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Abstract

The distributed kernel ridge regression (DKRR) has shown great potential in processing
complicated tasks. However, DKRR only made use of the local samples that failed to
capture the global characteristics. Besides, the existing optimal learning guarantees were
provided in expectation and only pertain to the attainable case that the target regres-
sion lies exactly in the kernel space. In this paper, we propose distributed learning with
globally-shared Nyström centers (DNyström), which utilizes global information across the
local clients. We also study the statistical properties of DNyström in expectation and in
probability, respectively, and obtain several state-of-the-art results with the minimax opti-
mal learning rates. Note that, the optimal convergence rates for DNyström pertain to the
non-attainable case, while the statistical results allow more partitions and require fewer
Nyström centers. Finally, we conduct experiments on several real-world datasets to vali-
date the effectiveness of the proposed algorithm, and the empirical results coincide with
our theoretical findings.

1. Introduction

Kernel methods are one of the most successful approaches to learning complicated patterns
via implicit feature mappings and their statistical properties have been well analyzed using
statistical learning theory (Vapnik, 1999). For example, using the integral operator theory,
researchers have proven the minimax optimal convergence rates for kernel ridge regression
(KRR)(Caponnetto and De Vito, 2007; Smale and Zhou, 2007). Despite their excellent
theoretical properties, kernel methods are typically unfeasible in large-scale settings due to
high training time and storage requirements. To overcome the scalability issues, researchers
have developed a wide range of practical algorithms for kernel methods: distributed learn-
ing, low-rank approximation algorithms including random features and Nyström method,
and stochastic optimization methods. Distributed learning produces a global model after
training disjoint subsets on individual machines with necessary communications (Zhang
et al., 2015; Lin et al., 2017). Nyström approximation (Williams and Seeger, 2001; Zhang
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et al., 2008; Bach, 2013) and random features (Rahimi and Recht, 2007; Rudi and Rosasco,
2017) alleviate memory bottlenecks via low-rank approximation, while stochastic optimiza-
tion methods (Raskutti et al., 2014; Lin and Cevher, 2018) improve computational efficiency
via iterative solutions. The optimal theoretical guarantees for KRR together with accel-
erated techniques, such as distributed learning (Zhang et al., 2015; Guo et al., 2017; Lin
et al., 2017; Chang et al., 2017; Lin and Cevher, 2020), Nyström approximation (Bach, 2013;
Alaoui and Mahoney, 2015; Rudi et al., 2015, 2017), random features (Rudi and Rosasco,
2017; Liu et al., 2021) and stochastic optimization (Lin and Cevher, 2018, 2020), have also
been established.

Distributed kernel ridge regression (DKRR) is one of the most popular topics in non-
parametric statistical learning (Zhang et al., 2015). DKRR has been incorporated with
several techniques that can still achieve the same optimal rates as the exact KRR, including
random features (Li et al., 2019; Liu et al., 2021), stochastic gradient methods (Lin and
Cevher, 2018, 2020), multi-pass SGD (Lin and Cevher, 2018), Nyström approximation (Yin
et al., 2020), random sketching (Lian et al., 2021) and multiple communications (Lin et al.,
2020). Even though several algorithms were devised and optimal learning properties for
DKRR methods were obtained, some problems remain yet to be settled down: 1) DKRR
can only characterize local information from local training samples that are not good enough
to capture the global characteristics from the entire training samples. 2) The optimal
convergence rates for DKRR were derived in expectation that describe the average error
rather than the error of a single trial in practice. 3) The optimal theoretical guarantees
only apply to the attainable case, assuming the target regression lies exactly in the kernel
space. However, the non-attainable case covers many challenging problems and deserves
more attention (Lin and Cevher, 2020; Sun and Wu, 2021). 4) The strict restriction on
the number of partitions limits the improvements in computational efficiency (Guo et al.,
2017; Lin et al., 2017; Lin and Cevher, 2020). There are natural questions whether we can
devise a distributed algorithm with one communication that can characterize the global
information from all subsets and how to achieve the optimal generalization rates in a high
probability that can be applied to the non-attainable case.

1.1 Contributions

In this paper, we propose a distributed Nyström approximation framework, namely DNyström,
which can make use of global information via the globally-shared Nyström centers that are
sampled from the entire training data rather than the local data. Then, we provide the
excess risk bounds with the optimal theoretical guarantees for DNyström in expectation and
in probability, respectively. Specifically, we relax the strict restriction on the number of
partitions such that the optimal rates for DNyström pertains to both the attainable case
and the non-attainable case. We also conduct experiments to explore the impacts of the
number of partitions and the number of random centers, respectively. The experimental
results verify the superiority of DNyström over the compared algorithms.

1) On the algorithmic front: globally-shared Nyström centers. The existing
DC-NY (Yin et al., 2020) sampled Nyström centers from local examples that can only
use the local information that lacks the global properties of the task. We proposed the
globally-shared Nyström centers that contain local information from all clients to improve
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the generalization ability of local clients. As shown in Figure 1, the proposed DNyström

outperforms DC-NY and DKRR owing to the global characteristics from the globally-shared
Nyström centers.

2) On the statistical front: applying to the non-attainable case. The theoretical
error bounds for KRR methods (Caponnetto and De Vito, 2007; Rudi et al., 2015; Guo et al.,
2017) were derived in expectation and assumed the target regression lies in the induced
kernel space. However, the expected error bounds only reflect the average error and the
target regression is usually out of the induced kernel space for complicated tasks. In this
paper, we prove that the optimal theoretical properties of DNyström in expectation and in
probability, respectively, which apply to both the attainable and non-attainable cases.

3) On the computational front: higher computational efficiency. The classical
DKRR (Zhang et al., 2015) and DC-NY (Yin et al., 2020) still suffered from high computa-
tional requirements due to the strict constraints on the number of partitions, i.e. a constant
O(1) number of partitions in the general case. Using a finer-grained estimate of the capacity
of Hilbert space and novel proof techniques, we improve the number of partitions and thus
improve the computational efficiency.

4) Novel proof techniques. Using explicit intermediate estimators, we introduce
novel error decompositions for the excess risk bounds in expectation and in probability,
respectively. From the error decompositions, one can specifically quantify the errors caused
by different components. We also bound the distributed error in the excess risk bound in
probability by estimating the difference between empirical and expected covariance oper-
ators via contraction inequality for the self-adjoint operators. Moreover, we estimate the
Nyström error term in the non-attainable case for the first time.

1.2 Related Work

The related work includes: distributed learning, Nyström approximation, leverage scores
sampling and preconditioned conjugate gradient methods (PCG).

1) Distributed learning. Based on certain eigenfunction assumptions, the optimal
learning rates for DKRR were first proven in the seminal work (Zhang et al., 2015), and
was extended to features space (Wang, 2019). The conventional integral operator theory
was applied to DKRR (Lin et al., 2017; Guo et al., 2017) to derive improved error bounds.
Using integral operator theory, optimal learning rates for distributed learning with other
tools were established, including DKRR with spectral algorithms (Lin and Cevher, 2020),
distributed semi-supervised KRR (Chang et al., 2017), DKRR with stochastic gradient
methods (Lin and Cevher, 2018, 2020), DKRR with random features (Li et al., 2019; Liu
et al., 2021) and DKRR with Nyström approximation (Yin et al., 2020). However, the
existing theoretical findings imposed strict conditions on the number of partitions.

2) Nyström approximation. Nyström approximation is a common tool to approxi-
mate kernel matrix with low-rank decomposition (Williams and Seeger, 2001; Drineas et al.,
2012). The optimal learning guarantees of the combination of KRR and Nyström approxi-
mation (KRR-Nyström) were first established in (Rudi et al., 2015) for both uniform sam-
pling and approximate leverage scores sampling. KRR-Nyström was incorporated with
PCG to achieve better computational efficiency (Rudi et al., 2017). The analysis was also
extended into coefficient-based regularization (Ma et al., 2019) and manifold regularization
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(Sivananthan et al., 2020). Recent work (Kriukova et al., 2017; Lu et al., 2019) also studied
the low smoothness of Nyström subsample for the misspecified models.

3) Leverage scores sampling. In the classic Nyström method and its variants (Platt,
2005; Bach, 2013), Nyström landmarks are selected uniformly at random. Uniform sampling
is fast to compute, but it fails to capture the low-rank nature of the matrix and thus usually
requires a larger sampling number of training examples to achieve the specific approxima-
tion accuracy. Therefore, researchers proposed data-dependent sampling strategies (Zhang
et al., 2008; Kumar et al., 2012; Alaoui and Mahoney, 2015; Gittens and Mahoney, 2016),
such that the sampled Nyström landmarks can more closely approximate the kernel matrix
than uniform sampling. Leverage scores sampling has been proven strong guarantees for
both kernel approximation (Gittens and Mahoney, 2016) and generalization performance
(Alaoui and Mahoney, 2015; Rudi et al., 2015). However, the exact leverage scores are
prohibitively expensive to compute, and thus recent studies proposed fast leverage scores
sampling methods by approximate leverage scores (Musco and Musco, 2017; Calandriello
et al., 2017; Rudi et al., 2018; Chen and Yang, 2021). Lee et al. applied leverage scores sam-
pling to neural networks (Lee et al., 2020). There are also many studies on data-dependent
sampling for random features with leverage scores.

4) Preconditioned conjugate gradient (PCG). Since the closed-form solutions for
KRR-related methods involving the inverse of kernel matrix term exhibit high computa-
tional complexity, some iterative methods are proposed to reduce the complexity, for ex-
ample, conjugate gradient (CG) methods (Hestenes and Stiefel, 1952; Møller, 1993; Hanke,
2017). PCG introduced a suitable preconditioner to obtain a better condition number and
thus reduce the number of iterations for iteratively solving the linear system (Saad, 2003).
The optimal theoretical guarantees for PCG-based methods have been recently proven, in-
cluding KRR integrations with sketching (Avron et al., 2017), Nyström (Rudi et al., 2017,
2018), and both divide-and-conquer and Nyström (Yin et al., 2020).

2. Distributed Nyström Approximation

We consider the supervised learning problem of estimating a predictive function from a fixed
but unknown distribution ρ over a probability space X ×Y, where X is the input space and
Y is the output space. The training set D = (XN ,yN ) = {(xi, yi)}Ni=1 is drawn i.i.d from
X ×Y with respect to ρ. For the regression tasks, we assume the input space is X = Rd and
the output space is Y = R. We denote H be a reproducing kernel Hilbert space (RKHS)
(Steinwart and Christmann, 2008) induced by a Mercer kernel K : X × X → R that

H = span{Kx|x ∈ X}, completed with 〈Kx,Kx′〉K = K(x,x′) ∀x,x′ ∈ X .

Here, the inner product in H is denoted as 〈·, ·〉K and the corresponding norm ‖ · ‖K . For
any two sample vectors a = (a1, · · · ,ap)> ∈ X p and b = (b1, · · · , bq)> ∈ X q, we denote
K(a, b) as the p × q kernel matrix whose (i, j)-th component is K(ai, bj) for i ∈ [p] and
j ∈ [q].
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2.1 Kernel Ridge Regression (KRR) with Nyström Approximation

KRR is a standard nonparametric regression in supervised learning (Vapnik, 1999), which
can be stated as

arg min
f∈H

{
1

N

N∑
i=1

(f(xi)− yi)2 + λ‖f‖2K

}
, (1)

where the square loss is used and λ is the regularization parameter. The representer theo-
rem for kernel methods (Schölkopf et al., 2001) illustrates that KRR admits a closed-form
solution

f̂D,λ(x) =
N∑
i=1

αiK(xi,x), with α = (KNN + λNI)−1yN , (2)

where KNN := K(XN ,XN ) is the kernel matrix and yN = (y1, · · · , yN )> is the label
vector. Since KRR requires O(N3) time to compute the inverse of KNN +λNI and O(N2)
space to store the kernel matrix, it is unfeasible as n increases in the large-scale settings.

Nyström methods replace the empirical kernel matrix with a smaller matrix obtained
by subsampling, which is widely used to reduce the memory/time requirements (Williams
and Seeger, 2001; Kumar et al., 2012). Specifically, we sample M Nyström landmarks

from the rows of the feature matrix X̃M :=
(
x̃1, · · · , x̃M

)> ⊆ XN where M ≤ N . The
approximation solution with Nyström approach for (1) can be written as

f̂MD,λ(x) =
M∑
i=1

αiK(x̃i,x) with α = (K>NMKNM + λNKMM )†K>NMyN , (3)

where H† denotes the Moore-Penrose inverse of the matrix H, and KNM := K(XN , X̃M ),

KMM = K(X̃M , X̃M ). Using Nyström centers, we solve the closed-form solution in
O(NM2) time complexity and O(NM) space complexity.

The sampling strategy for Nyström landmark points {x̃1, · · · , x̃M} is crucial to the
approximation ability of Nyström methods. We introduce two popular sampling strategies.

• Nyström landmarks with uniform sampling (Bach, 2013). Let the Nyström
centers {x̃1, · · · , x̃M} be uniformly sampled from the training set {x1, · · · ,xN}.

• Nyström landmarks with leverage scores sampling (Alaoui and Mahoney,
2015). Let the random Nyström centers {x̃1, · · · , x̃M} be selected according to the
probability pi = l̂λ(i)/

∑N
i=1 l̂λ(i) where the λ-ridge leverage scores of xi is defined as

lλi (KNN ) =
(
KNN (KNN + λNI)−1

)
ii
, ∀ i ∈ [N ]. (4)

2.2 Distributed Nyström Approximation (DNyström)

DKRR directly averaged the local KRR solutions on local clients that only used the limited
information from the local data and ignore the global characteristics from the entire data.
To utilize the global information from other clients, we present a distributed Nyström

5



Li, Liu and Wang

250 500 750 1000 1250 1500 1750 2000
The number of Nystroem landmarks M

4

5

6

7

8

9

10

11

Er
ro

r r
at

e 
(%

)
MNIST, m = 60

DKRR
DC-NY
DNystroem

0 10000 20000 30000 40000 50000 60000
The number of training examples N

5

10

15

20

25

Er
ro

r r
at

e 
(%

)

MNIST, m = 60, M = 500
DKRR
DC-NY
DNystroem

Figure 1: DNyström is compared to DKRR (Zhang et al., 2015) and DC-NY (Yin et al.,
2020) with respect to the error rate vs. the number of Nyström landmarks (left) and the
number of training examples (right) on the MNIST dataset (60000 examples).

approximation (DNyström) with globally-shared Nyström centers in Algorithm 1. We first

sample M Nyström landmarks from the entire training examples X̃M :=
(
x̃1, · · · , x̃M

)> ⊆
XN , and we send Nyström landmarks to all clients. Then, we separate the training set into
m disjoint training subsets uniformly such that D =

⋃m
j=1Dj where Dj =

(
Xj ,yj

)
and

send them to their corresponding clients.
We consider the divide-and-conquer framework (only once communication), where the

global solution is the average of local ones. We define DNyström as

f̄MD,λ(x) =
M∑
i=1

αiK(x̃i,x), with α =
m∑
j=1

|Dj |
|D|

βj (5)

and the local weight on the j-th partition is given by

βj = (K>jMKjM + λ|Dj |KMM )†K>jMyj , (6)

where KjM = K(Xj , X̃M ) ∈ R|Dj |×M , yj = (y1, · · · , y|Dj |)>, βj ∈ RM and α ∈ RM .
For the sake of simplification, we assume the entire training set be partitioned equally,
i.e. |Dj | = N/m. Since the local linear systems (6) can be solved in parallel, the time
and space complexities of DNyström are O(NM2/m + M3) and O(NM/m), respectively.
Compared to DKRR and DC-NY, the globally-shared Nyström centers introduce additional
communication burden, but it dose not dominate the communication complexity when
M ≤ N/m.

Remark 1 (Global information from globally-shared Nyström centers) To accel-
erate the local computation in DKRR, DC-NY (Yin et al., 2020) sampled Nyström land-

marks from local training examples X̃M =
(
x̃1, · · · , x̃M

)> ⊆Xj on the j-th client. There-
fore, the computation of local Nyström approximation in DC-NY can only make use of local
information from local training examples. In this paper, DNyström generated Nyström cen-
ters from the entire training examples X̃M ⊆XN that are globally-shared across all devices.
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Algorithm 1 Distributed Nyström approximation (DNyström)

Require: Labeled training dataset D = (XN ,yN ), kernel function K(·, ·), regularization
parameter λ, sampling scale M , the number of local clients m, and the sampling prob-
ability {pi}Ni=1.

Ensure: Model coefficients α
1: Sample Nyström landmarks X̃M ⊆ XN according to the sampling probability {pi}Ni=1

and send X̃M to all local clients.
2: Randomly separate the training set into m disjoint subsets D =

⋃m
j=1Dj and send

Dj =
(
Xj ,yj

)
to the corresponding the j-th client.

3: In parallel: on the j-th client ∀j ∈ [m]

4: Compute kernel matrices KjM = K(Xj , X̃M ) and KMM = K(X̃M , X̃M ).
5: Solve the linear system (6) according to the solver and obtain local coefficients βj .

6: Send βj to the global server.
7: End parallelism

8: Average the local model coefficients α =
∑m

i=1
|Dj |
|D| βj .

Compared to DKRR (Zhang et al., 2015) and DC-NY (Yin et al., 2020), DNyström can em-
ploy the global information from other clients and be used to tackle statistical heterogeneity
in the federated learning scenario. Specifically, DC-NY can only sample M ≤ |Dj | Nyström
centers on the j-th device while DNyström allows a larger number of Nyström landmarks.
As shown in the left of Figure 1, when we fixed the local sample size n = N/m = 1000
and vary M , DNyström leads to lower error rates than DC-NY if M ≥ 1

4n and leads to
lower error rates than DKRR if M ≥ 1

2n. From the right of Figure 1, as the number of
training examples increases, the error rates of all methods decrease but DNyström leads to
lower errors (especially when N is small). Therefore, DNyström outperforms both DKRR
and DC-NY owing to the characterization of global information from the globally-shared
Nyström centers.

The proposed DNyström is a flexible framework computed in parallel, which can be in-
corporated with data-dependent sampling strategies (Alaoui and Mahoney, 2015; Musco
and Musco, 2017; Rudi et al., 2018; Chen and Yang, 2021) and iterative methods (Shalev-
Shwartz et al., 2011; Rudi et al., 2017; Ma and Belkin, 2017, 2019). These integrations
can further improve the computational efficiency, but data-dependent sampling requires
additional sample complexity due to the computation of leverage scores (4) and stochastic
optimization algorithms introduce optimization error. Since these integrations are orthog-
onal to DNyström, for the sake of simplification, we focus on the closed-form solution of
DNyström in (6) and discuss the possible integrations.

Remark 2 (Integration with gradient methods) While the linear system (6) can be
solved by a direct closed-form solution, the computational requirements are related to the
number of examples, making it impractical for large-scale data. Gradient descent methods
decouple the kernel model from the scale of the training set by iteratively solving the linear
systems. Popular gradient descent kernel methods include SDCA (Hsieh et al., 2008), Pe-
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gasos (Shalev-Shwartz et al., 2011), FALKON (Rudi et al., 2017) and EigenPro (Ma and
Belkin, 2017, 2019). These methods improve the computational efficiency with early stop-
ping and enable efficient GPU implementations (Rudi et al., 2018; Ma and Belkin, 2019).
For example, we can incorporate DNyström with preconditioned conjugate gradient methods
(Rudi et al., 2017) or preconditioned stochastic gradient methods (Ma and Belkin, 2019),
which requires O(NMt/m + M3) time and O(NM/m) space. Specifically, (Rudi et al.,
2017) proved that t = Ω(log(N)) iterations guarantee good approximation between the PCG
solution and (6).

Remark 3 (Integration with data-dependent sampling) Statistical leverage scores that
measure the matrix coherence have also proved crucial recently in the development of im-
proved worst-case randomized matrix algorithms (Drineas et al., 2012). The exact leverage
scores (4) are prohibitively expensive to compute, consuming O(N3) time. To accelerate
the computation of leverage scores, researchers have proposed several approximate leverage
scores algorithms, including recursive sampling (Musco and Musco, 2017), SQUEAK (Ca-
landriello et al., 2017), BLESS (Rudi et al., 2018) and spectral analysis (Chen and Yang,
2021). For example, the sampling complexity of BLESS is reduced from O(N3) to O(M2/λ)
where λ is the regularization parameter in KRR. When we set λ = M/N , the complexity of
BLESS would be O(NM).

3. Main Results

In this section, we focus on the generalization properties of the closed-form solutions of
DNyström. We first recover the existing bounds for DC-NY in expectation (Yin et al.,
2020), which only pertains to the attainable case. We then present our theoretical results
for DNyström in expectation and in high probability, respectively. Specifically, we prove the
minimax optimal convergence rates for DNyström under certain constraints including the
allowed number of partitions and the required number of Nyström centers in both expecta-
tion and probability. The optimal theoretical guarantees for DNyström in expectation and
high probability apply to the non-attainable case, respectively.

The ideal learning target of KRR is to find a predictor that minimizes the expected risk
minf∈F E(f), E(f) =

∫
X×Y(f(x) − y)2dρ(x, y), where F is the class of all measurable

functions from X to Y and ρ is the joint probability distribution over X × Y. The target
regression that minimizes the expected risk over all measurable functions f : X → R is

fρ(x) =

∫
Y
ydρ(y|x), ∀x ∈ X . (7)

Here, fρ is the true regression without noise labels and belongs to the Hilbert space of
square integral functions L2

ρX
= {f : X → R | ‖f‖2ρ =

∫
|f(x)|2dρX < ∞} with respect to

the marginal distribution ρX of ρ on X , where the L2
ρX

-norm is defined as ‖f‖2ρ = 〈f, f〉ρ =∫
X |f(x)|2dρX(x), ∀f ∈ L2

ρX
. Notably, since the joint probability distribution ρ is unknown,

we employ the solution from empirical risk minimization (ERM) (6) to approximate the
target function fρ, and we investigate the generalization gaps between ERM solution and
fρ. The generalization ability of a regression estimator f ∈ L2

ρX
is measured by the excess

risk, i.e. E(f) − E(fρ) = ‖f − fρ‖2ρ (Smale and Zhou, 2007). Throughout this paper, we
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assume the outputs are bounded almost surely for some constant B > 0 and X is compact,
which implies ‖fρ‖∞ ≤ B and |y| ≤ B. We also assume K(x,x) ≤ κ2 <∞ for any x ∈ X .

Definition 4 (Effective dimension) The integral operator and covariance operator are
defined as

L :L2
ρX
→ L2

ρX
, (Lf)(·) =

∫
X
K(x, ·)f(x)dρX(x), ∀ f ∈ L2

ρX
(X, ρX)

C :H → H, 〈h,Cg〉 =

∫
X
h(x)g(x)dρX(x), ∀ g, h ∈ H.

For λ > 0, we define the random variable Nx(λ) = 〈Kx, (C + λI)−1Kx〉 with x ∈ X drawn
from ρX . Finally we define the quantities N (λ) = E Nx(λ), N∞(λ) = supx∈X Nx(λ).

The effective dimension N (λ) = Tr(C(C+λI)−1) = Tr(L(L+λI)−1) measures the average
capacity of RKHS H, while N∞(λ) measures the maximal capacity of RKHS.

Assumption 5 (Regularity assumption) Assume there exists R > 0, r > 0, and g ∈
L2
ρX

, such that

fρ = Lrg,

where ‖g‖ρ ≤ R and the operator Lr denotes the r-th power of the integral operator L :
L2
ρX
→ L2

ρX
, thus it is also a positive trace class operator.

The regularity assumption is also called source condition, where the value of r measures
the regularity of fρ. Let H be the closure of H in L2

ρX
, and then the condition r = 1

2

means the existence fH = L
1
2 g ∈ H such that fH = fρ and H = L2

ρX
. Since the fact

Lr(L2
ρX

) ⊆ Lr
′
(L2

ρX
) if r ≥ r′, the smaller r corresponds to the larger subspace where the

target regression lies. More examples refers to (Lin and Cevher, 2020; Sun and Wu, 2021).
The case r ∈ (0, 1/2) is the non-attainable case, where fρ /∈ H and the learning tasks are
difficult, while the case r ∈ [1/2, 1] is the attainable case, corresponding to fρ ∈ H. If r > 1,
the convergence rates of DKRR are same as r = 1 duo to the saturation phenomenon in
DKRR (Zhang et al., 2015; Lin et al., 2017; Lin and Cevher, 2020; Sun and Wu, 2021)
The conventional optimal generalization analysis for KRR focused on the attainable case
r ∈ [1/2, 1] (Caponnetto and De Vito, 2007; Rudi et al., 2015; Guo et al., 2017). In this
paper, we extend the source condition from r ∈ [1/2, 1] to r ∈ (0, 1] that also covers the
special case r > 1 due to the saturation effect.

Assumption 6 (Capacity assumption) There exists C0 > 0 and γ ∈ (0, 1], such that

N (λ) ≤ C0λ
−γ ,

where C0 is a constant independent of λ.

Assumption 7 (Compatibility assumption) Assume there exists α ∈ [γ, 1] and C1 >
0, such that

N∞(λ) ≤ C1λ
−α,

where C1 is a constant independent of λ.
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Figure 2: Time complexity and space complexity of Proposition 8. The color closer to
red represents higher complexity. Blank areas represent unfeasible situations. The time
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)
.

Note that, the effective dimension N (λ) provides an measure of the average capacity
of H while the quantity N∞(λ) considers the worst case. Assumption 6 is ensured if the

eigenvalues of the covariance operator C exhibit a polynomial decay σi . i
− 1
γ (Caponnetto

and De Vito, 2007; Rudi et al., 2015). Since the covariance operator C is a trace class,
Assumptions 6-7 are always satisfied with γ = α = 1. Specifically, if the kernel is bounded
supx∈X K(x,x) ≤ κ2, the effective dimensions are upper bounded by N (λ) ≤ N∞(λ) =
supx∈X 〈Kx, (C + λI)−1Kx〉 ≤ κ2/λ. To obtain a fine-grained estimate for N∞(λ), Rudi
and Rosasco introduced compatibility assumption N∞(λ) = O(λ−α) for random features
(Rudi and Rosasco, 2017), where γ ≤ α ≤ 1. Note that, N∞(λ) . λ−α is slightly stronger
than the basic condition N∞(λ) . λ−1 but reasonable. The value γ reflects the size of
RKHS H, whereas a larger γ corresponds to a larger RKHS. The case γ = 1 is capacity-

independent case and the effective dimension saturates when γ > 1 as i−1 < i
− 1
γ for

any γ > 1. The capacity assumption is standard for the generalization analysis of KRR
algorithms (Caponnetto and De Vito, 2007; Rudi et al., 2015; Guo et al., 2017) while the
compatibility assumption was proposed to obtain a fine-grained analysis for random features
(Rudi and Rosasco, 2017).

The worst case is α = 1 with the uniform sampling and the benign case is α = γ when
N∞(λ) is close to N (λ) with the data-dependent sampling. Following Example 2 of (Rudi
and Rosasco, 2017), one can obtain the favorable situation α = γ when the Nyström centers
are sampled according to the probability q(x) = Nx(λ)/N (λ). Intuitively, the leverage score
lλi (KNN ) is the empirical version of the probability q(x) given the training sample XN .

3.1 Existing Results for DC-NY in Expectation

We recall the theoretical results for the combination of DKRR and Nyström approximation
(DC-NY) (Yin et al., 2020), where Nyström centers was sampled from local data X̃M ⊆Xj

to approximate local kernel matrix K(Xj ,Xj) ≈ K(Xj , X̃M )K(X̃M , X̃M )†K(X̃M ,Xj).

10
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Proposition 8 (Theorem 1 in (Yin et al., 2020)) Assume that fH = arg minf∈H E(f).

Under Assumptions 5-6, if λ = N
− 1

2r+γ , then the following conditions

r ∈ [1/2, 1], γ ∈ (0, 1], M & N
1

2r+γ , m . N
2r−1
2r+γ

are sufficient to guarantee the optimal rates in expectation with a high probability, that

E ‖f̂mD,λ − fH‖2ρ = O
(
N
− 2r

2r+γ

)
.

Here, f̂mD,λ is the estimator of DC-NY and fH minimizes the expected risk in RKHS.

We use the notations a1 = O(a2) and a1 . a2 to represent a1 ≤ ca2 for some positive

constant c, while a1 & a2 means a1 ≥ ca2. The learning rate O
(
N
−2r
2r+γ

)
is optimal in

a minimax sense (Caponnetto and De Vito, 2007), which is the same rate as the exact
KRR. Note that, a minimax lower rate of convergence has been proved in Theorem 2 of
(Caponnetto and De Vito, 2007). For the sake of comparison, we leave out the PCG term
in (Yin et al., 2020), where the condition on iterations is the same as (Rudi et al., 2017).

We depict the computational complexities of Proposition 8 in Figure 2. We find that
1) The optimal rates only apply to the attainable case r ∈ [1/2, 1] due to the restriction

on the number of partitions m . N
2r−1
2r+γ ; 2) The error bounds were derived in expectation

that capture the average error but fail to measure the error of one trial; 3) In the general
case (r = 1/2, γ = 1), DC-NY leads to a constant number O(1) partitions, degrading to
KRR with Nyström approach (Rudi et al., 2015), with O(N2) time and O(N1.5) space; 4)
DC-NY only considered uniform sampling, ignoring more efficient data-dependent sampling
strategies.

3.2 Optimal Convergence Rates for DNyström in Expectation

We analyze the generalization performance of DNyström in expectation. Note that, Propo-
sition 8 requires the existence of fH = arg minf∈H E(f) where f ∈ H, while we remove this
strict condition and extend the analysis to the non-attainable where f /∈ H.

Using the representer theorem, there is a reduced RKHS with Nyström approximation:

HM =

{
f ∈ H | f(x) =

M∑
i=1

α′iK(x̃i,x), α′ ∈ RM
}
,

where {x̃i}Mi=1 is the subset of inputs in training set.

11
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Definition 9 On any training set Dj, we define the following estimators

f̂MDj ,λ = arg min
f∈HM

 1

|Dj |

|Dj |∑
i=1

(〈f,Kxi〉 − yi)2 + λ‖f‖2K

 , (xi, yi) ∈ Dj ,

f̃MDj ,λ = arg min
f∈HM

 1

|Dj |

|Dj |∑
i=1

(〈f,Kxi〉 − fρ(xi))2 + λ‖f‖2K

 , (xi, yi) ∈ Dj ,

f̃Dj ,λ = arg min
f∈H

 1

|Dj |

|Dj |∑
i=1

(〈f,Kxi〉 − fρ(xi))2 + λ‖f‖2K

 , (xi, yi) ∈ Dj ,

fλ = arg min
f∈H

{∫
X

(〈f,Kx〉 − fρ(x))2dρX(x) + λ‖f‖2K
}
.

Similarly, we also denote f̃MD,λ and f̃D,λ as the counterparts of f̃MDj ,λ and f̃Dj ,λ on

the entire dataset D, respectively. The estimator of the proposed DNyström is f̄MD,λ =∑m
j=1

|Dj |
|D| f̂

M
Dj ,λ

.

Lemma 10 (Error decomposition for DNyström in expectation) Using the estimators
defined in Definition 9, if |Dj | = |D|/m, ∀j ∈ [m], we have

1

4
E‖f̄MD,λ − fρ‖2ρ ≤

1

m
‖f̂MDj ,λ − f̃

M
Dj ,λ
‖2ρ︸ ︷︷ ︸

Sample variance

+ ‖f̃MDj ,λ − f̃Dj ,λ‖
2
ρ︸ ︷︷ ︸

Nyström error

+ ‖f̃Dj ,λ − fλ‖
2
ρ︸ ︷︷ ︸

Empirical error

+ ‖fλ − fρ‖2ρ︸ ︷︷ ︸
Approximation error

.

(8)

The above error decomposition employs intermediate estimators with explicit definitions.
From that, one can identify the source of error terms, including local sample variance
‖f̂MDj ,λ − f̃MDj ,λ‖

2
ρ from noisy labels, local Nyström error ‖f̃MDj ,λ − f̃Dj ,λ‖2ρ resulted from

Nyström approximation, local empirical error ‖f̃Dj ,λ−fλ‖2ρ from empirical examples drawn
w.r.t ρ, and the approximation error (bias) ‖fλ − fρ‖2ρ.

Theorem 11 (Excess risk bound for DNyström in expectation) Let δ > 0, λ = N
−1

2r+γ

and |D1| = · · · = |Dm| = N/m. Under Assumptions 5-7, if λ = N
− 1

2r+γ ,

r ∈ (0, 1], γ ∈ (0, 1], 2r + γ ≥ α, m . N
2r+γ−α
2r+γ ,

M & N
α

2r+γ for the uniform sampling, and M & N
γ

2r+γ for the data-dependent sampling,
then with probability 1− 4δ, there exists

E‖f̄MD,λ − fρ‖2ρ . N
−2r
2r+γ log2(2/δ).

Here, f̄MD,λ is the estimator of DNyström (5) and fρ is the true regression.

12
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Figure 3: Computational complexities of Corollary 12 with α = 1. The average time

complexity is O(N
3

2r+γ ) and space complexity is O(N
2

2r+γ ).

Compared with the existing work in DKRR (Guo et al., 2017; Lin et al., 2017; Lin
and Cevher, 2020), Nyström approximation (Rudi et al., 2015) and DC-NY (Yin et al.,

2020), we relax the strict restriction on the number of partitions from m . N
2r−1
2r+γ to

m . N
2r+γ−α
2r+γ , leading to two improvements: 1) On the computational front, Theorem 11

guarantees DNyström allows more partitions than DC-NY and thus higher computational
efficiency; 2) On the theoretical front, beyond the attainable case r ∈ [1/2, 1] assuming
fρ ∈ H, the optimal learning guarantees in Theorem 11 also apply to the non-attainable
cases r ∈ (0, 1] with the restriction 2r+γ ≥ α. Meanwhile, the required number of Nyström

centers is reduced from M & N
1

2r+γ in DC-NY (Yin et al., 2020) to M & N
α

2r+γ for uniform

sampling and M & N
γ

2r+γ for data-dependent sampling.

Corollary 12 (The worst case α = 1) Under Assumptions 5-6 and the same settings as
Theorem 11, with the uniform sampling, if

r ∈ (0, 1], γ ∈ (0, 1], 2r + γ ≥ 1, m . N
2r+γ−1
2r+γ , M & N

1
2r+γ ,

then with a high probability, the proposed DNyström achieves the optimal rates in expectation.

Without Assumption 7, we consider the worst case that α = 1 due to N∞(λ) ≤ κ2/λ,
which was also used in Nyström methods with uniform sampling (Bach, 2013; Yin et al.,
2020). We report the computational complexities and applicable area for the worst case in
Figure 3. Compared to the existing results for DC-NY (Yin et al., 2020), the computational
efficiency and the applicable area of Corollary 12 are much better. Note that, since M ≈
N/m in the worst case, DC-NY method needs to sample all the local examples as Nyström
centers that degrades to the exact DKRR, while DNyström still works even when M ≥ N/m.

Corollary 13 (The benign case α = γ) Under Assumptions 5-7 and the same settings
as Theorem 11, with the uniform sampling, if

r ∈ (0, 1], γ ∈ (0, 1], m . N
2r

2r+γ , M & N
γ

2r+γ ,

then with a high probability, the proposed DNyström achieves the optimal rates in expectation.
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Figure 4: Computational complexities of Corollary 13 with α = γ. The time complexity

is O(N
1+2γ
2r+γ ) and space complexity is O(N

2γ
2r+γ ). The applicable area for Corollary 13 is

r ∈ (0, 1] and γ ∈ [0, 1], and we clip the time complexities that are bigger than O(N3) that
is the time complexity of the exact KRR.

In the benign case, N∞(λ) is close to N (λ) with the data-dependent sampling. For
example, Example 2 of (Rudi and Rosasco, 2017) devised an ideal example to guarantee α =
γ for random features. When the Nyström centers are sampled according to the probability
q(x) = Nx(λ)/N (λ), one can obtain α = γ for Nyström approximation. Intuitively, the
leverage score lλi (KNN ) is the empirical version of the probability q(x).

Data-dependent sampling introduces additional sampling complexity, for example, BLESS

consumes O(Ñ (λ)2/λ) = O(N
1+2γ
2r+γ ) time to compute approximate leverage scores, which is

bigger than the computation of the direct closed-solution of DNyström O(N
3γ

2r+γ ) and thus
dominates the entire time complexity. As shown in Figure 4, the benign case applies to the
entire range of the source condition and leads to much higher computational efficiency. The
time complexity is smaller than O(N2) when r > 1/4.

Remark 14 (The combination of DNyström and PCG) We can use PCG to acceler-
ate the solve local closed-form solution (6) for DNyström, which consumes O(NMt/m+M3)
time. Based on Theorem 3 of (Rudi et al., 2017), the number of iterations is t = Ω(logN)
for the combination. For uniform sampling, the time complexity of DNyström with PCG is

O(N
2

2r+γ logN + N
3

2r+1 ), which has no improvement compared to DNyström. For leverage
scores sampling, since the computation of approximate leverage scores dominates the time
complexity and PCG is irrelevant to the leverage scores sampling, the time complexity is

still O(N
1+2γ
2r+γ ). Therefore, PCG cannot further reduce the time complexity for DNyström

with either uniform sampling or leverage scores sampling.

3.3 Optimal Convergence Rates for DNyström in Probability

In Theorem 11, the optimal rates for DNyström are in expectation that describe the av-
erage error, but fail to quantify the generalization performance of DNyström in a single
trail. Therefore, we analyze the error decomposition and learning rates for DNyström in
probability.
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Lemma 15 (Error decomposition for DNyström in probability) Let f̂MDj ,λ, f̂
M
D,λ, f̃D,λ

and fλ be defined in Definition 9. The following error decomposition holds for DNyström∥∥f̄MD,λ − fρ∥∥ρ ≤ ∥∥∥f̄MD,λ − f̂MD,λ∥∥∥
ρ︸ ︷︷ ︸

Distributed error

+
∥∥∥f̂MD,λ − fλ∥∥∥

ρ︸ ︷︷ ︸
Global variance

+
∥∥∥fλ − fρ∥∥∥

ρ︸ ︷︷ ︸
Approximation error

.
(9)

Here, the distributed error can be bounded by∥∥∥f̄MD,λ − f̂MD,λ∥∥∥
ρ
≤ 4

∥∥∥C−1/2λ (C − ĈDj )C
−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥
K︸ ︷︷ ︸

Local variance

, (10)

where ĈDj is the empirical covariance operator on Dj and Cλ = C + λI.

Using the triangle inequality, one can prove the error decomposition (9) easily. The upper

bound of the distributed error (10) is proven in Lemma 23, where ‖C−1/2λ (C − ĈDj )C
−1/2
λ ‖

measures the gap between expected and empirical covariance operators via concentration in-
equalities. Distributed error measures the performance gap between the divide-and-conquer
strategy and centralized learning. The global variance measures the discrepancy between
the expected estimator fλ and the ERM estimator f̂MD,λ on the datasets D. The variance
consists of sample variance, Nyström error, and empirical error.

Theorem 16 (Excess risk bound of DNyström in Probability) Let δ > 0, λ = N
−1

2r+γ

and |D1| = · · · = |Dm| = N/m. Under Assumptions 5-7, if λ = N
− 1

2r+γ ,

r ∈ (0, 1], γ ∈ (0, 1], 2r + γ ≥ α, m . N
2r+γ−α
4r+2γ ,

M & N
α

2r+γ for the uniform sampling, and M & N
γ

2r+γ for the data-dependent sampling,
then with probability 1− 4δ, there exists∥∥f̄MD,λ − fρ∥∥ρ . N

−r
2r+γ log(2/δ).

The above excess risk bound in probability also achieves the optimal rates but allows
fewer partitions. The applicable area and the number of Nyström centers are the same as

Theorem 11, but the allowed number of partitions is smaller m . N
2r+γ−1
4r+2γ , which is the

square root of that in Theorem 11.

Remark 17 Note that, we usually estimate the key quantity ‖C−1/2λ (C − ĈDj )C
−1/2
λ ‖ as

a constant with a sufficient number of local examples. However, if we directly estimate

‖C−1/2λ (C − ĈDj )C
−1/2
λ ‖ as a constant, the distributed error depends on ‖C1/2

λ (f̂MDj ,λ −

fλ)‖K = O((N/m)
−r

2r+γ ) that is suboptimal. Therefore, we keep this key quantity in (10)

and compute the multiplication
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥
K

to obtain the

optimal rates O(N
−r

2r+γ ). More details refer to (55) in the proof of Theorem 16.
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3.4 Compared with Related Work

Both distributed learning and Nyström approximation are typical techniques to further
reduce the computational burdens for kernel methods. For example, Yin et al. combined
divide-and-conquer with Nyström approximation (DC-NY) and proved the optimal rates for
DC-NY (Yin et al., 2020), Lian et al. combined divided-and-conquer with random sketching

(DC-Sketch) and derived the optimal learning rates (Lian et al., 2021) with m . N
2r−1
2r+γ

and M & N
γ

2r+γ where M is the sketching size. We compare the proposed DNyström with
DKRR, DC-NY, and DC-Sketch.

1) On the algorithmic front. DKRR averaged the local estimators on each subset,
while DC-NY and DC-Sketch are used to accelerate the computation of the local estimators
on each subset by using Nyström approximation and random sketching, respectively. They
only considered local information from each subset and failed to characterize the global
information. However, the proposed DNyström sampled Nyström centers from all subsets
that can capture the global characteristics of the training data.

2) On the statistical front. The traditional theoretical results for DKRR (Guo et al.,
2017; Lin et al., 2017; Chang et al., 2017), DC-NY (Yin et al., 2020) and DC-Sketch (Lian
et al., 2021) derived the optimal learning rates in expectation, which only reflect the average
errors of the algorithms rather than a single trial in practice. In this paper, we derive the
excess risk bounds in expectation and in probability, respectively. Even though DKRR
with communications (Lin et al., 2020) provided error bounds in probability, the error
decomposition of DNyström is different from (Lin et al., 2020) where the Nyström error is
derived in this paper. Besides, the existing work usually assumed that the target regression
belongs to the RKHS, i.e. fρ ∈ H, but we remove this strict condition for DNyström where
the optimal convergence rates of excess risk bounds pertain to the non-attainable case
fρ /∈ H.

3) Proof techniques. The error decompositions for DKRR, DC-NY, and DC-Sketch
are usually implicit, but we provide intermediate estimators and explicit decompositions
such that one can quantify the errors caused by different components. We derive the
Nyström error that is resulted from Nyström approximation in the non-attainable case for
the first time, while the estimates of error terms for DKRR, DC-NY, and DC-Sketch only
applied to the attainable case. The distributed error (10) for DNyström in probability is

suboptimal if we directly use the traditional proof techniques, i.e. ‖C−1/2λ (C − ĈDj )C
−1/2
λ ‖

as a constant. We compute the multiplication and obtain the optimal rates, as discussed in
Remark 17.

4. Experiments

In this section, we study the generalization performance on real-world datasets. We im-
plement all methods based on Pytorch 1.13 1 and run experiments on a Linux Server with
an Nvidia RTX 2080Ti GPU. We compare the proposed DNyström with random features
method (RF) (Rahimi and Recht, 2007), Nyström approximation (Bach, 2013), DKRR
(Zhang et al., 2015), DC-NY (Yin et al., 2020) and DC-RF (Li et al., 2019). In all experi-
ments, we use uniform sampling to sample Nyström centers and random features.

1. Publicly available at https://github.com/superlj666/DNystroem
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Dataset Classes Ntrain Ntest d σ λ

usps 10 7291 2007 256 10 10−6

pendigits 10 7494 3498 16 100 10−6

letter 26 15000 5000 16 1 10−7

MNIST 10 60000 10000 784 10 10−6

Table 1: The statistics and tuned hyperparameters in datasets
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Figure 5: Comparison of the classification error rates vs. the number of partitions m.

We evaluate the compared algorithms on real-world classification datasets, which are
publicly available from UCI datasets 2. Based on Gaussian kernel K(x,x′) = exp(−‖x −
x′‖2/2σ2) we conduct empirical evaluations and repeat the training 10 times to record the
average test error rates. Using the toolbox NNI 3, we tune the optimal hyperparameters
over the grids σ ∈ {10i, i = −4,−3, · · · , 4} and λ ∈ {10i, i = −10, · · · ,−1}. The statistics
information and optimal hyperparameters for datasets are recorded in Table 1.

2. Available at http://archive.ics.uci.edu/ml/datasets.php
3. Available at https://github.com/microsoft/nni
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Figure 6: Comparison on the classification error rates vs. the number of Nyström centers
M , i.e. the number of Nyström landmarks or the number of random features.

The impact of the number of partitions. We first explore the impact of the number
of partitions with a fixed number of Nyström centers or random features M = 500. We
carry out the compared methods on the classification datasets 10 trials and record the
average error rates in Figure 5. From that, we can conclude the following assertions. 1)
With the same sample size M , the test accuracies of the random features method are
always worse than that of Nyström method, especially on the datasets usps, pendigits, and
mnist. This observation verifies the theoretical results in Theorem 11 that the required

number of Nyström centers M & N
1

2r+γ is smaller than the required number of random

features M & N
1+γ(2r−1)

2r+γ (Rudi and Rosasco, 2017) in the case of optimal rates. 2) As the
number of partitions increases, the error rates of distributed methods, including DKRR,
DC-NY, DC-RF, and DNyström, become larger. Specifically, DC-NY is more closed to
DKRR since DC-NY approximated local estimators of DKRR via Nyström approximation,
while DNyström achieves the lower test error rates than them when m is large. 3) When
m ≥ 20 for usps, m ≥ 10 for pendigits, m ≥ 37 for letter, and m ≥ 72 for mnist, DNyström
achieves better performance than DKRR and DC-NY, and thus DNyström is more flexible
in the setting of distributed learning.

The impact of the number of random centers. We then fixed the number of
partitions and explore the impact of the number of random centers M . We set m = 20
for the datasets usps, pendigits and letter, and m = 60 for mnist. We carry out the
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compared methods on the classification datasets 10 trials and record the average error
rates vs. the number of random centers in Figure 6. We find that 1) The predictive
accuracies of random features based methods are always worse than that of Nyström based
methods. Especially on the datasets usps, pendigits, and mnist, even random features
method without partitions perform much worse than Nyström based algorithms. 2) As
the number of random centers increases, the error rates of both Nyström and random
features based methods decrease. Specifically, the error rates of DC-NY converge to that
of DKRR when the number of Nyström centers M is bigger than the local sample size
N/m, while the error rates of DNyström can still decrease when M ≥ N/m owing the
Nyström centers are sampled from the entire training set. 3) When M is very small, DC-
NY performs better than DNyström because these algorithms have not fully characterized
the local information. As the increase of Nyström centers, DNyström outperforms DC-NY
owing to the characterization of global information (from other devices), and finally defeats
DKRR when M ≥ 513 for usps, M ≥ 531 for pendigits, M ≥ 716 for letter, and M ≥ 528
for mnist.

5. Conclusion

In this paper, we propose distributed Nyström approximation approach with the globally-
shared Nyström centers, which can capture the global characteristics from all training sam-
ples. We then study the generalization properties for DNyström, and obtain the optimal
convergence rates in both expectation and expectation, respectively. Note that, the derived
optimal rates apply to the non-attainable case where the target regression may be out of the
hypothesis space. Compared to DKRR and DC-NY, the proposed DNyström requires fewer
Nyström centers and allows more partitions to achieve the same optimal learning rates. The
experimental results also validate the advantage of DNyström over the compared methods
in both the number of partitions and the number of random centers. In the future, one
can use the globally-shared Nyström centers to reduce the effects of data heterogeneity in
federated learning and decentralized learning.
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Appendix A. Proofs

In this section, we begin introducing some operators and the the discrepancies between their
expected and empirical counterparts. We then provide error decomposition for the excess
risk bound of DNyström in expectation and in high probability, respectively. Finally, we
upper bound the error terms and prove the main results.

A.1 Operators

We define expected operators, and empirical operators based on local training examples
and Nyström approximation, respectively. For the sake of simplification, we let the primal
training set be equally divided, such that n = |Dj | = N/m+M, ∀j ∈ [m] and |D| = m|Dj |.

Definition 18 (Expected operators) For any g ∈ L2
ρX

and β ∈ H, we have

• S : H → L2
ρX
, (Sβ)(x) = 〈β,Kx〉.

• S∗ : L2
ρX
→ H, S∗g =

∫
X Kxg(x) dρX(x).

• L : L2
ρX
→ L2

ρX
, (Lg)(x) =

∫
X K(x, z)g(z) dρX(z).

• C : H → H, C =
∫
X Kx ⊗Kx dρX(x).

It holds that for the integral operator L = SS∗ and for the covariance operator C = S∗S.

Definition 19 (Empirical operators) For any g ∈ L2
ρX

, β ∈ H, α ∈ Rn and α′ ∈ RM ,
with the training examples {(xi, yi)}ni=1 from the local set Dj, we have

• ŜDj : H → Rn, ŜDjβ = 1√
n

(〈β,Kxi〉)
n
i=1.

• Ŝ∗Dj : Rn → H, Ŝ∗Djα = 1√
n

∑n
i=1Kxiαi.

• S̄∗Dj : L2
ρX
→ H, S̄∗Djg = 1

n

∑n
i=1Kxig(xi).

• ĈDj : H → H, ĈDj = 1
n

∑n
i=1Kxi ⊗Kxi.

• L̂D : L2
ρX
→ L2

ρX
, L̂Dg(·) = 1

n

∑n
i=1K(xi, ·)g(xi).

• ŜM : H → RM , ŜMβ = 1√
M

(〈β,Kxi〉)
M
i=1.

• Ŝ∗M : RM → H, Ŝ∗Mα′ =
1√
M

∑M
i=1Kxiα

′
i.

• ĈM : H → H, ĈM = 1
M

∑M
i=1Kxi ⊗Kxi.

It holds that for the kernel matrices KDj = |Dj |ŜDj Ŝ∗Dj , KMM = MŜM Ŝ
∗
M , KjM =√

|Dj |MŜDj Ŝ
∗
M and for the covariance operators ĈDj = Ŝ∗Dj ŜDj , ĈM = Ŝ∗M ŜM .
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We denote with ‖·‖ the operatorial norm, and specifically the norm ‖ ·‖ to represent the
L2
ρX

norm ‖ · ‖ρ in the estimate of error terms. Let L be a Hilbert space, we denote with
〈·, ·〉L the associated inner product, with ‖·‖L the norm and with Tr(·) the trace. Moreover,
we denote with Qλ the operator Q + λI, where Q is a linear operator, λ ∈ R and I the
identity operator, so for example Cλ := C + λI, ĈD,λ := ĈD + λI, ĈDj ,λ := ĈDj + λI,

Lλ := L+ λI, L̂D,λ := L̂D + λI, and L̂Dj ,λ := L̂Dj + λI.

Proposition 20 (Characterizations of estimators) Let
√
MŜM = UΣV ∗ be the SVD

of the empirical sampling operator. Using operators in Definitions 18, 19, the estimators
can be represented as

f̂MDj ,λ = V (V ∗ĈDjV + λI)−1V ∗Ŝ∗DjyDj , (11)

f̂MD,λ = V (V ∗ĈDV + λI)−1V ∗Ŝ∗DyD, (12)

f̃MD,λ = V (V ∗ĈDV + λI)−1V ∗S̄∗Dfρ, (13)

f̃D,λ = (ĈD + λI)−1S̄∗Dfρ, (14)

fλ = (C + λI)−1S∗fρ. (15)

Here, yDj = 1√
|Dj |

(y1, · · · , y|Dj |)> and yD = 1√
|D|

(y1, · · · , y|D|).

Proof The RKHS solution f̂MDj ,λ =
∑|Dj |

i=1 α
′
iK(x̃i, ·) admits

α′ = (K>jMKjM + λnKMM )†K>jMyDj = [M(ŜM Ŝ
∗
Dj )(ŜDj Ŝ

∗
M ) + λM(ŜM Ŝ

∗
M )]†(

√
MŜM Ŝ

∗
Dj )yDj .

Then, there exists

f̂MDj ,λ =
√
MŜ∗Mα

′ = Ŝ∗M [(ŜM Ŝ
∗
Dj )(ŜDj Ŝ

∗
M ) + λ(ŜM Ŝ

∗
M )]†(ŜM Ŝ

∗
Dj )yDj

= Ŝ∗M [ŜM (ĈD,λ)Ŝ∗M ]†(ŜM Ŝ
∗
Dj )yDj .

Following the step of proof in Lemma 3 (Rudi et al., 2015), we have

[MŜM (ĈD,λ)Ŝ∗M ]† = (FGH)† = H†(FG)† = H†G−1F † = UΣ−1(V ∗ĈDjV + λI)−1Σ−1U∗,

where
√
MŜM = UΣV ∗, F = UΣ, G = V ∗ĈDjV + λI, H = ΣU> and F,GH,G and H are

full-rank matrices. Simplifying U and Σ, we prove (11) with

f̂MDj ,λ =
√
MŜ∗M [MŜM (ĈD,λ)Ŝ∗M ]†(

√
MŜM Ŝ

∗
Dj )yDj

= V ΣU∗UΣ−1(V ∗ĈDjV + λI)−1Σ−1U∗UΣV ∗Ŝ∗DjyDj

= V (V ∗ĈDjV + λI)−1V ∗Ŝ∗DjyDj .

Similarly, we can prove the empirical estimator f̂MD,λ on D.

The noise-free estimator f̃MD,λ depends on the labels fρ(xi) instead of noisy labels yi,

where (xi, yi) ∈ D. Since f̄MD,λ = V (V ∗ĈDV + λI)−1V ∗
(∑m

j=1
|Dj |
|D| Kxiyi

)
, the correspond-

ing noise-free estimator is

f̃MD,λ = V (V ∗ĈDV + λI)−1V ∗

 m∑
j=1

|Dj |
|D|

Kxifρ(xi)

 = V (V ∗ĈDV + λI)−1V ∗S̄∗Dfρ.
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We present the representation for f̃D,λ without Nyström approximation f̃D,λ =
∑M

i=1 αiK(x̃,·)
with α = (KDj + λ|D|I)−1yj , and thus

f̃D,λ =
√
|D|Ŝ∗D(|D|ŜDŜ∗D + λ|D|I)−1

[
fρ(x1), · · · , fρ(x|D|)

]>
=

1√
|D|

(Ŝ∗DŜD + λI)−1(Ŝ∗DŜD + λI)Ŝ∗D(ŜDŜ
∗
D + λI)−1

[
fρ(x1), · · · , fρ(x|D|)

]>
=

1√
|D|

(Ŝ∗DŜD + λI)−1Ŝ∗D(ŜDŜ
∗
D + λI)(ŜDŜ

∗
D + λI)−1

[
fρ(x1), · · · , fρ(x|D|)

]>
=

1√
|D|

(ĈD + λI)−1Ŝ∗D
[
fρ(x1), · · · , fρ(x|D|)

]>
= (ĈD + λI)−1S̄∗Dfρ.

It is well know the estimator fλ in L2
ρX

space is equal to

Sfλ = L(L+ λI)−1fρ = SS∗(SS∗ + λI)−1fρ = S(S∗S + λI)−1S∗fρ = S(C + λI)−1S∗fρ.

Then, we have fλ = (C + λI)−1S∗fρ.

Lemma 21 Let Kx1 , · · · ,Kxn with n ≥ 1, be i.i.d random vectors on a separable Hilbert

space H such that C = EρX [Kx⊗Kx], ĈDj = 1
|Dj |

∑|Dj |
i=1 Kxi⊗Kxi, (Lg)(·) = EρX [K(x, ·)g(x)]

and (L̂Djg)(·) = 1
|Dj |

∑|Dj |
i=1 K(xi, ·)g(xi) are trace class. Then for any δ ∈ (0, 1), with the

probability at least 1− δ, the following holds∥∥∥C−1/2λ (C − ĈDj )C
−1/2
λ

∥∥∥ ≤ ∥∥∥C−1λ (C − ĈDj )
∥∥∥ ≤ 2N∞(λ) log(2/δ)

|Dj |
+

√
2N∞(λ) log(2/δ)

|Dj |
,

(16)

and it also holds with the probability at least 1− δ that∥∥∥L−1/2λ (L− L̂Dj )L
−1/2
λ

∥∥∥ ≤ ∥∥∥L−1λ (L− L̂Dj )
∥∥∥ ≤ 2N∞(λ) log(2/δ)

|Dj |
+

√
2N∞(λ) log(2/δ)

|Dj |
.

(17)

Proof Using the Cauchy-Schwarz inequality, we have∥∥∥(C + λI)−1/2(C − ĈDj )(C + λI)−1/2
∥∥∥

=
∥∥∥(C + λI)−1/2(C − ĈDj )1/2(C − ĈDj )1/2(C + λI)−1/2

∥∥∥
≤
∥∥∥(C + λI)−1/2(C − ĈDj )1/2

∥∥∥2 .
(18)

Recall that the norm on a matrix or operator A can be defined By

‖A‖ := sup
x

‖Ax‖2
‖x‖2

.
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For K > 1 and a nonzero vector x, we get

‖Akx‖2 = ‖AAk−1x‖2 ≤ ‖A‖‖Ak−1x‖2 ≤ · · · ≤ ‖A‖k‖x‖2.

Therefore, it holds ‖A
kx‖2
‖x‖2 ≤ ‖A‖

k and thus

‖Ak‖ = sup
x

‖Akx‖2
‖x‖2

≤ ‖A‖k. (19)

Assuming A = (C + λI)−1/2 and substituting (19) to (18), we get∥∥∥(C + λI)−1/2(C − ĈDj )(C + λI)−1/2
∥∥∥ ≤ ∥∥∥(C + λI)−1(C − ĈDj )

∥∥∥ . (20)

Let ξ = (C + λI)−1Kx ⊗Kx, thus we have

1

|Dj |

|Dj |∑
i=1

ξi =
1

|Dj |

|Dj |∑
i=1

(C + λI)−1[Kxi ⊗Kxi ] = (C + λI)−1ĈDj ,

E(ξ) = (C + λI)−1E[Kx ⊗Kx] = (C + λI)−1C.

To bound
∥∥∥(C + λI)−1(C − ĈDj )

∥∥∥ =
∥∥∥ 1
|Dj |

∑|Dj |
i=1 ξi − E(ξ)

∥∥∥, we estimate the maximal

eigenvalue and the moments of random operators ξi − E(ξi), such that

λmax(ξi − E(ξi)) ≤ ‖(C + λI)−1/2Kx‖2 ≤ N∞(λ).

E
(
ξi − E(ξi)

)2
=
∥∥E [〈(C + λI)−1Kx,Kx

〉
(C + λI)−1Kx ⊗Kx

]∥∥− ∥∥C−2λ C2
∥∥

≤ N∞(λ)
∥∥E [(C + λI)−1Kx ⊗Kx

]∥∥ ≤ N∞(λ)‖C−1λ C‖ ≤ N∞(λ).

Then, using Bernstein’s inequality for random operators (Proposition 3 of (Rudi and Rosasco,
2017)), with the probability at least 1− δ, we have∥∥∥(C + λI)−1(C − ĈDj )

∥∥∥ ≤ 2N∞(λ) log(2/δ)

|Dj |
+

√
2N∞(λ) log(2/δ)

|Dj |
. (21)

Combining (20) and (21), we obtain the result in (16). Then, following the above proof, we

can prove (17) by setting ξi = L
−1/2
λ K(xi, ·)L−1/2λ .

Note that, the above lemma is the key to obtain the sharper estimates for the key
quantities ‖(C + λI)−1/2(ĈDj + λI)1/2‖ and ‖(L+ λI)−1/2(L̂D + λI)1/2‖, which should be
bounded as a constant when estimating the error terms. Traditional DKRR work (Guo
et al., 2017; Yin et al., 2020) estimated the key quantities after decomposition, and obtain
‖(C+λI)−1/2(ĈDj +λI)1/2‖2 ≤ ‖(C+λI)−1/2‖‖(C+λI)−1/2(C− ĈDj )‖+ 1 = O

(
1

λ|Dj | +√
N (λ)
λ|Dj |

)
, leading to the restriction m . N

2r−1
2r+γ . Here, using the concentration inequalities

for self-adjoint operators and obtain ‖(C + λI)−1/2(ĈDj + λI)1/2‖2 = ‖(C + λI)−1/2(ĈDj +

λI)(C + λI)−1/2‖ = ‖I + (C + λI)−1/2(C − ĈDj )(C + λI)−1/2‖ = O
(N∞(λ)
|Dj | +

√
N∞(λ)
|Dj |

)
,

where the restriction is relaxed to |Dj | & N∞(λ).
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Lemma 22 When the sample size satisfies |Dj | ≥ 16N∞(λ) log(2/δ), then ∀ δ ∈ (0, 1),
there exists with the confidence 1− δ

‖C−1/2λ (C − ĈDj )C
−1/2
λ ‖ ≤ 1

2
, ‖C1/2

λ Ĉ
−1/2
Dj ,λ
‖ ≤
√

2, ‖C−1/2λ Ĉ
1/2
Dj ,λ
‖ ≤ 2,

‖L−1/2λ (L− L̂Dj )L
−1/2
λ ‖ ≤ 1

2
, ‖L1/2

λ L̂
−1/2
Dj ,λ
‖ ≤
√

2, ‖L−1/2λ L̂
1/2
Dj ,λ
‖ ≤ 2.

Proof From Lemma 21, we set |Dj | ≥ 16N∞(λ) log(2/δ) and obtain that

‖C−1/2λ (ĈDj − C)C
−1/2
λ ‖ ≤ 2N∞(λ) log(2/δ)

|Dj |
+

√
2N∞(λ) log(2/δ)

|Dj |
≤ 1

2
.

From Proposition 7 of (Rudi et al., 2015) and the above inequality, there exists

‖C1/2
λ Ĉ

−1/2
D,λ ‖ ≤

(
1− 1

2

)− 1
2

=
√

2.

Meanwhile, from Cordes inequality (Fujii et al., 1993) and Lemma 21, when |Dj | ≥
16N∞(λ) log(2/δ), we have

‖C−1/2λ Ĉ
1/2
D,λ‖ ≤ ‖(C + λI)−1(ĈD + λI)‖1/2 = ‖I + (C + λI)−1(ĈD,λ − C)‖1/2 ≤ 2.

Similarly, we can prove results for integral operators L and L̂D.

A.2 Estimates for Error Terms

Note that, in Definition 9, we define the estimators in the RKHS where the H-norm can be
related to L2

ρX
-norm by the inclusion operator S (Lin and Cevher, 2018) that ∀f ∈ H,

‖f‖ρ = ‖Sf‖ρ = ‖C1/2f‖K ≤ ‖(C + λI)1/2f‖K . (22)

A.2.1 Estimate for Distributed error

Lemma 23 (Distributed error) When |Dj | ≥ 16N∞(λ) log(2/δ) and |D1| = · · · = |Dm| =
N/m, with the probability at least 1− δ, we have

‖f̄MD,λ − f̂MD,λ‖ρ ≤ 4
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥
K
. (23)

Proof For the sake of simplification, we denote GD = V (V ∗ĈDV +λI)−1V ∗. From f̄MD,λ =∑m
j=1

|Dj |
|D| f̂

M
Dj ,λ

and the definition of f̂MDj ,λ in (11), using the facts Ŝ∗DyD =
∑m

j=1
|Dj |
|D| Ŝ

∗
Dj
yDj
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and A−1 −B−1 = B−1(B −A)A−1 for positive operators A and B, we have

f̄MD,λ − f̂MD,λ

=

m∑
j=1

|Dj |
|D|

V (V ∗ĈDjV + λI)−1V ∗Ŝ∗DjyDj − V (V ∗ĈDV + λI)−1V ∗Ŝ∗DyD

=
m∑
j=1

|Dj |
|D|

V
[
(V ∗ĈDjV + λI)−1 − (V ∗ĈDV + λI)−1

]
V ∗Ŝ∗DjyDj

=
m∑
j=1

|Dj |
|D|

V (V ∗ĈDV + λI)−1V ∗(ĈD − ĈDj )V (V ∗ĈDjV + λI)−1V ∗Ŝ∗DjyDj

=
m∑
j=1

|Dj |
|D|

GD(ĈD − ĈDj )f̂MDj ,λ

=

m∑
j=1

|Dj |
|D|

GD(ĈD − C)(f̂MDj ,λ − fλ) +
m∑
j=1

|Dj |
|D|

GD(ĈD − C)fλ +

m∑
j=1

|Dj |
|D|

GD(C − ĈDj )f̂MDj ,λ

=

m∑
j=1

|Dj |
|D|

GD(ĈD − C)(f̂MDj ,λ − fλ) +

m∑
j=1

|Dj |
|D|

GD(C − ĈDj )(f̂MDj ,λ − fλ).

From the above inequality and (22), we then have

‖f̄MD,λ − f̂MD,λ‖ρ

≤
m∑
j=1

|Dj |
|D|

(∥∥∥C1/2
λ GD(ĈD − C)(f̂MDj ,λ − fλ)

∥∥∥
K

+
∥∥∥C1/2

λ GD(C − ĈDj )(f̂MDj ,λ − fλ)
∥∥∥
K

)
.

(24)
From Lemma 22, if |Dj | ≥ 16N∞(λ) log(2/δ), with the probability at least 1 − δ, we

have∥∥∥C1/2
λ GD(ĈD − C)(f̂MDj ,λ − fλ)

∥∥∥
=
∥∥∥C1/2

λ Ĉ
−1/2
D,λ Ĉ

1/2
D,λGDĈ

1/2
D,λĈ

−1/2
D,λ C

1/2
λ C

−1/2
λ (ĈD − C)C

−1/2
λ C

1/2
λ (f̂MDj ,λ − fλ)

∥∥∥
≤
∥∥∥C1/2

λ Ĉ
−1/2
D,λ

∥∥∥∥∥∥Ĉ1/2
D,λGDĈ

1/2
D,λ

∥∥∥∥∥∥Ĉ−1/2D,λ C
1/2
λ

∥∥∥∥∥∥C−1/2λ (ĈD − C)C
−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥
≤2
∥∥∥C−1/2λ (ĈD − C)C

−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥ ,
(25)

and∥∥∥C1/2
λ GD(C − ĈDj )(f̂MDj ,λ − fλ)

∥∥∥
=

∥∥∥∥∥C1/2
λ Ĉ

−1/2
D,λ Ĉ

1/2
D,λGDĈ

1/2
D,λĈ

−1/2
D,λ C

1/2
λ C

−1/2
λ (C − ĈDj )C

−1/2
λ C

1/2
λ (f̂MDj ,λ − fλ)

∥∥∥∥∥
≤
∥∥∥C1/2

λ Ĉ
−1/2
D,λ

∥∥∥∥∥∥Ĉ1/2
D,λGDĈ

1/2
D,λ

∥∥∥∥∥∥Ĉ−1/2D,λ C
1/2
λ

∥∥∥∥∥∥C−1/2λ (C − ĈDj )C
−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥
≤2
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥ .
(26)
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Note that, ‖Ĉ1/2
D,λGDĈ

1/2
D,λ‖ ≤ 1 from Lemma 8 of (Rudi et al., 2015).

Substituting (25) and (26) to (24), if |Dj | ≥ 16N∞(λ) log(2/δ) and |D1| = · · · = |Dm| =
|D|/m, with the probability at least 1− δ we have

‖f̄MD,λ − f̂MD,λ‖ρ ≤ 4
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥∥∥∥C1/2
λ (f̂MDj ,λ − fλ)

∥∥∥ .
The last step is due to the fact

∥∥∥C−1/2λ (ĈD − C)C
−1/2
λ

∥∥∥ ≤ ∥∥∥C−1/2λ (C − ĈDj )C
−1/2
λ

∥∥∥ where

|Dj | ≤ |D|.

A.2.2 Estimate for sample variance

Lemma 24 (Sample variance) Let f̂MD,λ and f̃MD,λ be defined by (12) and (13). For δ ∈
(0, 1), if |D| ≥ 16N∞(λ) log(2/δ), with the probability at least 1−δ, the local sample variance
holds

‖f̂MD,λ − f̃MD,λ‖ρ ≤ ‖C
1/2
λ (f̂MD,λ − f̃MD,λ)‖K ≤ 8B

(√
N∞(λ)

|D|
+

√
N (λ)

|D|

)
log

2

δ
. (27)

Proof Recall the representations of f̂MD,λ and f̃MD,λ that are

f̂MD,λ = V (V ∗ĈDV + λI)−1V ∗Ŝ∗DyD, f̃MD,λ = V (V ∗ĈDV + λI)−1V ∗S̄∗Dfρ.

To simply the representations, we characterize f̂MD,λ = GDŜ
∗
DyD and f̃MD,λ = GDS̄

∗
Dfρ with

GD = V (V ∗ĈDV + λI)−1V ∗. Then, from (22), the following inequalities hold

‖f̂MD,λ − f̃MD,λ‖ρ ≤‖C
1/2
λ (f̂MD,λ − f̃MD,λ)‖K ≤ ‖C1/2

λ GD(Ŝ∗DyD − S̄∗Dfρ)‖K
≤‖C1/2

λ Ĉ
−1/2
D,λ ‖‖Ĉ

1/2
D,λGDĈ

1/2
D,λ‖‖Ĉ

−1/2
D,λ C

1/2
λ ‖‖C

−1/2
λ (Ŝ∗DyD − S̄∗Dfρ)‖.

(28)

Then, from Lemma 8 of (Rudi et al., 2015) and Lemma 22, when |D| ≥ 16N∞(λ) log(2/δ),
with the probability at least 1− δ we have

‖f̂MD,λ − f̃MD,λ‖ρ ≤ 2 ‖C−1/2λ (Ŝ∗DyD − S̄∗Dfρ)‖ (29)

Substituting the results in Lemma 25 to (29) with the fact ‖C−1/2λ (Ŝ∗DyD − S̄∗Dfρ)‖ ≤
‖C−1/2λ (Ŝ∗DyD−S∗fρ)‖+‖C−1/2λ (S∗fρ− S̄∗Dfρ)‖, we upper bound the local sample variance
with the probability at least 1− δ:

‖f̂MD,λ − f̃MD,λ‖ρ ≤ ‖C
1/2
λ GD(Ŝ∗DyD − S̄∗Dfρ)‖K ≤ 8B

(√
N∞(λ)

|D|
+

√
N (λ)

|D|

)
log

2

δ
.

Using Bernstein’s inequality and following the proof of Lemma 6 in (Rudi and Rosasco,
2017), we prove the following lemmas to estimate terms in (29).
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Lemma 25 Assume there exists κ ≥ 1 such that K(x,x) ≤ κ2, ∀x ∈ X and |y| ≤ B. For
δ ∈ (0, 1], the following holds with the probability at least 1− δ

‖C−1/2λ (Ŝ∗DyD − S∗fρ)‖ ≤ 2B

(√
N∞(λ)

|D|
+

√
N (λ)

|D|

)
log

2

δ
,

and

‖C−1/2λ (S∗fρ − S̄∗Dfρ)‖ ≤ 2B

(√
N∞(λ)

|D|
+

√
N (λ)

|D|

)
log

2

δ
.

Proof Let ξi = C
−1/2
λ Kxiyi in the Hilbert space HM . We see that

1

|D|

|D|∑
i=1

ξi =
1

|D|

|D|∑
i=1

C
−1/2
λ Kxiyi = C

−1/2
λ Ŝ∗DjyDj ,

E ξ =

∫
X
C
−1/2
λ Kxfρ(x)dρX(x) = C

−1/2
λ S∗fρ.

Thus, the error term to bound can be stated as

‖C−1/2λ (Ŝ∗DjyDj − S
∗fρ)‖ =

∥∥∥∥∥∥ 1

|D|

|D|∑
i=1

ξi − Eξi

∥∥∥∥∥∥ . (30)

By Jensen’s inequality, we thus have

‖ξi − E(ξi)‖ ≤ ‖C−1/2λ Kxi‖|yi|+ E‖C−1/2λ Kxi‖|yi| ≤ 2B
√
N∞(λ). (31)

Note that

E
(
ξi − E(ξi)

)2 ≤ 2

∫
X
‖C−1/2λ Kxi‖2|yi|2dρX(x)

≤ 2B2

∫
X
‖C−1/2λ Kxi‖2dρX(x) ≤ 2B2N (λ).

(32)

Substituting (31) and (32) to (30), by Proposition 3 in (Rudi and Rosasco, 2017), we have

‖C−1/2λ (Ŝ∗DjyDj − S
∗fρ)‖ ≤ 2

(
B
√
N∞(λ)

|D|
+

√
B2N (λ)

|D|

)
log

2

δ
.

Let ξi = C
−1/2
λ Kxifρ(xi) on X in the Hilbert space HM . We see that

1

|D|

|D|∑
i=1

ξi =
1

|D|

|D|∑
i=1

C
−1/2
λ Kxifρ(xi) = C

−1/2
λ S̄∗Dfρ,

Eξi =

∫
X
C
−1/2
λ Kxfρ(x)dρX(x) = C

−1/2
λ S∗fρ.
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Thus, the error term to bound can be stated as

‖C−1/2λ (S∗fρ − S̄∗Dfρ)‖ =

∥∥∥∥∥∥ 1

|D|

|D|∑
i=1

ξi − Eξi

∥∥∥∥∥∥ . (33)

Similarly, using Bernstein’s inequality, we have

‖C−1/2λ (S∗fρ − S̄∗Dfρ)‖ ≤ 2

(
B
√
N∞(λ)

|D|
+

√
B2N (λ)

|D|

)
log

2

δ
.

A.2.3 Estimate for Nyström error

Lemma 26 (Nyström error) Let f̃MD,λ and f̃D,λ be defined by (12) and (13). Under
Assumption 5 and the condition |D| ≥ 16N∞(λ) log(2/δ), for any δ ∈ (0, 1), the local
Nyström error holds with probability at least 1− δ,

‖f̃MD,λ − f̃D,λ‖ρ ≤ ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K ≤

{
11Rλ−1/2‖(I − V V ∗)C1/2

λ ‖
2r+1, when r ∈ (0, 1/2);

8R ‖(I − V V ∗)C1/2
λ ‖

2r, when r ∈ [1/2, 1].

Proof Recall the characterizations of f̂MDj ,λ and f̃Dj ,λ in Proposition 20, it holds

f̃MD,λ = V (V ∗ĈDV + λI)−1V ∗S̄∗Dfρ, f̃D,λ = (ĈD + λI)−1S̄∗Dfρ.

We use GD = V (V ∗ĈDV + λI)−1V ∗ and then f̃MD,λ = GDS̄
∗
Dfρ. Using Z∗f(ZZ∗) =

f(Z∗Z)Z∗, we have

Ĉ−1D,λS̄
∗
Dfρ = (S̄∗DS + λI)−1S̄∗Dfρ = S̄∗D(SS̄∗D + λI)−1fρ = S̄∗DL̂

−1
D,λfρ.

From (22), we estimate the Nyström error as follows with

‖f̃MD,λ − f̃D,λ‖ρ ≤ ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K = ‖C1/2

λ (GD − Ĉ−1D,λ)S̄∗Dfρ‖K

=‖C1/2
λ (GDĈD,λ − I)Ĉ−1D,λS̄

∗
Dfρ‖K = ‖C1/2

λ (GDĈD,λ − I)S̄∗DL̂
−1
D,λfρ‖K .

(34)

Then, we bound ‖f̃MD,λ − f̃D,λ‖ for r ∈ (0, 1/2) and r ∈ [1/2, 1], respectively.

• When r ∈ (0, 1/2), the true regression fρ is out of the deduced RKHS fρ /∈ H.

Note that, there exists ‖g‖ ≤ R, ‖L−1λ L‖ ≤ 1, ‖L̂−1/2D,λ λ
1/2‖ ≤ 1, ‖S̄∗DL̂

−1/2
D,λ ‖ ≤

‖L̂−1/2D,λ L̂DL̂
−1/2
D,λ ‖

1/2 ≤ 1 and ‖Ĉ−1/2D,λ S̄∗D‖ = ‖Ĉ−1/2D,λ ĈDĈ
−1/2
D,λ ‖

1/2 ≤ 1. From Lemma
22 and (34), when |D| ≥ 16N∞(λ) log(2/δ), with the probability at least 1 − δ, we
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have

‖f̃MD,λ − f̃D,λ‖ρ ≤‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K = ‖C1/2

λ (GDĈD,λ − I)S̄∗DL̂
−1
D,λfρ‖K

=‖C1/2
λ (GDĈD,λ − I)S̄∗DL̂

r−1
D,λ(L̂

−1/2
D,λ L

1/2
λ )2r(L−1λ L)rg‖

≤R‖C1/2
λ (GDĈD,λ − I)S̄∗DL̂

r−1
D,λ(L̂

−1/2
D,λ L

1/2
λ )2r‖

≤R‖C1/2
λ (GDĈD,λ − I)Crλ(C

−1/2
λ Ĉ

1/2
D,λ)2r(Ĉ

−1/2
D,λ S̄∗D)2r

(S̄∗DL̂
−1/2
D,λ )1−2r(L̂

−1/2
D,λ λ

1/2)λ−1/2(L̂
−1/2
D,λ L

1/2
λ )2r‖

≤Rλ−1/2‖C−1/2λ Ĉ
1/2
D,λ‖

2r‖L̂−1/2D,λ L
1/2
λ ‖

2r‖C1/2
λ (GDĈD,λ − I)Crλ‖

≤2
√

2Rλ−1/2‖C1/2
λ (GDĈD,λ − I)Crλ‖.

(35)

Noting that GDĈD,λV V ∗ = V V ∗, we have

GDĈD,λ − I =GDĈD,λ(I − V V ∗) +GDĈD,λV V
∗ − I

=GDĈD,λ(I − V V ∗)− (I − V V ∗).
(36)

Using above identity, we have

‖C1/2
λ (GDĈD,λ − I)Crλ‖

≤‖C1/2
λ GDĈD,λ(I − V V ∗)Crλ‖+ ‖C1/2

λ (I − V V ∗)Crλ‖

≤‖C1/2
λ Ĉ

−1/2
D,λ Ĉ

1/2
D,λGDĈ

1/2
D,λĈ

1/2
D,λC

−1/2
λ C

1/2
λ (I − V V ∗)Crλ‖+ ‖C1/2

λ (I − V V ∗)Crλ‖

≤‖C1/2
λ (I − V V ∗)Crλ‖(‖C

1/2
λ Ĉ

−1/2
D,λ ‖‖Ĉ

1/2
D,λGDĈ

1/2
D,λ‖‖Ĉ

1/2
D,λC

−1/2
λ ‖+ 1)

≤‖C1/2
λ (I − V V ∗)Crλ‖(‖C

1/2
λ Ĉ

−1/2
D,λ ‖‖Ĉ

1/2
D,λC

−1/2
λ ‖+ 1).

(37)

The last step is due to ‖Ĉ1/2
D,λGDĈ

1/2
D,λ‖ ≤ 1 in Lemma 8 of (Rudi et al., 2015).

Next, we estimate ‖C1/2
λ (I − V V ∗)Crλ‖. Since V V ∗ is a projection operator, it holds

for any s > 0 that (I − V V ∗) = (I − V V ∗)s, therefore

‖C1/2
λ (I − V V ∗)Crλ‖ ≤ ‖C

1/2
λ (I − V V ∗)‖‖(I − V V ∗)Crλ‖.

Using Cordes inequality (Fujii et al., 1993) to ‖(I − V V ∗)Crλ‖, we have

‖(I − V V ∗)Crλ‖ = ‖(I − V V ∗)2rC
1
2
2r

λ ‖ = ‖(I − V V ∗)C1/2
λ ‖

2r.

Thus, it holds

‖C1/2
λ (I − V V ∗)Crλ‖ ≤ ‖(I − V V ∗)C

1/2
λ ‖

2r+1. (38)

Substituting (37) and (38) into (35), under the condition |D| ≥ 16N∞(λ) log(2/δ), for
r ∈ (0, 1/2), we have with the probability 1− δ

‖f̃MD,λ − f̃D,λ‖ρ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K ≤ 11Rλ−1/2‖(I − V V ∗)C1/2

λ ‖
2r+1. (39)

29



Li, Liu and Wang

• When r ∈ [1/2, 1], the regression function belongs to the hypothesis space fρ ∈ H.

Note that, there exists ‖g‖ ≤ R, ‖L−1λ L‖ ≤ 1, ‖S̄∗DL̂
−1/2
D,λ ‖ ≤ ‖L̂

−1/2
D,λ L̂DL̂

−1/2
D,λ ‖

1/2 ≤ 1,

and ‖Ĉ−1/2D,λ S̄∗D‖ = ‖Ĉ−1/2D,λ ĈDĈ
−1/2
D,λ ‖

1/2 ≤ 1. From Lemma 22 and (34), when |D| ≥
16N∞(λ) log(2/δ), with the probability at least 1− δ, we have

‖f̃MD,λ − f̃D,λ‖ρ ≤ ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K

≤‖C1/2
λ (GDĈD,λ − I)S̄∗DL̂

−1
D,λfρ‖K

=‖C1/2
λ (GDĈD,λ − I)S̄∗DL̂

r−1
D,λ(L̂

−1/2
D,λ L

1/2
λ )2r(L−1λ L)rg‖

≤R‖C1/2
λ (GDĈD,λ − I)Ĉ

r−1/2
D,λ (Ĉ

−1/2
D,λ S̄∗D)2r−1(S̄∗DL̂

−1/2
D,λ )2−2r(L̂

−1/2
D,λ L

1/2
λ )2r‖

≤2R‖C1/2
λ (GDĈD,λ − I)C

r−1/2
λ ‖.

(40)

Using the identity (36), when |D| ≥ 16N∞(λ) log(2/δ), with the probability at least
1− δ, we have

‖C1/2
λ (GDĈD,λ − I)C

r−1/2
λ ‖ ≤ ‖C1/2

λ (I − V V ∗)Cr−1/2λ ‖

+ ‖C1/2
λ Ĉ

−1/2
D,λ Ĉ

1/2
D,λGDĈ

1/2
D,λĈ

1/2
D,λC

−1/2
λ C

1/2
λ (I − V V ∗)Cr−1/2λ ‖

≤ ‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖(1 + ‖C1/2

λ Ĉ
−1/2
D,λ ‖‖Ĉ

1/2
D,λGDĈ

1/2
D,λ‖‖Ĉ

1/2
D,λC

−1/2
λ ‖)

≤ 4‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖.

(41)

Next, we estimate ‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖. Since V V ∗ is a projection operator, it

holds for any s > 0 that (I − V V ∗) = (I − V V ∗)s, therefore

‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖ ≤ ‖C1/2

λ (I − V V ∗)‖‖(I − V V ∗)Cr−1/2λ ‖.

Using Cordes inequality (Fujii et al., 1993) to ‖(I − V V ∗)Cr−1/2λ ‖, we have

‖(I − V V ∗)Cr−1/2λ ‖ = ‖(I − V V ∗)2r−1C
1
2
2r−1

λ ‖ = ‖(I − V V ∗)C1/2
λ ‖

2r−1.

Thus, it holds

‖C1/2
λ (I − V V ∗)Cr−1/2λ ‖ ≤ ‖(I − V V ∗)C1/2

λ ‖
2r. (42)

Substituting (41) and (42) into (40), with the condition |D| ≥ 16N∞(λ) log(2/δ),
there exists for r ∈ [1/2, 1] with the probability 1− δ

‖f̃MD,λ − f̃D,λ‖ρ ≤ ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K ≤ 8R ‖(I − V V ∗)C1/2

λ ‖
2r. (43)

Then, combining (39) and (43), we prove the desired result.
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A.2.4 Estimate for empirical error

Lemma 27 (Empirical error) Let f̃D,λ and fλ be defined by (14) and (15). Under the
condition |D| ≥ 16N∞(λ) log(2/δ), for any δ ∈ (0, 1), the local empirical error holds with
probability at least 1− δ,

‖f̃D,λ − fλ‖ρ ≤ ‖C
1/2
λ (f̃D,λ − fλ)‖K ≤

(
2 +
√

2
)
‖fλ − fρ‖.

Proof Recall the definitions of f̃D,λ and fλ with operators in Proposition 20, it holds

f̃D,λ = Ĉ−1D,λS̄
∗
Dfρ, fλ = C−1λ S∗fρ.

Using the identity A−1 −B−1 = A−1(B −A)B−1 for positive operators A,B, we have

‖f̃D,λ − fλ‖ρ ≤ ‖C
1/2
λ (f̃D,λ − fλ)‖K

≤‖C1/2
λ Ĉ−1D,λS̄

∗
Dfρ − C

1/2
λ C−1λ S∗fρ‖

=‖C1/2
λ Ĉ−1D,λ(S̄∗D − S∗)fρ + C

1/2
λ (Ĉ−1D,λ − C

−1
λ )S∗fρ‖K

=‖C1/2
λ Ĉ−1D,λ(S̄∗D − S∗)fρ + C

1/2
λ Ĉ−1D,λ(C − ĈDj )C

−1
λ S∗fρ‖

=‖C1/2
λ Ĉ−1D,λ(S̄∗D − S∗)fρ + C

1/2
λ Ĉ−1D,λ(S∗C

1/2
λ − S̄∗DS)C−1λ S∗fρ‖

=‖C1/2
λ Ĉ−1D,λ(S̄∗D − S∗)fρ + C

1/2
λ Ĉ−1D,λ(S∗ − S̄∗D)fλ‖

=‖C1/2
λ Ĉ−1D,λS̄

∗
D(fρ − fλ) + C

1/2
λ Ĉ−1D,λS

∗(fλ − fρ)‖

=‖C1/2
λ C

−1/2
λ C

1/2
λ Ĉ

−1/2
D,λ Ĉ

−1/2
D,λ S̄∗D(fρ − fλ) + C

1/2
λ C

−1/2
λ C

1/2
λ Ĉ

−1/2
D,λ Ĉ

−1/2
D,λ C

1/2
λ C

−1/2
λ S∗(fλ − fρ)‖.

Note that ‖SC−1/2λ ‖ = ‖C−1/2λ CC
−1/2
λ ‖1/2 ≤ 1, ‖Ĉ−1/2D,λ S̄∗D‖ = ‖Ĉ−1/2D,λ ĈDj Ĉ

−1/2
D,λ ‖

1/2 ≤ 1,

and ‖C−1/2λ S∗‖ = ‖C−1/2λ CC
−1/2
λ ‖1/2 ≤ 1. Thus, we obtain

‖f̃D,λ − fλ‖ρ ≤ ‖C
1/2
λ (f̃D,λ − fλ)‖K ≤

[
‖C1/2

λ Ĉ
−1/2
D,λ ‖+ ‖C1/2

λ Ĉ
−1/2
D,λ ‖

2
]
‖fλ − fρ‖.

From Lemma 22, if |D| ≥ 16N∞(λ) log(2/δ), we have ‖C1/2
λ Ĉ

−1/2
D,λ ‖ + ‖C1/2

λ Ĉ
−1/2
D,λ ‖

2 ≤
(2 +

√
2) with the probability at least 1− δ.

The empirical error is also related to fρ that can be estimated by fρ = Lrg with ‖g‖ ≤ R.
Thus, we estimate the empirical error in terms of r ∈ (0, 1/2) and r ∈ [1/2, 1], respectively.
To bound the empirical error, the restrictions on n influence the number of partitions m.

A.2.5 Estimate for approximation error

The last term we need to estimate is approximation error ‖fλ−fρ‖, whose proof is standard
(Smale and Zhou, 2007; Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017).

Lemma 28 (Approximation error) Let fλ and fρ be defined by (15) and (7). Under
Assumption 5, the approximation error holds for any λ > 0 and r > 0,

‖fλ − fρ‖ ≤ Rλr. (44)
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Proof Under Assumption 5, there exists g ∈ L2
ρX

such that fρ = Lrg with ‖g‖ ≤ R. The
identity A(A+ λI)−1 = I − λ(A+ λI)−1 is valid for λ > 0 and A the bounded self-adjoint
positive operator and by the definition of fλ (Proposition 20), we have

‖fλ − fρ‖ =‖LL−1λ fρ − fρ‖ = ‖(LL−1λ − I)fρ‖ = ‖λL−1λ fρ‖

=‖λr(λ1−rL−(1−r)λ )(L−rλ Lr)g‖

≤‖λr‖‖λ1−rL−(1−r)λ ‖‖L−rλ Lr‖‖g‖.

Note that ‖λ1−rL−(1−r)λ ‖ ≤ 1 and ‖L−rλ Lr‖ ≤ 1, while R := ‖g‖L2
ρX

according to Assump-

tion 5. The proof is completed.

The estimate of approximation error is standard and holds for any r > 0. When r
approaches zero, the approximation error gradually becomes the distance between two un-
related estimators fλ and fρ.

A.3 Proofs of Main Results in Expectation

Proof of Lemma 10. Using the triangle inequalities, we have

‖f̄MD,λ − fρ‖2ρ ≤4

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(
f̂MDj ,λ − f̃

M
Dj ,λ

)∥∥∥∥∥∥
2

ρ

+ 4

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(
f̃MDj ,λ − f̃Dj ,λ

)∥∥∥∥∥∥
2

ρ

+ 4

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

f̃Dj ,λ − fλ

∥∥∥∥∥∥
2

ρ

+ 4 ‖fλ − fρ‖2ρ .

(45)

The local sample sets {(X1,y1), · · · , (Xm,ym)} are independently sampled from ρX×Y .
Note that from Proposition 5 in (Chang et al., 2017), there exists

E

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(
f̂MDj ,λ − f̃

M
Dj ,λ

)∥∥∥∥∥∥
2

ρ

=

m∑
j,k=1

|Dj ||Dk|
N2

E〈f̂MDj ,λ − f̃
M
Dj ,λ

, f̂MDk,λ − f̃
M
Dk,λ
〉ρ

=

m∑
j=1

|Dj |2

N2
E‖f̂MDj ,λ − f̃

M
Dj ,λ
‖2ρ.

By taking the expectation with respect to ρX and |D1| = · · · = |Dm| = |D|/m, we have

E

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(
f̂MDj ,λ − f̃

M
Dj ,λ

)∥∥∥∥∥∥
2

ρ

=

m∑
j=1

|Dj |2

N2
E‖f̂MDj ,λ − f̃

M
Dj ,λ
‖2ρ =

1

m
E‖f̂MDj ,λ − f̃

M
Dj ,λ
‖2ρ. (46)
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Following the proof of Lemma 1 in (Lin and Cevher, 2018), by Hölder’s inequality, we
know that

E

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(
f̃MDj ,λ − f̃Dj ,λ

)∥∥∥∥∥∥
2

ρ

=
1

m2
E

∥∥∥∥∥
m∑
i=1

(f̃MDj ,λ − f̃Dj ,λ)

∥∥∥∥∥
2

ρ

≤ 1

m
E

m∑
i=1

∥∥∥f̃MDj ,λ − f̃Dj ,λ∥∥∥2ρ = E
∥∥∥f̃MDj ,λ − f̃Dj ,λ∥∥∥2ρ .

(47)

Similarly, we derive relationship between global and local empirical errors

E

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

f̃Dj ,λ − fλ

∥∥∥∥∥∥
2

ρ

=
1

m2
E

∥∥∥∥∥
m∑
i=1

(f̃Dj ,λ − fλ)

∥∥∥∥∥
2

ρ

≤ 1

m
E

m∑
i=1

∥∥∥f̃Dj ,λ − fλ∥∥∥2
ρ

= E
∥∥∥f̃Dj ,λ − fλ∥∥∥2

ρ
.

(48)

Substituting (46), (47) and (48) to (45), we obtain the result in (8).

Proof of Theorem 11. From the error decomposition (8), we estimate the local error
terms ‖f̄MD,λ − f̃MD,λ‖2ρ, ‖f̃MD,λ − f̃D,λ‖2ρ, ‖f̃D,λ − fλ‖2ρ, and ‖fλ − fρ‖2ρ, respectively.

Estimate the local sample variance. According to Lemma 24, under Assumptions

6 and 7, if 2r + 2γ ≥ α and λ = N
−1

2r+γ , when the local sample size is large enough
|Dj | ≥ 16N∞(λ) log(2/δ), it holds with the probability at least 1− δ

1

m
E‖f̂MDj ,λ − f̃

M
Dj ,λ
‖2ρ ≤

1

m
E‖C1/2

λ (f̂MDj ,λ − f̃
M
Dj ,λ

)‖2K

≤64B2

m

(√
N∞(λ)

|Dj |
+

√
N (λ)

|Dj |

)2

log2
2

δ

≤128B2

(
N∞(λ)

|D||Dj |
+
N (λ)

|D|

)
log2

2

δ

≤128B2

(
C1

16 log(2/δ)
+ C0

)
N
−2r
2r+γ log2

2

δ
.

(49)

Estimate the local Nyström error. Combing the results in Lemma 26, Lemma 6 of
(Rudi et al., 2015) and Lemma 7 of (Rudi et al., 2015), when |Dj | ≥ 16N∞(λ) log(2/δ), M ≥
67 log 4κ2

λδ ∨5N∞(λ) log 4κ2

λδ for the uniform sampling and M ≥ 334 log
8|Dj |
δ ∨78N (λ) log

8|Dj |
δ

for the data-dependent sampling, we obtain local Nyström error with the probability at least
1− 2δ that

E‖f̃MD,λ − f̃D,λ‖2ρ ≤ ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖2K ≤ 1089R2λ2r = 1089R2N

−2r
2r+γ . (50)

Estimate the empirical error. According Lemmas 27 and 28, when the sample size
satisfies |D| ≥ 16N∞(λ) log(2/δ), there holds with the probability at least 1− δ

‖f̃D,λ − fλ‖2ρ ≤ 16R2λ2r = 16R2N
−2r
2r+γ . (51)
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Substituting (44), (49), (50) and (51) to (8), we prove the following result. If M ≥
67 log 4κ2

λδ ∨ 5N∞(λ) log 4κ2

λδ for uniform sampling, M ≥ 334 log
8|Dj |
mδ ∨ 78N (λ) log

8|Dj |
mδ for

leverage scores sampling, and m . N
2r+γ−α
2r+γ , then, with probability 1− 4δ, there exists

E‖f̄MD,λ − fρ‖2ρ ≤ C2N
−2r
2r+γ log2(2/δ),

where C2 = 512B2
(

C1
16 log(2/δ) + C0

)
+ 4424R2.

A.4 Proofs of Main Results in Probability

Proof of Theorem 16. To derive the excess risk of DNyström in probability, we recall
its error decomposition in probability in Lemma 15. We first estimate the global error

terms on the entire set D and then the distributed error. Let λ = N
−1

2r+γ , δ > 0 and
|Dj | ≥ 16N∞(λ) log(2/δ).

Estimate the sample variance. According to Lemma 24, under Assumptions 6 and
7, it holds with the probability at least 1− δ

‖f̂MD,λ − f̃MD,λ‖ρ ≤ ‖C
1/2
λ (f̂MD,λ − f̃MD,λ)‖K ≤8B

(√
N∞(λ)

|D|
+

√
N (λ)

|D|

)
log

2

δ

≤8B(
√
C0 +

√
C1)N

−r
2r+γ log

2

δ
.

(52)

Estimate the Nyström error. Combing the results in Lemma 26, Lemma 6 of (Rudi

et al., 2015) and Lemma 7 of (Rudi et al., 2015), when M ≥ 67 log 4κ2

λδ ∨ 5N∞(λ) log 4κ2

λδ

for the uniform sampling and M ≥ 334 log 8|D|
δ ∨ 78N (λ) log 8|D|

δ for the data-dependent
sampling, we obtain the Nyström error with the probability at least 1− 2δ that

‖f̃MD,λ − f̃D,λ‖ρ ≤ ‖C
1/2
λ (f̃MD,λ − f̃D,λ)‖K ≤ 33Rλr = 33RN

−r
2r+γ . (53)

Estimate the empirical error. According Lemmas 27 and 28, there holds with the
probability at least 1− δ

‖f̃D,λ − fλ‖ ≤ 4Rλr = 4RN
−r

2r+γ . (54)

Estimate the distributed error. From the result in Lemma 23, we find that the

distributed error is related to ‖C1/2
λ (f̂MDj ,λ−fλ)‖. From (23), (52), (53) and (54), when M ≥

67 log 4κ2

λδ ∨5N∞(λ) log 4κ2

λδ for the uniform sampling and M ≥ 334 log
8|Dj |
δ ∨78N (λ) log

8|Dj |
δ
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for the data-dependent sampling, with the probability at least 1− 4δ, we have

‖f̄MD,λ − f̂MD,λ‖

≤4
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥ ‖C1/2
λ (f̂MDj ,λ − fλ)‖

≤4
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥(‖C1/2
λ (f̂MDj ,λ − f̃

M
Dj ,λ

)‖

+ ‖C1/2
λ (f̃MDj ,λ − f̃Dj ,λ)‖+ ‖C1/2

λ (f̃Dj ,λ − fλ)‖
)

≤4
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥(8B

(√
N∞(λ)

|Dj |
+

√
N (λ)

|Dj |

)
log

2

δ
+ 37Rλr

)

≤32B
∥∥∥C−1/2λ (C − ĈDj )C

−1/2
λ

∥∥∥(√N∞(λ)

|Dj |
+

√
N (λ)

|Dj |

)
+ 74Rλr

≤64B

(
N∞(λ)

|Dj |
+

√
N∞(λ)

|Dj |

)(√
N∞(λ)

|Dj |
+

√
N (λ)

|Dj |

)
log(2/δ) + 74Rλr.

(55)

The last two steps are due to the results in Lemma 22 and Lemma 21, respectively. Using the

condition |Dj | ≥ 16N∞(λ) log(2/δ), we have N∞(λ)
|Dj | ≤

√
N∞(λ)
|Dj | . Then, under Assumptions

6 and 7, if λ = N
−1

2r+γ and |D1| = |D2| = · · · = |Dm| = |D|/m, we have

N∞(λ)

|Dj |
+

√
N∞(λ)

|Dj |
≤ C1mN

α−2r−γ
2r+γ +

√
C1mN

α−2r−γ
4r+2γ ,√

N∞(λ)

|Dj |
+

√
N (λ)

|Dj |
≤
√
C1mN

α−4r−2γ
4r+2γ +

√
C0mN

−r
2r+γ .

Then, when m . N
2r+γ−α
4r+2γ , we have(

N∞(λ)

|Dj |
+

√
N∞(λ)

|Dj |

)(√
N∞(λ)

|Dj |
+

√
N (λ)

|Dj |

)
≤
√
C0C1N

−r
2r+γ . (56)

Combing (55) and (56), under the same conditions, with the probability at least 1− 4δ,
we have

‖f̄MD,λ − f̂MD,λ‖ ≤ (256BC1

√
C0C1 + 74R)N

−r
2r+γ log(2/δ). (57)

Since m . N
2r+γ−α
4r+2γ is more strict than the condition |Dj | ≤ 16N∞(λ) log(2/δ), we

impose the condition on the number of partitions as m . N
2r+γ−α
4r+2γ . Substituting (44), (52),

(53), (54) and (57) to (9), we prove the result.

Assume there exists κ > 1 such that K(x,x) ≤ κ2 for any x ∈ X and |y| ≤ B. Let

δ > 0, λ = N
−1

2r+γ and |D1| = · · · = |D|m = |D|/m. Under Assumptions 5 – 7 with r ∈ (0, 1]

and γ ∈ [0, 1], if 2r + γ ≥ α, M ≥ 67 log 4κ2

λδ ∨ 5N∞(λ) log 4κ2

λδ for uniform sampling,

M ≥ 334 log
8|Dj |
mδ ∨ 78N (λ) log

8|Dj |
mδ for leverage scores sampling, and m . N

2r+γ−α
4r+2γ , then
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with probability 1− 4δ, there exists

‖f̄MD,λ − fρ‖ρ ≤ C3N
−r

2r+γ log(2/δ),

where C3 = 8B(
√
C0 +

√
C1) + 256BC1

√
C0C1 + 112R.
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