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Abstract

Insights into complex, high-dimensional data can be obtained by discovering features of
the data that match or do not match a model of interest. To formalize this task, we intro-
duce the “data selection” problem: finding a lower-dimensional statistic—such as a subset
of variables—that is well fit by a given parametric model of interest. A fully Bayesian
approach to data selection would be to parametrically model the value of the statistic,
nonparametrically model the remaining “background” components of the data, and per-
form standard Bayesian model selection for the choice of statistic. However, fitting a
nonparametric model to high-dimensional data tends to be highly inefficient, statistically
and computationally. We propose a novel score for performing data selection, the “Stein
volume criterion (SVC)”, that does not require fitting a nonparametric model. The SVC
takes the form of a generalized marginal likelihood with a kernelized Stein discrepancy in
place of the Kullback–Leibler divergence. We prove that the SVC is consistent for data
selection, and establish consistency and asymptotic normality of the corresponding gen-
eralized posterior on parameters. We apply the SVC to the analysis of single-cell RNA
sequencing data sets using probabilistic principal components analysis and a spin glass
model of gene regulation.
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1. Introduction

Scientists often seek to understand complex phenomena by developing working models for
various special cases and subsets. Thus, when faced with a large complex data set, a natural
question to ask is where and when a given working model applies. We formalize this question
statistically by saying that given a high-dimensional data set, we want to identify a lower-
dimensional statistic—such as a subset of variables—that follows a parametric model of
interest (the working model). We refer to this problem as “data selection”, in counterpoint
to model selection, since it requires selecting the aspect of the data to which a given model
applies.

For example, early studies of single-cell RNA expression showed that the expression of
individual genes was often bistable, which suggests that the system of cellular gene expres-
sion might be described with the theory of interacting bistable systems, or spin glasses, with
each gene a separate spin and each cell a separate observation. While it seems implausible
that such a model would hold in full generality, it is quite possible that there are subsets
of genes for which the spin glass model is a reasonable approximation to reality. Finding
such subsets of genes is a data selection problem. In general, a good data selection method
would enable one to (a) discover interesting phenomena in complex data sets, (b) identify
precisely where naive application of the working model to the full data set goes wrong, and
(c) evaluate the robustness of inferences made with the working model.

Perhaps the most natural Bayesian approach to data selection is to employ a semi-
parametric joint model, using the parametric model of interest for the low-dimensional
statistic (the “foreground”) and using a flexible nonparametric model to explain all other
aspects of the data (the “background”). Then, to infer where the foreground model ap-
plies, one would perform standard Bayesian model selection across different choices of the
foreground statistic. However, this is computationally challenging due to the need to in-
tegrate over the nonparametric model for each choice of foreground statistic, making this
approach quite difficult in practice. A natural frequentist approach to data selection would
be to perform a goodness-of-fit test for each choice of foreground statistic. However, this
still requires specifying an alternative hypothesis, even if the alternative is nonparametric,
and ensuring comparability between alternatives used for different choices of foreground
statistics is nontrivial. Moreover, developing goodness-of-fit tests for composite hypotheses
or hierarchical models is often difficult in practice.

In this article, we propose a new score—for both data selection and model selection—
that is similar to the marginal likelihood of a semi-parametric model but does not require
one to specify a background model, let alone integrate over it. The basic idea is to employ a
generalized marginal likelihood where we replace the foreground model likelihood by an ex-
ponentiated divergence with nice properties, and replace the background model’s marginal
likelihood with a simple volume correction factor. For the choice of divergence, we use a
kernelized Stein discrepancy (KSD) since it enables us to provide statistical guarantees and
is easy to estimate compared to other divergences—for instance, the Kullback–Leibler diver-
gence involves a problematic entropy term that cannot simply be dropped. The background
model volume correction arises roughly as follows: if the background model is well-specified,
then asymptotically, its divergence from the empirical distribution converges to zero and all
that remains of the background model’s contribution is the volume of its effective parameter
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space. Consequently, it is not necessary to specify the background model, only its effective
dimension. To facilitate computation further, we develop a Laplace approximation for the
foreground model’s contribution to our proposed score.

This article makes a number of novel contributions. We introduce the data selection
problem in broad generality, and provide a thorough asymptotic analysis. We propose a
novel model/data selection score, which we refer to as the Stein volume criterion, that takes
the form of a generalized marginal likelihood using a KSD. We provide new theoretical re-
sults for this generalized marginal likelihood and its associated posterior, complementing
and building upon recent work on the frequentist properties of minimum KSD estima-
tors (Barp et al., 2019). Finally, we provide first-of-a-kind empirical data selection analyses
with two models that are frequently used in single-cell RNA sequencing analysis.

The article is organized as follows. In Section 2, we introduce the data selection problem
and our proposed method. In Section 3 we study the asymptotic properties of Bayesian data
selection methods and compare to model selection. Section 4 provides a review of related
work and Section 5 illustrates the method on a toy example. In Section 6, we prove (a)
consistency results for both data selection and model selection, (b) a Laplace approximation
for the proposed score, and (c) a Bernstein–von Mises theorem for the corresponding gen-
eralized posterior. In Section 7, we apply our method to probabilistic principal components
analysis (pPCA), assess its performance in simulations, and demonstrate it on single-cell
RNA sequencing (scRNAseq) data. In Section 8, we apply our method to a spin glass model
of gene expression, also demonstrated on an scRNAseq data set. Section 9 concludes with
a brief discussion.

2. Method

Suppose the data X(1), . . . , X(N) ∈ X are independent and identically distributed (i.i.d.),
where X ⊆ Rd. Suppose the true data-generating distribution P0 has density p0(x) with
respect to Lebesgue measure, and let {q(x|θ) : θ ∈ Θ} be a parametric model of interest,
where Θ ⊆ Rm. We are interested in evaluating this model when applied to a projection of
the data onto a subspace, XF ⊆ X (the “foreground” space). Specifically, letXF := V >X be
a linear projection of a datapoint X ∈ X onto XF , where V is a matrix with orthonormal
columns which defines the foreground space. Let q(xF |θ) denote the distribution of XF
when X ∼ q(x|θ), and likewise, let p0(xF ) be the distribution of XF when X ∼ p0(x).
Even when the complete model q(x|θ) is misspecified with respect to p0(x), it may be that
q(xF |θ) is well-specified with respect to p0(xF ); see Figure 1 for a toy example. In such
cases, the parametric model is only partially misspecified—specifically, it is misspecified on
the “background” space XB, defined as the orthogonal complement of XF (that is, the set
of all vectors that are orthogonal to every vector in XF ).

Our goal is to find subspaces XF of the data space X for which the model q(xF |θ) is
correctly specified. We are not seeking a subset of datapoints, but rather a projection of all
the datapoints.

A natural Bayesian solution would be to replace the background component of the
assumed model, q(xB|xF , θ), with a more flexible component q̃(xB|xF , φB) that is guaranteed
to be well-specified with respect to p0(xB|xF ), such as a nonparametric model. The resulting
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(a) An example for which a bivariate nor-
mal model is partially misspecified. Basis
vectors for XF (foreground) and XB (back-
ground) are blue and red, respectively.
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(b) A univariate normal model is well-
specified for the data projection onto XF .
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(c) A univariate normal model is misspeci-
fied for the data projection onto XB.

Figure 1: A simple example illustrating the data selection problem.

joint model, which we refer to as the “augmented model”, is then

θ ∼ π(θ), X
(i)
F | θ ∼ q(xF | θ),

φB ∼ πB(φB), X
(i)
B | X

(i)
F , φB ∼ q̃(xB | X(i)

F , φB)
(1)

independently for i ∈ {1, . . . , N}. In other words, the pairs (X
(1)
F , X

(1)
B ), . . . , (X

(N)
F , X

(N)
B )

are i.i.d. given θ and φB, with the foreground projections X
(i)
F drawn from the para-

metric model of interest, and the background projections X
(i)
B drawn from the flexi-

ble background model. The standard Bayesian approach to infer XF would be to put
a prior on the choice of foreground space XF , and compute the posterior over the
choice of XF . Computing this posterior boils down to computing the Bayes factor
q̃(X(1:N)|F)/q̃(X(1:N)|F ′) for any given pair of foregrounds F and F ′, where q̃(X(1:N)|F)
denotes the marginal likelihood of F under the augmented model, that is, q̃(X(1:N)|F) =∫ ∫

q(X
(1:N)
F |θ) q̃(X(1:N)

B |X(1:N)
F , φB)π(θ)πB(φB)dθdφB.

However, in general, it is difficult to find a background model that (a) is guaranteed to be
well-specified with respect to p0(xB|xF ) and (b) can be integrated over in a computationally
tractable way to obtain the posterior on the choice of F . Our proposed method, which we
introduce next, sidesteps these difficulties while still exhibiting similar guarantees.

2.1 Proposed score for data selection and model selection

In this section, we propose a model/data selection score that is simpler to compute than
the marginal likelihood of the augmented model and has similar theoretical guarantees.
This score takes the form of a generalized marginal likelihood with a normalized kernelized
Stein discrepancy (nksd) estimate taking the place of the log likelihood. Specifically, our
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proposed model/data selection score, termed the “Stein volume criterion” (SVC), is

K :=

(
2π

N

)mB/2 ∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ (2)

where the “temperature” T > 0 is a hyperparameter and mB is the effective dimension of
the background model parameter space. n̂ksd(·‖·) is an empirical estimate of the nksd
(Equations 4 and 5), and measures the mismatch between the data and the model over the
foreground subspace.

There are three key properties of n̂ksd that distinguish it from other estimators of other
divergences. First, it estimates the divergence directly, not just up to a data-dependent
constant; this is essential for data selection consistency (Section 3.1). For instance, putting
the log likelihood in place of NT n̂ksd in Equation 2 fails to provide data selection consistency
since it implicitly involves comparing the foreground entropy under P0. Second, n̂ksd
converges at a O(1/N) convergence rate when the model is correct; this is essential for
nested data selection consistency (Section 3.2). In contrast, even if the foreground entropy
under P0 is known exactly, using a Monte Carlo estimate of the Kullback–Leibler divergence
in place of N

T n̂ksd fails since the convergence rate is only O(1/
√
N). Third, the NKSD

exhibits subsystem independence (Section 6.1), which ensures that the SVC is comparable
between foreground spaces of different dimension. We are unaware of any other divergence
estimator with all three of these key properties.

The integral in Equation 2 can be approximated using techniques discussed in Sec-
tion 2.3. The hyperparameter T can be calibrated by comparing the coverage of the stan-
dard Bayesian posterior to the coverage of the nksd generalized posterior (Section A.1). The
(2π/N)mB/2 factor penalizes higher-complexity background models. In general, we allow
mB to grow with N , particularly when the background model is nonparametric. Crucially,
the likelihood of the background model does not appear in our proposed score, sidestep-
ping the need to fit or even specify the background model—indeed, the only place that the
background model enters into the SVC is through mB.

Thus, rather than specify a background model and then derive mB, one can simply
specify an appropriate value of mB. Reasonable choices of mB can be derived by considering
the asymptotic behavior of a Pitman-Yor process mixture model, a common nonparametric
model that is a natural choice for a background model. A Pitman-Yor process mixture model
with discount parameter α ∈ (0, 1), concentration parameter ν > −α, and D-dimensional
component parameters will asymptotically have expected effective dimension

mB ∼ D
Γ(ν + 1)

αΓ(ν + α)
Nα (3)

under the prior, where aN ∼ bN means that aN/bN → 1 as N →∞ and Γ(·) is the gamma
function (Pitman, 2002, §3.3). As a default, we recommend setting mB = cB rB

√
N , where

rB is the dimension of XB and cB is a constant chosen to match Equation 3 with α = 1/2.
The

√
N scaling is particularly nice in terms of asymptotic guarantees; see Section 3.2.

The SVC uses a novel, normalized version of the ksd between densities p(x) and q(x):

nksd(p(x)‖q(x)) :=
EX,Y∼p

[
(sq(X)− sp(X))>(sq(Y )− sp(Y ))k(X,Y )

]
EX,Y∼p[k(X,Y )]

(4)
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where k(x, y) ∈ R is an integrally strictly positive definite kernel, sq(x) := ∇x log q(x), and
sp(x) := ∇x log p(x); see Section 6.1 for details. The numerator corresponds to the standard
ksd (Liu et al., 2016). The denominator, which is strictly positive and independent of q(x),
is a normalization factor that we have introduced to make the divergence comparable across
spaces of different dimension. See Section A.2 for kernel recommendations. Extending the
technique of Liu et al. (2016), we propose to estimate the normalized KSD using U-statistics:

n̂ksd(p(x)‖q(x)) =

∑
i 6=j u(X(i), X(j))∑
i 6=j k(X(i), X(j))

(5)

where X(i) ∼ p(x) i.i.d., the sums are over all i, j ∈ {1, . . . , N} such that i 6= j, and

u(x, y) := sq(x)>sq(y)k(x, y) + sq(x)>∇yk(x, y) + sq(y)>∇xk(x, y) + trace(∇x∇>y k(x, y)).

Importantly, Equation 5 does not require knowledge of sp(x), which is unknown in practice.

2.2 Comparison with the standard marginal likelihood

It is instructive to compare our proposed model/data selection score, the Stein volume
criterion, to the standard marginal likelihood q̃(X(1:N)|F). In particular, we show that the
SVC approximates a generalized version of the marginal likelihood. To see this, first define
H := −

∫
p0(x) log p0(x)dx, the entropy of the complete data distribution, and note that if

H were somehow known, then the Kullback-Leibler (kl) divergence between the augmented
model and the data distribution could be approximated as

k̂l(p0(x)‖q(xF |θ) q̃(xB|xF , φB)) := − 1

N

N∑
i=1

log q(X
(i)
F |θ) q̃(X

(i)
B |X

(i)
F , φB)−H.

Since multiplying the marginal likelihoods by a fixed constant does not affect the Bayes
factors, the following expression could be used instead of the marginal likelihood q̃(X(1:N)|F)
to decide among foreground subspaces:

q̃(X(1:N)|F)

exp(−NH)
=

∫ ∫
exp
(
−N k̂l(p0(x)‖q(xF |θ) q̃(xB|xF , φB))

)
π(θ)πB(φB)dθdφB. (6)

Now, consider a generalized marginal likelihood where the nksd replaces the kl:

K̃ :=

∫ ∫
exp
(
−N 1

T
n̂ksd

(
p0(x)‖q(xF |θ) q̃(xB|xF , φB)

))
π(θ)πB(φB)dθdφB. (7)

We refer to K̃ as the “nksd marginal likelihood” of the augmented model. Intuitively, we
expect it to behave similarly to the standard marginal likelihood, except that it quantifies
the divergence between the model and data distributions using the nksd instead of the kl.

However, a key advantage of the nksd marginal likelihood is that it admits a simple ap-
proximation via the SVC when the background model is well-specified, unlike the standard
marginal likelihood. For instance, if the foreground and background are independent, that
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is, p0(x) = p0(xF )p0(xB) and q̃(xB|xF , φB) = q̃(xB|φB), then the theory in Section 6 can be
extended to the full augmented model to show that

log K̃
logK

P0−−−−→
N→∞

1, (8)

where K is the SVC (Equation 2). Thus, the SVC approximates the nksd marginal
likelihood of the augmented model, suggesting that the SVC may be a convenient al-
ternative to the standard marginal likelihood. Formally, Section 3 shows that the SVC
exhibits consistency properties similar to the standard marginal likelihood, even when
p0(x) 6= p0(xF )p0(xB).

2.3 Computation

Next, we discuss methods for computing the SVC including exact solutions, Laplace/BIC
approximation, variational approximation, and comparing many possible choices of F . An
attractive feature of the SVC is that, unlike the fully Bayesian augmented model, the
computation time required does not grow with the background dimension mB.

2.3.1 Exact solution for exponential families

When the foreground model is an exponential family, the SVC can be computed analytically.
Specifically, in Section A.3, we show if q(xF |θ) = λ(xF ) exp(θ>t(xF )− κ(θ)), then

n̂ksd(p0(xF )‖q(xF |θ)) = θ>Aθ +B>θ + C (9)

where A, B, and C depend on the data X(1:N) but not on θ. Therefore, we can compute the
SVC in closed form by choosing a multivariate Gaussian for the prior π(θ) in Equation 2;
see Section A.3.

2.3.2 Laplace and BIC approximations

The Laplace approximation is a widely-used technique for computing marginal likelihoods.
In Theorem 9, we establish regularity conditions under which a Laplace approximation to
the SVC is justified by being asymptotically correct. The resulting approximation is

K ≈
exp

(
−N
T n̂ksd(p0(xF )‖q(xF |θN ))

)
π(θN )

| det 1
T∇

2
θ n̂ksd(p0(xF )‖q(xF |θN ))|1/2

(
2π

N

)(mF+mB)/2

(10)

where θN := argminθ n̂ksd(p0(xF )‖q(xF |θ)) is the point at which the estimated nksd is
minimized, the “minimum Stein discrepancy estimator” as defined by Barp et al. (2019).
Here, θN is simply used to help compute the approximation and does not depend on π(θ),
which can be any prior that is continuous and positive at the limiting value of θN .

We can also make a rougher approximation, analogous to the Bayesian information
criterion (BIC), which does not require one to compute second derivatives of n̂ksd:

K ≈ exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θN ))

)(2π

N

)(mF+mB)/2

. (11)
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This approximation is easy to compute, given a minimum Stein discrepancy estimator θN .
Like the SVC, it satisfies all of our consistency desiderata (Section B). However, we expect
it to perform worse than the SVC when there is not yet enough data for the nksd posterior
to be highly concentrated, that is, when a range of θ values can plausibly explain the data.

2.3.3 Comparing many foregrounds using approximate optima

Often, we would like to evaluate many possible subspaces XF when performing data se-
lection. Even when using the Laplace or BIC approximation to the SVC, this can get
computationally prohibitive since we need to re-optimize to find θN for every F under
consideration. Here, we propose a way to reduce this cost by making a fast linear approx-
imation. Define `j(θ) := n̂ksd(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}. For w ∈ [0, 1], we can
linearly interpolate

θN (w) := argmin
θ

`1(θ) + w(`2(θ)− `1(θ)). (12)

Now, θN (0) and θN (1) are the minimum Stein discrepancy estimators for F1 and F2, respec-
tively. Given θN (0), we can approximate θN (1) by applying the implicit function theorem
and a first-order Taylor expansion (Section A.4):

θN (1) ≈ θN (0)−∇2
θ`1(θN (0))−1∇θ`2(θN (0)). (13)

Note that the derivatives of `j are often easy to compute with automatic differentiation (Bay-
din et al., 2018). Note also that when we are comparing one foreground subspace, such as
XF1 = X , to many other foreground subspaces XF2 , the inverse Hessian ∇2

θ`1(θN (0))−1

only needs to be computed once. Thus, Equation 13 provides a fast approximate method
for computing Laplace or BIC approximations to the SVC for a large number of candidate
foregrounds F . We apply this technique in Section 7, where we find that it performs well
in simulation studies and in practice.

2.3.4 Variational approximation

Variational inference is a method for approximating both the posterior distribution and the
marginal likelihood of a probabilistic model. Since the SVC takes the form of a generalized
marginal likelihood, we can derive a variational approximation to the SVC. Let rζ(θ) be an
approximating distribution parameterized by ζ. By Jensen’s inequality, we have

log

∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ

= log

∫
exp

(
−N
T n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)

rζ(θ)
rζ(θ)dθ

≥ Erζ

[
log

(
exp

(
−N
T n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)

rζ(θ)

)]

= −N
T
Erζ

[
n̂ksd(p0(xF )‖q(xF |θ))

]
+ Erζ [log π(θ)]− Erζ [log rζ(θ)].

(14)

Maximizing this lower bound with respect to the variational parameters ζ, and adding the
background correction (mB/2) log(2π/N), provides an approximation to the log SVC. Note
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that this variational approximation falls within the framework of generalized variational
inference proposed by Knoblauch et al. (2022).

This variational approximation to the SVC is particularly useful when we are aiming to
find the best subspace XF among a very large number of candidates, since we can jointly
optimize the variational parameters ζ and the choice of foreground subspace XF . Here,
we do not necessarily need to evaluate the SVC for all foreground subspaces XF under
consideration, and can instead rely on optimization methods to search for the best XF from
among a large set of possibilities (see Section 8 for an example). Practically, we recommend
using the local linear approximation in Section 2.3.3 when the goal is to compare SVC
values among many not-too-different foreground subspaces XF , and using the variational
approximation when the goal is to find one best XF from among a large and diverse set.

3. Data selection and model selection consistency

This section presents our consistency results when comparing two different foreground sub-
spaces (data selection) or two different foreground models (model selection). The theory
supporting these results is in Sections 6 and B. We consider four distinct properties that
a procedure would ideally exhibit: data selection consistency, nested data selection consis-
tency, model selection consistency, and nested model selection consistency; see Section 6.4
for precise definitions. We consider six possible model/data selection scores, and we es-
tablish which scores satisfy which properties; see Table 1. The SVC and the full marginal
likelihood are the only two of the six scores that satisfy all four consistency properties.

The intuition behind Bayesian model selection is often explained in terms of Occam’s
razor: a theory should be as simple as possible but no simpler. Data selection and nested
data selection encapsulate a complementary intuition: a theory should explain as much
of the data as possible but no more. In other words, when choosing between foreground
spaces, a consistent data selection score will asymptotically prefer the highest-dimensional
space on which the model is correctly specified.

As in standard model selection, a practical concern in data selection is robustness.
For instance, if the foreground model is even slightly misspecified on XF2 , then the empty
foreground XF1 = ∅ will be asymptotically preferred over XF2 . Since the SVC takes the form
of a generalized marginal likelihood, techniques for improving robustness with the standard
marginal likelihood—such as coarsened posteriors, power posteriors, and BayesBag—could
potentially be extended to address this issue (Miller and Dunson, 2019; Huggins and Miller,
2021). We leave exploration of such approaches to future work.

3.1 Data selection consistency

First, consider comparisons between different choices of foreground, F1 and F2. When the
model is correctly specified over F1 but not F2, we refer to asymptotic concentration on
F1 as “data selection consistency” (and vice versa if F2 is correct but not F1). For the
standard marginal likelihood of the augmented model, we have (see Section B.2)

1

N
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)) (15)

9
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Consistency property
Score d.s. nested d.s. m.s. nested m.s.

q̃(X(1:N)|F) full marginal likelihood 3 3 3 3

K(a) foreground marg lik, background volume 7 7 3 3

K(b) foreground marg NKSD 3 7 3 3

K(c) foreground marg KL, background volume 3 7 3 3

K(d) foreground NKSD, background volume 3 3 3 7

K foreground marg NKSD, background volume 3 3 3 3

Table 1: Consistency properties satisfied by various model/data selection scores. Only the
Stein volume criterion K and the full marginal likelihood q̃(X(1:N)|F) satisfy all
four desiderata. (d.s. = data selection, m.s. = model selection, marg = marginal,
lik = likelihood.)

where θklj,∗ := argminkl(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}, that is, θklj,∗ is the parameter value
that minimizes the kl divergence between the projected data distribution p0(xFj ) and the

projected model q(xFj |θ). Thus, q̃(X(1:N)|Fj) asymptotically concentrates on the Fj on
which the projected model can most closely match the data distribution in terms of kl.

In Theorem 17, we show that under mild regularity conditions, the Stein volume criterion
behaves precisely the same way but with the nksd in place of the kl:

1

N
log
K1

K2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )) (16)

where θnksdj,∗ := argminnksd(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}. Therefore, q̃(X(1:N)|F) and
K both yield data selection consistency. It is important here that the SVC uses a true
divergence, rather than a divergence up to a data-dependent constant. If we instead used

K(a) :=

(
2π

N

)mB/2
q(X

(1:N)
F ), (17)

which employs the foreground marginal likelihood q(X
(1:N)
F ) =

∫
q(X

(1:N)
F |θ)π(θ)dθ and a

background volume correction, we would get qualitatively different behavior (Section B.2):

1

N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)) +HF2 −HF1 (18)

where HFj := −
∫
p0(xFj ) log p0(xFj )dxFj is the entropy of p0(xFj ) for j ∈ {1, 2}. In short,

the naive score K(a) is a bad choice: it decides between data subspaces based not just on
how well the parametric foreground model performs, but also on the entropy of the data
distribution in each space. As a result, K(a) does not exhibit data selection consistency.

3.2 Nested data selection consistency

When XF2 ⊂ XF1 , we refer to the problem of deciding between subspaces F1 and F2 as
nested data selection, in counterpoint to nested model selection, where one model is a

10
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subset of another (Vuong, 1989). If the model q(x|θ) is well-specified over XF1 , then it is
guaranteed to be well-specified over any lower-dimensional sub-subspace XF2 ⊂ XF1 ; in this
case, we refer to asymptotic concentration on F1 as “nested data selection consistency”.
In this situation, kl(p0(xFj )‖q(xFj |θklj,∗)) and nksd(p0(xFj ), q(xFj |θnksdj,∗ )) are both zero for
j ∈ {1, 2}, making it necessary to look at higher-order terms in Equations 15 and 16. In
Section B.3, we show that if XF2 ⊂ XF1 , q(x|θ) is well-specified over XF1 , the background
models are well-specified, and their dimensions mB1 and mB2 are constant with respect to
N , then

1

logN
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

1

2
(mF2 +mB2 −mF1 −mB1) (19)

where mFj is the effective dimension of the parameter space of q(xFj |θ). In Theorem 17,
we show that under mild regularity conditions, the SVC behaves the same way:

1

logN
log
K1

K2

P0−−−−→
N→∞

1

2
(mF2 +mB2 −mF1 −mB1). (20)

Thus, so long as mF2 +mB2 > mF1 +mB1 whenever XF2 ⊂ XF1 , the marginal likelihood and
the SVC asymptotically concentrate on the larger foreground F1; hence, they both exhibit
nested data selection consistency. This is a natural assumption since the background model
is generally more flexible—on a per dimension basis—than the foreground model.

The volume correction (2π/N)mB/2 in the definition of the SVC is important for nested
data selection consistency (Equation 20). An alternative score without that correction,

K(b) :=

∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ, (21)

exhibits data selection consistency (Equation 16 holds for K(b)), but not nested data se-
lection consistency; see Sections B.2 and B.3. More subtly, the asymptotics of the SVC in
the case of nested data selection also depend on the variance of U-statistics. To illustrate,
consider a score that is similar to the SVC but uses k̂l instead of n̂ksd:

K(c) :=

(
2π

N

)mB/2 ∫
exp
(
−N k̂l(p0(xF )‖q(xF |θ))

)
π(θ)dθ (22)

where k̂l(p0(xF )‖q(xF |θ)) := − 1
N

∑N
i=1 log q(X

(i)
F |θ)−HF and HF is required to be known.

The score K(c) exhibits data selection consistency, but not nested data selection consistency.
The reason is that the error in estimating the kl is of order 1/

√
N by the central limit theo-

rem, and this source of error dominates the logN term contributed by the volume correction;
see Section B.3. Meanwhile, the error in estimating the nksd is of order 1/N when the
model is well-specified, due to the rapid convergence rate of the U-statistic estimator. Thus,
in the SVC, this source of error is dominated by the volume correction; see Theorem 12.

The nested data selection results we have described so far assume mB does not depend
on N , or at least mB2 −mB1 does not depend on N (Theorem 17). However, in Section 2.1,
we suggest setting mB = cB rB

√
N where cB is a constant and rB is the dimension of XB.

With this choice, the asymptotics of the SVC for nested data selection become (Theorem 17)

1√
N logN

log
K1

K2

P0−−−−→
N→∞

1

2
cB (rB2 − rB1). (23)

11
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Since rB1 < rB2 when XF2 ⊂ XF1 , the SVC concentrates on the larger foreground F1,
yielding nested data selection consistency. Going beyond the well-specified case, Theorem 17
shows that Equation 23 holds when nksd(p0(xF1)‖q(xF1 | θnksd1,∗ )) = nksd(p0(xF2)‖q(xF2 |
θnksd2,∗ )) 6= 0, that is, when the models are misspecified by the same amount as measured by
the nksd. Equation 23 holds regardless of whether mF1 is equal to mF2 .

3.3 Model selection and nested model selection consistency

Consider comparing different foreground models q1(xF |θ1) and q2(xF |θ2) over the same
subspace XF , while using the same background model. We say that a score exhibits “model
selection consistency” if it concentrates on the correct model, when one of the models
is correctly specified and the other is not. When the two models are nested and both
are correct, a score exhibits “nested model selection consistency” if it concentrates on the
simpler model.

Like the standard marginal likelihood, the SVC exhibits both types of model selection
consistency. The standard marginal likelihood satisfies (Section B.4)

1

N
log

q̃1(X(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)) (24)

where θklj,∗ := argminkl(p0(xF )‖qj(xF |θj)) for j ∈ {1, 2}. Analogously, by Theorem 17,

1

N
log
K1

K2

P0−−−−→
N→∞

1

T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )) (25)

where θnksdj,∗ := argminnksd(p0(xF )‖qj(xF |θj)) for j ∈ {1, 2}. Thus, for both scores, con-
centration occurs on the model that comes closer to the data distribution in terms of the
corresponding divergence (kl or nksd).

For nested model selection, suppose both foreground models are well-specified and
mB1 = mB2 . Letting mF ,j be the parameter dimension of qj(xF |θj), we have (Section B.5)

1

logN
log

q̃1(X(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

1

2
(mF ,2 −mF ,1). (26)

In Theorem 17, we show that the SVC behaves identically:

1

logN
log
K1

K2

P0−−−−→
N→∞

1

2
(mF ,2 −mF ,1). (27)

Here, a key role is played by the volume of the foreground parameter space, which quantifies
the foreground model complexity. The SVC accounts for this by integrating over foreground
parameter space. Meanwhile, a naive alternative that ignores the foreground volume,

K(d) :=

(
2π

N

)mB/2
exp
(
− N

T
min
θ

n̂ksd(p0(xF )‖q(xF |θ))
)
, (28)

exhibits model selection consistency (Equation 25 holds for K(d)) but not nested model
selection consistency (Section B.5). The Laplace and BIC approximations to the SVC
(Equations 10 and 11) explicitly correct for the foreground parameter volume without in-
tegrating.

12
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4. Related work

Projection pursuit methods are closely related to data selection in that they attempt to
identify “interesting” subspaces of the data. However, projection pursuit uses certain pre-
specified objective functions to optimize over projections, whereas our method allows one
to specify a model of interest (Huber, 1985).

Another related line of research is on Bayesian goodness-of-fit (GOF) tests, which com-
pute the posterior probability that the data comes from a given parametric model versus
a flexible alternative such as a nonparametric model. Our setup differs in that it aims to
compare among different semiparametric models. Nonetheless, in an effort to address the
GOF problem, a number of authors have developed nonparametric models with tractable
marginals (Verdinelli and Wasserman, 1998; Berger and Guglielmi, 2001), and using these
models as the background component in an augmented model could in theory solve data se-
lection problems. In practice, however, such models can only be applied to one-dimensional
or few-dimensional data spaces. In Section 7, we show that naively extending the method of
Berger and Guglielmi (2001) to the multi-dimensional setting has fundamental limitations.

There is a sizeable frequentist literature on GOF testing using discrepancies (Gret-
ton et al., 2012; Barron, 1989; Györfi and Van Der Meulen, 1991). Our proposed method
builds directly on the KSD-based GOF test proposed by Liu et al. (2016) and Chwialkowski
et al. (2016). However, using these methods to draw comparisons between different fore-
ground subspaces is non-trivial, since the set of alternative models considered by the GOF
test, though nonparametric, will be different over data spaces with different dimensionality.
Moreover, the Bayesian aspect of the SVC makes it more straightforward to integrate prior
information and employ hierarchical models.

In composite likelihood methods, instead of the standard likelihood, one uses the prod-
uct of the conditional likelihoods of selected statistics (Lindsay, 1988; Varin et al., 2011).
Composite likelihoods have seen widespread use, often for robustness or computational
purposes. However, in composite likelihood methods, the choice of statistics is fixed be-
fore performing inference. In contrast, in data selection the choice of statistics is a central
quantity to be inferred.

Relatedly, our work connects with the literature on robust Bayesian methods. Doksum
and Lo (1990) propose conditioning on the value of an insufficient statistic, rather than
the complete data set, when performing inference; also see Lewis et al. (2021). However,
making an appropriate choice of statistic requires one to know which aspects of the model
are correct; in contrast, our procedure infers the choice of statistic. The nksd posterior also
falls within the general class of Gibbs posteriors, which have been studied in the context of
robustness, randomized estimators, and generalized belief updating (Zhang, 2006a,b; Jiang
and Tanner, 2008; Bissiri et al., 2016; Jewson et al., 2018; Miller and Dunson, 2019).

Our theoretical results also contribute to the emerging literature on Stein discrepan-
cies (Anastasiou et al., 2021). Barp et al. (2019) recently proposed minimum kernelized
Stein discrepancy estimators and established their consistency and asymptotic normality.
In Section 6, we establish a Bayesian counterpart to these results, showing that the nksd
posterior is asymptotically normal (in the sense of Bernstein–von Mises) and admits a
Laplace approximation. To prove this result, we rely on the recent work of Miller (2021) on
the asymptotics of generalized posteriors. Since Barp et al. (2019) show that the kernelized

13



Weinstein and Miller

Stein discrepancy is related to the Hyvärinen divergence in that both are Stein discrep-
ancies, our work bears an interesting relationship to that of Shao et al. (2018), who use
a Bayesian version of the Hyvärinen divergence to perform model selection with improper
priors. They derive a consistency result analogous to Equation 16, however, their model
selection score takes the form of a prequential score, not a Gibbs marginal likelihood as in
the SVC, and cannot be used for data selection.

In independent recent work, Matsubara et al. (2022) propose a Gibbs posterior based on
the KSD and derive a Bernstein-von Mises theorem similar to Theorem 9 using the results
of Miller (2021). Their method is not motivated by the Bayesian data selection problem but
rather by (1) inference for energy-based models with intractable normalizing constants and
(2) robustness to ε-contamination. Their Bernstein-von Mises theorem differs from ours in
that it applies to a V-statistic estimator of the KSD rather than a U-statistic estimator of
the NKSD.

Our linear approximation to the minimum Stein discrepancy estimator (Section 2.3.3) is
inspired by previous work on empirical influence functions and the Swiss Army infinitesimal
jackknife (Giordano et al., 2019; Koh and Liang, 2017). These previous methods similarly
compute the linear response of an extremum estimator with respect to perturbations of the
data set, but focus on the effects of dropping datapoints rather than data subspaces.

5. Toy example

The purpose of this toy example is to illustrate the behavior of the Stein volume criterion,
and compare it to some of the defective alternatives listed in Table 1, in a simple setting
where all computations can be done analytically (Section A.3). In all of the following
experiments, we simulated data from a bivariate normal distribution: X(1), . . . , X(N) i.i.d. ∼
N ((0, 0)>,Σ0).

To set up the Stein volume criterion, we set T = 5 and we choose a radial basis func-
tion kernel, k(x, y) = exp(−1

2‖x − y‖
2
2), which factors across dimensions. We considered

both data set size-independent values of mB (in particular, mB = 5 rB) and data set size-
dependent values of mB (in particular, Equation 3 with α = 0.5, ν = 1, and D = 0.2,
where fractional values of D correspond to shared parameters across components in the
Pitman-Yor mixture model), obtaining very similar results in each case (shown in Figures 2
and 10, respectively). These choices of mB ensure that, except for at very small N , the
background model has more parameters per data dimension than each of the foreground
models considered below, which have just one. In particular, mB > 1 rB for all N (in the
size-independent case) and for N ≥ 5 (in the size-dependent case).

5.1 Data selection consistency

First, we set Σ0 to be a diagonal matrix with entries (1, 1/2), that is, Σ0 = diag(1, 1/2),
and for x ∈ R2, we consider the model

q(x|θ) = N (x | θ, I)

π(θ) = N (θ | (0, 0)>, 10I)
(29)

where I denotes the identity matrix. This parametric model is misspecified, owing to the
incorrect choice of covariance matrix. We consider two choices of foreground subspace: the
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first dimension (defined by the projection matrix VF1 = (1, 0)>) or the second dimension
(projection matrix VF2 = (0, 1)>). The model is only well-specified for F1 (not F2), so a
successful data selection procedure would asymptotically select F1.

In Figure 2a, we see that the SVC correctly concentrates on F1 as the number of
datapoints N increases, with the log SVC ratio growing linearly in N , as predicted by
Equation 16. Meanwhile, the naive alternative score K(a) (Equation 17) fails since it depends
on the foreground entropies, while K(b) (Equation 21) succeeds since the volume correction
is negligible in this case; see Section 3.1 and Table 1.

5.2 Nested data selection consistency

Next, we examine the nested data selection case. We use the same model (Equation 29), but
we set Σ0 = I so that the model is well-specified even without being projected. We compare
the complete data space (XF1 = X , projection matrix VF1 = I) to the first dimension alone
(projection matrix VF1 = (1, 0)>). Nested data selection consistency demands that the
higher-dimensional data space XF1 be preferred asymptotically, since the model is well-
specified for both XF1 and XF2 . Figure 2b shows that this is indeed the case for the Stein
volume criterion, with the log SVC ratio growing at a logN rate when mB is independent of
N , as predicted by Equation 20. When mB depends on N via the Pitman-Yor expression,
the log SVC ratio grows at a Nα logN rate (Figure 10b). Meanwhile, Figure 2b shows that
K(a) and K(b) both fail to exhibit nested data selection consistency, in accordance with our
theory (Section 3.2 and Table 1).

5.3 Model selection consistency (nested and non-nested)

Finally, we examine model selection and nested model selection consistency. We again
set Σ0 = I. We first compare the (well-specified) model q(x|θ) = N (x | θ, I) to the
(misspecified) model q(x|θ) = N (x | θ, 2I), using the prior π(θ) = N (θ | (0, 0)>, 10I) for
both models. As shown in Figure 2c, the SVC correctly concentrates on the first model,
with the log SVC ratio growing linearly in N , as predicted by Equation 25. The same
asymptotic behavior is exhibited by K(a), which is equivalent to the standard Bayesian
marginal likelihood in this setting (Section 3.3). Finally, to check nested model selection
consistency, we compare two well-specified nested models: q(x) = N (x | (0, 0)>, I) and
q(x|θ) = N (x | θ, I). Figure 2d shows that the SVC correctly selects the simpler model
(that is, the model with smaller parameter dimension) and the log SVC ratio grows as
logN (Equation 27). This, too, matches the behavior of the standard Bayesian marginal
likelihood, seen in the plot of K(a).

6. Theory

In this section we describe our formal theoretical results. We start by studying the NKSD
and then the NKSD posterior, before finally establishing data and model selection consis-
tency for the SVC.
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Figure 2: Behavior of the Stein volume criterion K, the foreground marginal likelihood with
a background volume correction K(a), and the foreground marginal nksd K(b) on
toy examples. Here, we set mB = 5 rB. The plots show the results for 5 randomly
generated data sets (thin lines) and the average over 100 random data sets (bold
lines).

6.1 Properties of the NKSD

Suppose X(1), . . . , X(N) are i.i.d. samples from a probability measure P on X ⊆ Rd having
density p(x) with respect to the Lebesgue measure. Let L1(P ) denote the set of measurable
functions f such that

∫
‖f(x)‖p(x)dx < ∞ where ‖ · ‖ is the Euclidean norm. We impose

the following regularity conditions to use the nksd to compare P with another probability
measure Q having density q(x) with respect to the Lebesgue measure; these are similar to
conditions used for the standard ksd in previous work (Liu et al., 2016; Barp et al., 2019).
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Condition 1 (Restrictions on p and q) Assume sp(x) := ∇x log p(x) and sq(x) :=
∇x log q(x) exist and are continuous for all x ∈ X , and assume X is connected and open.
Further, assume sp, sq ∈ L1(P ).

We refer to sp as the Stein score function of p. Note that existence of sp(x) implies
p(x) > 0. Now, consider a kernel k : X × X → R. The kernel k is said to be inte-
grally strictly positive definite if for any g : X → R such that 0 <

∫
X |g(x)|dx < ∞, we

have
∫
X
∫
X g(x)k(x, y)g(y)dxdy > 0. The kernel k is said to belong to the Stein class of P

if
∫
X ∇x(k(x, y)p(x))dx = 0 for all y ∈ X .

Condition 2 (Restrictions on k) Assume the kernel k is symmetric, bounded, integrally
strictly positive definite, and belongs to the Stein class of P .

The following result shows that the nksd can be written in a way that does not involve
sp; this is particularly useful for estimating the nksd when P is unknown.

Proposition 3 If Conditions 1 and 2 hold, then the nksd is finite and

nksd(p(x)‖q(x)) :=
EX,Y∼p[u(X,Y )]

EX,Y∼p[k(X,Y )]
(30)

where

u(x, y) = sq(x)>sq(y)k(x, y) + sq(x)>∇yk(x, y) + sq(y)>∇xk(x, y) + trace(∇x∇>y k(x, y)).
(31)

The proof is in Section C.1. Next, we show the nksd satisfies the properties of a divergence.

Proposition 4 If Conditions 1 and 2 hold, then

nksd(p(x)‖q(x)) ≥ 0, (32)

with equality if and only if p(x) = q(x) almost everywhere.

The proof is in Section C.1. Unlike the standard ksd, but like the kl divergence, the nksd
exhibits subsystem independence (Caticha, 2004, 2011; Rezende, 2018): if two distributions
P and Q have the same independence structure, then the total nksd separates into a sum
of individual nksd terms. This is formalized in Proposition 6.

Condition 5 (Shared independence structure) Let x = (x>1 , x
>
2 )> be a decomposi-

tion of a vector x ∈ Rd into two subvectors, x1 and x2. Assume p(x) and q(x) fac-
tor as p(x) = p(x1)p(x2) and q(x) = q(x1)q(x2), and that the kernel k factors as
k(x, y) = k1(x1, y1)k2(x2, y2) where k1 and k2 both satisfy Condition 2.

Proposition 6 (Subsystem independence) If Conditions 1, 2, and 5 hold, then

nksd(p(x)‖q(x)) = nksd(p(x1)‖q(x1)) + nksd(p(x2)‖q(x2)) (33)

where the first term on the right-hand side uses kernel k1 and the second term uses k2.

See Section C.1 for the proof. Subsystem independence is powerful since it separates the
problem of evaluating the foreground model from that of evaluating the background model.
A modified version applies to the estimator n̂ksd(p‖q) (Equation 5); see Proposition 20.
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6.2 Bernstein–von Mises theorem for the NKSD posterior

In this section, we establish asymptotic properties of the SVC and, more broadly, of its
corresponding generalized posterior, which we refer to as the nksd posterior, defined as

πN (θ) ∝ exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ). (34)

In particular, in Theorem 9, we show that the nksd posterior concentrates and is asymptot-
ically normal, and we establish that the Laplace approximation to the SVC (Equation 10)
is asymptotically correct. These results form a Bayesian counterpart to those of Barp et al.
(2019), who establish the consistency and asymptotic normality of minimum ksd estima-
tors. Thus, in both the frequentist and Bayesian contexts, we can replace the average log
likelihood with the negative ksd and obtain similar key properties. Our results in this
section do not depend on whether or not we are working with a foreground subspace, so we
suppress the xF notation.

Let Θ ⊆ Rm, and let {Qθ : θ ∈ Θ} be a family of probability measures on X ⊆ Rd
having densities qθ(x) with respect to Lebesgue measure. For notational convenience, we
sometimes write q(x|θ) instead of qθ(x). Suppose the data X(1), . . . , X(N) are i.i.d. samples
from some probability measure P0 on X having density p0(x) with respect to Lebesgue
measure. To ensure the nksd satisfies the properties of a divergence for all qθ, and that
convergence of n̂ksd is uniform on compact subsets of Θ (Proposition 21), we require the
following.

Condition 7 Assume Conditions 1 and 2 hold for p0, k, and qθ for all θ ∈ Θ. Further,
assume that the kernel k has continuous and bounded partial derivatives up to and including
second order, and k(x, y) > 0 for all x, y ∈ X .

Now we can set up the generalized posterior. First define

fN (θ) :=
1

T
n̂ksd(p0(x)‖q(x|θ)) =

1

T

∑
i 6=j uθ(X

(i), X(j))∑
i 6=j k(X(i), X(j))

, (35)

where uθ(x, y) is the u(x, y) function from Equation 5 with qθ in place of q. For the case
of N = 1, we define f1(θ) = 0 by convention. Note that −NfN (θ) plays the role of the log
likelihood. Also define

f(θ) :=
1

T
nksd(p0(x)‖q(x|θ)), (36)

zN :=

∫
Θ

exp(−NfN (θ))π(θ)dθ,

πN (θ) :=
1

zN
exp(−NfN (θ))π(θ),

where π(θ) is a prior density on Θ. Note that πN (θ)dθ is the NKSD posterior and zN is the
corresponding generalized marginal likelihood employed in the SVC. Denote the gradient
and Hessian of f by f ′(θ) = ∇θf(θ) and f ′′(θ) = ∇2

θf(θ), respectively. To ensure that
the nksd posterior is well defined and has an isolated maximum, we assume the following
condition.
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Condition 8 Suppose Θ ⊆ Rm is a convex set and (a) Θ is compact or (b) Θ is open and
fN is convex on Θ with probability 1 for all N . Assume zN <∞ a.s. for all N . Assume f
has a unique minimizer θ∗ ∈ Θ, f ′′(θ∗) is invertible, π is continuous at θ∗, and π(θ∗) > 0.

By Proposition 4, f has a unique minimizer whenever {Qθ : θ ∈ Θ} is well-specified and
identifiable, that is, when Qθ = P0 for some θ and θ 7→ Qθ is injective.

In Theorem 9 below, we establish the following results: (1) the minimum n̂ksd converges
to the minimum nksd; (2) πN concentrates around the minimizer of the nksd; (3) the
Laplace approximation to zN is asymptotically correct; and (4) πN is asymptotically normal
in the sense of Bernstein–von Mises. The primary regularity conditions we need for this
theorem are restraints on the derivatives of sqθ with respect to θ (Condition 10). Our proof of
Theorem 9 relies on the theory of generalized posteriors developed by Miller (2021). We use
‖·‖ for the Euclidean–Frobenius norms: for vectors A ∈ RD, ‖A‖ = (

∑
iA

2
i )

1/2; for matrices
A ∈ RD×D, ‖A‖ = (

∑
i,j A

2
i,j)

1/2; for tensors A ∈ RD×D×D, ‖A‖ = (
∑

i,j,k A
2
i,j,k)

1/2; and so
on.

Theorem 9 If Conditions 7, 8, and 10 hold, then there is a sequence θN → θ∗ a.s. such
that:

1. fN (θN )→ f(θ∗), f
′
N (θN ) = 0 for all N sufficiently large, and f ′′N (θN )→ f ′′(θ∗) a.s.,

2. letting Bε(θ∗) := {θ ∈ Rm : ‖θ − θ∗‖ < ε}, we have∫
Bε(θ∗)

πN (θ)dθ
a.s.−−−−→

N→∞
1 for all ε > 0, (37)

3.

zN ∼
exp(−NfN (θN ))π(θ∗)

|det f ′′(θ∗)|1/2

(
2π

N

)m/2
(38)

almost surely, where aN ∼ bN means that aN/bN → 1 as N →∞, and

4. letting hN denote the density of
√
N(θ − θN ) when θ is sampled from πN , we have

that hN converges to N (0, f ′′(θ∗)
−1) in total variation, that is,∫

Rm

∣∣∣hN (θ̃)−N (θ̃ | 0, f ′′(θ∗)−1)
∣∣∣dθ̃ a.s.−−−−→

N→∞
0. (39)

The proof is in Section C.2. We write ∇2
θsqθ to denote the tensor in Rd×m×m in which entry

(i, j, k) is ∂2sqθ(x)i/∂θj∂θk. Likewise, ∇3
θsqθ denotes the tensor in Rd×m×m×m in which

entry (i, j, k, `) is ∂3sqθ(x)i/∂θj∂θk∂θ`. We write N to denote the set of natural numbers.

Condition 10 (Stein score regularity) Assume sqθ(x) has continuous third-order par-
tial derivatives with respect to the entries of θ on Θ. Suppose that for any compact, convex
subset C ⊆ Θ, there exist continuous functions g0,C , g1,C ∈ L1(P0) such that for all θ ∈ C,
x ∈ X ,

‖sqθ(x)‖ ≤ g0,C(x),

‖∇θsqθ(x)‖ ≤ g1,C(x).
(40)
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Further, assume there is an open, convex, bounded set E ⊆ Θ such that θ∗ ∈ E, Ē ⊆ Θ,
and the sets { 1

N

N∑
i=1

‖∇2
θsqθ(X

(i))‖ : N ∈ N, θ ∈ E
}
, (41)

{ 1

N

N∑
i=1

‖∇3
θsqθ(X

(i))‖ : N ∈ N, θ ∈ E
}

(42)

are bounded with probability 1.

Next, Theorem 11 shows that in the special case where qθ(x) is an exponential family, many
of the conditions of Theorem 9 are automatically satisfied.

Theorem 11 Suppose {Qθ : θ ∈ Θ} is an exponential family with densities of the form
qθ(x) = λ(x) exp(θ>t(x) − κ(θ)) for x ∈ X ⊆ Rd. Assume Θ = {θ ∈ Rm : |κ(θ)| < ∞},
and assume Θ is convex, open, and nonempty. Assume log λ(x) and t(x) are continuously
differentiable on X , ‖∇x log λ(x)‖ and ‖∇xt(x)‖ are in L1(P0), and the rows of the Jacobian
matrix ∇xt(x) ∈ Rm×d are linearly independent with positive probability under P0. Suppose
Condition 7 holds, f has a unique minimizer θ∗ ∈ Θ, the prior π is continuous at θ∗, and
π(θ∗) > 0. Then the assumptions of Theorem 9 are satisfied for all N sufficiently large.

The proof is in Section C.2.

6.3 Asymptotics of the Stein volume criterion

The Laplace approximation to the SVC uses the estimate n̂ksd and its minimizer θN ,
rather than the true nksd and its minimizer θ∗. To establish the consistency properties of
the SVC, we need to understand the relationship between the two. To do so, we adapt a
standard approach to performing such an analysis of the marginal likelihood, for instance,
as in Theorem 1 of Dawid (2011).

Theorem 12 Assume the conditions of Theorem 9 hold, and assume sqθ∗ and ∇θ
∣∣
θ=θ∗

sqθ
are in L2(P0). Then as N →∞,

fN (θN )− fN (θ∗) = OP0(N−1). (43)

Further, if nksd(p0(x)‖q(x|θ∗)) > 0 then

fN (θ∗)− f(θ∗) = OP0(N−1/2), (44)

whereas if nksd(p0(x)‖q(x|θ∗)) = 0 then

fN (θ∗)− f(θ∗) = OP0(N−1). (45)

The proof is in Section C.3. Remarkably, Equation 45 shows that fN (θ∗) converges to f(θ∗)
more rapidly when the model is well-specified, specifically, at a 1/N rate instead of 1/

√
N .

This is unusual and is crucial for our results in Section 6.4. The standard log likelihood does
not exhibit this rapid convergence; see Section B.1. This property of the nksd derives from
similar properties exhibited by the standard ksd (Liu et al., 2016, Theorem 4.1). Combined
with Theorem 9 (part 3), Theorem 12 implies that when the model is misspecified, the
leading order term of log zN is −Nf(θ∗), whereas when the model is well-specified, the
leading order term is −1

2 m logN .
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6.4 Data and model selection consistency of the SVC

In this section, we establish the asymptotic consistency of the Stein volume criterion (SVC)
when used for data selection, nested data selection, model selection, and nested model
selection; see Theorem 17. This provides rigorous justification for the claims in Section 3.
These results are all in the context of pairwise comparisons between two models or two model
projections, M1 and M2. Before proving the results, we formally define the consistency
properties discussed in Section 3. Each property is defined in terms of a pairwise score
ρ(M1,M2), such as ρ(M1,M2) = log(K1/K2). For simplicity, we assume ρ(M1,M2) =
−ρ(M2,M1); this is satisfied for all of the cases we consider. Let dim(·) denote the dimension
of a real space.

Definition 13 (Data selection consistency) For j ∈ {1, 2}, consider foreground model
projections Mj := {q(xFj |θ) : θ ∈ Θ}. We say that ρ satisfies “data selection consistency”
if ρ(M1,M2)→∞ as N →∞ when M1 is well-specified with respect to p0(xF1) and M2 is
misspecified with respect to p0(xF2).

Definition 14 (Nested data selection consistency) For j ∈ {1, 2}, consider fore-
ground model projections Mj := {q(xFj |θ) : θ ∈ Θ}. We say that ρ satisfies “nested data
selection consistency” if ρ(M1,M2)→∞ as N →∞ when M1 is well-specified with respect
to p0(xF1), XF2 ⊂ XF1, and dim(XF2) < dim(XF1).

Definition 15 (Model selection consistency) For j ∈ {1, 2}, consider foreground mod-
els Mj := {qj(xF |θj) : θj ∈ Θj}. We say that ρ satisfies “model selection consistency” if
ρ(M1,M2) → ∞ as N → ∞ when M1 is well-specified with respect to p0(xF ) and M2 is
misspecified.

Definition 16 (Nested model selection consistency) For j ∈ {1, 2}, consider fore-
ground models Mj := {qj(xF |θj) : θj ∈ Θj}. We say that ρ satisfies “nested model selection
consistency” if ρ(M1,M2)→∞ as N →∞ when M1 is well-specified with respect to p0(xF ),
M1 ⊂M2, and dim(Θ1) < dim(Θ2).

In each case, ρ may diverge almost surely (“strong consistency”) or in probability (“weak
consistency”). Note that in Definitions 13–14, the difference between M1 and M2 is the
choice of foreground data space F , whereas in Definitions 15–16, M1 and M2 are over the
same foreground space but employ different model spaces.

In Theorem 17, we show that the SVC has the asymptotic properties outlined in Sec-
tion 3. In combination with the subsystem independence properties of the NKSD (Propo-
sitions 6 and 20), Theorem 17 also leads to the conclusion that the SVC approximates the
NKSD marginal likelihood of the augmented model (Equation 8). Our proof is similar in
spirit to previous results for model selection with the standard marginal likelihood, notably
those of Hong and Preston (2005) and Huggins and Miller (2021), but relies on the special
properties of the nksd marginal likelihood in Theorem 12.

Theorem 17 For j ∈ {1, 2}, assume the conditions of Theorem 12 hold for model Mj

defined on XFj , with density qj(xFj |θj) for θj ∈ Θj ⊆ RmFj ,j . Let Kj,N be the Stein
volume criterion for Mj, with background model penalty mBj = mBj (N), and let θj,∗ :=
argminθj nksd(p0(xFj )‖qj(xFj |θj)). Then:
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1. If mBj = o(N/ logN) for j ∈ {1, 2}, then

1

N
log
K1,N

K2,N

P0−−−−→
N→∞

1

T
nksd(p0(xF2)‖q2(xF2 |θ2,∗))−

1

T
nksd(p0(xF1)‖q1(xF1 |θ1,∗)).

2. If nksd(p0(xF1)‖q1(xF1 |θ1,∗)) = nksd(p0(xF2)‖q2(xF2 |θ2,∗)) = 0 and mB2 −mB1 does
not depend on N , then

1

logN
log
K1,N

K2,N

P0−−−−→
N→∞

1

2
(mF2,2 +mB2 −mF1,1 −mB1).

3. If nksd(p0(xF1)‖q1(xF1 |θ1,∗)) = nksd(p0(xF2)‖q2(xF2 |θ2,∗)), mB1 = cB1
√
N , and

mB2 = cB2
√
N , where cB1 and cB2 are positive and constant in N , then

1√
N logN

log
K1,N

K2,N

P0−−−−→
N→∞

1

2
(cB2 − cB1).

The proof is in Section C.4. In particular, assuming the conditions of Theorem 12,
we obtain the following consistency results in terms of convergence in probability. Let
Dj := nksd(p0(xFj )‖qj(xFj |θj,∗)) for j ∈ {1, 2}.

• If mBj = o(N/ logN) then the SVC exhibits data selection consistency and model
selection consistency. This holds by Theorem 17 (part 1) since D2 > D1 = 0.

• If mB1 = mB2 then the SVC exhibits nested model selection consistency. This holds
by Theorem 17 (part 2) since D1 = D2 = 0, mB2 −mB1 = 0, and mF2,2 > mF1,1.

• Consider a nested data selection problem with XF2 ⊂ XF1 . If (A) mB2−mB1 does not
depend on N and mF2,2+mB2 > mF1,1+mB1 or (B) mBj = cBj

√
N and cB2 > cB1 > 0,

then the SVC exhibits nested data selection consistency. Cases A and B hold by
Theorem 17 (parts 2 and 3, respectively) since D1 = D2 = 0.

7. Application: probabilistic PCA

Probabilistic principal components analysis (pPCA) is a commonly used tool for modeling
and visualization. The basic idea is to model the data as linear combinations of k latent
factors plus Gaussian noise. The inferred weights on the factors are frequently used to
provide low-dimensional summaries of the data, while the factors themselves describe major
axes of variation in the data. In practice, pPCA is often applied in settings where it is likely
to be misspecified – for instance, the weights are often clearly non-Gaussian. In this section,
we show how data selection can be used to uncover sources of misspecification and to analyze
how this misspecification affects downstream inferences.

The generative model used in pPCA is

Z(i) ∼ N (0, Ik),

X(i)|Z(i) ∼ N (HZ(i), vId),
(46)
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independently for i = 1, . . . , N , where Ik is the k-dimensional identity matrix, Z(i) ∈ Rk is
the weight vector for datapoint i, H ∈ Rd×k is the unknown matrix of latent factors, and
v > 0 is the variance of the noise. To form a Laplace approximation for the Stein volume
criterion, we follow the approach developed by Minka (2001) for the standard marginal
likelihood. Specifically, we parameterize H as

H = U(L− vIk)1/2 (47)

where U is a d×k matrix with orthonormal columns (that is, it lies on the Stiefel manifold)
and L is a k × k diagonal matrix. We use the priors suggested by Minka (2001),

U ∼ Uniform(U),

Lii ∼ InverseGamma(α/2, α/2),

v ∼ InverseGamma
(
(α/2 + 1)(d− k)− 1, (α/2)(d− k)

)
,

(48)

where U is the set of d× k matrices with orthonormal columns and Lii is the ith diagonal
entry of L. We set α = 0.1 in the following experiments, and we use pymanopt (Townsend
et al., 2016) to optimize U over the Stiefel manifold (Section D).

7.1 Simulations

In simulations, we evaluate the ability of the SVC to detect partial misspecification. We
set d = 6, draw the first four dimensions from a pPCA model with k = 2 and

H =


1 0
−1 1

0 1
−1 −1

 , (49)

and generate dimensions 5 and 6 in such a way that pPCA is misspecified. We consider two
misspecified scenarios: scenario A (Figure 3a) is that

W (i) ∼ Bernoulli(0.5),

X
(i)
5:6 |W

(i) ∼ N (0,ΣW (i)) ,
(50)

where ΣW (i) = (0.05)W
(i)
I2. Scenario B (Figure 3d) is the same but with

ΣW (i) =

(
1 (−1)W

(i)
0.99

(−1)W
(i)

0.99 1

)
. (51)

Scenario B is more challenging because the marginals of the misspecified dimensions are
still Gaussian, and thus, misspecification only comes from the dependence between X5 and
X6. As illustrated in Figures 3b and 3e, both kinds of misspecification are very hard to see
in the lower-dimensional latent representation of the data.

Our method can be used to both (i) detect misspecified subsets of dimensions, and
(ii) conversely, find a maximal subset of dimensions for which the pPCA model provides a
reasonable fit to the data. We set T = 0.05 in the SVC, based on the calibration procedure
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Figure 3: Data selection in the probabilistic PCA model.
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in Section A.1 (Section D.3). We use the Pitman-Yor mixture model expression for the
background model dimension (Equation 3), with α = 0.5, ν = 1, and D = 0.2. This
value of D ensures that the number of background model parameters per data dimension
is greater than the number of foreground model parameters per data dimension except
for at very small N , since there are two foreground parameters for each additional data
dimension in the pPCA model, and mB > 2 rB for N ≥ 20. We performed leave-one-out
data selection, comparing the foreground space XF0 = X to foreground spaces XFj for
j ∈ {1, . . . , d}, which exclude the jth dimension of the data. We computed the log SVC
ratio log(Kj/K0) = logKj− logK0 using the BIC approximation to the SVC (Section 2.3.2)
and the approximate optima technique (Section 2.3.3). We quantify the performance of the
method in detecting misspecified dimensions in terms of the balanced accuracy, defined as
(TN/N + TP/P )/2 where TN is the number of true negatives (dimension by dimension),
N is the number of negatives, TP is the number of true positives, and P is the number of
positives. Experiments were repeated independently five times. Figures 3c and 3f show that
as the sample size increases, the SVC correctly infers that dimensions 1 through 4 should
be included and dimensions 5 and 6 should be excluded.

7.2 Comparison with a nonparametric background model

To benchmark our method, we compare with an alternative approach that uses an explicit
augmented model. The Pólya tree is a nonparametric model with a closed-form marginal
likelihood that is tractable for one-dimensional data (Lavine, 1992). We define a flexible
background model by sampling each dimension j of the background space independently as

Xj ∼ PolyaTree(F, F̃, η), (52)

with the Pólya tree constructed as by Berger and Guglielmi (2001) (Section D.4). We set
F = N (0, 10), F̃ = N (0, 10), and η = 1000 so that the model is weighted only very weakly
towards the base distribution.

We performed data selection using the marginal likelihood of the Pólya tree augmented
model, computing the marginal of the pPCA foreground model using the approximation
of Minka (2001). The accuracy results for data selection are in Figures 3c and 3f. On
scenario A (Equation 50), the Pólya tree augmented model requires significantly more data
to detect which dimensions are misspecified. On scenario B (Equation 51) the Pólya tree
augmented model fails entirely, preferring the full data space XF0 = X which includes all
dimensions (Figure 3f). The reason is that the background model is misspecified due to
the assumption of independent dimensions, and thus, the asymptotic data selection results
(Equations 15 and 19) do not hold. This could be resolved by using a richer background
model that allows for dependence between dimensions, however, computing the marginal
likelihood under such a model would be computationally challenging. Even with the inde-
pendence assumption, the Pólya tree approach is already substantially slower than the SVC
(Figure 3g).
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7.3 Application to pPCA for single-cell RNA sequencing

Single-cell RNA sequencing (scRNAseq) has emerged as a powerful technology for high-
throughput characterization of individual cells. It provides a snapshot of the transcriptional
state of each cell by measuring the number of RNA transcripts from each gene. PCA is
widely used to study scRNAseq data sets, both as a method for visualizing different cell
types in the data set and as a pre-processing technique, where the latent embedding is used
for downstream tasks like clustering and lineage reconstruction (Qiu et al., 2017; van Dijk
et al., 2018). We applied data selection to answer two practical questions in the application
of probabilistic PCA to scRNAseq data: (1) Where is the pPCA model misspecified? (2)
How does partial misspecification of the pPCA model affect downstream inferences?

7.3.1 Model criticism

Our first goal was to verify that the SVC provides reasonable inferences of partial model
misspecification in practice. We examined two different scRNAseq data sets, focusing for il-
lustration on a data set from human peripheral blood mononuclear cells taken from a healthy
donor, and pre-processed the data following standard procedures in the field (Section D.5).
We subsampled each data set to 200 genes (selected randomly from among the 2000 most
highly expressed) and 2000 cells (selected randomly) for computational tractability, then
mean-subtracted and standardized the variance of each gene, again following standard prac-
tice in the field. The number of latent components k was set to 3, based on the procedure
of Minka (2000). We performed leave-one-out data selection, comparing the foreground
space XF0 := X to foreground spaces XFj that exclude the jth gene. We computed the log
SVC ratio logKj − logK0 using the BIC approximation to the SVC (Section 2.3.2) and the
approximate optima technique (Section 2.3.3). We used the same setting of T and of mB as
was used in simulation, resulting in a background model complexity of mB = 20 rB for data
sets of this size. Based on the SVC criterion, 162 out of 200 genes should be excluded from
the foreground pPCA model, suggesting widespread partial misspecification. Figure 4 com-
pares the histogram of individual genes to their estimated density under the pPCA model
inferred for XF0 = X . Those genes most favored to be excluded (namely, UBE2V2 and
IRF8) show extreme violations of normality, in stark contrast to those genes most favored
to be included (MT-CO1 and RPL6).

Next, we compared the results of our data selection approach to a more conventional
strategy for model criticism. Criticism of partially misspecified models can be challeng-
ing in practice because misspecification of the model over some dimensions of the data
can lead to substantial model-data mismatch in dimensions for which the model is indeed
well-specified (Jacob et al., 2017). The standard approach to model criticism—first fit a
model, then identify aspects of the data that the model poorly explains—can therefore
be misleading if our aim is to determine how the model might be improved (e.g., in the
context of “Box’s loop”, Blei, 2014). In particular, standard approaches such as poste-
rior predictive checks will be expected to overstate problems with components of the model
that are well-specified and understate problems with components of the model that are mis-
specified. Bayesian data selection circumvents this issue by evaluating augmented models,
which replace potentially misspecified components of the model by well-specified compo-
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Figure 4: (a,b) Histograms of gene expression (after pre-processing), i.e., X
(1)
j , . . . , X

(N)
j ,

for genes j selected to be included in the foreground space based on the log SVC
ratio logKj − logK0. The estimated density under the pPCA model is shown in
blue. (c,d) Histograms of example genes selected to be excluded. Higher ranks
(in each title) correspond to larger log SVC ratios.

nents. To illustrate the difference between these approaches in practice, we compared the
SVC to a closely analogous measurement of error for the full foreground model (inferred
from XF0 = X ),

log Ej − log E0 := −N
T
n̂ksd(p0(xFj )‖q(xFj |θ0,N )) +

N

T
n̂ksd(p0(x)‖q(x|θ0,N )) (53)

where θ0,N := argmin n̂ksd(p0(x)‖q(x|θ)) is the minimum nksd estimator for the fore-
ground model when including all dimensions. This model criticism score evaluates the
amount of model-data mismatch contributed by the subspace XBj when modeling all data
dimensions with the foreground model. For comparison, the BIC approximation to the log
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Figure 5: Scatterplot comparison and projected marginals of the leave-one-out log SVC
ratio, logKj − logK0 (with mBj = mF0 −mFj ), and the conventional full model
criticism score, log Ej − log E0, for each gene.

SVC ratio is

logKj − logK0 ≈ −
N

T
n̂ksd(p0(xFj )‖q(xFj |θj,N ) +

N

T
n̂ksd(p0(x)‖q(x|θ0,N ))

+
mBj +mFj −mF0

2
log

(
2π

N

) (54)

where θj,N := argmin n̂ksd(p0(xFj )‖q(xFj |θ)) is the minimum nksd estimator for the pro-
jected foreground model applied to the restricted data set, which we approximate as θ0,N

plus the implicit function correction derived in Section 2.3.3. Figure 5 illustrates the differ-
ences between the conventional criticism approach (log Ej − log E0) and the log SVC ratio
on an scRNAseq data set. To enable direct comparison of the two methods, we focus on the
lower order terms of Equation 54, that is, we set mBj = mF0−mFj . We see that the amount
of error contributed by XBj , as judged by the SVC, is often substantially higher than the
amount indicated by the conventional criticism approach, implying that the conventional
criticism approach understates the problems caused by individual genes and, conversely,
overstates the problems with the rest of the model.

Using the SVC instead of a standard criticism approach can also help clarify trends in
where the proposed model fails. A prominent concern in scRNAseq data analysis is the
common occurrence of cells that show exactly zero expression of a certain gene (Pierson
and Yau, 2015; Hicks et al., 2018). We found a Spearman correlation of ρ = 0.89 between
the conventional criticism log Ej − log E0 for a gene j and the fraction of cells with zero
expression of that gene j, suggesting that this is an important source of model-data mis-
match in this scRNAseq data set, but not necessarily the only source (Figure 6a). However,
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Figure 6: (a) Comparison of the conventional criticism score, for each gene j, and the frac-
tion of cells that show zero expression of that gene j in the raw data. Spearman
ρ = 0.89, p < 0.01. (b) Same as (a) but with the log SVC ratio. Spearman
ρ = 0.98, p < 0.01. In orange are genes that would be included when using a
background model with cB = 20 and in blue are genes that would be excluded.
(c) Same as (a) for a data set taken from a MALT lymphoma (Section D.5).
Spearman ρ = 0.81, p < 0.01. (d) Same as (b) for the MALT lymphoma data
set. Spearman ρ = 0.99, p < 0.01.

the log SVC ratio yields a Spearman correlation of ρ = 0.98, suggesting instead that the
amount of model-data mismatch can be entirely explained by the fraction of cells with zero
expression (Figure 6b). These observations are repeatable across different scRNAseq data
sets (Figure 6c, 6d).

7.3.2 Evaluating robustness

Data selection can also be used to evaluate the robustness of the foreground model to
partial model misspecification. This is particularly relevant for pPCA on scRNAseq data,
since the inferred latent embeddings of each cell are often used for downstream tasks such
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as clustering, lineage reconstruction, and so on. Misspecification may produce spurious
conclusions, or alternatively, misspecification may be due to structure in the data that is
scientifically interesting. To understand how partial misspecification of the pPCA model
affects the latent representation of cells (and thus, downstream inferences), we performed
data selection with a sequence of background model complexities cB, where mB = cB rB
(Figure 7a). We inferred the pPCA parameters based only on genes that the SVC selects to
include in the foreground subspace. Figures 7e-7b visualize how the latent representation
changes as cB grows and fewer genes are selected. We can observe the representation
morphing into a standard normal distribution, as we would expect in the case where the
pPCA model is well-specified. However, the relative spatial organization of cells in the latent
space remains fairly stable, suggesting that this aspect of the latent embedding is robust
to partial misspecification. We can conclude that, at least in this example, misspecification
strongly contributes to the non-Gaussian shape of the latent representation of the data set,
but not to the distinction between subpopulations.

8. Application: Glass model of gene regulation

A central goal in the study of gene expression is to discover how individual genes regulate one
another other’s expression. Early studies of single cell gene expression noted the prevalence
of genes that were bistable in their expression level (Shalek et al., 2013; Singer et al., 2014).
This suggests a simple physical analogy: if individual gene expression is a two-state system,
we might study gene regulation with the theory of interacting two-state systems, namely
spin glasses. We can consider for instance a standard model of this type in which each
cell i is described by a vector of spins zi = (zi1, . . . , zid)

> drawn from an Ising model,
specifying whether each gene j ∈ {1, . . . , d} is “on” or “off”. In reality, gene expression
lies on a continuum, so we use a continuous relaxation of the Ising model and parameterize
each spin using a logistic function, setting zij1(xij , µ, τ) = 1/(1 + exp(−τ(xij − µ))) and
zij2(xij , µ, τ) = 1− zij1(xij , µ, τ). Here, xij is the observed expression level of gene j in cell
i, the unknown parameter µ controls the threshold for whether the expression of a gene is
“on” (such that zij ≈ (1, 0)>) or “off” (such that zij ≈ (0, 1)>), and the unknown parameter
τ > 0 controls the sharpness of the threshold. The complete model is then given by

X(i) ∼ p(xi|H,J, µ,τ) :=

1

ZH,J,µ,τ
exp
(∑

j

H>j zij(xij , τ, µ) +
∑
j′>j

z>ij(xij , τ, µ)Jjj′zij′(xij′ , τ, µ)
)

where ZH,J,µ,τ is the unknown normalizing constant of the model, and the vectors Hj ∈ R2

and matrices Jjj′ ∈ R2×2 are unknown parameters. This model is motivated by exper-
imental observations and is closely related to RNAseq analysis methods that have been
successfully applied in the past (Friedman et al., 2000; Friedman, 2004; Ding and Peng,
2005; Chen et al., 2015; Banerjee et al., 2008; Duvenaud et al., 2008; Liu et al., 2009;
Huynh-Thu et al., 2010; Moignard et al., 2015; Matsumoto et al., 2017). However, from a
biological perspective we can expect that serious problems may occur when applying the
model naively to an scRNAseq data set. Genes need not exhibit bistable expression: it is
straightforward in theory to write down models of gene regulation that do not have just one
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Figure 7: (a) Histogram of log SVC ratios logKj − logK0 for all 200 genes in the data set
(with mBj = mF0 −mFj ). Dotted lines show the value of the volume correction
term in the SVC for different choices of background model complexity cB; for
each choice, genes with logKj − logK0 values above the dotted line would be
excluded from the foreground subspace based on the SVC. (b) Posterior mean
of the first two latent variables (z1 and z2), with the pPCA model applied to
the genes selected with a background model complexity of cB = 10 (keeping 23
genes in the foreground). (c-e) Same as (b), but with cB = 20 (keeping 38 genes),
cB = 40 (keeping 87 genes) and cB = 60 (keeping all 200 genes). In (a)-(d), the
points are colored using the z1 value when cB = 60.

or two steady states—gene expression may fall on a continuum, or oscillate, or have three
stable states—and many alternative patterns have been well-documented empirically (Alon,
2019). Interactions between genes may also be more complex than the model assumes, in-
volving for instance three-way dependencies between genes. All of these biological concerns
can potentially produce severe violations of the proposed two-state glass model’s assump-
tions. Data selection provides a method for discovering where the proposed model applies.

Applying standard Bayesian inference to the glass model is intractable, since the nor-
malizing constant is unknown (it is an energy-based model). However, the normalizing
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constant does not affect the SVC, so we can still perform data selection. We used the
variational approximation to the SVC in Section 2.3.4. We placed a Gaussian prior on H
and a Laplace prior on each entry of J to encourage sparsity in the pairwise gene interac-
tions; we also used Gaussian priors for µ and τ after applying an appropriate transform to
remove constraints (Section E.1). Following the logic of stochastic variational inference, we
optimized the SVC variational approximation using minibatches of the data and a reparam-
eterization gradient estimator (Hoffman et al., 2013; Kingma and Welling, 2014; Kucukelbir
et al., 2017). We also simultaneously stochastically optimized the set of genes included in
the foreground subspace, using Leave-One-Out REINFORCE (Kool et al., 2019; Dimitriev
and Zhou, 2021) to estimate log-odds gradients. We implemented the model and inference
strategy within the probabilistic programming language Pyro by defining a new distribution
with log probability given by the negative NKSD (Bingham et al., 2019). Pyro provides
automated, GPU-accelerated stochastic variational inference, requiring less than an hour
for inference on data sets with thousands of cells. See Section E.1 for more details on these
inference procedures.

We examined three scRNAseq data sets, taken from (i) peripheral blood monocytes
(PBMCs) from a healthy donor (2,428 cells), (ii) a MALT lymphoma (7,570 cells), and (iii)
mouse neurons (10,658 cells) (Section E.2). We preprocessed the data following standard
protocols and focused on 200 high expression, high variability genes in each data set, based
on the metric of Gigante et al. (2020). We set T = 0.05 as in Section 7, and used the
Pitman-Yor expression for mB (Equation 3) with α = 0.5, ν = 1 and D = 100. This value
of D ensures that the number of background model parameters per data dimension is larger
than the number of foreground model parameters per data dimension except for at very
small N ; in particular, there are 798 foreground model parameter dimensions associated
with each data dimension (from the 199 interactions Jjj′ that each gene has with each
other gene, plus the contribution of Hj), and mB > 798 rB for N ≥ 13. Our data selection
procedure selects 65 genes (32.5%) in the PBMC data set, 0 genes in the neuron data
set, and 187 genes (93.5%) in the MALT data set; note that for a lower value of mB, in
particular using D = 10, no genes are selected in the MALT data set. These results suggest
substantial partial misspecification in the PBMC and neuron data sets, and more moderate
partial misspecification in the MALT data set.

We investigated the biological information captured by the foreground model on the
MALT data set. In particular, we looked at the approximate NKSD posterior for the selected
187 genes, and compared it to the approximate NKSD posterior for the model when applied
to all 200 genes. (Note that, since the glass model lacks a tractable normalizing constant,
we cannot compare standard Bayesian posteriors.) Figure 8 shows, for a subset of selected
genes, the posterior mean of the interaction energy ∆Ejj′ := Jjj′21 + Jjj′12− Jjj′22− Jjj′11,
that is, the total difference in energy between two genes being in the same state versus in
opposite states. We focused on strong interactions with |∆Ejj′ | > 1, corresponding to just
5% of all possible gene-gene interactions (Figure 12).

One foreground gene with especially large loading onto the top principal component
of the ∆E matrix is CD37 (Figure 8). In B-cell lymphomas, of which MALT lymphoma
is an example, CD37 loss is known to be associated with decreased patient survival (Xu-
Monette et al., 2016). Further, previous studies have observed that CD37 loss leads to high
NF-κB pathway activation (Xu-Monette et al., 2016). Consistent with this observation,
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Figure 8: Posterior mean interaction energies ∆Ejj′ := Jjj′21 + Jjj′12 − Jjj′22 − Jjj′11 for
a subset of the selected genes. For visualization purposes, weak interactions
(|∆Ejj′ | ≤ 1) are set to zero, and genes with less than 10 total strong connections
are not shown. Genes are sorted based on their (signed) projection onto the top
principal component of the ∆E matrix.

the estimated interaction energies in our model suggest that decreasing CD37 will lead to
higher expression of REL, an NF-κB transcription factor (∆ECD37,REL = 2.5), decreased
expression of NKFBIA, an NF-κB inhibitor (∆ECD37,NKFBIA = −3.6), and higher expres-
sion of BCL2A1, a downstream target of the NF-κB pathway (∆ECD37,BCL2A1 = 2.1).
Separately, a knockout study of Cd37 in B-cell lymphoma in mice does not show IgM ex-
pression (de Winde et al., 2016), consistent with our model (∆ECD37,IGHM = −8.2). The
same study does show MHC-II expression, and our model predicts the same result, for
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Figure 9: Comparison of posterior mean interaction energies ∆Ejj′ for a model applied to
all 200 genes (pre-data selection) to those learned from a model applied to the
selected foreground subspace (post-data selection). Each point corresponds to a
pairwise interaction between two of the selected 187 genes.

HLA-DQ in particular (∆ECD37,HLA-DQA1 = 5.0, ∆ECD37,HLA-DQB1 = 3.7). These results
suggest that the data selection procedure can successfully find systems of interacting genes
that can plausibly be modeled as a spin glass, and which, in this case, are relevant for
cancer.

To investigate whether data selection provided a benefit in this analysis, we compare
with the results obtained by applying the foreground model to the full data set of all 200
genes. All but one of the interactions listed above have |∆E| < 1 in the full foreground
model, and three have opposite signs (∆ECD37,NFKBIA = +0.7, ∆ECD37,IGHM = +0.0,
∆ECD37,HLA-DQB1 = −0.6); see Figure 13. Across all 187 selected genes, we find only a
moderate correlation between the interaction energies estimated when using the full fore-
ground model compared with the data selection-based model (Spearman’s rho = 0.30,
p < 0.01; Figure 9). These results show that using data selection can lead to substantially
different, and arguably more biologically plausible, downstream conclusions as compared to
naive application of the foreground model to the full data set.

As a simple alternative, one might wonder whether genes that are poorly fit by the model
could be identified simply by looking their posterior uncertainty under the full foreground
model. This simple approach does not work well, however, since it is possible for parameters
to have low uncertainty even when the model poorly describes the data. Indeed, we found
that examining uncertainty in the glass model does not lead to the same conclusions as
performing data selection: the genes excluded by our data selection procedure are not the
ones with the highest uncertainty in their interactions (as measured by the mean posterior
standard deviation of ∆Ejj′ under the NKSD posterior), though they do have above average
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uncertainty (Figure 14a). Instead, the genes excluded by our data selection procedure are
the ones with the highest fraction of cells with zero expression, violating the assumptions
of the foreground model (Figure 14b). These results show how data selection provides a
sound, computationally tractable approach to criticizing and evaluating complex Bayesian
models.

9. Discussion

Statistical modeling is often described as an iterative process, where we design models, infer
hidden parameters, critique model performance, and then use what we have learned from the
critique to design new models and repeat the process (Gelman et al., 2013). This process
has been called “Box’s loop” (Blei, 2014). From one perspective, data selection offers a
new criticism approach. It goes beyond posterior predictive checks and related methods
by changing the model itself, replacing potentially misspecified components with a flexible
background model. This has important practical consequences: since misspecification can
distort estimates of model parameters in unpredictable ways, predictive checks are likely to
indicate mismatch between the model and the data across the entire space X even when the
proposed parametric model is only partially misspecified. Our method, by contrast, reveals
precisely those subspaces of X where model-data mismatch occurs.

From another perspective, data selection is outside the design-infer-critique loop. An
underlying assumption of Box’s loop is that scientists want to model the entire data set. As
data sets get larger, and measurements get more extensive, this desire has led to more and
more complex (and often difficult to interpret) models. In experimental science, however,
scientists have often followed the opposite trajectory: faced with a complicated natural
phenomenon, they attempt to isolate a simpler example of the phenomenon for close study.
Data selection offers one approach to formalizing this intuitive idea in the context of sta-
tistical analysis: we can propose a simple parametric model and then isolate a piece of the
whole data set—a subspace XF—to which this model applies. When working with large,
complicated data sets, this provides a method of searching for simpler phenomena that are
hypothesized to exist.

There are several directions for future work and improvement upon our proposed data
selection approach. First, we have focused in our applied examples on discovering subsets of
data dimensions. However, our theoretical results show that one can perform data selection
on linear subspaces in general; for instance, in the context of scRNAseq, we might find
that a model can describe a certain set of linear gene expression programs. Even more
generally, one might be interested in discovering nonlinear features of the data that the
model can explain—such as a set of nonlinear gene expression programs—and this would
require extending our approach, perhaps by (1) applying a nonlinear volume-preserving
map to the data, and then (2) performing standard linear data selection.

Second, we have focused on choosing one best XF from among a finite set of possi-
bilities. A future direction is to provide rigorous asymptotic guarantees when there are
infinitely many possible choices of XF , such as the set of all linear subspaces of X . Another
future direction is to provide uncertainty quantification of XF , rather than just point esti-
mation. Here, it is important to consider the uncertainty due to having finite data as well
as non-identifiability, since there may exist multiple optimal values of XF ; for instance, this
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can occur if the model is well specified over marginals of the data but not over the joint
distribution of the data.

Third, in many applications, researchers will be interested in inferring the parameters
θ of the foreground model when applied to the selected subspace XF . On finite data, it
is conceivable that foreground subspaces XF that are more likely to be selected are also
more likely to have certain values of θ, which could create a “post- data selection bias” in
conclusions about θ, analogous to the bias that occurs in post-selection inference (Yekutieli,
2012). The data selection problem does not fit neatly in the framework of post-selection
inference, however, so further investigation will be required to understand if, when, and to
what extent such bias occurs.

Finally, in comparison to the augmented model marginal likelihood, the SVC makes
different judgments as to what types of model-data mismatch are important. The nksd
and the kl divergence are quite different and do not, in general, coincide or tightly bound
one another, so a model-data mismatch that looks big to one divergence may not look big
to the other, and vice versa (Matsubara et al., 2022). The preference of the nksd for cer-
tain types of errors is not essential to achieving consistent data selection and nested data
selection, but is very relevant to the practical use and interpretation of the SVC. One could
use another divergence instead of the nksd in the definition of the SVC, and this would
typically be expected to yield consistent model selection and nested model selection (Ap-
pendix B.1 and Miller, 2021), however, consistent data selection and nested data selection
are more challenging, and depend on a combination of special properties that our nksd
estimator possesses (Section 3). Developing data selection approaches with different model-
data mismatch preferences, therefore, remains an open challenge. In summary, Bayesian
data selection is a rich area for future work.
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Appendix A. Methods details

A.1 Calibrating T

The SVC contains a hyperparameter T > 0. To choose an appropriate value of T , we aim,
roughly, to match the coverage of the generalized posterior

πsvcN (θ)dθ =
1

zN
exp
(
− N

T
n̂ksd(p0(x))‖q(x|θ))

)
π(θ)dθ

to the coverage of the standard Bayesian posterior

πklN (θ)dθ =
1

q(X(1:N))
exp
( N∑
i=1

log q(X(i)|θ)
)
π(θ)dθ

when the model is well-specified.
Let θ∗ be the true parameter value, such that p0(x) = q(x|θ∗) almost everywhere. Let

Gkl(θ) := ∇2
θEX∼p0 [− log q(X|θ)] and let θklN := argmax

∑N
i=1 log q(X(i)|θ) be the maximum

likelihood estimator. Let hklN be the density of
√
N(θ−θklN ) when θ ∼ πklN . Under regularity

conditions (Miller, 2021), according to the Bernstein–von Mises theorem, hklN converges to
a normal distribution in total variation,∫

Rm

∣∣∣hklN (x)−N
(
x | 0, Gkl(θ∗)

−1
)∣∣∣dx a.s.−−−−→

N→∞
0.

According to Theorem 9, the generalized posterior associated with the SVC has analogous
behavior. Let Gsvc(θ) := ∇2

θ
1
T nksd(p0(x)‖q(x|θ)) and let θsvcN := argmin n̂ksd(p0(x)‖q(x |

θ)). Let hsvcN be the density of
√
N(θ − θsvcN ) when θ ∼ πsvcN . Then by Theorem 9, hsvcN

converges to a normal distribution in total variation,∫
Rm

∣∣∣hsvcN (x)−N
(
x | 0, Gsvc(θ∗)

−1
)∣∣∣dx a.s.−−−−→

N→∞
0.

For the uncertainty in each posterior to be roughly the same order of magnitude, we want

detGkl(θ∗) ≈ detGsvc(θ∗),

or equivalently,

T ≈

(
det
[
∇2
θ

∣∣
θ=θ∗

nksd(p0(x)‖q(x|θ))
]

det
[
∇2
θ

∣∣
θ=θ∗

EX∼p0 [− log q(X|θ)]
])1/m

.

To choose a single T value, we simulate true parameters from the prior, generate data
from each simulated true parameter, and take the median of the estimated T values. That
is, we use the median T̂ across samples drawn as

θ∗ ∼ π(θ)

X(i) iid∼ q(x|θ∗)

T̂ =

(
| det

[
∇2
θ

∣∣
θ=θ∗

n̂ksd(p0(x)‖q(x|θ))
]
|

|det
[
∇2
θ

∣∣
θ=θ∗

1
N

∑N
i=1− log q(X(i)|θ)

]
|

)1/m

.

(55)

In practice, we find that the order of magnitude of T̂ is stable across samples θ∗ from π(θ).
See Section D.3 for an example.
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A.2 Kernel recommendations

To obtain subsystem independence (Proposition 6), we suggest using a kernel that factors
across subspaces, such that k(X,Y ) = kF (XF , YF )kB(XB, YB) where kF and kB are inte-
grally strictly positive definite kernels. In the applications in Sections 7 and 8, we use the
following kernel.

Definition 18 The factored inverse multiquadric (IMQ) kernel is defined as

k(x, y) =
d∏
i=1

(
c2 + (xi − yi)2

)β/d
for x, y ∈ Rd, where β ∈ [−1/2, 0) and c > 0.

Note that this kernel factors across any subset of dimensions, that is, if S ⊆ {1, . . . , d}
and Sc = {1, . . . , d} \ S, then we can write k(x, y) = kS(xS , yS)kSc(xSc , ySc). Thus, if the
foreground subspace XF is the span of a subset of the standard basis, such that xF = V >x =
xS for some S ⊆ {1, . . . , d}, then it follows that k factors as k(x, y) = kF (xF , yF )kB(xB, yB).
Along with this observation, the next result shows that the factored IMQ satisfies the
conditions of Theorem 9 that pertain to k alone.

Proposition 19 The factored IMQ kernel is symmetric, positive, bounded, integrally
strictly positive definite, and has continuous and bounded partial derivatives up to order 2.

Proof It is clear that k(x, y) = k(y, x) and k(x, y) > 0. Next, we show that k has
continuous and bounded partial derivatives up to order 2. Note that we can write k(x, y) =∏d
i=1 ψ(xi − yi) where ψ(r) = (c2 + r2)β/d for r ∈ R. Differentiating, we have

ψ′(r) =
β

d

2r

c2 + r2
ψ(r)

ψ′′(r) =
(β2

d2
− β

d

)( 2r

c2 + r2

)2
ψ(r) +

β

d

2

c2 + r2
ψ(r).

Since r2 ≥ 0 and β < 0, |ψ(r)| ≤ c2β/d for all r ∈ R. Further, it is straightforward to verify
that |ψ′(r)| and |ψ′′(r)| are bounded on R by using the fact that |r|/(c2 + r2) ≤ 1/(2c). By
the chain rule, it follows that for all i, j, the functions k(x, y), |∂k/∂xi|, and |∂2k/∂xi∂yj |
are bounded. Thus, we conclude that k, ‖∇k‖, and ‖∇2k‖ are bounded.

Finally, we show that k is integrally strictly positive definite. First, for any d, for
x, y ∈ Rd, the function (x, y) 7→ (c2 + ‖x− y‖22)β/d is an integrally strictly positive definite
kernel (see, for example, Section 3.1 of Sriperumbudur et al., 2010); we refer to this as the
standard IMQ kernel. Since the factored IMQ is a product of one-dimensional standard
IMQ kernels, it defines a kernel on Rd (Lemma 4.6 of Steinwart and Christmann, 2008)
and is positive definite (Theorem 4.16 of Steinwart and Christmann, 2008). By Bochner’s
theorem (Theorem 3 of Sriperumbudur et al., 2010), a continuous positive definite kernel
can be expressed in terms of the Fourier transform of a finite nonnegative Borel measure.
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In particular, applying Bochner’s theorem to ψ(r), we have

k(x, y) = Ψ(x− y) :=
d∏
i=1

ψ(xi − yi) =
d∏
i=1

∫
R

exp
(
−
√
−1(xi − yi)ωi

)
dΛ0(ωi)

=

∫
Rd

exp
(
−
√
−1(x− y)>ω

)
dΛ(ω)

by Fubini’s theorem, where Λ0 is the finite nonnegative Borel measure on R associated with
ψ(r) and Λ = Λ0 × · · · × Λ0 is the resulting product measure on Rd. Applying Bochner’s
theorem in the other direction, we see that Ψ is a positive definite function. Moreover,
since the standard IMQ kernel is characteristic (Theorem 7 of Sriperumbudur et al., 2010),
it follows that the support of Λ0 is R (Theorem 9 of Sriperumbudur et al., 2010), and thus
the support of Λ is Rd. This implies that the factored IMQ kernel k is characteristic (The-
orem 9 of Sriperumbudur et al., 2010) and, since k is also translation invariant, k must be
integrally strictly positive definite (Section 3.4 of Sriperumbudur et al., 2011).

Our choice of the factored IMQ kernel is motivated by the analysis of Gorham and
Mackey (2017), which suggests that the standard IMQ is a good default choice for the
kernelized Stein discrepancy, particularly when working with distributions that are (roughly
speaking) very spread out. In particular, it is straightforward to show that the factored
IMQ kernel, like the standard IMQ kernel, meets the conditions of Theorem 3.2 of Huggins
and Mackey (2018). However, we do not pursue further the question of whether the nksd
with the factored IMQ detects convergence and non-convergence since our statistical setting
is different from that of Gorham and Mackey (2017), and we are assuming the data consists
of i.i.d. samples from some underlying distribution rather than correlated samples from an
MCMC chain which may or may not converge.

A.3 Exact solution for exponential families

Here, we show that when q(x|θ) is an exponential family, the estimated nksd has the form

n̂ksd(p0(x)‖q(x|θ)) = θ>Aθ +B>θ + C (56)

where A, B, and C depend on the data but not on θ. Since qθ(x) = q(x|θ) =
λ(x) exp(θ>t(x) − κ(θ)), we have sqθ(x) = ∇x log λ(x) + (∇xt(x))>θ where (∇xt(x))ij =
∂ti/∂xj . Thus, we can write

uθ(x, y) (57)

: = sqθ(x)>sqθ(y)k(x, y) + sqθ(x)>∇yk(x, y) + sqθ(y)>∇xk(x, y) + trace(∇x∇>y k(x, y))

= θ>[(∇xt(x))(∇yt(y))>k(x, y)]θ

+ [(∇x log λ(x))>(∇yt(y))>k(x, y) + (∇y log λ(y))>(∇xt(x))>k(x, y)

+ (∇xk(x, y))>(∇yt(y))> + (∇yk(x, y))>(∇xt(x))>]θ

+ [(∇x log λ(x))>(∇y log λ(y))k(x, y) + (∇y log λ(y))>(∇xk(x, y))

+ (∇x log λ(x))>(∇yk(x, y)) + trace(∇x∇>y k(x, y))]. (58)
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Then the estimated nksd takes the form in Equation 56 if we choose

A :=
1∑

i 6=j k(X(i), X(j))

∑
i 6=j
∇xt(X(i))∇xt(X(j))>k(X(i), X(j))

B> :=
1∑

i 6=j k(X(i), X(j))

∑
i 6=j

[
(∇x log λ(X(i)))>∇xt(X(j))>k(X(i), X(j))

+ (∇x log λ(X(j)))>∇xt(X(i))>k(X(i), X(j))

+(∇xk(X(i), X(j)))>∇xt(X(j))> + (∇yk(X(i), X(j)))>∇xt(X(i))>
]

C :=
1∑

i 6=j k(X(i), X(j))

∑
i 6=j

[
(∇x log λ(X(i)))>(∇x log λ(X(j)))k(X(i), X(j))

+ (∇x log λ(X(j)))>∇xk(X(i), X(j))

+(∇x log λ(X(i)))>∇yk(X(i), X(j)) + trace(∇x∇>y k(X(i), X(j)))
]
.

If the prior on θ is N (µ,Σ0), then the SVC is

K =

(
2π

N

)mB/2
(2π)−mF/2(det Σ0)−1/2

×
∫

exp
(
− N

T
[θ>Aθ +B>θ + C]

)
exp
(
− 1

2
(θ − µ)>Σ−1

0 (θ − µ)
)
dθ

=

(
2π

N

)mB/2
(2π)−mF/2(det Σ0)−1/2

×
∫

exp

(
− 1

2
θ>
(2N

T
A+ Σ−1

0

)
θ +

(
− N

T
B> + µ>Σ−1

0

)
θ − N

T
C − 1

2
µ>Σ−1

0 µ

)
dθ

=

(
2π

N

)mB/2
(det Σ0)−1/2

(
det
(2N

T
A+ Σ−1

0

))−1/2

× exp

(
1

2

(
− N

T
B> + µ>Σ−1

0

)>(2N

T
A+ Σ−1

0

)−1(
− N

T
B> + µ>Σ−1

0

)
− N

T
C − 1

2
µ>Σ−1

0 µ

)
.

Meanwhile, if q(x|θ) = N (θ,Σ) where Σ is a fixed covariance matrix, then we have
∇x log λ(x) = −Σ−1x and ∇xt(x) = Σ−1.

A.4 Comparing many foregrounds using approximate optima

Here, we justify the technique described in Section 2.3.3. As in Section 2.3.3, define `j(θ) =
n̂ksd(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}, and let θN (w) = argminθ L(w, θ) where

L(w, θ) := `1(θ) + w(`2(θ)− `1(θ))

for w ∈ [0, 1]. We assume that the conditions of Theorem 9 are met, over both XF1 and
XF2 . Since (∂L/∂θi)(w, θN (w)) = 0, we have

0 =
∂

∂w

(∂L
∂θi

(w, θN (w))
)

=
∂2L
∂w∂θi

(w, θN (w)) +
∑
j

∂2L
∂θi∂θj

(w, θN (w))
( ∂

∂w
θN,j(w)

)
,
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or equivalently, in matrix/vector notation,

0 = ∇w(∇θL(w, θN (w))) = ∇θ∇wL(w, θN ) +∇2
θL(w, θN )∇w(θN (w)).

Rearranging, we have

∇wθN (w) = −
(
∇2
θL(w, θN )

)−1∇θ∇wL(w, θN ).

At w = 0 we find, plugging back in the definition of L,

∇wθN (0) = −∇2
θ`1(θN (0))−1(∇θ`2(θN (0))−∇θ`1(θN (0)))

= −∇2
θ`1(θN (0))−1∇θ`2(θN (0)).

Applying a first-order Taylor series expansion gives us θN (1) ≈ θN (0) + ∇wθN (0), which
yields Equation 13.

Appendix B. Asymptotics of the alternative selection criteria

Theorem 17 shows that the SVC exhibits all four types of consistency: data selection, nested
data selection, model selection, and nested model selection. In this section, we establish
the consistency properties of the alternative criteria considered in Section 3.

B.1 Setup

We first review the asymptotics of the standard marginal likelihood, discussed in depth by
Dawid (2011) and Hong and Preston (2005), for example. Define

fklN (θ) := − 1

N

N∑
i=1

log q(X(i)|θ), θklN := argmin
θ

fklN (θ),

fkl(θ) := −EX∼p0 [log q(X|θ)], θkl∗ := argmin
θ

fkl(θ).

Letm be the dimension of the parameter space. Under suitable regularity conditions (Miller,
2021), the Laplace approximation to the marginal likelihood is

q(X(1:N)) =

∫
q(X(1:N)|θ)π(θ)dθ ∼

exp
(
−NfklN (θklN )

)
π(θkl∗ )∣∣det∇2

θ f
kl(θkl∗ )

∣∣1/2
(

2π

N

)m/2
(59)

almost surely, where aN ∼ bN indicates that aN/bN → 1 as N → ∞. We can rewrite this
as

log q(X(1:N)) +N(fklN (θklN )− fklN (θkl∗ ))

+N(fklN (θkl∗ )− fkl(θkl∗ )) +Nfkl(θkl∗ )

+
m

2
logN − log

(
π(θkl∗ )(2π)m/2∣∣det∇2

θf
kl(θkl∗ )

∣∣1/2
)

a.s.−−−−→
N→∞

0.

(60)
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Figure 10: Behavior of the Stein volume criterion K, the foreground marginal likelihood
with a background volume correction K(a), and the foreground marginal nksd
K(b) on toy examples. The plots show the results for 5 randomly generated data
sets (thin lines) and the average over 100 random data sets (bold lines). Here,
unlike Figure 2, the Pitman-Yor expression for mB is used (Equation 3), with
α = 0.5, ν = 1, and D = 0.2.

As shown by Dawid (2011) and Hong and Preston (2005), under regularity conditions,

N(fklN (θklN )− fklN (θkl∗ )) = OP0(1)

N(fklN (θkl∗ )− fkl(θkl∗ )) = OP0(
√
N)

Nfkl(θkl∗ ) = OP0(N)

log

(
π(θkl∗ )(2π)m/2∣∣det∇2

θf
kl(θkl∗ )

∣∣1/2
)

= OP0(1).

(61)
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The nksd marginal likelihood has a similar decomposition. Following Section 6, define

fnksdN (θ) :=
1

T
n̂ksd(p0(x)‖q(x|θ)), θnksdN := argmin

θ
fnksdN (θ),

fnksd(θ) :=
1

T
nksd(p0(x)‖q(x|θ)), θnksd∗ := argmin

θ
fnksd(θ).

As shown in Theorem 9,

zN :=

∫
exp(−NfnksdN (θ))π(θ)dθ ∼

exp(−NfnksdN (θnksdN ))π(θnksd∗ )∣∣det∇2
θf

nksd(θnksd∗ )
∣∣1/2

(
2π

N

)m/2
almost surely as N →∞. As above, we can rewrite this as

log zN +N(fnksdN (θnksdN )− fnksdN (θnksd∗ ))

+N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) +Nfnksd(θnksd∗ )

+
m

2
logN − log

(
π(θnksd∗ )(2π)m/2∣∣det∇2

θf
nksd(θnksd∗ )

∣∣1/2
)

a.s.−−−−→
N→∞

0.

(62)

By Theorem 12, we have

N(fnksdN (θnksdN )− fnksdN (θnksd∗ )) = OP0(1),

N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) = OP0(
√
N),

Nfnksd(θnksd∗ ) = OP0(N),

log

(
π(θnksd∗ )(2π)m/2∣∣ det∇2

θf
nksd(θnksd∗ )

∣∣1/2
)

= OP0(1),

(63)

and further, when the model is well-specified, such that nksd(p0(x)‖q(x|θnksd∗ )) = 0,

N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) = OP0(1). (64)

For ease of reference, here are the various scores that we consider for model/data selec-
tion.
Marginal likelihood of the augmented model (foreground+background):

q̃(X(1:N)|F) =

∫ ∫
q(X

(1:N)
F |θ) q̃(X(1:N)

B |X(1:N)
F , φB)π(θ)πB(φB)dθdφB.

Foreground marginal nksd, background volume correction (a.k.a. the SVC):

K :=

(
2π

N

)mB/2 ∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ.

Foreground marginal likelihood, background volume correction:

K(a) :=

(
2π

N

)mB/2
q(X

(1:N)
F ).

43



Weinstein and Miller

Foreground marginal nksd:

K(b) :=

∫
exp

(
−N
T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ.

Foreground marginal kl, background volume correction:

K(c) :=

(
2π

N

)mB/2 ∫
exp

(
−N k̂l(p0(xF )‖q(xF |θ))

)
π(θ)dθ.

Foreground nksd, background volume correction:

K(d) :=

(
2π

N

)mB/2
exp

(
−N
T

min
θ

n̂ksd(p0(xF )‖q(xF |θ))
)
.

Foreground nksd, foreground and background volume correction (a.k.a. BIC for SVC)

KBIC :=

(
2π

N

)(mF+mB)/2

exp
(
− N

T
min
θ

n̂ksd(p0(xF )‖q(xF |θ))
)
.

B.2 Data selection

Assume mBj = o(N/ logN) for j ∈ {1, 2}. By Equations 60 and 61,

1

N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

EX∼p0 [− log q(XF2 |θkl2,∗)]− EX∼p0 [− log q(XF1 |θkl1,∗)] (65)

= kl(p0(xF2)‖q(xF2 |θkl2,∗)) +HF2 − kl(p0(xF1)‖q(xF1 |θkl1,∗))−HF1 ,

so K(a) does not satisfy data selection consistency. The SVC satisfies data selection consis-
tency by Theorem 17 (part 1). We show that the other scores also satisfy data selection
consistency. Since K(b) = (2π/N)−mB/2K where K is the SVC, by Theorem 17 (part 1),

1

N
log
K(b)

1

K(b)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )). (66)

By Equation 65 and the fact that K(c) = exp(NHF )K(a), we have

1

N
log
K(c)

1

K(c)
2

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)). (67)

Since K(d) = (2π/N)mB/2 exp(−NfnksdN (θnksdN )), then by Equation 63,

1

N
log
K(d)

1

K(d)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )). (68)

Similarly, since KBIC = (2π/N)mF/2K(d),

1

N
log
KBIC

1

KBIC
2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )). (69)
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These methods therefore satisfy data selection consistency. For the marginal likelihood of
the augmented model, suppose mB1 and mB2 do not depend on N . Then by Equation 60,

1

N
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

EXF2∼p0 [− log q(XF2 |θkl2,∗)] + EX∼p0 [− log q̃(XB2 |XF2 , φ
kl
2,∗)]

(70)

− EXF1∼p0 [− log q(XF1 |θkl1,∗)]− EX∼p0 [− log q̃(XB1 |XF1 , φ
kl
1,∗)]

]
We can rewrite this in terms of the KL divergence. First note the decomposition,

H = −
∫
p0(x) log p0(x)dx = −

∫
p0(xFj ) log p0(xFj )dxFj −

∫
p0(x) log p0(xBj |xFj )dx

for j ∈ {1, 2}. Adding and subtracting the entropy H in Equation 70, and using the fact
that the background model is well-specified,

1

N
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗)) + kl(p0(xB2 |xF2)‖q̃(xB2 |xF2 , φ
kl
2,∗))

− kl(p0(xF1)‖q(xF1 |θkl1,∗))− kl(p0(xB1 |xF1)‖q̃(xB1 |xF1 , φ
kl
1,∗))

= kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)). (71)

B.3 Nested data selection

In nested data selection, we are concerned with situations in which XF2 ⊂ XF1 and the model
is well-specified over both XF1 and XF2 . Assume further that mB2 −mB1 does not depend
on N . First, consider K(d) and KBIC. Since K(d) = (2π/N)mB/2 exp(−NfnksdN (θnksdN )) and
by Theorem 12, fnksdN (θnksdN ) = OP0(1/N), we have

1

logN
log
K(d)

1

K(d)
2

P0−−−−→
N→∞

mB2 −mB1
2

. (72)

Likewise, since KBIC = (2π/N)mF/2K(d), it follows that

1

logN
log
KBIC

1

KBIC
2

P0−−−−→
N→∞

mF2 +mB2 −mF1 −mB1
2

. (73)

As in Section 6.4, it is natural to assume mB2 > mB1 and mF2 + mB2 > mF1 + mB1 , in
which case these criteria satisfy nested data selection consistency.

None of K(a), K(b), and K(c) are guaranteed to satisfy nested data selection consistency,
because the contribution of background model complexity is negligible or nonexistent. To
see this, note that assuming mBj = o(N/ logN), by Equation 65 we have

1

N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

HF2 −HF1 . (74)

Meanwhile, since K(b) = (2π/N)−mB/2K then by Theorem 17 (part 2),

1

logN
log
K(b)

1

K(b)
2

P0−−−−→
N→∞

mF2 −mF1

2
. (75)
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Since XF2 ⊂ XF1 , we have mF2 ≤ mF1 except perhaps in highly contrived scenarios. If

mF2 < mF1 then Equation 75 shows that log(K(b)
1 /K(b)

2 )
P0−→ −∞. On the other hand, if

mF2 = mF1 , then by Equations 62 and 63, log(K(b)
1 /K(b)

2 ) = OP0(1), so it is not possi-

ble to have log(K(b)
1 /K(b)

2 )
P0−→ ∞. Therefore, K(b) does not satisfy nested data selection

consistency.

Since K(c) = eNHFK(a) = eNHF (2π/N)mB/2q(X
(1:N)
F ), then by Equations 60 and 61,

1√
N

log
K(c)

1

K(c)
2

=
√
N

(
1

N

N∑
i=1

log
p0(X

(i)
F1

)

p0(X
(i)
F2

)
− E

(
log

p0(XF1)

p0(XF2)

))
+OP0(N−1/2 logN). (76)

If σ2 := VP0(log p0(XF1)/p0(XF2)) is positive and finite, then by the central limit theorem

and Slutsky’s theorem, N−1/2 log(K(c)
1 /K(c)

2 )
D−→ N (0, σ2). Thus, K(c) randomly selects

F1 or F2 with equal probability, and therefore, it does not satisfy nested data selection
consistency.

For the marginal likelihood of the augmented model, suppose mB1 and mB2 do not
depend on N . The marginal likelihood achieves nested data selection consistency because
the augmented models are both well-specified and describe the complete data space X ;
this guarantees that the OP0(

√
N) terms in the marginal likelihood decomposition cancel.

Specifically, p0(x) = q(x | θklj,∗, φklj,∗,Fj) for j ∈ {1, 2}, and thus, by Equations 60 and 61
applied to the augmented model,

1

logN
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

mF2 +mB2 −mF1 −mB1
2

. (77)

Nested data selection consistency follows assuming mF2 + mB2 > mF1 + mB1 as before.
This can be contrasted with Equation 76, where although both foreground models are

well-specified, they describe different data (X
(1:N)
F1

versus X
(1:N)
F2

), so the OP0(
√
N) terms

remain.

B.4 Model selection

All of the criteria we consider satisfy model selection consistency. To see this, we apply
the same asymptotic analysis as used for data selection in Section B.2, under the same
conditions on mB, obtaining

1

N
log

q̃1(X(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)), (78)

1

N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)), (79)

1

N
log
K(b)

1

K(b)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )), (80)

1

N
log
K(c)

1

K(c)
2

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)), (81)
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1

N
log
K(d)

1

K(d)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )), (82)

1

N
log
KBIC

1

KBIC
2

P0−−−−→
N→∞

1

T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )). (83)

Note that in contrast to the data selection case, K(a) satisfies model selection consistency
since the entropy terms HFj cancel due to the fact that F is fixed. We can think of this as
a consequence of the kl divergence’s subsystem independence; if we are just interested in
modeling a fixed foreground space, there is no problem considering the foreground marginal
likelihood alone (Caticha, 2004, 2011; Rezende, 2018).

B.5 Nested model selection

In nested model selection, since both models are well-specified, we have qj(xF |θklj,∗) =
p0(xF ) = qj(xF |θnksdj,∗ ) for j ∈ {1, 2}. Thus, the estimated divergences cancel:

n̂ksd(p0(xF )‖q1(xF |θnksd1,∗ )) = n̂ksd(p0(xF )‖q2(xF |θnksd2,∗ )),

N∑
i=1

log q1(X
(i)
F |θ

kl
1,∗) =

N∑
i=1

log q2(X
(i)
F |θ

kl
2,∗),

k̂l(p0(xF )‖q1(xF |θkl1,∗)) = k̂l(p0(xF )‖q2(xF |θkl2,∗)).

Using this along with Equations 60–64, under the same conditions on mB as in Section B.2,

1

logN
log

q̃1(X(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (84)

1

logN
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (85)

1

logN
log
K(b)

1

K(b)
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (86)

1

logN
log
K(c)

1

K(c)
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (87)

log
K(d)

1

K(d)
2

= OP0(1), (88)

1

logN
log
KBIC

1

KBIC
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (89)

where we are using the assumption that the background model is the same in the two
augmented models q̃1 and q̃2 and so mB,1 = mB,2. Only K(d) fails to satisfy nested model
selection consistency.
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Appendix C. Proofs

C.1 Proofs of NKSD properties

Proof of Proposition 3 By assumption, the kernel is bounded, say |k(x, y)| ≤ B, and
sp, sq ∈ L1(P ). Thus, by the Cauchy–Schwarz inequality,

∣∣∣∣ ∫
X

∫
X

(sq(x)− sp(x))>(sq(y)− sp(y))k(x, y)p(x)p(y)dxdy

∣∣∣∣
≤ B

(∫
X ‖sq(x)− sp(x)‖p(x)dx

)2
<∞.

Since the kernel is integrally strictly positive definite and |k(x, y)| ≤ B,

0 <

∫
X

∫
X
k(x, y)p(x)p(y)dxdy ≤ B <∞. (90)

Thus, the nksd is finite. Equation 30 follows from Theorem 3.6 of Liu et al. (2016).

Proof of Proposition 4 The denominator of the nksd is positive since k is integrally
strictly positive definite. Defining δ(x) = sq(x)− sp(x), the numerator of the nksd is

∫
X

∫
X
δ(x)>δ(y)k(x, y)p(x)p(y)dxdy =

d∑
i=1

∫
X

∫
X
δi(x)δi(y)k(x, y)p(x)p(y)dxdy. (91)

If δi(x)p(x) = 0 almost everywhere with respect to Lebesgue measure on X , then the
ith term on the right-hand side is zero. Meanwhile, if δi(x)p(x) is not a.e. zero, then∫
X |δi(x)|p(x)dx > 0, and hence, the ith term is positive since k is integrally strictly positive

definite and δi ∈ L1(P ) by assumption. Hence, the nksd is nonnegative, and equals zero if
and only if δ(x)p(x) = 0 almost everywhere.

Suppose δ(x)p(x) = 0 almost everywhere. Since p(x) > 0 on X by assumption, this
implies sp(x) = sq(x) a.e., and in fact, sp(x) = sq(x) for all x ∈ X by continuity. Since
X is open and connected, then by the gradient theorem (that is, the fundamental theorem
of calculus for line integrals), p(x) ∝ q(x), and hence, p(x) = q(x) on X . Conversely, if
p(x) = q(x) almost everywhere, then δ(x)p(x) = 0 almost everywhere.

Proof of Proposition 6 Define

δ1(x1) := ∇x1 log q(x)−∇x1 log p(x) = ∇x1 log q(x1)−∇x1 log p(x1)

δ2(x2) := ∇x2 log q(x)−∇x2 log p(x) = ∇x2 log q(x2)−∇x2 log p(x2).
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Let X,Y ∼ p(x) independently. Note that E[k1(X1, Y1)] > 0 and E[k2(X2, Y2)] > 0 since k1

and k2 are integrally strictly positive definite by assumption. Therefore,

nksd(p(x)‖q(x)) =
E[(∇x log q(X)−∇x log p(X))>(∇x log q(Y )−∇x log p(Y ))k(X,Y )]

E[k(X,Y )]

=
E[δ1(X1)>δ1(Y1)k1(X1, Y1)]E[k2(X2, Y2)]

E[k1(X1, Y1)]E[k2(X2, Y2)]
+

E[δ2(X2)>δ2(Y2)k2(X2, Y2)]E[k1(X1, Y1)]

E[k1(X1, Y1)]E[k2(X2, Y2)]

=
E[δ1(X1)>δ1(Y1)k1(X1, Y1)]

E[k1(X1, Y1)]
+

E[δ2(X2)>δ2(Y2)k2(X2, Y2)]

E[k2(X2, Y2)]

= nksd(p(x1)‖q(x1)) + nksd(p(x2)‖q(x2)).

The following modified version applies to the estimator n̂ksd(p‖q) (Equation 5).

Proposition 20

n̂ksd(p(x)‖q(x)) = nksd(p(x1)‖q(x1)) + nksd(p(x2)‖q(x2)) (92)

where

nksd(p(x1)‖q(x1)) :=

∑
i 6=j u1(X

(i)
1 , X

(j)
1 )k2(X

(i)
2 , X

(j)
2 )∑

i 6=j k1(X
(i)
1 , X

(j)
1 )k2(X

(i)
2 , X

(j)
2 )

u1(x1, y1) :=sq(x1)>sq(y1)k1(x1, y1) + sq(x1)>∇y1k1(x1, y1) + sq(y1)>∇x1k1(x1, y1)

+ trace(∇x1∇>y1k1(x1, y1))

sq(x1) :=∇x1 log q(x1),

and vice versa for nksd(p(x2)‖q(x2)) with the roles of 1 and 2 swapped.

Proof Recall the definition of n̂ksd(p(x)‖q(x)) in Equation 5. Note that ∇x1k(x, y) =
k2(x2, y2)∇x1k1(x1, y1) and ∇x1 log q(x) = ∇x1 log q(x1). Examining u(x, y) term-by-term,

∇x log q(x)>∇y log q(y)k(x, y) =
[
∇x1 log q(x1)>∇y1 log q(y1)k1(x1, y1)

]
k2(x2, y2)

+
[
∇x2 log q(x2)>∇y2 log q(y2)k2(x2, y2)

]
k1(x1, y1),

∇x log q(x)>∇yk(x, y) =[∇x1 log q(x1)>∇y1k1(x1, y1)]k2(x2, y2)

+ [∇x2 log q(x2)>∇y2k2(x2, y2)]k1(x1, y1),

∇xk(x, y)>∇y log q(y) =[∇x1k1(x1, y1)>∇y1 log q(y1)]k2(x2, y2),

+ [∇x2k2(x2, y2)>∇y2 log q(y2)]k1(x1, y1)

trace(∇x∇>y k(x, y)) = trace(∇x1∇>y1k1(x1, y1))k2(x2, y2),

+ trace(∇x2∇>y2k2(x2, y2))k1(x1, y1).

Thus, defining u1 and u2 as in Proposition 20, we have

u(x, y) = u1(x1, y1)k2(x2, y2) + u2(x2, y2)k1(x1, y1),

k(x, y) = k1(x1, y1)k2(x2, y2).
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The result follows.

To interpret Proposition 20, note that

EX,Y∼p[u1(X1, Y1)k2(X2, Y2)]

EX,Y∼p[k1(X1, Y1)k2(X2, Y2)]
=

EX1,Y1∼p(x1)[u1(X1, Y1)]

EX1,Y1∼p(x1)[k1(X1, Y1)]
= nksd(p(x1)‖q(x1)),

so nksd(p(x1)‖q(x1)) is an estimator of nksd(p(x1)‖q(x1)), and likewise for nksd(p(x2)‖q(x2)).

C.2 Proof of Theorems 9 and 11

Our proofs in this section build on the proof of Theorem 3 of Barp et al. (2019).

Proposition 21 Under the assumptions of Theorem 9, for any compact convex C ⊆ Θ,

sup
θ∈C
|fN (θ)− f(θ)| a.s.−−→ 0. (93)

Proof First, we establish almost sure convergence for the denominator of fN (θ). Since k
is assumed to be bounded and to have bounded derivatives up to order two, we can choose
B < ∞ such that B ≥ |k| + ‖∇xk‖ + ‖∇x∇>y k‖. In particular, the expected value of the
kernel is finite: ∫

X

∫
X
|k(x, y)|P0(dx)P0(dy) ≤ B <∞. (94)

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling, 2009),

1

N(N − 1)

∑
i 6=j

k(X(i), X(j))
a.s.−−−−→

N→∞

∫
X

∫
X
k(x, y)P0(dx)P0(dy). (95)

Note that the limit is positive since k(x, y) > 0 for all x, y ∈ X . For the numerator, we
establish bounds on uθ and ∇θuθ. Let C ⊆ Θ be compact and convex. By Equation 5, for
all θ ∈ C and all x, y ∈ X ,

|uθ(x, y)| ≤ |sqθ(x)>sqθ(y)k(x, y)|+ |sqθ(x)>∇yk(x, y)|
+ |sqθ(y)>∇xk(x, y)|+ | trace(∇x∇>y k(x, y))|

≤ ‖sqθ(x)‖‖sqθ(y)‖B + ‖sqθ(x)‖B + ‖sqθ(y)‖B +Bd

≤ g0,C(x)g0,C(y)B + g0,C(x)B + g0,C(y)B +Bd

=: h0,C(x, y).

(96)

Similarly, for all θ ∈ C and all x, y ∈ X ,

‖∇θuθ(x, y)‖ ≤ ‖∇θ(sqθ(x)>sqθ(y))k(x, y)‖+ ‖∇θ(sqθ(x)>∇yk(x, y))‖
+ ‖∇θ(sqθ(y)>∇xk(x, y))‖+ ‖∇θ trace(∇x∇>y k(x, y))‖

≤ g0,C(x)g1,C(y)B + g0,C(y)g1,C(x)B + g1,C(x)B + g1,C(y)B

=: h1,C(x, y).

(97)

Note that h0,C and h1,C are continuous and belong to L1(P0 × P0).
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Let S1 ⊆ S2 ⊆ · · · ⊆ X be a sequence of compact sets such that ∪∞M=1SM = X . Note
that this implies ∪∞M=1SM × SM = X × X . Suppose for the moment that, for each M , the
following collections of functions are equicontinuous on C: (A) (θ 7→ uθ(x, y) : x, y ∈ SM )
and (B)

(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
. Assuming this, Theorem 1 of Yeo and Johnson

(2001) shows that

sup
θ∈C

∣∣∣∣ 1

N(N − 1)

∑
i 6=j

uθ(X
(i), X(j))−

∫
X

∫
X
uθ(x, y)P0(dx)P0(dy)

∣∣∣∣ a.s.−−−−→
N→∞

0, (98)

and that θ 7→
∫
X
∫
X uθ(x, y)P0(dx)P0(dy) is continuous. (Note that although Yeo and

Johnson (2001) assume X = R, their proof goes through without further modification for
any nonempty X ⊆ Rd.) Combining Equations 95 and 98, we have

supθ∈C
∣∣ 1
N(N−1)

∑
i 6=j uθ(X

(i), X(j))−
∫ ∫

uθ(x, y)P0(dx)P0(dy)
∣∣

1
N(N−1)

∑
i 6=j k(X(i), X(j))

a.s.−−−−→
N→∞

0.

Thus, it follows that supθ∈C |fN (θ) − f(θ)| → 0 a.s. by Equations 95 and 96. To complete
the proof, we must show that (A) and (B) are equicontinuous on C.

(A) Since θ 7→ uθ(x, y) is differentiable on C, then by the mean value theorem, we have
that for all θ1, θ2 ∈ C and all x, y ∈ SM ,

|uθ1(x, y)− uθ2(x, y)| ≤ ‖∇θ|θ=θ̃ uθ(x, y)‖‖θ1 − θ2‖
≤ h1,C(x, y)‖θ1 − θ2‖

≤
(

sup
x,y∈SM

h1,C(x, y)
)
‖θ1 − θ2‖ <∞

where θ̃ = γθ1 + (1 − γ)θ2 for some γ ∈ [0, 1]. Here, the second inequality holds since
θ̃ ∈ C by the convexity of C, and the supremum is finite because a continuous function on a
compact set attains its maximum. Therefore, (θ 7→ uθ(x, y) : x, y ∈ SM ) is equicontinuous
on C.

(B) To see that
(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
is equicontinuous on C, first note that∫

|uθ(x, y)|P0(dy) ≤
∫
h0,C(x, y)P0(dy) <∞.

Further, due to Equations 96 and 97, we can apply the Leibniz integral rule (Folland, 1999,
Theorem 2.27) and find that ∇θ

∫
uθ(x, y)P0(dy) exists and is equal to

∫
∇θuθ(x, y)P0(dy).

Now we apply the mean value theorem and the same reasoning as before to find that for all
θ1, θ2 ∈ C and all x ∈ SM ,∣∣∣∫ uθ1(x, y)P0(dy)−

∫
uθ2(x, y)P0(dy)

∣∣∣ ≤ ∥∥∇θ|θ=θ̃ ∫ uθ(x, y)P0(dy)
∥∥‖θ1 − θ2‖

≤ ‖θ1 − θ2‖
∫ ∥∥∇θ|θ=θ̃ uθ(x, y)

∥∥P0(dy)

≤ ‖θ1 − θ2‖ sup
x∈SM

∫
h1,C(x, y)P0(dy) <∞
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where θ̃ = γθ1 + (1 − γ)θ2 for some γ ∈ [0, 1]. The supremum is finite since x 7→∫
h1,C(x, y)P0(dy) is continuous, which can easily be seen by plugging in the definition

of h1,C . Therefore,
(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
is equicontinuous on C.

Proposition 22 Under the assumptions of Theorem 9, (f ′′′N : N ∈ N) is uniformly bounded
on E.

Proof First, for any x, y ∈ X , if we define g(θ) = sqθ(x) and h(θ) = sqθ(y) then uθ =
(g>h)k + g>(∇yk) + h>(∇xk) + trace(∇x∇>y k). By differentiating, applying Minkowski’s
inequality to the resulting sum of tensors, and applying the Cauchy–Schwarz inequality to
each term, we have

‖∇3
θuθ(x, y)‖ ≤ ‖∇3g‖‖h‖k + 3‖∇2g‖‖∇h‖k + 3‖∇g‖‖∇2h‖k + ‖g‖‖∇3h‖k

+ ‖∇3g‖‖∇yk‖+ ‖∇3h‖‖∇xk‖.

Using the symmetry of the kernel to combine like terms, this yields that∥∥∥∑
i 6=j
∇3
θuθ(X

(i), X(j))
∥∥∥

≤
∑
i 6=j

(
2‖∇3

θsqθ(X
(i))‖‖sqθ(X

(j))‖B + 6‖∇2
θsqθ(X

(i))‖‖∇θsqθ(X
(j))‖B + 2‖∇3

θsqθ(X
(i))‖B

)
where B < ∞ such that B ≥ |k| + ‖∇xk‖ + ‖∇x∇>y k‖. Since fN (θ) = 0 when N = 1 by

definition, we can assume without loss of generality that N ≥ 2, so 1
N−1 = 1

N (1 + 1
N−1) ≤

2/N . Since each term is non-negative, we can add in the i = j terms,∥∥∥ 1

N(N − 1)

∑
i 6=j
∇3
θuθ(X

(i), X(j))
∥∥∥

≤ 2B

N2

∑
i,j

(
2‖∇3

θsqθ(X
(i))‖‖sqθ(X

(j))‖+ 6‖∇2
θsqθ(X

(i))‖‖∇θsqθ(X
(j))‖+ 2‖∇3

θsqθ(X
(i))‖

)
= 4B

( 1

N

∑
i

‖∇3
θsqθ(X

(i))‖
)( 1

N

∑
j

‖sqθ(X
(j))‖

)
(99)

+ 12B
( 1

N

∑
i

‖∇2
θsqθ(X

(i))‖
)( 1

N

∑
j

‖∇θsqθ(X
(j))‖

)
+ 4B

( 1

N

∑
i

‖∇3
θsqθ(X

(i))‖
)
.

By assumption,
{

1
N

∑
i ‖∇2

θsqθ(X
(i))‖ : N ∈ N, θ ∈ E

}
is bounded with probability 1, and

similarly for
{

1
N

∑
i ‖∇3

θsqθ(X
(i))‖ : N ∈ N, θ ∈ E

}
. We show the same for 1

N

∑
i ‖sqθ(X(i))‖

and 1
N

∑
i ‖∇θsqθ(X(i))‖. By Equation 40, we have∫

sup
θ∈Ē
‖sqθ(x)‖P0(dx) ≤

∫
g0,Ē(x)P0(dx) <∞.

52



Bayesian Data Selection

Hence, by Theorem 1.3.3 of Ghosh and Ramamoorthi (2003), 1
N

∑
i ‖sqθ(X(i))‖ converges

uniformly on Ē, almost surely. In particular, 1
N

∑
i ‖sqθ(X(i))‖ is uniformly bounded on E,

almost surely. The same argument holds for 1
N

∑
i ‖∇θsqθ(X(i))‖ using g1,Ē(x). Therefore,

by Equation 99, it follows that ‖ 1
N(N−1)

∑
i 6=j ∇3

θuθ(X
(i), X(j))‖ is uniformly bounded on

E. Since k is positive by assumption, 1
N(N−1)

∑
i 6=j k(X(i), X(j)) > 0 for all N ≥ 2 and by

Equations 94 and 95, 1
N(N−1)

∑
i 6=j k(X(i), X(j)) converges a.s. to a finite quantity greater

than 0. We conclude that almost surely,

‖f ′′′N (θ)‖ =
1

T

‖ 1
N(N−1)

∑
i 6=j ∇3

θuθ(X
(i), X(j))‖

1
N(N−1)

∑
i 6=j k(X(i), X(j))

is uniformly bounded on E, for N ∈ {2, 3, . . .}. Recall that for N = 1, fN (θ) = 0 by
definition. Therefore, almost surely, (f ′′′N : N ∈ N) is uniformly bounded on E.

Proof of Theorem 9 We show that the conditions of Theorem 3.2 of Miller (2021) are
met, from which the conclusions of this theorem follow immediately.

By Condition 10 and Equation 35, fN has continuous third-order partial derivatives on
Θ. Let E be the set from Condition 10. With probability 1, fN → f uniformly on E (by
Proposition 21 with C = Ē) and (f ′′′N ) is uniformly bounded on E (by Proposition 22).
Note that f is finite on Θ by Proposition 3. Thus, by Theorem 3.4 of Miller (2021), f ′ and
f ′′ exist on E and f ′′N → f ′′ uniformly on E with probability 1. Since θ∗ is a minimizer of
f and θ∗ ∈ E, we know that f ′(θ∗) = 0 and f ′′(θ∗) is positive semidefinite; thus, f ′′(θ∗) is
positive definite since it is invertible by assumption.

Case (a): Now, consider the case where Θ is compact. Then almost surely, fN → f
uniformly on Θ by Proposition 21 with C = Θ. Since θ∗ is a unique minimizer of f , we
have f(θ) > f(θ∗) for all θ ∈ Θ \ {θ∗}. Let H ⊆ E be an open set such that θ∗ ∈ H and
H̄ ⊆ E. We show that lim infN infθ∈Θ\H̄ fN (θ) > f(θ∗). Since Θ \H is compact,

inf
θ∈Θ\H̄

f(θ)− f(θ∗) =: ε > 0.

By uniform convergence, with probability 1, there exists N such that for all N ′ > N ,
supθ∈Θ |fN ′(θ)− f(θ)| ≤ ε/2, and thus,

inf
θ∈Θ\H̄

fN ′(θ) ≥ inf
θ∈Θ\H̄

f(θ)− ε/2 = f(θ∗) + ε/2.

Hence, lim infN infθ∈Θ\H̄ fN (θ) > f(θ∗) almost surely. Applying Theorem 3.2 of Miller
(2021), the conclusion of the theorem follows. Note that f ′′N (θN )→ f ′′(θ∗) a.s. since θN → θ∗
and f ′′N → f ′′ uniformly on E.

Case (b): Alternatively, consider the case where Θ is open and fN is convex on Θ. For
all θ ∈ Θ, with probability 1, fN (θ)→ f(θ) (by Proposition 21 with C = {θ}). However, we
need to show that with probability 1, for all θ ∈ Θ, fN (θ)→ f(θ). We follow the argument
in the proof of Theorem 6.3 of Miller (2021). Let W be a countable dense subset of Θ.
Since W is countable, with probability 1, for all θ ∈W , fN (θ)→ f(θ). Since fN is convex,
then with probability 1, for all θ ∈ Θ, the limit f̃(θ) := limN fN (θ) exists and is finite,
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and f̃ is convex (Theorem 10.8 of Rockafellar, 1970). Since fN is convex and f(θ) is finite,
f(θ) is also convex. Since f and f̃ are convex, they are also continuous (Theorem 10.1 of
Rockafellar, 1970). Continuous functions that agree on a dense subset of points must be
equal. Thus, with probability 1, for all θ ∈ Θ, fN (θ) → f(θ). Applying Theorem 3.2 of
Miller (2021), the conclusion of the theorem follows.

Proof of Theorem 11 Our proof builds on Appendix D.3 of Barp et al. (2019), which
establishes a central limit theorem for the ksd when the model is an exponential family.
The outline of the proof is as follows. First, we establish bounds on sqθ and its derivatives,
using the assumed bounds on ∇xt(x) and ∇x log λ(x). Second, we establish that f ′′(θ) is
positive definite and independent of θ, and that f ′′N (θ) converges to it almost surely; from
this, we conclude that f ′′(θ∗) is invertible and fN (θ) is convex. These results rely on the
convergence properties of U-statistics and on Sylvester’s criterion.

The assumption that log λ(x) is continuously differentiable on X implies that λ(x) > 0
for x ∈ X . Since qθ(x) = λ(x) exp(θ>t(x)− κ(θ)), we have

sqθ(x) = ∇x log λ(x) + (∇xt(x))>θ

∇θsqθ(x) = (∇xt(x))> ∈ Rd×m

∇2
θsqθ(x) = 0 ∈ Rd×m×m

where (∇xt(x))ij = ∂ti/∂xj . Thus, sqθ(x) has continuous third-order partial derivatives
with respect to θ, and Equations 41 and 42 are trivially satisfied. Equation 40 holds for all
compact C ⊆ Θ since ‖∇x log λ(x)‖ and ‖∇xt(x)‖ are continuous functions in L1(P0) and

‖sqθ(x)‖ = ‖∇x log λ(x) + (∇xt(x))>θ‖ ≤ ‖∇x log λ(x)‖+ ‖∇xt(x)‖‖θ‖,
‖∇θsqθ(x)‖ = ‖∇xt(x)‖.

Hence, Condition 10 holds. By Equation 36 and Proposition 3,

f(θ) =
1

T
nksd(p0(x)‖q(x|θ)) =

1

TK

∫
X

∫
X
uθ(x, y)P0(dx)P0(dy) (100)

where K :=
∫ ∫

k(x, y)P0(dx)P0(dy). By Equation 57,

uθ(x, y) = θ>B2(x, y)θ +B1(x, y)>θ +B0(x, y) (101)

where

B2(x, y) = (∇xt(x))(∇yt(y))>k(x, y),

B1(x, y) = (∇yt(y))(∇x log λ(x))k(x, y) + (∇xt(x))(∇y log λ(y))k(x, y)

+ (∇yt(y))(∇xk(x, y)) + (∇xt(x))(∇yk(x, y)),

B0(x, y) = (∇x log λ(x))>(∇y log λ(y))k(x, y) + (∇y log λ(y))>(∇xk(x, y))

+ (∇x log λ(x))>(∇yk(x, y)) + trace(∇x∇>y k(x, y)).

By Condition 7, |k(x, y)|, ‖∇xk(x, y)‖, and ‖∇x∇>y k(x, y)‖ are bounded by a constant, say,
B <∞. Thus, it is straightforward to check that B2, B1, and B0 belong to L1(P0×P0) since
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‖∇xt(x)‖ and ‖∇x log λ(x)‖ are in L1(P0). Further, 0 < K <∞ since 0 < k(x, y) ≤ B <∞
by assumption. Thus,

f(θ) =
1

TK

∫ ∫ (
θ>B2(x, y)θ +B1(x, y)>θ +B0(x, y)

)
P0(dx)P0(dy) ∈ R.

Since k is symmetric, B2(x, y)> = B2(y, x). Hence, ∇θ(θ>B2(x, y)θ) = (B2(x, y) +
B2(y, x))θ, so by Fubini’s theorem,

f ′(θ) =
1

TK

∫ ∫ (
2B2(x, y)θ +B1(x, y)

)
P0(dx)P0(dy) ∈ Rm,

f ′′(θ) =
2

TK

∫ ∫
B2(x, y)P0(dx)P0(dy) ∈ Rm×m.

Here, differentiating under the integral sign is justified simply by linearity of the expectation.
Note that f ′′(θ) is a symmetric matrix since B2(x, y)> = B2(y, x). Next, to show f ′′(θ)
is positive definite, let v ∈ Rm \ {0}. By assumption, the rows of ∇xt(x) are linearly
independent with positive probability under P0. Thus, there is a set E ⊆ X such that
P0(E) > 0 and (∇xt(x))>v 6= 0 for all x ∈ E. Define g(x) = (∇xt(x))>v p0(x) ∈ Rd. Then∫
X |gi(x)|dx > 0 for at least one i, and

∫
X |gi(x)|dx ≤ ‖v‖

∫
X ‖∇xt(x)‖p0(x)dx < ∞ for all

i. Thus,

v>f ′′(θ)v =
2

TK

∫ ∫
g(x)>g(y)k(x, y)dxdy =

2

TK

d∑
i=1

∫ ∫
gi(x)gi(y)k(x, y)dxdy > 0

since k is integrally strictly positive definite. Therefore, f ′′(θ) is positive definite. In
particular, f ′′(θ∗) is invertible.

Finally, we show that with probability 1, for all N sufficiently large, fN (θ) is convex.
By Equations 35 and 101,

fN (θ) =
1

T

∑
i 6=j
[
θ>B2(X(i), X(j))θ +B1(X(i), X(j))>θ +B0(X(i), X(j))

]∑
i 6=j k(X(i), X(j))

.

Thus,

f ′′N (θ) =
2

T

∑
i 6=j B2(X(i), X(j))∑
i 6=j k(X(i), X(j))

.

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling, 2009), we have
f ′′N (θ) → f ′′(θ) almost surely, since

∫
X
∫
X ‖B2(x, y)‖P0(dx)P0(dy) < ∞ and 0 < K < ∞.

For a symmetric matrix A, let λ∗(A) denote the smallest eigenvalue. Since λ∗(A) is a contin-
uous function of the entries of A, we have λ∗(f

′′
N (θ))→ λ∗(f

′′(θ)) a.s. as N →∞. Thus, with
probability 1, for all N sufficiently large, f ′′N (θ) is positive definite, and hence, fN is convex.
Further, for such N , since fN is a quadratic function with positive definite Hessian, we have
MN := infθ∈Θ fN (θ) > −∞ and zN =

∫
Θ exp(−NfN (θ))π(θ)dθ ≤ exp(−NMN ) <∞.
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C.3 Proof of Theorem 12

To establish Theorem 12, we use the properties of U-statistics described in Chapter 5.5 of
Serfling (2009). When the data distribution matches the model distribution, n̂ksd converges
more quickly than when it does not match; this same property was used by Liu et al. (2016)
to develop a goodness-of-fit test based on the ksd.

Proof We first study the asymptotics of f ′N (θ∗). Denoting ∇θ
∣∣
θ=θ∗

uθ by ∇θuθ∗ for brevity,

f ′N (θ∗) =
1

T

1
N(N−1)

∑
i 6=j ∇θuθ∗(X(i), X(j))

1
N(N−1)

∑
i 6=j k(X(i), X(j))

.

The denominator converges a.s. to a finite positive constant, as in the proof of Proposi-
tion 21. It is straightforward to verify that EX,Y∼P0 [‖∇θuθ∗(X,Y )‖2] < ∞ since sqθ∗ and
∇θ
∣∣
θ=θ∗

sqθ are in L2(P0) by assumption. By Theorems 5.5.1A and 5.5.2 of Serfling (2009),

1

N(N − 1)

∑
i 6=j
∇θuθ∗(X(i), X(j))− EX,Y∼P0 [∇θuθ∗(X,Y )] = OP0(N−1/2).

Further, by the Leibniz integral rule (Folland, 1999, Theorem 2.27),

EX,Y∼P0 [∇θuθ∗(X,Y )] = ∇θ
∣∣
θ=θ∗

EX,Y∼P0 [uθ(X,Y )] = T EX,Y∼P0 [k(X,Y )]f ′(θ∗) = 0,

using the fact that f ′(θ∗) = 0 since θ∗ is a minimizer of f . Thus,

f ′N (θ∗) = OP0(N−1/2). (102)

Next, we examine the convergence of θN to θ∗. For all N sufficiently large, f ′N (θN ) = 0
by Theorem 9 (part 1), and thus, by Taylor’s theorem,

0 = f ′N (θN ) = f ′N (θ∗) + f ′′N (θ+
N )(θN − θ∗),

where θ+
N is on the line between θN and θ∗. As in the proof of Theorem 9, f ′′N → f ′′

uniformly on the set E defined in Condition 10. Thus, since f ′′N is continuous on E and
θ+
N → θ∗,

f ′′N (θ+
N )

a.s.−−−−→
N→∞

f ′′(θ∗). (103)

In particular, f ′′N (θ+
N ) is invertible for all N sufficiently large, since f ′′(θ∗) is invertible by

assumption. Hence,

θN − θ∗ = −f ′′N (θ+
N )−1f ′N (θ∗), (104)

and therefore, by Equation 102,

‖θN − θ∗‖ ≤ ‖f ′′N (θ+
N )−1‖‖f ′N (θ∗)‖ = OP0(N−1/2). (105)

This result matches Theorem 4 in Barp et al. (2019). By Taylor’s theorem,

fN (θ∗)− fN (θN ) = f ′N (θN )>(θ∗ − θN ) +
1

2
(θ∗ − θN )>f ′′N (θ++

N )(θ∗ − θN )

56



Bayesian Data Selection

=
1

2
(θ∗ − θN )>f ′′N (θ++

N )(θ∗ − θN )

for all N sufficiently large, where θ++
N is on the line between θN and θ∗. Therefore, using

the same reasoning as for Equations 103 and 105,

|fN (θ∗)− fN (θN )| ≤ 1

2
‖f ′′N (θ++

N )‖‖θ∗ − θN‖2 = OP0(N−1). (106)

This proves the first part of the theorem (Equation 43). Next, consider fN (θ∗) − f(θ∗).
Recall that

fN (θ∗) =
1

T

1
N(N−1)

∑
i 6=j uθ∗(X

(i), X(j))

1
N(N−1)

∑
i 6=j k(X(i), X(j))

.

It is straightforward to verify that EX,Y∼P0 [|uθ∗(X,Y )|2] < ∞ since sqθ∗ is in L2(P0). By
Theorems 5.5.1A and 5.5.2 of Serfling (2009),

1

N(N − 1)

∑
i 6=j

uθ∗(X
(i), X(j))− EX,Y∼P0 [uθ∗(X,Y )] = OP0(N−1/2).

Similarly, since k is bounded,

1

N(N − 1)

∑
i 6=j

k(X(i), X(j))− EX,Y∼P0 [k(X,Y )] = OP0(N−1/2).

It is straightforward to check that the second part of the theorem (Equation 44) follows.
For the third part, our argument follows that of the proof of Theorem 4.1 of Liu et al.

(2016). Suppose nksd(p0(x)‖q(x|θ∗)) = 0, and note that P0(x) = Qθ∗(x) by Proposition 4.
Given a differentiable function g : Rd → Rd, define ∇>x g(x) :=

∑d
i=1 ∂gi(x)/∂xi. Then

EX∼P0 [uθ∗(X, y)] = sp0(y)>
∫
X

(
(∇xp0(x))k(x, y) + p0(x)(∇xk(x, y))

)
dx

+

∫
X

(
(∇xp0(x))>∇yk(x, y) + p0(x)(∇>x∇yk(x, y))

)
dx

= sp0(y)>
∫
X
∇x
(
p0(x)k(x, y)

)
dx+

∫
X
∇>x∇y(p0(x)k(x, y))dx. (107)

The first term on the right-hand side of Equation 107 is zero since, by assumption,
k is in the Stein class of P0 (Condition 2). The second term is also zero since,
by the Leibniz integral rule (Folland, 1999, Theorem 2.27),

∫
∇>y ∇x(p0(x)k(x, y))dx =

∇>y
∫
∇x(p0(x)k(x, y))dx, which again equals zero because k is in the Stein class of P0.

Therefore, EX∼P0 [uθ∗(X, y)] = 0 for all y ∈ X , and in particular, the variance of this ex-
pression is also zero: VY∼P0 [EX∼P0 [uθ∗(X,Y )]] = 0. By Theorem 5.5.2 of Serfling (2009),
it follows that

1

N(N − 1)

∑
i 6=j

uθ∗(X
(i), X(j)) = OP0(N−1) (108)

since EX,Y∼P0 [uθ∗(X,Y )] = 0. Although Serfling (2009) requires VX,Y∼P0 [uθ∗(X,Y )] > 0,
Equation 108 holds trivially if VX,Y∼P0 [uθ∗(X,Y )] = 0. As before, since the denominator
of fN (θ∗) converges a.s. to a finite positive constant, we have that fN (θ∗) = OP0(N−1).
Equation 45 follows since f(θ∗) = 0 when nksd(p0(x)‖q(x|θ∗)) = 0.

57



Weinstein and Miller

C.4 Proof of Theorem 17

Proof Applying Theorem 9 (part 3) to each foreground model j ∈ {1, 2}, we have

log zj,N +Nfj,N (θj,N )− log π(θj,∗) + log |det f ′′j (θj,∗)|1/2 −
1

2
mFj ,j log(2π/N)

a.s.−−−−→
N→∞

0.

Since Kj,N = (2π/N)
mBj /2zj,N , this implies

logKj,N +Nfj,N (θj,N )− 1

2
(mFj ,j +mBj ) log(2π/N) + Cj

a.s.−−−−→
N→∞

0

where Cj is a constant that does not depend on N . Hence,

log
K1,N

K2,N
+N(f1,N (θ1,N )− f2,N (θ2,N ))

− 1

2
(mF1,1 +mB1 −mF2,2 −mB2) log(2π/N) + C1 − C2

a.s.−−−−→
N→∞

0. (109)

By Theorem 12, fj,N (θj,N )
P0−→ fj(θj,∗), and therefore,

1

N
log
K1,N

K2,N
+ f1(θ1,∗)− f2(θ2,∗)

P0−−−−→
N→∞

0.

Plugging in the definition of fj (Equation 36), this proves part 1 of the theorem.
For part 2, suppose f1(θ1,∗) = f2(θ2,∗) = 0 and mB2−mB1 does not depend on N . Then

by Theorem 12, fj,N (θj,N ) = OP0(N−1). Using this in Equation 109, we have

1

logN
log
K1,N

K2,N
+

1

2
(mF1,1 +mB1 −mF2,2 −mB2)

P0−−−−→
N→∞

0. (110)

For part 3, suppose f1(θ1,∗) = f2(θ2,∗) and mBj = cBj
√
N . Then by Theorem 12,

fj,N (θj,N ) = fj(θj,∗) +OP0(N−1/2). Using this in Equation 109, we have

1√
N logN

log
K1,N

K2,N
+

1

2
(cB1 − cB2)

P0−−−−→
N→∞

0. (111)

Appendix D. Additional probabilistic PCA details

D.1 Optimizing the NKSD

Computing the Laplace or BIC approximation to the SVC requires finding the minimizer of
n̂ksd(p0(x)‖q(x|θ)) with respect to θ. In this section, we describe how components of the
nksd can be pre-computed to speed up this optimization process. The generative model
used for pPCA can be rewritten using the properties of multivariate normal distributions
as

X ∼ N (0, HH> + vId). (112)
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The Stein score function for the pPCA model is then

sqθ(x) = ∇x log q(x|H, v) = −(HH> + vId)
−1x.

Define the matrices

Kij := I(i 6= j) k(X(i), X(j)),

K̇jb :=

N∑
i=1

I(i 6= j)
∂k

∂xb
(X(i), X(j)),

where I(E) is the indicator function, which equals 1 when E is true and is 0 otherwise.
Define the scalars

K̄ :=
N∑

i,j=1

Kij ,

K̈ :=
N∑

i,j=1

d∑
b=1

I(i 6= j)
∂2k

∂xb∂yb
(X(i), X(j)).

Letting X ∈ RN×d be the data matrix, the NKSD can be written as

n̂ksd(p0(x)‖q(x|H, v)) =
1

K̄

[
trace(X>KX(HH> + vId)

−1(HH> + vId)
−1)

− 2 trace(X>K̇(HH> + vId)
−1) + K̈

]
,

where we have used the fact that the kernel is symmetric. The terms X>KX and X>K̇
are the only ones that include sums over the entire data set; these can be pre-computed,
before optimizing the parameters H and v.

To compute the matrix inversion (HH>+vId)
−1 we follow the strategy of Minka (2001),

(HH> + vId)
−1 − v−1Id = (HH> + vId)

−1(Id − v−1(HH> + vId))

= −(HH> + vId)
−1HH>v−1

= −(U(L− vIk)U> + vId)
−1U(L− vIk)U>v−1.

Thus, applying the Woodbury matrix identity and using IdU = U = UIkIk = UIkU
>U ,

(HH> + vId)
−1 − v−1Id = −

[
v−1Id − v−2U

(
(L− vIk)−1 + v−1

)−1
U>
]
U(L− vIk)U>v−1

= −U [v−1Ik − v−2((L− v)−1 + v−1)−1](L− vIk)U>v−1

= −UL−1(L− vIk)U>v−1

= U(L−1 − v−1Ik)U
>.

Therefore,

(HH> + vId)
−1 = U(L−1 − v−1Ik)U

> + v−1Id.
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Computing L−1 is trivial since the matrix is diagonal. Returning to the nksd we have

n̂ksd(p0(x)‖q(x|U,L, v))

=
1

K̄

[
trace

(
X>KX[U(L−1 − v−1Ik)

2U> + 2v−1U(L−1 − v−1Ik)U
> + v−2Id]

)
− 2 trace

(
X>K̇[U(L−1 − v−1Ik)U

> + v−1Id]
)

+ K̈

]
=

1

K̄

[
trace

(
U>X>KXU(L−1 − v−1Ik)

2
)

+ trace
(
U>[2v−1X>KX − 2X>K̇]U(L−1 − v−1Ik)

)
+ v−1 trace

(
v−1X>KX − 2X>K̇

)
+ K̈

]
.

We optimized U , L and v using the trust region method implemented in pymanopt (Townsend
et al., 2016).

D.2 Data selection with the SVC

We used the approximate optimum technique in Section 2.3.3 to estimate the SVC for
different foreground subspaces. Following Section A.2, we used the factored IMQ kernel
with β = −0.5 and c = 1.

We focused on foreground subspaces that correspond to subsets of the data dimensions.
More specifically, recall that XF = V >X; then, we impose the restriction that each column

of V is a standard basis vector e(b) ∈ Rd, where e
(b)
b = 1 and e

(b)
b′ = 0 for b′ 6= b. A

subspace XF is then characterized by the set of included dimensions SF ⊆ {1, . . . , d}. The
marginal distribution of the model q(xF |H, v) is now straightforward to compute based on
Equation 112 and the properties of multivariate normals:

XF ∼ N (0, HSFH
>
SF + vI|SF |)

where HSF is the submatrix consisting of rows of H indexed by SF , and |SF | is the size of
the set SF .

In the projected model, some of the parameters are nuisance variables with no contri-
bution to the likelihood. Since the dimension of a d × k matrix on the Stiefel manifold is
dk− k(k+ 1)/2, the total dimension of the foreground model (including contributions from
parameters U , L and v) is mF = |SF |k − k(k + 1)/2 + k + 1, assuming |SF | ≥ k.

Code is available at https://github.com/EWeinstein/data-selection.

D.3 Calibration

The T hyperparameter was calibrated as in Section A.1. In detail, we sampled 10 indepen-
dent true parameter values from the prior, with α = 1 and d = 6. (We used a slightly less
disperse prior than during inference, where we set α = 0.1, to avoid numerical instabilities
in the T̂ estimate.) Then, for each of the true parameter values, we simulated N = 2000
datapoints. For each simulated true parameter value, we tracked the trend in the T̂ es-
timator (Equation 55) with increasing N (Figure 11). The median estimated T value at
N = 2000 was 0.052 across the 10 runs.
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pPCA

T̂
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Figure 11: Estimated T for increasing number of data samples, for 10 independent param-
eter samples from the prior. The median value at N = 2000 is T̂ = 0.052.

D.4 Pólya tree model

In this section, we describe the Pólya tree model (Ferguson, 1974; Mauldin et al., 1992;
Lavine, 1992) following the construction of Berger and Guglielmi (2001). Let

¯
εn :=

(ε1, . . . , εn) denote a vector of length n, where each εj ∈ {0, 1}. Each
¯
εn vector indexes

an interval in R, given by

B
¯
εn :=

(
F̃−1

(∑n
j=1 εj/2

j
)
, F̃−1

(∑n
j=1 εj/2

j + 1/2n
)]
,

where F̃−1 is the inverse c.d.f. of some probability distribution. For all n ∈ {0, 1, 2, . . .} and
all

¯
εn ∈ {0, 1}n, let

Y
¯
εn ∼ Beta(ξ

¯
εn0, ξ

¯
εn1),

where the ξ’s are hyperparameters. We say that a random variable X ∈ R is distributed
according to a Pólya tree model if

P (X ∈ B
¯
εn) =

n∏
j=1

(Y
¯
εj−1)I(εj=0)(1− Y

¯
εj−1)I(εj=1),

where I(E) is the indicator function, which equals 1 when E is true and is 0 otherwise. We
follow Berger and Guglielmi (2001) and use

µ(B
¯
εn) := F

(
F̃−1

(∑n
j=1 εj/2

j + 1/2n
))
− F

(
F̃−1

(∑n
j=1 εj/2

j
))
,

ρ(
¯
εn) :=

1

η

(
f(F̃−1(

∑n
j=1 εj/2

j + 1/2n+1))

µ(B
¯
εn)

)2

,

ξ
¯
εn0 := ρ(

¯
εn)

√
µ(B

¯
εn0)

µ(B
¯
εn1)

,

ξ
¯
εn1 := ρ(

¯
εn)

√
µ(B

¯
εn1)

µ(B
¯
εn0)

,
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where F and f are the c.d.f. and p.d.f. respectively of some probability distribution, and
η > 0 is a scale hyperparameter. We denote this complete model as X ∼ PolyaTree(F, F̃, η).

D.5 Data sets and preprocessing

We downloaded two publicly available data sets. The first data set was from hu-
man peripheral blood mononuclear cells (PBMCs), available at: https://support.

10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k. This is a
standard data set used in the tutorials for Seurat (Stuart et al., 2019) and Scanpy
(Wolf et al., 2018), for example. The second was taken from a dissociated extra-
nodal marginal zone B-cell tumor, specifically a mucosa-associated lymphoid tissue
(MALT) tumor: https://support.10xgenomics.com/single-cell-gene-expression/

datasets/3.0.0/malt_10k_protein_v3.
We pre-processed the data using Scprep (Gigante et al., 2020), following its example:

we normalized the total expression of each cell to match the median total expression in the
data set, to account for variability in library size, and then square-root transformed the
resulting normalized counts.

Appendix E. Additional glass model details

E.1 Glass model inference

We place a standard normal prior on each entry of Hj and a Laplace prior on each entry
of Jjj′ with scale 0.1 to encourage sparsity. To enforce that µ ≥ 0 (since scRNAseq counts
are nonnegative) and τ > 0, we place priors on a transformed version of these parameters,
as follows:

µ̃ ∼ N (0, 1)

µ = log(1 + exp(µ̃))

τ̃ ∼ N (0, 1)

τ = log(1 + exp(τ̃)) + 1.

For posterior inference, we employ a mean-field variational approximation: independent
normal distributions for the entries of Hj , normal distributions for µ̃ and τ̃ , and Laplace
distributions for each entry of Jjj′ . We use the factored IMQ kernel for the NKSD, with
β = −0.5 and c = 1.

To optimize the variational approximation (Equation 14), we construct stochastic esti-
mates of its gradient. At each optimization step, the expectation Erζ

[
n̂ksd(p0(xF )‖q(xF |θ))

]
is estimated using a minibatch of 200 randomly selected datapoints and a single sample from
the variational approximation rζ . The rest of the variational inference algorithm follows
standard practice in stochastic variational inference, as implemented in Pyro: automatic
differentiation to compute gradients, reparameterization estimators for Monte Carlo expec-
tations over the variational distribution, and the Adam optimizer (Kingma and Ba, 2015;
Bingham et al., 2019).

We also used stochastic optimization to perform data selection, as follows. Let I =
(I1, . . . , Id)

> be an indicator variable that specifies for each gene j whether it is included in
the foreground subspace (Ij = 1) or not (Ij = 0). We place a distribution on I such that
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Figure 12: Posterior mean interaction energies ∆Ejj′ for all selected genes, sorted. Dotted
lines show the thresholds for strong interactions (set by visual inspection).

Ij ∼ Bernoulli(1/(1 + exp(−φj))) for j = 1, . . . , d independently. Then, to perform data
selection over all possible subsets of genes, we optimize

argmaxφ E(K(I) | φ) (113)

where the expectation is taken with respect to I, where K(I) is the (estimated) SVC when
genes with Ij = 1 are included in the foreground space, and φ = (φ1, . . . , φd)

> ∈ Rd is a
vector of log-odds. This stochastic approach to discrete optimization has been used exten-
sively in reinforcement learning and related fields. We use the Leave-One-Out REINFORCE
(LOORF) estimator as described in Section 2.1 of Dimitriev and Zhou (2021) to estimate
gradients of φ, using 8 samples per step.

We interleave updates to the variational approximation and to φ, using the Adam opti-
mizer with step size 0.01 for each. We ran the procedure with 4 random initial seeds, taking
the result with the largest final estimated SVC. We halt optimization using the stopping
rule proposed in Grathwohl et al. (2020), stopping when the estimated mean minus the
estimated variance of the SVC begins to decrease, based on the average over 2000 steps.

Code is available at https://github.com/EWeinstein/data-selection.

E.2 Data sets and preprocessing

In addition to the two data sets in D.5, we also explored a data set of E18 mouse neu-
rons: https://support.10xgenomics.com/single-cell-gene-expression/datasets/

3.0.0/neuron_10k_v3.
We preprocessed each data set using Scprep (Gigante et al., 2020) in the same way as

in Section D.5. After preprocessing, we used the top 200 most highly expressed genes from
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Figure 13: Posterior mean interaction energies ∆Ejj′ for the glass model applied to all 200
genes in the MALT data set (rather than the selected 187). Genes shown are
the same as in Figure 8, for visual comparison.

among the top 500 most variable genes, according to the Scprep variability score. We log
transform the counts, that is we define xij = log(1 + cij) where cij is the expression count
for gene j in cell i.
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Figure 14: Comparison of the 187 selected genes and 13 excluded genes using data se-
lection. (a) Violin plot of σ̄j over all excluded and selected genes j, respec-
tively, when applying the model to all 200 genes, where σ̄j is the mean pos-
terior standard deviation of the interaction energies ∆Ejj′ for gene j, that is,
σ̄j := 1

d−1

∑
j′ 6=j std(∆Ejj′ | data). (b) Violin plot of fj over all excluded and

selected genes j, respectively, where fj is the fraction of cells with count equal
to zero for gene j. The data selection procedure excluded all genes with more
than 85% zeros and selected all genes with fewer than 85% zeros.
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László Györfi and Edward C Van Der Meulen. A consistent goodness of fit test based on the
total variation distance. In George Roussas, editor, Nonparametric Functional Estimation
and Related Topics, pages 631–645. Springer Netherlands, Dordrecht, 1991.

Stephanie C Hicks, F William Townes, Mingxiang Teng, and Rafael A Irizarry. Missing
data and technical variability in single-cell RNA-sequencing experiments. Biostatistics,
19(4):562–578, October 2018.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14:1303–1347, 2013.

Han Hong and Bruce Preston. Nonnested model selection criteria. 2005.

Peter J Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 1985.

Jonathan H Huggins and Lester Mackey. Random feature stein discrepancies. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

Jonathan H Huggins and Jeffrey W Miller. Reproducible model selection using bagged
posteriors. arXiv preprint arXiv:2007.14845, 2021.

Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. Inferring
regulatory networks from expression data using tree-based methods. PLoS One, 5(9),
September 2010.

Pierre E Jacob, Lawrence M Murray, Chris C Holmes, and Christian P Robert. Better to-
gether? Statistical learning in models made of modules. arXiv preprint arXiv:1708.08719,
2017.

Jack Jewson, Jim Q Smith, and Chris Holmes. Principles of Bayesian inference using general
divergence criteria. Entropy, 20(6):442, 2018.

Wenxin Jiang and Martin A Tanner. Gibbs posterior for variable selection in high-
dimensional classification and data mining. The Annals of Statistics, 36(5):2207–2231,
2008.

68



Bayesian Data Selection

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International
Conference on Learning Representations (ICLR), April 2014.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view
on Bayes’ rule: Reviewing and generalizing variational inference. Journal of Machine
Learning Research, 23(132):1–109, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence func-
tions. In International Conference on Machine Learning (ICML), 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a
baseline for free. In ICLR Workshop: Deep Reinforcement Learning Meets Structured
Prediction, 2019.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei.
Automatic differentiation variational inference. Journal of Machine Learning Research,
18:1–45, January 2017.

Michael Lavine. Some aspects of Polya tree distributions for statistical modelling. The
Annals of Statistics, 20(3):1222–1235, 1992.

John R Lewis, Steven N MacEachern, and Yoonkyung Lee. Bayesian restricted likelihood
methods: Conditioning on insufficient statistics in Bayesian regression. Bayesian Analy-
sis, 1(1):1–38, 2021.

Bruce G Lindsay. Composite likelihood methods. Contemporary Mathematics, 80(1):221–
239, 1988.

Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semiparametric esti-
mation of high dimensional undirected graphs. Journal of Machine Learning Research,
10(Oct):2295–2328, 2009.

Qiang Liu, Jason D Lee, and Michael Jordan. A kernelized Stein discrepancy for goodness-
of-fit tests. In International Conference on Machine Learning, volume 33, pages 276–284,
2016.

Takuo Matsubara, Jeremias Knoblauch, François-Xavier Briol, and Chris J. Oates. Robust
generalised Bayesian inference for intractable likelihoods. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 84(3):997–1022, 2022.

Hirotaka Matsumoto, Hisanori Kiryu, Chikara Furusawa, Minoru S H Ko, Shigeru B H Ko,
Norio Gouda, Tetsutaro Hayashi, and Itoshi Nikaido. SCODE: an efficient regulatory net-
work inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics,
33(15):2314–2321, August 2017.

R Daniel Mauldin, William D Sudderth, and S C Williams. Polya trees and random distri-
butions. The Annals of Statistics, 20(3):1203–1221, 1992.

69



Weinstein and Miller

Jeffrey W Miller. Asymptotic normality, concentration, and coverage of generalized poste-
riors. Journal of Machine Learning Research, 22(168):1–53, 2021.

Jeffrey W Miller and David B Dunson. Robust Bayesian inference via coarsening. Journal
of the American Statistical Association, 114(527):1113–1125, 2019.

Thomas Minka. Old and new matrix algebra useful for statistics, 2000.

Thomas P Minka. Automatic choice of dimensionality for PCA. In Advances in Neural
Information Processing Systems (NeurIPS), pages 598–604, 2001.

Victoria Moignard, Steven Woodhouse, Laleh Haghverdi, Andrew J Lilly, Yosuke Tanaka,
Adam C Wilkinson, Florian Buettner, Iain C Macaulay, Wajid Jawaid, Evangelia Dia-
manti, Shin-Ichi Nishikawa, Nir Piterman, Valerie Kouskoff, Fabian J Theis, Jasmin
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