrix whose rows \(A_i \) are independent isotropic random vectors in \(\mathbb{R}^n \). Assume that \(\| A_i \|_2 \leq \sqrt{N} \) almost surely for all \(i \). Then for every \(t \geq 0 \), one has the following bound on the singular values of \(A \)

\[\sqrt{p} - t \sqrt{N} \leq s_{\min}(A) \leq s_{\max}(A) \leq \sqrt{p} + t \sqrt{N} \]

(30)

with probability at least \(1 - 2n \cdot \exp(-ct^2) \), where \(c > 0 \) is an absolute constant.

The next proposition follows from Lemma A.3 in El Karoui (2010).

Proposition 15 Let \(\{z_i\}_{i=1}^{n} \) be i.i.d. random vectors in \(\mathbb{R}^p \), whose entries are i.i.d., mean 0, variance 1 and have bounded \(m \)-absolute moments (\(m > 4 \)). Suppose that \(\{\Sigma_p\} \) is a sequence of positive semi-definite matrices whose operator norms are uniformly bounded and \(n/p \) is asymptotically bounded. We have,

\[\max_{1 \leq i \leq n} \left| z_i^\top \Sigma_p z_i - \text{tr}(\Sigma_p) \right| \leq p^{1/2 + \frac{4}{m}} (\log p)^{0.51} \quad \text{a.s.} \]

(31)
The following propositions are useful calculations needed for our proofs. The following proposition follows from rotational invariance of Gaussian and standard concentration of χ^2 random variables.

Proposition 16 Let $G \in \mathbb{R}^{n \times d}$ with each entry i.i.d. $N(0, 1/d)$, then for any fixed vector $v \in \mathbb{R}^n$

$$v^\top [GG^\top]^{-1}v \overset{\text{dist.}}{=} \|v\|^2 \cdot \frac{d}{\chi^2_{d-n+1}}.$$

(32)

In the case with $d/n = \psi > 1$, with probability at least $1 - 2 \exp(-t)$,

$$(1 - \psi^{-1}) - 2\sqrt{\psi^{-1}(1 - \psi^{-1})\frac{t}{n}} \leq \frac{\|v\|^2}{v^\top [GG^\top]^{-1}v} \leq (1 - \psi^{-1}) + 2\sqrt{\psi^{-1}(1 - \psi^{-1})\frac{t}{n}} + 2\psi^{-1}\frac{t}{n}.$$

(33)

Proof Due to rotational invariance, $v^\top [GG^\top]^{-1}v \overset{\text{dist.}}{=} \|v\|^2K_{11}$ where K_{11} is the top-left element of the matrix $[GG^\top]^{-1}$. It is easy to see that K_{11} follows the same distribution as $d/\chi^2_{d-(n-1)}$. The proof completes using the standard concentration of χ^2 random variables (see for instance, Massart-Laurent).

The following proposition controls some matrix quantities needed in our analysis.

Proposition 17 Let $E \in \mathbb{R}^{n \times p}$ be random matrix with i.i.d. entries, zero-mean and bounded-m moments. $E_{i, .} \in \mathbb{R}^p$ denotes the i-th row of E, and $E_{.j} \in \mathbb{R}^n$ denotes the j-th column of E. The following bounds hold almost surely if $m > 4$

$$\max_{1 \leq i \leq n} \left| E_{i, .}^\top \Sigma_p E_{i, .} - \text{tr}(\Sigma_p) \right| \leq p^{1 + \frac{2}{m}} (\log p)^{0.51},$$

(34)

$$\max_{1 \leq j \leq p} \left| E_{.j}^\top E_{.j} - n \right| \leq p^{\frac{1}{2} + \frac{2}{m}} (\log p)^{0.51},$$

(35)

$$\lambda_1(E\Sigma_p E^\top) \leq \lambda_1(\Sigma_p) \cdot (\sqrt{p} + \sqrt{n(\log n)} + \sqrt{p^{\frac{1}{2} + \frac{2}{m}} (\log p)^{0.51}(\log n)})^2 \leq 1.5\lambda_1(\Sigma_p) \cdot p,$$

(36)

$$\lambda_n(E\Sigma_p E^\top) \geq \lambda_p(\Sigma_p) \cdot (\sqrt{p} - \sqrt{n(\log n)} - \sqrt{p^{\frac{1}{2} + \frac{2}{m}} (\log p)^{0.51}(\log n)})^2 \geq 0.5\lambda_p(\Sigma_p) \cdot p.$$

(37)

Proof This is a direct implication of Proposition 14 and Proposition 15 with the choice $t = C(\log n)^{0.5}$ ($C > 0$ large enough) and $N = n + p^{\frac{1}{2} + \frac{2}{m}} (\log p)^{0.51}$. Notice here that $p^{\frac{1}{2} + \frac{2}{m}} (\log p)^{0.51} \ll p$ for $m > 4$.

19
Proposition 18 Consider the same setting as in Proposition 17. If assumed in addition that \(m \geq 8 \), then the following bounds hold almost surely for a fixed \(v \in \mathbb{R}^p \)

\[
\left| \sum_{i=1}^{n} \langle v, E_{i,} \rangle^2 - n \cdot \|v\|^2 \right| \leq n^{0.8} \cdot \|v\|^2 ,
\]

\[
\left| \sum_{i=1}^{n} \langle v, E_{i,} \rangle \right| \leq n^{0.8} \cdot \|v\| .
\]

Proof [of Proposition 18] We start with the second statement. Define i.i.d. random variables \(w_i := \langle v, E_{i,} \rangle \), then \(\mathbb{E}[w_i] = 0 \) and

\[
\mathbb{P} \left(\left| \sum_{i=1}^{n} w_i \right| \geq t \right) \leq \frac{\mathbb{E} \left[\left(\sum_{i=1}^{n} w_i \right)^4 \right]}{t^4} \leq C \frac{n \mathbb{E}[w_i^4] + n^2 (\mathbb{E}[w_i^2])^2}{t^4}
\]

(40)

\[
\mathbb{P} \left(\left| \sum_{i=1}^{n} w_i \right| \geq n^{0.8} \cdot \|v\| \right) \leq C' \frac{n^2 \|v\|^4}{t^4} \leq C' \frac{1}{n^{1.2}} ,
\]

(41)

with choice \(t = n^{0.8} \cdot \|v\| \). Since the tail probability is summable w.r.t. \(n \), Borell-Cantelli Lemma proved the almost surely statement.

Define \(w_i^2 := \langle v, E_{i,} \rangle^2 \), then \(\mathbb{E}[w_i^2] = \|v\|^2 \) and

\[
\mathbb{E}[w_i^2] = \mathbb{E} \left[\left(\sum_{j \in [p]} v_j E_{i,j} \right)^4 \right] \leq C \left(\sum_{j} v_j^4 + \sum_{j \neq j'} v_j^2 v_{j'}^2 \right) \leq C \|v\|^4 .
\]

(42)

By Chebyshev's inequality

\[
\mathbb{P} \left(\left| \sum_{i=1}^{n} w_i^2 - \mathbb{E}[w_i^2] \right| \geq t \right) \leq \frac{\mathbb{E} \left[\left(\sum_{i=1}^{n} w_i^2 - \mathbb{E}[w_i^2] \right)^4 \right]}{t^4} .
\]

(43)

It is easy to see that

\[
\mathbb{E} \left[\left(\sum_{i=1}^{n} w_i^2 - \mathbb{E}[w_i^2] \right)^4 \right] \leq C \left(n \mathbb{E}[(w_i^2 - \mathbb{E}[w_i^2])^4] + n^2 (\operatorname{Var}[w_i^2])^2 \right) \leq C' n^2 \|v\|^8 ,
\]

as \(\operatorname{Var}[w_i^2] \leq \mathbb{E}[w_i^4] \) and \(\mathbb{E}[(w_i^2 - \mathbb{E}[w_i^2])^4] \leq C \|v\|^8 \) if \(E_{ij} \) has uniformly bounded \(m \)th moment with \(m \geq 8 \). Now choose \(t = n^{0.8} \cdot \|v\|^2 \), we have

\[
\mathbb{P} \left(\sum_{i=1}^{n} (z_i - \mathbb{E}[z_i]) \geq t \right) \leq C' \frac{n^2 \|v\|^8}{(n^{0.8} \cdot \|v\|^2)^4} \leq C' \frac{1}{n^{1.2}}
\]

(44)

The proof is again complete using the Borell-Cantelli Lemma. \(\blacksquare \)
Using Proposition 16, we have that with probability at least $1 - \frac{1}{n}$ of Lemma 6, it can be verified that, based on the definition of Hadamard product $Y \circ Z$ under the actions of the orthogonal groups on \mathbb{R}^n, then

$$
\Omega_n \frac{(\mu + g) \otimes [ZZ]^{-1}_g \otimes [ZZ]^{-1}}{\mu + g}
\leq
\left[[ZZ]^{-1}_g \right]
\geq
\left[[ZZ]^{-1}_g \right]
\geq
[ZZ]^{-1}_g
$$

Due to the rotational invariance of Gaussian, the distribution of Z is drawn i.i.d. from $N(0, I_d)$. Therefore one can without loss of generality assume $\vartheta = 0$, then $Y \circ X_n = Y \circ X_n$. It can be verified that, based on the definition of Hadamard product and the original design matrix respectively, $Y \circ X_n$ is the response vector, and $Y \circ X_n =$.

\[
\frac{L\tilde{S}_n^2}{\tilde{S}_n^2} = 1 \left(\frac{L\tilde{S}_n^2}{\tilde{S}_n^2} \right) - 1 + (\mu + g) \otimes [ZZ]^{-1}_g \otimes [ZZ]^{-1}_g
\]
Putting the above three estimates together, with probability at least $1 - 9 \exp(-t)$, we have

$$\|\hat{f}_{S_n}\|_K^2 \leq \frac{\psi}{(\psi - 1)\mu^2} (1 + O(\sqrt{t/n})) . \quad (57)$$

Take $t = 11 \log n$ yields

$$\limsup_{n \to \infty} \|\hat{f}_{S_n}\|_K^2 \leq \frac{\psi}{(\psi - 1)\mu^2}, \text{ a.s.} \quad (58)$$

by using the Borell-Cantelli Lemma.

Proof [of Lemma 7] For the lower bound, let's first condition on $x_i = x$ and project $X_{S_n \setminus i}$ to the normal vector $\tilde{x} = x/\|x\|$, which denoted as $v = X_{S_n \setminus i}\Pi_x \in \mathbb{R}^n$. We know

$$x^\top x - x^\top X_{S_n \setminus i}^\top [X_{S_n \setminus i}X_{S_n \setminus i}]^{-1}X_{S_n \setminus i}x$$

$$= \|x\|^2 \left(1 - v^\top [vv^\top + X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v \right)$$

$$= \|x\|^2 \left(1 - \left[v^\top [X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v - \frac{(v^\top [X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v)^2}{1 + v^\top [X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v} \right] \right)$$

$$= \|x\|^2 \frac{1}{1 + v^\top [X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v} \quad . \quad (62)$$

Now we will upper bound $v^\top [X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v$. Define a vector u, which is the projection of the matrix $X_{S_n \setminus i}$ to the vector space

$$\tilde{\vartheta} := \vartheta_* - \langle \vartheta_*, \tilde{x} \rangle \tilde{x} \in \mathbb{R}^d$$

$$u = X_{S_n \setminus i} \Pi_{\tilde{\vartheta}} . \quad (64)$$

By construction, $\tilde{\vartheta} \perp x$. We can verify that

$$v^\top [X_{S_n \setminus i}\Pi_x X_{S_n \setminus i}]^{-1}v \overset{\text{dist.}}{=} v^\top [uu^\top + ZZ^\top]^{-1}v$$

$$= v^\top ZZ^\top^{-1}v - \frac{(v^\top ZZ^\top^{-1}u)^2}{1 + u^\top ZZ^\top^{-1}u} \quad . \quad (66)$$

where (v, u) is independent of Z and that $Z \in \mathbb{R}^{n \times (d-2)}$ has i.i.d. entries $Z_{ij} \sim \mathcal{N}(0, 1/d)$.

Let's analyze the distribution of each entry of $u, v \in \mathbb{R}^n$ conditioned on x. Define

$$r = \langle \tilde{x}, \vartheta_* \rangle$$

$$v_i = \mu y_i + \frac{1}{\sqrt{d}} g_i^{(1)}, \quad g_i^{(1)} \sim \mathcal{N}(0, 1) , \quad (67)$$

$$u_i = \frac{1}{\sqrt{1 - r^2}} (\mu y_i - r^2) + \frac{1}{\sqrt{d}} g_i^{(2)}, \quad g_i^{(2)} \sim \mathcal{N}(0, 1) , \quad (68)$$
with \(g^{(1)}, g^{(2)}, Z\) mutually independent. Using the Proposition 16, we have

\[
(v^T [ZZ^T]^{-1} v)(u^T [ZZ^T]^{-1} u) - (v^T [ZZ^T]^{-1} u)^2 \leq \frac{\mu^2 r^6}{1 - r^2} n^2 \frac{\psi}{\psi - 1} (1 + O(\sqrt{\log n}) \tag{69})
\]

and

\[
u^T [ZZ^T]^{-1} u \geq \mu^2 r^2 n \frac{\psi}{\psi - 1} (1 - O(\sqrt{\log n})) \tag{70}
\]

Combining with the concentration bound on \(r^2 = \frac{\mu^2}{1 + \mu^2} (1 + O(\sqrt{\log n}))\), we finish the proof.

\[\square\]

\textbf{Proof} [of Theorem 10] The proof proceeds in a similar way as in Lemma 6,

\[\|\hat{f}_{S_n}\|^2_K = 1^T [(Y_n \circ \Phi_n)(Y_n \circ \Phi_n)^T]^{-1} 1.\]

Define the projection matrix \(\Pi_{\vartheta_*} \) and \(\Pi_{\vartheta_*}^\perp := I_p - \Pi_{\vartheta_*} \) and \(E = [\epsilon_{ij}] \in \mathbb{R}^{n \times p}. \) With this notation we have

\[
(Y_n \circ \Phi_n)(Y_n \circ \Phi_n)^T = (\mu 1_{\vartheta_*}^\top + E\Sigma^{1/2})(\Pi_{\vartheta_*} + \Pi_{\vartheta_*}^\perp)(\mu 1_{\vartheta_*}^\top + E\Sigma^{1/2})^\top \tag{71}
\]

\[= (\mu 1 + g)(\mu 1 + g)^\top + ZZ^\top \tag{72}\]

with \(Z := E\Sigma^{1/2}\Pi_{\vartheta_*}^\perp \in \mathbb{R}^{n \times p}\) and \(g := E\Sigma^{1/2}\vartheta_* \in \mathbb{R}^n\)

\[
cov(g_i) = \vartheta_*^\top \Sigma \vartheta_* \tag{73}
\]

\[
cov(Z_i) = \Pi_{\vartheta_*} \Sigma \Pi_{\vartheta_*} \tag{74}
\]

\[
cov(g_i, Z_i) = \vartheta_*^\top \Sigma \Pi_{\vartheta_*} \tag{75}
\]

across \(1 \leq i \leq n, \ \{g_i, Z_i\}\) are mutually independent. Recall Equation (47), we know

\[
\|\hat{f}_{S_n}\|^2_K = 1^T [ZZ^T]^{-1} 1 - \frac{(1^T [ZZ^T]^{-1} (\mu 1 + g))^2}{1 + (\mu 1 + g)^\top [ZZ^T]^{-1} (\mu 1 + g)} \tag{76}
\]

\[
= \frac{1^T [ZZ^T]^{-1} 1 \cdot (1 + g^\top [ZZ^T]^{-1} g) - (1^T [ZZ^T]^{-1} g)^2}{1 + (\mu 1 + g)^\top [ZZ^T]^{-1} (\mu 1 + g)} \tag{77}
\]

\[
\leq \frac{1^T [ZZ^T]^{-1} 1 \cdot (1 + g^\top [ZZ^T]^{-1} g)}{1 + (\mu 1 + g)^\top [ZZ^T]^{-1} (\mu 1 + g)}. \tag{78}
\]

Now we are going to lower bound \((\mu 1 + g)^\top [ZZ^T]^{-1} (\mu 1 + g)\) and upper bound \(1^T [ZZ^T]^{-1} 1\) and \(g^\top [ZZ^T]^{-1} g\). We can verify that from Proposition 17

\[
1.5 \lambda_1(\Sigma)p \geq \lambda_{\max}(ZZ^\top) \geq \lambda_{\min}(ZZ^\top) \geq 0.5 \lambda_p(\Sigma)p \tag{79}
\]

23
almost surely when \(p/\log p > n \) and \(m > 4 \). Therefore, we have

\[
1^\top [ZZ]^\top [-1] 1 \leq \frac{\|1\|^2}{\lambda_{\min}(ZZ)} \leq \frac{c'}{\lambda_p(\Sigma) \frac{p}{n}},
\]

(80)

\[
g^\top [ZZ]^\top [-1] g \leq \frac{\|g\|^2}{\lambda_{\min}(ZZ)} \leq \frac{c'\vartheta^\top \Sigma \vartheta}{\lambda_p(\Sigma) \frac{p}{n}},
\]

(81)

\[
(\mu 1 + g)^\top [ZZ]^\top [-1](\mu 1 + g) \geq \frac{\|\mu 1 + g\|^2}{\lambda_{\max}(ZZ)} = \frac{\mu^2n + \|g\|^2 + 2\mu(1, g)}{\lambda_{\max}(ZZ)} \geq \frac{c\mu^2 + \vartheta^\top \Sigma \vartheta}{\lambda_1(\Sigma)} \frac{n}{p}.
\]

(82)

In the above equations, we used the fact that almost surely on \(g \)

\[
\|g\|^2 - n \cdot \vartheta^\top \Sigma \vartheta \leq n^{0.8} \cdot \vartheta^\top \Sigma \vartheta,
\]

(83)

\[
|\langle 1, g \rangle| \leq n^{0.8} \cdot \sqrt{\vartheta^\top \Sigma \vartheta}
\]

(84)

by using Proposition 18 with \(g_i = (\Sigma^{1/2} \vartheta_*, E_{i,.}) \).

By Proposition 17, we have

\[
R_n^2 \leq \max_i \|y_i \varphi_i\|^2 \leq 2(\mu^2 + \text{tr}(\Sigma) + p \frac{\vartheta^\top \Sigma \vartheta}{n} (\log p)^{0.51})
\]

(85)

Putting things together, we know

\[
R_n^2 \frac{\|\hat{J}_n\|^2}{n} \leq c_1 \cdot \left(\mu^2 + \text{tr}(\Sigma) + p \frac{\vartheta^\top \Sigma \vartheta}{n} (\log p)^{0.51} \right) \frac{1}{\lambda_p(\Sigma) \frac{p}{n}} \frac{1}{1 + c_3 \cdot \frac{(\mu^2 + \vartheta^\top \Sigma \vartheta) \frac{n}{p}}{\lambda_1(\Sigma)}} .
\]

(86)

Proof [of Corollary 11] The proof follows exactly the same steps as in Theorem 10, with \(\lambda_j(\Sigma) \) substituted by \(\lambda_j(\Sigma) + \lambda_*/p \) (with \(j \) being either 1 or \(p \)), and noting that \(R^2_{n, \lambda_*} \leq \lambda_* + R^2_n \). Here we also used the fact that

\[
Y_n^\top \left[\lambda_* I_n + \Phi_n \Phi_n^\top \right]^{-1} Y_n = 1^\top \left[\lambda_* I_n \circ (Y_n Y_n^\top) + (Y_n \circ \Phi_n)(Y_n \circ \Phi_n)^\top \right]^{-1}
\]

(87)

and the Hadamard product of \(\lambda_* I_n \circ (Y_n Y_n^\top) = \lambda_* I_n \). The rest of the proof follows as in proof of Theorem 10 with \(ZZ^\top \) replaced by \(\lambda_* I_n + ZZ^\top \).}

Appendix D. Calculations for Figure 2

Consider \(m = \infty \), namely, the tail of \(\epsilon_{ij} \) behaves sub-Gaussian. The diagram illustrating the following cases is in Figure 2.

We use the asymptotic notations \(a(n) \asymp b(n), a(n) \gtrless b(n) \) to denote the usual asymptotic ordering. We start with the interpolation case (no explicit regularization).
• Consider the spectral decay $\lambda_i(\Sigma) = \lambda_p(\Sigma)$ and signal strength $\mu^2 \geq \text{tr}(\Sigma)$:

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \lesssim \mu^2 \frac{\mu^2_n}{\mu^2} \cdot \frac{1}{n} \lesssim \frac{1}{n}.
\]

This again confirms our $O(1)$ cumulative regret result as in Lemma 6.

• Consider the spectral decay $\lambda_i(\Sigma) = i^{-\alpha}$, $i \in [p]$ with $\alpha \in (0, 1/2)$ and signal strength $\mu^2 \gtrsim p^{1-\alpha}$ (note that $\text{tr}(\Sigma) = p^{1-\alpha} \gtrsim \gamma_p = p^2 (\log p)^{0.51}$):

 - if $p^{1-\alpha} \gtrsim n \gtrsim p^\alpha$, then

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \lesssim (\mu^2 + p^{1-\alpha}) \frac{p^\alpha n}{\mu^2} (1 + o(1)) \cdot \frac{1}{n} \lesssim \frac{p^\alpha}{n} = o(1)
\]

 - if $p \gtrsim n \gtrsim p^{1-\alpha}$, then

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \lesssim (\mu^2 + p^{1-\alpha}) \frac{p^\alpha n}{\mu^2} \cdot \frac{1}{n} \lesssim \frac{1}{p^{1-2\alpha}} = o(1)
\]

• Consider the spectral decay $\lambda_i(\Sigma) = i^{-\alpha}$, $i \in [p]$ with $\alpha \in (0, 1/2)$ and signal strength $\max\{p/n, p^\alpha\} \gtrsim \mu^2 \gtrsim p^{1-\alpha}$ (note that $\text{tr}(\Sigma) = p^{1-\alpha} \gtrsim \gamma_p = p^2 (\log p)^{0.51}$):

 - if $n \gtrsim p^\alpha$, then

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \lesssim p^{1-\alpha} \frac{p^\alpha n}{\mu^2} (1 + o(1)) \cdot \frac{1}{n} \lesssim \frac{p/n}{\mu^2} = o(1)
\]

 - if $n \gtrsim p^{1-\alpha}$, then

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \lesssim p^{1-\alpha} \frac{p^\alpha n}{\mu^2} \cdot \frac{1}{n} \lesssim \frac{p^\alpha}{\mu^2} = o(1)
\]

All the above scenarios correspond to the Red region in Figure 2.

For the ridge case with explicit regularization λ_*, we first notice that the Red region certainly correspond to $o(1)$ error with the choice $\lambda_* = 0$. Below we only consider how to extend the region with a proper choice $\lambda_* \neq 0$.

• Consider the spectral decay $\lambda_i(\Sigma) = i^{-\alpha}$, $i \in [p]$ with $\alpha \in (0, 1/2)$ and signal strength $\mu^2 \gtrsim p/n$ and overparametrization $p^\alpha \gtrsim n$ (the upper Yellow region in Figure 2):

 - if $\mu^2 \gtrsim p$, then with the choice of $\max\{n, \mu^2, p^{1-\alpha}\} \gtrsim \lambda_* \gtrsim p\lambda_1(\Sigma)$

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \lesssim \lambda_* \frac{n}{\mu^2} \frac{1 + o(1)}{1 + \mu^2_n \mu^2 \lambda_1(\Sigma)} \cdot \frac{1}{n} \lesssim \frac{p/n}{\mu^2} = o(1)
\]
- if \(\mu^2 \gtrsim p \), then with the choice of \(\max\{n, \mu^2, \rho_1(\Sigma)\} \gtrsim \lambda_\star \gtrsim n\mu^2 \)

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \gtrsim \lambda_\star \frac{n}{1 + 1/n} \cdot \frac{1}{n} \gtrsim \frac{\mu^2}{n\mu^2} = o(1)
\]

- Consider the spectral decay \(\lambda_i(\Sigma) = i^{-\alpha}, i \in [p] \) with \(\alpha \in (0, 1/2) \) and signal strength \(\mu^2 \gtrsim p/n \) and overparametrization \(p^\alpha \gtrsim \mu^2 \) (the lower Yellow region in Figure 2): with the choice of \(p/\mu^2 \gtrsim \lambda_\star \gtrsim n \), we know that \(\lambda_\star \gtrsim p/\mu^2 \gtrsim p^{1-\alpha} \) and \(\lambda_\star \gtrsim p/\mu^2 \gtrsim \mu^2 \) (due to \(p^\alpha \gtrsim \mu^2 \) and \(\alpha < 1/2 \)), and therefore

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{S_{i-1}}(x_i))^2 \gtrsim \lambda_\star \frac{n^2}{1 + 2p/n} \cdot \frac{1}{n} \gtrsim \frac{p}{\mu^2\lambda_\star} = o(1)
\]

Appendix E. Proofs for Section 7

Proof [of Lemma 12]

\[
\mathbb{E}\left[\| \hat{f}_{S_n} \|_{K}^{2} \mid X_n \right]
= \mathbb{E}\left[(Y_n Y_n^\top, [K(X_n,X_n)]^{-1}) \mid X_n \right]
= \langle \eta_\star(X_n), \eta_\star(X_n)^\top, [K(X_n,X_n)]^{-1} \rangle + \langle \text{diag}\{1 - \eta_\star^2(x_1), \ldots, 1 - \eta_\star^2(x_n)\}, [K(X_n,X_n)]^{-1} \rangle
\leq \| \eta_\star \|_{K}^{2} + \sum_{i=1}^{n} \frac{1 - \eta_\star^2(x_i)}{K(x_i,x_i) - K(x_i,X_{S_n \setminus i})[K(X_{S_n \setminus i},X_{S_n \setminus i})]^{-1}K(X_{S_n \setminus i},x_i)}.
\]

Here the last line uses the Riesz representation theorem that \(\eta_\star(x) = \langle \eta_\star, \varphi_x \rangle_K \), and

\[
\langle \eta_\star(X_n), \eta_\star(X_n)^\top, [K(X_n,X_n)]^{-1} \rangle = \| \Pi_{\varphi_{X_n}} \eta_\star \|_{K}^{2} \leq \| \eta_\star \|_{K}^{2}.
\]

Proof [of Lemma 13] For the first claim, observe that

\[
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} (1 - \eta_\star^2(x_i)) \right] = \int \left[1 - \left(\frac{dP_+ - dP_-}{dP_+ + dP_-} \right)^2 \right] \frac{dP_+ + dP_-}{2}
= \int \frac{2dP_+ dP_-}{dP_+ + dP_-} \leq 2 \int dP_+ \wedge dP_-.
\]

For the second claim, let’s calculate the probability of each \(x_i \) falls in the region

\[
S_\epsilon := \{ x \in \mathcal{X} \mid \frac{dP_+}{dP_-}(x) \in [\epsilon, \epsilon^{-1}] \}.
\]

We have

\[
\mathbb{P}[x \in S_\epsilon] = \int_{x \in S_\epsilon} \frac{dP_+ + dP_-}{2} \leq \epsilon^{-1} + 1 + \frac{1}{2} \int_{x \in S_\epsilon} dP_+ \wedge dP_-
\leq \frac{\epsilon^{-1} + 1}{2} (1 - d_{\text{TV}}(P_+, P_-)).
\]
Therefore, with union bound, we find

\[
P[x_i \notin \mathcal{S}_\epsilon, \ \forall 1 \leq i \leq n] \geq \left[1 - \frac{\epsilon^{-1} + 1}{2} (1 - d_{TV}(P_+, P_-))\right]^n \tag{99}
\]

\[
\geq 1 - \frac{\epsilon^{-1} + 1}{2} n (1 - d_{TV}(P_+, P_-)) \tag{100}
\]

For \(x_i \notin \mathcal{S}_\epsilon\), one can verify

\[
1 - \eta_i^2(x_i) \leq 1 - \left(\frac{1 - \epsilon}{1 + \epsilon}\right)^2 \leq 4\epsilon \tag{101}
\]