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Abstract

We address the problem of estimating topological features from data in high dimensional
Euclidean spaces under the manifold assumption. Our approach is based on the compu-
tation of persistent homology of the space of data points endowed with a sample metric
known as Fermat distance. We prove that such metric space converges almost surely to
the manifold itself endowed with an intrinsic metric that accounts for both the geometry of
the manifold and the density that produces the sample. This fact implies the convergence
of the associated persistence diagrams. The use of this intrinsic distance when computing
persistent homology presents advantageous properties such as robustness to the presence
of outliers in the input data and less sensitiveness to the particular embedding of the un-
derlying manifold in the ambient space. We use these ideas to propose and implement a
method for pattern recognition and anomaly detection in time series, which is evaluated in
applications to real data.

Keywords: topological data analysis, persistent homology, manifold learning, distance
learning, time series

1. Introduction

1.1 Motivation and Problem Statement.

It is a common situation in machine learning that the given data represents a possibly
noisy finite sample of a geometric object embedded in a high dimensional Euclidean space.
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This is the case, for instance, in the analysis of time series arising from observations of a
dynamical system, where a spatial representation of the data can be interpreted as a sample
of a geometric structure — the attractor — encoding valuable information of the underlying
system’s behaviour. Under the manifold assumption, both the metric and the density of
the sample play a central role in the process of reconstruction of topological properties of
the underlying shape.

From a theoretical point of view, the problem can be stated as follows. Let Xn be a set
of n sample points with common density f supported on a smooth compact Riemannian
manifold M embedded in RD. We are interested in recovering topological features of M
from the sample Xn ⊆ RD in a setting in which bothM and f are assumed to be unknown.
A standard approach to accomplish this task consists in applying to Xn a computational
technique known as persistent homology, which allows to obtain qualitative information
about connected components, cycles, voids and higher dimensional holes from the point
cloud. Here, the sample Xn is considered as a metric space endowed with some computable
distance, such as the Euclidean distance or an estimator of the inherited geodesic distance.
Although the topological information carried by M remains the same when endowed with
any Riemannian metric, the output of the application of persistent homology to Xn strongly
depends on the particular distance function employed. In this article, we consider a com-
putable estimator defined over Xn of a certain Riemannian metric on M that takes into
account the density f , which was called Fermat distance by Groisman et al. (2022). We
show that the use of this density-based intrinsic metric in the computation of persistent
homology can lead to results that overcome simultaneously certain weaknesses of standard
approaches, such as the sensitivity to outliers and the dependence on the embedding of the
sample in the ambient space.

Persistent homology is a central technique in Topological Data Analysis (TDA) devel-
oped to infer the homology groups of a space by studying a sample Xn at all scales of
resolution at the same time (see Edelsbrunner and Harer, 2008; Edelsbrunner et al., 2002;
Boissonnat et al., 2018; Niyogi et al., 2008; Zomorodian and Carlsson, 2005). It has found
applications in many fields, including neuroscience (Giusti et al., 2015), finance (Gidea and
Katz, 2018), signal processing (Perea and Harer, 2015; Tralie and Perea, 2018; Perea, 2019),
computational neural networks (Gabrielsson et al., 2020), virus evolution (Chan et al., 2013)
and sensor networks (de Silva and Ghrist, 2007a). This method yields as output an object
called persistence diagram associated to the sample. Under mild conditions, the homology
groups of the underlying topological space can be read off the persistence diagram (see
Edelsbrunner et al., 2002). Chazal et al. (2009, 2016) provided a general framework that
allows to define persistence diagrams for infinite metric spaces instead of just finite approx-
imations (samples). Thus, one can view the persistence diagram associated to a sample
of a space as an estimate of a limiting object, namely, the persistence diagram of the en-
tire space. When the distinction is needed, we will call these diagrams sample persistence
diagram and population persistence diagram respectively.

Our main result states that, under reasonable conditions, there is convergence as metric
spaces of the sample Xn endowed with a computable estimator of the Fermat distance
towards the manifold M (equipped with the Fermat distance) in the sense of Gromov–
Hausdorff as the size n grows. When combined with the well-known stability theorem
(Cohen-Steiner et al., 2007; Chazal et al., 2014, 2009), this approximation result as metric
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spaces allows to deduce the convergence of the corresponding persistence diagrams. For
this purpose, the space of diagrams is naturally equipped with the bottleneck distance.
Approximation results that include convergence rates and confidence regions have been
established when the metric of the target space is known; see e.g. (Fasy et al., 2014) where
the Euclidean distance is considered for both the samples and the space and also (Chazal
et al., 2015), where a general metric is used but assumed to be known in advance.

Persistence diagrams are known to be sensitive to the presence of outliers (see Bendich
et al., 2011; Chazal et al., 2011; Buchet et al., 2016; Anai et al., 2019). Chazal et al. (2011);
Anai et al. (2019) proposed filtrations of point clouds regarded as empirical measures in
the ambient Euclidean space — called DTM-filtrations — to achieve a robust computation
of ambient persistent homology. This theory was later extended to general metric spaces
by Buchet et al. (2016). On the other hand, intrinsic versions of the classical Čech and
Vietoris–Rips filtrations were developed with the aim of capturing topological properties
of manifolds sitting in an Euclidean space which are independent of the embedding. The
approach exhibited in this article handles both difficulties at the same time. Indeed, we show
that sample persistence diagrams computed using the estimator of the (intrinsic) Fermat
distance are both robust to outliers for positive degree and display the correct homology of
the manifold for a longer parameter interval as compared with the use of ambient Euclidean
distance.

We refer the reader to the video by Fernandez (2021b) for an introductory exposition
of the contents of this article.

1.2 Contributions

Let (M, ρ) be a smooth d-dimensional Riemannian manifold embedded in RD with density
f : M → R>0 and a Riemannian density-based distance ρ (mainly, it will be the Fermat
distance df,p defined below).

For p > 1, the population Fermat distance is defined as

df,p(x, y) = inf
γ

∫
I

1

f(γt)(p−1)/d
|γ̇t|dt.

Here x, y ∈ M, | · | denotes the Euclidean distance and the infimum is taken over all
piecewise smooth curves γ : I = [0, 1] → M with γ(0) = x, and γ(1) = y. In the special
case when f is uniform, the population Fermat distance reduces to (a multiple of) the
inherited Riemannian distance dM from the ambient Euclidean space. When this is not the
case, this distance takes into account the density, which may be advantageous in certain
situations, like in the case of estimation of the topology of M from samples with presence
of noise and outliers. This metric was also considered in the works by Hwang et al. (2016);
Mckenzie and Damelin (2019); Sapienza et al. (2018); Groisman et al. (2022).

Given a finite set of points Xn, the sample Fermat distance between x, y is defined as

dXn,p(x, y) = inf
γ

r∑
i=0

|xi+1 − xi|p

where the infimum is taken over all paths γ = (x0, x1, . . . , xr+1) with x0 = x, xr+1 = y and
{x1, x2, . . . , xr} ⊆ Xn.
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Our main result states the Gromov–Hausdorff convergence (a.s.) of the sample endowed
with the sample Fermat distance, appropriately re-scaled, to (M, df,p).

Theorem Let M be a smooth, closed d-dimensional Riemannian manifold embedded in
RD. Let f :M→ R>0 be a smooth density function. Let Xn = {x1, x2, . . . , xn} ⊆ M be a
set of n independent sample points in M with common density f . Given p > 1, there exists
a constant µ = µ(p, d) such that for every λ ∈

(
(p− 1)/pd, 1/d

)
and ε > 0 there exist θ > 0

satisfying

P
(
dGH

((
M, df,p

)
,
(
Xn, n

(p−1)/d

µ
dXn,p

))
> ε
)
≤ exp

(
−θn(1−λd)/(d+2p)

)
for n large enough, where dGH stands for the Gromov-Hausdorff distance between metric
spaces.

As a consequence of this result and the stability theorem for persistence diagrams we
deduce the following convergence result.

Corollary Let ε > 0 and λ ∈
(
(p− 1)/pd, 1/d

)
. There exists a constant θ > 0 such that

P
(
db
(
dgm(Filt(M, df,p)), dgm(Filt(Xn, n

(p−1)/d

µ
dXn,p))

)
> ε
)
≤ exp

(
−θn(1−λd)/(d+2p)

)
for n large enough.

Here Filt(·) denotes either the Vietoris–Rips or Čech filtration, dgm(·) the associated
persistence diagram and db is the bottleneck distance (see Section 3 for precise defini-
tions). Since (M, df,p) is a Riemannian manifold, its population persistence diagram
dgm(Filt(M, df,p)) displays the correct homology up to the convexity radius conv(M, df,p).
In contrast, for (M, | · |) this is guaranteed only up to the reach τM. It is easy to find
examples of manifolds in which conv(M, df,p) is much larger than τM.

On the other hand, we prove that for a reasonable upper bound r on the filtration
parameter, dgm(Rips<r(Xn, dXn,p)) is robust to outliers for homology degree greater than
0.

Proposition Let Xn be a sample of M and let Y ⊆ RD rM be a finite set of outliers.

Let δ = min
{

min
y∈Y

dE(y, Y r {y}), dE(Xn, Y )
}

, where dE denotes the Euclidean distance

between sets. For all k > 0 and p > 1,

dgmk(Rips<δp(Xn ∪ Y, dXn∪Y,p)) = dgmk(Rips<δp(Xn, dXn,p)),

where Rips<δp stands for the Rips filtration up to parameter δp and dgmk for the persistent
homology of degree k.

The threshold δp is restrictive if it is below diam(Xn, dXn,p). However, we will show that
under a natural model for the outliers, δp > diam(Xn, dXn,p) for large enough p.

1.3 Applications to Signal Analysis.

The study of time series — specially, derived from dynamical systems — through the infer-
ence of homology groups of a certain associated space called delay embedding was pioneered
in the works by Perea (2019); Perea and Harer (2015). The construction of the delay embed-
ding of a time series heavily depends on the dimension or number of independent variables
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of the underlying system, and the choice of a parameter called time delay. It often leads
to analyse subspaces of a sufficiently high dimensional Euclidean space, which makes the
inference of topological information unstable.

In first place, by means of concrete examples involving the Lorenz attractor and noisy
periodic signals, we show that the use of Fermat distance in this method can lead to a more
robust inference of the delay embeddings’ topological features. The reason behind this is
that the Fermat distance is less prone, compared to the Euclidean distance, to the effect
known as curse of dimensionality and less dependent on the particular embedding. We
also describe a method to detect change-points in the time series through the study of the
evolution in time of the persistence diagrams of the corresponding time-delay embeddings.
This is applied to discover anomalies in electrocardiogram signals and different patterns in
the song of canaries corresponding to different syllables.

The code to replicate the computational examples and applications can be found at the
repository by Fernandez (2021a).

1.4 Related Work

The sample Fermat distance was introduced independently in the articles by Sapienza et al.
(2018); Mckenzie and Damelin (2019). The study of approximations of density based metric
from samples was suggested by Vincent and Bengio (2003) and developed by Sajama and
Orlitsky (2005). Cohen et al. (2015); Chu et al. (2020) analyzed a general family of metrics
that includes the population Fermat distance and deeply studied the case p = 2 of sample
Fermat distance, which was also called power weighted shortest distance by Mckenzie and
Damelin (2019). Groisman et al. (2022) proved that it is possible to recover the population
Fermat distance df,p for d-dimensional manifolds which are isometrically embedded (closures
of) open sets of Rd in RD as the limit of the sample Fermat distance. In the related work by
Hwang et al. (2016) it was shown that in the same context, a statistic that is similar to the
sample Fermat distance but uses the inherited Riemannian distance dM between consecutive
points in a path instead of the Euclidean one to measure its cost, also converges almost
surely to the Fermat distance. We remark that this statistic cannot be computed from the
sample since the inherited distance is not assumed to be known in advance. However, the
results by Hwang et al. (2016) provides an essential and strong foundation on the basis of
which our main result is built over.

The problem of learning geodesic distances from samples for submanifolds of the Eu-
clidean space, specially with the aim of reducing dimensionality and visualizing data, has
a long history; see for instance (Tenenbaum et al., 2000; Mémoli and Sapiro, 2005). On
the other hand, the problem of estimating the persistence diagram of a submanifold of
an Euclidean space from a sample has been studied by Fasy et al. (2014); Chazal et al.
(2015), where the underlying metric is assumed to be known. In this setting, both Chazal
et al. (2015) and Fasy et al. (2014) were able to prove the following satisfying result: the
persistence diagrams computed using the sample converge almost surely (in the sense of
bottleneck distance) to the persistence diagram of the desired metric space. Moreover, they
gave exponentially small bounds in the size of the sample for the probability of the bot-
tleneck distance between the corresponding persistence diagrams being larger than some
positive number; see (Chazal et al., 2015, Corollary 3) and (Fasy et al., 2014, Lemma 4),
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where in addition confidence sets for persistence diagrams are provided. In a different di-
rection, the advantages of computing persistence diagrams of submanifolds of an Euclidean
space using alternative metrics — more specifically, metrics based on diffusion geometry
and random walks — were explored experimentally by Bendich et al. (2011).

1.5 Structure of the Paper

In Section 2 we prove our main result Theorem 7 regarding the Gromov–Hausdorff conver-
gence of metric spaces using, respectively, the sample and the population Fermat distance.
Section 3 includes an introduction to persistent homology and is devoted to the study of
persistence diagrams of manifolds endowed with Fermat distance. We deduce in first place
the convergence of sample persistence diagrams to population persistence diagrams. Then,
we show that by using these intrinsic metrics the topological features last longer in the per-
sistence diagrams. Finally, we show that Fermat-based persistence diagrams are robust to
the presence of outliers for positive homology degree. In Section 4 we present a method for
pattern recognition in time series, which is applied to real data from electrocardiograms and
songs of canaries. Appendix A contains the proofs of some technical results (Proposition 5
and Lemma 8), required as intermediate steps to prove Theorem 7.

2. Density-based Distance Learning

In this section we prove the main theorem of the article, which states that the sample Xn,
considered as a metric space with the sample Fermat distance (appropriately re-scaled),
converges almost surely to (M, df,p) in the sense of Gromov–Hausdorff.

We begin by introducing the population Fermat distance for a smooth closed Riemannian
manifold without boundaryM of dimension d > 1 with Riemannian metric tensor g together
with a positive C∞ density function f :M→ R>0. For p > 1, consider the deformed metric
tensor gp = f2(1−p)/dg given by a conformal transformation of the original metric g. Since
f is smooth, gp is a Riemannian metric tensor. Thus,M has a metric space structure given
by the geodesic distance with respect to gp, denoted by df,p.

Definition 1 (Hwang et al., 2016) For p > 1, the population Fermat distance between
x, y ∈M is defined as

df,p(x, y) = inf
γ

∫
I

1

f(γt)(p−1)/d

√
g(γ̇t, γ̇t)dt

where the infimum is taken over all piecewise smooth curves γ : I → M with γ0 = x, and
γ1 = y.

Notice that geodesics in M with respect to the distance df,p are more likely to lie in
regions with high values of f . The name Fermat distance comes from the analogy with
optics, in which df,p is the optical distance as defined by Fermat’s principle when the
refraction index is given by f−(p−1)/d.

Consider now a set Xn = {x1, x2, . . . , xn} ⊆ M of n sample points in M with common
density f . Suppose thatM is embedded in RD and it is endowed with the standard inherited
Riemannian metric. Our aim is to approximate df,p(x, y), assuming no knowledge aboutM
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and the Riemannian distance defined on it. To achieve this, we will define an estimator for
this distance over the sample. We denote by |x− y| the Euclidean distance between points
x, y ∈M.

Definition 2 (Sapienza et al., 2018; Mckenzie and Damelin, 2019) For p > 1, the sample
Fermat distance between x, y ∈M is defined as

dXn,p(x, y) = inf
γ

r∑
i=0

|xi+1 − xi|p

where the infimum is taken over all paths γ = (x0, x1, . . . , xr+1) of finite length with x0 = x,
xr+1 = y and {x1, x2, . . . , xr} ⊆ Xn.

Since p > 1, geodesics with respect to this distance are also likely to lie in regions with
high density of points in Xn. This is due to the fact that paths with short edges are favored
even if they have large total (Euclidean) length.

We remark here that, for technical reasons, we adopt a slightly different definition for
the sample Fermat distance than the original one from Sapienza et al. (2018). Namely, in
the original setting, only paths completely contained in Xn are considered, including the
endpoints. Points that are not in the sample Xn are projected to the nearest point in Xn.
In consequence, our sample Fermat distance here does not generally induce a pseudometric
over M, but only a metric when restricted to Xn.

Example 1 (Eyeglasses) The effect of taking different values of p for the sample Fermat
distance dXn,p in the geometry of a manifold is illustrated below. Concretely, the eyeglasses
curve in R2 uniformly sampled and perturbed with Gaussian noise is considered (see Figure
1). We compute the sample Fermat distance between each pair of points for a series of
values of p > 1 and embed the sampled points in R2 in such a way that the Euclidean
distance in the embedding reflects the Fermat distance, using the Multidimensional Scaling
algorithm (MDS). As p becomes larger, the geometry of the data overcomes the bottleneck
region and it deforms into a circle. We also compute the Isomap embedding in R2 posed by
Bernstein et al. (2000). Recall that the Isomap embedding is the MDS projection with an
estimator of the inherited Riemannian distance based in the k-NN graph as input distances
(see Bernstein et al., 2000, Section 5). Due to the noise near the bottleneck region, some
points that are far in the sense of the inherited Riemannian distance become close in the
distance estimated from the k-NN graph. Note that Isomap embedding is highly sensitive
to noise, while with Fermat distance the points lying in low density regions are mapped to
points that are far from the rest of the sample. The larger the power p, the stronger this
effect. This feature allows Fermat distance to reconstruct the underlying topology of the
manifold in the present case, even with noise, for a range of values of p.

Remark 3 (The role of p) The parameter p in the definition of the population Fermat
distance df,p controls the density weight f−(p−1)/d in the computation of geodesics. Whereas
for p = 1 the optimal paths are obtained in classic geodesic paths, for large p they might
significantly differ, being mostly restricted to areas of high density. In practice, the value of
p in the sample Fermat distance dXn,p quantifies the balance between the embedding and the

7



Fernández, Borghini, Mindlin and Groisman

Figure 1: Top: A sample with noise of 2000 points of the eyeglasses dataset and Isomap
projection with k = 5 (similar results are obtained for all reasonable values of
k). Points are coloured according to local density. Middle and bottom: MDS
embedding in R2 using Fermat distance for different values of p.

density of a given sample Xn when estimating the optimal paths (notice that it is equivalent
to the Euclidean distance for p = 1). In general, there is a reasonable large — although
bounded — interval of values of p for which the estimator dXn,p allows to recover the intrinsic
geometry of the sample Xn even in presence of noise (c.f. Example 1). A similar phenomena
can be experimentally observed when it is used in clustering tasks, as shown in simulations
by Sapienza et al. (2018) and Little et al. (2022).

Remark 4 (Dimensionality reduction) The estimation of Fermat distance on input
data, when coupled with the MDS projection, produces a new method to achieve dimension-
ality reduction. This strategy is in analogy with the popular algorithm Isomap by Tenen-
baum et al. (2000). It is known that Isomap suffers from topological instability in presence
of noise, since it may construct erroneous connections (called short-circuits) in the k-NN
graph that potentially impair its performance (see Balasubramanian and Schwartz (2002)).
In contrast, since noise generally corresponds with regions of low density, noisy points are
treated by our method almost as not being part of the manifold. These effects increase with
the value of p, and they might be advantageous for the inference of the right geometry of the
data (c.f. Section 3.3).
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Our first result, Proposition 5, shows that the sample Fermat distance converges to the
population Fermat distance for closed (i.e. compact and without boundary) submanifolds
of RD. A related result was previously proved by Groisman et al. (2022) for isometrically
embedded (closures of) open sets of Rd. Here we extend the class of manifolds to any
compact manifold without boundary embedded in RD. Moreover, Proposition 5 states a
uniform convergence for any two points in the manifold — not only pointwise, as stated
by Groisman et al. (2022) —. This feature is essential to study both the manifold and the
sample endowed with the (population and sample respectively) Fermat distance as single
objects (metric spaces) and to prove convergence in the sense of Gromov–Hausdorff.

Let us fix some notations and general hypotheses. Hereafter,M will denote a smooth d-
dimensional closed Riemannian submanifold of RD endowed with the inherited Riemannian
distance dM. We will consider a set Xn ⊆M of n independent random points with common
smooth density f : M→ R>0. We will denote by Mf and mf the maximum and minimum
values attained by f on M, respectively. Observe that 0 < mf < Mf < ∞. Finally, given
p > 1 we set α = 1/(d+ 2p).

Proposition 5 For every p > 1 and λ ∈
(
(p− 1)/pd, 1/d

)
, given ε > 0 there exist µ, θ > 0

such that

P
(

sup
x,y

∣∣∣n(p−1)/ddXn,p(x, y)− µdf,p(x, y)
∣∣∣ > ε

)
≤ exp

(
−θn(1−λd)α

)
for n large enough. The supremum is taken over x, y ∈M.

The constant µ from the statement is fixed throughout this manuscript and depends
only on p and d. It was originally defined in (Howard and Newman, 1997, Lemma 3). The
constant θ depends on ε, p, f and M.

Proposition 5 is derived from a related result by Hwang et al. (2016), in which the authors
establish the convergence of a sample statistic known as the power-weighted shortest path
to the population Fermat distance. For p > 1 and points x, y ∈ M, the power-weighted
shortest path between x, y is defined as

LXn,p(x, y) = inf
γ

k∑
i=0

dM(xi+1, xi)
p (1)

where the infimum is taken over all paths γ = (x0, . . . , xk+1) in Xn of finite length with
x0 = x, xk+1 = y.

Theorem 6 (Hwang et al., 2016, Theorem 1) Let p > 1 and ε > 0. Suppose that (bn)n≥1

is a sequence of positive real numbers such that log(n)
nbdn

→ 0 as n goes to infinity. Then, there

exists a constant θ > 0 (which depends on ε) such that

P

 sup
x,y∈M

dM(x,y)≥bn

∣∣∣∣∣n(p−1)/dLXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ > ε

 ≤ exp(−θ(nbdn)α)

for all sufficiently large n, where the supremum is taken over x, y ∈M with dM(x, y) ≥ bn.
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As explained in the paragraph following Theorem 1 in (Hwang et al., 2016, p. 2793),

the requirement that log(n)
nbdn

→ 0 is necessary in order to obtain a nontrivial upper bound

for the probability.
Note that in Theorem 6, the convergence holds for the set of points x, y ∈ M with

dM(x, y) greater than some sequence (bn). However, since we will be interested in studying
the Gromov–Hausdorff convergence of the associated metric spaces (see (2) below), it is
necessary to have uniform control of the convergence of the estimated distance for all points
in the manifold. The uniform convergence is one of the main improvements upon Theorem
6 we show in Proposition 5. Also, notice that the proposed statistic LXn,p of df,p is based
on the previous knowledge of the inherited Riemannian distance dM. In the general data
analysis setting, only a sample of points in a Euclidean space is given. Under the assumption
that points lie on an (unknown) manifoldM, the goal is to find an estimator of the intrinsic
distance df,p that can be completely computed from the sample. In Proposition 5, we prove
that sample Fermat distance dXn,p is indeed a good estimator of df,p.

Proposition 5 arises as a natural continuation of Theorem 6. The main idea of the proof
is to show that any segment that is part of any shortest path with respect to dXn,p will be
arbitrarily small with high probability if n is large enough. This will allow us to deduce
that the power-weighted distance is well approximated by the sample Fermat distance. We
defer the proof to Appendix A.

We will next estimate the Gromov–Hausdorff distance between the metric space Xn
with an appropriate re-scaling of the sample Fermat distance dXn,p and M endowed with
the population Fermat distance df,p. Recall that the Gromov–Hausdorff distance dGH is a
metric on the (isometry classes of) compact metric spaces that, roughly speaking, quantifies
how difficult it is to match every point of a metric space (X, ρX) with some point of another
space (Y, ρY). More formally, it is defined as

dGH
(
(X, ρX), (Y, ρY)

)
:= inf{dH(h1(X), h2(Y))}, (2)

where the infimum is over all the isometric embeddings h1 : X → W, h2 : Y → W in a
common metric space W and dH stands for the Hausdorff distance. We will employ the
following equivalent characterization of the Gromov-Hausdorff distance, which is often more
convenient:

dGH
(
(X, ρX), (Y, ρY)

)
=

1

2
inf
R

sup
(x,y),(x′,y′)∈R

|ρX(x, x′)− ρY(y, y′)|, (3)

where the infimum is taken over subsets R ⊆ X× Y such that the projections πX(R) = X,
πY(R) = Y.

We are now ready to state our main theorem. For notational convenience, we set dn,p =
n(p−1)/d

µ dXn,p, the re-scaled sample Fermat distance on Xn.

Theorem 7 Let ε > 0 and λ ∈
(
(p− 1)/pd, 1/d

)
. There exists a constant θ > 0 such that

P
(
dGH((M, df,p), (Xn, dn,p)) > ε

)
≤ exp

(
−θn(1−λd)α

)
for n large enough and α = 1/(d+ 2p).
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Before presenting the proof of Theorem 7, we will need a preliminary lemma which
asserts that, with high probability, no point of M is too far from the nearest point of the
sample. The argument of this proof is standard, but we include it in Appendix A for the
reader’s convenience.

Lemma 8 For any κ > 0, the event{
sup
x∈M

dM(x,Xn) ≥ n(κ−1)/d

}
holds with probability at most exp(−θnκ) for some constant θ > 0 if n is large enough.

We are now in position to prove Theorem 7.
Proof [Theorem 7] In order to compute the Gromov–Hausdorff distance between (M, df,p)
and (Xn, dn,p), we consider in (3) the relation

R = {(xi, xi) : xi ∈ Xn} ∪ {(xy, y) : y ∈M, df,p(xy, y) = df,p(Xn, y)}.
By a simple application of the triangle inequality we get that

dGH
(
(M, df,p), (Xn, dn,p)

)
≤ 1

2

(
sup

x,y∈Xn
|df,p(x, y)− dn,p(x, y)|+ 2 sup

y∈M
df,p(Xn, y)

)
. (4)

Observe that the two terms on the right hand side of the previous inequality can be
bounded above by Proposition 5 and Lemma 8 respectively.

Given ε > 0, by (4) we have that

P
(
dGH

(
(M, df,p), (Xn, dn,p)

)
> ε/2

)
≤ P

(
sup

x,y∈Xn
|df,p(x, y)− dn,p(x, y)| > ε/2

)
+ P

(
sup
y∈M

df,p(Xn, y) > ε/4

)

To bound the first term, we apply Proposition 5 to get

P

(
sup

x,y∈Xn
|df,p(x, y)− dn,p(x, y)| > ε/2

)
≤ exp

(
− θn(1−λd)α

)
.

for some positive constant θ and n sufficiently large. As for the second term, notice that
since

df,p(x, y) ≤ m−(p−1)/d
f dM(x, y),

Lemma 8 implies

P

(
sup
y∈M

df,p(Xn, y) > n(α−1)/dm
(p−1)/d
f

)
≤ exp(−θnα)

for n large. The proof follows by noticing that the sequence n(α−1)/dm
−(p−1)/d
f converges to

0 as n goes to infinity.
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Remark 9 (Rate of convergence) The rate of convergence in Theorem 7 is related to

the fluctuations of n
p−1
d dXn,p(x, y) around µdf,p(x, y) or, more coarsely, the variance of

n
p−1
d dXn,p(x, y) (Damron and Wang (2016) provide strong evidence that the bias can be

bounded by the variance). It is expected that this variance decreases as a power of n, i.e.

cn−ζ ≤ Var
(
n
p−1
d dXn,p(x, y)

)
≤ Cn−ζ

for a dimension-dependent constant ζ = ζ(d) > 0. The precise value of ζ(d) is a still
open problem in probability theory in the context of First Passage Percolation (Howard and
Newman (2001); Auffinger et al. (2017)). For d = 1 it can be proved that ζ = 1. For d ≥ 2
it is widely believed (Auffinger et al., 2017) that the exponent should not depend on p and
that for d = 2 we should have ζ(2) = 2/3. For d ≥ 3 it is not clear what the value of ζ(d)
should be. If we write ζ(d) = −2(χ(d)− 1)/d, it is expected that χ(d) should decrease with
the dimension but there is not agreement on whether there exists some critical dimension
dc such that χ(d) = 0 for d ≥ dc or even if we should have χ(d)→ 0 as d→∞ (Auffinger
et al., 2017, Section 3). In Howard and Newman (2001) non-optimal rigorous bounds have
been proven for Euclidean First Passage Percolation that in our context read

P
(
dGH

((
M, df,p

)
,
(
Xn, n

(p−1)/d

µ
dXn,p

))
> n−

1
d

+ε
)
≤ C1 exp (−C0n

ε)

for positive constants C0, C1 depending on ε > 0. This bound follows immediately in our
case when M is the closure of a bounded open and convex set and f is constant on M. For
the general case considered in this manuscript we expect to have similar bounds. Obtaining
those bounds would be highly valuable, but its analysis is out of the scope of this paper. We
refer the reader to Little et al. (2022) for a detailed discussion about the rate of convergence.

3. Fermat-based Persistent Homology

In this section we explore the use of Fermat distance as input in the computation of the
persistence diagram associated to a sample of a manifold. We deduce the almost sure
convergence of persistence diagrams of the sample Xn with the (re-scaled) sample Fermat
distance towards the persistence diagram of (M, df,p). We also show that we expect to read
the correct homology ofM for a longer parameter interval in the diagram associated to the
sample Xn computed with Fermat distance as compared with the use of Euclidean distance.
Finally, we prove that Fermat-based persistence diagrams are robust to the presence of
outliers for homology degree greater than 0.

3.1 Convergence of Persistence Diagrams

We start by briefly recalling the main concepts and results in persistent homology theory and
refer the reader to the works by Chazal et al. (2014, 2016) for a more thorough exposition.

For the computation of the persistent homology of a point cloud, one imagines each
point as a ball (that is, representing a small surrounding region) and builds a combinatorial
model for the space connecting the points according to whether the corresponding regions
intersect. More precisely, for every fixed value of a parameter or scale that controls the size

12
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of the region that each point represents, one gets a simplicial complex (i.e., a higher dimen-
sional analogue of a graph). This family of simplicial complexes, also known as a filtration,
is the input of the procedure to compute persistent homology. Indeed, the topological fea-
tures of this family of complexes change as the scale parameter grows: different connected
components join in one, some loops are filled, new cavities appear, etc. By analyzing these
transitions, we are able to assign a birth and a death value to each of these features, and
the difference between them represents its persistence. The most persistent features repre-
sent topological signatures, whereas the shortest intervals may be considered as noise. The
output of this procedure is summarized in an object called persistence diagram. We next
give the formal definitions.

Given a (possibly infinite) metric space (X, ρ), a filtration over the real numbers Filt(X, ρ)
= (Filtε(X, ρ))ε∈R is a family of simplicial complexes with vertex set X such that Filtε(X) ⊆
Filtε′(X) whenever ε ≤ ε′. For the purposes of this article, we are going to consider only
some natural filtrations that are strongly linked to the metric ρ. The Čech filtration con-
sists of a family of simplicial complexes (Čechε(X))ε∈R where a set of points [x0, . . . , xk]
forms a k-simplex of Čechε(X) if the intersection of the k + 1 closed balls B̄ρ(xi, ε) is non
empty. Equivalently, Čechε(X) is the nerve of the cover {B̄ρ(x, ε) : x ∈ X}. The Čech
complex is the most natural way to build a simplicial complex associated to a space, since
in favourable cases, it allows to recover its homotopy type as a consequence of the Nerve
Theorem (Hatcher, 2002, §4.G). However, the construction of the Čech complex is expen-
sive from a computational point of view, since it requires to check for a large number of
intersections. To circumvent this issue, one can instead consider the Vietoris–Rips filtration
(Ripsε(X))ε∈R. The k-simplices of Ripsε(X) are sets [x0, . . . , xk] such that ρ(xi, xj) ≤ ε for
all 0 ≤ i, j ≤ k. Equivalently, Ripsε(X) can be defined as the flag complex of Čechε(X)
(that is, the clique complex of the 1-skeleton of Čechε(X)). If X is a subset of the Euclidean
space RD, then one have Čechε(X) ⊆ Rips2ε(X) ⊆ Čech√

2D/(D+1)ε
(X); see e.g. Theorem

2.5. by de Silva and Ghrist (2007b). In this sense, the Rips complex is a computationally
efficient approximation of the Čech complex. Other filtrations involving lower dimensional
simplices, such as the Alpha filtration by Edelsbrunner et al. (1983), can also be considered
in our context.

For any filtration as above, it is clear that the topology of the complexes Filtε(X) will typ-
ically change as ε increases. This evolution is appropriately captured by considering the ho-
mology groups (over a field k) of the nested family of simplicial complexes. One gets in this
way a sequence of vector spaces (H•(Filtε(X)))ε∈R, where the inclusions Filtε(X) ⊆ Filtε′(X)
induce canonical linear maps H•(Filtε(X))→ H•(Filtε′(X)) in homology. Under some con-
ditions, such as finiteness of X (Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005),
this sequence can be decomposed as a direct sum of intervals I[εb, εd] defined as

0
0−−−→ · · · 0−−−→ 0

0−−−→ k
1−−−→ · · · 1−−−→ k︸ ︷︷ ︸

[εb,εd]

0−−−→ 0
0−−−→ · · · 0−−−→ 0

Every interval is determined by the birth and death parameters εb and εd respectively,
and it can be interpreted as a topological feature of X with an associated lifetime εd − εb
(note that εd may be infinite, in that case the feature has infinite lifetime). The (multi)set
of points (εb, εd) is called the persistence diagram of (X, ρ) and is denoted dgm(Filt(X, ρ))

13
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(or simply dgm(Filt(X)) if ρ is clear from the context). Persistence diagrams are contained
in the half (extended) plane above the diagonal ∆ = {(x, y) : x = y}. For technical reasons,
the diagonal ∆ is considered as part of every persistence diagram with infinite multiplicity.
Chazal et al. (2009, 2016, 2014) proved that, within a more abstract persistent framework,
it is possible to extend the definition of persistence diagrams to some cases where the
sequence might not be interval-decomposable. In particular, it is shown by Chazal et al.
(2014) that if X is a compact metric space, for every value of ε at most a finite number
of new topological features appear (even though the vector spaces (H•(Filtε(X)))ε∈R may
be infinite-dimensional) and hence dgm(Filt(X)) is well-defined. Notice also that all the
definitions can be extended to filtrations indexed over connected subsets of the real line.

Example 2 (Eyeglasses) We compute the persistence diagram associated to the Vietoris–
Rips filtration of the sample points from Example 1, Figure 1. We compare the results
obtained with different distant choices: the Euclidean distance, the k-NN estimator of the
inherited Riemannian distance for k = 4 and k = 5 and the sample Fermat distance for
p = 2.5 and p = 3. We also considered a weighted Vietoris–Rips filtration derived by a
DTM-function with parameters m = 0.01 and p = 1 (see Anai et al. (2019) and Remark
17). The homology of the eyeglasses curve has one generator of H0 and one generator of
H1. However, it can be noticed that for either Euclidean and k-NN distance for k ≥ 5,
the persistence diagram displays two salient generators for the first homology group H1,
which can be attributed to the small reach of the manifold. As it can be seen in Figure
2, smaller values of k fail to capture the geometry of the eyeglasses manifold. A similar
situation is presented using the Vietoris–Rips DTM-filtration. Finally, for the Vietoris–Rips
filtration using Fermat distance for different choices of p, the diagrams show accurately only
one persistent generator for H1. On the other hand, the number of noticeable connected
components increases with p. This effect is caused by the presence of noisy points in regions
of extremely low density, becoming isolated points (or outliers) as p evolves (cf. Remark
16).

Since in our setup we usually only get an approximation of the metric space under
consideration, we will be interested in comparing persistence diagrams built on top of dif-
ferent metric spaces. In this sense, the bottleneck distance is a frequently used quantity
to measure the difference between two persistence diagrams. Given persistence diagrams
dgm1 and dgm2, consider all perfect matchings M ⊆ dgm1× dgm2 such that every point of
dgm1 r ∆ and dgm2 r ∆ is paired exactly once in M . Note that points in dgm1 r ∆ and
dgm2 r ∆ are allowed to be paired with points in the diagonal ∆. The bottleneck distance
db(dgm1,dgm2) is then defined as the infimum, over all such matchings M as before, of the
largest `∞-distance between matched pairs. That is,

db(dgm1,dgm2) = inf
M

max
(x,y)∈M

|x− y|∞.

The stability theorem (Cohen-Steiner et al., 2007; Chazal et al., 2014) ensures continuity
(more precisely, Lipschitz continuity) in the process of computing persistence diagrams for
a metric space. This means that small perturbations in the original metric space (in the
sense of Gromov–Hausdorff) will translate into an at most proportional perturbation in the
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Figure 2: Persistence diagrams (lifetime) associated to the eyeglasses point cloud with noise
for different filtrations. Top: Vietoris–Rips filtration with Euclidean distance and
k-NN distance for k = 4 and k = 5. Bottom: Vietoris–Rips DTM-filtration with
parameters m = 0.01 and p = 1 and Vietoris–Rips filtration with Fermat distance
for p = 2.5 and p = 3.

corresponding persistence diagram (in the sense of the bottleneck distance). Formally, it
states that for any two precompact metric spaces X and Y

db

(
dgm

(
Filt(X, ρX)

)
,dgm

(
Filt(Y, ρY)

))
≤ 2dGH

(
(X, ρX), (Y, ρY)

)
. (5)

This fact is exploited by Fasy et al. (2014); Chazal et al. (2015) to establish the almost sure
convergence (in the sense of bottleneck distance) of the persistence diagrams associated
to samples of a compact metric space drawn according to a measure satisfying certain
hypotheses to the persistence diagram of the space. In these works the distance function of
the underlying metric space is assumed to be known, and it is inherited by the sample.

We are able to obtain convergence of persistence diagrams in our context, in which
only an estimator of the underlying metric is available. Concretely, given the metric spaces
(M, df,p) and (Xn, dn,p), from the estimation of its Gromov–Hausdorff distance of Theorem
7 and the stability theorem (5) we deduce the following result.
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Corollary 10 Let ε > 0 and λ ∈
(
(p−1)/pd, 1/d

)
. There exists a constant θ > 0 such that

P
(
db
(
dgm(Filt(M, df,p)),dgm(Filt(Xn, dn,p))

)
> ε
)
≤ exp

(
−θn(1−λd)α

)
for n large enough and α = 1/(d+ 2p).

3.2 Homology Inference

The content of Corollary 10 is that dgm(Filt(Xn, dn,p)) is (asymptotically) a good estimator
of dgm(Filt(M, df,p)). On the other hand, if we were to employ the Euclidean distance | · |,
it follows from the results by Chazal et al. (2015) that the sample persistence diagrams
dgm(Filt(Xn, | · |)) converge to dgm(Filt(M, | · |)) under reasonable hypotheses. We are
therefore interested in comparing for how long we may expect to read the correct homology
of M in each of the diagrams dgm(Filt(M, dn,p)) and dgm(Filt(M, | · |)) in terms of two
natural geometric measures associated to the manifold, namely, the reach and the convexity
radius (see Hausmann, 1995; Latschev, 2001; Niyogi et al., 2008; Chazal and Lieutier, 2008).
In this section we show that the homology of (M, df,p) can be recovered correctly from its
persistence diagram up to the convexity radius conv(M, df,p), whereas for (M, | · |) this is
guaranteed only up to its reach τM. Notice that the reach of a submanifold of an Euclidean
space depends strongly on the particular embedding, whereas the convexity radius is an
intrinsic quantity linked to the geometry of the manifold. There are simple examples of
manifolds in which this distinction is relevant to correctly recover its homology from a
sample (see Examples 1 and 3).

Recall that given X ⊆ RD a closed subset, the medial axis Med(X) of X is defined as

Med(X) := {y ∈ RD : dE(y,X) = |p− y| for at least two different points p ∈ RD},

where dE(y,X) = infx∈X |y − x|. The reach τX of X, first introduced by Federer (1959), is
the minimum distance from X to Med(X), that is,

τX := inf
x∈X

dE(x,Med(X)).

Given a Riemannian manifold (N , g), we will say that a subset S ⊆ N is geodesically convex
if for every two points in S, there is a unique geodesic segment that connects them and
it is completely contained in S. The convexity radius conv(N , x) at a point x ∈ N is the
supremum over those r > 0 for which the (geodesic) ball B(x, r) is geodesically convex. The
convexity radius conv(N ) of the manifold N is defined as

conv(N ) := inf
x∈N

conv(N , x).

Proposition 11 Let M be a compact submanifold of RD. Then, we have the following
homotopy equivalences:

• Čechε(M, | · |) ' M for ε < τM and Ripsε(M, | · |) ' M for ε < 2
√

D+1
2D τM, and

both bounds are optimal, in the sense that there exist examples for which the homotopy
equivalence does not hold for larger values of ε.
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• Čechε(M, df,p) 'M and Ripsε(M, df,p) 'M for ε < conv(M, df,p).

Moreover, if df,p coincides up to a constant with dM (i.e. f is uniform), we have the
estimate

conv(M, df,p) = Vol(M, dM)(p−1)/dconv(M, dM) ≥ Vol(M, dM)(p−1)/dπ

2
τM.

Proof The fact that Čechε(M, |·|) is homotopy equivalent toM for ε < τM is an immediate
consequence of the Nerve Theorem. The same result implies that Čechε(M, df,p) 'M for
ε < conv(M, df,p), since geodesically convex sets are always contractible and the intersec-
tion of geodesically convex sets is again geodesically convex. Regarding the Vietoris–Rips
filtration, the fact that the simplicial complex Ripsε(M, | · |) is homotopy equivalent to M
for ε < 2

√
D+1
2D τM can be deduced from (Kim et al., 2020, Theorem 20). Finally, since

df,p is a Riemannian distance on M, by Hausmann (1995) there is an explicit homotopy
equivalence Ripsε(M, df,p) 'M for ε < conv(M, df,p) (see also Latschev, 2001).

The optimality of the bound ε < τM for Čechε(M, | · |) is clear (think of a unit sphere
in RD), and indeed, typically the topology of Čechε(M, | · |) changes when ε attains τM.
A critical example for the Vietoris–Rips complex is the standard 1-dimensional circle S1,
and it can be derived from the main result of Adamaszek and Adams (2017), similarly as
in (Kim et al., 2020, Example 24).

The last assertion in the statement follows directly from the inequalities

conv(M, dM) ≥ min

{
π

2
√

supK
,
1

2
inj(M, dM)

}
(see Cheeger and Ebin, 1975, §5.14) and

inj(M, dM) ≥ πτM, K ≤ 1

τ2
M

(see Aamari et al., 2019, Proposition A.1). Here inj(M, dM) is the injectivity radius of M
and K is the sectional curvature.

Example 3 Consider a planar ellipse ER,ε with minor axis of length ε and major axis
of length R ≥ ε. By letting R → +∞ and/or ε → 0, we see that the convexity radius
of a closed submanifold of R2 can be arbitrarily large while its reach can be arbitrarily
small. A similar example can be constructed in RD, being M a d-dimensional ellipsoid for
any d < D. The same phenomenon can be achieved by constructing different eyeglasses
curves with arbitrarily large length and constant reach, Figure 3. Its population persistence
diagrams differ as predicted by Theorem 11. The persistence diagram computed with the
Euclidean distance captures the right homology only for ε less that the reach. In contrast,
for the Fermat distance the correct homology is captured for radii as large as (a multiple of)
the convexity radius, which can be made large enough by enlarging the bridge between the
glasses.
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Figure 3: Left: Eyeglasses curves, uniformly sampled (250 points). In both cases, the reach
is 0.5. Below each curve, we plot a thickening of the samples with Euclidean balls
of radius slightly greater than the reach. Right: Persistence diagrams (lifetime)
associated to the Vietoris–Rips filtration for both the Euclidean distance and
the re-scaled Fermat distance dn,p with p = 2. While H0 is correctly estimated
in both cases by reading the persistence diagrams, the ones computed with the
Euclidean distance displays two salient generators for the first homology group
H1, inaccurately suggesting two cycles. The second cycle’s birth is at the level of
twice the reach. For the (re-scaled) Fermat distance, the diagrams shows correctly
only one persistent generator for H1.

3.3 Robustness to Outliers

Persistence diagrams are highly sensitive to outliers (see Bendich et al., 2011; Chazal et al.,
2011; Buchet et al., 2016; Anai et al., 2019). We will see that the computation of per-
sistence homology using Fermat distance is robust to the presence of outliers for positive
degree. Concretely, given a sample Xn ⊆ M and Y ⊆ RD rM a finite set of points in
the complement of M in the ambient Euclidean space — the outliers — we prove that
dgmk(Rips(Xn ∪ Y, dXn∪Y,p)) coincides with dgmk(Rips(Xn, dXn,p)) for k > 0 up to some
reasonable filtration parameter. First we need a definition.
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Definition 12 Given a finite set of points S ⊆ RD, define the minimal spacing of S as

κ(S) = min
x∈S

dE(x, S r {x}),

where dE denotes the Euclidean distance between sets.

Proposition 13 Let δ = min{κ(Y ), dE(Xn, Y )} and p > 1. Then, for every ε < δp

Ripsε(Xn ∪ Y, dXn∪Y,p) = Ripsε(Xn, dXn,p) ∪ Y.

In particular, for all k > 0

dgmk(Rips<δp(Xn ∪ Y, dXn∪Y,p)) = dgmk(Rips<δp(Xn, dXn,p)),

where Rips<δp(X, ρX) stands for
(
Ripsε(X, ρX)

)
ε<δp

, i.e., the Rips filtration up to parameter
δp of a metric space (X, ρX).

Proof Let us estimate the distance between two given points in Xn ∪ Y with respect to
dXn∪Y,p in terms of δ and dXn,p.

If x ∈ Xn and y ∈ Y ,

dXn∪Y,p(x, y) ≥ dXn∪Y,p(Xn, Y ) = dE(Xn, Y )p ≥ δp.

If y, y′ ∈ Y ,
dXn∪Y,p(y, y

′) ≥ dXn∪Y,p(y, Y r {y}) ≥ δp.

For the second inequality, notice that if ỹ ∈ Y is such that dXn∪Y,p(y, Yr{y}) = dXn∪Y,p(y, ỹ) =
len(γ), the geodesic γ between y and ỹ either involves only points from Y or there exist
some point x ∈ Xn in γ. In the first case dXn∪Y,p(y, ỹ) ≥ κ(Y )p whereas in the second case
dXn∪Y,p(y, ỹ) ≥ 2dE(Xn, Y )p.

Given x, x′ ∈ Xn, let γ be a minimal path between x, x′, so that dXn∪Y,p(x, x
′) = len(γ).

If dXn∪Y,p(x, x
′) < ε, then γ only involves points in Xn since otherwise ε ≥ len(γ) ≥

2dE(Xn, Y ) ≥ 2δp, which is a contradiction. Hence, dXn∪Y,p(x, x
′) = dXn,p(x, x

′).

We define now a geometric notion of outliers. Recall that given Xn ⊆ RD, the ε-graph
Gε(Xn) is the undirected graph with the points of Xn as vertices and an edge connecting xi
and xj ∈ Xn whenever |xi − xj | < ε.

Definition 14 Let Xn ⊆ M be a sample of M ⊆ RD and Y ⊆ RD rM be a finite set of
points. Let ε∗ := min{ε > 0 : Gε(Xn) is connected} and δ = min{κ(Y ), dE(Xn, Y )}. We
say that Y are (geometric) outliers if δ > ε∗.

We show next that for this notion of outliers, the upper bound on the parameter for
the Rips filtration of Proposition 13 is not restrictive for sufficiently large p. Indeed, let
diamp(Xn) be the diameter of (Xn, dXn,p). Note that for every ε ≥ diamp(Xn) the simplicial
complex Ripsε(Xn, dXn,p) equals the standard (n − 1)-simplex ∆n−1, with trivial topology
(and hence persistence diagrams are not interesting for scales larger than this threshold).
The next result states that provided that p is large enough, the persistence diagrams of
(Xn, dXn,p) and (Xn ∪ Y, dXn∪Y,p) coincide up to the filtration parameter diamp(Xn).
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Corollary 15 Given Xn a sample of M and Y ⊆ RD a finite set of outliers, then for all
k > 0

dgmk(Rips<diamp(Xn)(Xn ∪ Y, dXn∪Y,p)) = dgmk(Rips<diamp(Xn)(Xn, dXn,p)).

for p > C log(n) with C = log(δ/ε∗)
−1.

Proof There is an upper bound diamp(Xn) ≤ nεp∗. Since Y are outliers, ε∗ < δ . For

p > C log(n),
(
δ
ε∗

)p
> n and consequently, diamp(Xn) < δp. The result now follows from

Proposition 13.

Remark 16 In general, the persistence diagram of (Xn ∪ Y, dXn∪Y,p) for degree k = 0 does
not coincide with the diagram of the metric space without outliers (Xn, dXn,p). However, if
Y is a set of geometric outliers, it is related to the corresponding persistence diagrams of
Xn and Y through the following formula:

dgm0(Rips(Xn ∪ Y, dXn∪Y,p)) = dgm<∞
0 (Rips(Xn, dXn,p)) ∪ dgm0(Rips(Q, dQ)).

Here, dgm<∞ denotes the bounded persistence intervals and Q = (Y ∪Xn)/Xn is the quotient
metric space endowed with the induced metric dQ.

Remark 17 (DTM) Filtrations classically used for the computation of persistent homol-
ogy of Euclidean point clouds, such as the Čech or Vietoris–Rips filtrations, are very sensi-
tive to the presence of outliers. That is, Čech (or Vietoris–Rips) filtrations computed on top
of Xn and Xn∪Y might be very different (its interleaving distance depends on dH(Xn,Xn∪Y ),
see e.g. Chazal et al. (2014)). To overcome this limitation, Anai et al. (2019) introduced
weighted filtrations based on the notion of distance to measure (DTM). Given µ the empiri-
cal measure of Xn ⊆ RD and m ∈ [0, 1) a parameter, the DTM-function over RD is defined

as dµ,m(x) :=
√

1
m

∫m
0 δ2

µ,t(x)dt, where δµ,t(x) = inf{r ≥ 0: µ(B̄(x, r)) > t} and B̄(x, r)

denotes the closed Euclidean ball with center x and radius r. Given a parameter p > 1,
the weighted ball Bdµ,m(x, ε) with center x ∈ Xn and radius ε ≥ dµ,m(x) is the Euclidean

ball B(x, rx(ε)) with radius rx(ε) = (εp − dpµ,m(x))
1/p

(if ε < dµ,m(x), it is empty). The
Čech DTM-filtration (V DTM

m,p (Xn))ε>0 with parameters (m, p) is the weighted Čech filtration
constructed as the nerve of the cover {Bdµ,m(x, ε) : x ∈ Xn} for every ε > 0. A DTM-based
version of a weighted Vietoris–Rips filtration can also be derived.

DTM-filtrations of Euclidean point clouds produce filtrations (and hence, persistence
diagrams) less sensitive to outliers, given that the (interleaving) distance between V DTM

m,p (Xn)

and V DTM
m,p (Xn∪Y ) is upper bounded not only in terms of dH(Xn,Xn∪Y ) but also in terms

of the Wasserstein distance between the measures µXn and µXn∪Y . However, if Xn is a
sample of a manifoldM, these filtrations are still very sensitive to the particular embedding
of the manifold in RD. This is consequence of the dependence of the DTM-function on
the ambient space (see Example 4). Its (lack of) dependence on non-intrinsic properties
has been investigated thereafter. In this direction, a generalization of DTM-filtrations for
general metric spaces (X, ρ) is considered in (Buchet et al., 2016).
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Figure 4: A (noisy) sample of 1500 points from the trefoil knot with outliers (red).

Example 4 (Trefoil) Consider the embedding of a topological circle S1 in R3 given by the
trefoil knot. In particular, it is homeomorphic to S1 and its homology has just one genera-
tor in H0 (one connected component) and one generator in H1 (one 1-dimensional cycle).
Given a (noisy) sample of 1500 points from the trefoil knot with 10 outliers, Figure 4, we
compute its persistence diagram for different choices of filtrations and compare them with
the case without the outliers, Figure 5. For the Vietoris–Rips filtration using Euclidean
distance, the small reach of the embedding produces a persistence diagram with four per-
sistent generators for H1 in both cases, with and without outliers (cf. Example 3). If we
use k-NN distances, the presence of outliers affects the accuracy of the topological features
captured in the persistence diagram, which presents four salient generators for H1 instead
of the single generator recovered from the sample without outliers. For the Vietoris–Rips
DTM-filtration, we observe that the diagrams are comparable both in absence and presence
of outliers. However, the dependence of the embedding of the construction is reflected in the
incorrect number of generators for H1 with long persistence. Finally, the persistence dia-
gram computed from the Vietoris–Rips filtration using Fermat distance remains unaffected
in presence of outliers for degree 1 (Corollary 15), and it shows correctly a single salient
generator of H1. For degree 0, the diagram is related to the diagram of the sample without
the outliers and the diagram of the outliers themselves (cf. Remark 16).

3.4 Computational Complexity

Our proposed pipeline for the computation of Fermat-based persistent homology consists of
the precomputation of Fermat distance in the input sample Xn, followed by the computation
of persistent homology from the metric space (Xn, dXn,p) described by the distance matrix.

The computation of the matrix of pairwise sample Fermat distances between points in
Xn has complexity O(n3). However, it can be reduced to O(n2 log2 n) with high probability
by restricting the computation of shortest paths to the k-NN graph on top of Xn with
k = O(log n) (see Section 2.3 in Groisman et al. (2022), Little et al. (2022); Chu et al.
(2020)).
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Figure 5: Persistence diagrams associated to the Vietoris-Rips filtration of the sample of the
trefoil knot using Euclidean distance, k-NN distance with k = 10, DTM weight
and Fermat distance with p = 3 of the sample without outliers Xn (left) and the
sample with outliers Xn ∪ Y (right) respectively. When Fermat distance is used,
the persistence diagram of Xn∪Y for degree 1 equals the diagram of Xn (without
outliers). For degree 0, it decomposes as the union of the subdiagram of finite
intervals of Xn, dgm<∞

0 (Rips(Xn, dXn,p)), and the diagram dgm0(Rips(Q, dQ)) of
the quotient space Q = (Y ∪ Xn)/Xn.
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On the other hand, the standard algorithm used to compute persistent homology was
first introduced by Edelsbrunner et al. (2002) and it is based on the Gaussian reduction of
the boundary matrix. Persistent homology for degree up to k depends on the (k+1)-skeleton
of the filtration and the worst case computational complexity is cubical in the number N
of simplices of dimension at most k+ 1 (Morozov, 2005; Otter et al., 2017). An alternative
algorithm for the reduction of the boundary matrix, introduced by Milosavljević et al.
(2011), has complexity O(Nω), with ω the matrix multiplication coefficient. At present,
the best bound for ω is 2.376 (Coppersmith and Winograd, 1987).

In practice, computation of persistent homology has lower complexity. For Vietoris–
Rips filtrations, the worst case complexity is for k-dimensional persistent homology is

O
((

n
k+2

)3)
= O

(
n3(k+2)

)
with n the number of vertices of Xn. However, Giunti et al.

(2022) proved that, for instance, the average complexity for the reduction of the boundary
matrix of degree 1 is upper bounded by O(n5 log2(n)). Moreover, they showed that this
upper bound seems to be not tight, since experimental simulations show that the average
cost of the reduction of the 1-boundary matrix follows a curve of around O(n3.73).

Overall, our proposed pipeline based on the precomputation of pairwise Fermat distance
in Xn does not increase the complexity of the total persistent homology computation.

4. Applications to Signal Analysis

In this section we present a method for change-point detection and pattern recognition in
time series through the analysis of topological features (see also Maletić et al. (2016); Perea
(2019); Perea and Harer (2015)). This method is illustrated by a series of experiments in
both synthetic and real data. In the experiments, the use of Fermat distance (as opposed
to Euclidean distance) is observed to lead to more robust inference of the topology of the
underlying space. We remark that in these examples the data does not necessarily verify
the i.i.d. assumption.

Fermat and k-NN distances are computed using the library Fermat (Aristas, 2018), while
Ripser by Bauer (2021) is employed for the computation of persistence diagrams associated
to Vietoris–Rips filtrations. All the computations are over the field k = Z2. The code for
all the examples and experiments can be found in the repository by Fernandez (2021a).

4.1 Topological Analysis of Time Series.

Time-delay embeddings of scalar time-series data is a well-known technique to recover the
underlying dynamics of a system. Takens (1981) theorem gives conditions under which a
smooth attractor can be reconstructed from a generic observable function, with dimensional
bounds related to those of the Whitney Embedding Theorem. It implies in particular that
if X(t) is a real valued signal (which is assumed to be one of the coordinates of a flow given
by a system of differential equations), then the delay coordinate map

t 7→
(
X(t), X(t+ τ), X(t+ 2τ) . . . , X(t+ (D − 1)τ)

)
is an embedding of an orbit. Here D is the embedding dimension and τ is the time delay.
From a theoretical point of view, D is the number of variables of the original system.
However, in practice the underlying equations describing the dynamical system are not
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available. Thus, dynamics are often analyzed by studying the topology of their attractors;
i.e., invariant subsets of the phase space towards which the system tends to evolve (Birman
and Williams, 1983; Smale, 1967; Gilmore and Lefranc, 2002). If the attractor is a smooth
manifold M of dimension d, under certain conditions Takens’ theorem implies that the
delay embedding of the signal with D ≥ 2d+ 1 is diffeomorphic to M.

We describe now an approach — based on intrinsic persistence diagrams — to study
geometry of attractors and pattern recognition in time series by means of the analysis of
the time evolving topological organization of the embedded flow. Let (x1, x2, . . . , xn) be a
time series, i.e. a finite sample of a signal X : [0, T ]→ R such that for evenly spaced points
0 = t1 < t2 < · · · < tn = T , xi = X(ti) for all 1 ≤ i ≤ n. Given D and τ , compute the
delay embedding of the time series

Xn = {(xi, xi+τ , xi+2τ , . . . , xi+(D−1)τ ) : 1 ≤ i ≤ n− (D − 1)τ} ⊆ RD.

Then, for p > 1, endow Xn with a metric space structure induced by the sample Fer-
mat distance dXn,p. The persistence diagram of the delay embedding (Xn, dXn,p) quantifies
information about the homology of the attractor associated to the underlying dynamical
system.

Example 5 (Reconstruction of Lorenz attractor) The parameters associated to the
delay coordinate reconstruction for a time series can be determined following some heuristics
(e.g. false nearest neighbors to determine the embedding dimension (Kennel et al., 1992)).
However, in case of noisy data, the embedding dimension is often over-estimated and it
may have a great impact on the phase space reconstruction. Indeed, in high dimensional
spaces, any two points of a typical large set are at similar Euclidean distance (Aggarwal
et al., 2001). This phenomenon is part of what is known as the curse of dimensionality.
For this reason, the choice of an intrinsic distance is crucial to recover the right topological
features of a space embedded in high dimension.

Consider the strange attractor associated to the Lorenz (1963) system
ẋ = σ(y − x),

ẏ = x(ρ− z)− y,
ż = xy − βz

(6)

when (σ, ρ, β) = (10, 28, 8/3).
In Figure 6 we take a numerical integration ϕ(t, v0) of (6) with dt = 0.01, satisfying the

initial condition ϕ(0, v0) = v0 with v0 = (1, 1, 1). We inspect the time series corresponding
to the x-coordinate with additive Gaussian noise with variance 0.1, and recover topological
information of the attractor from the delay embedding (see also Maletić et al. (2016)).
Notice that in this case, although the number of variables in the underlying system is 3,
the dimension of the attractor is d = 2 so the embedding dimension estimated by Takens’
theorem is greater than or equal to 5.

The persistence diagram of the delay embedding reconstruction is computed with time
delay τ = 10 and embedding dimensions D = 3, 4 and 5, Figure 6. Here, a uniform down-
sampling from the original point cloud of ∼ 10000 points is computed, to obtain a new point
cloud of ∼ 3400 points.
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Figure 6: From top to bottom: The x-coordinate time series with Gaussian noise (variance
= 0.1) of the Lorenz attractor. The original trajectory and the delay embedding of
the noisy x-coordinate time series with D = 3 and τ = 10. Persistence diagrams
associated to the delay embedding computed with Euclidean and Fermat distances
for embedding dimension D = 3, D = 4 and D = 5 and time delay τ = 10.
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The Lorenz attractor is homotopy equivalent to the eight-space with two holes corre-
sponding to the equilibrium points that the trajectory never reaches. As Figure 6 reveals,
the use of Fermat distance leads to robustly capturing the intrinsic two 1-cycles for the
different embedding dimensions, while this is not the case for the Euclidean distance.

Example 6 (Periodicity) A periodic dynamic within a noisy system might be robustly
captured using time-delay embeddings. Indeed, embeddings of periodic signals have the topol-
ogy of a cycle. However, the general success of the reconstruction of the intrinsic cyclic
geometry is highly dependent on the choice of the delay parameter τ (and the embedding
dimension D). In practice, classic heuristics based on time-delayed mutual information
(Fraser and Swinney, 1986) and false nearest neighbors (Kennel et al., 1992) are used, but
they present high sensitiveness to noise. We show that the use of Fermat distance when
recovering the intrinsic geometry of delay embeddings has stability properties with respect to
the choice of τ .

Consider the function f(t) = cos(t) + cos(3t) with additive Gaussian noise of variance
0.4. For a sample of 2000 points of the noisy signal in consideration at the interval [0, 100],
the classic heuristic estimations of the optimal parameters outputs τ = 28 and D = 8 (here,
the computations are preformed with the package Time Series from the software Giotto-tda
by Tauzin et al. (2020)). However, the associated time-delay embedding presents low reach
value and, hence, it is still hard to capture its homology with standard methods (see Figure
7).

In general dynamics, the effect of the choice of τ is reflected in changes in the embedding
of the associated attractor in the ambient space. Although Takens’ theorem theoretically es-
tablishes diffeomorphic embeddings for different choices of τ , in practice the accuracy of the
reconstruction of the underlying manifold usually depends on the choice of τ . Crucially, per-
sistence diagrams computed using Fermat distance are less dependent of extrinsic properties
and hence, highly appropriate for the estimation of topological properties of the attractor
(that are, indeed, independent of the embedding). To illustrate the stability properties with
respect to the choice of the delay parameter, we computed the delay embedding of the noisy
periodic signal of Figure 7 in R8 for a range of values of τ . We observe that, while the
features displayed on the diagrams computed using Euclidean distance change with the em-
bedding, the ones computed using Fermat distance are consistent: they all display a single
generator for H1 (Figure 8). Here, p was set equal to 6, but similar results can be obtained
for a range of values of p.

In order to identify changes in patterns of time series, we investigate the topological
evolution in time of the delay embedding. For every sample time tj ∈ [0, T ] (1 ≤ j ≤
n − (D − 1)τ), consider the delay embedding Xj of the restriction of the time series up to
time tj , with the metric structure inherited from (Xn, dXn,p). That is,

Xj := {(xi, xi+τ , xi+2τ , . . . , xi+(D−1)τ ) : 1 ≤ i ≤ j} ⊆ Xn.

If M[0, t] is the delay embedding of the restricted signal X|[0,t], the time evolving series of
diagrams {dgm(Rips(Xi)) : 1 ≤ j ≤ n − (D − 1)τ} is a sample of an approximation of the
curve

t 7→ dgm(Rips(M[0, t])), (7)
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Figure 7: Top: Periodic signal with noise, defined as f(t) = cos(t) + cos(3t) with additive
Gaussian noise of variance 0.4. Bottom left: Delay embedding (projection 3d
to the first coordinates) with the optimal values of the parameters, i.e D =
8, τ = 28, according to the canonical heuristics (embedding of the signal without
noise in dark orange). Bottom right: Persistence diagrams (degree 1 only) of the
embedding of the signal without and with noise, computed using the Euclidean
distance and Fermat distance for p = 6.

whereM[0, t] is considered a metric subspace ofM =M[0, T ] endowed with the population
Fermat distance. Finally, compute

db
(
dgm(Rips(Xi)),dgm(Rips(Xi−1))

)
ti − ti−1

(8)

as an approximate the ‘first order derivative’ of (7). Shifts in patterns in the signal can be
detected from the sample as peaks in the bottleneck distance between consecutive persis-
tence diagrams.

Some applications of this technique follow below.

Example 7 (Anomaly detection in ECG) The purpose of this example is to present a
computational method of automated detection of abnormal heartbeats (arrhythmia) through
the topological analysis of a delay embedding of ECG signals. We consider the record sel102
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Figure 8: Top: Time-delay embeddings in R8 (projection 3d to the first coordinates) for
τ = 15, 25, 35, 45 of the signal f(t) = cos(t) + cos(3t) with additive Gaussian
noise of variance 0.4 (cf. Fig. 7). Bottom: Persistence diagrams (degree 1 only)
using Euclidean distance and Fermat distance (for p = 6, but similar outputs are
obtained for a range of values of p).

of the QT Database from the freely-available repository of medical research data PhysioNet
MIT, Figure 9.

Regular heartbeats are characterized by a periodic pattern (Lilly and School, 2016, Ch.4).
The delay embedding in R3 of a normal ECG has hence a cyclic topology induced by the
periodic behavior of the time series (see Perea, 2019; Emrani et al., 2014). However, every
time that an irregular heartbeat occurs, a new cycle arises in the embedding. We compute
the associated persistence diagram for a normal period and for a period that includes an
anomalous heartbeat. All delay embeddings were computed with a stride of t = 2, obtaining
point clouds of up to ∼ 3000 points from the original sample of size 6000. Persistent cycles
in H1 in diagrams computed using Euclidean distance are not in correspondence with the
periodicity pattern and the anomaly. Indeed, at the periodic interval [0, 4000] there are two
salient generators for H1. On the contrary, by using Fermat distance, an initial cycle for
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Figure 9: Top: ECG signal (anomaly in blue). Middle: Bottleneck distance between con-
secutive persistence diagrams associated to time evolving embeddings of the ECG
signal. Bottom: Delay embedding in R3 with τ = 15. The associated persistence
diagrams at degree 1 using Euclidean distance and Fermat distance with p = 2
for the embedding of the signal in the periods of time [0, 4000] and [0, 6000].

the periodic pattern and a second cycle in the irregular period that accounts for the anomaly
are distinctly detected (here, the choice of p = 2 is related to the weight we give to the
density when computing Fermat distances; that is, we set p so that the exponent p−1

d equals
1, where d = 1 is the dimension of the curve). Moreover, the moment immediately following
the occurrence of the anomaly can be detected using persistent homology of time evolving
delay embeddings. Indeed, the estimator (8) of the first derivative of the time evolving
persistent diagrams features a prominent peak when the topology of the embedding changes.
Lower peaks are also present as the result of the noisy real record.

29



Fernández, Borghini, Mindlin and Groisman

Figure 10: Top: Record of the air sac pressure of canary during a song. Bottom: Delay
embedding in R3 with time delay τ = 500 and its associated persistence diagram
using Fermat distance with p = 1.5.

Example 8 (Pattern recognition in birdsongs) During song production, canaries use
a set of air sac pressure gestures with characteristic shapes to generate different patterns of
sound (or syllables). Pressure patterns of different syllables constitute a diverse set: they can
be either almost harmonic oscillations, high frequency fluctuations or oscillations presenting
wiggles. The recognition of song syllables from the air sac pressure series is a well-studied
problem in non-linear dynamical systems (Mindlin and Laje, 2006; Alonso et al., 2009).

We provide a topological method to detect the number of different syllables in a canary
song from the (noisy) record of the fluctuations of its air sac pressure X(t), Figure 10 (data
provided by the Laboratory of Dynamical Systems from the Department of Physics of the
University of Buenos Aires). Given the time delay embedding of the time series X(t) with
τ = 500 and D = 3, its associated persistence diagram computed using Fermat distance
with p = 1.5 shows four prominent generators for the first homology group, which are in
correspondence with the four different patterns observed in the time series (see Figure 11).
Indeed, the embedding of each syllable is topologically a cycle (see Perea, 2019; Perea and
Harer, 2015). However, this decomposition is not available beforehand so the study of the
global topology of the embedding of the entire time series is necessary in order to analyze the
complete song. Here, prior to the computation of the persistence diagram, we down-sampled
the original time series at evenly spaced times with stride t = 100, obtaining a subsample
of size ∼ 3000 from the original T ∼ 300000 points.

We can also detect the moments at which changes of syllables take place during the song.
The estimator (8) of the first derivative of the path of persistence diagrams associated to the
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Figure 11: Top: Bottleneck distance between consecutive persistence diagrams associated
to time evolving embeddings (moving average curve with window of time 500).
Peaks are related to changes in the pattern of the air sac pressure record of the
canary song. Bottom: Delay embedding of each detected syllable.

time evolving delay embeddings presents peaks followed by an exponential decay each time a
new pattern arises, Figure 11.

5. Conclusions and Future Work

We introduced the use of density-based asymptotically intrinsic distances in point clouds
to reconstruct the homology of a manifold from a noisy sample. In most of the standard
approaches, persistent homology computed from Euclidean samples of manifolds lacks of
two relevant properties: robustness to outliers and independence of the embedding in the
ambient space. Whereas each of these properties has been studied separately in previous
works, we present a simple method that is able to achieve both at the same time.

Our proposal is based on the use of Fermat distance when computing persistence di-
agrams of samples of manifolds. The key point is that, although this distance deforms
the inherited geometry of the manifold, it produces intrinsic persistence diagrams that are
more robust to outliers. Concretely, we provided rigorous proofs of convergence of the per-
sistence diagrams of the associated metric spaces, robustness to a simple model of outliers
and dependence of the persistence intervals on intrinsic (but not extrinsic) attributes of the
underlying manifold. Furthermore, we showed experimentally that our technique is stable
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under to a wider range of noisy situations, including real datasets. We intend to extend
our results to more general models of outliers and noise in future works. Finally, a detailed
comparison of our approach with other related methods, like DTM-filtrations and the use
of Euclidean distance and the intrinsic k-NN distance in the construction of Vietoris-Rips
filtrations, is also presented.
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Appendix A. Proof of Auxiliary Results

The purpose of this appendix is to present formal proofs of Proposition 5 and Lemma 8.
Recall that M ⊆ RD is a closed submanifold of dimension d ≤ D and Xn ⊆ M is an i.i.d.
sample of size n with common density f > 0. Given p > 1, we set α = 1/(d+ 2p).

Proposition 5 will be derived from Theorem 6 by Hwang et al. (2016). We start with
a series of results to show that any segment that is part of any shortest path with respect
to dXn,p is arbitrarily small with high probability for n large enough. This will allow us
to prove that the sample Fermat distance uniformly well-approximates the power-weighted
distance (1).

Proposition 18 Given b > 0 and ε > 0, there exists θ > 0 such that

P

(
sup
x,y

(
n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

)
> ε

)
≤ exp(−θnα)

for n large enough, where the supremum is taken over all x, y ∈M with dM(x, y) ≥ b.

Proof Given ε > 0 and b > 0, by Theorem 6 there exists θ > 0 such that for every x, y ∈M
with dM(x, y) ≥ b,

n(p−1)/dLXn,p(x, y)

df,p(x, y)
− µ > ε (9)

with probability at most exp(−θnα) (notice that here we set the sequence bn to be constantly
b).

Let x, y ∈M and let γ = (x0, . . . , xk+1) be the shortest path between x, y with respect
to LXn,p. That is,

LXn,p(x, y) =
k∑
i=0

dM(xi+1, xi)
p.
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Since |xi+1 − xi| ≤ dM(xi+1, xi),

LXn,p(x, y) ≥
k∑
i=0

|xi+1 − xi|p ≥ dXn,p(x, y).

Thus, by (9), the inequality

n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ > ε

holds with probability bounded by exp(−θnα).

Corollary 19 Let b0 > 0. Let x, y ∈ M be such that they belong to some minimal path
between points in M with respect to dXn,p. Then,

P(|x− y| > b0) ≤ exp(−θnα)

for some constant θ > 0, provided n is large enough.

Proof Fix ε0 > 0. By Proposition 18, there exists a constant θ > 0 such that

P

(
sup
u,v

n(p−1)/ddXn,p(u, v)

df,p(u, v)
> µ+ ε0

)
≤ exp(−θnα)

for all n sufficiently large, where the supremum is taken over u, v ∈M such that dM(u, v) ≥
b0.

On the other hand, note that since M is compact the diameter diamp(M) of M with
respect to the distance df,p is finite. Hence,

df,p(u, v)

n(p−1)/d
(µ+ ε0) ≤ diamp(M)

n(p−1)/d
(µ+ ε0) ≤ bp0

for all u, v ∈M with dM(u, v) ≥ b0 and all n sufficiently large.

Suppose now that x, y ∈ M belong to some shortest path between points of M with
respect to dXn,p, say u and v, but that |x − y| > b0. Then, clearly dXn,p(u, v) ≥ |x − y|p
and dM(u, v) > b0 (since otherwise dXn,p(u, v) ≤ |u− v|p < bp0). We remark here that x and
y do not necessarily belong to the sample Xn. From the previous computations, it follows
that whenever n is large enough, with probability at least 1− exp(−θnα),

|x− y|p ≤ dXn,p(u, v) ≤
df,p(u, v)

n(p−1)/d
(µ+ ε0) ≤ bp0,

as we wanted to show.
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Remark 20 (see Bernstein et al., 2000, Corollary 4 or Boissonnat et al., 2019, Lemma 3)
Let (M, g) be a smooth compact Riemannian manifold embedded in RD. Given δ > 0, there
exists ε > 0 such that for every x, y ∈M with |x− y| < ε,

dM(x, y) ≤ (1 + δ)|x− y|.

We are now able to prove a new version of Theorem 6 in which the proposed estimator
of df,p is the sample Fermat distance (rather than the power-weighted shortest path).

Proposition 21 Fix ε > 0 and a sequence of positive real numbers (bn)n≥1 satisfying that
log(n)
nbdn

→ 0 when n→∞. Then, for every p > 1, there exists θ > 0 such that

P

(
sup
x,y

∣∣∣∣∣n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ > ε

)
≤ exp

(
−θ(nbdn)α

)
for n large enough, where the supremum is taken over x, y ∈M with dM(x, y) ≥ bn.

Proof Let δ > 0 be a small number to be fixed later. The strategy of the proof consists
of showing that, with probability exponentially high in (nbdn)α, LXn,p(x, y) and dXn,p(x, y)
coincide up to a factor of (1 + δ)p for all x, y ∈ M with dM(x, y) ≥ bn. Once that is
established, the proof follows readily by applying Theorem 6.

Notice in first place that by Remark 20, there exists η > 0 such that dM(x, y) ≤
(1 + δ)|x − y| whenever x, y ∈ M, |x − y| < η. By Corollary 19, we may assume that
|u− v| < η for every u, v ∈ M belonging to a minimal path with probability exponentially
high in nα. Let x, y ∈ M be two points with dM(x, y) ≥ bn. Since by our assumptions
every segment in a shortest path from x to y with respect to dXn,p has Euclidean length at
most η, it is not difficult to see that

dXn,p(x, y) ≤ LXn,p(x, y) ≤ (1 + δ)pdXn,p(x, y). (10)

Now, by Theorem 6, the probability that∣∣∣∣∣n(p−1)/dLXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ < ε

2
(11)

is exponentially high in (nbdn)α, provided n is large enough. We will check that for δ > 0
sufficiently small, the desired inequality for dXn,p follows if we assume that the event from
(11) occurs. It is clear by (10) and (11) that

n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ < ε

2
.

As for the other inequality, notice that

−ε
2
< (1 + δ)p

(
n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

)
+ ((1 + δ)p − 1)µ.
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Hence, for δ > 0 small enough we have

−ε <
n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

as desired.

Finally, we promote the convergence of the sample Fermat distance from Proposition 21
to a uniform convergence in probability (that is, for any pair of points x, y ∈M regardless
of the distance between them). Such uniform convergence may be accomplished by choosing
a sequence (bn)n≥1 which converges to 0 at an adequate rate. This step is instrumental in
order to prove the Gromov–Hausdorff convergence of the sample metric spaces (Xn, dn,p) to
(M, df,p) (see Theorem 10 and its proof).

Proof [Proposition 5] Roughly, the strategy of the proof consists in bounding the quantity

|n(p−1)/ddXn,p(x, y)− µdf,p(x, y)|

splitting in two cases according to whether the distance dM(x, y) is greater than or smaller
than some appropriately chosen sequence bn > 0. More precisely, we will set bn = n−λ for

some λ ∈ ((p − 1)/pd, 1/d). Let ε > 0. Since λ < 1/d, clearly the sequence
(

log(n)
nbdn

)
n≥1

converges to 0 as n goes to infinity and hence, by Proposition 21 the bound∣∣∣∣∣n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ > ε′

holds with probability at most exp(−θ(nbdn)α) = exp(−θn(1−λd)α) for some θ > 0 and all
x, y ∈M with dM(x, y) ≥ n−λ provided n is large enough (here ε′ > 0 is a small number to
be determined). Denote by diam(M) the diameter of M with respect to the distance dM.

Since df,p(x, y) ≤ m−(p−1)/d
f dM(x, y) ≤ m−(p−1)/d

f diam(M), we see that the event

|n(p−1)/ddXn,p(x, y)− µdf,p(x, y)| > m
−(p−1)/d
f diam(M)ε′

also holds with probability bounded from above by exp(−θn(1−λd)α) for the same θ > 0 as

before, whenever dM(x, y) ≥ n−λ. By setting ε′ = ε(m
−(p−1)/d
f diam(M))−1 we obtain the

desired bound for x, y ∈ M with dM(x, y) ≥ n−λ. For the remaining case, take x, y ∈ M
satisfying dM(x, y) ≤ n−λ and notice in first place that

df,p(x, y) ≤ m−(p−1)/d
f dM(x, y) ≤ m−(p−1)/d

f n−λ.

Hence, for n sufficiently large, µdf,p(x, y) ≤ ε/2. On the other hand, since by definition of
dXn,p it is

dXn,p(x, y) ≤ |x− y|p ≤ dM(x, y)p ≤ n−λp,

we see that n(p−1)/ddXn,p(x, y) ≤ n(p−1)/d−λp. The hypothesis on λ implies that the exponent
of n in the last inequality is negative and thus n(p−1)/ddXn,p(x, y) ≤ ε/2 provided n is
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large. Summing up, we conclude that there exists n0 such that for all x, y ∈ M with
dM(x, y) ≤ n−λ and n ≥ n0,

|n(p−1)/ddXn,p(x, y)− µdf,p(x, y)| ≤ ε,

which completes the proof of the proposition.

We turn now to the proof of Lemma 8, which follows ideas from Cuevas and Rodŕıguez-
Casal (2004) and (Mémoli and Sapiro, 2005, Section 5).

Definition 22 (see Lee, 2018, Chapter 5) The injectivity radius inj(N ) of a Riemannian
manifold (N , g) is defined as

inj(N ) := inf
x∈N

inj(N , x),

where inj(N , x) is the largest radius for which the exponential map is a diffeomorphism.

Proof [Lemma 8] Since M is compact, its injectivity radius inj(M) is strictly positive.
Then, by an inequality of Croke (see Croke, 1980, Proposition 14), there exists a constant

c = c(d) > 0 such that every metric ball B in M of radius r < inj(M)
2 has volume at least

c(d)rd. Since we can assume that κ < 1 without loss of generality, for all n sufficiently

large we have n(κ−1)/d < inj(M)
2 . From this point, we follow the strategy from the proof

of (Cuevas and Rodŕıguez-Casal, 2004, Theorem 3). Let Pn be the maximum number of

disjoint balls of radius n(κ−1)/d

4 contained in M — this is known as packing number, see for
example (Niyogi et al., 2008, Section 5) — and take {B1, . . . , BPn} a set of disjoint balls of

radius n(κ−1)/d

4 in M. It is clear then that

Pn ≤
Vol(M)

min1≤j≤Pn Vol(Bj)
≤ Vol(M)4d

c(d)
n1−κ,

for n so large that n(κ−1)/d < inj(M)
2 . Now, suppose that x ∈ M verifies dM(x,Xn) >

n(κ−1)/d. Since the balls 2B1, . . . , 2BPn cover M (where 2Bj stands for the ball with the
same center as Bj but with twice the radius) the distance from x to some center of these

balls is at most n(κ−1)/d

2 and thus there should be no point from the sample in some ball
2Bj . A simple computation reveals that the probability that some random variable xi ∈ Xn
does not belong to 2Bj is at most 1 −mf · Vol(2Bj). By the independence of the random
variables x1, . . . ,xn, if n is large enough

P

(
n⋂
i=1

{xi 6∈ 2Bj}

)
≤
(
1−mf ·Vol(2Bj)

)n ≤ (1−mfc(d)nκ−1
)n
.

We conclude that

P
({

sup
x∈M

dM(x,Xn) ≥ n(κ−1)/d

})
≤

Pn∑
j=1

P

(
n⋂
i=1

{xi 6∈ 2Bj}

)
≤ (1−mfc(d)nκ−1)nPn.

Since Pn grows at most like a polynomial in n, (1 −mfc(d)nκ−1)nPn ≤ exp(−θnκ) for an
appropriate θ > 0 and n big enough, as we wanted to show.
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