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Abstract

Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions
from observational data. Two complementary types of approaches have been developed to
address this obstacle: obtaining identification using fortuitous external aids, such as in-
strumental variables or proxies, or by means of the ID algorithm, using Markov restrictions
on the full data distribution encoded in graphical causal models. In this paper we aim to
develop a synthesis of the former and latter approaches to identification in causal inference
to yield the most general identification algorithm in multivariate systems currently known
– the proximal ID algorithm. In addition to being able to obtain nonparametric identifica-
tion in all cases where the ID algorithm succeeds, our approach allows us to systematically
exploit proxies to adjust for the presence of unobserved confounders that would have oth-
erwise prevented identification. In addition, we outline a class of estimation strategies for
causal parameters identified by our method in an important special case. We illustrate our
approach by simulation studies and a data application.

Keywords: causal inference; graphical models; identification; proximal causal inference

1. Introduction

Understanding cause effect relationships is a crucial task in empirical science and ratio-
nal decision making. An extensive line of work spanning multiple communities has placed
modern causal inference on a rigorous footing, using the language of potential outcomes,
random variables representing responses to hypothetical interventions, as well as the lan-
guage of graphical models and structural equations (Pearl, 2009; Richardson and Robins,
2013).

Modern causal inference conceptualizes cause effect relationships between treatments
and outcomes using hypothetical randomized experiments implemented via an intervention
operation (Pearl, 2009). Linking realizations of the observed data distribution with the
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counterfactual parameters arising in such experiments entails using assumptions encoded
in causal models, with the resulting functionals estimated by plug-in estimators or semi-
parametric methods (Van der Laan et al., 2003; Tsiatis, 2006).

As an example, if the causal relationship between a treatment variable A and an outcome
Y is masked by non-causal associations due to a vector of observed common causes ~C, then
the average causal effect is identified by the covariate adjustment functional and estimated
by matching methods, plug-in estimators, or the augmented inverse probability weighted
estimator (Hernán and Robins, 2010; Robins et al., 1994).

If some of the relevant confounders are unobserved, the situation becomes considerably
more difficult. In general, unobserved confounding prevents identification of causal param-
eters. However, a rich literature has been developed that exploits various kinds of causal
assumptions that allow point identification to be recovered. A complete characterization of
identifiability of a large class of causal parameters in arbitrary causal models with hidden
variables has been developed using the language of graphical models, resulting in the ID
algorithm and related extensions (Tian and Pearl, 2002; Shpitser and Pearl, 2006a,b; Huang
and Valtorta, 2006; Shpitser and Sherman, 2018). Celebrated special cases of this approach,
such as the front-door model, are able to obtain nonparametric identification in seemingly
counter-intuitive situations, such as when a treatment and an outcome share an arbitrarily
complicated unobserved common cause.

An extensive complementary line of work on point identification in the presence of un-
observed confounding (Wright, 1928; Angrist and Krueger, 2001; Kuroki and Pearl, 2014)
is based on taking advantage of fortuitous external aids (such as the presence of an instru-
mental variable or other proxy), along with additional assumptions to ensure identification.
A recent line of work of proximal causal inference (Miao et al., 2018a,b; Tchetgen Tchetgen
et al., 2020) provides a novel approach to using proxies to deal with unobserved confounding
without relying on stringent parametric assumptions.

Recent work developed semiparametric estimators for causal parameters identified within
this framework (Cui et al., 2023), and extended proximal causal inference from point expo-
sure to time-varying treatment settings (Tchetgen Tchetgen et al., 2020; Ying et al., 2021;
Deaner, 2021), heterogeneous treatment effect estimation (Singh, 2020), treatment policies
(Kallus et al., 2021), and mediation analysis (Dukes et al., 2023; Ghassami et al., 2021).

Other methods that aim to obtain identification for parameters in hidden variable graph-
ical models include methods that exploit algebraic results (Kruskal, 1976, 1977) for models
with hidden variable state-spaces (Allman et al., 2009, 2015), and results on a relationship
between proxies and hidden common causes (Kuroki and Pearl, 2014). In addition, iden-
tifiability results in models with exactly one hidden variable have been obtained (Sharaf,
2014).

In this paper, we aim to unify graphical and proxy-based approaches by providing
an approach to identification of counterfactual parameters in the presence of unobserved
confounding, called the proximal ID algorithm that inherits the advantages of proximal
causal inference and nonparametric identification via graphical models. Like the latter
approach, the proximal ID algorithm is able to obtain point identification in multivariate
structured systems with arbitrarily complex patterns of unobserved confounding, greatly
extending the sets of cases where proximal inference may be used. At the same time,
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the proximal ID algorithm is able to exploit the presence of fortuitous proxies to obtain
identification in cases where the ID algorithm would otherwise fail.

Our paper is organized as follows. In §2, we review the standard setting of proximal
causal inference, largely following (Miao et al., 2018a; Tchetgen Tchetgen et al., 2020). In
§3 we describe a nontrivial extension of this approach to settings where point identification
may be obtained, despite the fact that the standard assumptions that proximal causal in-
ference relies on fail. In §4, we describe the general theory of nonparametric identification
in graphical models and the ID algorithm as a prelude to the description of our main contri-
bution, the proximal ID algorithm, in §5. §6 shows how identification theory developed in
this paper may be used for identification of responses to treatment variables being counter-
factually set according to a policy. §7 describes how existing statistical inference methods
developed in the proximal causal inference literature (Miao et al., 2018b; Tchetgen Tchet-
gen et al., 2020) generalize to the example described in §3, and illustrates these methods
via simulations. A data application is described in §8. Our conclusions are contained in §9.

2. Notation and Illustration of Proximal Causal Inference

A standard setting in causal inference assumes the observed data realizations are indepen-
dent, identically distributed (i.i.d.) samples from a distribution on a set of variables ~C,A, Y ,
where A is a treatment or exposure of interest, Y is an outcome of interest, and ~C are a set
of baseline covariates. Cause effect relationships are conceptualized by means of potential
outcome random variables. As an example, Y (a) denotes the outcome Y had, possibly
contrary to fact, treatment A been administered at value a. Potential outcomes are used
to define counterfactual parameters, such as the population average causal effect (ACE):
β ≡ E[Y (a)]−E[Y (a′)], where a represents the active treatment value, and a′ the placebo or
control treatment value. The goal of causal inference is to identify causal parameters such
as β from the observed data distribution, such as p(~C,A, Y ), using causal assumptions that
link counterfactual and observed data, and estimate the resulting identifying functional as
efficiently and reliably as possible.

A standard assumption in causal inference states that observed outcomes equal coun-
terfactual outcomes had treatments been set to their observed values. This assumption is
known as consistency and is often written concisely as Y = Y (A), almost surely. Aside
from consistency, additional assumptions are needed to identify counterfactual parameters.
A popular causal model that yields identification of the population average causal effect is
the conditionally ignorable or “backdoor” model. This model makes two crucial assump-
tions. The first is that treatment assignment and potential outcomes are independent given
baseline covariates, that is (Y (a) ⊥⊥ A | ~C) for all values a, and the second is that all
treatment values have support conditional on ~C: p(A = a | ~C) > 0, almost surely for all
a. Both assumptions must hold for all values a that are of interest in the problem. Given
these assumptions, as well as consistency, β is identified from p(~C,A, Y ) by the adjustment
functional: E[E[Y | a, ~C] − E[Y | a′, ~C]], which is a special case of the g-formula (Robins,
1986).

Algebraic restrictions in causal models, such as conditional ignorability, are often dis-
played visually by means of causal diagrams, particularly directed acyclic graphs (DAGs).
The DAG representing the conditionally ignorable model is shown in Fig. 1 (a). This model
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Figure 1: (a) A causal diagram corresponding to the conditionally ignorable model. (b) A
causal diagram corresponding to a model where conditional ignorability fails due
to the presence of unobserved confounders. (c) A causal diagram corresponding to
a model with unobserved confounding where identification of the ACE is possible
via proximal causal inference. In this model, the control proxy variable Z is
caused by the treatment. (d) A causal diagram where identification of the ACE
is possible via proximal causal inference, via the same approach as in the model
in (c), but where the control proxy variable Z causes the treatment A.

implies that (~C ⊥⊥ A(~c1) ⊥⊥ Y (a,~c2)) for any values a ∈ XA,~c1,~c2 ∈ X ~C , and this in turn

implies (Y (a, ~C) ⊥⊥ A(~C) | ~C) which is equivalent to (Y (a) ⊥⊥ A | ~C). This model may
correspond to an observational study in healthcare settings, where one of two treatment
alternatives a = 1 or a′ = 0 are assigned to patients based on their baseline characteristics
~C, in hopes of improving their outcome Y . The dependence of A on ~C would represent
confounding by indication, a well known issue in observational healthcare data.

Most realistic causal models contain unmeasured confounding variables that introduce
non-causal dependencies between treatments and outcomes, and thus complicate establish-
ing valid causal effects. For instance, we would expect that in many observational studies
the assignment of treatments depends not only on the set of observed baseline character-
istics ~C, but also unmeasured characteristics ~U . The resulting model is shown graphically
in Fig. 1 (b). Without additional assumptions, the ACE parameter β is not identified from
the observed marginal distribution p(Y,A, ~C) in this model (Shpitser and Pearl, 2006a).

A recent line of work (Miao et al., 2018b; Shi et al., 2020; Tchetgen Tchetgen et al.,
2020) has developed a new framework of proximal causal inference that allows the use of
proxy variables to obtain identification even in the presence of unobserved confounders.

2.1 An Example Of Proximal Causal Inference

To illustrate how proximal causal inference works, we consider a classical observational study
with a point exposure A, an outcome Y , and a set of baseline covariates, some of which
are observed (~C), and others are unobserved (~U). In this study, exposures are assigned
based on values of ~C and ~U . Thus, the causal relationship of A and Y , as quantified by the
average causal effect β ≡ E[Y (a) − Y (a′)], is obscured by non-causal associations induced
by the covariates. A causal diagram representing this study is shown in Fig. 1 (b).

Since some of these covariates are not observed, covariate adjustment will not suffice
to identify β. Indeed, without further assumptions β is not identified from data obtained
from such a study. Proximal causal inference proceeds by assuming that while the vector
~U itself is not observed, there exist observed proxies of ~U . These proxies are subdivided
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into the control set which we will call ~Z, and the outcome-inducing set, which we will call
~W . Examples of such proxies would include medical tests (ordered both before and after
the exposure is assigned) aiming to provide incomplete information about the unobserved
course of disease progression in the patients’ body. An alternative name for a control proxy
in the literature is a treatment confounding proxy or treatment-inducing proxy, although the
latter name is misleading since, as we will later see, such proxies may either cause, or be
caused by treatment variables.

Both proxies may depend on covariates ~C, the control proxy ~Z may be associated with
the exposureA (in Fig. 1 (c) ~Z is caused byA, but ~Z may also causeA, as in Fig. 1 (d)), while
the outcome-inducing proxy ~W may influence the outcome. To enable identification, the
control and outcome-inducing proxies must satisfy a number of independence assumptions.
In our running example shown in Fig. 1 (c), since the control proxies ~Z are influenced by the
exposure A, these assumptions are stated on their counterfactual versions ~Z(a). However,
the assumptions and subsequent derivations carry over without change to Fig. 1 (d), if Z(a)
is replaced by Z, as Z is a pre-treatment variable in that model. In fact, if the control
proxy Z is a pre-treatment variable, then a stronger identification result is possible, namely
that p(Y (a), ~Z) is identified, rather than just p(Y (a)). We discuss this further in §5.

Assumption 2.1 (proxy independence)

~Z(a) ⊥⊥ Y (a) | A, ~U, ~C for all a ∈ XA (1)

~W ⊥⊥ A, ~Z(a) | ~U, ~C for all a ∈ XA (2)

In addition, the model makes assumptions that ensure identification by covariate ad-
justment had ~U been observed, in addition to ~C.

Assumption 2.2 (conditional ignorability)

Y (a) ⊥⊥ A | ~U, ~C for all a ∈ XA (3)

Assumption 2.3 (positivity)

p(a | ~u,~c) > 0 for all a ∈ XA, ~u ∈ X~U ,~c ∈ X~C (4)

In the interest of conciseness, we will not explicitly mention the positivity assumption in
subsequent derivations, and will instead implicitly assume all conditioning events that arise
have support. Similarly, we will implicitly universally quantify independences statements
involving counterfactual random variables by all possible intervention values. Two causal
diagrams that display relationships of proxy variables to other variables consistent with the
above assumptions are shown in Fig. 1 (c) and Fig. 1 (d).

The link between the unobserved confounder, and the potential outcome of interest is
established by means of an outcome bridge function defined as a solution to an integral
equation (specifically a Fredholm equation of the first kind).

Assumption 2.4 (outcome bridge function)

There exists a bridge function b(Y, ~W,A, ~C) such that the following equality holds:

p(y | a, ~z,~c) =
∑
~w

b(y, ~w, a,~c)p(~w | a,~c, ~z), (5)

where
∑

~w may denote integration for continuous state spaces.

5



Shpitser, Wood-Doughty and Tchetgen Tchetgen

If we are interested in only β, it is possible to assume an outcome bridge function

b̃( ~W,A, ~C) that is not a function of ~Y and solves the following equation instead:

E[Y | a, ~z,~c] =
∑
~w

b̃(~w, a,~c)p(~w | a,~c, ~z).

Nevertheless, we will present integral equations for the density, as in (5) to aid subsequent
developments. Techniques for solving the integral equations of the form in (5) have been
derived in functional analysis. Sufficient conditions for existence of a solution are discussed
in detail in the context of proximal causal identification in (Miao et al., 2018b; Shi et al.,
2020; Tchetgen Tchetgen et al., 2020). Necessary and sufficient conditions for the existence
of solutions to such integral equations are well understood, see (Kress, 1999). Note that it
is not necessary to require that the bridge function be unique.

Finally, we assume a completeness condition.

Assumption 2.5 (completeness)

For any random function v(~U) in L2,

E[v(~U) | ~z, a,~c] = 0 for all ~z, a and ~c if and only if v(~U) = 0, almost surely. (6)

Completeness conditions such as the one in above display have been used extensively in the
causal inference literature, particularly in the nonparametric instrumental variable setting
(Darolles et al., 2011; Horowitz, 2011; Newey and Powell, 2003). Completeness can accom-
modate both categorical and continuous confounders, and corresponds to the requirement
that any variation in ~Z can be induced by variation in ~U , a formalization of ~U -relevance,
thus ruling out conditional independence of ~U and ~Z given A and ~C. The condition is most
intuitive in the case of categorical ~U , ~Z and ~W , with number of categories d~u, d~z and d~w
respectively. In this case, completeness requires that min (d~z, d~w) ≥ d~u. In other words, ~Z
and ~W must each have at least as many categories as ~U . This motivates measuring a rich set
of proxies as a potential strategy for mitigating unmeasured confounding via the proximal
approach we now describe. Additional discussion regarding completeness condition can be
found in (Miao et al., 2018b; Shi et al., 2020; Tchetgen Tchetgen et al., 2020).

In the subsequent discussion, and throughout the remainder of the paper, we will make
use of the semi-graphoid axioms of conditional independence, which we reproduce here for
completeness (Dawid, 1979; Pearl and Paz, 1986):

( ~A ⊥⊥ ~B | ~C)⇒ ( ~B ⊥⊥ ~A | ~C) (symmetry)

( ~A ⊥⊥ ~B ∪ ~D | ~C)⇒ ( ~A ⊥⊥ ~B | ~C) (decomposition)

( ~A ⊥⊥ ~B ∪ ~D | ~C)⇒ ( ~A ⊥⊥ ~B | ~C ∪ ~D) (weak union)

( ~A ⊥⊥ ~B | ~C ∪ ~D) and ( ~A ⊥⊥ ~D | ~C)⇒ ( ~A ⊥⊥ ~B ∪ ~D | ~C) (contraction)

where ~A, ~B, ~C, ~D are sets of random variables.
If (1) and (2) are assumed to hold, ~U -relevance implied by the completeness condition

(6) is a necessary condition for the existence of solutions to the integral equations for the
bridge function. This is because if ( ~W ⊥⊥ ~U | ~C) holds, (2) and the contraction graphoid
axiom implies that ( ~W ⊥⊥ A, ~Z(a), ~U | ~C) holds, whereas if (~Z ⊥⊥ ~U | A, ~C) holds, (1)
and the contraction graphoid axiom implies that (~Z ⊥⊥ Y, ~U | A= a, ~C) holds. Either of
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these independences further imply the above equations do not admit solutions. Thus, all
identification results that rely on existence of solutions of Fredholm equations such as (5)
are examples of generic identification, and will not hold in all causal models corresponding
to the graphs in Fig. 1 (c) or (d), but only in those models where appropriate dependences
hold between unobserved confounders and proxy variables.

~U -relevance may be viewed as a form of faithfulness (Spirtes et al., 2001), but only with
respect to edges between ~U and proxies ~Z, ~W implying the above dependences. Note that,
similar to the proximal causal models we consider here, the well-established instrumental
variable model is likewise a framework for generic identification, and similarly imposes a
partial faithfulness requirement in the sense that the instrument and the treatment variables
must be associated for identification to hold.

Given the above assumptions, the counterfactual mean E[Y (a)] (and therefore β) is
identified. Specifically, we have the following result, with the proof included for illustrative
purposes.

Theorem 1 (proximal g-formula, (Miao et al., 2018a)) Under assumptions 2.1, 2.2,
2.3, 2.4, and 2.5,

p(Y (a)) =
∑
~c,~w

b(y, ~w, a,~c)p(~w,~c).

Proof We first derive the following identities:

(1) ⇒︸︷︷︸
consistency

Y ⊥⊥ ~Z | ~U, ~C,A = a. (7)

(2) ⇒︸︷︷︸
weak union

~W ⊥⊥ ~Z(a) | A = a, ~U, ~C ⇒︸︷︷︸
consistency

~W ⊥⊥ ~Z | A = a, ~U, ~C (8)

(2) ⇒︸︷︷︸
decomposition

~W ⊥⊥ A | ~U, ~C (9)

We proceed as follows:

p(Y | a, ~z,~c) =
∑
~w

b(y, ~w, a,~c)p(~w | a,~c, ~z)⇒ (by (7), (8))∑
~u

p(Y | a, ~u,~c)p(~u | a, ~z,~c) =
∑
~w

b(y, ~w, a,~c)
∑
~u

p(~w | a,~c, ~u)p(~u | a, ~z,~c)⇒ (by (6))

p(Y | a, ~u,~c) =
∑
~w

b(y, ~w, a,~c)p(~w | a,~c, ~u)⇒ (by (9))∑
~u,~c

p(Y | a, ~u,~c)p(~u,~c) =
∑
~u,~c

∑
~w

b(y, ~w, a,~c)p(~w | ~c, ~u)p(~u,~c)⇒ (by (3))

p(Y (a)) =
∑
~c,~w

b(y, ~w, a,~c)p(~w,~c). (10)

This establishes the result.

The functional in (10) was called the proximal g-formula in (Tchetgen Tchetgen et al.,
2020). Estimation methods for this functional have been discussed in (Tchetgen Tchetgen
et al., 2020; Cui et al., 2023).
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Figure 2: (a) A causal diagram representing a model where nonparametric point identifica-
tion fails due to the presence of the unobserved common cause of A and Y and
the existence of the direct effect of A on Y . (b) A causal diagram representing a
model where nonparametric point identification of the population ACE is possible
via the front-door criterion of Pearl. (c) A latent projection ADMG of the DAG
in (b). (d) A causal diagram representing a model where point identification of
the population ACE is impossible nonparametrically, but possible with proximal
causal inference methods. (e) A causal diagram representing a world where the
mediator variable M is intervened on to value m, resulting in a hypothetical world
where proximal causal inference methods may be used to identify E[Y (a,m)].

3. The Proximal Front-Door Criterion

The basic example of proximal causal inference presented in the previous section relies on
assumptions that will not always be satisfied in practical applications. For instance, consider
the model shown in Fig. 2 (a), which resembles the setting with unobserved confounding
shown in Fig. 1 (b), but with an additional complication that the causal relationship of the
treatment A and outcome Y is partially mediated by an observed variable M , which may
potentially depend on observed covariates ~C.

We now illustrate how additional assumptions may render the ACE parameter β =
E[Y (a) − Y (a′)] identified in the submodel of Fig. 2 (a) shown in Fig. 2 (b). The first

assumption we will use is that ~M is a strong mediator, or that interventions on A have no

effect on Y , provided ~M is also intervened on, or:

Y (a, ~m) = Y (~m) for all a, ~m. (11)

In addition, we will use the following assumptions:

Y (a, ~m) ⊥⊥ ~M(a) | ~C (12)

Y (~m) ⊥⊥M | ~C,A (13)

~M(a) ⊥⊥ A | ~C. (14)

8



The Proximal ID Algorithm

The submodel of Fig. 2 (a) characterized by the above assumptions yields nonparametric
identification of p(Y (a)) via Pearl’s front-door formula:

p(Y (a)) =
∑
~c,~m

(∑
ã

p(Y | ã, ~m,~c)p(ã | ~c)
)
p(~m | a,~c)p(~c), (15)

via the following derivation:

p(Y (a)) = p(Y (a, ~M(a))) =
∑
~m,~c

p(Y (a, ~m) | ~M(a) = ~m,~c)p( ~M(a) = ~m | ~c)p(~c)⇒ (by (12))

=
∑
~m,~c

p(Y (a, ~m) | ~c)p( ~M(a) = ~m | ~c)p(~c)⇒ (by (11))

=
∑
~m,~c

p(Y (~m) | ~c)p( ~M(a) = ~m | ~c)p(~c)⇒ (by (13), (14))

=
∑
~m,~c

(∑
ã

p(Y | ã, ~m,~c)p(ã | ~c)
)
p(~m | a,~c)p(~c)

The strong mediator assumption (11) is often not realistic in applications, as it implies

the analyst is able to find a set of observed variables ~M that completely mediate the effect of
A on Y . In settings where finding such a set is unrealistic, the above identification strategy
is dubious. An alternative approach to obtaining identification is to use proximal causal
inference. This would entail positing, as in the model in Fig. 1 (c) discussed above, a set
~Z of control proxies of ~U , and a set ~W of outcome-inducing proxies of ~U , resulting in a
causal diagram shown in Fig. 2 (d). Note that unlike the model shown in Fig. 1 (c), the
presence of the mediator M prevents assumptions (2) and thus restriction (8) from holding
in Fig. 2 (d). Nevertheless, it is possible to obtain identification by noting that if we view
~M as a treatment, it only has observed direct causes, meaning that the effect of ~M on all

other observed variables may be obtained by the g-formula:

p(~m)(Y (~m), ~W (~m), ~Z,A, ~C) = p(Y, ~W | m,A, ~Z, ~C)p(A, ~Z, ~C). (16)

Formally, this is justified by appealing to a version of the conditional ignorability assumption
(21), below, which holds in this model.

The identifying functional for p(~m) is a Markov kernel (Lauritzen, 1996), an object that
behaves like a conditional distribution but is not necessarily obtained by a conditioning
operation. Independence restrictions in the Markov kernel corresponding to p(~m) may be
displayed by the d-separation criterion in a conditional DAG shown in Fig. 2 (e), obtained
from Fig. 2 (d) by removing all arrows into M and viewing M as “fixed” (which we denote
by a rectangle rather than an ellipse) meaning that M no longer corresponds to a random
variable.

It turns out that we can restate assumptions needed for identification that held in the
observed data distribution p in §2.1 for the kernel p(~m), as follows.

Assumption 3.1 (kernel proxy independence)

~Z(~m) ⊥⊥ Y (a, ~m) | A(~m),~U(~m), ~C(~m) (17)

~W (~m) ⊥⊥ A(~m), ~Z(~m) | ~U(~m), ~C(~m) (18)

9
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In the independence statements above, we label all variables as potential outcomes after
an intervention on ~m is performed to make clear that they all hold in p(~m), regardless of
whether the variable actually depends on the intervened on values ~m.

However, since A, ~U, ~C and ~Z precede M in any causal ordering consistent with Fig. 2
(d), these variables do not actually depend on the intervened on values of m. This is
represented by the following individual level restrictions.

Assumption 3.2 (exclusion restrictions)

A(~m) = A, ~U(~m) = ~U, ~C(~m) = ~C, and ~Z(~m) = ~Z. (19)

The generalizations of assumption 2.2 that holds in the model in Fig. 2 (d) is shown below.
This assumption holds for Y (a,m) and A only conditional on ~U and ~C, and in a hypo-
thetical situation where an intervention on M took place. However, additional ignorability
assumptions relating M and W,Y and A are also needed. These assumptions must hold
without conditioning on ~U (this is illustrated graphically by M not having ~U as a parent
in Fig. 2 (d)). In other words, to obtain identification we allow the relaxation of restriction
(2) while requiring additional assumptions on the mediator variable M .

Assumption 3.3 (generalized conditional ignorability)

Y (a, ~m) ⊥⊥ A | ~U, ~C (20)

Y (~m), ~W (~m) ⊥⊥ ~M | A,~C, ~Z (21)

~M(a) ⊥⊥ Y (a, ~m), A | C, ~Z. (22)

The independence restrictions above can be read off either from Fig. 2 (e), or a generalization
based on Single World Intervention Graphs (SWIGs) described in (Richardson and Robins,
2013).

The following two conditions generalize assumptions 2.4 and 2.5, and hold in the distri-
bution p(m).

Assumption 3.4 (kernel outcome bridge function)

There exists a bridge function b(~m)(Y, ~W,A, ~C, ~m) such that the following equality holds:

p(~m)(Y (~m) | a, ~z,~c) =
∑
~w

b(~m)(Y, ~w, a,~c, ~m)p(~m)( ~W (~m) | a,~c, ~z) (23)

Assumption 3.5 (kernel completeness)

For any random function v(~U) in L2,

Ep(~m) [v(~U) | ~z, a,~c] = 0 for all ~z, a, ~m, and ~c if and only if v(~U) = 0, almost surely. (24)

Note that the conditional expectation in (24) is a function of ~m, in addition to ~z, a,~c, since
the expectation is with respect to an interventional distribution that depends on ~m.

Putting these assumptions together, we have the following identification result.

10
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Theorem 2 (proximal front-door criterion) Under assumptions 3.1, 3.2, 3.3, 3.4, 3.5,
and positivity,

p(Y (a)) =
∑
~m,~c,~z

(∑
~w

b(~m)(y, ~w, a,~c, ~m)
∑
ã

p(~w | ~m, ã,~c, ~z)p(ã | ~c, ~z)
)
p(~m | a,~c, ~z)p(~c, ~z). (25)

Proof We first obtain the following identities:

(17) + (19) ⇒︸︷︷︸
consistency

Y (~m) ⊥⊥ ~Z | ~U, ~C,A = a (26)

(20) + (19) + (17) ⇒︸︷︷︸
contraction

~Z,A ⊥⊥ Y (a, ~m) | ~U, ~C ⇒︸︷︷︸
weak union

A ⊥⊥ Y (a, ~m) | ~U, ~C, ~Z (27)

(18) + (19) ⇒︸︷︷︸
weak union

~W (~m) ⊥⊥ ~Z | A, ~U, ~C (28)

(18) + (19) ⇒︸︷︷︸
weak union

~W (~m) ⊥⊥ A | ~Z, ~U, ~C. (29)

We are now ready for the following derivation, where we denote b(m)(y, ~w, a,~c, ~m) by

b(m), and p(m)(Y (~m) . . .) as p(Y (~m) . . .) for conciseness:

p(Y (~m) | a, ~z,~c) =
∑
~w

b(~m)p( ~W (~m)= ~w | a, ~z,~c)⇒ (by (26), (28))∑
~u

p(Y (~m) | a, ~u,~c)p(~U = ~u | a, ~z,~c) =
∑
~w

b(~m)
∑
~u

p( ~W (~m) = ~w | a, ~u,~c)p(~U = ~u | a, ~z,~c)⇒

(by (24))

p(Y (~m) | a, ~u,~c) =
∑
~w

b(~m)p( ~W (~m) = ~w | a, ~u,~c)⇒ (by (26), (28), (29))∑
~u

p(Y (~m) | a, ~u,~c, ~z)p(~U = ~u | ~c, ~z) =
∑
~u

∑
~w

b(~m)p( ~W (~m) = ~w | ~u,~c, ~z)p(~U = ~u | ~c, ~z)⇒

(by (27) and consistency: Y (m, a) = Y (m) if A = a)

p(Y (a, ~m) | ~c, ~z) =
∑
~w

b(~m)p( ~W (~m) = ~w | ~c, ~z). (30)

To identify p(Y (a)), we note that

p(Y (a)) =
∑
~c,~z

p(Y (a) | ~c, ~z)p(~c, ~z) =
∑
~c,~z

p(Y (a, ~M(a)) | ~c, ~z)p(~c, ~z)

=
∑
~m,~c,~z

p(Y (a, ~m), ~M(a) = ~m | ~c, ~z)p(~c, ~z)

=
∑
~m,~c,~z

p(Y (a, ~m) | ~c, ~z)p( ~M(a) = ~m | ~c, ~z)p(~c, ~z) (by (22))

=
∑
~m,~c,~z

(∑
~w

b(~m)p( ~W (~m) = ~w | ~c, ~z)
)
p( ~M(a) = ~m | ~c, ~z)p(~c, ~z) (by (30))

=
∑
~m,~c,~z

(∑
~w

b(~m)p( ~W (~m) = ~w | ~c, ~z)
)
p(~m | a,~c, ~z)p(~c, ~z) (by (22)). (31)
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Since p(Y (~m), ~W (~m), ~Z,A, ~C) is identified by (16) by appealing to (21), p( ~W (~m) = ~w | ~c, ~z)
is also identified (via conditioning and marginalization) as

∑
ã p(~w | m, ã, ~z,~c)p(ã | ~z,~c).

Plugging this expression into (31) yields our conclusion:

p(Y (a)) =
∑
~m,~c,~z

(∑
~w

b(~m)(y, ~w, a,~c, ~m)
∑
ã

p(~w | m, ã, ~z,~c)p(ã | ~z,~c)
)
p(~m | a,~c, ~z)p(~c, ~z).

Note that since (21) only holds conditional on ~Z, it was important for the overall derivation
to work that the distribution identified by (30) conditioned on ~Z, which in turn was only
possible because the control proxies in ~Z were pre-treatment.

We describe an approach to estimating the target parameter identified by (25) in §7.
We compare this method against baselines defined using the proximal g-formula from (10)
and the front-door from (15). By changing our synthetic data distributions, we show that
the presence of an A→ Y edge violates assumption (11) of the front-door method, and that
a Z → M → W path violates assumptions (2) and (7) of the proximal g-formula. These
simulations give empirical evidence for the importance of using proximal methods when the
assumptions of simpler approaches are violated.

4. The ID Algorithm

General nonparametric identification results, of which the front-door formula (15) is a spe-
cial case, have been derived using the machinery of graphical causal models, culminating in
the characterization of nonparametric identification via the ID algorithm (Tian and Pearl,
2002; Shpitser and Pearl, 2006a; Huang and Valtorta, 2006). Here we briefly review this
background, prior to introducing a general approach to synthesizing proximal causal infer-
ence and nonparametric identification.

The statistical model of a directed acyclic graph (DAG) G(~V ) with a vertex set ~V ≡
{V1, . . . , Vk}, called a Bayesian network, is the set of distributions that Markov factorize
with respect to the DAG as p(~V ) =

∏
Vi∈~V p(Vi | paG(Vi)) where paG(Vi) are parents of Vi in

G. Directed acyclic graphs have also been used to represent causal models, which describe
cause-effect relationships between variables, as follows.

Each variable Vi in a causal model of a DAG is determined from values of its parents
paG(Vi) and an exogenous noise variable εi via an invariant causal mechanism called a struc-
tural equation fi(paG(Vi), εi). Causal models allow counterfactual intervention operations,

denoted by the do( ~A) operator in (Pearl, 2009). Such operations replace each structural
equation fi(paG(Vi), εi) for Vi ∈ ~A ⊂ ~V by one that sets Vi to a constant value in ~A corre-

sponding to Vi. The joint distribution of variables in ~Y ≡ ~V \ ~A after the intervention do( ~A)
was performed is denoted by p(~Y | do(~a)), equivalently written as p({Vi(~a) : Vi ∈ ~Y }), or
p(~Y (~a)), where Vi(~a) is a counterfactual random variable or a potential outcome.

A popular causal model called the structural causal model (SCM) or the nonparametric
structural equation model with independent errors (NPSEM-IE) (Pearl, 2009) assumes, aside
from the structural equations for each variable being functions of their parents in the DAG
G(~V ), that the joint distribution of all exogenous terms admits the following factorization
into marginal distributions: p({εi : Vi ∈ ~V }) =

∏
Vi∈~V p(εi). The NPSEM-IE implies the

12
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DAG factorization of p(~V ) with respect to G(~V ), and a truncated DAG factorization known
as the g-formula:

p(~Y (~a)) =
∏
Vi∈~Y

p(Vi | paG(Vi))| ~A=~a (32)

for every ~A ⊆ ~V , and ~Y = ~V \ ~A. Here p(Vi | paG(Vi))| ~A=~a means “evaluate p(Vi | paG(Vi))

at values ai ∈ ~a, for every Ai ∈ ~A that appears in paG(Vi).”
The g-formula (32) provides an elegant link between observed data and counterfactual

distributions in causal models where all relevant variables are observed. Causal models
that arise in practice, however, contain hidden variables. Representing such models using a
DAG G(~V ∪ ~H) where ~V and ~H correspond to observed and hidden variables, respectively,
is not very helpful, since applying (32) to G(~V ∪ ~H) results in an expression that involves
unobserved variables ~H. A popular alternative is to represent a class of hidden variable
DAGs Gi(~V ∪ ~Hi) by a single acyclic directed mixed graph (ADMG) G(~V ) that contains
directed (→) and bidirected (↔) edges and no directed cycles via the latent projection
operation (Verma and Pearl, 1990).

Identification theory of all interventional distributions p(~Y (~a)) in a hidden variable
causal model associated with a DAG G(~V ∪ ~H) may be expressed on the latent projection
ADMG G(~V ) without loss of generality (Richardson et al., 2017).

Under such a causal model, for any disjoint ~A, ~Y ⊆ ~V , p(~Y (~a)) is identified if and
only if p(~Y ∗(~a)) is identified, where ~Y ∗ is the set of ancestors of ~Y in G(~V ) via directed
paths not through ~A. The distribution p(~Y ∗(~a)) factorizes with respect to a graph G(~V )~Y ∗ ,

obtained from G(~V ) retaining only vertices in ~Y ∗ and edges between these vertices. The
factorization of p(~Y ∗(~a)) is in terms of a set of interventional distributions associated with
bidirected connected sets in G(~V )~Y ∗ . These sets are called districts, with the set of all

districts in G(~V )~Y ∗ denoted by D(G(~V )~Y ∗).
In particular, we have:

p(~Y (~a)) =
∑
~Y ∗\~Y

p(~Y ∗(~a)) =
∑
~Y ∗\~Y

∏
~D∈D(G(~V )~Y ∗ )

p( ~D | do(~s~D)) (33)

where ~s ~D are value assignments to paG( ~D) \ ~D either consistent with ~a, or marginalized
over in the outer summation.

It is then the case that p(~Y (~a)) is identified if and only if each term p( ~D | do(~s ~D))

is identified. To check identifiability of p( ~D | do(~s ~D)), we will need to introduce graphs

derived from G(~V ) that contains vertices ~R representing random variables, and fixed vertices
~S representing intervened on variables. Such graphs G(~R, ~S) are called conditional ADMGs
or CADMGs, and represent independence restrictions in interventional distributions p(~R |
do(~s)). The graph in Fig. 2 (e) discussed in §3 is a conditional DAG (CDAG) – a special
case of a CADMG.

Given a CADMG G(~R, ~S), we say R ∈ ~R is fixable if there does not exist another vertex
W with both a directed path from R to W in G(~R, ~S) (e.g. W is a descendant of R in
G(~R, ~S)) and a bidirected path from R to W . Note that aside from the starting vertex
R, and the ending vertex W , these two paths need not share vertices. Given a fixable
vertex R, a fixing operator φR(G(~R, ~S)) produces a new CADMG G(~R \ {R}, ~S ∪ ~{R})

13
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obtained from G(~R, ~S) by removing all edges with arrowheads into R. The fixing operator

provides a way of constructing the CADMG G(~R\{R}, ~S∪~{R}) representing restrictions in
p(~R \ {R} | do(~s∪ r)), from the CADMG G(~R, ~S), representing restrictions in p(~R | do(~s)).
As we describe below, R being fixable in G(~R, ~S) is a graphical representation of p(~R\{R} |
do(~s ∪ r)) being identified from p(~R | do(~s)) in a particular way.

A sequence σ ~J ≡ 〈J1, J2, . . . , Jk〉 of vertices in a set ~J⊆ ~R is said to be valid in G(~R, ~S)

if it is either empty, or J1 is fixable in G(~R, ~S), and τ(σ ~J) ≡ 〈J2, . . . , Jk〉 (the tail of the

sequence) is valid in φJ1(G(~R, ~S)). Any two distinct sequences σ1~J
, σ2~J

on the same set ~J

valid in G(~R, ~S) yield the same graph: φσ1
~J
(G(~R, ~S)) = φσ2

~J
(G(~R, ~S)). We will thus write

φ ~J(G(~R, ~S)) to denote this graph.

Each term p( ~D | do(~s ~D)) in (33) is identified from p(~V ) if and only if there exists a

sequence 〈J1, . . .〉 of elements in ~J ≡ ~V \ ~D valid in G(~V ). While it might appear that
checking whether elements of a set ~J admit a valid sequence in G(~V ), and finding such a
sequence, if it exists, might be a computationally challenging problem, in fact this problem
admits a low order polynomial time algorithm. This is because the fixing operator applied
to graphs only removes edges and never adds edges. Removing an edge can never prevent
a vertex from being fixable if it was fixable before the edge was removed. As a result, an
algorithm looking for a valid sequence never needs to backtrack – finding any fixable vertex
among vertices yet to be fixed suffices to eventually yield a fixing sequence if it exists, while
being unable to find such a vertex at some point implies such a sequence does not exist.

If a valid sequence exists in G(~V ) for the set ~J = {J1, J2, . . .}, it implies a set of iden-
tifying assumptions in the causal model represented by G(~V ). Let ~R1 = deG(~V )(J1) \ {J1},
and ~T1 = ~V \ (~R1 ∪ {J1}). Similarly, let ~Rk = deφ〈J1,...,Jk−1〉(G(

~V ))(Jk) \ {Jk} and ~Tk =

~V \ ({J1, . . . , Jk−1, Jk} ∪ ~Rk), where deG(Rk) is the set of descendants of Rk (including Rk
itself by convention) in G. Then the graphical causal model implies the following restrictions.

Assumption 4.1 (sequential fixing ignorability)

~R1(j1) ⊥⊥ J1 | ~T1 for all j1 (34)

~Rk(j1, . . . , jk) ⊥⊥ Jk(j1, . . . , jk−1) | ~Tk(j1, . . . , jk−1) for all j1, . . . , jk. (35)

The identifying assumptions associated with a valid sequence of ~J may be viewed as an
inductive generalization of conditional ignorability, or sequential ignorability (Robins, 1986).
At the point of the induction when a particular variable Jk(j1, . . . , jk−1) is fixed, it is viewed
as a “treatment,” while all variables in ~Rk(j1, . . . , jk−1) are viewed as “outcomes,” and all
variables in ~Tk(j1, . . . , jk−1) are viewed as “observed covariates.”
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Given assumption 4.1, we obtain identification of p( ~D | do(~s ~D)) by the following induc-
tive formula:

p(~V \ {J1} | do(j1)) =
p(~V \ {J1}, j1)

p(j1 | ~T1)
=

p(~V \ {J1}, j1)

p(j1 | mb∗G(~V )
(J1))

p(~V \ {J1, . . . , Jk} | do(j1, . . . , jk)) =
p(~V \ {J1, . . . , Jk}, jk | do(j1, . . . , jk−1))

p(jk | ~Tk,do(j1, . . . , jk−1))

=
p(~V \ {J1, . . . , Jk}, jk | do(j1, . . . , jk−1))

p(jk | mb∗
φ〈J1,...,Jk−1〉(G(

~V ))
(Jk),do(j1, . . . , jk−1))

, (36)

where for any Ji ∈ ~V \ {J1, . . . , Ji−1}, mb∗G∗(Ji) denotes all random vertices that are either
parents of Ji, or that are connected to Ji via collider paths (paths where all consecutive
triplets have arrowheads meeting at the middle vertex) in a CADMG G∗. The operations on
the right hand side of (36) may be viewed as distributional analogues of the graphical fixing
operation φ, and are licensed by repeated applications of assumption 4.1 and consistency,
or alternatively as applications of rule 2 of the potential outcomes calculus (Malinsky et al.,
2019; Shpitser et al., 2022).

As a simple example, we illustrate how identifiability of p(Y (a)) in Fig. 2 (b) given by
the front-door formula (15) may be reformulated in terms of (33) and (36). The latent
projection ADMG of the hidden variable DAG in Fig. 2 (b), sometimes called the front-
door graph, is shown in Fig. 2 (c). If we aim to identify p(Y (a)) in Fig. 2 (c), we note that
Y ∗ = {Y,M,C}, with districts in GY ∗ being {Y }, {M}, {C}. In fact, valid sequences exists
for all sets of elements outside these districts. Thus, we have the following derivation for
the term p(C | do(a, y,m)):

p(C,A,M | do(y)) =
p(C,A,M, y)

p(y | C,A,M)
= p(C,A,M)

p(C,A | do(y,m)) =
p(C,A,m | do(y))

p(m | A,C,do(y))
=

p(C,A,m)

p(m | A,C)
= p(C,A)

p(C | do(a, y,m)) =
p(C, a | do(y,m))

p(a | C, do(y,m))
=

p(C, a)

p(a | C)
= p(C),

the following derivation for the term p(M | do(a, y, c)):

p(C,A,M | do(y)) =
p(C,A,M, y)

p(y | C,A,M)
= p(C,A,M)

p(C,M | do(y, a)) =
p(C, a,M | do(y))

p(a | C,do(y))
=
p(C, a,M)

p(a | C)
= p(M | a,C)p(C)

p(M | do(y, a, c)) =
p(c,M | do(y, a))

p(c | do(y, a))
=
p(M | a, c)p(c)

p(c)
= p(M | a, c),

and the following derivation for the term p(Y | do(a,m, c)):

p(A,M, Y | do(c)) =
p(c, A,M, Y )

p(c)
= p(A,M, Y | c)

p(A, Y | do(c,m)) =
p(A,m, Y | do(c))

p(m | A,do(c))
=
p(A,m, Y | c)
p(m | A, c) = p(Y | m,A, c)p(A | c)

p(Y | do(c,m, a)) =
p(a, Y | do(c,m))

p(a | Y, do(c,m))
=
p(Y | m, a, c)p(a | c)

p(Y |m,a,c)p(a|c)∑
ã p(Y |m,ã,c)p(ã|c)

=
∑
ã

p(Y | m, ã, c)p(ã | c).
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Figure 3: (a) A hidden variable DAG where p(Y (a)) is not identified from p(C,M,A, Y ).
(b) A latent projection ADMG of the DAG in (a). (c) A partial latent projection
where the variable U permits identification, provided it is observed. (d) A partial
latent projection where the variable U is hidden, but proximal causal inference
using variables Z,D,W and X allow identification. (e) A conditional graph rep-
resenting the situation where M is intervened to value m, identified by using the
proxy W , prior to using the proxy X to obtain identification by marginalizing C
and intervening on A.

We then conclude that p(Y (a)) is identified from p(C,A,M, Y ) via (33) and (36) by∑
m,c

p(Y | do(a,m, c))p(m | do(a, y, c))p(c | do(a, y,m))

=
∑
m,c

(∑
ã

p(Y | m, ã, c)p(ã | c)
)
p(m | a, c)p(c),

which recovers (15).

5. The Proximal ID Algorithm

The ID algorithm is sound and complete for nonparametric identification of interventional
distributions p(~Y (~a)) in causal models represented by any hidden variable DAG G(~V ∪ ~H),
for any disjoint ~Y , ~A ⊆ ~V . Soundness means that any functional of the observed data p(~V )
returned by the ID algorithm for p(~Y (~a)) is, in fact, equal to p(~Y (a)) in any element in
the causal model represented by G(~V ). Completeness means whenever the ID algorithm
fails to return a functional for p(~Y (~a)), the distribution p(~Y (a)) is, in fact, not identified
in the causal model represented by G(~V ). In other words, there exist two elements of the
hidden variable causal model represented by the DAG G(~V ∪ ~H) with latent projection G(~V ),
that is two sets of structural equations and noise terms {f1i (paG(Vi), ε

1
i ), ε

1
i : Vi ∈ ~V ∪ ~H},

{f2i (paG(Vi), ε
2
i ), ε

2
i : Vi ∈ ~V ∪ ~H}, that yield the same observed marginal distribution

p1(~V ) = p2(~V ), but different interventional distributions of interest p1(~Y (~a)) 6= p2(~Y (~a)).
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Since the ID algorithm is complete, any additional identification results must restrict
the causal model in some way in addition to the way the causal model is restricted by
G(~V ∪ ~H). For example, the average causal effect (ACE) is identified in the instrumental
variable model under the assumptions of linearity of structural equations fi, Gaussianity of
noise terms εi, and correlation of the treatment and instrument variables (Wright, 1928),
even if the ACE is not identified nonparametrically in this model. Below, we describe in
detail what restrictions are needed in order to obtain additional identification results via
proximal causal inference methods that cannot be obtained via the ID algorithm alone.

The distribution p(~Y (~a)) is not identified by the ID algorithm whenever one or more
of the terms p( ~D | do(~s ~D)) in (33) cannot be obtained from p(~V ). This, in turn, happens

whenever no valid sequence for ~V \ ~D exists in G(~V ). A variable generally fails to be fixable
in the latent projection due to an excessive number of latent variables in the underlying
hidden variable DAG.

For example, the distribution p(Y (a)) is not identified in the hidden variable causal
model shown in Fig. 3 (a). This is because GY ∗ , which is obtained from the latent projection
of this model shown in Fig. 3 (b), contains a single district {Y }, and the set ~V \ {Y } =
{C,M,A} does not have a valid sequence in Fig. 3 (b).

However, assume we could observe U , but not H or L. p(Y (a)) would be identified in
the implied latent projection graph, shown in Fig. 3 (c), since the sequence 〈M,U,C,A〉 is
now valid, yielding:

p(Y,U,C,A | do(m)) =
p(Y,m,U,C,A)

p(m | U,C)
= p(Y,A | m,U,C)p(U,C)

p(Y,C,A | do(m,u)) =
p(Y, u, C,A | do(m))

p(u | do(m))
=
p(Y,A | m,u,C)p(u,C)

p(u)

= p(Y,A | m,u,C)p(C | u)

p(Y,A | do(m,u, c)) =
p(Y, c, A | do(m,u))

p(c | A, Y, do(m,u))
=

p(Y,A | m,u, c)p(c | u)∑
c p(Y,A | m,u, c)p(c | u)

p(Y | do(m,u, c, a)) =
p(Y, a | do(m,u, c))

p(a | do(m,u, c))
=

p(Y,a|m,u,c)p(c|u)∑
c p(Y,a|m,u,c)p(c|u)∑

y
p(y,a|m,u,c)p(c|u)∑
c p(y,a|m,u,c)p(c|u)

= p(Y (a)). (37)

Note that fixing operations above depend on observing U .

The ID algorithm, as described in §4, inductively applies a particular identification strat-
egy, where each step may be viewed as “adjusting for observed covariates” ~T (j1, . . . , jk−1)
for the purposes of identifying the distribution of “outcomes” ~R(j1, . . . , jk−1) after the
“treatment” Jk(j1, . . . , jk−1) is intervened on, from the (recursively identified) interven-
tional distribution where variables J1, . . . , Jk−1 have already been intervened on. Covariate
adjustment as an identification strategy may be possible even in the presence of hidden
variables. Specifically, the ID algorithm allows such a strategy provided sequential fixing
ignorability holds at every step. As an example, in the derivation above for the model
in Fig. 3 (c), covariate adjustment is valid at each step despite the presence of bidirected
edges connecting C and A, as well as C and Y , representing hidden common causes of those
variables. Proximal causal inference allows an alternative strategy for dealing with certain
hidden variables, provided appropriate proxies ~Z and ~W for these hidden variables exist,
as discussed in §2.1.

17



Shpitser, Wood-Doughty and Tchetgen Tchetgen

We call hidden variables of the latter type “proxy-admitting.” As the previous example
shows, the presence of too many hidden variables may render an interventional distribution
of interest non-identified, while if even one of these hidden variables were observed, identifi-
cation may be recovered via the ID algorithm. What we now show is the requirement that
the hidden variable be observed is not always necessary – provided the hidden variable is
“proxy-admitting,” instead.

We illustrate with an example in Fig. 3 (d), where we will assume the existence of two
control proxies Z and D, and two outcome-inducing proxies W and X. The reason for two
sets of proxies is that identification in Fig. 3 (d) will require two applications of covariate
adjustment rather than one, and the unobserved variable U must be accounted for in both
steps.

We now describe generalizations of assumptions we used in previous examples that allow
identification in Fig. 3 (d).

We first consider analogues of Assumption 2.1.

Assumption 5.1 (sequential proxy independence #1)

Z ⊥⊥ A(m), Y (m) | U,C,D,X,M (38)

W ⊥⊥M,Z | U,C,D,X (39)

Next, we assume the analogue of conditional ignorability.

Assumption 5.2 (sequential fixing ignorability #1)

A(m), Y (m) ⊥⊥M | U,C,D,X (40)

Here the variable M to be fixed is viewed as a treatment, descendant variables of M , namely
A and Y , are viewed as outcomes, and non-descendants of M (excluding the outcome-
inducing proxy W ), namely U,C,D,Z,X, are viewed as covariates.

The outcome bridge function assumption has the general form of assumption 2.4, but
with different treatments, outcomes, and covariates at every step. Specifically, we have:

Assumption 5.3 (sequential outcome bridge function #1)
There exists a bridge function b1(y, a, w,m, c, d, x) such that the following equality holds:

p

 y, a︸︷︷︸
outcomes

| m,︸︷︷︸
treatment

z,︸︷︷︸
control

proxy

c, d, x︸ ︷︷ ︸
observed

covariates

 =
∑
w

b1(y, a, w,m, c, d, x)p(w | m, z, c, d, x). (41)

The completeness assumption 2.5 is extended slightly for the first step to allow for extra
variables in the problem:

Assumption 5.4 (sequential completeness #1)
For any random function v(U) in L2,

E[v(U) | m, z, c, d, x] = 0 for all m, z, c, d and x if and only if v(U) = 0, almost surely. (42)
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As we show in the proof of the identification result below, these assumptions, along with
positivity imply the following identity:

p(y, a, z, c, d, x | do(m)) = p(Y (m) = y,A(m) = a, z, c, d, x) =
∑
w

b1p(w, z, c, d, x).

The graph corresponding to the distribution p(y, a, z, c, d, x | do(m)) is shown in Fig. 3
(e). In this distribution, variables C,Z may be safely marginalized without affecting the
difficulty of the subsequent subproblem, yielding the distribution p(y, a, d, x | do(m)), and
the corresponding graph in Fig. 3 (f). To complete the derivation, analogues of the above
assumptions must hold in this distribution. Specifically, we have:

Assumption 5.5 (sequential proxy independence #2)

D ⊥⊥ Y (m, a) |W,U,A(m) (43)

X ⊥⊥ A(m), D |W,U (44)

Assumption 5.6 (sequential fixing ignorability #2)

Y (a,m) ⊥⊥ A(m) |W,U (45)

Assumption 5.7 (sequential outcome bridge function #2)
There exists a bridge function b2(y, x, a) such that the following equality holds:

p

Y (m) = y︸ ︷︷ ︸
outcome

| A(m) = a︸ ︷︷ ︸
treatment

, d︸︷︷︸
control proxy

 =
∑
x

b2(y, x, a)p(x | A(m) = a, d). (46)

Assumption 5.8 (sequential completeness #2)
For any random function v(W,U) in L2,

Ep(m) [v(W,U) | a, d] = 0 for all a and d if and only if v(W,U) = 0, almost surely. (47)

Finally, the missing directed arrow from M to Y in Fig. 3 (d) represents the following
assumption.

Assumption 5.9 (exclusion restriction)

Y (a,m) = Y (a). (48)

Putting everything together, we have the following result.

Theorem 3 Under assumptions 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and positivity,

p(Y (a)) =
∑
x

b2(y, x, a)p(x),where b2 is obtained via (49)

p(Y (m) = y | A(m) = a, d) =
∑
x

b2(y, x, a)p(x | A(m) = a, d), which is equivalent to∑
w,x,c b1(y, a, x, w,m, c, d)p(w, c, d, x)∑
w,x,c,y b1(y, a, x, w,m, c, d)p(w, c, d, x)

=
∑
x

b2(y, x, a)

∑
w,y,c b1(y, a, x, w,m, c, d)p(w, c, d, x)∑
w,y,c,x b1(y, a, x, w,m, c, d)p(w, c, d, x),

and b1 is obtained via

p(y, a | m, z, c, d, x) =
∑
w

b1(y, a, x, w,m, d, c)p(w | m, c, d, z, x).
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Note that the identifying functional for p(Y (a)) is not a function of m, although it may
appear to depend on m if we examine the syntactic form of the second and third lines of
(49). In particular, we might expect a function b2 that solves the integral equation in the
second line to depend on the value of m in the corresponding interventional distributions in
that equation. However, b2 does not, in fact, depend on the value of m under the model in
Fig. 3 (d). This is not surprising since assumption 5.9 entails the identified interventional
distribution p(Y (a,m)) = p(Y (a)) is not a function of m. Since the distribution is identi-
fied, this restriction manifests as a generalized independence (“Verma”) constraint on the
observed data distribution implied by the causal model in Fig. 3 (d).

It is instructive to consider the structural similarities of expressions in (49) and (37). The
functional in (37) was obtained by fixing M , and conditioning on u and c, and finally apply-
ing the definition of conditioning to the resulting object to obtain p(Y (m,u, c, a))= p(Y (a)).
The functional in (49) was obtained by fixing M using proximal inference to deal with unob-
served confounding between M and its causal descendants, which explains the appearance
of the first bridge function b1 in the functional. Afterwards, variables Z and C are marginal-
ized out, and then subsequent fixing had to be performed using a recursive application of
proximal causal inference, with another set of proxy variables, and another bridge function
b2. In other words, the fixing sequence that gave rise to (37) is 〈M,U,C,A〉, while the
fixing sequence that gave rise to (49) is 〈M,Z,C,A,X,D〉, with M and A not being fixed
in the “conventional way,” but with the aid of proxies and bridge functions. The similarity
of the fixing sequences leads to the structural similarity of resulting functionals, just as the
proximal g-formula resembles ordinary g-formula, and the proximal front-door functional
(25) resembles the ordinary front-door functional (15).

5.1 The General Case

We will now consider general identification theory in hidden variable DAG causal models
that combines ideas from the ID algorithm and proximal inference, and that generalizes all
examples discussed in the previous sections. We appropriately name the resulting algorithm
the proximal ID algorithm.

We will consider hidden variable DAGs with two types of hidden variables: “ordinary”
hidden variables, handled by the fixing operator of the ID algorithm, and represented by
bidirected edges graphically, and “proxy-admitting” hidden variables, handled by proximal
causal inference, and represented on the graph explicitly as (red) vertices.

We will denote “ordinary” hidden variables by ~L, “proxy-admitting” hidden variables
by ~U , and observed variables by ~V . Given a hidden variable DAG G(~V ∪ ~U ∪ ~L), we will
formulate our algorithm using a hidden variable ADMG G(~V ∪ ~U) obtained by a latent
projection operation applied only to ~L.

As shown through our derivations in §2.1 and §3, proximal inference proceeds using a set
of control and outcome-inducing proxies. In these previous examples, inductive steps have
been formulated in terms of a single (interventional) distribution. In previous derivations,
every time we used an outcome-inducing proxy to solve an integral equation to identify the
subsequent interventional distribution, we marginalized that proxy. In general, however, we
may wish to reuse a proxy variable in multiple integral equations to derive multiple bridge
functions.
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The distributions we require to solve an integral equation may, in some cases, only
require parts of the interventional distribution at the current step of the algorithm. If so,
we may only need to identify those parts of the interventional distribution, which may allow
us to retain outcome-inducing proxies for subsequent steps. This observation results in some
differences in how the algorithm is formulated, compared to the standard ID algorithm.

First, our formulation of the proximal ID algorithm will use a subset ~M ⊆ ~V as outcome-
inducing proxies, and treat them as if they were unobserved when defining the district
factorization used in the algorithm.

Given an ADMG G(~V ∪ ~U), and disjoint ~A, ~Y ⊆ ~V , fix ~M ⊆ ~V \ (~Y ∪ ~A), and let
~V ∗ ≡ ~V \ ~M . We start with the following factorization:

p(~Y (~a)) =
∑
~Y ∗\~Y

∏
~D∈D(G(~V ∗)~Y ∗ )

p( ~D | do(~s~D)), (50)

where ~Y ∗ is the set of ancestors of ~Y in G(~V ∗) via directed paths that do not intersect ~A,
and ~s ~D are value assignments to paG( ~D) \ ~D consistent with ~a. Note that the districts in

the above factorization are defined with respect to a subgraph of G(~V ∗), where both ~U and
~M are “projected out.”

To obtain identification, we must ensure that each term p( ~D | do(~s ~D)) is identified from

p(~V ) by a combination of regular fixing operations and proximal causal inference steps. To
this end, we formulate a set of conditions where a particular treatment variable A ∈ ~V may
be fixed either in the usual way as done by the ID algorithm, or by taking advantage of
additional assumptions on proxy variables. Both kinds of steps are formulated in hidden
variable conditional ADMGs (CADMGs) G(~V ∪ ~M ∪ ~U, ~W ), where ~W represent variables
previously fixed, ~U represents unobserved variables that remain relevant in the problem
(e.g. have more than one child in ~V ∪ ~M), ~M represents outcome-inducing proxies available
for use, and ~V represents all other observed variables. These CADMGs will represent
corresponding interventional distributions p(~v, ~m, ~u | do(~w)).

However, it is not necessary for the algorithm to (inductively) identify this entire dis-
tribution, but only certain marginals that suffice for obtaining identification via integral
equations.

Specifically, at every step there exists a subset ~V1 ⊆ ~V and (possibly overlapping)
~M1, ~M2 ⊆ ~M such that ~M1 ∪ ~M2 = ~M , and the algorithm has access to p(~v1, ~m1 | do(~w)),

and p(~v, ~m2 | do(~w)). We can view the set ~M1 as those proxy variables that have possibly
already been used for proximal causal inference steps, but remain available for setting
up subsequent integral equations, provided only variables in ~V1 are mentioned in these
equations. We call the distribution p(~v1, ~m1 | do(~w)) the reusing margin, since the proxy
variables in this margin are reused by multiple applications of proximal causal inference.
Variables in ~M2 are proxy variables that have not previously been used, and we call the
distribution p(~v, ~m2 | do(~w)) containing remaining observed variables, along with proxies
~M2 the inductive margin, since the identification of this margin is obtained by induction

from previous such margins. During initial steps of the algorithm, both inductive and
reusing margins are initialized as p(~v ∪ ~m). We now describe the inductive operation of the
proximal ID algorithm which involves both the steps involving the fixing operation, and the
steps involving proximal causal inference.
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5.1.1 The Proximal ID Algorithm: The Fixing Step

Suppose G(~V ∪ ~M2, ~W ) is a latent projection of G(~V ∪ ~M ∪ ~U, ~W ). For A ∈ ~V , if A is fixable

in G(~V ∪ ~M2, ~W ), then it is also fixable in G(~V ∪ ~M ∪ ~U, ~W ) (Richardson et al., 2017). This

allows us to obtain a new CADMG G̃((~V ∪ ~M ∪ ~U)\{A}, ~W ∪{A}) = φA(G(~V ∪ ~M ∪ ~U, ~W )).
The new distribution corresponding to this CADMG is p(~v \ {a}, ~m, ~u | do(~w, a)), where
the inductive margin p(~v \ {a}, ~m2 | do(~w, a)) may be obtained via the following identity,
mirroring (36):1

p(~V \ {A}, ~M2 | do(~w, a)) =
p(~V \ {A}, ~M2, a | do(~w))

p(a | mb∗G(~V ∪ ~M2, ~W )
(A),do(~w))

, (51)

where the identity is licensed by assumption 4.1, implied by the model for this step since
A is fixable in G(~V ∪ ~M2, ~W ).

In addition, if A ∈ ~V1 and A is fixable in G(~V1 ∪ ~M1, ~W ), we obtain the reusing margin
p(~v1 \ {a}, ~m1 | do(~w, a)) for subsequent steps, as follows:

p(~V1 \ {A}, ~M1 | do(~w, a)) =
p(~V1 \ {A}, ~M1, a | do(~w))

p(a | mb∗G(~V1∪ ~M1, ~W )
(A),do(~w))

. (52)

This identity is, again, licensed by assumption 4.1.

If A 6∈ ~V1 or A is not fixable in G(~V1 ∪ ~M1, ~W ), we obtain the reusing margin p(~v′1, ~m
′
1 |

do(~w, a)), where ~V ′1 = ~V1 \ deG(~V ∪ ~M∪~U, ~W )(A), and ~M ′1 = ~M1 \ deG(~V ∪ ~M∪~U, ~W )(A), for subse-

quent steps, by marginalization:

p(~v′1, ~m
′
1 | do(~w, a)) = p(~v′1, ~m

′
1 | do(~w)) =

∑
~v1\~v′1,~m1\~m′1

p(~v′1, ~m1 | do(~w)), (53)

provided ~V ′1 ,
~M ′1 are non-empty.

5.1.2 The Proximal ID Algorithm: The Proximal Causal Inference Step

Given an inductive margin p(~v, ~m2 | do(~w)), and a reusing margin p(~v1, ~m1 | do(~w)))
identified after an intervention do(~w), fix A ∈ ~V where we aim to identify inductive and
reusing margins given an intervention do(~w, a). To this end we will need a subset ~M∗ ⊆ ~M
of outcome-inducing proxies (where A is the treatment), and a set of control proxies ~Z ⊆ ~V ,
some of which may be outcome-inducing. Additional conditions must hold for the set ~M∗ in
order for the bridge function equation to be formulated in terms of available distributions,
namely the reusing and inductive margins. These are described below.

Define ~R ≡ deG(~V ∪( ~M2\ ~M∗), ~W )(A) \ (~Z ∪ {A}),2 and ~T ≡ (~V ∪ ~M2) \ (~R∪ ~M∗). To apply
proximal inference to identify the effect of the intervention on A on the remaining variables
in the inductive margin, we assume there exists ~U∗ ⊆ ~U , such that the following set of
conditions hold. Since these conditions hold in a (recursively identified) distribution where
the intervention do(~w) took place, we index all potential outcomes by ~w.

1. In this identity, as before, mb∗G(~V ∪ ~M2, ~W )
(A) denotes all random vertices that are either parents of A, or

that are connected to A via collider paths – paths where all consecutive triplets have arrowheads meeting
at the middle vertex.

2. Note that we “latent project out” ( ~M \ ~M2) ∪ ~M∗ ∪ ~H from the CADMG associated with the current
step before defining ~R.
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Assumption 5.10 (sequential proxy independence)

~R(a, ~w) ⊥⊥ ~Z(a, ~w) | ~U∗(~w), ~T (~w) \ ~Z(a, ~w), A(~w) (54)

~M∗(~w) ⊥⊥ A(~w), ~Z(a, ~w) | ~U∗(~w), ~T (~w) \ ~Z(a, ~w) (55)

Assumption 5.11 (sequential fixing ignorability)

~R(a, ~w) ⊥⊥ A(~w) | ~T (~w) \ ~Z(a, ~w) (56)

A sufficient graphical condition for the assumption 5.11 to hold in p(~v∪ ~m∪~u | do(~w)) is
the following condition on the latent projection G(~V ∪ ~U∗, ~W ) of the corresponding CADMG
G(~V ∪ ~M ∪ ~U, ~W ): deG(~V ∪~U∗, ~W )(A) ∩ disG(~V ∪~U∗, ~W )(A) = {A}.

In addition, we impose sequential analogues of the bridge function condition and the
completeness condition.

Assumption 5.12 (sequential outcome bridge function)
There exists a bridge function bA(~m∗, ~r, a,~t\~z, ~w) such that the following equality holds:

p(~r | a,~t∪~z, do(w)) =
∑
~m∗

bA(~m∗, ~r, a,~t \ ~z, ~w)p(~m∗ | a,~t∪~z, do(~w)) (57)

In order for the integral equation for the bridge function to be exclusively a function of the
reusing and/or inductive margins, the only distributions available at the current inductive
step, one of two conditions must hold on ~M∗. If {A}∪ ~T ∪ ~Z ⊆ ~V1, that is if these variables
lie entirely in the reusing margin, then the outcome-inducing proxies ~M∗ must lie either
entirely in ~M1 or entirely in ~M2 (that is either entirely in the inductive margin or entirely
in the reusing margin). If {A} ∪ ~T ∪ ~Z 6⊆ ~V1, ~M∗ must lie entirely in ~M2, that is entirely in
the inductive margin.

Assumption 5.13 (sequential completeness)
For any random function v(U∗) in L2,∑
~U∗

v(~U∗)p(~U∗ | a,~t∪~z, do(~w)) = 0 for all a,~t, ~z,~w if and only if v(~U∗) = 0, almost surely. (58)

Theorem 4 Under assumptions 5.10, 5.11, 5.12, 5.13, and positivity,

p(~r,~t | do(~w, a)) =
∑
~u∗

p(~r,~t, ~u∗, a | do(~w))

p(a | ~t, ~u∗, do(~w))
=
∑
~m∗

bA(~m,~r, a,~t\~z, ~w)p(~m∗,~t | do(~w)) (59)

This result yields the inductive margin p(~r,~t | do(~w, a)) for the next step, which po-
tentially includes elements in ~M2 in ~T . To obtain the reusing margin p(~v1, ~m1 | do(~w)) we
follow precisely the steps in the previous subsection, via the ordinary fixing operation (52),
if A ∈ ~V1 and A is fixable in G(~V1∪ ~M1, ~W ), or the marginalization operation (53) otherwise.
Note that the inductive margin always marginalizes out the proxies ~M∗ that were used in
the current step of the algorithm, while the reusing margins aims to keep these proxies
in the problem, if possible. In addition, only the subset of the control proxies ~Z that are
non-descendants of A (in the graph corresponding to the current step), namely ~Z ∩ ~T , are
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kept in the inductive margin. This is necessary since elements in ~Z which are descendants
of A are confounded via ~U∗, and cannot be treated as a part of ~R, since they are being used
as control proxies by the algorithm. Thus, the distribution after A is intervened on that
also contains elements in ~Z that are descendants of A would not have been identified.

The application of proximal causal inference above may be viewed as creating a new
subproblem from G(~V ∪ ~M2 ∪ ~U, ~W ) by fixing A, and viewing ~M∗ as unobserved variables.
We thus extend the fixing operator φ(.) to apply to G(~V ∪ ~M ∪ ~U, ~W ), even if A is not
fixable in G(~V ∪ ~M2, ~W ) as was required in §5.1.1, provided that conditions in §5.1.2 are
satisfied in G(~V ∪ ~M ∪ ~U, ~W ), and the corresponding inductive and reusing margins, given
A and sets ~M∗, ~Z and ~U∗.

To obtain identification of every term p( ~D | do(~s ~D)) in (60), we need to apply fixing

operations and proximal causal inference inductively to the set ~V \ ~D. We thus generalize
the definition of a valid sequence in the ID algorithm as follows. Given a CADMG G(~V ∪ ~M∪
~U, ~W ), and the corresponding inductive and reusing margins, a sequence σ = 〈J1, J2, . . .〉 is
said to be admissible if either σ is empty, or τ(σ) is admissible in φZ1(G(~V ∪ ~M ∪ ~U, ~W )),
and either J1 is fixable in G(~V ∪ ~M2, ~W ), or there are subsets ~M∗ ⊆ ~M, ~U∗ ⊆ ~U, ~Z ⊆ ~V
such that conditions in §5.1.2 hold, with J1 viewed as a treatment. In both arms of the
disjunction, reusing and inductive margins for subsequent steps of the induction are defined
as described above.

Note that unlike the regular fixing operator in (Richardson et al., 2017), which was de-
fined either on CADMGs, or on kernel/CADMG pairs, the notion of an admissible sequence
is defined on a triplet of a CADMG, a reusing margin, and an inductive margin. This is
because conditions which allow proximal causal inference to be used at a particular step
are not purely graphical, but involve (inductively identified) functions of the observed data
distribution as well.

We are now ready to state the main result on the proximal ID algorithm formally.

Theorem 5 (proximal ID algorithm) Fix an ADMG G(~V ∪ ~U), with disjoint ~A, ~Y ⊆ ~V ,
fix ~M ⊆ ~V \ ( ~A∪ ~Y ), ~V ∗ ≡ ~V \ ~M , and ~Y ∗ is the set of ancestors of ~Y in G(~V ∗) via directed
paths that do not intersect ~A.

Then p(~Y (~a)) is identified from p(~V ) in the causal model represented by G(~V ∪ ~U) given

the proxy set ~M if for every ~D ∈ D(G(~V ∗)~Y ∗), there exists a sequence of elements in the set
~V ∗ \ ~D admissible in G(~V ∪ ~U, ~W ). Furthermore, we then have

p(~Y (~a)) =
∑
~Y ∗\~Y

∏
~D∈D(G(~V ∗)~Y ∗ )

p( ~D | do(~s~D)), (60)

with every p( ~D | do(~s ~D)) identified inductively via (59) and (51).

We discuss an important special case of the proximal ID algorithm, termed proximal
g-computation in (Tchetgen Tchetgen et al., 2020), in the Appendix.

5.2 A Note On Practical Considerations

The results in the previous sections imply that given any two sequences for a set ~S ⊆ ~V
admissible in an ADMG G(~V ∪ ~M ∪ ~U) yield the same object, namely p(~V \ ~S | do(~s)).
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Consequently, for any district ~D corresponding to a term p( ~D | do(~s ~D)) appearing in
(60), any two admissible sequences yield the same object, namely that term. Any such
admissible sequence consists of ordinary fixing steps, and steps that resemble fixing to some
extent, but use proximal causal inference methods via assumptions described in §5.1.2. As
discussed in §4, ordinary fixing steps do not introduce computational complications into the
operation of the ID algorithm, since any fixing operation is “safe” and does not require the
algorithm to backtrack, once performed. This is also true for the proximal ID algorithm,
since any restrictions that hold prior to an ordinary fixing operation being performed will
also hold after it is performed.

Thus, the main combinatorial difficulty pertains to choosing sets ~M∗, ~U∗, ~Z necessary
for steps involving proximal causal inference. However, we argue that this difficulty is, to
some extent, deceptive. In causal inference applications, hidden variables suitable for the
use of proximal causal inference methods cannot be chosen algorithmically without human
insight. Such variables typically correspond to substantively meaningful confounders that
happen, fortuitously, to be associated with appropriate proxies. Even in cases where a
repeated application of proximal causal inference steps is warranted, as in the proximal
g-computation algorithm described in the Appendix, every step is substantively justified by
appealing to domain specific considerations at that step. That these justifications can be
repeated is due to a repeated longitudinal structure of the causal model representing the
data.

The appropriate use of the proximal ID algorithm is to clarify whether proximal causal
inference methods are appropriate for a particular hidden variable causal model. This
is done by using the district factorization and the fixing operator to subdivide the main
problem into a set of subproblems where it is potentially easier for a domain expert to judge
whether assumptions underlying proximal causal inference are justified.

Similarly, a hypothetical algorithm that aims to augment the ID algorithm with (non-
parametric) methods based on instrumental variables would require human insight in the
loop, as any variable that might serve as a candidate instrument if viewed in the causal
graph may, in practice, fail to satisfy additional assumptions needed for identification.

An important class of hidden variable models where the proximal ID algorithm may
be easily applied is one where each of the “proxy-admitting” hidden variables ~U has a
vector of observed children in the graph, of sufficient cardinality, such that a partition of
this vector into control and outcome-inducing proxies is possible. An example of a graph
representing such a model is shown in Fig. 4. In this class of models, the choice of ~M, ~U∗, ~Z
is trivial, and simply involves choosing any “proxy-admitting” hidden variable that prevents
the application of regular fixing steps, and partitioning its children proxy variables to obtain
~M and ~Z. Obtaining identification in this class of graphs may be viewed as a generalization

of the methods presented in (Allman et al., 2015; Kuroki and Pearl, 2014).

A particular term in (60) may be identified by multiple valid sequences of steps, and it
may well be the case that some variables are fixed using the standard fixing operator in one
sequence, and by the application of proximal causal inference in another. Choosing among
possible sequences when designing an estimator, as well as making other choices that lead to
practical estimation strategies introduce highly non-obvious issues that we leave to future
work.
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Figure 4: (a) A causal diagram where observed proxy children Z and W of an unobserved
confounder U enable proximal inference methods. (b) A causal diagram corre-
sponding to the sequentially ignorable model, where p(Y (a0, a1)) is identified via
the g-computation algorithm.

5.3 A Note On Characterization of Identification By Proximal Causal
Inference Methods

The ID algorithm yields a total identification result, meaning that whenever it successfully
returns an identifying functional for p(~Y (~a)), this functional equals to the parameter of
interest in any element of the causal model represented by the input graph G. This fact
allowed prior work (Shpitser and Pearl, 2006a; Huang and Valtorta, 2006) to show that
the ID algorithm is complete3, meaning that whenever it fails, the target parameter is not
identified in the model.

By contrast, the proximal ID algorithm yields a generic identification result, meaning
that a function output by the algorithm can only be obtained in a subset of the model repre-
sented by the graph where the appropriate Fredholm equations yield solutions. Historically,
it has proven to be very challenging to derive completeness results for generic identification
algorithms – the problem remains open even in the simple case of linear Gaussian causal
models. Thus, the question of whether the proximal ID algorithm is complete is currently
open.

6. Relationship to Identification of Responses to Counterfactual Policies

Consider an ADMG G(~V ∪ ~U) representing a hidden variable DAG model (where ~U are

“proxy-admitting” hidden variables). Given a set of treatments ~A, denote for every A ∈ ~A,

a set of non-descendants ~WA in G(~V ∪~U). Given an outcome Y , and a set of known functions

(or policies) ~f ~A ≡ {fA : X ~WA
7→ XA : A ∈ ~A}, inductively define Y (~f ~A) as

Y ({A← fA( ~WA(~f ~A)) : A ∈ ~A ∩ paG(~V ∪~U)(Y )}, {W (~f ~A) : W ∈ paG(~V ∪~U)(Y ) \ ~A}).

As an example, in Fig. 4 (b), given functions ~f{A0,A1} ≡ {fA0 : XC0 7→ XA0 ; fA1 : X{C0,C1} 7→
XA1},

Y (~f{A0,A1}≡Y (C0, A0←fA0
(C0), C1(C0, A0←fA0

(C0)), A1←fA1
(C0, C1(C0, A0←fA0

(C0)))).

3. Note that this is a different notion of completeness from the completeness assumption discussed earlier,
and is instead more closely related to the notion of soundness and completeness of deductive systems.
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This counterfactual outcome represents response of Y had values of A0 and A1 been set,
possibly contrary to fact, to outputs of functions fA0 and fA1 (which themselves possibly
take counterfactual responses to these functions as inputs). Counterfactuals of this sort arise
in precision medicine, analysis of complex longitudinal studies, and reinforcement learning.
Since most policies of interest deviate from treatment assignment actually observed, the
responses are counterfactual, and thus the question of whether they are identified from the
observed data distribution, under a given causal model, is crucial.

Formally, given an ADMG G(~V ∪ ~U), a set of treatments ~A, a subset ~WA ⊆ ~V \ ~A of
non-descendants of A for each A ∈ ~A, a set of policies ~f ~A ≡ {fA : X ~WA

7→ XA : A ∈ ~A},
and a set of outcomes ~Y ⊆ ~V \ ~A, the question is whether p(~Y (~f ~A)) is identified from p(~V ).

A general identification algorithm for this problem was proposed in (Tian, 2008), and
proven complete (for the unrestricted policy class) in (Shpitser and Sherman, 2018). In fact,
this algorithm reduced the problem of identification of responses to policies to the problem
of identification of joint responses to ordinary interventions. Specifically, p(~Y (~f ~A)) is iden-

tified if and only if p(~Y (~a), { ~WA(~a) : A ∈ ~A}) is identified. Moreover, since identification
is insensitive to specific values ~a of intervened-on treatments, the former counterfactual
distribution p(~Y (~f ~A)) may be readily expressed as a marginal of the latter, as follows:∑
{~wA:A∈ ~A} p(

~Y ({A ← fA(~wA) : A ∈ ~A), { ~WA(~a) = ~wA : A ∈ ~A}). This suggests that the
proximal ID algorithm can be readily adapted for identification of responses to policies,
essentially without change.

7. Simulations

We now turn to an array of simulation studies to demonstrate how the identifying assump-
tions of the proximal ID algorithm can enable unbiased estimation. We focus on the DAG
in Figure 2(d) to highlight how simpler baseline methods fail when their assumptions are
violated. While the identification theory allows for U,C,Z,W , and M to be vectors, our
simulations is restricted to the univariate case for simplicity, so vector superscripts are
dropped from the notation that follows. The full details of how we parameterize the syn-
thetic datasets we consider are in § 7.3. Our code implementing our methods and generating
our datasets may be found in the following online repository:

https://github.com/zachwooddoughty/proximal_id_algorithm.

7.1 Proximal Front-Door Estimator

Equation (25) provides the identifying functional for the DAG in Figure 2(d). Our estima-
tor from this functional proceeds in the following steps. First, we estimate a propensity
score model for M , p(M | A,Z,C). Using this model to weight4 the observed data distri-
bution gives us the kernel p(m) from Equation (14), which we use to estimate the bridge
function b(m)(Y | w, a, c,m). Following Miao et al. (2018b), we estimate this function using
generalized method of moments (GMM).

4. We truncate weights at the 2.5th and 97.5th percentiles.
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Once we have the bridge function b(m), we learn a propensity model for A, p(A | Z,C)
and a regression model for W , E(m)[W | A,Z,C]. Then, using the observed Zi and Ci from
each row of our observed data matrix, we sample 100 trajectories of Y (a = 1) and Y (a = 0)
as defined in Equation (25). We then return our estimate of the causal effect as the average
over Y (1)− Y (0) for all sampled trajectories and all data rows.

7.2 Baseline Methods

To comprehensively benchmark the performance of our proximal front-door estimator, we
compare to several other methods for estimating the causal effect of A on Y .

Oracle Baseline. A motivating assumption for this work is that the unobserved con-
founder U makes impossible nonparametric identification of the causal effect. If U were
in fact observed, the causal effect could be estimated with a simple application of the g-
formula which adjusts for the confounding effect of Z, U , and C (Robins, 1986). While our
methods are designed for when U is unobserved, comparing against an oracle with access
to U lower-bounds the estimation error for a given dataset and sample size.

Naive Front-Door. In Figure 2(d), the direct effect of A on Y makes the causal effect
unidentified by the classic front-door estimator given by Equation (13). The front-door
estimator relies on the assumption that (M ⊥⊥ U | A), which is violated in Figure 2(d),
so we expect this estimator to return biased estimates of the causal effect whenever there
is a nonzero direct effect of A on Y . In the “Varied A → Y Effect” experiments below,
we specifically explore how the bias of this estimator changes as we vary the coefficient
responsible for this direct effect.

Simple Proximal. In Figure 1(c), the causal effect of A on Y is identified using proximal
inference. In particular, Equation (10) provides the identifying functional, which relies on
assumptions (1 - 6). In Figure 2(d), assumptions (1) and (2) are violated by the existence
of M and the path Z → M → W . Our Simple Proximal baseline uses the identifying
functional from (10), ignoring the violation of these assumptions. We expect this estimator
to produce biased estimates of the causal effect whenever there is a nonzero effect along
the Z → M → W path. In the “Varied Z → M → W Effect” experiments below, we
explore how the bias of this estimator changes as we vary the coefficients responsible for
this path-specific effect. Our implementation of this method draws from the code released
by Miao et al. (2018b).

7.3 Synthetic Data

The choices made in designing a simulation study can heavily influence the apparent re-
sults (Gentzel et al., 2019). By releasing our code, evaluating over several randomly-sampled
data generating processes (DGPs) and datasets, and exploring violations of our method’s
assumptions, we strive to make our simulation studies as reproducible and extensible as
possible.

We make several simplifications for our simulation studies. We only consider univariate
U,C,Z,W, and M . We consider settings in which Z and M are either both binary and or
both Gaussian; otherwise, A is always binary and all other variables are always Gaussian.
All effects in the DGP are linear without interaction terms.
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Metric Mean Absolute Bias Percent Absolute Bias

Sample Size 4000 16000 64000 4000 16000 64000

Oracle Backdoor 0.007 0.003 0.002 0.007 0.003 0.001
Naive Front-Door 1.003 1.005 1.003 0.790 0.791 0.789
Simple Proximal 1.655 1.661 1.669 1.116 1.119 1.127
Proximal Front-Door 0.006 0.009 0.004 0.005 0.008 0.003

Table 1: Varied Sample Size experiments. Each cell of the table shows the metrics in
(61) and (62) aggregated over four DGPs and 64 datasets per DGP. Z and M are
Gaussian.

For each of the below experiments, all results are an average of 256 evaluations; we
sample 64 datasets from each of four DGPs. The coefficients of the four DGPs are randomly
sampled from Unif(−2, 2) and each dataset is sampled with a different random seed. For
the below experiments in which we alter one or two coefficients of the DGP to explore
violations of different assumptions, we do so before sampling the dataset but leave all other
coefficients as is.

For all experiments, we compare each method’s estimate of the causal effect against the
true effect as computed analytically from the underlying parameters of the DGP. In the
tables below, “Mean Absolute Bias” and “Percent Absolute Bias” refer to the following
computations:

Mean Absolute Bias =
1

N1

N1∑
i=1

∣∣∣∣∣∣ 1

N2

N2∑
j=1

(β̂i,j − βi)

∣∣∣∣∣∣ (61)

Percent Absolute Bias =
1

N1

N1∑
i=1

1

|βi|

∣∣∣∣∣∣ 1

N2

N2∑
j=1

(β̂i,j − βi)

∣∣∣∣∣∣ (62)

where N1 = 4 is the number of DGPs and N2 = 64 is the number of datasets on which we
evaluate. β̂i,j is the method’s estimate of the causal effect for DGP i and dataset j, and
βi is the true causal effect for that DGP. Note the absolute value inside the summation
over DGPs in (61) and (62). This is important because we sample our DGP parameters
from Unif(−2, 2), which is mean zero. Because the effects in our DGP are linear without
interactions, the biases of the naive front-door is dependent on the sign and magnitude
of the coefficient controlling the A → Y edge that violates its assumptions. Thus if we
average over many DGPs, that coefficient may be approximately mean zero and the bias
may disappear, even if the method has high bias for any single DGP. We further explore
how specific coefficient values affect the behavior of the different estimators in Tables 2, 3,
and 4.

7.4 Experiments

Varied Sample Size. We first demonstrate how each method converges as we increase
the sample size. Table 1 shows these results when Z and M are Gaussian. We see both
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Metric Bootstrap Interval Coverage Bootstrap Interval Width

A→ Y 0 0.2 0.4 0.8 0 0.2 0.4 0.8

Oracle Backdoor 0.938 0.938 0.938 0.938 0.338 0.338 0.338 0.338
Naive Front-Door 0.766 0.219 0.020 0.000 0.258 0.254 0.251 0.245
Simple Proximal 0.000 0.000 0.000 0.000 0.694 0.693 0.694 0.690
Proximal Front-Door 0.945 0.941 0.945 0.941 0.595 0.595 0.595 0.597

Table 2: Varied A → Y Effect experiments. Width and Coverage of 95% bootstrap
confidence interval as we vary the A→ Y direct effect. Z and M are Gaussian, we
compute intervals with 64 bootstrap resamplings, and each dataset contains 4000
samples. The A → Y direct effect is parameterized by a single coefficient in our
linear DGP.

the backdoor oracle and proximal front-door quickly converge towards zero bias. The prox-
imal front-door estimator achieves bias close to the oracle, highlighting the effectiveness of
proximal methods for recovering from unobserved confounding. Neither naive front-door
nor the simple proximal estimators converge towards zero bias as the sample size increases.

Varied A → Y Effect. We then examine how the direct effect of A → Y empirically
introduces bias to the naive front-door estimator. For each of the four DGPs we consider,
we modify the parameters of the sampling distribution by changing the A → Y coefficient
to a value βAY ∈ {0, 0.2, 0.4, 0.8}. For each value βAY , we sample 256 datasets of 4000
samples.

Table 2 shows the coverage and interval width of these methods when we use nonpara-
metric bootstrap with 64 resamplings to produce a 95% confidence interval. We see that
when βAY = 0, the naive front-door estimator’s assumptions are met and it achieves cover-
age that is comparable with both the oracle method and the proximal front-door, but does
so with an interval that is narrower than either. However, as βAY increases, the naive front-
door estimator coverage quickly drops to 0 while the proximal front-door method maintains
the same coverage and similar interval widths. The simple proximal method produces wide
intervals with zero coverage for all values of βAY , as its assumptions do not depend on this
direct effect.

Varied Z →M →W Effect. When Z →M →W path in Figure 2(d) is 0, marginalizing
out M gives us the DAG in Figure 1 (c). This explains the low error of the simple proximal
estimator in the 0 columns of Table 3. However, as soon as the coefficients controlling that
path-specific effect increase, assumptions (1) and (2) – necessary for the simple proximal
estimator’s derivation in Equation (10) – are violated and the estimator’s bias increases.

Varied Z ← U → W Effects. For our final set of simulation studies, we consider the
completeness assumptions that require Z and W to be effective proxies for U . To explore
this assumption, we vary the coefficients that control the direct effect of U on both Z and
W . When these coefficients are zeroed out, it violates the completeness assumptions given
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Metric Gaussian Z, M Binary Z, M

Z →M →W 0 0.2 0.4 0.8 0 0.2 0.4 0.8

Oracle Backdoor 0.008 0.008 0.008 0.007 0.041 0.040 0.041 0.048
Naive Front-Door 1.041 1.041 1.040 1.040 0.978 0.978 0.979 0.982
Simple Proximal 0.012 0.319 0.985 1.404 0.065 0.081 0.104 0.208
Proximal Front-Door 0.008 0.009 0.010 0.007 0.044 0.046 0.046 0.054

Table 3: Varied Z → M → W Effect experiments. Percent absolute bias as we vary the
path-specific effect of Z →M →W for either Gaussian or binary Z and M . Each
dataset contains 4000 samples. The effect is parameterized by the Z → M and
M →W coefficients, which we set to the same value.

Metric Bootstrap Interval Coverage Bootstrap Interval Width

Z ← U →W 0 0.2 0.4 0.8 0 0.2 0.4 0.8

Oracle Backdoor 0.934 0.938 0.898 0.938 0.317 0.315 0.315 0.312
Naive Front-Door 0.000 0.000 0.000 0.000 0.266 0.267 0.269 0.271
Simple Proximal 0.242 0.070 0.043 0.000 0.492 0.538 1.467 1.411
Proximal Front-Door 0.465 0.902 0.938 0.926 0.860 2.529 1.688 0.641

Table 4: Varied Z ← U →W Effect experiments. Width and Coverage of 95% bootstrap
confidence interval as we vary the Z ← U →W effects. Z and M are Gaussian, we
compute intervals with 64 bootstrap resamplings, and each dataset contains 4000
samples. These effects are parameterized by the U → W and U → Z coefficients,
which we set to the same value.

by (6) and (24). As these assumptions are essential to learning the bridge functions in (5)
and (23), we should expect both proximal methods to perform poorly in this setting.

Table 4 shows the width and coverage of a bootstrap confidence interval for each of
the four methods as we vary the direct effect of U on its proxies. The interval widths in
particular provide some empirical evidence for how proximal methods fail when their specific
assumptions are violated. When the coefficients controlling Z ← U → W are 0, the bridge
function in Equation (23) is essentially undefined; both proximal methods have relatively
narrow intervals with poor coverage. As the coefficient values increase, the proximal front-
door quickly increases in coverage to approach that of the oracle. The simple proximal
method does not likewise improve because of the Z → M → W path-specific effect that
violates assumptions (1) and (2).

7.5 Discussion and Limitations

We have considered a multitude of simulation studies that are designed to comprehensively
evaluate the proximal front-door estimator. We show how it generalizes both the front-
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door estimator and the simple proximal estimator by handling assumption violations of
either method. In our results in Tables 1 and 3, the proximal front-door estimator has bias
comparable to that of the oracle method. In Table 2 the proximal front-door interval width
is within a factor of 2 of the oracle while providing the same coverage. These results suggest
it can be an empirically effective approach for recovering from unobserved confounding, as
long as the completeness assumption explored in Table 4 is met.

Despite these findings, our simulation studies are limited by the simplifying assumptions
we have made. Unlike the derivation in Equation (25), we consider only univariate U , C,
Z, M , and W . We also only consider linear effects without interaction terms in our DGP.
Future work should consider these extensions, but they are not necessary to highlight the
empirical behavior of the proximal front-door estimator.

8. Analysis Of The Effect Of Methotextrate

We now apply our proximal front-door estimator to an analysis of the effect of methotextrate
(MTX) on tender joint count in patients with rheumatoid arthritis. The dataset we examine,
originally described in Choi et al. (2002), has been studied in several analyses (Fewell et al.,
2004; Whittle and Hughes, 2004). Most relevant to this paper are several recent analyses
that have used this data to explore proximal causal methods (Tchetgen Tchetgen et al.,
2020; Ying et al., 2021). While early analyses of this data have found that MTX reduces
mortality (Fewell et al., 2004), recent work proposing causal methods have highlighted
the potential concern for time-varying unobserved confounding (Tchetgen Tchetgen et al.,
2020). In particular, while the data contains several measures of the disease severity and its
progression, these variables cannot capture the full complexity of the patient’s underlying
health status and behaviors. Proximal methods allow us to use these noisy measurements
as proxies for the underlying health status that we cannot observe.

Our preprocessing decisions are generally consistent with those of Tchetgen Tchetgen
et al. (2020) and Ying et al. (2021); to begin, we limit our analysis to the 1,010 patients who
had at least 12 months of follow-up. Our outcome Y is the change in the patient’s tender
joint count after 12 months of follow-up. Our binary treatment is whether the patient took
MTX beginning at baseline. Our observed covariates C contain nine categorical variables,
including patient age and smoking status. Our two proxies Z and W are measured at
baseline and at seven months of follow-up, respectively. Each proxy is a vector of four
variables, including the patient’s tender joint count and their (categorical) overall assessment
of health.

Our modeling decisions differ from prior work in a number of respects. Whereas Ying
et al. (2021) and Tchetgen Tchetgen et al. (2020) measured MTX treatment at two time
points, we consider only a single treatment. The second major difference is the introduc-
tion of a mediator M , which we define as a vector of two binary variables, representing
whether the patient was taking Prednisone or antirheumatic drugs at six months of follow-
up. Full details of our preprocessing and the code to replicate our analyses are included
in the Appendix. Our assumptions are summarized by the DAG in Figure 2(d), and re-
lax assumptions made by Ying et al. (2021) and Tchetgen Tchetgen et al. (2020) in the
sense that the outcome-inducing proxy need no longer be independent of the treatment
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Point Estimate Causal Effect Effect Interval

E[Y (0)] E[Y (1)] E[Y (1)− Y (0)] 2.5% 97.5%

Naive Front-Door -0.155 -0.137 0.017 -0.026 0.063
Simple Proximal -0.171 -0.908 -0.737 -1.144 -0.392
Proximal Front-Door 0.149 -0.193 -0.343 -0.977 0.247

Table 5: Results of three estimators with binary treatment, where a = 1 only for patients
who began MTX at or before baseline. The Point Estimate columns show estimates
for E[Y (a)], the expected change in tender joint count for a patient counterfac-
tually assigned treatment a. The Effect Interval columns show a 95% confidence
interval of the causal effect, E[Y (1) − Y (0)], using 256 bootstrap resamplings.
While the point estimates of both proximal methods suggest MTX helps reduce
tender joint count, the proximal front-door estimator’s higher variance results in
an insignificant estimate of the causal effect.

conditional on any set of variables. On the other hand, we do assume the treatment is
conditionally ignorable of the mediator variable given covariates.

Similar to §7, we compare our proximal front-door estimator against a naive front-door
estimator that assumes no direct effect A → Y , and against a simple proximal estimator
that assumes no path-specific effect Z →M → W . The simple proximal estimator is most
similar to the past work of Ying et al. (2021). As clinician domain knowledge in prior work
strongly suggests the presence of the A → Y edge, we might expect the naive front-door
estimator to be biased.

We start with the simplest case where A is binary: either patients received MTX starting
at baseline (A = 1) or they did not (A = 0). Table 5 shows each method’s point estimate for
the expected counterfactual change in tender joint count without or with MTX. A negative
value of E[Y (a)] suggests that on average, treatment a reduces patients’ tender joint count.
The naive front-door estimates the causal effect (E[Y (1)− Y (0)]) at 0.017, suggesting that
both treatments have roughly equal effectiveness. In contrast, the simple proximal and
proximal front-door methods estimate this causal effect at -0.737 and -0.343 respectively,
suggesting that MTX is more effective at reducing tender joint count.

The right-most columns of Table 5 show a 95% confidence interval for this causal effect,
calculated from 256 bootstrap resamplings. While we cannot know the true causal effect,
the bootstrap interval width provides insight into the variance of the estimators. As with
our simulation studies, the naive front-door estimator has the lowest variance, and our
proximal front-door estimator has the highest.

One concern specific to the data and our results in Table 5 is that our treated patients
are defined as only those who began treatment at or before baseline; all patients who
started treatment after baseline are coded as untreated. We explore the effect of cumulative
exposure by defining treatment as the patient’s months on MTX, rather than a binary
indicator. Because we have an edge A → M in Figure 2 (d) and M is measured at six
months of follow-up, we define A = 0 for patients who were never treated or were only
treated sometime after six months of follow-up. We define A = 6 for patients who were
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Figure 5: Results of three estimators with a categorical treatment ranging from a = 0 (pa-
tients with no MTX) to a = 6 (patients who began MTX at or before baseline).
The figure shows for each estimator and each value of a, the point estimate of
E[Y (a)] and the 95% confidence interval from 256 bootstrap resamplings. If we
calculate causal effects E[Y (a) − Y (0)] for each estimator, the simple proximal
gives significant effects for each a, according to a 95% bootstrap confidence in-
terval. However, neither front-door estimator gives any significant effects.

treated at or before baseline. For patients who began treatment at t = 1, . . . , 5 months
of follow-up, we define A = 6 − t: a patient with five months of pre-mediator treatment
began treatment at one month of follow-up. Our categorical definition reduces the number
of individuals within each strata of A, with 826 patients labeled with A = 0, 123 patients
with A = 6, and only 61 total patients with A between 1 and 5. Note that patients who
were labeled as A = 1 in the analysis for Table 5 are now labeled as A = 6; we cannot
further subdivide these patients because the dataset does not indicate whether they started
MTX at baseline or several years beforehand.

Figure 5 shows all three methods with this categorically-defined A. As in the binary case,
the simple proximal estimator suggests that increased MTX reduces tender joint count. For
the causal effect defined as E[Y (6)−Y (0)], the naive front-door method gives an estimate of
0.028, suggesting no benefit from MTX. The simple proximal method gives an effect estimate
of -0.596, which is significant according to a 95% bootstrap confidence interval from 256
resamplings. The proximal front-door estimator gives a more conservative estimate of the
causal effect at -0.201, which is not significant. The 95% bootstrap confidence intervals for
the proximal methods are again quite wide, especially for larger values of A.

Code for preprocessing the data and reproducing these results are provided in the fol-
lowing repository:
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https://github.com/zachwooddoughty/proximal_id_algorithm.

Access to the dataset itself may be requested by contacting the third author.

9. Conclusions

We have introduced the proximal ID algorithm, a synthesis of proximal causal inference,
and nonparametric identification theory based on graphical causal models.

On the one hand, the proximal ID algorithm is able to obtain identification in cases
where the classical ID algorithm fails by exploiting additional assumptions involving proxy
variables. On the other hand, the proximal ID algorithm greatly extends the applicability
of proximal causal inference methods by taking advantage of graphical identification theory.

As an important special case of our algorithm, we introduced the proximal generalization
of the front-door criterion (Pearl, 1995), which no longer requires that the mediator capture
all causal effects of the treatment on the outcome. In the Appendix, we review another
important special case: the proximal extensions of the g-computation algorithm (Robins,
1986). Since estimation methods for the functionals arising in the latter case have already
been considered in the literature (Tchetgen Tchetgen et al., 2020), we illustrate estimation
for the proximal front-door functional by means of simulation studies and a data application.

The validity of the output of the proximal ID algorithm relies on a correctly speci-
fied graphical causal model, as well as the existence of proxy variables and completeness
conditions that must hold within certain subproblems encountered by the algorithm.
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Appendix A. Proofs

Theorem 3 Under assumptions 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and positivity,

p(Y (a)) =
∑
x

b2(y, x, a)p(x),where b2 is obtained via (63)

p(Y (m) = y | A(m) = a, d) =
∑
x

b2(y, x, a)p(x | A(m) = a, d), which is equivalent to∑
w,x,c b1(y, a, x, w,m, c, d)p(w, c, d, x)∑
w,x,c,y b1(y, a, x, w,m, c, d)p(w, c, d, x)

=
∑
x

b2(y, x, a)

∑
w,y,c b1(y, a, x, w,m, c, d)p(w, c, d, x)∑
w,y,c,x b1(y, a, x, w,m, c, d)p(w, c, d, x),

and b1 is obtained via

p(y, a | m, z, c, d, x) =
∑
w

b1(y, a, x, w,m, d, c)p(w | m, c, d, z, x).

Proof We first obtain the following:

(38) ⇒︸︷︷︸
consistency

A, Y ⊥⊥ Z |M = m,U,C,D,X (64)

(38) + (40) ⇒︸︷︷︸
contraction

Z,M ⊥⊥ A(m), Y (m) | U,C,D,X

⇒︸︷︷︸
weak union

M ⊥⊥ A(m), Y (m) | U,C,D,X,Z (65)

(39) ⇒︸︷︷︸
weak union

W ⊥⊥ Z |M,U,C,D,X (66)

(39) ⇒︸︷︷︸
weak union

W ⊥⊥M | Z,U,C,D,X (67)

We then obtain the following derivation, where we will denote b1(y, a, x, w,m, d, c) by
b1 for conciseness:

p(y, a | m, z, c, d, x) =
∑
w

b1p(w | m, c, d, z, x)⇒ (by (64), (66))∑
u

p(y, a | m, c, d, x, u)p(u | m, z, c, d, x) =
∑
w

b1
∑
u

p(w | m, c, d, x, u)p(u | m, z, c, d, x)⇒ (by (42))

p(y, a | m, c, d, x, u) =
∑
w

b1p(w | m, c, d, x, u)⇒ (by (64), (66), (67))∑
u

p(y, a | m, c, d, x, u, z)p(c, d, x, u, z) =
∑
u

∑
w

b1p(w | c, d, x, u, z)p(c, d, x, u, z)⇒ (by (65))

p(Y (m) = y,A(m) = a | c, d, x, z)p(c, d, x, z) = p(y, a, c, d, x, z | do(m)) =
∑
w

b1p(w, c, d, x, z).

(68)
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Next, we follow the same derivation structure, but now with the second set of assump-
tions, corresponding to the second fixing operation we must perform.

(43) ⇒︸︷︷︸
consistency

Y (m) ⊥⊥ D | A(m) = a,W,U. (69)

(43) + (45) ⇒︸︷︷︸
contraction

D,A(m) ⊥⊥ Y (m, a) |W,U ⇒︸︷︷︸
weak union

A(m) ⊥⊥ Y (m, a) |W,U,D (70)

(44) ⇒︸︷︷︸
weak union

X ⊥⊥ D | A(m),W,U (71)

(44) ⇒︸︷︷︸
weak union

X ⊥⊥ A(m) | D,W,U (72)

Noting that both p(Y (m) = y | A(m) = a, d) and p(x | A(m) = a, d) are functions of
p(y, a, c, d, x, z | do(m)), which is identified by the above argument, we continue with the
derivation using assumption 5.7, and denoting b2(y, x, a) by b2 for conciseness, as before:

p(Y (m) = y | A(m) = a, d) =
∑
x

b2p(x | A(m) = a, d)⇒

(by (69), (71))∑
w,u

p(Y (m) = y | A(m) = a,w, u)p(w, u | a, d) =
∑
x

b2
∑
w,u

p(x | A(m) = a,w, u)p(w, u | a, d)⇒

(by (47))

p(Y (m) = y | A(m) = a,w, u) =
∑
x

b2p(x | A(m) = a,w, u)⇒ (by (69), (71), (72))∑
w,u,d

p(Y (m) = y | A(m) = a,w, u, d)p(w, u, d) =
∑
w,u

∑
x,d

b2p(x | w, u, d)p(w, u, d)⇒ (by (70), (48))

∑
w,u,d

p(Y (m, a) = y | w, u, d)p(w, u, d) = p(Y (a)) =
∑
x,d

b2(y, x, a)p(x, d) =
∑
x

b2(y, x, a)p(x).

This completes the proof.

Theorem 4 Under assumptions 5.10, 5.11, 5.12, 5.13, and positivity,

p(~r,~t | do(~w, a)) =
∑
~u∗

p(~r,~t, ~u∗, a | do(~w))

p(a | ~t, ~u∗, do(~w))
=
∑
~m∗

bA(~m,~r, a,~t\~z, ~w)p(~m∗,~t | do(~w)) (73)
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Proof We first obtain the following:

(54) ⇒︸︷︷︸
consistency

~R(~w) ⊥⊥ ~Z(~w) | A(~w) = a, ~U∗(~w), ~T (~w) \ ~Z(~w) (74)

(54) + (56) ⇒︸︷︷︸
contraction

~R(a, ~w) ⊥⊥ ~Z(a, ~w), A(~w) | ~U∗(~w), ~T (~w) \ ~Z(a, ~w)

⇒︸︷︷︸
weak union, decomposition

~R(a, ~w) ⊥⊥ A(~w) | ~U∗(~w), ~T (~w) (75)

(55) ⇒︸︷︷︸
weak union

~M∗(~w) ⊥⊥ ~Z(a, ~w) | A(~w), ~U∗(~w), ~T (~w) \ ~Z(a, ~w)

⇒︸︷︷︸
consistency

~M∗(~w) ⊥⊥ ~Z(~w) | A(~w) = a, ~U∗(~w), ~T (~w) \ ~Z(~w) (76)

(55) ⇒︸︷︷︸
weak union

~M∗(~w) ⊥⊥ A(~w) | ~Z(a, ~w), ~U∗(~w), ~T (~w) (77)

We then get the following derivation, where we denote bA(~m∗, ~r, a,~t\~z, ~w) by bA for
conciseness:

p(~r | a,~t∪~z,do(~w)) =
∑
~m∗

bAp(~m
∗ | a,~t∪~z,do(~w))⇒ (by (74), (76))∑

~u∗

p(~r|~u∗, a,~t \~z,do(~w))p(~u∗|a,~t∪~z,do(w)) =
∑
~m∗

bA
∑
~u∗

p(~m∗|a,~t \~z, ~u∗,do(~w))p(~u∗|a,~t∪~z,do(~w))⇒

(by (58))

p(~r | ~u∗, a,~t \ ~z,do(~w)) =
∑
~m∗

bAp(~m
∗ | a,~t \ ~z, ~u∗,do(~w))⇒

(by (74), (76), (77))∑
~u∗

p(~r | ~u∗, a,~t,do(~w))p(~u∗,~t | do(~w)) =
∑
~u∗

∑
~m∗

bAp(~m
∗ | ~t, ~u∗,do(~w))p(~u∗,~t | do(~w))⇒

(by (75), and consistency)∑
~u∗

p(~r,~t, ~u∗, a | do(~w))

p(a | ~t, ~u∗,do(~w))
= p(~r,~t | do(~w, a)) =

∑
~m∗

bAp(~m
∗,~t | do(~w)) (78)

This establishes the result.

Theorem 5 (proximal ID algorithm) Fix an ADMG G(~V ∪ ~U), with disjoint ~A, ~Y ⊆ ~V ,
fix ~M ⊆ ~V \ ( ~A∪ ~Y ), ~V ∗ ≡ ~V \ ~M , and ~Y ∗ is the set of ancestors of ~Y in G(~V ∗) via directed
paths that do not intersect ~A.

Then p(~Y (~a)) is identified from p(~V ) in the causal model represented by G(~V ∪ ~U) given

the proxy set ~M if for every ~D ∈ D(G(~V ∗)~Y ∗), there exists a sequence of elements in the set
~V ∗ \ ~D admissible in G(~V ∪ ~U, ~W ). Furthermore, we then have

p(~Y (~a)) =
∑
~Y ∗\~Y

∏
~D∈D(G(~V ∗)~Y ∗ )

p( ~D | do(~s~D)), (79)

with every p( ~D | do(~s ~D)) identified inductively via (59) and (51).
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Proof First, note that standard causal models of a hidden variable DAG G(~V ∪ ~H) imply
that every interventional distribution, including p(~Y ∗(~a)), admits a district factorization
with respect to the induced subgraph G(~V )~Y ∗ of the latent projection ADMG G(~V )) of

G(~V ∪ ~H). The conclusion then follows inductively (on the fixing sequence of every term)
from the soundness of the ID algorithm (see e.g. the proof in (Richardson et al., 2017)),
and the derivation yielding (59).

A0 C1

U0

A1

U1

Y

Z0 W0 Z1 W1

(a)

A0 C1

U0

a1

U1

Y

Z0 W0 Z1 W1

(b)

Figure 6: (a) A causal diagram corresponding to the proximal generalization of the se-
quentially ignorable model. (b) A causal diagram obtained from (a) after the
treatment A1 is fixed using proximal causal inference with the outcome-inducing
proxy W1.

Appendix B. An Important Special Case: The Proximal G-Computation
Algorithm

Here we consider an important special case of the proximal ID algorithm that arises in
longitudinal studies, where treatments are administered sequentially over time. If the policy
assigning treatments at each time point in such a study was based only on the past observed
variables, the resulting causal model is the well known sequentially ignorable model where
identification is achieved by means of the g-computation algorithm (Robins, 1986). An
example of such a model is shown in Fig. 4 (b), where we have

p(Y (a0, a1) = y) = p(y | do(a0, a1)) =
∑
c0,c1

p(y | a0, c0, a1, c1)p(c1 | a0, c0)p(c0). (80)

If the policy assigning treatments at each time point also depends on unobserved variables,
the distribution p(Y (a0, a1)) is not identified nonparametrically. However, provided the
appropriate outcome-inducing and control proxies exist, we can exploit the proximal ID
algorithm to obtain identification. Consider the model shown in Fig. 6 (a), where we are
interested in identifying p(Y (a0, a1)), and the vector of baseline covariates C0, which is
assumed to cause all other variables, is suppressed from the figure for legibility.
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Let ~z = (z0, z1),~c = (c0, c1),~a = (a0, a1), ~w = (w0, w1), ~u = (u0, u1). Identification
proceeds in two stages, with both reusing and inductive margins initialized as p(y,~c,~a, ~z, ~w).
For the first stage, we make the following assumptions, implied by the graphical causal
model.

Assumption B.1 (sequential proxy independence #1)

Y (a1) ⊥⊥ Z0, Z1 | U0, U1, A0, C0, C1, A1 (81)

W1,W0 ⊥⊥ A1, Z0, Z1 | U0, U1, A0, C0, C1 (82)

Assumption B.2 (sequential ignorability #1)

Y (a1) ⊥⊥ A1 | U0, U1, A0, C0, C1, (83)

In addition, we assume the following bridge function and completeness conditions.

Assumption B.3 (sequential outcome bridge function #1)
There exists a bridge function bA1(w1, y, a1, z0, a0, c0, w0, c1) such that the following

equality holds:

p(y | a1, z0, a0, c0, w0, c1, z1) =
∑
w1,w0

bA1
(w1, y, a1, z0, a0, c0, w0, c1)p(w1, w0 | a1, z0, a0, c0, c1, z1)

(84)

Assumption B.4 (sequential completeness #1)
For any random function v(U1),∑
U1

p(v(U1) | a1, z0, a0, c0, w0, c1, z1) = 0 for all a1, z0, a0, c0, w0, c1, z1 if and only if v(U1) = 0.

(85)

We first obtain the following:

(81) ⇒︸︷︷︸
consistency

Y ⊥⊥ Z0, Z1 | A1= a1, U0, U1, A0, C0, C1 (86)

(81) + (83) ⇒︸︷︷︸
contraction

Y (a1) ⊥⊥ Z0, Z1, A1 | U0, U1, A0, C0, C1

⇒︸︷︷︸
weak union

Y (a1) ⊥⊥ A1 | U0, U1, A0, C0, C1, Z0, Z1 (87)

(82) ⇒︸︷︷︸
weak union

W1,W0 ⊥⊥ Z0, Z1 | U0, U1, A0, C0, C1, A1 (88)

(82) ⇒︸︷︷︸
weak union

W1,W0 ⊥⊥ A1 | U0, U1, A0, C0, C1, Z0, Z1 (89)
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Writing bA1(w1, y, a1, z0, a0, c0, w0, c1) as bA1 for conciseness, we then have:

p(y | ~a, ~z,~c) =
∑
~w

bA1
p(~w | ~a, ~z,~c)⇒ (by (86), (88))∑

~u

p(y | ~a,~c, ~u)p(~u | ~a, ~z,~c) =
∑
~w

bA
∑
~u

p(~w | ~a,~c, ~u)p(~u | ~a, ~z,~c)⇒ (by (85))

p(y | ~a,~c, ~u) =
∑
~w

bAp(~w | ~a,~c, ~u)⇒ (by (86), (88), (89))∑
~u

p(y | ~a, ~z,~c, ~u)p(~u, a0, ~z,~c) =
∑
~u

∑
~w

bAp(~w | a0, ~z,~c, ~u)p(~u, a0, ~z,~c)⇒ (by (87))

∑
~u

p(y,~a, ~z,~c, ~u)

p(a1 | ~u,~c, ~z, a0)
= p(y, a0, ~z,~c | do(a1)) =

∑
~w

bAp(~w, a0, ~z,~c).

This results in the graph in Fig. 6 (b), and identification of the inductive margin p(y, a0, ~z,~c |
do(a1)). Since A1 is not fixable in G(~C, ~A, ~Z, ~W, Y ), we obtain the reusing margin by
marginalizing out descendants of A1, yielding p(~c, a0, ~z, ~w).

Since Z1 has no descendants once A1 is fixed, and isn’t required for any subsequent
operation, Z1 may be safely marginalized out from both margins, yielding:

p(y, a0, z0,~c | do(a1)) =
∑
~w

bAp(~w, a0, z0,~c)

p(~c, a0, z0, ~w) =
∑
z1

p(~c, a0, ~z, ~w).

This marginalization corresponds to the usual fixing operation described in §5.1.1.
To continue the induction, we employ the following assumptions for the second stage,

which consist of independences implied by the causal model, a bridge integral equation
assumption, and a completeness condition.

Assumption B.5 (sequential proxy independence #2)

Y (a1, a0), C1(a1, a0) ⊥⊥ Z0 | U0, C0, A0 (90)

W0 ⊥⊥ A0, Z0 | U0, C0 (91)

Assumption B.6 (sequential ignorability #2)

Y (a1, a0), C1(a1, a0) ⊥⊥ A0 | U0, C0 (92)

Assumption B.7 (sequential outcome bridge function #2)
There exists a bridge function bA0(w0, y, c1, a0, c0, a1) such that the following equality

holds:

p(y, c1 | a0, z0, c0, do(a1)) =
∑
w0

bA0(w0, y, c1, a0, c0, a1)p(w0 | a0, z0, c0) (93)

Assumption B.8 (sequential completeness #2)
For any random function v(U0),∑

U0

p(v(U0) | a0, z0, c0, do(a1)) = 0 for all z0, a0, c0, a1 if and only if v(U0) = 0, (94)
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where the left hand side of (93) is a function of the inductive margin obtained from the first
stage, and the right hand side of (93) is a function of the reusing margin obtained from the
first stage.

We then obtain the following:

(90) ⇒︸︷︷︸
consistency

Y (a1), C1(a1) ⊥⊥ Z0 | U0, C0, A0 = a0 (95)

(90) + (92) ⇒︸︷︷︸
contraction

Y (a1, a0), C1(a1, a0) ⊥⊥ Z0, A0 | U0, C0

⇒︸︷︷︸
weak union

Y (a1, a0), C1(a1, a0) ⊥⊥ A0 | U0, C0, Z0 (96)

(91) ⇒︸︷︷︸
weak union

W0 ⊥⊥ Z0 | U0, C0, A0 (97)

(91) ⇒︸︷︷︸
weak union

W0 ⊥⊥ A0 | U0, C0, Z0 (98)

We next obtain the following derivation for the second stage, where bA0 denotes
bA0(w0, y, c1, a0, c0, a1) for conciseness:

p(y, c1 | a0, z0, c0,do(a1)) =
∑
w0

bA0
p(w0 | a0, z0, c0)⇒ (by (95), (97))∑

u0

p(y, c1 | u0, a0, c0,do(a1))p(u0 | a0, z0, c0) =
∑
w0

bA0

∑
u0

p(w0|a0, u0, c0)p(u0|a0, z0, c0)⇒

(by (94))

p(y, c1 | u0, a0, c0,do(a1)) =
∑
w0

bA0p(w0 | a0, u0, c0)⇒

(by (95), (97), (98))∑
u0

p(y, c1 | u0, a0, z0, c0,do(a1))p(u0 | c0, z0,do(a1)) =
∑
u0

∑
w0

bA0
p(w0 | u0, z0, c0)p(u0 | c0, z0)⇒

(by (96))∑
u0

p(y, c1, u0, a0, z0, c0 | do(a1))

p(a0 | c0, z0, u0,do(a1))
= p(y, c1, z0, c0 | do(a1, a0))

=
∑
w0

bA0
p(w0, z0, c0).

Together, the above two derivations imply the following identification result:

p(y | do(a1, a0)) =
∑

w0,c1,c0

bA0
p(w0, c0), where bA0

is solved for via

p(y, c1 | a0, z0, c0,do(a1)) =
∑
w0

bA0
(w0, y, c1, a0, c0, a1)p(w0 | a0, z0, c0), where

p(y, c1 | a0, z0, c0,do(a1)) =

∑
~w bAp(~w, a0, z0,~c)∑

y,c1, ~w
bAp(~w, a0, z0,~c)

, since

p(y, a0, z0,~c | do(a1)) =
∑
~w

bAp(~w, a0, z0,~c).
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This section provides a graphical description of the proximal g-computation algorithm
first described in (Tchetgen Tchetgen et al., 2020). We note a few differences between the
algorithm in this section, and the one in (Tchetgen Tchetgen et al., 2020). First, the target
of inference in (Tchetgen Tchetgen et al., 2020) was a counterfactual expectation, and thus
all derivations employed integral equations on the expectation scale. Second, control proxies
Z1 and Z0, while used in the same way in both versions of the algorithm, were immediately
removed in (Tchetgen Tchetgen et al., 2020) upon use. In our version of the algorithm,
they are kept around after their use, and are subsequently removed by means of the fixing
operation. This step was made explicit to emphasize the connection between the proximal
ID algorithm, and the (classical) ID algorithm.

Finally, the assumptions employed in the second stage of the derivation in (Tchet-
gen Tchetgen et al., 2020) were formulated on potential outcomes derived from Y1, rather
than on the joint potential outcomes derived from Y1 and C1 as is done here. This is pos-
sible because the marginalization over C1 can be performed earlier in the algorithm while
retaining validity of the overall derivation. The advantage of formulating assumptions only
on Y1 becomes apparent in high dimensional applications, where the bridge integral equa-
tion becomes much easier to formulate if fewer variables are involved. In this paper, the
marginalization over C1 is performed at the end of the algorithm, to better illustrate the con-
nection with the operation of the (classical) ID algorithm. A general method for performing
summations in a way that results in lower dimensional integral equations is closely related
to methods for efficient marginalization in graphical models via sum product algorithms,
and is left to future work.
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