
Journal of Machine Learning Research 24 (2023) 1-51 Submitted 8/21; Revised 12/22; Published 7/23

Random Feature Neural Networks Learn Black-Scholes Type
PDEs Without Curse of Dimensionality

Lukas Gonon l.gonon@imperial.ac.uk

Department of Mathematics

Imperial College London

UK

Editor: Ingo Steinwart

Abstract

This article investigates the use of random feature neural networks for learning Kolmogorov
partial (integro-)differential equations associated to Black-Scholes and more general expo-
nential Lévy models. Random feature neural networks are single-hidden-layer feedforward
neural networks in which the hidden weights are randomly generated and only the output
weights are trainable. This makes training particularly simple, but (a priori) reduces ex-
pressivity. Interestingly, this is not the case for certain Black-Scholes type PDEs, as we
show here. We derive bounds for the prediction error of random neural networks for learn-
ing sufficiently non-degenerate Black-Scholes type models. A full error analysis – bounding
the approximation, generalization and optimization error of the algorithm – is provided
and it is shown that the derived bounds do not suffer from the curse of dimensionality. We
also investigate an application of these results to basket options and validate the bounds
numerically.

These results prove that neural networks are able to learn solutions to suitable Black-
Scholes type PDEs without the curse of dimensionality. In addition, this provides an ex-
ample of a relevant learning problem in which random feature neural networks are provably
efficient.

Keywords: Random features, neural networks, Black-Scholes model, exponential Lévy
model, generalization bounds, curse of dimensionality

1. Introduction

A fundamental problem in science and engineering is to infer an unknown input-output re-
lation from data. In recent years (artificial) neural networks have become an important tool
to address such problems in complex, high-dimensional situations. Neural networks have
shown a strikingly efficient computational performance in an enormous range of applications
and impressive progress has also been made regarding the theoretical and mathematical
foundations of neural network-based methods.

In many situations additional a priori information about the unknown input-output
relation is available and the problem amounts to learning the solution of a partial differen-
tial equation (PDE) or, for instance in a financial context, an expectation of a stochastic
process. Examples of applications of neural networks in this area can be found e.g. in
Han et al. (2018), E et al. (2017), Sirignano and Spiliopoulos (2018), Huré et al. (2020),
Buehler et al. (2019), Cuchiero et al. (2020). We refer to the surveys Ruf and Wang (2020),

c©2023 Lukas Gonon.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-0987.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0987.html

Gonon

Beck et al. (2023), Germain et al. (2021) for an overview of the numerous recent applications
of neural network-based learning in the context of PDEs, stochastic processes and finance.
There has also been important progress regarding the theoretical and mathematical founda-
tions of neural network-based methods in this area, see again the surveys mentioned above
for an overview. Many of these recent mathematical results prove that deep neural networks
are able to approximate solutions to various classes of Kolmogorov PDEs without the curse
of dimensionality, see, for instance, Elbrächter et al. (2022), Grohs et al. (2023), Hutzen-
thaler et al. (2020), Reisinger and Zhang (2020), Laakmann and Petersen (2021), Kutyniok
et al. (2022), Gonon and Schwab (2023). In some articles then a learning problem is consid-
ered and such approximation error bounds are combined with generalization error bounds
in order to prove that the empirical risk-minimizing deep neural network is capable of over-
coming the curse of dimensionality for learning solutions to certain PDEs, see, e.g., Berner
et al. (2020), Carmona and Laurière (2021). In practice, the neural network that minimizes
the empirical risk needs to be calculated approximately, which is typically achieved using a
variant of the stochastic gradient descent algorithm. This introduces a further error compo-
nent, the optimization error, which has remained challenging to analyze mathematically for
general neural networks. As a consequence, in the context of Kolmogorov PDEs there have
been no results in the literature so far which address all three error components and explain
mathematically the success of neural networks at learning solutions to high-dimensional
Kolmogorov PDEs. In this work such an explanation is provided by proving that neural
networks are capable of learning solutions to certain Kolmogorov PDEs without the curse
of dimensionality. This is achieved by considering neural networks in which only certain
weights are trainable and the remaining parameters are generated randomly, as we will
describe in more detail below. We mention that for other classes of PDEs mathematical
results that provide an error analysis of learning by neural networks have been obtained,
for instance, in Luo and Yang (2020) and Lu et al. (2021), where the authors consider
certain classes of second-order PDEs on bounded domains. In this work we are concerned
with Kolmogorov PDEs associated to stochastic processes naturally defined on unbounded
domains.

We investigate the capabilities of random (feature) neural networks – see Huang et al.
(2006), Rahimi and Recht (2008), Rahimi and Recht (2009) – as a learning method in
the context of certain Kolmogorov PDEs. Random neural networks are feedforward neural
networks with a single hidden layer and the property that the parameters of the hidden
layer are randomly initialized and then fixed. Hence, only the parameters of the output
layer can be trained. The non-convex optimization problem that needs to be solved in order
to train a standard neural network reduces to a convex optimization problem here. This
simplifies both training in practice and theoretical analysis. On the other hand, allowing
only parts of the parameters to be trained reduces the approximation capabilities and so,
at least a priori, it is not clear if random neural networks still have any of the powerful
approximation properties of general deep neural networks. In several other contexts these
questions have been addressed and learning (or prediction/test) error bounds for random
features or random neural networks have been proved (see for instance Rahimi and Recht
(2008), Rudi and Rosasco (2017), Carratino et al. (2018), Mei and Montanari (2022), Mei
et al. (2022) and the references therein), but not in the context of PDEs. This is precisely
the subject of this article. We investigate these questions for the problem of learning an

2

Random Neural Networks Learn Black Scholes PDEs Without CoD

unknown function from a class of Kolmogorov PDEs, which include the Black-Scholes PDE
as a special case. These partial (integro-)differential equations, which are also referred to
as (non-local) PDEs, arise for instance in the context of option pricing in exponential Lévy
models, see, e.g., Cont and Tankov (2004), Eberlein and Kallsen (2019) and the references
therein.

The main results of this article prove that, indeed, random neural networks are capable
of learning certain non-degenerate Black-Scholes type PDEs without the curse of dimen-
sionality. We provide a full error analysis, i.e., bounds on the approximation error, the
generalization (or estimation) error and the optimization error. For each of these error
components we obtain polynomial convergence rates which do not depend on the dimen-
sion d of the underlying PDE and constants which grow at most polynomially in d. We
refer to Corollary 27 for the precise statement. Corollary 27 is the main result of the arti-
cle. It builds on the approximation error bound obtained in Theorem 13 and the learning
error bounds for convolutional functions with fixed input dimension d obtained in Theo-
rem 17, Theorem 19 and Proposition 21 for training by regression, constrained regression
and stochastic gradient descent, respectively. Our proofs of these results employ techniques
from statistical learning theory (in particular Rademacher complexities), results from Györfi
et al. (2002), Shamir and Zhang (2013) and an L∞-error bound for random neural network
approximations provided in Theorem 1 and partially generalizing the L2-error bound from
Gonon et al. (2023a, Theorem 1).

The article contributes to the literature in several aspects. Firstly, it provides a fully
implementable neural network-based algorithm for learning suitable Kolmogorov PDEs for
which a full error analysis (covering all three error components) is available and which does
not suffer from the curse of dimensionality. The solution to the PDE can be learnt on a
full hypercube from observational data even without knowing the parameters of the PDE.
Secondly, it provides an example of a practically relevant learning problem in which random
features are provably efficient. Finally, the techniques developed in the article may also be
helpful for the theoretical analysis of more general neural network-based learning methods
in future works.

From the perspective of financial applications, the implication of the results is as follows.
Consider the problem of learning prices of options from market data. For example, market
prices of call options corresponding to certain strikes are observed and the aim is to predict
call option prices for other strikes based on this data. The results obtained in this paper
imply that in certain situations this learning problem can be solved efficiently using random
neural networks, provided that there exists some exponential Lévy model (that is unknown
and whose parameters do not need to be estimated) which calibrates well to observed market
prices.

Neural networks with randomly sampled weights already appear in Barron’s work (Bar-
ron, 1992, Barron, 1993). The random sampling-based dimension-independent convergence
rates obtained there were also extended to the larger class of generalized Barron functions
in E et al. (2020), E et al. (2019), E and Wojtowytsch (2020), see also Berner et al. (2021,
Section 4.2) and Gonon et al. (2023b). For further related results and extensions we refer,
for instance, to Barron and Klusowski (2018), Siegel and Xu (2020), Caragea et al. (2023)
and the references therein. In all these results, the random sampling procedure is an inter-
mediate step to establish the existence of neural network weights and obtain approximation

3

Gonon

bounds. This does not yield a constructive sampling procedure in general, since the random
sampling distribution depends on the unknown target function. In contrast, in the random
features approach Rahimi and Recht (2009), Rahimi and Recht (2008) considered here the
distribution from which the random weights are sampled is chosen a priori and does not
depend on the target function. Our results build on a random feature neural network ap-
proximation error bound that applies to a subset of all Barron functions (as considered in
Barron, 1992, Barron, 1993), see Theorem 1 below. The non-degeneracy condition that we
impose on the considered Black-Scholes type models ensures that the solution is sufficiently
smooth in the sense that its Fourier transform satisfies a certain integrability condition. For
such functions the existence of an approximating (deterministic) shallow neural network is
also asserted by Barron (1993), but a (high-dimensional) learning error analysis building on
this result would require dimension-sensitive bounds on the optimization error (e.g. when
employing the stochastic gradient descent algorithm to learn the hidden weights) in this
context, which are presently not available. For a more detailed discussion of the relation
between (deterministic) fully-trainable neural networks and random feature neural networks
in the present context we refer to Section 5.3 below.

Numerical methods for partial (integro-)differential equations associated to univari-
ate and certain multivariate exponential Lévy models were developed, e.g., in Cont and
Voltchkova (2005), Farkas et al. (2007), Matache et al. (2004), Hilber et al. (2009). In a
high-dimensional setting, when the parameters of the PDE are known and the solution of
the PDE needs to be evaluated at a single point, then Monte Carlo methods are able to
approximate the solution of the PDE without the curse of dimensionality. In contrast, here
we consider a more challenging situation, which includes both the problem of evaluating
the solution of the PDE on a full hypercube [−M,M]d by a numerical method and the
problem of learning the solution of the PDE from observed values. In the latter situation,
in particular, the true parameters of the PDE are unknown.

The remainder of the article is structured as follows. Section 2 introduces random neural
networks and provides a general random neural network approximation error bound. In Sec-
tion 3 we build on this result to provide random neural network approximation bounds for a
class of convolutional functions and then specialize to the case of partial (integro-)differential
equations or (non-local) PDEs associated to exponential Lévy models. Section 4 introduces
the learning problem, provides error bounds for different learning methods (regression, con-
strained regression and stochastic gradient descent) and develops an application to basket
option pricing. These results are then applied in Section 5 to prove that random neural
networks are capable of learning certain Black-Scholes type PDEs without the curse of di-
mensionality. The paper concludes with numerical experiments to validate the obtained
bounds.

1.1 Notation

In most parts of the article we will consider the dimension d ∈ N as fixed, but we will work
out explicitly the dependence of all constants on d. In Sections 3.2 and 5 we will consider
a family of models indexed by d ∈ N and thus d appears explicitly in the notation there.

Throughout, ‖ · ‖ denotes the Euclidean norm on Rd or RN (the appropriate space will
always be clear from the context). For M > 0 we denote the Euclidean ball by BM (0) =

4

Random Neural Networks Learn Black Scholes PDEs Without CoD

{x ∈ Rd | ‖x‖ ≤M}. All random variables are defined on a probability space (Ω,F ,P) and
we write ‖ · ‖L∞(P) = ‖ · ‖L∞(Ω,F ,P) for the L∞-norm on (Ω,F ,P). For x ∈ Rd we use the
notation exp(x) = (exp(x1), . . . , exp(xd)).

2. Random Neural Networks: Preliminary Results

In this section we recall the definition of random (feature) neural networks and provide
a general approximation result. Such networks will be used to learn an unknown target
function.

A random neural network is a feedforward neural network with one hidden layer and
randomly generated hidden weights. More specifically, let N ∈ N, let B1, . . . , BN be i.i.d.
random variables, let A1, . . . , AN be i.i.d. Rd-valued random vectors, assume that A =
(A1, . . . , AN) and B = (B1, . . . , BN) are independent and for an RN -valued random vector
W consider the (random) function

HA,B
W (x) :=

N∑
i=1

Wi%(Ai · x+Bi), x ∈ Rd, (1)

where % : R → R is a fixed activation function. Throughout the article we will consider
random neural networks with the ReLU activation function given by %(z) = max(z, 0) for
z ∈ R. The random variables A and B will be referred to as the (random) hidden weights
of the neural network and W as the vector of output weights.

To approximate an unknown function H : Rd → R the (random) hidden weights A,B
are considered as fixed and only the output vector W can be trained. Thus, the goal is to
find W such that the expected uniform approximation error E[‖HA,B

W −H‖L∞([−M,M]d)] is
small.

Approximation properties of such random neural networks have been studied for instance
in Huang et al. (2006), Rahimi and Recht (2008), Rudi and Rosasco (2017) and most recently
in Gonon et al. (2023a). Theorem 1 below is a novel approximation result for sufficiently
regular functions, which will be crucial for the results in Section 3. The result and parts of
the proof of Theorem 1 are similar to Gonon et al. (2023a, Theorem 1); however in Gonon
et al. (2023a, Theorem 1) a more general Hilbert space setting and more general sampling
distributions are considered. In contrast, Theorem 1 works under stronger hypotheses and
employs Rademacher complexity-based techniques to obtain a uniform error bound instead
of an L2-error bound.

More specifically, in what follows we make the following assumptions on the distribution
of the hidden weights of the random neural network (1):

• the distribution of A1 has a strictly positive Lebesgue-density πw on Rd and

• the distribution of B1 has a strictly positive Lebesgue-density πb on R.

In this situation, the following random neural network approximation result holds.

Theorem 1 Let H : Rd → R, let M > 0 and assume there exists G : Rd → C such that

H(x) =

∫
Rd
eix·ξG(ξ)dξ (2)

5

Gonon

for all x ∈ [−M,M]d. Suppose that∫
Rd

max(1, ‖ξ‖2)|G(ξ)|dξ <∞, (3)

F̄ (r) := 2
∫ 0
−r

1
πb(s)ds ∈ (−∞,∞) for all r ∈ R and

I = max(16,M2)

∫
Rd

[F̄ (M‖ξ‖1)‖ξ‖21 + (F̄ (1)− F̄ (−1)) max(1, ‖ξ‖2)]
(|G(ξ)|+ |G(−ξ)|)2

πw(ξ)
dξ

(4)
is finite. Then there exists an RN -valued, σ(A,B)-measurable random vector W such that

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
≤ 4(M

√
d+ 1)

√
I√

N
. (5)

Moreover, ‖Wi‖L∞(P) ≤ 1
N sup(u,ξ)∈R×Rd(1[−M‖ξ‖1,0](u) + 41[−1,1](u)) |G(ξ)|+|G(−ξ)|

πb(u)πw(ξ) for i =
1, . . . , N .

Remark 2 The proof of Theorem 1 is based on several ingredients: firstly, (2) is used to
derive an integral representation for H (see (10)). This representation is related to the
Radon-wavelet integral representation (as used in Maiorov and Meir, 2000) and represen-
tations in Barron (1992), Barron (1993), Klusowski and Barron (2018). Secondly, the
output weights W are selected based on an “importance sampling procedure” (see (11)).
This matches the distribution of the random weights (which is chosen a priori and does not
depend on H) with the function α in the integral representation for H (see (10)). Thirdly,
Rademacher complexity-based techniques (Bartlett and Mendelson 2003, Boucheron et al.
2013, Ledoux and Talagrand 2013) are employed to bound the L∞-error between the ran-
dom neural network and the target function H on the hypercube [−M,M]d. The first two
ingredients were also used in the proof of Gonon et al. (2023a, Theorem 1).

Proof First, let us point out that for any RN -valued random vector W the mapping

(ω, x) 7→ H
A(ω),B(ω)
W (ω) (x) =

∑N
i=1Wi(ω)%(Ai(ω) · x + Bi(ω)) is F ⊗ B(Rd)-measurable by

Aliprantis and Border (2006, Lemma 4.51).
We now proceed in two steps. The first step consists in deriving an integral represen-

tation of H based on (2), as in Gonon et al. (2023a). From this integral representation we
construct the output weights W based on an importance sampling procedure. The second
step then uses Rademacher complexities to estimate the expected L∞-error.

Step 1: By considering separately the cases r > 0 and r < 0, one obtains for any r ∈ R
the identity

eir − ir − 1 = −
∫ ∞

0
(r − u)+eiu + (−r − u)+e−iudu. (6)

Inserting r = ξ · x, multiplying by G(ξ), integrating over ξ ∈ Rd, employing the representa-
tion (2) and using Fubini’s theorem (which can be applied due to (3)) hence yields for any
x ∈ [−M,M]d that

H(x)− x · ∇H(0)−H(0) =

∫
Rd
eix·ξG(ξ)− ix · ξG(ξ)−G(ξ)dξ

= −
∫ ∞

0

∫
Rd

[(x · ξ − u)+eiu + (−x · ξ − u)+e−iu]G(ξ)dξdu.

(7)

6

Random Neural Networks Learn Black Scholes PDEs Without CoD

Changing variables in the integral and using that for x ∈ [−M,M]d and u ≤ −M‖ξ‖1 we
have (x · ξ + u)+ = 0 then shows for all x ∈ [−M,M]d that

H(x)− x · ∇H(0)−H(0) = −
∫
Rd

∫ 0

−M‖ξ‖1
(x · ξ + u)+[e−iuG(ξ) + eiuG(−ξ)]dudξ. (8)

From the fact that H(0) and ∇H(0) are elements of R one obtains
∫
Rd Im[G](ξ)dξ = 0

and
∫
Rd ξRe[G](ξ)dξ = 0 and hence we can represent

x · ∇H(0) +H(0) =

∫
Rd
−(x · ξ)Im[G](ξ)dξ +

∫
Rd

Re[G](ξ)dξ

=

∫
Rd

∫ 1

0
[(x · ξ + u)+ − (−x · ξ − u)+](2Re[G](ξ)− Im[G](ξ))dudξ.

(9)

Combining (8) and (9) we obtain for all x ∈ [−M,M]d

H(x) =

∫
Rd

∫ ∞
−∞

(x · ξ + u)+α(ξ, u)dudξ (10)

with

α(ξ, u) = −1(−M‖ξ‖1,0](u)Re[e−iuG(ξ) + eiuG(−ξ)] + 1[0,1](u)g̃(ξ)− 1[−1,0](u)g̃(−ξ)

for g̃(ξ) = 2Re[G](ξ)− Im[G](ξ). Define for (ξ, u) ∈ Rd × R the function

f(ξ, u) =
α(ξ, u)

πw(ξ)πb(u)

and choose the random vector W = (W1, . . . ,WN) as

Wi =
1

N
f(Ai, Bi), i = 1, . . . , N. (11)

The estimate

|f(ξ, u)| ≤ (1(−M‖ξ‖1,0](u) + 41[−1,1](u))
|G(ξ)|+ |G(−ξ)|
πw(ξ)πb(u)

(12)

then proves the claimed bound on ‖Wi‖L∞(P) for i = 1, . . . , N .
Step 2: We now use the representation (10) to prove (5) for the choice of W made in

(11). To this end, first notice that for any x ∈ [−M,M]d we have by the choice of f and by
the integral representation (10)

E[f(Ai, Bi)%(Ai · x+Bi)] =

∫
Rd

∫
R
%(x · ξ + u)α(ξ, u)dudξ = H(x).

Therefore, letting Ui,x = f(Ai, Bi)%(Ai · x + Bi) for i = 1, . . . , N and x ∈ [−M,M]d, we
have

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
= E

[
sup

x∈[−M,M]d

∣∣∣∣∣ 1

N

N∑
i=1

(Ui,x − E[Ui,x])

∣∣∣∣∣
]
. (13)

7

Gonon

Let ε1, . . . , εN by i.i.d. Rademacher random variables which are independent of A and B.
Symmetrization (see e.g. Boucheron et al., 2013) and (13) then yields

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
≤ 2E

[
sup

x∈[−M,M]d

∣∣∣∣∣ 1

N

N∑
i=1

εiUi,x

∣∣∣∣∣
]
. (14)

For a = (a1, . . . , aN) ∈ Rd×· · ·×Rd, b ∈ RN we let Ta,b = {(|f(ai, bi)|[ai ·x+bi])i=1,...,N |x ∈
[−M,M]d} and %ai,bi = sign(f(ai, bi))% for i = 1, . . . , N . Then Ta,b ⊂ RN is bounded,
|%ai,bi(s1)− %ai,bi(s2)| = |%(s1)− %(s2)| ≤ |s1 − s2| for all s1, s2 ∈ R, i = 1, . . . , N and hence
independence and Ledoux and Talagrand (2013, Theorem 4.12) yield

E

[
sup

x∈[−M,M]d

∣∣∣∣∣ 1

N

N∑
i=1

εiUi,x

∣∣∣∣∣
]

= E

E[sup
t∈Ta,b

∣∣∣∣∣ 1

N

N∑
i=1

εi%ai,bi(ti)

∣∣∣∣∣
]∣∣∣∣∣

(a,b)=(A,B)

≤ 2E

E[sup
t∈Ta,b

∣∣∣∣∣ 1

N

N∑
i=1

εiti

∣∣∣∣∣
]∣∣∣∣∣

(a,b)=(A,B)

= 2E

E[sup
x∈[−M,M]d

∣∣∣∣∣ 1

N

N∑
i=1

εif(ai, bi)[ai · x+ bi]

∣∣∣∣∣
]∣∣∣∣∣

(a,b)=(A,B)

 .

(15)

Now for each a, b we use Jensen’s inequality and the fact that E[εiεj] = δij to estimate

E

[
sup

x∈[−M,M]d

∣∣∣∣∣ 1

N

N∑
i=1

εif(ai, bi)[ai · x+ bi]

∣∣∣∣∣
]

≤ E

[
M
√
d

∥∥∥∥∥ 1

N

N∑
i=1

εif(ai, bi)ai

∥∥∥∥∥+

∣∣∣∣∣ 1

N

N∑
i=1

εif(ai, bi)bi

∣∣∣∣∣
]

≤M
√
dE

∥∥∥∥∥ 1

N

N∑
i=1

εif(ai, bi)ai

∥∥∥∥∥
2
1/2

+ E

∣∣∣∣∣ 1

N

N∑
i=1

εif(ai, bi)bi

∣∣∣∣∣
2
1/2

=
M
√
d

N

(
N∑
i=1

‖f(ai, bi)ai‖2
)1/2

+
1

N

(
N∑
i=1

f(ai, bi)
2b2i

)1/2

.

(16)

8

Random Neural Networks Learn Black Scholes PDEs Without CoD

Inserting this in (15) and using first Jensen’s inequality and subsequently the fact that
(A1, B1), . . . , (AN , BN) are identically distributed yields

E

[
sup

x∈[−M,M]d

∣∣∣∣∣ 1

N

N∑
i=1

εiUi,x

∣∣∣∣∣
]

≤ 2M
√
d

N
E

(N∑
i=1

‖f(Ai, Bi)Ai‖2
)1/2

+
2

N
E

(N∑
i=1

f(Ai, Bi)
2B2

i

)1/2

≤ 2M
√
d√

N
E
[
‖f(A1, B1)A1‖2

]1/2
+

2√
N

E
[
f(A1, B1)2B2

1

]1/2
.

(17)

From the bound (12) we obtain

E
[
f(A1, B1)2 max(‖A1‖2, B2

1)
]

≤
∫
Rd

∫
R

[
(1(−M‖ξ‖1,0](u) + 41[−1,1](u))

|G(ξ)|+ |G(−ξ)|
πw(ξ)πb(u)

]2

max(‖ξ‖2, u2)πw(ξ)πb(u)dudξ

≤ 2

∫
Rd

∫
R

(1(−M‖ξ‖1,0](u) + 161[−1,1](u))
(|G(ξ)|+ |G(−ξ)|)2

πw(ξ)πb(u)
max(‖ξ‖2, u2)dudξ

≤ max(M2, 1)

∫
Rd
F̄ (M‖ξ‖1)

(|G(ξ)|+ |G(−ξ)|)2

πw(ξ)
‖ξ‖21dξ

+ 16

∫
Rd

(F̄ (1)− F̄ (−1))
(|G(ξ)|+ |G(−ξ)|)2

πw(ξ)
max(‖ξ‖2, 1)dξ

≤ I.
(18)

Combining this with (14) and (17) yields

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
≤ 4(M

√
d+ 1)√
N

E
[
f(A1, B1)2 max(‖A1‖2, B2

1)
]1/2

≤ 4(M
√
d+ 1)

√
I√

N
,

(19)

which completes the proof.

Remark 3 With some additional work the weight distributions in Theorem 1 could also
be allowed to have compact support as in Gonon et al. (2023a, Theorem 1). However, in
the results below (for instance in Theorem 7) such weight distributions would require much
more restrictive assumptions on the unknown function H and thus we do not pursue this
direction here.

Remark 4 The error bound (5) depends on the dimension d via the constant I in (4). For
a given H the dependence of I on d is determined by the choice of the densities πw and
πb (based on which F̄ is defined). Note that πw is a density on Rd and so not only the

9

Gonon

decay behaviour of ξ 7→ πw(ξ)
πw(0) , but also the “normalizing constant” πw(0) determines how I

depends on d. A key example of a situation in which I depends (at most) polynomially on
d will be given in Theorem 7 below. Another example is as follows: let πw be the density of
a N (0, σ2

1d)-distribution, assume |G(ξ)| ≤ C1 exp(−C2
4 ‖ξ‖

2) for some C1 > 0, C2 > σ−2,
and πb has at most polynomial decay (see below). Then |F̄ (r)| ≤ c(1+ |r|p) for some p, c > 0
and one estimates

I ≤ c̃d
p
2

+1(2πσ2)
d
2

∫
Rd

max(1, ‖ξ‖p+2) exp

(
−C2

2
‖ξ‖2 +

‖ξ‖2

2σ2

)
dξ

≤ c̃1d
k(4π2σ2(C2 − σ−2)−1)

d
2

(20)

for some constants c̃, c̃1, k not depending on d. If C2 > σ−2 + 4π2σ2, then I ≤ c̃1d
k and so

I is bounded polynomially in d.

Corollary 5 Assume that the hypotheses of Theorem 1 are satisfied. Then the random
vector W from Theorem 1 also satisfies that for any probability measure µ on (Rd,B(Rd))
which is supported in [−M,M]d we have that

E
[
‖HA,B

W −H‖2L2(Rd,µ)

]1/2
≤ (
√
dM + 1)

√
I√

N
. (21)

Proof Using the same notation as in the proof of Theorem 1, we obtain from the proof of
Theorem 1 and by Tonelli’s theorem and independence that

E
[
‖HA,B

W −H‖2L2(Rd,µ)

]
= E

∫
Rd

∣∣∣∣∣ 1

N

N∑
i=1

Ui,x − E[Ui,x]

∣∣∣∣∣
2

µ(dx)

=

∫
Rd

1

N2

N∑
i=1

E
[
|Ui,x − E[Ui,x]|2

]
µ(dx)

≤
∫
Rd

1

N
E
[
|f(A1, B1)%(A1 · x+B1)|2

]
µ(dx)

≤ (
√
dM + 1)2

E
[
|f(A1, B1) max(‖A1‖, |B1|)|2

]
N

.

Therefore, (18) yields the claimed bound.

As a further corollary, the (quantitative) bounds above also imply a (qualitative) univer-
sal approximation result for random neural networks. The hidden weights in Corollary 6 are
generated from an arbitrary distribution with polynomial tails. This complements Gonon
et al. (2023a, Corollary 3), where the hidden weights are generated from a uniform dis-
tribution. The error in Corollary 6 is measured with respect to the supremum-norm on a
compact set. An analogous result for H ∈ Lp(Rd, µ) for a probability measure µ ∈ Rd,
p ∈ [1,∞) and approximation error measured with respect to the norm on Lp(Rd, µ) can
be obtained similarly.

10

Random Neural Networks Learn Black Scholes PDEs Without CoD

Corollary 6 Let H : Rd → R be continuous. Assume that πw and πb are continuous,
strictly positive and decay at most polynomially.1 Then for any M > 0, ε > 0 there exist
N ∈ N and an RN -valued, σ(A,B)-measurable random vector W such that

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
< ε. (22)

Proof Continuity of H implies that there exists Hε ∈ C∞c (Rd,R) such that

sup
x∈[−M,M]d

|H(x)−Hε(x)| < ε

2
. (23)

By assumption on πb it follows that F̄ (r) := 2
∫ 0
−r

1
πb(s)ds is finite for all r ∈ R and F̄ grows

at most polynomially. Let Ĥε(ξ) = (2π)−
d
2

∫
Rd e

−ix·ξHε(x)dx be the Fourier transform of

Hε. Then the fact that Hε is a smooth function with compact support implies that Ĥε

is a Schwartz function and Fourier inversion yields Hε(x) = (2π)−
d
2

∫
Rd e

ix·ξĤε(ξ)dξ for all

x ∈ Rd. The fact that Ĥε is a Schwartz function, at most polynomial growth of F̄ and at
most polynomial decay of πw imply that∫

Rd
[F̄ (M‖ξ‖1)‖ξ‖21 + max(1, ‖ξ‖2)]

(
|Ĥε(ξ)|+

|Ĥε(ξ)|2 + |Ĥε(−ξ)|2

πw(ξ)

)
dξ <∞.

Theorem 1 hence proves that there exist N ∈ N and an RN -valued, σ(A,B)-measurable
random vector W such that

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−Hε(x)|

]
<
ε

2
. (24)

Combining (23) and (24) completes the proof.

3. Random Neural Network Approximation Bounds

In this section we use random neural networks to approximate functions with a convolutional
structure. In Section 3.1 we derive approximation error bounds with explicit dependence
on the dimension d. These results are then applied in Section 3.2 in the context of certain
exponential Lévy models, which include the Black-Scholes model as a special case.

3.1 Bounds for Convolutional Functions

Consider a function H : Rd → R given by H(x) = E[Φ(x + V)] for an Rd-valued random
vector V and a function Φ: Rd → R. Assume that the characteristic function of V satisfies
the following bound: there exists C > 0 such that

|E[eiξ·V]| ≤ exp(−C‖ξ‖2) for all ξ ∈ Rd. (25)

1. That is, there exist polynomials pw, pb : R→ (0,∞) such that 1 ≤ pw(‖ξ‖)πw(ξ) and 1 ≤ pb(z)πb(z) for
all ξ ∈ Rd, z ∈ R.

11

Gonon

Examples of functions H of this type include expectations (respectively option prices) and
associated solutions to PDEs in (exponential) Lévy models with non-degenerate Gaussian
component, see Section 3.2 below.

We now approximate H by a random neural network HA,B
W and analyze the approx-

imation error. As above the randomly generated hidden weights A,B are not trainable
and the goal is to find W such that the expected uniform approximation error E[‖HA,B

W −
H‖L∞([−M,M]d)] is small. The output weight vector W may be chosen depending on A,B,
i.e., it is a σ(A,B)-measurable random variable.

Our goal is to obtain approximation error bounds in which the dependence on the
dimension d is fully explicit. To achieve this we need more specific assumptions on the
distributions from which the hidden weights A and B are drawn. Recall that πb denotes
the Lebesgue-density of B1 and πw denotes the density of A1. We will assume below that
πw is the density of a multivariate t-distribution tν(0,1d) for some ν > 1 and that πb has
at most polynomial decay, that is, there exists a polynomial pb : R→ (0,∞) such that

1 ≤ pb(z)πb(z) for all z ∈ R. (26)

This hypothesis is satisfied, for instance, by Student’s t-distribution.

These assumptions allow us to obtain explicit control of the normalizing constant of the
weight distribution πw.

Theorem 7 Let C > 1
23/2π

and let ν > 1. Suppose A1 ∼ tν(0,1d) and B1 has density πb
satisfying (26). Then there exist k ∈ N and an absolute constant Capp > 0 such that for
any H : Rd → R of the form H(x) = E[Φ(x + V)] with Φ ∈ L1(Rd) and V satisfying (25)
the following random neural network approximation result holds: there exists an RN -valued,
σ(A,B)-measurable random vector W such that

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
≤
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

. (27)

The constant k only depends on πb and the constant Capp depends on ν, πb, C,M , but it does
not depend on d, N or H.

Moreover,

‖Wi‖L∞(P) ≤
Cwgt‖Φ‖L1(Rd)(ν + d)2k+ 1

2

N
(28)

for i = 1, . . . , N , where the constant Cwgt > 0 depends on ν, πb, C,M , but it does not depend
on d, N or H.

Remark 8 In addition to the uniform bound in (27) the proof of Theorem 7 also shows
that for any probability measure µ on (Rd,B(Rd)) supported in [−M,M]d we have

E
[
‖HA,B

W −H‖2L2(Rd,µ)

]1/2
≤
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

. (29)

This follows directly by using Corollary 5 instead of Theorem 1 in (37) below.

12

Random Neural Networks Learn Black Scholes PDEs Without CoD

Remark 9 Hypothesis (25) in Theorem 7 is employed in the proof in order to guarantee
that the constant in the error bound does not grow exponentially in the dimension d. In low-
dimensional situations this behaviour may not be required and hence (25) could be replaced
by the weaker hypothesis |E[eiξ·V]| ≤ exp(−C‖ξ‖α) for some C > 0, α > 0 or even by the
assumption that |E[eiξ·V]| ≤ C(1 + ‖ξ‖)−β for some C > 0 and sufficiently large β > 0
(depending on ν and πb). In this situation the error bound (27) is still valid with a different
constant Capp and an additional factor which may not necessarily be polynomial in d.

Proof Let H : Rd → R be of the form H(x) = E[Φ(x + V)] with Φ ∈ L1(Rd) and V
satisfying (25). We verify that H satisfies the hypotheses of Theorem 1 and derive a bound
for the constant I in (4) with the claimed properties.

For f ∈ L1(Rd) we denote by f̂ the Fourier transform of f given for all ξ ∈ Rd by

f̂(ξ) = (2π)−
d
2

∫
Rd e

−ix·ξf(x)dx . By (25) and Sato (1999, Proposition 2.5(xii)) the random
variable −V has a bounded Lebesgue-density p−V . Thus, we can write H(x) =

∫
Rd Φ(x −

y)p−V (y)dy = (Φ ∗ p−V)(x). The convolution theorem (see for instance Amann and Escher

(2009, Theorem X.9.16)) hence shows that Ĥ(ξ) = (2π)
d
2 Φ̂(ξ)p̂−V (ξ). Combining this

with p̂−V (ξ) = (2π)−
d
2

∫
Rd e

−ix·ξp−V (x)dx = (2π)−
d
2E[e−iξ·(−V)] and (25) we obtain that Ĥ

is integrable. The Fourier inversion theorem (see for instance Amann and Escher (2009,
Theorem X.9.12)) therefore yields for all x ∈ Rd that

H(x) = (2π)−
d
2

∫
Rd
eiξ·xĤ(ξ)dξ = (2π)−

d
2

∫
Rd
eiξ·xΦ̂(ξ)E[eiξ·V]dξ. (30)

Hence, the representation (2) holds for all x ∈ Rd with G(ξ) = (2π)−
d
2 Φ̂(ξ)E[eiξ·V], ξ ∈ Rd.

Condition (3) is satisfied, since (25) implies∫
Rd

max(1, ‖ξ‖2)|G(ξ)|dξ ≤ (2π)−d‖Φ‖L1(Rd)

∫
Rd

max(1, ‖ξ‖2) exp(−C‖ξ‖2)dξ <∞.

Denote by k ∈ N the degree of pb, then there exist a0, . . . , ak ∈ R such that pb(s) =
∑k

l=0 als
l

for all s ∈ R. Then |pb(s)| ≤ (k + 1) maxl{|al|}max(1, |s|k) ≤ Cb(1 + s2k) for all s ∈ R,
where Cb = (k + 1) maxl{|al|}. Consequently, we may use (26) to estimate for any r ≥ 0

F̄ (r) = 2

∫ 0

−r

1

πb(s)
ds ≤ 2

∫ 0

−r
pb(s)ds ≤ 2Cb(r +

r2k+1

2k + 1
) <∞

and for r < 0 analogously |F̄ (r)| = 2
∫ −r

0
1

πb(s)ds ≤ −2Cb(r + r2k+1

2k+1) < ∞. Therefore,

F̄ (1)− F̄ (−1) ≤ 8Cb and we can now use the comparison ‖ · ‖1 ≤
√
d‖ · ‖ on Rd to estimate

the constant I in (4) as

I ≤ 2CbcM,1

∫
Rd

[
M‖ξ‖31 +

‖ξ‖21(M‖ξ‖1)2k+1

2k + 1
+ 4 max(1, ‖ξ‖2)

]
(|G(ξ)|+ |G(−ξ)|)2

πw(ξ)
dξ

≤ 2CbcM,2d
k+ 3

2

∫
Rd

[
‖ξ‖3 + ‖ξ‖2k+3 + max(1, ‖ξ‖2)

] (|G(ξ)|+ |G(−ξ)|)2

πw(ξ)
dξ

≤ 6CbcM,2d
k+ 3

2

∫
Rd

max(1, ‖ξ‖2k+3)
(Φ̂(ξ)E[eiξ·V] + Φ̂(−ξ)E[e−iξ·V])2

(2π)dπw(ξ)
dξ

≤ CIdk+ 3
2 ‖Φ‖2L1(Rd)

∫
Rd

max(1, ‖ξ‖2k+3)
exp(−2C‖ξ‖2)

(2π)2dπw(ξ)
dξ

13

Gonon

with cM,1 = max(M2, 16), cM,2 = cM,1 max(M2k+1, 4), CI = 24CbcM,2.

We now insert the density πw(x) = Γ((ν+d)/2)

Γ(ν/2)νd/2πd/2
(1 + ν−1‖x‖2)−(ν+d)/2 and use the

estimate (ν + ‖x‖2)p ≤ 2p−1(νp + ‖x‖2p) for p ≥ 1 to obtain

I ≤ CIdk+ 3
2 ‖Φ‖2L1(Rd)

∫
Rd

max(1, ‖ξ‖2k+3)(ν + ‖ξ‖2)(ν+d)/2 exp(−2C‖ξ‖2)Γ(ν2)ν−
ν
2 πd/2

(2π)2dΓ(ν+d
2)

dξ

≤ CIdk+ 3
2 ‖Φ‖2L1(Rd)Γ

(ν
2

)
ν−ν/2

∫
Rd

(ν + ‖ξ‖2)(2k+3+ν+d)/2 exp(−2C‖ξ‖2)πd/2

(2π)2dΓ(ν+d
2)

dξ

≤
C̃Id

k+ 3
2 ‖Φ‖2

L1(Rd)

(2π)3d/2Γ(ν+d
2)

∫
Rd

(ν(ν̃+d)/2 + ‖ξ‖ν̃+d) exp(−2C‖ξ‖2)dξ

(31)
with ν̃ = 2k + 3 + ν, C̃I = 2(ν̃/2)−1CIΓ(ν2)ν−ν/2. Denote by XC a random variable with
a N (0, 1

4C1d)-distribution. Then the last line in (31) can be rewritten in terms of XC ,
yielding

I ≤
C̃Id

k+ 3
2 ‖Φ‖2

L1(Rd)

(2π)dΓ(ν+d
2)(2dCd/2)

∫
Rd

(ν(ν̃+d)/2 + ‖ξ‖ν̃+d)
exp(−2C‖ξ‖2)

(2π)d/2(4C)−d/2
dξ

=
C̃Id

k+ 3
2 ‖Φ‖2

L1(Rd)

(2π)dΓ(ν+d
2)(2dCd/2)

[
ν(ν̃+d)/2 + E[‖XC‖ν̃+d]

]
.

(32)

On the other hand, E[‖XC‖ν̃+d] = E[‖(2
√
C)−1Z‖ν̃+d] = (2

√
C)−(ν̃+d)E[(‖Z‖2)

ν̃+d
2] where

Z is a d-dimensional standard normal random vector. Hence, ‖Z‖2 has a χ2(d)-distribution
and thus

E[(‖Z‖2)(ν̃+d)/2] = 2−d/2[Γ(d/2)]−1

∫ ∞
0

x
ν̃+2d

2
−1e−x/2dx =

2(ν̃+2d)/2Γ((ν̃ + 2d)/2)

2d/2Γ(d/2)

=
2(ν̃+d)/2Γ((ν̃ + 2d)/2)

Γ(d/2)
.

Combining this with (32) and the upper and lower bounds for the gamma function (see,
e.g., Gonon et al. 2021, Lemma 2.4) we obtain

I ≤
C̃Id

k+ 3
2 ‖Φ‖2

L1(Rd)

(2π)dΓ(ν+d
2)(2dCd/2)

[
ν(ν̃+d)/2 + (2

√
C)−(ν̃+d) 2(ν̃+d)/2Γ((ν̃ + 2d)/2)

Γ(d/2)

]
(33)

≤
C̃Id

k+ 3
2 ‖Φ‖2

L1(Rd)

(2π)d(2dCd/2)
(
ν + d

4π
)
1
2 (

2e

ν + d
)
ν+d
2

[
ν
ν̃+d
2 +

e

(2C)
ν̃+d
2

(
2e

d
)
d
2 (

d

ν̃ + 2d
)
1
2 (
ν̃ + 2d

2e
)
ν̃+2d

2

]

≤
C̃Id

k+ 3
2 ‖Φ‖2

L1(Rd)

√
ν + d

(16π2C)
ν̃+d
2

(
2e

ν + d
)
ν̃+d−2k−3

2 (4π
√
C)ν̃

[
ν
ν̃+d
2 +

(2e)
d
2

(2C)
ν̃+d
2 d

d
2

(
ν̃ + 2d

2e
)
ν̃+2d

2

]

≤ C̄Idk+ 3
2 ‖Φ‖2L1(Rd)(ν + d)k+2

[
(

eν

8π2C(ν + d)
)
ν̃+d
2 + (

ν̃ + 2d

32π2C2(ν + d)
)
ν̃+d
2 (

ν̃ + 2d

d
)
d
2

]
≤ C̄I‖Φ‖2L1(Rd)(ν + d)2k+ 7

2

[
(

eν

8π2C(ν + d)
)
ν̃+d
2 + (

ν̃ + 2d

32π2C2(ν + d)
)
ν̃
2 (

(ν̃ + 2d)2

32π2C2(ν + d)d
)
d
2

]

14

Random Neural Networks Learn Black Scholes PDEs Without CoD

with C̄I = C̃I(2e)
− 2k+3

2 (16π2C)
ν̃
2 . Now clearly

C1 := sup
m∈N

{(
eν

8π2C(ν +m)

) ν̃+m
2

}
<∞ (34)

and

C2 : = sup
m∈N

{(
(ν̃ + 2m)2

32π2C2(ν +m)m

)m
2

}
= sup

m∈N

(

(ν̃m + 2)2

32π2C2(νm + 1)

)m
2

≤ sup

m∈N

(

(ν̃m + 2)2

32π2C2

)m
2

 <∞,

(35)

because C2 > 1
8π2 and hence m0 := ν̃

2(
√

8πC−1)
> 0 and (ν̃m + 2)2 < 32π2C2 for all m ∈ N

with m > m0. Combining this with (33) we have therefore proved that

I ≤ C̄I‖Φ‖2L1(Rd)(ν + d)2k+ 7
2

[
C1 +

(
ν̃ + 2d

32π2C2(ν + d)

) ν̃
2

C2

]

≤ C̄I‖Φ‖2L1(Rd)(ν + d)2k+ 7
2

[
C1 +

(
ν̃ + 2

32π2C2

) ν̃
2

C2

]
= C3‖Φ‖2L1(Rd)(ν + d)2k+ 7

2

(36)

with C3 = C̄I(C1 + (ν̃+2
32π2C2)

ν̃
2C2).

Altogether, the hypotheses of Theorem 1 are satisfied and hence there exists an RN -
valued, σ(A,B)-measurable random vector W such that the error bound (5) holds. Inserting
(36) yields

E

[
sup

x∈[−M,M]d
|HA,B

W (x)−H(x)|

]
≤ 4(M + 1)

√
d
√
I√

N

≤
4(M + 1)

√
C3‖Φ‖L1(Rd)(ν + d)k+3

√
N

.

(37)

Hence, the L∞-error estimate (27) follows with

Capp = 4(M + 1)
√
C3 = 4(M + 1)(C̄I)

1/2

[
C1 +

(
ν̃ + 2

32π2C2

) ν̃
2

C2

]1/2

where we recall that C̄I = 24Cb max(M2, 16) max(M2k+1, 4)2(ν̃/2)−1Γ(ν2)ν−ν/2(2e)−
2k+3

2

(16π2C)
ν̃
2 , ν̃ = 2k + 3 + ν, the constants Cb and k only depend on pb and C1, C2 are

given by (34) and (35), respectively.

15

Gonon

To prove the upper bound on W we insert the bound from Theorem 1, then (25) and
(26) can be used to estimate similarly as before for i = 1, . . . , N

‖Wi‖L∞(P) ≤
1

N
sup

(u,ξ)∈R×Rd
(1[−M‖ξ‖1,0](u) + 41[−1,1](u))

|G(ξ)|+ |G(−ξ)|
πb(u)πw(ξ)

≤ 5

N
sup
ξ∈Rd

2(2π)−d‖Φ‖L1(Rd) exp(−C‖ξ‖2)Cb(1 + max(1,M‖ξ‖1)2k)

πw(ξ)

≤
C̃wgtd

k‖Φ‖L1(Rd)

N
sup
ξ∈Rd

exp(−C‖ξ‖2)(2 +M2k‖ξ‖2k)(ν + ‖ξ‖2)(ν+d)/2

2
d
2 Γ((ν + d)/2)(2π)

d
2

≤
C̃wgtd

k‖Φ‖L1(Rd) max(2,M2k)

N
max
r≥0

exp(−Cr)(ν + r)(ν+d+2k)/2

2
d
2 Γ((ν + d)/2)(2π)

d
2

=
C̃wgtd

k‖Φ‖L1(Rd) max(2,M2k)

N
eνC

((ν + d+ 2k)/(2Ce))(ν+d+2k)/2

2
d
2 Γ((ν + d)/2)(2π)

d
2

≤
C̄wgt‖Φ‖L1(Rd)(ν + d)2k+ 1

2

N

(
ν + d+ 2k

4πC(ν + d)

)(ν+d+2k)/2

with C̃wgt = 10CbΓ(ν/2)ν−ν/2, C̄wgt = C̃wgt max(2,M2k)eνC(2e)−k(4π)(ν+2k−1)/2. In the
last two steps we used that the maximum is attained for ν + r = (ν + d + 2k)/(2C) and
we applied the lower bound for the gamma function as in (33). The hypothesis 8π2C2 > 1
implies 4πC > 1 and therefore

C4 := sup
m∈N

{(
ν +m+ 2k

4πC(ν +m)

)(ν+m+2k)/2
}
<∞

by a similar reasoning as used to argue that C2 in (35) is finite. Hence, the bound on
‖Wi‖L∞(P) follows with Cwgt = C̄wgtC4. This completes the proof.

Remark 10 In general (when C > 1
23/2π

is not necessarily satisfied) the proof (with con-
stants C2 and C4 defined slightly differently) still yields the bounds (27), (28) with additional

factors (8π2C2)−
d
4 and (4πC)−

d
2 , respectively. Thus, in the case C ≤ 1

23/2π
the bounds have

constants polynomial in d provided that ‖Φ‖L1(Rd)(2
3
2πC)−

d
2 is at most polynomial in d.

We now show that an analogous approximation result holds when the assumption Φ ∈
L1(Rd) is replaced by the assumptions that Φ satisfies a Lipschitz-condition and V admits
certain moments.

Here we call ψ : Rd → Rd increasing if for any x, y ∈ Rd with xi ≤ yi for all i = 1, . . . , d
it holds that ψi(x) ≤ ψi(y) for all i = 1, . . . , d. Furthermore, we denote 1 = (1, . . . , 1) ∈ Rd.

Proposition 11 Let C,CLip > 0 with C2 > 1
8π2 and let ν > 1. Suppose A1 ∼ tν(0,1d)

and B1 has density πb satisfying (26). Let ψ : Rd → Rd be increasing and measurable. Let
H : Rd → R be of the form H(x) = E[Φ(x+ V)] for Φ satisfying

|Φ(x)− Φ(y)| ≤ CLip‖ψ(x)− ψ(y)‖, x, y ∈ Rd (38)

16

Random Neural Networks Learn Black Scholes PDEs Without CoD

and V satisfying (25), E[‖ψ(M1 + V)‖2] < ∞. Then for any R > 0 there exists an RN -
valued, σ(A,B)-measurable random vector W such that

E

[
sup

x∈BM (0)
|HA,B

W (x)−H(x)|

]
≤ CappI(R)(ν + d)k+3

√
N

+ CmomP(‖V ‖ > R)1/2, (39)

where I(R) =
∫
Rd |Φ(x)|1{‖x‖≤M+R}dx, Cmom = CLip(E[‖ψ(M1+V)‖2]1/2+‖ψ(0)‖)+|Φ(0)|

and k ∈ N, Capp > 0 are as in Theorem 7.

Proof Let R > 0 and denote ΦR(x) = Φ(x)1{‖x‖≤M+R}. Set H̄R(x) = E[ΦR(x + V)].
Then for x ∈ BM (0) we estimate

|H̄R(x)−H(x)|
≤ E[|Φ(x+ V)1{‖x+V ‖≤M+R} − Φ(x+ V)|]
= E[1{‖x+V ‖>M+R}|Φ(x+ V)|]
≤ CLipE[1{‖x+V ‖>M+R}‖ψ(x+ V)− ψ(0)‖] + |Φ(0)|P(‖x+ V ‖ > M +R)

≤ CLipE[1{‖x+V ‖>M+R}‖ψ(M1 + V)‖] + (CLip‖ψ(0)‖+ |Φ(0)|)P(‖x+ V ‖ > M +R)

≤ CLipE[1{‖V ‖>R}‖ψ(M1 + V)‖] + (CLip‖ψ(0)‖+ |Φ(0)|)P(‖V ‖ > R)

≤ CLipP(‖V ‖ > R)1/2E[‖ψ(M1 + V)‖2]1/2 + (CLip‖ψ(0)‖+ |Φ(0)|)P(‖V ‖ > R)1/2.

The truncated function ΦR is integrable and

‖ΦR‖L1(Rd) =

∫
Rd
|Φ(x)|1{‖x‖≤M+R}dx = I(R).

Therefore, the result follows from Theorem 7 and the triangle inequality.

Remark 12 Let us now explain how Proposition 11 could be applied. In the case of ex-
ponential Lévy models we would choose Φ(x) = ϕ(exp(x)) for ϕ : Rd → R. Hence, if ϕ
is CLip-Lipschitz-continuous, then (38) is satisfied with ψ(x) = (exp(x1), . . . , exp(xd)) for
x ∈ Rd. Consequently, if we choose R = 1

α log(N) for some α > 1, then

I(R) =

∫
Rd
|Φ(x)|1{‖x‖≤M+R}dx ≤

∫
Rd
c(1 + ‖ exp(x)‖)1{‖x‖≤M+R}dx

≤
∫
Rd
c(1 + d

1
2 exp(M +R))1{‖x‖≤M+R}dx

= c(1 + d
1
2 exp(M +R))Vol(BM+R(0))

≤ c(1 + d
1
2 eMN

1
α)(dπ)−1/2

(
2πe

d

)d/2(
M +

log(N)

α

)d
≤ c̃N

1
α

with c = max(CLip, |ϕ(0)|), c̃ = 2cmax(1, eM)π−1/2 and where the last step holds if the
number of nodes satisfies the condition N ≤ exp(α[d1/2(2πe)−1/2−M]) (which is, however,

17

Gonon

exponential in d). Furthermore,

Cmom = CLipE[‖ exp(M1 + V)‖2]1/2 + CLip‖1‖+ |ϕ(1)|

≤ CLipe
M

(
d∑
i=1

E[exp(2Vi)]

)1/2

+ d1/2CLip + c(1 + d1/2)

is finite under exponential moment hypotheses on V . Therefore, from (39) and Markov’s
inequality we obtain

E

[
sup

x∈BM (0)
|HA,B

W (x)−H(x)|

]
≤ c̃Capp(ν + d)k+3 + CmomE[exp(α‖V ‖)]1/2

N
1
2
− 1
α

. (40)

3.2 Bounds for Non-degenerate Lévy Models

In this section we apply Theorem 7 to prove that random neural networks are capable
of overcoming the curse of dimensionality in the numerical approximation of solutions to
partial (integro-)differential equations (also referred to as (non-local) PDEs) associated to
exponential Lévy models with a non-degenerate Gaussian component. This includes the
Black-Scholes PDE as a special case. We refer to Cont and Tankov (2004), Eberlein and
Kallsen (2019) for background on exponential Lévy models and their applications in financial
modelling and, e.g., to Sato (1999) for an extensive treatment of Lévy processes.

For each d ∈ N we consider a payoff function ϕd : (0,∞)d → R and a Lévy process Ld

with characteristic triplet (Σd, γd, νdL) satisfying νdL({y ∈ Rd | ‖y‖ > R}) = 0 for some R > 1.
We define the shifted drift vector γ̃d given by γ̃di = γdi + 1

2Σd
i,i+

∫
Rd(e

yi−1−yi1{‖y‖≤1})ν
d
L(dy)

for i = 1, . . . , d. We now consider the partial (integro-)differential equation

∂tud(t, s) = 1
2

∑d
k,l=1 skslΣ

d
k,l∂sk∂slud(t, s) +

∑d
i=1 siγ̃

d
i ∂siud(t, s)

+
∫
Rd

[
ud(t, se

y)− ud(t, s)−
∑d

i=1(eyi − 1)si∂siud(t, s)
]
νdL(dy),

ud(0, s) = ϕd(s)

(41)

for s ∈ (0,∞)d, t > 0, where we write s exp(x) = (s1 exp(x1), . . . , sd exp(xd)) for s, x ∈ Rd.
The (non-local) PDE (41) is the Kolmogorov PDE for the exponential Lévy model associated
to Ld. By Sato (1999, Theorem 25.17) the exponential Lévy process (exp(Ldt))t≥0 is a
martingale if (and only if) γ̃d = 0. In this case, ud(T, s) is the price at time 0 of an option
with payoff ϕd at maturity T when price of the underlying at time 0 is s. Furthermore, if
the jump-measure vanishes (νdL = 0), then (41) is the Black-Scholes PDE.

We now provide sufficient conditions on the payoff functions and the characteristic
triplets which guarantee that ud(T, ·) can be approximated by random neural networks
without the curse of dimensionality. To achieve this, the weights of the random neural
networks are generated as follows: let ν > 1 and for each d ∈ N let Ad1, A

d
2, . . . by i.i.d.

tν(0,1d)-distributed Rd-valued random vectors independent of the i.i.d. random variables
B1, B2, . . . which have a strictly positive Lebesgue-density πb of at most polynomial decay
(see (26)). For N ∈ N we write Ad,N = (Ad1, . . . , A

d
N) and BN = (B1, . . . , BN).

Theorem 13 complements the results in Grohs et al. (2023), Gonon and Schwab (2021).

18

Random Neural Networks Learn Black Scholes PDEs Without CoD

Theorem 13 Let p ≥ 0, c, C,M, T > 0. For each d ∈ N assume the payoff function
satisfies ϕd ◦exp ∈ L1(Rd) and ‖ϕd ◦exp ‖L1(Rd) ≤ cdp, the characteristic triplet (Σd, γd, νdL)

of the Lévy process Ld satisfies for all ξ ∈ Rd

1

2
ξ · Σdξ ≥ C‖ξ‖2, (42)

assume CT > 1
23/2π

and suppose ud ∈ C1,2((0, T] × (0,∞)d) ∩ C([0, T] × (0,∞)d) is an at
most polynomially growing solution to the PDE (41). Then there exist constants C0, p > 0
such that for any d,N ∈ N there exists an RN -valued, σ(Ad,N , BN)-measurable random
vector W d,N such that the random neural network

H̄d,N (x) := HAd,N ,BN

W d,N (x) =
N∑
i=1

W d,N
i %(Adi · x+Bi), x ∈ Rd, (43)

satisfies the approximation bound

E

[
sup

x∈[−M,M]d
|H̄d,N (x)− ud(T, exp(x))|

]
≤ C0d

p

√
N
. (44)

Proof Let d,N ∈ N, Φ(x) = ϕd(exp(x)) and H(x) = ud(T, exp(x)) for x ∈ Rd. Then
Proposition 16 below shows that H(x) = E[ϕd(exp(x+ LdT))] = E[Φ(x+ LdT)].

Furthermore, by the Lévy-Khintchine representation (see for instance Sato (1999, The-

orem 8.1) or Applebaum (2009, Theorem 1.2.14 and Theorem 1.3.3)) we have E[eiξ·L
d
T] =

exp(Tη(ξ)) with

η(ξ) = iξ · γd − 1

2
ξ · Σdξ +

∫
Rd\{0}

[
eiξ·y − 1− iξ · y1{‖y‖≤1}

]
νdL(dy) , ξ ∈ Rd. (45)

In particular,

Re η(ξ) = −1

2
ξ · Σdξ +

∫
Rd\{0}

[cos(ξ · y)− 1] νdL(dy) ≤ −1

2
ξ · Σdξ,

since the integrability property
∫
Rd(‖y‖

2 ∧ 1)νdL(dy) <∞ guarantees that y 7→ cos(ξ · y)− 1
and y 7→ sin(ξ · y) − ξ · y1{‖y‖≤1} are indeed νdL-integrable for any ξ ∈ Rd. This and (42)

show that for all ξ ∈ Rd

|E[eiξ·L
d
T]| = eTRe η(ξ) ≤ exp(−CT‖ξ‖2). (46)

Theorem 7 hence shows that there exist Capp > 0, k ∈ N and an RN -valued, σ(Ad,N , BN)-

measurable random vector W d,N such that the random neural network H̄d,N = HAd,N ,BN

W d,N

satisfies

E

[
sup

x∈[−M,M]d
|H̄d,N (x)−H(x)|

]
≤
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

. (47)

19

Gonon

Thus, we obtain

E

[
sup

x∈[−M,M]d
|H̄d,N (x)− ud(T, exp(x))|

]
≤ Cappcd

p(ν + 1)k+3dk+3

√
N

=
C0d

p

√
N

with C0 = (ν + 1)k+3Cappc and p = p + k + 3. This proves (44) and the statement, since
Capp in Theorem 7 does not depend on d or N and hence the constants C0, p are the same
for all d,N ∈ N.

Remark 14 Theorem 13 also holds if we directly assume ud(T, exp(x)) = E[ϕd(exp(x +
LdT))] instead of considering the PDE (41). For instance in the context of mathematical
finance many quantities of interest (such as option prices or “greeks”) are defined in terms
of such expectations. In particular, in this situation the hypothesis ϕd ∈ C((0,∞)d,R) is
not required (in Theorem 13 this hypothesis is implicit in the assumption ud ∈ C1,2((0, T]×
(0,∞)d) ∩ C([0, T]× (0,∞)d)).

The integrability hypothesis ϕd◦exp ∈ L1(Rd) is more restrictive, but currently it can not
be avoided in the proof of Theorem 7. The hypothesis is satisfied e.g. for butterfly or binary
options. More general payoffs can be incorporated by truncation (which is often possible
without affecting the price significantly) or potentially by employing Fourier representations
as in Carr and Madan (1999) instead of (30).

Remark 15 The assumption νdL({y ∈ Rd | ‖y‖ > R}) = 0 for some R > 1 is only required
to obtain a “Feynman-Kac representation” from the results of Barles et al. (1997) (see
Proposition 16 below). This assumption on νdL can be weakened to

∫
{‖y‖>1} e

yiνdL(dy) < ∞
for i = 1, . . . , d for instance in the situation of Remark 14 when we directly assume a
stochastic representation for ud.

Alternatively, instead of assuming νdL({y ∈ Rd | ‖y‖ > R}) = 0 for some R > 1 we
could impose that νdL is a finite measure and (42) holds. Then we may apply Pham (1998,
Proposition 5.3) instead of Barles et al. (1997) in the proof of Proposition 16 below and
also obtain the representation ud(t, s) = E[ϕd(s exp(Ldt))].

The proof of Theorem 13 employs the “Feynman-Kac representation” from Proposi-
tion 16 below. Proposition 16 is essentially a consequence of the results from Barles et al.
(1997). For the readers’ convenience we provide a proof of Proposition 16 and make explicit
how it can be obtained from Barles et al. (1997). Related results and further references can
be found, for instance, in Pham (1998), Cont and Voltchkova (2005), Cont and Voltchkova
(2006, Proposition 3.3), Glau (2016).

Proposition 16 Suppose ud ∈ C1,2((0, T] × (0,∞)d) ∩ C([0, T] × (0,∞)d) is an at most
polynomially growing solution to the PDE (41) and ϕd is bounded. Then for all (t, s) ∈
[0, T]× (0,∞)d it holds that ud(t, s) = E[ϕd(s exp(Ldt))].

20

Random Neural Networks Learn Black Scholes PDEs Without CoD

Proof Let Φd(x) = ϕd(exp(x)) and vd(t, x) = ud(T − t, exp(x)). Firstly, the assumptions
on ud imply that vd ∈ C1,2([0, T)× Rd) ∩ C([0, T]× Rd) and a straightforward calculation
shows that vd satisfies the (non-local) PDE

−∂tvd(t, x) = 1
2

∑d
k,l=1 Σd

k,l∂xk∂xlvd(t, x) +
∑d

i=1

(
γdi +

∫
Rd yi1{‖y‖>1}ν

d
L(dy)

)
∂xivd(t, x)

+
∫
Rd

[
vd(t, x+ y)− vd(t, x)−

∑d
i=1 yi∂xivd(t, x)

]
νdL(dy),

vd(T, x) = Φd(x)
(48)

for x ∈ Rd, t ∈ [0, T). Set γ̂d = (γd +
∫
Rd y1{‖y‖>1}ν

d
L(dy)) and for φ ∈ C2(Rd) write

Aφ(x) =
1

2
Trace(ΣdD2

xφ(x)) + [Dxφ(x)]γ̂d

Kφ(x) =

∫
Rd

(φ(x+ y)− φ(x)− [Dxφ(x)]y)νdL(dy).
(49)

Now if φ ∈ C2([0, T]×Rd) and (t0, x0) ∈ [0, T)×Rd is a global maximum point of vd−φ,
then D(t,x)(vd − φ)(t0, x0) = 0 and D2

x(vd − φ)(t0, x0) ≤ 0. Thus, (48) implies

−∂tφ(t0, x0)−Aφ(t0, x0)−Kφ(t0, x0)

= A(vd − φ)(t0, x0) +K(vd − φ)(t0, x0)

=
1

2
Trace(

√
ΣdD2

x(vd − φ)(t0, x0)
√

Σd) +

∫
Rd

(vd − φ)(t0, x0 + y)− (vd − φ)(t0, x0)νdL(dy)

≤ 0.
(50)

This and Barles et al. (1997, Lemma 3.3) show that vd is a viscosity subsolution of (48) in
the sense of Barles et al. (1997). Similarly, one argues that vd is also a viscosity supersolution
to (48). Barles et al. (1997, Theorem 3.5) hence shows that for all (t, x) ∈ [0, T] × Rd we
have vd(t, x) = E[Φd(X

t,x
T)] (see also the proof of Gonon and Schwab (2023, Corollary 5.4))

where (Xt,x
r)r≥t is the unique solution to Xt,x

t = x,

dXt,x
r = γ̂ddr +

√
ΣdW d

r +

∫
Rd\{0}

zÑd(dt, dz)

= γddr +
√

ΣdW d
r +

∫
Rd\{0}

z1{‖z‖≤1}Ñ
d(dr, dz) +

∫
Rd\{0}

z1{‖z‖>1}N
d(dr, dz)

where Nd is a Poisson random measure on R+× (Rd \{0}) with intensity νdL, W d is an inde-
pendent d-dimensional standard Brownian motion and Ñd(dt, dz) = Nd(dt, dz)− dtνdL(dz).
Note that the assumption νdL({y ∈ Rd | ‖y‖ > R}) = 0 for some R > 1 guarantees that the
function β in Barles et al. (1997, Theorem 3.5) can be chosen so that it satisfies the required
boundedness hypothesis. Hence, by the Lévy-Itô-decomposition (see for instance Sato 1999,
Theorem 19.2 or Applebaum 2009, Theorem 2.4.16) we obtain that Xt,x

T has the same dis-
tribution as x+LdT−t. Thus, we have proved the representation vd(t, x) = E[Φd(x+LdT−t)]

and therefore for all x ∈ Rd, with s = exp(x),

ud(t, s) = vd(T − t, x) = E[ϕd(exp(x+ Ldt))] = E[ϕd(s exp(Ldt))].

21

Gonon

4. Learning by Random Neural Networks

In this section we use random neural networks HA,B
W to learn functions of the type considered

in Section 3.1. In Section 4.1 we formulate the considered learning problem. In Sections 4.2,
4.3, 4.4 we then provide bounds on the prediction error that arises when W is learnt by
means of regression, constrained regression and stochastic gradient descent, respectively. In
Sections 4.5 we will then apply these results to obtain prediction error bounds for random
neural networks applied to learning option prices in certain non-degenerate models.

4.1 Formulation of the Learning Problem

Let n ∈ N and suppose that we are given i.i.d. Rd×R-valued random variables (X1, Y1), . . . ,
(Xn, Yn) (the data) which are independent of (A,B). Let H : Rd → R be the target function
(which we will assume to be of the form specified in Section 3.1) and suppose that

H(x) = E[Y1|X1 = x], (51)

for (P ◦ (X1)−1)-a.e. x ∈ Rd, that is, H is the regression function. This encompasses two
important situations:

• Learning H from noisy observations: We observe the unknown function H (the solu-
tion to a PDE or market prices of options) at n data points up to some additive noise.
Thus, in this situation we suppose Yi = H(Xi) + εi, i = 1, . . . , n, for ε1, . . . , εn i.i.d.
random variables which are independent of (X1, . . . , Xn) and satisfy E[ε1] = 0.

• Solving PDEs by learning : Solving linear Kolmogorov PDEs with affine coefficients has
been formulated as a learning problem in Berner et al. (2020). The setting considered
here also covers this type of learning problem.

The target function H is considered unknown and is to be learnt from the data Dn =
((X1, Y1), . . . , (Xn, Yn)) using random neural networks. To do this, we recall that H(X1) =
E[Y1|X1] minimizes

R(f) = E[(f(X1)− Y1)2] (52)

among all measurable functions f : Rd → R. Thus, to learn H(x) = E[Y1|X1 = x] from the
data one aims at finding a minimizer of

Rn(f) =
1

n

n∑
i=1

(f(Xi)− Yi)2. (53)

Rn(f) is the empirical version of (52). In the situation considered here we know from
Section 3 that H can be approximated well by random neural networks and so we learn
H by minimizing Rn(·) only over this class of functions, i.e. by minimizing Rn(HA,B

W) over

neural networks HA,B
W with random weights (A,B) and trainable W (see Section 2). This

leads to the optimization problem

Ŵ = arg min
W∈W

{
1

n

n∑
i=1

(HA,B
W (Xi)− Yi)2

}
(54)

22

Random Neural Networks Learn Black Scholes PDEs Without CoD

for a suitable set W of RN -valued, σ(A,B,Dn)-measurable random vectors. The measur-
ability requirement incorporates the fact that A,B are generated randomly and then fixed
and hence the trainable weights may depend on A,B.

Having solved (54), the learning algorithm then returns the (random) function

HA,B

Ŵ
(x) =

N∑
i=1

Ŵi%(Ai · x+Bi), x ∈ Rd

as our approximation for H. To evaluate the learning performance of the random features
regression algorithm we need to bound the (squared) learning error (or prediction error)

E[|H(X̄)−HA,B

Ŵ
(X̄)|2], (55)

where (X̄, Ȳ) has the same distribution as (X1, Y1) and is independent of (A,B,Dn).

4.2 Regression

Consider first the case W = {W : Ω → RN |W is σ(A,B,Dn)-measurable}. In this case

computing (54) amounts to a simple least squares optimization. Hence Ŵ can be calculated
explicitly by solving

(X>X)Ŵ = X>Y (56)

where X is the n × N -random matrix with entries Xij = %(Aj · Xi + Bj) and Y is the
n-dimensional random vector with Yi = Yi for i = 1, . . . , n, j = 1, . . . , N .

Thus, there is no additional “optimization error” component in this case and we can
directly bound the prediction error (55) by combining the approximation error estimates
from Section 3 with a result from Györfi et al. (2002).

The trained neural network HA,B

Ŵ
will be capped at a level L > 0 by applying the

truncation TL : R→ R, TL(u) = max(min(u, L),−L).

Theorem 17 Let C > 1
23/2π

and let ν > 1. Suppose A1 ∼ tν(0,1d) and B1 has density πb
satisfying (26). Suppose H : Rd → R is of the form H(x) = E[Φ(x + V)] with Φ ∈ L1(Rd)
and V satisfying (25). Assume that ‖X1‖∞ ≤ M , P-a.s. Let L > 0 and assume σ2 =
supx∈Rd E[(Y1 − H(X1))2|X1 = x] < ∞ and |H(x)| ≤ L for all x ∈ Rd. Then there exist
k ∈ N and C̃app > 0 such that

E[|H(X̄)− TL(HA,B

Ŵ
(X̄))|2]1/2

≤ C̃app max(σ, L)
(log(n) + 1)1/2

√
N√

n
+
C̃app‖Φ‖L1(Rd)(ν + d)k+3

√
N

.
(57)

The constant k only depends on πb and the constant C̃app depends on ν, πb, C,M , but it does
not depend on d, n or N .

Remark 18 Theorem 17 bounds the square-root of the prediction error by O(log(n)1/2
√
N√

n
+

1√
N

). This matches, up to constants, the error bound obtained in the seminal work Barron

(1994) for general “Barron functions”. In Barron (1994) all parameters of the network are

23

Gonon

trainable and the neural network estimator is defined via empirical risk minimization over
a constrained parameter set. However, the optimization error, which arises when the neural
network estimator is calculated based e.g. on the stochastic gradient descent algorithm, is not
addressed in Barron (1994). In contrast, in our situation the class of considered functions
is smaller, but the neural network estimator can be directly calculated by solving the linear
system (56). Hence, the bound in Theorem 17 captures the full training error.

Proof Firstly, for fixed a ∈ (Rd)N , b ∈ RN we consider the function class Fa,b = {Ha,b
W |W ∈

RN}, Fa,b(Dn) = {Ha,b
W |W : Ω → RN is σ(Dn)-measurable} (in Györfi et al. (2002) the

same symbol is used for these two sets) and let f̂a,b = arg minf∈Fa,b(Dn)Rn(f). Then Fa,b
is an N -dimensional vector space and hence Györfi et al. (2002, Theorem 11.3) implies that

E
[∫

Rd
|TL(f̂a,b(x))−H(x)|2µX(dx)

]
≤ cmax(σ2, L2)

(log(n) + 1)N

n
+ 8 inf

f∈Fa,b

∫
Rd
|f(x)−H(x)|2µX(dx),

(58)

where µX is the law of X1 under P and c = 8 + 2304[log(9) + 4 log(12e) + 1].
For any a ∈ (Rd)N , b ∈ RN the minimization problem for f̂a,b can be solved explicitly

and we obtain f̂a,b = Ha,b
ŵa,b

, where ŵa,b is a solution to the linear system (56) with A,B fixed

to a, b. A solution always exists (see for instance Stoer and Bulirsch 2002, Chapter 4.8.1)

and, e.g. by choosing the solution given in terms of the pseudo-inverse matrix as Ŵ =
(X>X)†X>Y, it is possible to write Ŵ = F (A,B,Dn) for a measurable function F : (Rd)N×
RN × (Rd × R)n → RN and select ŵa,b in such a way that ŵa,b = F (a, b,Dn).

Using independence we thus obtain from (58)

E
[
|TL(HA,B

Ŵ
(X̄))−H(X̄)|2|A,B

]
= E[|TL(Ha,b

ŵa,b
(X̄))−H(X̄)|2]

∣∣∣
(a,b)=(A,B)

≤ cmax(σ2, L2)
(log(n) + 1)N

n
+ 8

(
inf

W∈RN
E[|Ha,b

W (X̄)−H(X̄)|2]

)∣∣∣∣
(a,b)=(A,B)

≤ cmax(σ2, L2)
(log(n) + 1)N

n
+ 8E[|HA,B

W ∗ (X̄)−H(X̄)|2|A,B],

(59)

where W ∗ denotes the random vector from Theorem 7. We may therefore take expectations
in (59), use ‖X̄‖∞ ≤ M and insert the bound from Theorem 7 (c.f. also Remark 8) to
deduce (57) with C̃app = max(

√
c,
√

8Capp).

4.3 Constrained Regression

In the next result we consider a constrained regression estimator, i.e., Ŵ in (54) is calcu-
lated with a smaller set of potential weights W. This leads to a different bound than in
Theorem 17, but for instance for N =

√
n the same rate is achieved.

Set Wλ = {W : Ω → RN |W is σ(A,B,Dn)-measurable, ‖W‖ ≤ λ P-a.s.}. Computing
(54) now corresponds to a constrained regression problem

Ŵλ = arg min
W∈Wλ

{
1

n

n∑
i=1

(HA,B
W (Xi)− Yi)2

}
. (60)

24

Random Neural Networks Learn Black Scholes PDEs Without CoD

The solution to (60) is given explicitly as follows: Ŵλ coincides with the solution Ŵ to the

unconstrained problem (56) with minimal norm in case Ŵ satisfies ‖Ŵ‖ ≤ λ. Otherwise

Ŵλ is given explicitly as

Ŵλ = (X>X + 1Λ)−1X>Y (61)

with Λ a non-negative σ(A,B,Dn)-measurable random variable2 such that ‖Ŵλ‖ = λ. The
two cases can be summarized by setting Λ = 0 in the first case and interpreting the inverse
in (61) as a pseudo-inverse, then Ŵλ is given by (61) in both cases.

We now provide a bound on the prediction error for random neural networks with
parameters learned according to (60).

Theorem 19 Let C > 1
23/2π

and let ν > 2. Suppose A1 ∼ tν(0,1d) and B1 has density πb
satisfying (26). Suppose H : Rd → R is of the form H(x) = E[Φ(x + V)] with Φ ∈ L1(Rd)
and V satisfying (25). Assume that ‖X1‖∞ ≤M , P-a.s. and E[|Y1|4] <∞. Let k ∈ N and

Capp, Cwgt > 0 be as in Theorem 7. Let λ > 0 satisfy
Cwgt‖Φ‖L1(Rd)(ν+d)2k+

1
2

√
N

≤ λ ≤ Clamd
p

√
N

for some p ≥ 0, Clam > 0 not depending on n,N, d. Then there exists Cest > 0 such that

E[|H(X̄)−HA,B

Ŵλ
(X̄)|2]1/2 ≤

Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

+
Cestd

p+1

n
1
4

. (62)

The constant Cest depends on ν, πb, Clam,M,E[Y 4
1], but it does not depend on d, n or N .

Remark 20 Theorem 19 shows that the prediction error is of order O(1
N + 1√

n
). Thus,

the error bound decays more quickly than the bound O(1√
N

+ 1√
n

) that was obtained in the

seminal work Rahimi and Recht (2009), where high-probability bounds were obtained for
random neural networks trained by constrained regression in a classification setting (P(Yi ∈
{1,−1}) = 1). The reason for this faster rate is that we use the mean-square loss here.
This allows to write |R(H) − R(H̃)| = E[|H(X̄) − H̃(X̄)|2] due to (51). For L-Lipschitz
loss functions the bound R(H) −R(H̃) ≤ LE[|H(X̄) −HA,B

Ŵλ
(X̄)|2]1/2 can be deduced (see

Rahimi and Recht 2009, Lemma 2), which leads to an approximation error of order 1/
√
N

instead of 1/N .

Thus, we are concerned here with a slightly different setting, but our proof of the “es-
timation error” (or generalization error) component is based on similar arguments as the
proof in Rahimi and Recht (2009).

Proof Firstly, (51) and independence imply

E[H(X̄)HA,B

Ŵλ
(X̄)] = E[E[E[Ȳ |X̄]Ha,b

w (X̄)]
∣∣∣
(a,b,w)=(A,B,Ŵλ)

]

= E[E[Ȳ Ha,b
w (X̄)]

∣∣∣
(a,b,w)=(A,B,Ŵλ)

]

= E[Ȳ HA,B

Ŵλ
(X̄)]

(63)

2. This means that once the data and the random weights have been sampled/observed (i.e. conditionally
on these) Λ is just a constant.

25

Gonon

and analogously E[H(X̄)HA,B
W (X̄)] = E[Ȳ HA,B

W (X̄)] for any W ∈ Wλ. Thus, we calculate

E[|H(X̄)−HA,B

Ŵλ
(X̄)|2]

= E[|H(X̄)−HA,B
W (X̄)|2] + E[|HA,B

Ŵλ
(X̄)− Ȳ |2]− E[|HA,B

W (X̄)− Ȳ |2]

= E[|H(X̄)−HA,B
W (X̄)|2] + E[R(HA,B

Ŵλ
)−R(HA,B

W)]

≤ E[|H(X̄)−HA,B
W (X̄)|2] + E[R(HA,B

Ŵλ
)−Rn(HA,B

Ŵλ
) +Rn(HA,B

W)−R(HA,B
W)],

(64)

where we used (60) and W ∈ Wλ in the last step.

Consider the first term in the right hand side of (64). Theorem 7 (c.f. also Remark 8)
guarantees that there exists an RN -valued, σ(A,B)-measurable random vector W ∗ such
that

E[|H(X̄)−HA,B
W ∗ (X̄)|2]1/2 ≤

Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

, (65)

where we used that ‖X̄‖L∞(P) ≤M . Furthermore, (28) shows that P-a.s. the weight vector

satisfies ‖W ∗‖ ≤
√
N maxNi=1 ‖W ∗i ‖L∞(P) ≤

Cwgt‖Φ‖L1(Rd)(ν+d)2k+
1
2

√
N

≤ λ. Hence, it follows

that W ∗ ∈ Wλ and so the decomposition (64) can be applied with W = W ∗.

For the second term in the right hand side of (64) we let Ŵ a,b
λ denote the solution to

(60) for (A,B) fixed to (a, b). The random variable Λ can be written as Λ = F (A,B,Dn)
for a measurable function F : (Rd)N × RN × (Rd × R)n → [0,∞) (in fact, F (a, b, dn) =
inf{t ≥ 0 | fa,b,dn(t) ≤ λ} for the strictly decreasing function fa,b,dn(t) = ‖(X>a,b,dnXa,b,dn +

1t)−1X>a,b,dnYa,b,dn‖, where Xa,b,dn ,Ya,b,dn are X,Y with (A,B,Dn) fixed to (a, b, dn)).

Then from the formula (61) it is clear that Ŵλ = G(A,B,Dn) for a measurable function G

and Ŵ a,b
λ = G(a, b,Dn). Furthermore, we write (a, b) 7→ W a,b for the measurable function

with WA,B = W (which exists, since W is σ(A,B)-measurable) andW0
λ = {w ∈ RN | ‖w‖ ≤

λ}. Then by independence

E[R(HA,B

Ŵλ
)−Rn(HA,B

Ŵλ
) +Rn(HA,B

W)−R(HA,B
W)]

= E[E[R(Ha,b

Ŵa,b
λ

)−Rn(Ha,b

Ŵa,b
λ

) +Rn(Ha,b
Wa,b)−R(Ha,b

Wa,b)]

∣∣∣∣
(a,b)=(A,B)

]

≤ 2E

E[sup
w∈W0

λ

∣∣∣R(Ha,b
w)−Rn(Ha,b

w)
∣∣∣]∣∣∣∣∣

(a,b)=(A,B)

 .
(66)

We now fix (a, b), consider for i = 1, . . . , n, w ∈ W0
λ the random variables Ua,bw,i =

(Ha,b
w (Xi)− Yi)2 and let ε1, . . . , εn denote i.i.d. Rademacher random variables independent

of all other random variables. Employing symmetrization (see for instance Boucheron et al.
2013, Lemma 11.4) we obtain

E

[
sup
w∈W0

λ

∣∣∣R(Ha,b
w)−Rn(Ha,b

w)
∣∣∣] ≤ 2E

[
sup
w∈W0

λ

∣∣∣∣∣ 1n
n∑
i=1

εiU
a,b
w,i

∣∣∣∣∣
]
. (67)

26

Random Neural Networks Learn Black Scholes PDEs Without CoD

In the next step we denote by Xi the vector with components Xi
j = %(aj · Xi + bj),

j = 1, . . . , N and rewrite Ha,b
w (Xi) = w ·Xi. Then we use the triangle inequality, Jensen’s

inequality and independence to estimate

E

[
sup
w∈W0

λ

∣∣∣∣∣ 1n
n∑
i=1

εiU
a,b
w,i

∣∣∣∣∣
]
≤ E

[
sup
w∈W0

λ

∣∣∣∣∣ 1n
n∑
i=1

εiH
a,b
w (Xi)

2

∣∣∣∣∣
]

+ E

[
sup
w∈W0

λ

∣∣∣∣∣ 2n
n∑
i=1

εiH
a,b
w (Xi)Yi

∣∣∣∣∣
]

+
1

n
E

[∣∣∣∣∣
n∑
i=1

εiY
2
i

∣∣∣∣∣
]

≤ E

[
sup
w∈W0

λ

∣∣∣∣∣w>
(

1

n

n∑
i=1

εiX
i[Xi]>

)
w

∣∣∣∣∣
]

+ E

[
sup
w∈W0

λ

∣∣∣∣∣ 2nw>
n∑
i=1

εiX
iYi

∣∣∣∣∣
]

+
1

n
E

∣∣∣∣∣
n∑
i=1

εiY
2
i

∣∣∣∣∣
2
1/2

≤ λ2

n
E

∥∥∥∥∥
n∑
i=1

εiX
i[Xi]>

∥∥∥∥∥
2

F

1/2

+
2λ

n
E

∥∥∥∥∥
n∑
i=1

εiX
iYi

∥∥∥∥∥
2
1/2

+
1

n

(
n∑
i=1

E[Y 4
i]

)1/2

,

(68)
where ‖ · ‖F is the Frobenius norm on RN×N . Denoting by 〈·, ·〉F the Frobenius (matrix)
inner product on RN×N and using independence and E[εiεj] = δij we obtain

E

∥∥∥∥∥
n∑
i=1

εiX
i[Xi]>

∥∥∥∥∥
2

F

 = E

 n∑
i,j=1

εiεj〈Xi[Xi]>,Xj [Xj]>〉

 = nE
[∥∥∥X1[X1]>

∥∥∥2

F

]
.

Employing an analogous argument for the second term in the right hand side of (68) (now
with the standard inner product on RN) yields

E

[
sup
w∈W0

λ

∣∣∣∣∣ 1n
n∑
i=1

εiU
a,b
w,i

∣∣∣∣∣
]
≤ λ2

√
n
E
[∥∥∥X1[X1]>

∥∥∥2

F

]1/2

+
2λ√
n
E
[∥∥X1Y1

∥∥2
]1/2

+
1√
n
E[Y 4

1]1/2.

(69)

Using
∥∥X1[X1]>

∥∥2

F
=
∑N

k,l=1[X1
k]

2[X1
l]

2 = ‖X1‖4 and inserting the bound (69) in (67) we
obtain

E

[
sup
w∈W0

λ

∣∣∣R(Ha,b
w)−Rn(Ha,b

w)
∣∣∣] ≤ 2λ2

√
n
E
[∥∥X1

∥∥4
]1/2

+
4λ√
n
E
[∥∥X1

∥∥2
Y 2

1

]1/2

+
2√
n
E[Y 4

1]1/2.

(70)

27

Gonon

Employing the bound

∥∥X1
∥∥2

=

N∑
j=1

[%(aj ·X1 + bj)]
2 ≤ 2

N∑
j=1

‖aj‖2‖X1‖2 + |bj |2 (71)

we estimate using the Minkowski integral inequality and the triangle inequality

E
[∥∥X1

∥∥4
]1/2
≤ E

2
N∑
j=1

‖aj‖2‖X1‖2 + |bj |2
21/2

≤ 2
N∑
j=1

E
[(
‖aj‖2‖X1‖2 + |bj |2

)2]1/2

≤ 2
N∑
j=1

‖aj‖2E[‖X1‖4]1/2 + |bj |2.

The second term in the right hand side of (70) can be bounded similarly with (71). Inserting
this and (70) in (66) yields

E[R(HA,B

Ŵλ
)−Rn(HA,B

Ŵλ
) +Rn(HA,B

W)−R(HA,B
W)]

≤ 2E

4λ2

√
n

 N∑
j=1

‖Aj‖2E[‖X1‖4]1/2 + |Bj |2

+ 2E

22+ 1
2λ√
n

 N∑
j=1

‖Aj‖2E[Y 2
1 ‖X1‖2] + |Bj |2E[Y 2

1]

1/2
+

4√
n
E[Y 4

1]1/2

≤ 8λ2N√
n

(E[‖A1‖2]E[‖X1‖4]1/2 + E[|B1|2])

+
23+ 1

2λ
√
N√

n

(
E[‖A1‖2]E[Y 2

1 ‖X1‖2] + E[|B1|2]E[Y 2
1]
)1/2

+
4√
n
E[Y 4

1]1/2.

(72)

Recall that A1 has a multivariate t-distribution tν(0,1d), hence A1
d
=Z/

√
U/ν where Z ∼

N (0,1d) and U ∼ χ2(ν) are independent. Thus, E[‖A1‖2] = E[‖Z‖2]E[ν/U] = νd/(ν − 2).
Using that ‖X1‖∞ ≤M and λ ≤ Clamd

p
√
N

we may thus deduce from (72) that

E[R(HA,B

Ŵλ
)−Rn(HA,B

Ŵλ
) +Rn(HA,B

W)−R(HA,B
W)]

≤ C2
estd

2p+2

√
n

(73)

with C2
est = 8C2

lam(ν
ν−2M

2+E[|B1|2])+23+ 1
2Clam(ν

ν−2M
2E[Y 2

1]+E[|B1|2]E[Y 2
1])1/2+4E[Y 4

1]1/2

not depending on d, n or N . Combining (73) with (64) and (65) we obtain

E[|H(X̄)−HA,B

Ŵλ
(X̄)|2] ≤

(
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

)2

+
C2

estd
2p+2

√
n

. (74)

28

Random Neural Networks Learn Black Scholes PDEs Without CoD

4.4 Stochastic Gradient Descent

For the most common choices of W the solution to the optimization problem (54) can be
obtained by solving the system of linear equations (56) or (61), respectively. There may
nevertheless be situations in which one is interested in solving (54) using a stochastic gradi-
ent descent method (e.g. when comparing the performance of different learning methods in
an experiment). Therefore, we will briefly discuss optimization of (60) by stochastic gradi-
ent descent here and combine our error bound in Theorem 19 with the stochastic gradient
descent optimization error bound from Shamir and Zhang (2013).

To this end, let V = {w ∈ RN | ‖w‖ ≤ λ} denote the set within which we look for
an optimizer, let ΠV : RN → V be the orthogonal projection onto V, for i = 1, . . . , n
write Xi for the RN -valued random vector with components Xi

j = %(Aj · Xi + Bj), j =
1, . . . , N , let T ∈ {2, 3, . . .} denote the number of stochastic gradient descent iterations,
let B ∈ {1, . . . , n} denote the batch size and let J = {Ji,t}(i,t)∈{1,...,B}×{1,...,T } denote
i.i.d. random variables each having a uniform distribution on {1, . . . , n} and independent of
(A,B,Dn, X̄, Ȳ). Then, starting with W1 = 0, we iteratively compute

Wt+1 = ΠV

(
Wt −

2ηt
B

B∑
i=1

XJi,t(Wt ·XJi,t − YJi,t)

)
, t = 1, . . . , T − 1, (75)

where ηt = η0t
−1/2 for t = 1, . . . , T − 1. The parameter vector WT is then used for the

random neural network, i.e., HA,B
WT

is the learned function approximating H. The next
proposition provides a bound on the prediction error.

Proposition 21 Let C > 1
23/2π

, η0 > 0 and ν > 4. Suppose A1 ∼ tν(0,1d) and B1 has

density πb satisfying (26). Suppose H : Rd → R is of the form H(x) = E[Φ(x + V)] with
Φ ∈ L1(Rd) and V satisfying (25). Assume that ‖X1‖∞ ≤ M , P-a.s. and E[|Y1|4] < ∞.

Let ηt = η0t
−1/2 for t = 1, . . . , T − 1 and λ ∈ 1√

N
[Cwgt‖Φ‖L1(Rd)(ν + d)2k+ 1

2 , Clamd
p] with

k ∈ N, Cwgt > 0 as in Theorem 7 and p ≥ 0, Clam > 0 not depending on n,N, d or T .
Then there exist Capp, Cest, Copt > 0 such that

E[|H(X̄)−HA,B
WT

(X̄)|2]1/2 ≤
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

+
Cestd

p+1

n
1
4

+
Coptd

p+2N(2 + log(T))
1
2

T
1
4

.

(76)

The constant k only depends on πb and the constants Capp, Cest, Copt depend on ν, πb, C,M ,
E[Y 4

1], η0, Clam, but they do not depend on d, n, N or T .

Remark 22 The first two terms in the error bound in (76) are as in the bound (62) in
Theorem 19, whereas the last term in (76) is due to the stochastic gradient descent opti-
mization. The rate of convergence to 0 of this last error term as a function of T could be
further improved, e.g., by using a more refined optimization scheme (based on averaging)
than (75), see for instance Shamir and Zhang (2013). However, for our purposes the bound
in Proposition 21 suffices as this bound already proves that the overall error does not suffer
from the curse of dimensionality.

29

Gonon

Proof Let Capp > 0 be as in Theorem 7, let W be the RN -valued, σ(A,B)-measurable
random vector satisfying (27) (see Theorem 7) and let Cest > 0 be as in Theorem 19.

By independence and (51) we obtain (as in (63)-(64) in the proof of Theorem 19)

E[|H(X̄)−HA,B
WT

(X̄)|2]

= E[|H(X̄)−HA,B
W (X̄)|2] + E[R(HA,B

WT
)−R(HA,B

W)]

≤ E[|H(X̄)−HA,B
W (X̄)|2]

+ E[R(HA,B
WT

)−Rn(HA,B
WT

) +Rn(HA,B
WT

)−Rn(HA,B

Ŵλ
) +Rn(HA,B

W)−R(HA,B
W)],

(77)
where we used (60) and W ∈ Wλ (as established in the proof of Theorem 19) in the last
step. The first expectation in the right hand side of (77) has been bounded in (65) in the
proof of Theorem 19. For the second expectation we may proceed analogously as in (66):

we use the same notation as in (66) and, in addition, write W a,b
T for the output of the

stochastic gradient descent algorithm with (A,B) fixed to (a, b). Then independence yields

E[R(HA,B
WT

)−Rn(HA,B
WT

) +Rn(HA,B
W)−R(HA,B

W)]

= E[E[R(Ha,b

Wa,b
T

)−Rn(Ha,b

Wa,b
T

) +Rn(Ha,b
Wa,b)−R(Ha,b

Wa,b)]

∣∣∣∣
(a,b)=(A,B)

]

≤ 2E

E[sup
w∈W0

λ

∣∣∣R(Ha,b
w)−Rn(Ha,b

w)
∣∣∣]∣∣∣∣∣

(a,b)=(A,B)

 .
(78)

Now we can compare (77) and (78) to (64) and (66) in the proof of Theorem 19. We see that
the decomposition (77) yields the same error terms as in Theorem 19 plus the additional
term E[Rn(HA,B

WT
)−Rn(HA,B

Ŵλ
)].

Therefore, Theorem 19 shows that

E[|H(X̄)−HA,B
WT

(X̄)|2]1/2 ≤
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

+
Cestd

p+1

n
1
4

+ E[Rn(HA,B
WT

)−Rn(HA,B

Ŵλ
)]1/2.

(79)

We now analyze the last term. Write W a,b,dn
T for the output of the stochastic gradient

descent algorithm and Ŵ a,b,dn
λ for the solution to (60) when (A,B,Dn) = (a, b, dn). From

the updating scheme it is clear that there exists a measurable function F such that WT =
F (A,B,Dn, J) = WA,B,Dn

T . Furthermore (as argued in the proof of Theorem 19), Ŵ a,b,dn
λ =

G(a, b, dn) for a measurable functionG and ŴA,B,Dn
λ = Ŵλ. Thus, we may use independence

to write

E[Rn(HA,B
WT

)−Rn(HA,B

Ŵλ
)] = E[E[Rdnn (Ha,b

Wa,b,dn
T

)−Rdnn (Ha,b

Ŵa,b,dn
λ

)]

∣∣∣∣
(a,b,dn)=(A,B,Dn)

], (80)

where Rdnn (f) = 1
n

∑n
i=1(f(xi) − yi)2 for dn = ((x1, y1), . . . , (xn, yn)). Consider (a, b, dn) ∈

(Rd)N×RN×([−M,M]d×R)n as fixed now and write xi for the vector with xij = %(aj ·xi+bj),

30

Random Neural Networks Learn Black Scholes PDEs Without CoD

j = 1, . . . , N . Let F : V → R, F (w) = 1
n

∑n
i=1(w · xi − yi)

2. Then Ha,b
w (xi) = w · xi,

Rdnn (Ha,b
w) = F (w) and hence ŵ := Ŵ a,b,dn

λ is a (global) minimizer of F in V. Write

wt := W a,b,dn
t and recall

wt+1 = ΠV (wt − ηtĝt) , t = 1, . . . , T − 1 (81)

with ĝt = 2
B

∑B
i=1 xJi,t(wt ·xJi,t−yJi,t). Independence implies E[ĝt|wt] = 2

B

∑B
i=1 E[xJi,t(w ·

xJi,t − yJi,t)]|w=wt = 2
n

∑n
j=1 xj(wt · xj − yj) = ∇F (wt). Furthermore, F is convex and the

Minkowski integral inequality and independence yield

E[‖ĝt‖2] ≤ 4E

(1

B

B∑
i=1

‖xJi,t‖(|wt · xJi,t |+ |yJi,t |)

)2

≤ 4

(
1

B

B∑
i=1

(
E
[
‖xJi,t‖2(|wt · xJi,t |+ |yJi,t |)2

])1/2)2

≤ 8

n

n∑
j=1

‖xj‖2(E[‖wt‖2]‖xj‖2 + |yj |2)

≤ 16

n

n∑
i=1

 N∑
j=1

‖aj‖2‖xi‖2 + |bj |2
 (λ2‖xi‖2 + |yi|2)

≤ 32
(
1 +M2d‖a‖2F + ‖b‖2

)2
(λ2 +

1

n

n∑
i=1

|yi|2),

(82)

where in the last two inequalities we used the estimate
∥∥xi∥∥2

=
∑N

j=1[%(aj · xi + bj)]
2 ≤

2
∑N

j=1 ‖aj‖2‖xi‖2 + |bj |2. Shamir and Zhang (2013, Theorem 2) hence implies that

E[F (wT)− F (ŵ)] ≤

(
4λ2

η0
+ η032

(
1 + dM2‖a‖2F + ‖b‖2

)2
(λ2 +

1

n

n∑
i=1

|yi|2)

)
2 + log(T)√

T
.

Inserting this in (80) and using independence yields

E[Rn(HA,B
WT

)−Rn(HA,B

Ŵλ
)]

≤ E

[
4λ2

η0
+ 32η0

(
1 + dM2‖A‖2F + ‖B‖2

)2
(λ2 +

1

n

n∑
i=1

|Yi|2)

]
2 + log(T)√

T

≤
(

4λ2

η0
+ 96η0(1 + d2M4E[‖A‖4F] + E[‖B‖4])(λ2 + E[|Y1|2])

)
2 + log(T)√

T
.

(83)

Employing Minkowski’s integral inequality we estimate

d2M4E[‖A‖4F] + E[‖B‖4] ≤ d2M4

 N∑
j=1

E[‖Aj‖4]1/2

2

+

 N∑
j=1

E[|Bj |4]1/2

2

= N2(d2M4E[‖A1‖4] + E[|B1|4]).

(84)

31

Gonon

Recall that A1
d
=Z/

√
U/ν, where Z ∼ N (0,1d) and U ∼ χ2(ν) are independent. Therefore

E[‖A1‖4] = E[‖Z‖4]E[ν2/U2] and one obtains analogously to (84) the estimate E[‖Z‖4] ≤
d2E[Z4

1]. Inserting this into (84) and (83) and estimating λ ≤ Clamd
p

√
N

yields

E[Rn(HA,B
WT

)−Rn(HA,B

Ŵλ
)]

≤
C2

opt

4

(
(1 +N2)

d2p+4

N
+ (1 +N2)d4

)
2 + log(T)√

T

≤ C2
optd

2p+4N2 2 + log(T)√
T

(85)

with C2
opt = 4 max(4

η0
, 96η0) max(2, 3M4ν2/[(ν − 2)(ν − 4)] + E[|B1|4]) max(C2

lam,E[|Y1|2])

and where we used E[Z4
1] = 3, E[U−2] = 1/[(ν− 2)(ν− 4)]. Combining this with (79) yields

(76), as claimed.

4.5 Application to Basket Option Pricing

As a first application of the results derived in Sections 4.2–4.4 we consider the problem of
learning prices of basket put options in certain “non-degenerate” models.

Suppose that yi is the market price of a put option with strike Ki > 0 written on a basket
of m assets. Assume that, up to some additive noise, these market prices are “generated”
from an unknown, non-degenerate stochastic model. This means that we assume

yi = E

[
max

(
Ki −

m∑
i=1

wiST,i, 0

)]
+ εi, i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. random variables, ST = (ST,1, . . . , ST,m) is a [0,∞)m-valued ran-
dom vector and w1, . . . , wm ∈ [0,∞) are non-negative weights. Assume that E[ε1] = 0,
E[ε4

1] < ∞ and {εi}i=1,...,n are independent of (A,B, ST). We think of ST as the value at
time T of a price process S (for which P is a martingale measure).

The goal is to learn the pricing function H(K) := E [max (K −
∑m

i=1wiST,i, 0)] from
the observed market prices y1, . . . , yn.

This fits into the framework introduced above (see Section 4.1) if we letM = maxi=1,...,nKi

and considerK1, . . . ,Kn as the observed realizations of the n i.i.d. random variablesX1, . . . , Xn

so that also yi = H(Ki) + εi is the realization of Yi = H(Xi) + εi. We assume that X1

is distributed uniformly on [0,M] and {Xi}i=1,...,n are independent of {εi}i=1,...,n, (A,B).
Then the option pricing function H is indeed the regression function (51) and we obtain
the following corollary. Recall that X̄ has the same distribution as X1 and is independent
of (A,B,Dn).

Corollary 23 Let ν > 4, C > 1
23/2π

, η0 > 0 and c̄ > 0 be constants which do not depend on
n,N or T . Suppose A1 ∼ tν(0, 1) and B1 has density πb satisfying (26). Assume that the
[0,∞)m-valued random vector ST satisfies |E[e−iξw·ST]| ≤ exp(−C|ξ|2) for all ξ ∈ R. Then

32

Random Neural Networks Learn Black Scholes PDEs Without CoD

there exists C0 > 0 such that the prediction error bound

E[|H(X̄)− TM (HA,B

Ŵ
(X̄))|2]1/2 ≤ C0

(
(log(n) + 1)1/2

√
N√

n
+

1√
N

)
(86)

holds and there exist C1, C2, c > 0 such that for any λ ∈ 1√
N

[c, c̄] the prediction error bounds

E[|H(X̄)−HA,B

Ŵλ
(X̄)|2]1/2 ≤ C1

(
1√
N

+
1

n
1
4

)
, (87)

E[|H(X̄)−HA,B
WT

(X̄)|2]1/2 ≤ C2

(
1√
N

+
1

n
1
4

+
N(2 + log(T))

1
2

T
1
4

)
(88)

hold. The constants C0, C1, C2, c do not depend on n, N or T .

Remark 24 The proof of Corollary 23 shows that c does not depend on c̄. Hence, by
choosing c̄ > c it can always be guaranteed that [c, c̄] is not empty.

Remark 25 The hypothesis |E[e−iξw·ST]| ≤ exp(−C|ξ|2) is inherited from Theorem 7. In
Theorem 7 this hypothesis guarantees that the constants do not grow exponentially in the
dimension d. In the situation here d = 1 and so this hypothesis could be relaxed considerably:
it could be replaced by the assumption |E[e−iξw·ST]| ≤ exp(−C|ξ|α) for some C > 0, α > 0
or even by the assumption that |E[e−iξw·ST]| ≤ C(1 + |ξ|)−β for some C > 0 and sufficiently
large β > 0 (depending on ν and πb).

Proof Firstly, by assumption we have |X1| ≤ M , P-a.s. and H : R → R satisfies for
K ∈ [0,M] that

H(K) = E [max (K − w · ST , 0)] = E[Φ(K + V)]

with V = −w · ST and Φ(y) = y1[0,M](y). Hence, H(X̄) = H̃(X̄) P-a.s. with H̃(x) =
E[Φ(x + V)] for x ∈ R. Furthermore, Φ ∈ L1(R), V satisfies (25), σ2 = supx∈R E[(Y1 −
H(X1))2|X1 = x] = E[ε2

1] < ∞ and |H̃(x)| ≤ M for all x ∈ R. Thus, the hypotheses of
Theorem 17 with L = M are satisfied and so, using H(X̄) = H̃(X̄) P-a.s., we obtain that
there exist k ∈ N and C̃app > 0 such that the prediction error bound (57) holds. Hence (86)
follows with C0 = max(C̃app max(σ,M), C̃app‖Φ‖L1(R)(ν + 1)k+3).

Next we prove (87). To this end, notice E[|Y1|4] ≤ 8(E[|H(X1)|4] + E[|ε1|4]) ≤ 8(M4 +
E[|ε1|4]) < ∞ and let Capp, Cwgt > 0 be as in Theorem 7. Then Theorem 19 proves

that for any λ > 0 satisfying
Cwgt‖Φ‖L1(R)(ν+1)2k+

1
2

√
N

≤ λ ≤ c̄√
N

there exists a constant

Cest > 0 such that the prediction error bound (62) holds. The proof actually shows that
the same constant can be chosen for all λ in the specified range. Thus, (87) follows with

C1 = max(Capp‖Φ‖L1(R)(ν + 1)k+3, Cest) and c = Cwgt‖Φ‖L1(R)(ν + 1)2k+ 1
2 .

Furthermore, Proposition 21 proves that there exists Copt > 0 such that (76) holds.
Setting C2 = max(C1, Copt) we obtain (88).

In these results we proved that the constants Capp, Cest, Copt depend on ν, πb, C,M ,
E[Y 4

1], η0, c̄, but they do not depend on n, N or T , hence it follows that C0, C1, C2, c do
not depend on n, N or T .

33

Gonon

5. Learning Black-Scholes Type PDEs

In this section we apply the results from Section 4 to prove that random neural networks are
capable of learning certain Black-Scholes type partial (integro-)differential equations (also
referred to as (non-local) PDEs) without the curse of dimensionality. More specifically, we
consider the problem of learning solutions to Kolmogorov PDEs associated to exponential
Lévy-processes, which includes the Black-Scholes PDE as a special case. The learning
methods used to tackle this problem are random neural networks trained by (constrained)
regression or stochastic gradient descent. By combining the results from Theorems 13, 17, 19
and from Proposition 21 we obtain bounds on the prediction error. The dependence on the
dimension d in these bounds is explicit and at most polynomial, whereas the bounds decay
at polynomial rate in the number of samples n and the network size N (and the number of
stochastic gradient descent iterations T). Hence, the number of samples, hidden nodes of
the network and gradient steps required to achieve a prescribed prediction accuracy ε > 0
grows at most polynomially in d and ε−1. This means that random neural networks are
capable of learning solutions to such Kolmogorov PDEs without the curse of dimensionality.

For the reader’s convenience we introduce in Section 5.1 in detail again all the objects
relevant to the discussion. Section 5.2 then contains the prediction error bounds for Black-
Scholes type PDEs. We conclude in Section 5.4 with numerical experiments.

5.1 Formulation of the Learning Problem for PDEs

We again put ourselves in the situation studied in Section 3.2 and consider for each d ∈ N
the partial (integro-)differential equation

∂tud(t, s) = 1
2

∑d
k,l=1 skslΣ

d
k,l∂sk∂slud(t, s) +

∑d
i=1 siγ̃

d
i ∂siud(t, s)

+
∫
Rd

[
ud(t, se

y)− ud(t, s)−
∑d

i=1(eyi − 1)si∂siud(t, s)
]
νdL(dy),

ud(0, s) = ϕd(s)

(89)

for s ∈ (0,∞)d, t > 0, where ϕd : (0,∞)d → R is a “payoff” function and (Σd, γd, νdL)
is the characteristic triplet of a Lévy process Ld, we write γ̃di = γdi + 1

2Σd
i,i +

∫
Rd(e

yi −
1 − yi1{‖y‖≤1})ν

d
L(dy), i = 1, . . . , d, for the shifted drift vector and we assume νdL({y ∈

Rd | ‖y‖ > R}) = 0 for some R > 1. Furthermore, we recall the notation s exp(x) =
(s1 exp(x1), . . . , sd exp(xd)) for s, x ∈ Rd.

The (non-local) PDE (89) is the Kolmogorov PDE for the exponential Lévy model
associated to Ld, see Section 3.2 for further interpretation and a discussion on the relation
to option pricing and the assumption on νdL. If νdL = 0, then (89) is the Black-Scholes PDE.

Let T > 0 and suppose we are given i.i.d. Rd×R-valued random variables (Xd
1 , Y

d
1), (Xd

2 , Y
d

2),
. . . with the property that

ud(T, exp(x)) = E[Y d
1 |Xd

1 = x], (90)

for (P ◦ (Xd
1)−1)-a.e. x ∈ Rd, that is, ud(T, exp(·)) is the regression function. We are

interested in learning ud(T, ·) on the set Dd = {exp(x) |x ∈ [−M,M]d} ⊂ (0,∞)d. This
encompasses two particularly relevant situations.

Example 1 Suppose that the solution ud(T, ·) of the PDE can be observed at n points
exp(Xd

1), . . . , exp(Xd
n). The observations are not perfect, but perturbed by some additive

34

Random Neural Networks Learn Black Scholes PDEs Without CoD

noise. The goal is to learn the solution of the PDE on the entire set Dd from these noisy
observations. This situation is captured in our setting with Y d

i = ud(T, exp(Xd
i)) + εdi for

i = 1, . . . , n, where εd1, . . . , ε
d
n are i.i.d. random variables independent of Xd

1 , . . . , X
d
n.

Example 2 A different situation of interest arises when neural networks are employed as a
solution method for the PDE (89) in the way proposed in Berner et al. (2020) for a related
setting. Let Xd

1 , . . . , X
d
n be i.i.d. random variables uniformly distributed on [−M,M]d and

independent of Ld and let Y d
i = ϕd(exp(Xd

i + LdT)) for i = 1, . . . , n. Then one may show
using the Feynman-Kac formula (see Proposition 16) that

ud(T, exp(x)) = E[ϕd(exp(x+ LdT))] = E[ϕd(exp(Xd
1 + LdT))|Xd

1 = x] = E[Y d
1 |Xd

1 = x]

for (P ◦ (Xd
1)−1)-a.e. x ∈ Rd and hence ud(T, exp(·)) is indeed the regression function (90).

Thus, in this situation we have formulated the problem of solving the PDE (89) on Dd as a
statistical learning problem with data points (Xi, ϕd(exp(Xd

i + LdT))), i = 1, . . . , n.

In order to learn the unknown function ud(T, ·) from the dataDd
n = ((Xd

1 , Y
d

1), . . . , (Xd
n, Y

d
n))

we employ a random neural network. Recall from Section 2 that a random neural network is
a single-hidden-layer feedforward neural network in which the hidden weights are randomly
generated and then considered fixed and only the output-layer weight vector can be trained.
The weights of the random neural networks are generated as follows: let ν > 4, for each
d ∈ N let Ad1, A

d
2, . . . be i.i.d. Rd-valued random vectors and let B1, B2, . . . be i.i.d. random

variables. Assume that Ad1 is tν(0,1d)-distributed and B1 has a strictly positive Lebesgue-
density πb of at most polynomial decay (see (26)). For each d, n ∈ N we assume that
{Adi }i∈N, {Bi}i∈N and Dd

n are independent. For d,N ∈ N we write Ad,N = (Ad1, . . . , A
d
N)

and BN = (B1, . . . , BN). If N hidden nodes are used, the random neural network employed
for learning is then given by

HAd,N ,BN

W (x) =
N∑
i=1

Wi%(Adi · x+Bi), x ∈ Rd, (91)

where W is an RN -valued, σ(Ad,N , BN , Dd
n)-measurable random vector which needs to be

chosen. The (squared) learning error (or prediction error) is given by

E[|ud(T, exp(X̄d))−HAd,N ,BN

W (X̄d)|2], (92)

where (X̄d, Ȳ d) has the same distribution as (Xd
1 , Y

d
1) and is independent of {(Adi , Bi)}i∈N

and Dd
n.

Learning ud(T, ·) by HAd,N ,BN

W then amounts to selecting an RN -valued (random) vector
W that minimizes the prediction error. W may be chosen depending on the random weights
Ad,N , BN and the data Dd

n = ((Xd
1 , Y

d
1), . . . , (Xd

n, Y
d
n)). We consider three choices:

• W is chosen as Ŵ d,N,n, where

Ŵ d,N,n = arg min
W∈Wd,N,n

{
1

n

n∑
i=1

(HAd,N ,BN

W (Xd
i)− Y d

i)2

}
(93)

for Wd,N,n = {W : Ω → RN |W is σ(Ad,N , BN , Dd
n)-measurable}. Note that Ŵ d,N,n

can be calculated explicitly by solving a system of linear equations (see Section 4.2).

35

Gonon

• W is chosen as Ŵ d,N,n
λ , where

Ŵ d,N,n
λ = arg min

W∈Wd,N,n
λ

{
1

n

n∑
i=1

(HAd,N ,BN

W (Xd
i)− Y d

i)2

}
(94)

for Wd,N,n
λ = {W ∈ Wd,N,n | ‖W‖ ≤ λ P-a.s.}. Recall that Ŵ d,N,n

λ can be calculated
explicitly by solving a system of linear equations (see Section 4.3).

• W is chosen as W d,N,n
T , where W d,N,n

T is computed using the stochastic gradient de-
scent algorithm as introduced in Section 4.4.

Remark 26 As pointed out above, training of random neural networks can be performed
by solving a system of linear equations (see (56) in Section 4.2 and (61) in Section 4.3).
There may nevertheless be situations in which one is interested in training a random neural
network using a stochastic gradient descent method (e.g. a performance comparison in an
experiment). This is the reason why we also analyze optimization by stochastic gradient
descent here.

5.2 Learning Error Bounds

With these preparations (see Section 5.1) we now use the results from Sections 3 and 4
to provide sufficient conditions which guarantee that ud(T, ·) can be learnt using random
neural networks without the curse of dimensionality.

Corollary 27 Let p ≥ 0, c, L,M, η0 > 0, C > 1
23/2Tπ

. Assume that for each d ∈ N the

payoff function satisfies ϕd ◦ exp ∈ L1(Rd) and ‖ϕd ◦ exp ‖L1(Rd) ≤ cdp, the characteristic

triplet (Σd, γd, νdL) of the Lévy process Ld satisfies for all ξ ∈ Rd

1

2
ξ · Σdξ ≥ C‖ξ‖2, (95)

assume that ‖Xd
1‖∞ ≤M , P-a.s. and suppose ud ∈ C1,2((0, T]×(0,∞)d)∩C([0, T]×(0,∞)d)

is an at most polynomially growing solution to the PDE (89).

(i) Assume for all d ∈ N that σ2
d = supx∈Rd E[(Y d

1 − ud(T, exp(Xd
1)))2|Xd

1 = x] ≤ cdp and
|ud(T, s)| ≤ L for all s ∈ (0,∞)d. Then there exist constants C0, p > 0 such that for
any d,N, n ∈ N the prediction error of random neural network regression satisfies

E[|ud(T, exp(X̄d))− TL(HAd,N ,BN

Ŵ d,N,n
(X̄d))|2]1/2 ≤ C0d

p

(
(log(n) + 1)1/2

√
N√

n
+

1√
N

)
.

(96)

(ii) Assume for all d ∈ N that E[|Y d
1 |4] ≤ cdp. Then there exist p, c > 0 such that for any

p > p, c > c there exist C0, p > 0 such that for any d,N, n ∈ N the random neural

network trained by constrained regression with parameter λ ∈ 1√
N

[cdp, cdp] satisfies

E[|ud(T, exp(X̄d))−HAd,N ,BN

Ŵ d,N,n
λ

(X̄d)|2]1/2 ≤ C0d
p

(
1√
N

+
1

n
1
4

)
. (97)

36

Random Neural Networks Learn Black Scholes PDEs Without CoD

(iii) Consider the same situation as in (ii). Then, in addition, there exist constants C1, q >
0 such that for any d,N, n, T ∈ N the random neural network trained by stochastic
gradient descent for T steps with learning rate ηt = η0t

−1/2 for t = 1, . . . , T − 1 and
with λ as in (ii) satisfies

E[|ud(T, exp(X̄d))−HAd,N ,BN

W d,N,n
T

(X̄d)|2]1/2 ≤ C1d
q

(
1√
N

+
1

n
1
4

+
N(2 + log(T))

1
2

T
1
4

)
.

(98)

Remark 28 Each of these statements can be translated directly into a statement on the
number of samples and hidden nodes required to guarantee a prescribed learning error of
precision at most ε > 0. For instance, in the case of regression (corresponding to the bound
(96)) we see that there exist constants C̃0, p̃ > 0 such that for all d ∈ N, ε > 0 at most
N ≤ C̃0d

p̃ε−2 weights and n ≤ C̃0d
p̃ε−8 samples suffice to guarantee

E[|ud(T, exp(X̄d))− TL(HAd,N ,BN

Ŵ d,N,n
(X̄d))|2]1/2 ≤ ε. (99)

This follows from (96) by choosing N = 4C2
0d

2pε−2, n = 16c2C4
0d

4pε−4N2 and C̃0 =
max(4C2

0 , 256c2C8
0), p̃ = 8p where c is a constant such that log(m) + 1 ≤ c

√
m for all

m ∈ N.

Proof For fixed d ∈ N let Φ(x) = ϕd(exp(x)) and H(x) = ud(T, exp(x)) for x ∈ Rd. Then
Proposition 16 shows that H(x) = E[Φ(x+LdT)] and, as argued in the proof of Theorem 13,
the characteristic function of LdT satisfies the bound (46).

Proof of (i): Theorem 17 hence implies that there exist k ∈ N and C̃app > 0 such that

E[|ud(T, exp(X̄d))− TL(HAd,N ,BN

Ŵ d,N,n
(X̄d))|2]1/2

≤ C̃app max(σ2
d, L)

(log(n) + 1)1/2
√
N√

n
+
C̃app‖Φ‖L1(Rd)(ν + d)k+3

√
N

≤ C0d
p

(
(log(n) + 1)1/2

√
N√

n
+

1√
N

) (100)

with C0 = C̃app max(max(c, L), c(2ν)k+3) and p = p + k + 3. This proves (i), since k and
C̃app in Theorem 17 do not depend on d, n or N .

Proof of (ii): Let k ∈ N and Capp, Cwgt > 0 be as in Theorem 7, choose p = 2k+ 1
2 +p, c =

Cwgtc(2ν)2k+ 1
2 and let p > p, c > c. Then λ ∈ 1√

N
[cdp, cdp] satisfies 1√

N
Cwgt‖Φ‖L1(Rd)(ν +

d)2k+ 1
2 ≤ λ and hence Theorem 19 shows that there exists Cest > 0 such that

E[|ud(T, exp(X̄d))−HAd,N ,BN

Ŵ d,N,n
λ

(X̄d)|2]1/2 ≤
Capp‖Φ‖L1(Rd)(ν + d)k+3

√
N

+
Cestd

p+1

n
1
4

. (101)

From the proof of Theorem 19 (with Clam = c here) the constant Cest is given by

C2
est = 8c2(

νM2

ν − 2
+ E[|B1|2]) + 23+ 1

2 c(
νM2

ν − 2
E[(Y d

1)2] + E[|B1|2]E[(Y d
1)2])1/2 + 4E[(Y d

1)4]1/2

37

Gonon

and hence Cest ≤ d
p
4 C̃est with C̃2

est = 8c2(νM
2

ν−2 +E[|B1|2])+23+ 1
2 cc

1
4 (νM

2

ν−2 +E[|B1|2])1/2+4c
1
2 .

Thus, (101) yields

E[|ud(T, exp(X̄d))−HAd,N ,BN

Ŵ d,N,n
λ

(X̄d)|2]1/2 ≤ C0d
p

(
1√
N

+
1

n
1
4

)
(102)

with C0 = max(Cappc(2ν)k+3, C̃est) and p = max(p + k + 3, p + 1 + p
4). As shown in the

above results (and visible from the explicit expressions available for these constants) neither
k ∈ N nor the constants Capp, Cwgt > 0 depend on d, n or N . Hence, the constants C0, p
do not depend on d,N, n or λ. This proves (ii).

Proof of (iii): Let k ∈ N, Capp, Cwgt, p, c, C0, p > 0 be as in the proof of (ii) and let
p > p, c > c. Applying Proposition 21 with Clam = c and using the estimate provided in
the proof of (ii) (see (101) and (102)) for the first two terms in (76) we obtain that there
exists Copt > 0 such that

E[|ud(T, exp(X̄d))−HAd,N ,BN

W d,N,n
T

(X̄d)|2]1/2 ≤ C0d
p

(
1

N
1
2

+
1

n
1
4

)
+
Coptd

p+2N(2 + log(T))
1
2

T
1
4

.

(103)
The constant Copt was given explicitly in the proof and we deduce that Copt ≤ dp/4C̃opt with
C̃2

opt = 4 max(4
η0
, 96η0) max(2, 3M4ν2/[(ν − 2)(ν − 4)] + E[|B1|4]) max(c2, c1/2). Combining

this with (103) proves (98) with C1 = max(C0, C̃opt), q = max(p, p + 2 + p
4). By the same

reasoning as above C1, q do not depend on d,N, n, T or λ. This proves (iii).

5.3 Discussion and Comparison to Deterministic Neural Networks

Let us discuss the relationship between (shallow) deterministic, fully trainable neural net-
works and random feature neural networks in the context of Black-Scholes PDEs. As de-
scribed above, a random neural network approximation uses the function (91) with randomly
generated hidden weights Adi , Bi and only trains the readout weights Wi, i = 1, . . . , N . In
contrast, a standard (deterministic) neural network with a single hidden layer is a function

Hθ(x) =

N∑
i=1

Wi%(adi · x+ bi), x ∈ Rd, (104)

with trainable parameters adi ∈ Rd, bi,Wi ∈ R, i = 1, . . . , N , and where we denote by
θ = (ad1, . . . , a

d
N , b1, . . . , bN ,W1, . . . ,WN) the trainable parameters. Let us now compare the

random feature neural network approximation and learning error bounds in Theorem 13
and Corollary 27 to existing results for (deterministic) neural networks in the context of
Black-Scholes PDEs. Firstly – with the exception of Elbrächter et al. (2022) and Gonon
and Schwab (2023) – existing results that prove that (deep) neural networks overcome the
curse of dimensionality when approximating certain Kolmogorov PDEs (see, for instance,
Grohs et al. 2023, Elbrächter et al. 2022, Berner et al. 2020, Reisinger and Zhang 2020,
Gonon and Schwab 2023 and the references therein) are concerned with Lp-error bounds (for
p ∈ [1,∞)), whereas Theorem 13 provides an L∞-error bound. Secondly, when specialized
to the Black-Scholes model these papers impose a condition on boundedness or at most

38

Random Neural Networks Learn Black Scholes PDEs Without CoD

polynomial growth of suitable norms of the covariance Σd and the drift γd as a function
of d. In contrast, Theorem 13 and Corollary 27 impose a non-degeneracy condition on Σd.
The reason for the different type of condition is that Grohs et al. (2023), Berner et al.
(2020), Reisinger and Zhang (2020), Gonon and Schwab (2023) use “artificial” Monte Carlo
samples to construct a neural network approximation of ud(T, ·), whereas Theorem 13 and
Corollary 27 exploit smoothness of ud(T, ·). Thirdly, for the same reason also the condition
on the payoff ϕd is different: here an integrability condition is imposed, whereas in the
cited papers it is assumed that ϕd can be “approximated well” by a (deep) neural network.
Finally, we comment on the case in which all conditions are satisfied and so both the
approximation results for (deterministic) neural networks and those for random feature
networks can be applied. In general the approximating neural networks constructed in
Grohs et al. (2023), Berner et al. (2020), Reisinger and Zhang (2020), Gonon and Schwab
(2023) are deep in the sense that they may contain more than one hidden layer, but in
some situations (when the payoff is given exactly by a shallow neural network (104)) the
approximating neural network turns out to be again a shallow neural network of type (104).
Assuming the conditions on ϕd, Σd, γd are all satisfied we now obtain the same rate of decay
N−

1
2 using a (deterministic) network (104) and a random neural network (91). This follows,

e.g., from Remark 5.3 in Gonon and Schwab (2023) and Theorem 13. Alternatively, under
certain hypotheses on ϕd the same approximation rate by (deterministic) shallow neural
networks is also asserted by Barron (1993), see Gonon and Schwab (2021, Proposition 5.6).
However, all these results for (deterministic) networks do not cover the full learning error
and thus in this case random neural networks have the useful advantage that bounds on
the full learning error (approximation, generalization and optimization) are available, see
Corollary 27.

On the other hand, let us briefly discuss deterministic shallow neural networks from
a practical perspective. Typically, finding θ that (approximately) minimizes the empiri-
cal risk Rn(Hθ) = 1

n

∑n
i=1(Hθ(Xd

i) − Y d
i)2 is computationally more demanding than just

optimizing over W in the random features case, since θ 7→ Rn(Hθ) does not reduce to a
(constrained) regression. Instead an (approximate) minimizer of θ 7→ Rn(Hθ) is typically
computed by using the stochastic gradient descent algorithm or a variant thereof (such as
Adam introduced in Kingma and Ba 2015) and the required gradients are computed by
backpropagation. Training may require tuning of the learning rate of the stochastic gra-
dient descent algorithm and more importantly, no theoretical convergence guarantees are
available in this case. Thus, from a practical implementation perspective, using random
feature neural networks is advantageous in this situation.

5.4 Numerical Examples

In this section we consider numerical examples in which the solution ud(T, ·) to (89) is learnt
from noisy observations. We carry out the same experiment for different configurations of
parameters and initial conditions. We start by describing in detail the setup in a first
example. We fix d, T and generate n training data points (Xd

1 , Y
d

1), . . . , (Xd
n, Y

d
n) for our

experiment. The goal is then to learn ud(T, ·) based only on these data points, i.e. without
using any knowledge about the underlying PDE or its parameters. This is achieved by

39

Gonon

employing neural networks with randomly generated hidden weights, as explained in detail
in Section 5.1.

For the unknown PDE we choose the pricing PDE for a max-call option in a d-dimensional
Black-Scholes model with equal correlations among the assets. Thus, we fix d = 50, choose
ϕd(s) = max(max(s1, . . . , sd) −K, 0) as initial value for the PDE and let Σd be given for
i, j = 1, . . . , d by Σd

i,j = σ2ρ for i 6= j and Σd
i,i = σ2. Furthermore, γ̃d = 0, νdL = 0 and the

parameter values are chosen as σ = 0.2, ρ = 0.2, T = 1. The strike K is chosen as K = 1
(which corresponds to expressing prices in units of the “actual” strike). From the solution
ud(T, ·) with K = 1 on Dd one can also directly obtain the solution ũd(T, ·) for other values
of K (e.g. K = 100) on the set {K exp(x) |x ∈ [−M,M]d} by using ũd(T, s) = Kud(T, s/K).
For our experiment we now select M = 1 and generate the i-th data point as follows: we ran-
domly uniformly sample Xd

i on [−1, 1]d and then use a Monte Carlo simulation with 5 · 106

sample paths to calculate an approximate value of ud(T, exp(Xd
i)). Y d

i is then defined as
this approximate value and corresponds to a noisy observation of ud(T, ·) at exp(Xd

i). By
using this procedure for i = 1, . . . , n we generate n = 5 ·106 data points (the training data).

The goal is now to learn the solution ud(T, ·) to (89) based only on these (noisy) ob-
servations. To achieve this we use random neural networks as described in Section 5.1.
We consider different choices for the number of hidden nodes N . For the weight distribu-
tions we choose Ad1 ∼ t5(0,1d) and let B1 have a Student’s t-distribution with 2 degrees of
freedom (i.e. ν = 5 and πb is the density of a t-distribution with 2 degrees of freedom).
Unconstrained regression is employed to fit the output weights (see (93)), resulting in an

output weight vector Ŵ d,N,n and a random neural network approximation HAd,N ,BN

Ŵ d,N,n
(see

(91)) to ud(T, exp(·)).
Then we generate ntest = 5 · 105 test samples (X̄d

1 , Ȳ
d

1), . . . , (X̄d
ntest

, Ȳ d
ntest

) according to
the same procedure that we used for the training data above. Based on these training

data points we calculate the squared error ê2 = 1
ntest

∑ntest
i=1 (Ȳ d

i − H
Ad,N ,BN

Ŵ d,N,n
(X̄d

i))2. The

error ê is an estimate of the prediction error (see (92), (96) and recall that the Monte
Carlo price Ȳ d

i is an unbiased estimate of ud(T, exp(X̄d
i))) conditional on Ad,N , BN . The

(unconditional) prediction error ē2 is then estimated by generating κ = 50 independent

realizations of Ad,N , BN , fitting Ŵ d,N,n, calculating ê2 for each of them and averaging ê2

over the κ realizations. Figure 1 displays ê = ê(N) for different choices of the number of
hidden nodes, namely, N ∈ {1}∪{10, 20, . . . , 190} and a realization of Ad,N , BN . The figure
also displays the function x 7→ ê0√

x
, where ê0 is chosen as ê(1). Figure 2 shows the analogous

plot for the estimated (unconditional) prediction error ē and the function x 7→ ē0√
x

with

ē0 = ē(1).

The theoretical results from Corollary 27 show that, for n large, the theoretical predic-
tion error decays at least as 1/

√
N when N increases. The numerical results here reproduce

this behaviour for the (conditional and unconditional) estimated prediction errors ê(N) and
ē(N). This can be seen from Figures 1 and 2, where the estimated errors ê(N) and ē(N)
match closely the functions x 7→ ê0√

x
and x 7→ ē0√

x
, respectively. To examine the rate of

decay more precisely, we also generate a log-log plot in which (log(N), log(ē(N)) is shown
for the different choices of N above. We use linear regression to fit an affine function to
these points. Since the theoretical prediction error is bounded by a constant times 1√

N
, we

expect that the slope of the affine function should be close to −0.5. In fact, since the bound

40

Random Neural Networks Learn Black Scholes PDEs Without CoD

may not necessarily be sharp, the slope could also be smaller than −0.5 or the behaviour
could only be observed when looking at sufficiently large N . Figure 3 displays the log-log
plot of the error, the regression line and a line with slope −0.5. The slope of the regression
line is −0.524, confirming the expected behaviour.

0 25 50 75 100 125 150 175
N

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
ar

ni
ng

 E
rro

r

estimated error
theoretical decay

Figure 1: Plot of the estimated learning error – for a realization of the hidden weights and
biases – committed when a random neural network with N hidden nodes is used
to learn a 50-dimensional Black-Scholes PDE from observations. The dots show
the estimated learning error ê(N) for different values of N , the line shows the
decay implied by the theoretical results ê0√

N
(with ê0 chosen as ê(1)).

This numerical experiment also indicates that the integrability and smoothness assump-
tions in Corollary 27 can potentially be relaxed. More specifically, the payoff ϕd considered
in the example here does not satisfy the hypothesis ϕd ◦ exp ∈ L1(Rd) and for the chosen
parameters the matrix Σd does not satisfy (95), since the smallest eigenvalue of 1

2Σd is
smaller than 1

23/2Tπ
and hence any eigenvector ξ of 1

2Σd corresponding to this eigenvalue

satisfies 1
2ξ · Σ

dξ < C‖ξ‖2 for any C > 1
23/2Tπ

. Nevertheless, the numerical results suggest
that Corollary 27(i) is still valid in this situation. While Theorem 1 may be used to estab-
lish the N−1/2-decay in N also without the hypotheses ϕd ◦ exp ∈ L1(Rd) and (95), these
hypotheses were needed in the proof of Theorem 7 (and propagate to Corollary 27) in order
to guarantee that the constant in the error bound does not grow exponentially in d. The
numerical experiment and the choice d = 50 indicates non-exponential constants also here

41

Gonon

0 25 50 75 100 125 150 175
N

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Le

ar
ni

ng
 E

rro
r

Learining Error
estimated error
theoretical decay

Figure 2: Plot of the estimated (unconditional) learning error committed when a random
neural network with N hidden nodes is used to learn a 50-dimensional Black-
Scholes PDE from observations. The blue line shows the estimated learning error
ē(N) for different values of N , the orange line shows the decay implied by the
theoretical results ē0√

N
(with ē0 chosen as ē(1)).

and hence it may be possible to relax these assumptions by taking a different approach than
the one that was used in the proof of Theorem 7.

Variations We now repeat the above experiment in different other examples and estimate
in each case the rate of decay by performing a linear regression of the errors on a logarithmic
scale, as described above. As training data we use n = 2 · 106 data points, each of which is
generated using 2 · 106 Monte Carlo samples. We consider several variations of the above
setting.

First, we look at different payoffs given by a basket call option ϕ
(1)
d (s) = max(1

d

∑d
i=1 si−

K, 0) or a put on min option ϕ
(2)
d (s) = max(K −min(s1, . . . , sd), 0) as initial condition for

the PDE. Figure 4 shows the log-log plot of the errors for ϕ
(1)
d . We observe that the expected

rate of decay indeed occurs, but only for N ≥ 20. To estimate the rate of decay we may

thus omit the first two data points and obtain an estimated slope of −0.501. For ϕ
(2)
d we

observe an even faster decay and estimate a rate of −0.58. Both results again confirm the
expected behaviour.

Next, we vary the number of underlying assets, i.e., the dimension d of the domain of the
PDE. We consider d ∈ {1, 5, 25, 50, 200, 500} and display the estimated rates in Table 1. We
also indicate the range of N considered, since – as in Figure 4 above and not contradicting

42

Random Neural Networks Learn Black Scholes PDEs Without CoD

0 1 2 3 4 5
log(N)

2.0

1.5

1.0

0.5

0.0

0.5

Le
ar

ni
ng

 E
rro

r (
lo

g-
sc

al
e)

log(estimated error)
theoretical decay (log-scale)
regression line

Figure 3: Log-log plot of the estimated learning error committed when a random neural
network with N hidden nodes is used to learn a 50-dimensional Black-Scholes
PDE from observations. The dots show (log(N), log(ē(N))) for different values of
N . The slopes of the lines correspond to the rate of decay estimated by regression
(green) and expected based on the theoretical results (orange).

the non-necessarily sharp bound – for larger d the rate of convergence is only observed for
N sufficiently large. For example, for d = 500 using N ∈ {1} ∪ {10, 20, . . . , 190} yields the
rate −0.319, whereas for N ∈ {410, 420, . . . , 490} we again observe the expected behaviour
(see Figure 5 and Table 1). Thus, Table 1 shows that also for different choices of dimension
d the experimental results are in line with theoretical results.

In a next experiment, we vary some further model parameters and consider different
volatilities σ ∈ {0.01, 0.2, 0.5} and correlations ρ ∈ {−0.2, 0.2}. The results are reported in
Table 2. In each case we observe a very similar behaviour with rates smaller than −0.5.

Finally, we also consider instead of the Black-Scholes model a multivariate Merton jump
diffusion model with various parameter specifications. This is an extension of the Black-
Scholes model with an added independent jump process. Jump sizes are drawn indepen-
dently from a N (0, Σ̃d)-distribution and jumps occur at the jump times of a Poisson process
with intensity λ > 0. This corresponds to νdL = λν0 with ν0 a Gaussian measure with mean
0 and covariance Σ̃d. We refer, e.g., to Eberlein and Kallsen (2019) for further details. For
our experiments we let Σ̃d be given for i, j = 1, . . . , d by Σ̃d

i,j = σ̃2ρ̃ for i 6= j and Σ̃d
i,i = σ̃2

and consider different configurations for σ, σ̃, ρ̃, λ. The results are reported in Table 3. In

43

Gonon

each case we observe estimated rates smaller than −0.5, which is again in line with the
expected behaviour.

Table 1: Estimated rate of decay of the (unconditional) learning error in a d-dimensional

Black-Scholes model with payoff ϕ
(1)
d for varying choices of d. The rates were

estimated based on N ∈ {max(N, 1), N + 10, N + 20, . . . , N}.
d 1 5 25 50 200 500

Estimated rate −1.330 −0.622 −0.562 −0.500 −0.496 −0.468

(N,N) (0, 190) (0, 190) (20, 190) (20, 190) (200, 290) (410, 490)

Table 2: Estimated rate of decay of the (unconditional) learning error in a 50-dimensional
Black-Scholes model for varying parameter choices. The rates were estimated
based on N ∈ {20, 30, . . . , 190}.

(σ, ρ) (0.2, 0.2) (0.01, 0.2) (0.5, 0.2) (0.2,−0.2)

Estimated rate −0.500 −0.552 −0.548 −0.519

Table 3: Estimated rate of decay of the (unconditional) learning error in a 50-dimensional
Merton model for varying parameter choices. The rates were estimated based on
N ∈ {20, 30, . . . , 190}.

(σ, σ̃, ρ̃, λ) (0.2, 0.1,−0.1, 1) (0.2, 0.2,−0.2, 2) (0.2, 0.5, 0.2, 5) (0.01, 0.5, 0.2, 5)

Estimated rate −0.534 −0.526 −0.509 −0.514

Acknowledgments

The author would like to acknowledge support for this project by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – 464123384.

References

Charalambos D. Aliprantis and Kim C. Border. Infinite dimensional analysis. Springer,
Berlin, 2006.

Herbert Amann and Joachim Escher. Analysis. III. Birkhäuser, Basel, 2009.

David Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2009.

44

Random Neural Networks Learn Black Scholes PDEs Without CoD

0 1 2 3 4 5
log(N)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Le
ar

ni
ng

 E
rro

r (
lo

g-
sc

al
e)

log(estimated error)
theoretical decay (log-scale)
regression line

Figure 4: Log-log plot of the estimated learning error committed when a random neural
network with N hidden nodes is used to learn a 50-dimensional Black-Scholes
PDE from observations. In this case the payoff is given by a basket call option

ϕ
(1)
d (s) = max(1

d

∑d
i=1 si−K, 0). The dots show (log(N), log(ē(N))) for different

values of N . The slopes of the lines correspond to the rate of decay estimated by
regression (green) and expected based on the theoretical results (orange).

45

Gonon

6.025 6.050 6.075 6.100 6.125 6.150 6.175 6.200
log(N)

3.88

3.86

3.84

3.82

3.80

Le
ar

ni
ng

 E
rro

r (
lo

g-
sc

al
e)

log(estimated error)
theoretical decay (log-scale)
regression line

Figure 5: Log-log plot of the estimated learning error committed when a random neural
network with N hidden nodes is used to learn a 500-dimensional Black-Scholes
PDE from observations. The dots show (log(N), log(ē(N))) for different values of
N . The slopes of the lines correspond to the rate of decay estimated by regression
(green) and expected based on the theoretical results (orange).

46

Random Neural Networks Learn Black Scholes PDEs Without CoD

Guy Barles, Rainer Buckdahn, and Etienne Pardoux. Backward stochastic differential
equations and integral-partial differential equations. Stochastics Stochastics Rep., 60(1-
2):57–83, 1997.

Andrew R. Barron. Neural net approximation. In Yale Workshop on Adaptive and Learning
Systems, volume 1, pages 69–72, 1992.

Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Trans. Inform. Theory, 39(3):930–945, 1993.

Andrew R. Barron. Approximation and estimation bounds for artificial neural networks.
Machine Learning, 14:115–133, 1994.

Andrew R. Barron and Jason M. Klusowski. Approximation and estimation for high-
dimensional deep learning networks. Preprint, arXiv 1809.03090, 2018.

Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(3):463–482,
2003.

Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. An overview on
deep learning-based approximation methods for partial differential equations. Discrete
and Continuous Dynamical Systems - B, 28(6):3697–3746, 2023.

Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error:
empirical risk minimization over deep artificial neural networks overcomes the curse of
dimensionality in the numerical approximation of Black-Scholes partial differential equa-
tions. SIAM J. Math. Data Sci., 2(3):631–657, 2020.

Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The modern mathe-
matics of deep learning. Preprint, arXiv 2105.04026, 2021.

Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. OUP Oxford, 2013.

Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging. Quant.
Finance, 19(8):1271–1291, 2019.

Andrei Caragea, Philipp Petersen, and Felix Voigtlaender. Neural network approximation
and estimation of classifiers with classification boundary in a Barron class. The Annals
of Applied Probability, 33(4):3039 – 3079, 2023.

René Carmona and Mathieu Laurière. Convergence analysis of machine learning algorithms
for the numerical solution of mean field control and games i: The ergodic case. SIAM
Journal on Numerical Analysis, 59(3):1455–1485, 2021.

Peter Carr and Dilip B. Madan. Option valuation using the fast fourier transform. Journal
of Computational Finance, 2:61–73, 1999.

Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with sgd and random
features. In Advances in Neural Information Processing Systems, volume 31, 2018.

47

Gonon

Rama Cont and Peter Tankov. Financial Modelling with Jump Processes. Chapman &
Hall/CRC, 2004.

Rama Cont and Ekaterina Voltchkova. Integro-differential equations for option prices in
exponential lévy models. Finance and Stochastics, 9:299–325, 2005.

Rama Cont and Ekaterina Voltchkova. A Finite Difference Scheme for Option Pricing in
Jump Diffusion and Exponential Lévy Models. SIAM Journal on Numerical Analysis, 43
(4):1596–1626, 2006.

Christa Cuchiero, Wahid Khosrawi, and Josef Teichmann. A generative adversarial network
approach to calibration of local stochastic volatility models. Risks, 8(4):101, 2020.

Weinan E and Stephan Wojtowytsch. On the banach spaces associated with multi-layer relu
networks: Function representation, approximation theory and gradient descent dynamics.
CSIAM Transactions on Applied Mathematics, 1(3):387–440, 2020.

Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic differ-
ential equations. Communications in Mathematics and Statistics, 5(4):349–380, 2017.

Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer
neural networks. Commun. Math. Sci., 17(5):1407–1425, 2019.

Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical under-
standing of neural network-based machine learning: what we know and what we don’t.
Preprint, arXiv 2009.10713, 2020.

Ernst Eberlein and Jan Kallsen. Mathematical finance. Springer Finance. Springer, Cham,
2019.

Dennis Elbrächter, Philipp Grohs, Arnulf Jentzen, and Christoph Schwab. DNN expression
rate analysis of high-dimensional PDEs: application to option pricing. Constr. Approx.,
55(1):3–71, 2022.

Walter Farkas, Nils Reich, and Christoph Schwab. Anisotropic stable Lévy copula
processes—analytical and numerical aspects. Math. Models Methods Appl. Sci., 17(9):
1405–1443, 2007.

Maximilien Germain, Huyên Pham, and Xavier Warin. Neural networks-based algorithms
for stochastic control and pdes in finance. Preprint, arXiv 2101.08068, 2021.

Kathrin Glau. Classification of Lévy processes with parabolic Kolmogorov backward equa-
tions. Theory Probab. Appl., 60(3):383–406, 2016.

Lukas Gonon and Christoph Schwab. Deep ReLU network expression rates for option prices
in high-dimensional, exponential Lévy models. Finance Stoch., 25(4):615–657, 2021.

Lukas Gonon and Christoph Schwab. Deep relu neural network approximation for stochastic
differential equations with jumps. Anal. Appl. (Singap.), 21(01):1–47, 2023.

48

Random Neural Networks Learn Black Scholes PDEs Without CoD

Lukas Gonon, Philipp Grohs, Arnulf Jentzen, David Kofler, and David Šǐska. Uniform error
estimates for artificial neural network approximations for heat equations. IMA J. Numer.
Anal., 42(3):1991–2054, 2021.

Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Approximation bounds for
random neural networks and reservoir systems. Ann. Appl. Probab., 33:28–69, 2023a.

Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Infinite-dimensional reservoir
computing. Preprint, arXiv 2304.00490, 2023b.

Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe von Wurstemberger. A proof
that artificial neural networks overcome the curse of dimensionality in the numerical
approximation of Black-Scholes partial differential equations. Mem. Amer. Math. Soc.,
284:1–106, 2023.

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A distribution-free theory
of nonparametric regression. Springer Series in Statistics. Springer-Verlag, New York,
2002.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Norbert Hilber, Nils Reich, Christoph Schwab, and Christoph Winter. Numerical methods
for Lévy processes. Finance and Stochastics, 13:471–500, 2009.

Guang-Bin Huang, Lei Chen, and Chee-Kheong Siew. Universal approximation using in-
cremental constructive feedforward networks with random hidden nodes. Trans. Neur.
Netw., 17(4):879–892, July 2006.

Côme Huré, Huyên Pham, and Xavier Warin. Deep backward schemes for high-dimensional
nonlinear PDEs. Math. Comp., 89(324):1547–1579, 2020.

Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von
Wurstemberger. Overcoming the curse of dimensionality in the numerical approximation
of semilinear parabolic partial differential equations. Proc. A., 476(2244):630–654, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2015.
3rd International Conference for Learning Representations, San Diego, 2015.

Jason M. Klusowski and Andrew R. Barron. Approximation by combinations of ReLU and
squared ReLU ridge functions with `1 and `0 controls. IEEE Trans. Inform. Theory, 64
(12):7649–7656, 2018.

Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. A theoretical
analysis of deep neural networks and parametric PDEs. Constr. Approx., 55:73–125, 2022.

Fabian Laakmann and Philipp Petersen. Efficient approximation of solutions of parametric
linear transport equations by ReLU DNNs. Adv. Comput. Math., 47(1):Paper No. 11,
2021.

49

Gonon

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces. Springer Berlin Hei-
delberg, 2013.

Yulong Lu, Jianfeng Lu, and Min Wang. A priori generalization analysis of the deep ritz
method for solving high dimensional elliptic partial differential equations. In Proceedings
of Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine
Learning Research, pages 3196–3241. PMLR, 15–19 Aug 2021.

Tao Luo and Haizhao Yang. Two-layer neural networks for partial differential equations:
Optimization and generalization theory. Preprint, arXiv 2006.15733, 2020.

V. E. Maiorov and R. Meir. On the near optimality of the stochastic approximation of
smooth functions by neural networks. Adv. Comput. Math., 13(1):79–103, 2000.

Ana-Maria Matache, Tobias von Petersdorff, and Christoph Schwab. Fast deterministic
pricing of options on Lévy driven assets. M2AN Math. Mod. and Num. Anal., 38:37–71,
2004.

Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75(4):667–766, 2022.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random
feature and kernel methods: Hypercontractivity and kernel matrix concentration. Applied
and Computational Harmonic Analysis, 59:3–84, 2022.

Huyên Pham. Optimal stopping of controlled jump diffusion processes: a viscosity solution
approach. J. Math. Systems Estim. Control, 8(1):27 pp. 1998.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems, pages 1177–1184, 2008.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing mini-
mization with randomization in learning. In Advances in Neural Information Processing
Systems, volume 21, pages 1313–1320, 2009.

Christoph Reisinger and Yufei Zhang. Rectified deep neural networks overcome the curse
of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff
systems. Anal. Appl. (Singap.), 18(6):951–999, 2020.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random
features. In Advances in Neural Information Processing Systems, pages 3215–3225, 2017.

Johannes Ruf and Weiguan Wang. Neural networks for option pricing and hedging: a
literature review. J. Comput. Finance, 24(1):1–46, 2020.

Ken-Iti Sato. Lévy processes and infinitely divisible distributions. Cambridge University
Press, 1999.

50

Random Neural Networks Learn Black Scholes PDEs Without CoD

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 71–79. PMLR, 17–19 Jun 2013.

Jonathan W. Siegel and Jinchao Xu. Approximation rates for neural networks with general
activation functions. Neural Networks, 128:313–321, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solv-
ing partial differential equations. J. Comput. Phys., 375:1339–1364, 2018.

Josef Stoer and Roland Bulirsch. Introduction to numerical analysis, volume 12 of Texts in
Applied Mathematics. Springer-Verlag, New York, third edition, 2002.

51

	Introduction
	Notation

	Random Neural Networks: Preliminary Results
	Random Neural Network Approximation Bounds
	Bounds for Convolutional Functions
	Bounds for Non-degenerate Lévy Models

	Learning by Random Neural Networks
	Formulation of the Learning Problem
	Regression
	Constrained Regression
	Stochastic Gradient Descent
	Application to Basket Option Pricing

	Learning Black-Scholes Type PDEs
	Formulation of the Learning Problem for PDEs
	Learning Error Bounds
	Discussion and Comparison to Deterministic Neural Networks
	Numerical Examples

