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Abstract

Risk modeling with electronic health records (EHR) data is challenging due to no direct
observations of the disease outcome and the high-dimensional predictors. In this paper, we
develop a surrogate assisted semi-supervised learning approach, leveraging small labeled
data with annotated outcomes and extensive unlabeled data of outcome surrogates and
high-dimensional predictors. We propose to impute the unobserved outcomes by construct-
ing a sparse imputation model with outcome surrogates and high-dimensional predictors.
We further conduct a one-step bias correction to enable interval estimation for the risk
prediction. Our inference procedure is valid even if both the imputation and risk pre-
diction models are misspecified. Our novel way of ultilizing unlabelled data enables the
high-dimensional statistical inference for the challenging setting with a dense risk predic-
tion model. We present an extensive simulation study to demonstrate the superiority of
our approach compared to existing supervised methods. We apply the method to genetic
risk prediction of type-2 diabetes mellitus using an EHR biobank cohort.

Keywords: generalized linear models, high dimensional inference, model mis-specification,
risk prediction, semi-supervised learning.

1. Introduction

Precise risk prediction is vitally important for successful clinical care. High risk patients
can be assigned to more intensive monitoring or intervention to improve outcome. Tra-
ditionally, risk prediction models are developed based on cohort studies or registry data.
Population-based disease registries, while remain a critical source for epidemiological stud-
ies, collect information on a relatively small set of pre-specified variables and hence may limit
researchers’ ability to develop comprehensive risk prediction models (Warren and Yabroff,
2015). Most clinical care is delivered in healthcare systems (Thompson et al., 2015), and
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electronic health records (EHR) embedded in healthcare systems accrue rich clinical data
in broad patient populations. EHR systems centralize the data collected during routine
patient care including structured elements such as codes for International Classification of
Diseases, medication prescriptions, and medical procedures, as well as free-text narrative
documents such as physician notes and pathology reports that can be processed through
natural language processing for analysis. EHR data is also often linked with biobanks
which provide additional rich molecular information to assist in developing comprehensive
risk prediction models for a broad patient population.

Risk modeling with EHR data, however, is challenging due to several reasons. First,
precise information on clinical outcome of interest, Y , is often embedded in free-text notes
and requires manual efforts to extract accurately. Readily available outcome surrogates S,
such as the diagnostic codes or mentions of the outcome, may be predictive of the true
outcome Y , can deviate from the true label Y . Here we consider the general situation
that a vector of surrogates, S, that are noisy error prone proxies of Y and may include
non-informative surrogates. For example, using EHR data from Mass General Brigham,
we found that the positive predictive value was only 0.48 and 0.19 for having at least 1
diagnosis code of Type II Diabetes Mellitus (T2DM) and for having at least 1 mention
of T2DM in medical notes, respectively. Directly using these EHR proxies as true disease
status to derive risk models may lead to substantial biases. On the other hand, extracting
precise disease status requires manual chart review which is not feasible at a large scale. It
is thus of great interest to develop risk prediction models under a semi-supervised learning
(SSL) framework using both a large unlabeled dataset of size N containing information on
predictors X along with surrogates S and a small labeled dataset of size n with additional
observations on Y curated via chart review. Throughout the paper, we impose no stringent
model assumptions on the triplet (Y,X,S) while using generalized linear working models
to define and estimate the risk prediction model (see Section 2).

Additional challenges arise from the high dimensionality of the predictor vector X, and
the potential model mis-specifications. Although much progress has been made in high
dimensional regression in recent years, there is a paucity of literature on high dimensional
inference under the SSL setting. Precise estimation of the high dimensional risk model
is even more challenging if the risk model is not sparse. Allowing the risk model to be
dense is particularly important when X includes genomic markers since a large number of
genetic markers appear to contribute to the risk of complex traits (Frazer et al., 2009).
For example, Vujkovic et al. (2020) recently identified 558 genetic variants as significantly
associated with T2DM risk. An additional challenge arises when the fitted risk model is
mis-specified, which occurs frequently in practice especially in the high dimensional setting.
Model mis-specifications can also lead to the fitted model of Y | X to be dense. There are
limited methods currently available to make inference about high dimensional risk prediction
models in the SSL setting especially under a possibly mis-specified dense model. In this
paper, we fill in the gap by proposing an efficient surrogate assisted SSL (SAS) prediction
procedure that leverages the fully observed surrogates S to make inference about a high
dimensional risk model under such settings.

Our proposed estimation and inference procedures are as follows. For estimation, we
first use the labelled data to fit a regularized imputation model with surrogates and high-
dimensional covariates; then we impute the missing outcomes for the unlabeled data and fit
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the risk model using the imputed outcome and high-dimensional predictors. For inference,
we devise a novel bias correction method, which corrects the bias due to the regularization
for both imputation and estimation. Compared to existing literature, the key advantages
of our proposed SAS procedure are

1. Applicable to dense risk model Y | X: we allow the working risk model Y | X to be
dense as long as the working imputation model Y | S,X is sparse;

2. Robustness to model mis-specification: the working models on both risk prediction
Y | X and imputation Y | S,X can be mis-specified;

3. Requires no assumptions on the measurement error in S as proxies of Y and allows S
itself to be of high dimension;

4. Our analysis on Lasso with estimated inputs in loss (see (6) and (20)) facilitates the
consistency analysis for a dense model independent of the convergence rate of the
consistently estimated inputs. The technique is an independent contribution to the
high-dimensional statistics literatures.

The sparsity assumption on the imputation model is less stringent since we anticipate
that most information on Y can be well captured by the low dimensional S while the
fitted model of Y | X might be dense under possible model mis-specifications. Our theory
uncovers that suitable use of unlabeled data may greatly relax the sparsity of Y | X. As
most literatures in SSL emphasized in the efficiency gain, our work opens a new direction
of estimiability expansion through SSL.

1.1 Related Literatures

Under the supervised setting where both Y and X are fully observed, much progress has been
made in recent years in the area of high dimensional inference. High dimensional regression
methods have been developed for commonly used generalized linear models under sparsity
assumptions on the regression parameters (van de Geer and Bühlmann, 2009; Negahban
et al., 2010; Huang and Zhang, 2012). Recently, Zhu and Bradic (2018b) studied the
inference of linear combination of coefficients under dense linear model and sparse precision
matrix. Inference procedures have also been developed for both sparse (Zhang and Zhang,
2014; Javanmard and Montanari, 2014; van de Geer et al., 2014) and dense combinations
of the regression parameters (Cai et al., 2019; Zhu and Bradic, 2018a). High-dimensional
inference under the logistic regression model has also been studied recently (van de Geer
et al., 2014; Ma et al., 2020; Guo et al., 2020).

Under the SSL setting with n � N , however, there is a paucity of literature on high
dimensional inference. Although the SSL can be viewed as a missing data problem, it
differs from the standard missing data setting in a critical way. Under the SSL setting,
the missing probability tends to 1, which would violate a key assumption required in the
missing data literature (Bang and Robins, 2005; Smucler et al., 2019; Chakrabortty et al.,
2019, e.g.). Existing work on SSL with high-dimensional covariates largely focuses on the
post-estimation inference on the global parameters under sparse linear models with examples
including SSL estimation of population mean (Zhang et al., 2019; Zhang and Bradic, 2021),
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the explained variance (Cai and Guo, 2020), and the average treatment effect (Cheng et al.,
2018; Kallus and Mao, 2020). Our SAS procedure is among the first attempts to conduct the
semi-supervised inference of the high-dimensional coefficient and the individual prediction in
the high-dimensional dense and possibly mis-specified risk prediction model. In a concurrent
work, Deng et al. (2020) studied the efficient SSL estimation of high-dimensional linear
models. Our work differs from them in at least three ways: 1) we consider the more
flexible generalized linear models; 2) our setting involves the surrogates S, characterizing
the imprecise data in EHR; 3) we study dense coefficients whose number of nonzero elements
exceeds the number of labels. In high-dimensional regression with missing data, another
line of work studied the estimation of linear models with missing or noisy covariates X (Loh
and Wainwright, 2011; Belloni et al., 2017; Chandrasekher et al., 2020).

The surrogates S can be viewed conceptually as “mis-measured” proxies of the true
outcome Y . Semi-supervised methods have been developed under the assumption that S
depends on X only through Y , which essentially assumes an independent measurement
error in S. For example, Gronsbell et al. (2019) studied the generalized linear risk predic-
tion model using mis-measured S. With a single S, Zhang et al. (2022) considered high-
dimensional generalized linear model for the prediction model allowing the independence
assumption to be slightly violated. Our SAS approach differs from the measurement error
approach in two fundamental aspects: 1) typical measurement error approaches require S
to be the single proxy outcome of the same type as Y while our SAS approach allow a vector
S of arbitrary types as long as some of them are predictive for Y ; 2) measurement error
approaches impose stringent independence and model assumptions on the triplet (S,X, Y )
while our SAS approach has neither. Violation of the two requirements may obstruct the
deployment of measurement error methods or compromise its performance.

1.2 Organization of the Paper

The remainder of the paper is organized as follows. We introduce our population param-
eters and model assumptions in Section 2. In Section 3, we propose the SAS estimation
method along with its associated inference procedures. In Section 4, we state the theo-
retical guarantees of the SAS procedures, whose proofs are provided in the Supplementary
Materials. We also remark on the sparsity relaxation and the efficiency gain of the SSL.
In Section 5, we present simulation results highlighting finite sample performance of the
SAS estimators and comparisons to existing methods. In Section 6, we apply the proposed
method to derive individual risk prediction for T2DM using EHR data from Mass General
Brigham.

2. Settings and Notations

For the i-th observation, Yi ∈ R denotes the outcome variable, Si ∈ Rq denotes the surro-
gates for Yi and Xi ∈ Rp+1 denotes the high-dimensional covariates with the first element
being the intercept. Under the SSL setting, we observe n independent and identically dis-
tributed (i.i.d.) labeled observations, L = {(Yi,XT

i ,S
T
i )

T, i = 1, ..., n} and (N − n) i.i.d
unlabeled observations, U = {Wi = (XT

i ,S
T
i )

T, i = n + 1, ..., N}. We assume that the
labeled subjects are randomly sampled by design and the proportion of labelled sample is
n/N = ρ ∈ (0, 1) with ρ → 0 as n → ∞. We focus on the high-dimensional setting where
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dimensions p and q grow with n and allow p + q to be larger than n. Motivated by our
application, our main focus is on the setting N much larger than p, but our approach can
be extended to N ≤ p under specific conditions.

To predict Yi with Xi, we consider a possibly mis-specified working regression model
with a known monotone and smooth link function g,

Yi ∼ g(βTXi). (1)

We identify the target parameter as the most predictive working model measured by the
pseudo log-likelihood `(y, x)

β0 = argmin
β
−E{`(Yi,βTXi)}, `(y, x) = yx−G(x), G′(x) = g(x). (2)

Here we do not assume any model for the true conditional expectation E(Yi | Xi). Our goal
is to accurately estimate the high-dimensional parameter β0, alternatively characterized by
the first order condition for (2),

E[Xi{Yi − g(βT
0 Xi)}] = 0. (3)

Our procedure generally allows for a wide range of link functions and detailed requirements
on g(·) and its anti-derivative G are given in Section 4. In our motivating example, Y is a
binary indicator of T2DM status and g(x) = 1/(1 + e−x) with G(x) = log(1 + ex). We shall
further construct confidence intervals for g(βT

0 xnew) with any xnew ∈ Rp+1. The predicted
outcome g(βT

0 xnew) can be interpreted as the maximum pseudo log-likelihood prediction
under working model g(βTxnew). We make no assumption on the sparsity of β0 relative to
number of labels n, and hence it is not feasible to perform valid supervised learning for β0

when sβ = ‖β0‖0 > n.
We shall derive an efficient SSL estimate for β0 by leveraging U . To this end, we fit a

working imputation model
Yi ∼ g(γTWi), (4)

whose limiting parameter is likewise defined as the most predictive working model

γ0 = argmin
γ
−E{`(Yi,γTWi)} ⇒ E[Wi{Yi − g(γT

0 Wi)}] = 0. (5)

The definition of γ guarantees

E[Xi{Yi − g(γT
0 Wi)}] = 0. (6)

and hence if we impute Yi as Ȳi = g(γT
0 Wi), we have E[Xi{Ȳi − g(βT

0 Xi)}] = 0 regardless
the adequacy of the imputation model (4) for the conditional mean E(Yi |Wi). It is thus
feasible to carry out an SSL procedure by first deriving an estimate for Ȳi using the labelled
data L and then regressing the estimated Ȳi against Xi using the whole data L ∪ U .
Although we do not require β0 to be sparse or any of the fitted models to hold, we do
assume that γ0 defined in (5) to be sparse. When the surrogates S are strongly predictive
for the outcome, the sparsity assumption on γ0 is reasonable since the majority of the
information in Y can be captured in S.
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Figure 1: A dense prediction model (graph with dashed lines) can be compress to a sparse
imputation model (through graph with solid lines) when the effect of most baseline
covariates are reflected in a few variables in the EHR monitoring the development
of the event of interest.

Notations. We focus on the setting where min{n, p + q,N} → ∞. For convenience, we
shall use n→∞ in the asymptotic analysis. For two sequences of random variables An and
Bn, we use An = Op(Bn) and An = op(Bn) to denote limc→∞ limn→∞ P(|A| ≥ c|B|) = 0
and limc→0 limn→∞ P(|A| ≥ c|B|) = 0, respectively. For two positive sequences an and bn,
an = O(bn) or bn & an means that ∃C > 0 such that an ≤ Cbn for all n; an � bn if
an = O(bn) and bn = O(an), and an � bn or an = o(bn) if lim supn→∞ an/bn = 0. We use

Zn
L→ N(0, 1) to denote the sequence of random variables Zn converges in distribution to a

standard normal random variable.

3. Methodology

3.1 SAS Estimation of β0

The SAS estimation procedure for β0 consists of two key steps: (i) fitting the imputation
model to L to obtain estimate γ̂ for γ0 defined in (5); and (ii) estimating β0 in (3) by fitting
imputed outcome Ŷi = g(γ̂TWi) against Xi to U . In both steps, we devise the Lasso type
estimator to deal with the high-dimensionality of X. In principle, other types of variable
selection methods, e.g. SCAD (Fan and Li, 2001) or square-root Lasso (Belloni et al., 2011),
may also be used. We use the Lasso as the example for its simplicity. A further discussion
on the choice of regularized estimators is given in Remark 6.

In Step (i), we estimate γ0 by the L1 regularized pseudo log-likelihood estimator γ̂,
defined as

γ̂ = argmin
γ∈Rp+q+1

`imp(γ) + λγ‖γ−1‖1 with λγ �
√

log(p+ q)/n, (7)

6



SAS Inference High-d GLM

where a−1 denotes the sub-vector of all the coefficients except for the intercept and

`imp(γ) =
1

n

n∑
i=1

`(Yi,γ
TWi) with `(y, x) defined in (2). (8)

The imputation loss (8) corresponds to the negative log-likelihood when Y is binary and
the imputation model holds with g being anti-logit. With γ̂, we impute the unobserved
outcomes for subjects in U as Ŷi = g(γ̂TWi), for n+ 1 ≤ i ≤ N .

In Step (ii), we estimate β0 by β̂ = β̂(γ̂), defined as,

β̂(γ̂) = argmin
β∈Rp+1

`†(β; γ̂) + λβ‖β−1‖1 with λβ �
√

log(p)/N, (9)

where `†(β; γ̂) is the imputed pseudo log-likelihood:

`†(β; γ̂) =
1

N

∑
i>n

`(Ŷi,β
TXi) +

1

N

n∑
i=1

`(Yi,β
TXi) with `(y, x) defined in (2). (10)

We denote the complete data pseudo log-likelihood of the full data as

`PL(β) =
1

N

N∑
i=1

`(Yi,β
TXi). (11)

and define the gradients of the various losses (8)-(11) as

˙̀
imp(γ) = ∇`imp(γ), ˙̀

PL(β) = ∇`PL(β), ˙̀†(β;γ) =
∂

∂β
`†(β;γ). (12)

3.2 SAS Inference for Individual Prediction

Since g(·) is specified, the inference on g(xT
newβ) immediately follows from the inference on

xT
newβ. We shall consider the inference on standardized linear prediction xT

stdβ with the
standardized covariates

xstd = xnew/‖xnew‖2
and then scale the confidence interval back. This way, the scaling with ‖xnew‖2 is made
explicit in the expression of the confidence interval.

The estimation error of β̂ can be decomposed into two components corresponding to
the respective errors associated with (7) and (9). Specifically, we write

β̂ − β0 = {β̄(γ̂)− β0}+ {β̂ − β̄(γ̂)}, (13)

where β̄(γ̂) is defined as the minimizer of the expected imputed loss conditionally on the
labeled data, that is,

β̄(γ̂) = argmin
β∈Rp+1

E[`†(β; γ̂) | L ]. (14)

The term β̄(γ̂) − β0 denotes the error from the imputation model in (7) while the term
β̂ − β̄(γ̂) denotes the error from the prediction model in (9) given the imputation model
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parameter γ̂. As `1 penalization is involved in both steps, we shall correct the regularization
bias from the two sources. Following from the typical one-step debiasing LASSO (Zhang

and Zhang, 2014), the bias β̂− β̄(γ̂) is estimated by Θ̂ ˙̀†(β̂; γ̂) where Θ̂ is an estimator of
[E{g′(βT

0 Xi)XiX
T
i }]−1, the inverse Hessian of `†(·; γ̂) at β = β0.

The bias correction for β̄(γ̂)−β0 requires some innovation since we need to conduct the
bias correction for a nonlinear functional β̄(·) of LASSO estimator γ̂, which has not been
studied in the literature. We identify β̄(γ̂) and β0 by the first order moment conditions,

β̄(γ̂) : Ei>n[Xi{g(β̄(γ̂)TXi)− g(γ̂TWi)} | L ] ≈ 0,

β0 : E[Xi{g(βT
0 Xi)− Yi}] = E[Xi{g(βT

0 Xi)− g(γT
0 Wi)}] = 0. (15)

Here Ei>n[· | L ] denotes the conditional expectation of a single copy of the unlabeled data
given the labelled data. By equating the two estimating equations in (15), we apply the
first order approximation and approximate the difference β̄(γ̂)− β0 by

β̄(γ̂)− β0 ≈− [E{g′(βT
0 Xi)XiX

T
i }]−1Ei>n

[
Xi{g(γT

0 Wi)− g(γ̂TWi)} | L
]

(16)

Together with the bias correction for β̄(γ̂)− β0, this motivates the debiasing procedure

β̂ − 1− ρ
n

n∑
i=1

Θ̂Xi

{
g(γ̂TWi)− Yi

}
− Θ̂ ˙̀†(β̂; γ̂).

The 1−ρ factor, which tends to one when n much smaller than N , comes from the proportion
of unlabeled data whose missing outcome are imputed.

For theoretical considerations, we devise a cross-fitting scheme in our debiasing process.
We split the labelled and unlabeled data into K folds of approximately equal size, respec-
tively. The number of folds does not grow with dimension (e.g. K = 10). We denote the
indices sets for each fold of the labelled data L as I1, . . . , IK , and those of the unlabeled
data U as J1, . . . ,JK . We denote the respective sizes of each fold in the labelled data and
full data as nk = |Ik| and Nk = nk + |Jk|, where |I| denotes the carnality of I. Define
Ick = {1, . . . , n} \ Ik and J ck = {n + 1, . . . , N} \ Jk. For each labelled fold k, we fit the
imputation model with out-of-fold labelled samples:

γ̂(k) = argmin
γ∈Rp+q+1

1

n− nk

∑
i∈Ick

`(Yi,γ
TWi) + λγ‖γ−1‖1. (17)

Using γ̂(k), we fit the prediction model with the out-of-fold data Ick ∪ J ck :

β̂
(k)

= argmin
β∈Rp+1

1

N −Nk

∑
i∈J ck

`(g(γ̂(k)TWi),β
TXi) +

∑
i∈Ick

`(Yi,β
TXi)

+ λβ‖β−1‖1. (18)

To estimate the projection

u0 = E{g′(βT
0 Xi)XiX

T
i }]−1xstd, (19)

we propose an L1-penalized estimator

û(k) = argmin
u∈Rp

1

N −Nk

∑
k′ 6=k

∑
i∈Ik′∪Jk′

[
1

2
g′
(
β̂

(k,k′)T

Xi

)
(XT

iu)2 − uTxstd

]
+ λu‖u‖1, (20)
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where β̂
(k,k′)

is trained with samples out of folds k and k′,

β̂
(k,k′)

= argmin
β∈Rp+1

∑
i∈(Jk∪Jk′ )c

`
(
g
(
γ̂(k,k′)TWi

)
,βTXi

)
+
∑

i∈(Ik∪Ik′ )c
`(Yi,β

TXi)

N −Nk −Nk′
+ λβ‖β−1‖1,

(21)

with γ̂(k,k′) = argmin
γ∈Rp+q+1

∑
i∈Ick∩I

c
k′
`(Yi,γ

TWi)

n− nk − nk′
+ λγ‖γ−1‖1.

The estimators in (21) take similar forms as those in (17) and (18) except that their training
samples exclude two folds of data Ik ∪Jk and Ik′ ∪Jk′ . In the summand of (20), the data

(Yi,Xi,Si) in fold k′ Ik′ ∪ Jk′ is independent of β̂
(k,k′)

trained without folds k and k′.
The estimation of u requires an estimator of β and both estimators are subsequently used
for the debiasing step. Using the same set of data multiple times for β̂, û, debiasing and
variance estimation may induce over-fitting bias, so we implemented the cross-fitting scheme
to reduce the over-fitting bias. As a remark, cross-fitting might not be necessary for theory
with additional assumptions and/or empirical process techniques.

We obtain the cross-fitted debiased estimator for xT
stdβ as x̂T

stdβ, defined as

1

K

K∑
k=1

xT
stdβ̂

(k)

− 1

N

K∑
k=1

∑
i∈Jk

û(k)TXi{g(β̂
(k)T

Xi)− g(γ̂(k)TWi)}

− 1

n

K∑
k=1

∑
i∈Ik

û(k)TXi

{
(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂

(k)T

Xi)− Yi
}
.

(22)

The second term is used to correct the bias β̄(γ̂)−β0 and the third term is used to correct
the bias β̂ − β̄(γ̂). The corresponding variance estimator is

V̂SAS =
1

n

K∑
k=1

∑
i∈Ik

(û(k)TXi)
2
{

(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi
}2

+
ρ2

n

K∑
k=1

∑
i∈Jk

(û(k)TXi)
2
{
g(β̂

(k)T

Xi)− g(γ̂TWi)
}2

(23)

Through the link g and the scaling factor ‖xnew‖2, we estimate g(xT
newβ0) by g

(
‖xnew‖2x̂T

stdβ
)

and construct the (1− α)× 100% confidence interval for g(xT
newβ0) as[

g

{
‖xnew‖2

(
x̂T

stdβ −Zα/2
√
V̂SAS/n

})
, g

{
‖xnew‖2

(
x̂T

stdβ + Zα/2
√
V̂SAS/n

)}]
, (24)

where Zα/2 is the 1− α/2 quantile of the standard normal distribution.

4. Theory

We introduce assumptions required for both estimation and inference in Section 4.1. We
state our theories for estimation and inference, respectively in Sections 4.2 and 4.3.
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4.1 Assumptions

We assume the complete data consist of i.i.d. copies of (Yi,Xi,Si), for i = 1, . . . , N . For
our focused SSL settings, only the first n outcome labels Yi, . . . , Yn are observed. Under
the i.i.d assumption, our SSL setting is equivalent to the missing completely at random
(MCAR) assumption. The sparsities of γ0, β0 and u0 are denoted as

sγ = ‖γ0‖0, sβ = ‖β0‖0, su = ‖u0‖0.

We focus on the setting with n, p+q,N →∞ with n being allowed to be smaller than p+q.
We allow that sγ , sβ and su grow with n, p + q,N and satisfy sγ � n and sβ + su � N .
While our method and theory adaptively applies to both SSL (N � n) and missing data
(N � n) settings without prior knowledge on the limit of n/N , we emphasize on the SSL
(N � n) setting that matches our motivating EHR studies and is also less studied in
the literature. To achieve the sharper dimension conditions, we consider the sub-Gaussian
design as in Portnoy (1984, 1985); Negahban et al. (2010). We denote the sub-Gaussian
norm for random variables and random vectors both as ‖ · ‖ψ2 . The detailed definition is
given in Appendix D.

Assumption 1 For constants ν1, ν2 and M independent of n, p and N ,

a) the residuals Yi− g(γT
0 Wi) and Yi− g(βT

0 Xi) are sub-Gaussian random variables with
sub-Gaussian norm bounded by ‖Yi − g(γT

0 Wi)‖ψ2
≤ ν1 and ‖Yi − g(βT

0 Xi)‖ψ2
≤ ν2;

b) The link function g satisfies the monotonicity and smoothness conditions: infx∈R g
′(x) ≥

0, supx∈R g
′(x) < M and supx∈R g

′′(x) < M .

Under our motivating example with a binary Yi and g(x) = ex/(1 + ex), 1a and 1b are
satisfied. The condition is also satisfied for the probit link function and the identity link
function. Condition 1a is universal for high-dimensional regression. Admittedly, Lipschitz
requirement in 1b rules out some generalized linear model links with unbounded derivatives
like the exponential link, but we may substitute the condition by assuming a bounded
‖Xi‖∞.

Assumption 2 For constants σ2max and σ2min independent of n, p,N ,

a) Wi is a sub-Gaussian vector with sub-Gaussian norm ‖Wi‖ψ2 ≤ σmax/
√

2;

b) The weak overlapping condition at the population parameter β0 and γ0,

(i) inf‖v‖2=1 vTE([g′(βT
0 Xi) ∧ 1]XiX

T
i )v ≥ σ2min,

(ii) inf‖v‖2=1 vTE[{g′(γT
0 Wi) ∧ 1}WiW

T
i ]v ≥ σ2min;

c) The non-degeneracy of average residual variance:

inf
‖v‖2=1

E[{Yi − (1− ρ) · g(γT
0 Wi)− ρ · g(βT

0 Xi)}2(XT
iv)2] ≥ σ2min.

10



SAS Inference High-d GLM

Assumption 2a is typical for high-dimensional regression (Negahban et al., 2010), which
also implies the bounded maximal eigenvalue of the second moment

sup
‖v‖2=1

vTE[WiW
T
i ]v ≤ σ2max.

Notably, we do not require two common conditions under high-dimensional generalized lin-
ear models (Huang and Zhang, 2012; van de Geer et al., 2014): 1) the upper bound on
supi=1,...,N ‖Xi‖∞; 2) the lower bound on infi=1,...,N g

′(βT
0 Xi), often known as the overlap-

ping condition for logistic regression model. Compared to the overlapping condition under
logistic regression that g(βT

0 Xi) and g(γT
0 Wi) are bounded away from zero, our Assumptions

2b and 2c are weaker because they are implied by the typical minimal eigenvalue condition

inf
‖v‖2=1

vTE(WiW
T
i )v ≥ σ2min

plus the overlapping condition.

4.2 Consistency of the SAS Estimation

We now state the L2 and L1 convergence rates of our proposed SAS estimator.

Theorem 1 (Consistency of SAS estimation) Under Assumptions 1, 2 and with

sγ = o(n/ log(p+ q)), sβ = o(N/ log(p)), λβ &
√

log(p)/N, (25)

we have

‖β̂ − β0‖2 = Op

(√
sβλβ + (1− ρ)

√
sγ log(p+ q)/n

)
,

‖β̂ − β0‖1 = Op
(
sβλβ + (1− ρ)2sγ log(p+ q)/(nλβ)

)
.

Remark 2 The dimension requirement for our SAS estimator achieving L2 consistency
significantly weakens the existing dimension requirement in the supervised setting (Negahban
et al., 2010; Huang and Zhang, 2012; Bühlmann and Van De Geer, 2011; Bickel et al., 2009)
With λβ �

√
log(p)/N, Theorem 1 implies the L2 consistency of β̂ under the dimension

condition,
(1− ρ)2sγ log(p+ q)/n+ sβ log(p)/N = o(1). (26)

When N � n, our requirement on the sparsity of β, sβ = o(N/ log(p)) is significantly
weaker than sβ = o(n/ log(p)), which is known as the fundamental sparsity limit to identify
the high-dimensional regression vector in the supervised setting. Theorem 1 indicates that
with assistance from observed S ∈ U , the SAS procedure allows sβ > n provided that N
is sufficiently large and the imputation model is sparse. This distinguishes our result from
most estimation results in high-dimensional supervised settings. Among SSL literatures, the
utility of unlabeled data in relaxation of sparsity condition has never been conceived before.

Remark 3 In the context of Theorem 1, a sparse imputation, often induced by a small
number of highly predictive surrogates, is essential for an optimal estimation rate. When
sβ > sγ, the L2 rate in Theorem 1 has two components,

√
sβ log(p)/N regarding the minimax

rate to learn β from all data and
√
sγ log(p+ q)/n regarding the minimax rate to learn γ

in the labeled data (Raskutti et al., 2011). Thus, the rate cannot be further improved if the
sparser imputation model is used to identify the denser β without additional conditions.

11
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Remark 4 If the L1 consistency is of interest, the penalty levels are chosen as

λβ � max
{√

log(p)/N,
√
sγ/sβλγ

}
, (27)

which produces the L1 estimation rate from Theorem 1

‖β̂ − β0‖1 = Op

(
sβ
√

log(p)/N +
√
sγsβ log(p)/n

)
.

Compared to the condition for L1 consistency under supervised learning, sβ = o
(√

n/ log(p)
)

,

the condition from SAS estimation sβ = o ((n/sγ +N)/ log(p)) allows a denser β0 in the
setting with a very sparse γ0 and a large unlabeled data. On the other hand, the L2 estima-
tion rate in Theorem 1 remains the same if√

log(p)/N . λβ . max
{√

log(p)/N,
√
sγ/sβλγ

}
.

Our theory on the SAS inference procedure uses the L2 instead of the L1 consistency.

Theorem 1 implies the following prediction consistency result.

Corollary 5 (Consistency of individual prediction) Suppose xnew is sub-Gaussian ran-
dom vector satisfying sup‖v‖2=1 vTE[xnewxT

new]v ≤ σ2max. Under the conditions of Theorem 1,
we have

g
(
β̂

T

xnew

)
− g (βT

0 xnew) = Op

(
‖β̂ − β0‖2

)
= op(1).

The concentration result of Corollary 5 is established with respect to the joint distribution
of the data and the new observation xnew. This is in a sharp contrast to the individual
prediction conditioning on any new observation xnew. If the goal is to conduct inference
for any given xnew, the theoretical justification is provided in the following Theorem 7 and
Corollary 8.

Remark 6 Other types of penalties shown to provide consistent estimation in L2 for the
working imputation model can substitute the Lasso penalty in (7), since the L2 rate ‖γ̂−γ0‖2
is the only property invoked for γ̂ in the proof of Theorem 1. For example, we may choose
the square-root Lasso (Belloni et al., 2011) with pivotal recovery under linear models with
identity link g(x) = x. Changing the Lasso penalty in (9), however, might require a different
proof to produce the stated estimation rate adaptive to arbitrary sβ/N and sγ/n, covering
both sβ/N � sγ/n and sβ/N & sγ/n settings (Case 1 and 2, respectively, in the Proof of
Theorem 1). If the sβ/N � sγ/n setting guaranteed by a very large N alone is of interest,

other penalties for β̂ can work equally well (by adapting Case 1 in the Proof of Theorem 1).

4.3
√
n-inference with Debiased SAS Estimator

We state the validity of our SSL inference in Theorem 7. We use to A
L→ B to denote that

random variable A converges in distribution to a distribution B.

12
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Theorem 7 (SAS Inference) Let xnew be the random vector representing the covariate
of a new individual. Under Assumptions 1, 2 and the dimension condition

(1− ρ)4
s2γ log(p+ q)2

n
+
ρ(s2β + sβsu) log(p)2

N
+ (1− ρ)2

sγsu log(p+ q) log(p)

N
= o(1), (28)

we draw inference on xT
newβ0 conditionally on xnew according to

√
nV̂
−1/2

SAS

(
x̂T

stdβ −
xT

newβ0

‖xnew‖2

)
| xnew

L→ N(0, 1),

where V̂ 2
SAS defined in (23) is the estimator of the asymptotic variance

VSAS =E[(uT
0 Xi)

2{Y − (1− ρ) · g(γT
0 Wi)− ρ · g(βT

0 Xi)}2]
+ ρ(1− ρ)E[(uT

0 Xi)
2{g(γT

0 Wi)− g(βT
0 Xi)}2],

with u0 = Θ0

xnew

‖xnew‖2
= [E{g′(βT

0 Xi)XiX
T
i }]−1

xnew

‖xnew‖2
. (29)

By the Young’s inequality, the condition (28) is implied by

(1− ρ)4
s2γ log(p+ q)2

n
+

√
ρ(sβ + su) log(p)

√
N

= o(1), (30)

When p is much smaller than the full sample size N , our condition (30) allows the sparsity
levels of β0 and u0 to be as large as p. Even if p is larger than N , our SAS inference proce-
dure is valid if sβ + su .

√
N/ log(p). In the literature on confidence interval construction

in high-dimensional supervised setting, the valid inference procedure for a single regression
coefficient in the linear regression requires sβ .

√
n/ log(p) (Zhang and Zhang, 2014; Javan-

mard and Montanari, 2014; van de Geer et al., 2014). Such a sparsity condition has been
shown to be necessary to construct a confidence interval of a parametric rate (Cai and Guo,
2017). We have leveraged the unlabeled data to significantly relax the fundamental limit of
statistical inference from sβ .

√
n/ log(p) to sβ . N/{log(p)

√
n}. The amount of labelled

data validates the statistical inference for a dense model in high dimensions.
The sparsity of u0 is determined by xnew and the precision matrix Θ0. In the supervised

learning setting, for confidence interval construction for a single regression coefficient, van de
Geer et al. (2014) requires su . n/ log(p) is required. According to (30), our SAS inference
requires su . N/{log(p)

√
n}, which can be weaker than su . n/ log(p) if the amount of

unlabeled data is larger than n2. Theorem 7 implies that our proposed CI in (24) is valid
in terms of coverage, which is summarized in the following corollary.

Corollary 8 Under Assumptions 1 and 2, as well as (28), the CI defined in (24) satisfies,

P
{
g

(
‖xnew‖2

(
x̂T

stdβ −Zα/2
√
V̂SAS/n

))
≤ g (xT

newβ0)

≤ g

((
‖xnew‖2x̂T

stdβ + Zα/2
√
V̂SAS/n

))}
= 1− α+ o(1).

2g′(βT
0 xnew)‖xnew‖2Zα/2

√
VSAS/n . ‖xnew‖2/

√
n,

where VSAS is the the asymptotic variance defined in (29).
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Confidence interval construction for g (xT
newβ0) in high-dimensional supervised setting

has been recently studied in Guo et al. (2020). Guo et al. (2020) assumes the prediction
model to be correctly specified as a high-dimensional sparse logistic regression and the
inference procedure is valid if sβ .

√
n/ log p. In contrast, we leverage the unlabeled data

to allow for mis-specified prediction model and a dense regression vector, as long as the
dimension requirement in (28) is satisfied.

4.4 Efficiency comparison of SAS Inference

Efficiency in high-dimensional setting or SSL setting in which the proportion of labelled
data decays to zero is yet to be formalized. Here we use the efficiency bound in the classical
low-dimensional with a fixed ρ as the benchmark. Apart from the relaxation of various
sparsity conditions, we illustrate next that our SAS inference achieves a decent efficiency
with properly specified imputation model compared to the supervised learning and the
benchmark.

Similar to the phenomenon discovered by Chakrabortty and Cai (2018), if the imputation
model is correct, we can guarantee the efficiency gain by SAS inference in comparison to
the asymptotic variance of the supervised learning,

VSL = E[(uT
0 Xi)

2{Yi − g(βT
0 Xi)}2]. (31)

Proposition 9 If E(Yi | Si,Xi) = g(γT
0 Wi), we have VSL ≥ VSAS.

Moreover, we can show that our SAS inference attains the benchmark efficiency derived
from classical fixed ρ setting (Tsiatis, 2007). To simplify the derivation, we describe the
missing-completely-at-random mechanism through the binary observation indicator Ri, i =
1, . . . , N , independent of Yi, Xi and Si. We still denote the proportion of labelled data as
ρ = E(Ri). The unsorted data take the form

D = {Di = (XT
i ,S

T
i , Ri, RiYi)

T, i = 1, . . . , N} .

We consider the following class of complete data semi-parametric models

Mcomp =

{
fX,Y,S,R(x, y, s, r) = fX(x)ρr(1− ρ)1−rfY |S,X(y|s,x)fS|X(s|x) :

fY |S,X, fX, fS|X are arbitrary density

}
, (32)

and establish the efficiency bounds for RAL estimators under Mcomp by deriving the as-
sociated efficient influence function in the following proposition. We denote the nuisance
parameters for fY |S,X, fX and fS|X as η. We use η0 to denote the true underlying nuisance
parameter that generates the data. The parameter of interest β0 is not part of the model
Mcomp but defined by the implicit function through the moment condition (3).

Proposition 10 The efficient influence function for θ = xT
stdβ under Mcomp is

φeff(Di; θ0,η0) =
Ri
ρ

uT
0 Xi{Yi − E(Yi | Si,Xi)} − uT

0 Xi{E(Yi | Si,Xi)− g(βT
0 Xi)}.

14
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Under the Assumptions of Theorem 7 and additionally E(Yi | Si,Xi) = g(γT
0 Wi), our SAS

debiased estimator admits the same influence function

x̂T
stdβ −

xT
newβ0

‖xnew‖2
=

1

N

N∑
i=1

φeff(Di; θ0,η0) + op

(
(ρN)−1/2

)
according to Appendix B3 Step 2 (A.31).

5. Simulation

We have conducted extensive simulation studies to evaluate the finite sample performance
of the SAS estimation and inference procedures under various scenarios. Throughout, we
let p = 500, q = 100, N = 20000 and consider n = 500. The signals in β are varied to
be approximately sparse or fully dense with a mixture of strong and weak signals. The
surrogates S are either moderately and strongly predictive of Y as specified below. For
each configuration, we summarize the results based on 500 simulated datasets. We compare
our SAS procedure with the supervised LASSO (SLASSO) that (1) estimates the β0 by
regressing Y to X over the labeled data with Lasso; (2) draw inference on xT

newβ0 with the
one-step debiased Lasso van de Geer et al. (2014).

To mimic the zero-inflated discrete distribution of EHR features, we first generate
Zx
i,1, . . . , Z

x
i,p, Z

u
i , Z

s
i,1, . . . , Z

s
i,q independently from N(0, 25). Then we construct Xi from

{Zui ,Zx
i = (Zx

i,1, ..., Z
x
i,1)

T} via the transformation ς(z) = blog{1 + exp(z)}c:

Xi,1 =
{
ς
(∑p

j=2 2Xi,j/
√
p− 1 + Zx

i,1/
√

2
)
− µX

}
/σX,

Xi,j = [ς(Zx
i,j

√
1− p−1 + Zui /

√
p)− µX]/σX, j = 2, . . . , p.

We standardize Xi,j to roughly mean zero and unit variance with µX = 1.80 and σX = 2.74.
The shared term Zui induces correlation among the covariates.

For S and Y , we consider two scenarios under which the imputation model is either
correctly or incorrectly specified. We present the “Scenario I: neither the risk prediction
model nor the imputation model is correctly specified” in the main text and the “Scenario
II: The imputation model is correctly specified and exactly sparse” in Section A of the
Supplementary materials.

Scenario I: neither the risk prediction model nor the imputation model is cor-
rectly specified. In this scenario, we first generate Yi from the probit model

P(Yi = 1|Zxi ) = Φ(αTZxi ) with Φ(x) =

∫ x

−∞
(2π)−1/2e−x

2/2dx,

and then generate S from

Si,1 =
{
ς(Zsi,1/2 + θYi)− µS

}
σ−1S + ξTXi, and Si,j = {ς(Zsi,j)− µX}σ−1X , j = 2, . . . , p.

We chose µS and σS depending on α such that Si,1 is roughly mean 0 and variance 1.
Under this setting, a logistic imputation model would be misspecified but nevertheless
approximately sparse with appropriately chosen ξ. The coefficients α control the optimal
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prediction accuracy of X for Y while θ controls the optimal prediction accuracy of S for Y .
We consider two α of different sparsity patterns, which also determine the rest of parameters

Sparse (sα = 3) : α = (0.45, 0.318, 0.318,0T
497×1)

T, µS = 1.82, σS = 2.01,

Dense (sα = 500) : α = (0.316,0.059T
29×1,0.007T

470×1)
T, µS = 2.71, σS = 2.68,

where ak×1 = (a, ..., a)T
k×1 for any a. The sparsity of α affects the approximate sparsity of

β subsequently (Table 1), which we measured by the squared ratio between `1 norm and `2
norm

S(β) = ‖β‖21/‖β‖22, min
j:βj 6=0

|βj | ≤ S(β)/‖β‖0 ≤ 1. (33)

We consider two θ: (a) θ = 0.6 for S to be moderately predictive of Y ; and (b) θ = 1 for
strong surrogates. The parameter ξ depends on both the choices of α and θ:

sα = 3, θ = 0.6 : ξ = (0.407, 0.330, 0.330,0.005T
497×1)

T,

sα = 3, θ = 1 : ξ = (0.199, 0.163, 0.163,0.002T
497×1)

T,

sα = 500, θ = 0.6 : ξ = (0.350,0.064T
29×1,0.011T

470×1)
T,

sα = 500, θ = 1 : ξ = (0.169,0.032T
29×1,0.005T

470×1)
T.

Due to the complexity of the data generating process and the noncollapsibility of the
logistic regression models, we cannot analytically express the true β0 in both scenarios.
Instead, we numerically evaluate β0 with a large simulated data using the oracle knowledge
of the ex-changeability among covariates according to the model

logit{P(Yi = 1|Si,1)} ∼ η0 + η1Xi,1 + η2

sα∑
j=2

Xi,j + η3

p∑
j=sα+1

Xi,j .

We derive the true β0 as

β0 = (η0, η1, (η2)T
sα×1, (η3)T

(p−sα)×1)
T.

We report the simulation settings under Scenario I in Table 1, where we present the
predictive power of the oracle estimation and the lasso estimation. We also report the
average area-under-curve (AUC) of the receiver operating characteristic (ROC) curve for
oracle β0, SLASSO and the proposed SAS estimation. Our SAS estimation achieves a better
AUC compared to supervised LASSO across all scenarios, and is comparable to the AUC
with the true coefficient β0. Besides, we observe that the AUC of supervised LASSO is
sensitive to the approximate sparsity S(β0), while the AUC of SAS estimation does not
seem to be affected by S(β0).

To evaluate the SAS inference for the individualized prediction, we consider six different
choices of xnew. We first select {xL

new,x
M
new,x

H
new} from a random sample of xnew generated

from the distribution of Xi such that their predicted risks are around 0.2, 0.5, and 0.7,
corresponding to low, moderate and high risk. We additionally consider three sets of xnew
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Table 1: AUC Table for simulations with 500 labels under Scenario I. The AUCs are eval-
uated on an independent testing set of size 100. We approximately measure the
sparsity by S(v) = ‖v‖21/‖v‖22.

Scenario Prediction Accuracy (AUC)
Surrogate S(β0) S(γ0) Oracle SLASSO SAS
Strong 174 1.32 0.724 0.660 0.711
Moderate 174 1.26 0.724 0.660 0.713
Strong 28.3 1.33 0.719 0.694 0.713
Moderate 28.3 1.24 0.719 0.694 0.711

Table 2: Comparison of SAS Estimation to the supervised LASSO (SLASSO) with Bias,
Empirical standard error (ESE) and root mean-squared error (rMSE) of the linear
predictions xT

newβ0 under Scenario I 500 labels, moderate or large S(β0) and strong
or moderate surrogates.

SLASSO SAS: Moderate SAS: Strong
Type Bias ESE rMSE Bias ESE rMSE Bias ESE rMSE

Moderate S(β0)
xL

new 0.605 0.387 0.719 0.165 0.249 0.298 0.118 0.196 0.229
xM

new -0.083 0.337 0.347 -0.008 0.246 0.246 -0.016 0.195 0.196
xH

new -0.718 0.521 0.887 -0.234 0.294 0.376 -0.176 0.225 0.286
xS

new -0.072 0.144 0.161 -0.080 0.094 0.123 -0.018 0.078 0.080
xI

new -0.460 0.096 0.470 -0.110 0.093 0.143 -0.055 0.071 0.090
xD

new -0.413 0.091 0.423 -0.110 0.089 0.141 -0.114 0.069 0.133
Large S(β0)

xL
new 0.389 0.275 0.477 0.161 0.215 0.269 0.133 0.264 0.296

xM
new -0.017 0.280 0.280 -0.014 0.213 0.213 -0.017 0.268 0.268

xH
new -0.600 0.481 0.769 -0.251 0.271 0.370 -0.164 0.296 0.339

xS
new -0.202 0.140 0.246 -0.074 0.097 0.122 -0.009 0.078 0.079

xI
new -0.178 0.098 0.203 -0.075 0.086 0.115 -0.071 0.075 0.103

xD
new -0.185 0.090 0.206 -0.109 0.084 0.138 -0.113 0.073 0.135

with different levels of sparsity:

Sparse: xS
new = (1, 1,0T

499×1)
T;

Intermediate: xI
new = (1,0.183T

30×1,0
T
470×1)

T;

Dense: xD
new = (1,0.045T

500×1)
T.

In Table 2, we compare our SAS estimator of xT
newβ0 with the corresponding SLASSO across

all settings under Scenario I. The root mean-squared-error (rMSE) of the SAS estimation
decays proportionally with the sample size, while the rMSE of the supervised LASSO pro-
vides evidence of inconsistency for moderate and dense deterministic xnew. The bias of
the supervised LASSO is also significantly larger than that of the SAS estimation. The
performance of the SAS estimation is insensitive to sparsity of β0, while that of supervised
LASSO severely deteriorate with dense β0. The improvement from the supervised LASSO
to the SAS estimation is regulated by the surrogate strength.

In Table 3, we compare our SAS inference with supervised debiased LASSO across
the settings under Scenario I. Our SAS inference procedure attains approximately honest
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Table 3: Bias, Empirical standard error (ESE), average of the estimated standard error
(ASE) along with empirical coverage of the 95% confidence intervals (CP) for
the debiased supervised LASSO (SLASSO) and debiased SAS estimator of linear
predictions xT

newβ0 under Scenario I with 500 labels, moderate or large S(β0) and
strong or moderate surrogates.

Debiased SAS
Debiased SLASSO Moderate Surrogates Strong Surrogates

Type Bias ESE ASE CP Bias ESE ASE CP Bias ESE ASE CP
Risk prediction model approximatedly sparse

xL
new -0.290 1.901 1.896 0.948 0.021 1.873 1.864 0.949 0.018 1.531 1.531 0.950

xM
new -0.091 1.994 1.981 0.947 -0.007 1.961 1.954 0.950 -0.015 1.560 1.570 0.953

xH
new 0.348 2.106 2.074 0.942 -0.050 2.036 2.039 0.950 -0.011 1.632 1.623 0.950

xS
new 0.171 0.157 0.128 0.694 -0.019 0.149 0.150 0.950 -0.001 0.132 0.125 0.924

xI
new -0.001 0.129 0.125 0.938 -0.013 0.123 0.116 0.932 0.010 0.101 0.094 0.920

xD
new 0.141 0.137 0.138 0.812 -0.011 0.123 0.118 0.944 -0.001 0.096 0.095 0.940

Large S(β0)
xL

new -0.134 1.918 1.914 0.951 0.018 1.875 1.878 0.951 0.018 1.529 1.524 0.948
xM

new -0.056 1.970 1.962 0.948 -0.020 1.911 1.927 0.952 0.005 1.603 1.597 0.950
xH

new 0.109 2.051 2.029 0.945 -0.022 1.997 1.991 0.950 -0.040 1.671 1.668 0.951
xS

new 0.029 0.155 0.127 0.892 -0.008 0.153 0.147 0.946 -0.013 0.133 0.131 0.938
xI

new 0.002 0.131 0.125 0.930 0.001 0.122 0.114 0.936 0.002 0.101 0.098 0.936
xD

new 0.113 0.135 0.139 0.874 -0.007 0.119 0.116 0.938 -0.003 0.099 0.097 0.960

coverage of 95 % confidence intervals for all types of xnew under all scenarios. Unsurprisingly,
the debiased SLASSO has under coverage for the deterministic xnew as the consequence of
violation to the sparsity assumption for β0 and precision matrix. Under our design, the first
covariate X1 has the strongest dependence upon the other covariates, whose associated row
in the precision matrix is thus densest. Consequently, the inference for βTxS

new = β0 + β1
The debiased SLASSO also has an acceptable coverage for random xL

new, xM
new, xH

new sampled
from the covariate distribution despite the presence of substantial bias, which we attribute
to the even larger variance that dominates the bias. In contrast, our SAS inference has
small bias across all scenarios and improved variance from the strong surrogate.

According to Tables A1, A2 and A3 in the Appendix A, the results under Scenario II
are consistent with our findings under Scenario I. We also compares SAS to an unsupervised
learning approach using proxy outcome derived from surrogates in the Appendix A. Under
the Scenario III very similar to Scenario I, SAS performs well as in Scenario I while the
unsupervised learning approach fails completely. This is expected since the unsupervised
approach requires that the deviation of the surrogates from the true outcome S − Y is
uncorrelated with the risk factors X. Otherwise, spurious association between outcome Y
and risk factors X can be induced, creating bias in estimation of risk prediction model.

6. Application of SAS to EHR Study

We applied the proposed SAS method to the risk prediction of Type II Diabetes Mellitus
(T2DM) using EHR and genomic data of participants of the Mass General Brigham Biobank
study. Number of genetic risk factors among single nucleotide polymorphism for T2DM has
grown exponentially following the expansion of genome-wide association studies. As an
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incomplete summary, Voight et al. (2010),Morris et al. (2012) and Scott et al. (2017) each
discovered around a dozen new risk SNPs for T2DM, and the recent studies by Mahajan
et al. (2018) and Vujkovic et al. (2020) discovered 135 and 558 new risk SNPs, respectively.
Some new risk SNPs in Mahajan et al. (2018) even had large coefficients in the poly genetic
risk score. The ever growing number of risk SNPs suggest that the genetic risk prediction
model for T2DM may be dense. Compared to the large biobank data that generated the
genome-wide association studies, EHR captures the temporal information of T2DM onset
and other phenotypes predictive for T2DM and thus may provide a more accurate forecast-
ing for T2DM. As we mentioned in the introduction, direct extraction of disease onset from
EHR by diagnosis code or mention in medical notes may contain substantial false positives.
From an expert annotation of the medical histories for 271 patients, we found 38 patients
with T2DM diagnosis code and 161 patients with mention of T2DM in medical notes who
actually had never developed T2DM. The annotation process requires intensive labor of
highly skilled medical experts, leading to the limited number of labels.

To define the study cohort, we extracted from the EHR of each patient their date of
first EHR encounter (tini), follow up period (C), the counts and dates for the diagnosis
codes and note mentions of clinical concepts related to T2DM as well as its risk factors.
We only included patients who do not have any diagnosis code or note mention of T2DM
up to baseline, where the baseline time is defined as 1990 if tini is prior to 1990 and as
their first year if tini ≥ 1990. Although neither the diagnosis code nor note mention of
T2DM is sufficiently specific, they are highly sensitive and can be used to accurately remove
patients who have already developed T2DM at baseline. This exclusion criterion resulted
in N = 20216 patients who are free of T2DM at baseline and have both EHR and genomics
features for risk modeling. Among those, we have a total of n = 271 patients whose T2DM
status during follow up, Y , has been obtained via manual chart review. The prevalence of
T2DM was about 14% based on labeled data.

We aim to develop a risk prediction model for Y by fitting a working model P (Y =
1 | X) = g(βT

0X), where the baseline covariate vector X includes age, gender, indicator
for occurrence of diagnosis code and note counts for obesity, hypertension, coronary artery
disease (CAD), hyperlipidemia during the first year window, as well as a total of 49 single
nucleotide polymorphism previously reported as associated with T2DM in Mahajan et al.
(2018) with odds ratio greater than 1.1. We additionally adjust for follow up by including
log(C) and allow for non-linear effects by including two-way interactions between the SNPs
and other baseline covariates. All variables with less than 10 nonzero values within the
labelled set are removed, resulting the final covariates to be of dimension p = 260. We
standardize the covariates to have mean 0 and variance 1. To impute the outcome, we used
the predicted probability of T2DM derived from the unsupervised phenotyping method
MAP (Liao et al., 2019), which achieves an AUC of 0.98, indicating a strong surrogate.
In addition to the proposed SAS procedure, we derive risk prediction models based on the
supervised LASSO with both the same set of covariates. We let K = 5 in cross-fitting
and use 5-fold cross-validation for tuning parameter selection. To compare the performance
of different risk prediction models, we use 10-fold cross-validation to estimate the out-of-
sample AUC. We repeated the process 10 times and took average of predicted probabilities
across the repeats for each labelled sample and method in comparison.
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Figure 2: Point and 95% confidence interval estimates for the coefficients with nominal p-
value < 0.05 from SAS inference. The horizontal bars indicate the estimated
95% confidence intervals. The solid points indicate the (initial) estimates, and
the triangles indicate debiased estimates. Colors red and green indicate different
methods, SAS and SLASSO, respectively.

Table 4: The cross-validated (CV) AUC the estimated risk prediction models with high di-
mensional EHR and genetic features based on SAS and supervised LASSO. Shown
also are the AUC of the imputation model derived for the SAS procedure.

Method Imputation SAS SLASSO

CV AUC 0.928 0.763 0.488

In Figure 2, we present the estimated β coefficients for the covariates that received p-
value less than 0.05 from the SAS inference. The confidence intervals are generally narrower
from the SAS inference. For the coefficients of baseline age and follow-up time, the SAS
inference produced much narrower confidence interval than debiased SLASSO, which are
expected to have a positive effect on the T2DM onset status during the observation. In
addition, the SAS inference identified one global genetic risk factor and 6 other subgroup
genetic risk factors while SLASSO identified none of these.

In Table 4, we present the AUCs of the estimated risk prediction models using the high
dimensional X . It is important to note that AUC is a measurement of prediction accuracy,
so debiasing might lead to worse AUC by accepting larger variability for reduced bias. The
AUC from SLASSO is very poor, probably due to the over-fitting bias with the small sample
sizes of the labeled set. With the information from a large unlabeled data, SAS produced
the significantly higher AUC than the SLASSO.
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Figure 3: Point and 95% confidence interval estimates for the predicted risks of 30 randomly
selected patients. The vertical bars indicate the estimated 95% confidence inter-
vals. The circle and the triangle shapes correspond to (initial) estimation and
debiased estimation, correspondingly. Solid points indicate the observed T2DM
cases. Colors red and green indicate different methods, SAS and SLASSO.

For illustration, we present in Figure 3 the individual risk predictions with 95% confi-
dence intervals for three sets of 10 patients with each set randomly selected from low (< 5%),
medium (5% ∼ 15%) or high risk (> 15%) subgroups. These risk groups are constructed
for illustration purposes and a patient with xnew classified to low, medium and high risk if

expit(β̂
T

xnew) belongs to the low, medium and high tertiles of {expit(β̂
T

Xi), i = 1, ..., N}.
We observe that the confidence intervals for patients with predicted The debiased SLASSO
inference is not very informative with most error bars stretching from zero to one. The
contrast between SAS CIs and SLASSO CIs demonstrates the improved efficiency as the
result of leveraging information from the unlabeled data through predictive surrogates.

7. Discussion

We proposed the SAS estimation and inference method for high-dimensional risk prediction
model with diminishing proportion of observed outcomes. With a sparse imputation model
based on predictive surrogates, the SAS can recover a dense risk prediction model impossible
to learn from supervised method, as well as achieve better efficiency than supervised method
when the latter is applicable. We show that the theoretical advantages lead to better
prediction accuracy and shorter confidence intervals in simulations and real data example.

While the SAS procedure is a powerful tool with minimal requirements, caution should
be given to the inclusion of highly informative surrogates so that the imputation model is
sparse (or approximately sparse). If all surrogates poorly predicts Y with a dense imputation
model, the SAS procedure can lead to a compromised convergence rate in estimation. While
the current study is motivated by the existence of easy-to-learn imputation model with
highly predictive surrogates, the SAS framework can be extended to settings where the
imputation model is not easier to learn than the model for Y | X. When the imputation
model is estimable but more dense than the risk prediction model (i.e. sβ < sγ), we can
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following similar strategies as in our SAS inference procedure to reduce the bias incurred
during the imputation step from γ̂. Specifically, we may consider a debiased estimator for
β̂

β̂debias = argmin
β∈Rp+1

K∑
k=1

 1

N

∑
i∈Jk

`(g(γ̂(k)TWi),β
TXi) +

1

n

∑
i∈Ik

βTXi{g(γ̂(k)TWi)− Yi}

+λ‖β−1‖1.

This debiased SAS estimation will attain the optimal rate
√
sβ log(p)/n and we also expect

an efficiency gain in the resulting variance compared to the supervised estimator, in analog
to the efficiency gain observed in SAS inference. Adaptive approaches to infer whether a
given dataset falls into the setting with sβ > sγ or sβ < sγ is straightforward in simpler
settings when sβ and sγ can be estimated but warrants future research in general. In the
extremely dense imputation model setting when sγ > n, information theoretical bound
has indicated that the imputation model will be inestimable, invalidating any subsequent
steps involving γ̂. A possible solution is to redefine the imputation model as the sparser
model between the risk prediction model and the original imputation model. A potential
approach to identifying such a sparser imputation model is through the under-identified
Dantzig Selector

γ̂ada = argmin
γ∈Rp+q

‖γ‖1,

Subject to

∥∥∥∥∥ 1

n

n∑
i=1

Xi{Yi − g(γTWi)}

∥∥∥∥∥
∞

≤ λ.

Both γ0 and (βT
0 ,0

T
q)

T should fall in the feasible region with suitable λ, and the minimization
over L1 norm may pick the sparsest element from the feasible class. Using γ̂ada in SAS
estimation may attain uniform optimal rate for any sβ and sγ . Theoretical studies of the
above proposals warrant future research.
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Supplementary Material

We present the simulation Scenario II in which the imputation model is correctly specified
and exactly sparse in Appendix A. We also compared the SAS estimation and inference
with unsupervised regression that uses only S to derive a proxy outcome in the simulation
Scenario III very similar to Scenario I. The proofs of Theorems 1, 7, Corollary 5 and
Propositions 9 and 10 are given in Appendix B. The technical details are put in Appendix
C. Definitions and existing results are stated in Appendix D.

Appendix A. Additional Simulation

Scenario II: The imputation model is correctly specified and exactly sparse. In
the second scenario, we first generate Si from

Si,1 =
[
ς{νZsi,1 +αT(Zx

i

√
1− p−1 + Zui /

√
p)} − µS

]
/σS.

and Si,j = {ς(Zsi,j)− µX}/σX for j = 2, . . . , p, and then generate Yi from a sparse model

P(Yi = 1|Xi) = expit(θSi,1).

We chose µS ≈ 0.66 and σS ≈ 1 such that Si,1 is roughly mean 0 and variance 1. Under
this setting, the imputation model holds with sγ = 1. The factor ν and the coefficients α
control the predictiveness of X for S1 and Y while θ controls the predictiveness of W for
Y . We consider two α of different sparsity patterns,

Sparse (sα = 3) : α = (0.3, 0.212, 0.212,0T
497×1)

T

Dense (sα = 500) : α = (0.211,0.039T
29×1,0.004T

470×1)
T,

where ak×1 = (a, ..., a)T
k×1 for any a. Similar to Scenario I, the sparsity of α regulates the

approximate sparsity of β measured by (33) (See Table 1). We consider two sets of (ν, θ)
to allow W to be either moderately or strongly predictive of Y :

Moderate: ν = 0.4, θ = 2; and Strong: ν = 0.6, θ = 3.7.

The layouts of Tables A2 and A3 are different from those of 2 and Table 3 because of
the different data generating mechanism. The distribution of Yi | Xi is not affected by the
distribution of Si in Scenario I, while the property does not hold in Scenario II.

Table A1: AUC Table for simulations with 500 labels under Scenario II. The AUCs are
evaluated on an independent testing set of size 100. We approximately measure
the sparsity by S(v) = ‖v‖21/‖v‖22.

Scenario Prediction Accuracy (AUC)
Surrogate S(β0) S(γ0) Oracle SLASSO SAS
Strong 159 1.10 0.715 0.660 0.702
Moderate 128 1.06 0.715 0.665 0.704
Strong 26.4 1.09 0.710 0.691 0.708
Moderate 18.4 1.03 0.709 0.693 0.707
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Table A2: Comparison of SAS Estimation to the supervised LASSO (SLASSO) with Bias,
Empirical standard error (ESE) and root mean-squared error (rMSE) of the
linear predictions xT

newβ0 under Scenario II with 500 labels, moderate or large
S(β0) and strong or moderate surrogates.

Moderate Surrogates Strong Surrogates
SLASSO SAS SLASSO SAS

Type Bias ESE rMSE Bias ESE rMSE Bias ESE rMSE Bias ESE rMSE
Risk prediction model approximatedly sparse

xL
new 0.505 0.378 0.631 0.163 0.283 0.327 0.349 0.278 0.446 0.085 0.222 0.238

xM
new -0.140 0.331 0.359 -0.047 0.272 0.276 -0.113 0.282 0.304 -0.058 0.217 0.225

xH
new -0.713 0.512 0.878 -0.262 0.313 0.408 -0.678 0.469 0.825 -0.210 0.241 0.320

xS
new -0.111 0.143 0.181 -0.058 0.081 0.100 -0.190 0.142 0.237 -0.037 0.063 0.072

xI
new -0.437 0.098 0.448 -0.119 0.076 0.141 -0.155 0.098 0.183 -0.065 0.061 0.089

xD
new -0.349 0.093 0.361 -0.138 0.078 0.158 -0.150 0.093 0.176 -0.112 0.063 0.129

Large S(β0)
xL

new 0.366 0.266 0.453 0.142 0.224 0.265 0.482 0.398 0.625 0.117 0.300 0.322
xM

new -0.060 0.275 0.282 -0.035 0.213 0.216 -0.199 0.337 0.391 -0.082 0.299 0.310
xH

new -0.656 0.475 0.810 -0.272 0.257 0.374 -0.749 0.503 0.903 -0.214 0.325 0.389
xS

new -0.236 0.139 0.274 -0.087 0.079 0.117 -0.054 0.138 0.148 0.003 0.063 0.063
xI

new -0.173 0.096 0.197 -0.078 0.077 0.109 -0.409 0.097 0.420 -0.094 0.057 0.110
xD

new -0.144 0.092 0.171 -0.101 0.080 0.129 -0.359 0.093 0.371 -0.154 0.060 0.166

Scenario III: Similar to Scenario I. In the third scenario, we repeat the data genera-
tion process of Scenario I except for difference values for ξ:

sα = 3, θ = 0.6 : ξ = (−0.593, 0.330, 0.330,0.005T
497×1)

T,

sα = 3, θ = 1 : ξ = (−0.801, 0.163, 0.163,0.002T
497×1)

T,

sα = 500, θ = 0.6 : ξ = (−0.650,0.064T
29×1,0.011T

470×1)
T,

sα = 500, θ = 1 : ξ = (−0.831,0.032T
29×1,0.005T

470×1)
T.

We focus on the comparison between SAS estimation and inference and an unsupervised
learning (UL) approach. For the UL approach, a proxy outcome Ỹ is derived directly from
the dichotomized informative surrogate S1

Ỹ = 1I(S1 ≥ s∗),

where the threshold s∗ is chose in order to match the prevalence E(Ỹ ) ≈ E(Y ). Then, the
UL estimation of β is obtained by regression Ỹ to X under the logistic regression model over
all N observations. Classical inference is used for construction of UL confidence intervals.

The layouts of Tables A5 and A6 are different from those of 2 and Table 3 because of
the different benchmark method. The supervised learning methods SLASSO and Debiased
SLASSO are not affected by the distribution of Si in Scenario I, while UL considered in
Scenario III uses Si to construct its proxy outcome. UL obviously failed with ineffective
classification (AUC < 0.50 in Table A4), large bias in Table A5 and severe under-covering
confidence intervals in Table A6. The performance of SAS is solid as in Scenario I.

24



SAS Inference High-d GLM

Table A3: Bias, Empirical standard error (ESE) along with empirical coverage of the 95%
confidence intervals (CP) for the debiased supervised LASSO (SLASSO) and
debiased SAS estimator of linear predictions xT

newβ0 under Scenario II with 500
labels, moderate or large S(β0) and strong or moderate surrogates.

Debiased SLASSO Debiased SAS
Type Bias ESE ASE CP Bias ESE ASE CP

Risk prediction model approximatedly sparse, moderate surrogates
xL

new -0.236 1.936 1.915 0.947 0.014 1.786 1.771 0.950
xM

new -0.044 2.031 1.997 0.944 -0.028 1.873 1.853 0.947
xH

new 0.364 2.110 2.084 0.944 -0.045 1.943 1.924 0.947
xS

new 0.133 0.156 0.127 0.784 -0.028 0.133 0.130 0.944
xI

new 0.004 0.124 0.126 0.942 -0.014 0.102 0.100 0.936
xD

new 0.149 0.121 0.139 0.848 -0.014 0.104 0.105 0.948
Risk prediction model approximatedly sparse, strong surrogates

xL
new -0.070 1.953 1.935 0.947 0.021 1.371 1.366 0.949

xM
new -0.031 2.019 1.986 0.946 -0.026 1.408 1.401 0.949

xH
new 0.148 2.073 2.055 0.948 -0.010 1.458 1.444 0.949

xS
new 0.029 0.153 0.127 0.894 -0.016 0.103 0.096 0.928

xI
new 0.018 0.134 0.126 0.938 -0.004 0.081 0.079 0.944

xD
new 0.134 0.128 0.141 0.842 -0.007 0.081 0.083 0.956

Large S(β0), moderate surrogates
xL

new -0.092 1.942 1.925 0.950 0.004 1.796 1.792 0.951
xM

new -0.034 1.995 1.969 0.947 -0.018 1.852 1.835 0.951
xH

new 0.082 2.061 2.036 0.946 -0.027 1.912 1.890 0.948
xS

new -0.009 0.155 0.125 0.876 -0.027 0.131 0.125 0.922
xI

new 0.000 0.126 0.125 0.952 -0.009 0.104 0.103 0.950
xD

new 0.119 0.126 0.139 0.894 -0.012 0.108 0.108 0.940
Large S(β0), strong surrogates

xL
new -0.221 1.929 1.926 0.949 0.022 1.353 1.349 0.951

xM
new 0.032 2.047 2.017 0.947 -0.003 1.427 1.414 0.950

xH
new 0.442 2.137 2.104 0.940 -0.039 1.479 1.469 0.951

xS
new 0.176 0.150 0.128 0.698 -0.018 0.094 0.099 0.946

xI
new 0.030 0.128 0.129 0.936 -0.002 0.079 0.077 0.952

xD
new 0.167 0.125 0.142 0.804 -0.008 0.082 0.080 0.954

Table A4: AUC Table for simulations with 500 labels under Scenario III. The AUCs are
evaluated on an independent testing set of size 100. We approximately measure
the sparsity by S(v) = ‖v‖1/‖v‖2.

Scenario Prediction Accuracy (AUC)
Surrogate S(β0) S(γ0) Oracle UL SAS

Strong 174.08 2.31 0.72 0.43 0.69
Moderate 174.08 2.25 0.72 0.46 0.69
Strong 28.27 2.32 0.72 0.45 0.69
Moderate 28.27 2.24 0.72 0.47 0.69
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Table A5: Bias, Empirical standard error (ESE) and mean-squared error (MSE) for the
unsupervised learning (UL) and SAS estimator of linear predictions xT

newβ0 with
under Scenario III 500 labels, approximately sparse or dense β0 and strong or
moderate surrogates.

UL SAS
Type Bias ESE MSE Bias ESE MSE

Moderate S(β0), moderate surrogates
xL

new 0.42 0.92 1.01 0.02 0.42 0.42
xM

new 0.20 2.31 2.32 -0.03 0.51 0.51
xH

new -3.39 3.90 5.16 0.09 0.59 0.60
xS

new -3.73 0.07 3.73 -0.09 0.14 0.17
xI

new -0.42 0.14 0.44 -0.19 0.10 0.22
xD

new -0.03 0.15 0.16 -0.18 0.09 0.20
Large S(β0),moderate surrogates

xL
new 0.61 0.70 0.93 0.04 0.37 0.37

xM
new -0.04 2.54 2.54 -0.03 0.49 0.49

xH
new -2.53 4.66 5.30 0.07 0.59 0.59

xS
new -3.56 0.11 3.56 -0.14 0.14 0.19

xI
new -0.70 0.14 0.72 -0.11 0.09 0.15

xD
new -0.30 0.13 0.33 -0.12 0.09 0.15

Moderate S(β0), strong surrogates
xL

new 0.89 0.67 1.11 -0.05 0.38 0.38
xM

new -0.15 2.51 2.51 -0.04 0.54 0.54
xH

new -3.28 4.57 5.62 0.22 0.60 0.64
xS

new -3.83 0.07 3.83 -0.09 0.13 0.15
xI

new -0.99 0.12 1.00 -0.08 0.08 0.11
xD

new -0.57 0.12 0.58 -0.10 0.08 0.13
Large S(β0), strong surrogates

xL
new 0.76 0.82 1.12 -0.09 0.45 0.46

xM
new 0.09 2.35 2.35 -0.03 0.57 0.58

xH
new -4.10 3.97 5.71 0.23 0.63 0.67

xS
new -3.99 0.09 3.99 -0.05 0.13 0.14

xI
new -0.82 0.12 0.83 -0.12 0.08 0.15

xD
new -0.37 0.14 0.40 -0.13 0.08 0.15
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Table A6: Bias, Empirical standard error (ESE), average of the estimated standard error
(ASE) along with empirical coverage of the 95% confidence intervals (CP) for
the unsupervised learning (UL) and debiased SAS estimator of linear predictions
xT

newβ0 under Scenario III with 500 labels, approximately sparse or dense β0 and
strong or moderate surrogates.

UL SAS
Type Bias ESE ASE CP Bias ESE ASE CP

Moderate S(β0), moderate surrogates
xL

new 0.42 0.92 0.40 0.53 -0.27 1.95 1.92 0.94
xM

new 0.20 2.31 0.42 0.26 -0.04 2.09 2.03 0.94
xH

new -3.39 3.90 0.45 0.12 0.43 2.18 2.14 0.94
xS

new -3.73 0.07 0.06 0.00 -0.04 0.16 0.15 0.93
xI

new -0.42 0.14 0.03 0.00 -0.03 0.13 0.12 0.92
xD

new -0.03 0.15 0.03 0.28 -0.02 0.12 0.12 0.95
Large S(β0), moderate surrogates

xL
new 0.61 0.70 0.41 0.56 -0.22 1.98 1.96 0.95

xM
new -0.04 2.54 0.43 0.29 -0.05 2.06 2.02 0.95

xH
new -2.53 4.66 0.45 0.11 0.47 2.16 2.10 0.94

xS
new -3.56 0.11 0.06 0.00 -0.03 0.16 0.15 0.92

xI
new -0.70 0.14 0.03 0.00 -0.02 0.13 0.12 0.91

xD
new -0.30 0.13 0.03 0.02 -0.02 0.13 0.12 0.93

Moderate S(β0), strong surrogates
xL

new 0.89 0.67 0.41 0.37 -0.22 1.69 1.67 0.95
xM

new -0.15 2.51 0.42 0.27 -0.04 1.78 1.71 0.94
xH

new -3.28 4.57 0.44 0.10 0.48 1.86 1.79 0.93
xS

new -3.83 0.07 0.07 0.00 -0.02 0.14 0.13 0.93
xI

new -0.99 0.12 0.03 0.00 -0.00 0.11 0.10 0.92
xD

new -0.57 0.12 0.03 0.00 -0.01 0.11 0.10 0.93
Large S(β0), strong surrogates

xL
new 0.76 0.82 0.40 0.41 -0.27 1.67 1.65 0.95

xM
new 0.09 2.35 0.42 0.26 -0.03 1.81 1.73 0.94

xH
new -4.10 3.97 0.45 0.10 0.45 1.88 1.83 0.94

xS
new -3.99 0.09 0.07 0.00 -0.03 0.14 0.14 0.93

xI
new -0.82 0.12 0.03 0.00 -0.01 0.11 0.10 0.93

xD
new -0.37 0.14 0.03 0.01 -0.01 0.11 0.11 0.97
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Appendix B. Proofs of Main Results

We first summarize below notations used Section 3 for the conditional expectations given
different part of the data.

Definition 11 The conditional expectation for samples with index in set S conditionally
on subset of the data D is denoted as

Ei∈S{f(Yi,Xi,Si) | D}, S ⊆ {1, . . . , n+N},D ⊂ L ∪U .

We denote the conditional expectation of unlabeled data given labelled data by Ei>n{f(Wi) |
L } and the conditional probability of new copy of data given current data by Pnew{f(Wi) |
D}. With L and U partitioned into K folds indexed respectively by {Ik, k = 1, ...,K} and
{Jk, k = 1, ...,K}, we denote the conditional expectation of fold-k labelled data and unlabeled
data given the out-of-fold data respectively by

Ei∈Ik{f(Yi,Xi,Si) | Dc
k} and Ei∈Jk{f(Wi) | Dc

k},
where Dc

k = {Si,Xi, i ∈ J ck } ∪ {Yi,Si,Xi, i ∈ Ick}.

B1 Proof of Theorem 1

Our proof shares the general steps with the the restricted strong convexity framework laid
down in Negahban et al. (2010) while we have a delicate analysis of the symmetrized Breg-
man divergence to establish the improved rate of estimation under semi-supervised learning

setting. To bound β̂ through the symmetrized Bregman divergence (β̂ − β0)
T ˙̀†(β0; γ̂),

instead of directly applying the Hölder’s bound, we first split it into two parts,

(β̂ − β0)
T ˙̀†(β0; γ̂) = (β̂ − β0)

T

[
˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }+ E{ ˙̀†(β0;γ0) | L }

]
︸ ︷︷ ︸

variance from unlabeled data

+ (β̂ − β0)
TE
{

˙̀†(β0; γ̂)− ˙̀†(β0;γ0) | L
}

︸ ︷︷ ︸
bias from γ̂

(A.1)

and discuss which part dominates the estimation error. When the first variance term in
(A.1) is dominant, the bias from γ̂ becomes eligible. Then, we should recover the usual
error bound for LASSO as if γ0 is used. When the second bias term in (A.1) is dominant,
the error bound of β̂ can be controlled by the error bound of γ̂. Combining the error bounds
in the two cases, we obtain the oracle inequalities.

Lemma 12 On event

Ω =
{
`PL(β0 + ∆)− `PL(β0)−∆T ˙̀

PL(β0)

≥ κrsc,1‖∆‖2{‖∆‖2 − κrsc,2

√
log(p)/N‖∆‖1},∀‖∆‖2 ≤ 1

}
,

setting λβ &
√

log(p)/N such that

λβ ≥ 3
∥∥∥ ˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }+ E{ ˙̀†(β0;γ0) | L }

∥∥∥
∞

+ κrsc,1κrsc,2

√
log(p)

N
,
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we have the oracle inequalities for estimation error of β̂,

‖β̂ − β0‖2 ≤ max
{

14
√
sβλβ/κrsc,1, (1− ρ)7Mσ2max‖γ0 − γ̂‖2/κrsc,1

}
,

‖β̂ − β0‖1 ≤ max
{

84sβλβ/κrsc,1, (1− ρ)221M2σ4max‖γ0 − γ̂‖22/(κrsc,1λβ)
}
.

The constants κrsc,1, κrsc,2 are the restrictive strong convexity parameters specified in Lemma
19.

We next prove the oracle inequalities. First, we note that by the definition of β̂,

`†(β̂; γ̂) + λβ‖β̂‖1 ≤ `†(β0; γ̂) + λβ‖β0‖1. (A.2)

Denote the standardized estimation error as δ = (β̂ − β0)/‖β̂ − β0‖2. Due to convexity of
the loss function, we have for t = ‖β̂ − β0‖2 ∧ 1

`†(β0 + tδ; γ̂) + λβ‖β0 + tδ‖1 ≤ `†(β0; γ̂) + λβ‖β0‖1. (A.3)

By the triangle inequality ‖β0‖1 − ‖β0 + tδ‖1 ≤ t‖δ‖1, we have from (A.3)

`†(β0 + tδ; γ̂)− `†(β0; γ̂) ≤ tλβ‖δ‖1 (A.4)

To apply the restricted strong convexity of the complete data loss (11) established in Lemma
19, we show that the second order approximation error of the imputed loss is equivalent to
that of the complete data loss,

`†(β0 + tδ; γ̂)− `†(β0; γ̂)− tδT ˙̀†(β0; γ̂) = `PL(β0 + tδ)− `PL(β0)− tδT ˙̀
PL(β0).

Then by applying the restricted strong convexity event Ω, we obtain

`†(β0 + tδ; γ̂)− `†(β0; γ̂)− tδT ˙̀†(β0; γ̂) ≥ t2κrsc,1 − tκrsc,1κrsc,2

√
log(p)/N‖δ‖1. (A.5)

Applying (A.5) to (A.4), we have with large probability

tδT ˙̀†(β0; γ̂) + t2κrsc,1 − tκrsc,1κrsc,2

√
log(p)/N‖δ‖1 ≤ tλβ‖δ‖1

where ‖δ‖2 = 1 from definition. Thus, we have reach

tκrsc,1 ≤ λβ‖δ‖1 − δT ˙̀†(β0; γ̂) + κrsc,1κrsc,2

√
log(p)/N‖δ‖1. (A.6)

Next, we analyze δT ˙̀†(β0; γ̂) by the decomposition∣∣∣δT ˙̀†(β0; γ̂)
∣∣∣ =δT

[
˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }+ E{ ˙̀†(β0;γ0) | L }

]
+ δTE

{
˙̀†(β0; γ̂)− ˙̀†(β0;γ0) | L

}
≤‖δ‖1

∥∥∥ ˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }+ E{ ˙̀†(β0;γ0) | L }
∥∥∥
∞

+ (1− ρ)
∥∥Ei>n[Xi{g(βT

0 Xi)− g(γ̂TWi)} | L ]
∥∥
2
. (A.7)
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To establish the rate for L2-norm of E{ ˙̀†(β0; γ̂) | L }, we note that

Ei>n[Xi{g(βT
0 Xi)− g(γ̂TWi)} | L ] = Ei>n

[
Xi

{
Yi − g

(
γ̂TWi

)}
| L

]
. (A.8)

By the characterization of γ0 as in (6), we may rewrite (A.8) as

Ei>n
[
Xi

{
Yi − g

(
γ̂TWi

)}
| L

]
=Ei>n

[
g′(γT

uWi)XiW
T
i | L

]
(γ0 − γ̂), (A.9)

where γu = uγ̂ + (1 − u)γ0 for some u ∈ [0, 1]. Under Assumptions 1b and 2a, as well as
the fact that Xi is a sub-vector of Wi, we have∥∥∥E{ ˙̀† (β0; γ̂) | L }

∥∥∥
2
≤
∥∥Ei∈U [g′(γT

uWi)W
⊗2
i | L

]∥∥
2
‖γ0 − γ̂‖2

≤M
∥∥E (W⊗2

i

)∥∥
2
‖γ0 − γ̂‖2 ≤Mσ2max‖γ0 − γ̂‖2, (A.10)

where for any vector x, x⊗2 = xxT. By the bound for (A.10) and the definition of λβ, we
have the bound from (A.6)

tκrsc,1 ≤ 2λβ‖δ‖1 + (1− ρ)Mσ2max‖γ0 − γ̂‖2. (A.11)

Hence, we can reach an immediate bound for estimation error from (A.11) without con-
sidering the sparsity of β0. We shall proceed to derive a sharper bound that involves the
sparsity of β0. We separately analyze two cases.

Case 1: (1− ρ)Mσ2max‖γ0 − γ̂‖2 ≥ ‖δ‖1λβ/3.

In this case, the estimation error is dominated by γ̂ − γ0. We simply have from (A.11)

tκrsc,1 ≤ 7(1− ρ)Mσ2max‖γ0 − γ̂‖2,
tκrsc,1‖δ‖1λβ/3 ≤ 7(1− ρ)2M2σ4max‖γ0 − γ̂‖22.

Thus, we have

‖β̂ − β0‖2 ≤ (1− ρ)7Mσ2max‖γ0 − γ̂‖2/κrsc,1,

‖β̂ − β0‖1 ≤ (1− ρ)221M2σ4max‖γ0 − γ̂‖22/(κrsc,1λβ). (A.12)

If case 1 does not hold, then instead

Case 2: (1− ρ)Mσ2max‖γ0 − γ̂‖2 ≤ ‖δ‖1λβ/3. (A.13)

In this case, the estimation error is comparable to that when we have the true γ0 for the
imputation. Thus, the sparsity of β0 may affect the estimation error.

Following the typical approach to establish the cone condition for δ, we analyze the
symmetrized Bregman’s divergence,

(β̂ − β0)
T

{
˙̀†(β̂; γ̂)− ˙̀†(β0; γ̂)

}
= ‖β̂ − β0‖2δT

{
˙̀†(β̂; γ̂)− ˙̀†(β0; γ̂)

}
. (A.14)
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Due to the convexity of the loss ˙̀†(·; γ̂) under Assumption 1b, the symmetrized Bregman’s
divergence (A.14) is nonnegative through a mean-value theorem,

(β̂ − β0)
T

{
˙̀†(β̂; γ̂)− ˙̀†(β0; γ̂)

}
≥ inf

β∈Rp+1

1

N

∑
i>n

g′(βTXi){(β̂ − β0)
TXi}2 ≥ 0.

Denote the indices set of nonzero coefficient in β0 as Oβ = {j : β0,j 6= 0}. We denote
the δOβ

and δOc
β

as the sub-vectors for δ at positions in Oβ and at positions not in Oβ,

respectively. The solution β̂ satisfies the KKT condition

‖ ˙̀†(β̂; γ̂)‖∞ ≤ λβ, ˙̀†(β̂; γ̂)j = −λβ sign(β̂j), j : β̂j 6= 0.

From the KKT condition and the definitions of δ and Oβ, we have

δj ˙̀†(β̂; γ̂)j ≤ |δj |λβ, j ∈ Oβ; δj ˙̀†(β̂; γ̂)j =
−β̂jλβ sign(β̂j)

‖β̂ − β0‖2
= −λβ|δj |, j ∈ Oc

β. (A.15)

Applying the (A.15) to (A.14), we have the upper bound,

δT

{
˙̀†(β0; γ̂)− ˙̀†(β0; γ̂)

}
=
∑
j∈Oβ

δj ˙̀†(β̂; γ̂)j +
∑
j∈Oc

β

δj ˙̀†(β̂; γ̂)j + δT ˙̀†(β0; γ̂)

≤λβ

∑
j∈Oβ

|δj | − λβ

∑
j∈Oc

β

|δj |+ δT ˙̀†(β0; γ̂)

≤λβ‖δOβ
‖1 − λβ‖δOc

β
‖1 +

∣∣∣δT ˙̀†(β0; γ̂)
∣∣∣ .

Then, we apply (A.10), the definition of λβ and (A.13),

0 ≤λβ‖δOβ
‖1 − λβ‖δOc

β
‖1 +

2

3
λβ‖δ‖1 and λβ‖δOc

β
‖1 ≤ 5λβ‖δOβ

‖1.

Therefore, we can bound the L1 norm of δ by the cone property,

‖δ‖1 ≤ 6λβ‖δOβ
‖1 ≤ 6

√
sβ‖δ‖2 = 6

√
sβ. (A.16)

We then apply the cone condition (A.16) and the case condition (A.13) to the bound (A.11),

tκrsc,1 ≤ 14
√
sβλβ, and tκrsc,1‖δ‖1 ≤ 84sβλβ

Thus, we obtain the rate for estimation error

‖β̂ − β0‖2 ≤ 14
√
sβλβ/κrsc,1, and ‖β̂ − β0‖1 ≤ 84sβλβ/κrsc,1. (A.17)

Since Case 1 and Case 2 are the complement of each other, one of them must occur.
Thus, the bound of estimation error is controlled by the larger bound in the two cases,

‖β̂ − β0‖2 ≤ max
{

14
√
sβλβ/κrsc,1, (1− ρ)7Mσ2max‖γ0 − γ̂‖2/κrsc,1

}
,

‖β̂ − β0‖1 ≤ max
{

84sβλβ/κrsc,1, (1− ρ)221M2σ4max‖γ0 − γ̂‖22/(κrsc,1λβ)
}
,

which is our oracle inequality in Lemma 12.
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Consistency We next show that the oracle inequality leads to the consistency under
dimension condition (26). To show∥∥∥ ˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }+ E{ ˙̀†(β0;γ0) | L }

∥∥∥
∞

≤
∥∥∥ ˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }

∥∥∥
∞

+
∥∥∥E{ ˙̀†(β0;γ0) | L }

∥∥∥
∞

= Op

(√
log(p)/N

)
,

we express the term of interest as the sum of the following empirical processes

˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L } =
1

N

∑
i>n

(
Xi{g(βT

0 Xi)− Yi + Yi − g(γ̂TWi)}

− Ei>n
[
Xi{g(βT

0 Xi)− Yi + Yi − g(γ̂TWi)} | L
] )
,

E{ ˙̀†(β0;γ0) | L } =
1

N

n∑
i=1

Xi{g(βT
0 Xi)− Yi}.

Under Assumption 1a and 1a, Xi and g(βT
0 Xi)−Yi are sub-Gaussian. According to Lemma

21, the event ‖γ̂ − γ0‖2 ≤ 1 occurs with large probability, on which we have a bound for
the sub-Gaussian norm of Yi − g(γ̂TWi) by Lemma 14.

‖Yi − g(γ̂TWi)‖ψ2 ≤ max{2ν1,M
√

2σmax}, i > n (A.18)

Thus, we obtain from (A.18) that Yi − g(γ̂TWi) is sub-Gaussian with large probability.
Thus by the properties of sub-Gaussian random variables in Lemma 17-d and 17-f, we have

established that the elements in the summands of ˙̀†(β0; γ̂) are all sub-exponential random
variables conditionally on the labelled data. We apply the Bernstein’s inequality (Lemma
17-h) conditionally on the labelled data to obtain∥∥∥ ˙̀†(β0; γ̂)− E{ ˙̀†(β0; γ̂) | L }

∥∥∥
∞

= Op

(√
(1− ρ) log(p)/N

)
,∥∥∥E{ ˙̀†(β0;γ0) | L }

∥∥∥
∞

= Op

(√
ρ log(p)/N

)
.

This establishes the order for λβ,

λβ &
√

(1− ρ) log(p)/N +
√
ρ log(p)/N �

√
log(p)/N. (A.19)

By Lemma 19 from Negahban et al. (2010), we have that the probability of restricted
strong convexity event converges to one,

P(Ω) ≥ 1− κrsc,3e
κrsc,4N → 1.

Setting λβ �
√

log(p)/N for optimal L2 estimation, we achieve the stated conclusion

‖β̂ − β0‖2 = Op

(√
sβ log(p)/N + (1− ρ)

√
sγ log(p+ q)/n

)
,√

log(p)/N‖β̂ − β0‖1 = Op

(
sβ log(p)/N + (1− ρ)2

sγ log(p+ q)

n

)
,

by applying the rates from Lemma 21 and (A.19). For optimal L1 estimation, we set a
larger penalty λ′β �

√
log(p)/N ∨

√
sγ log(p+ q)/(sβn) & λβ to achieve

‖β̂ − β0‖1 = Op

(
sβ
√

log(p)/N + (1− ρ)2
√
sγsβ log(p+ q)

n

)
.
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B2 Proof of Corollary 5

Under Assumption 1b, we have

|g(β̂
T

xnew)− g(βT
0 xnew)| ≤M |(β̂ − β0)

Txnew|. (A.20)

Since xnew satisfies Assumption 2a, we have

‖(β̂ − β0)
Txnew‖ψ2 ≤ ‖β̂ − β0‖2σmax/

√
2.

The tail distribution is regulated by the sub-Gaussian norm by Lemma 17-a,

Pnew

(
|(β̂ − β0)

Txnew| ≥ t | D
)
≤ 2 exp

(
−t
√

2/
{
‖β̂ − β0‖2σmax

})
. (A.21)

Combining (A.20) and (A.21), we obtain

Pnew

(
|g(β̂

T

xnew)− g(βT
0 xnew)| ≥ tM‖β̂ − β0‖2σmax/

√
2 | D

)
≤ 2e−t.

Thus, ∣∣∣g(β̂
T

xnew)− g(βT
0 xnew)

∣∣∣ = Op

(
‖β̂ − β0‖2

)
.

B3 Proof of Theorem 7

Our proof is organized in five parts. In Part 1, we establish the consistency of the cross-
fitting estimator for precision matrix, namely ‖û(k) − u0‖2 = op(1) with û(k) and u0 defined
in (20) and (19), respectively. In Part 2, we show that the debiased estimator can be
approximated by the empirical process

√
n
(
x̂T

stdβ − xT
stdβ0

)
=− (1− ρ)

√
nuT

0
˙̀

imp(γ0)−
√
nuT

0
˙̀†(β0;γ0) + op(1)

=− n−
1
2

[
n∑
i=1

uT
0 Xi{(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}

+ρ
∑
i>n

Xi{g(βT
0 Xi)− g(γT

0 Wi)}

]
+ op(1)

As long as the asymptotic variance VSAS defined in (29) is bounded and bounded away from
zero, we have the asymptotic normality of the leading term from the Central Limit Theorem

−n−
1
2V
−1/2

SAS

[
n∑
i=1

uT
0 Xi{(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}

+ρ
∑
i>n

Xi{g(βT
0 Xi)− g(γT

0 Wi)}

]
 N(0, 1).

In Part 3, we deal with the asymptotic variance VSAS and the consistency of the variance
estimator V̂SAS defined in (23). In Part 4, we reach the conclusion of the theorem based on,

(1− ρ)‖γ̂(k) − γ0‖2 + ‖û(k) − u0‖2

+
√
n‖β̂

(k)

− β0‖2
(
‖β̂

(k)

− β0‖2 + ‖û(k) − u0‖2
)

= op(1), (A.22)

for all 1 ≤ k ≤ K. Following Part 4, we show in Part 5 that (28) implies (A.22).
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Part 1: Consistency of estimated precision matrix

The definitions of u0 and û(k) are given in (19) and (20). In this part, we show

‖û(k) − u0‖2 =Op

(√
(su + sβ) log(p)/(N −Nk) + (1− ρ)

√
sγ log(p+ q)/(n− nk)

)
=Op

(√
(su + sβ) log(p)/N + (1− ρ)

√
sγ log(p+ q)/n

)
.

Since we set the number of folds K ≤ 10 to be finite, the estimation rate applies for û(k)

for all k = 1, . . . ,K.
We denote the components in the quadratic loss function of (20) and their derivatives

as

m(k,k′)(u;β) =
1

Nk′

∑
i∈Ik′∪Jk′

1

2
g′(βTXi)(X

T
iu)2 − uTxstd,

ṁ(k,k′)(u;β) =
∂

∂u
m(k,k′)(u;β), m̈(k,k′)(β) =

∂

∂u
ṁ(k,k′)(u;β) (A.23)

for k′ ∈ {1, . . . ,K} \ {k}. We may express (20) as

û(k) = argmin
u∈Rp

∑
k′ 6=k

Nk′

N −Nk
m(k,k′)

(
u; β̂

(k,k′)
)

+ λu‖u‖1,

Similar to the proof of Theorem 1, we establish the estimation rate for û through an oracle
inequality,

Lemma 13 Under Assumptions 1, 2, we establish On event

Ω(k) =
⋂
k′ 6=k

{
∆T
m̈

(k,k′)
(
β̂

(k,k′)
)

∆ ≥ κ∗rsc,1‖∆‖2{‖∆‖2 − κ∗rsc,2

√
log(p)/Nk′‖∆‖1}, ∀‖∆‖2 ≤ 1

}
,

setting λu �
√

log(p)/N such that

λu ≥ 3
∑
k′ 6=k

Nk′

N −Nk

{∥∥∥ṁ(k,k′)
(
u0; β̂

(k,k′)
)
− E

{
ṁ(k,k′)

(
u0; β̂

(k,k′)
)
| Dc

k′

}∥∥∥
∞

+ κ∗rsc,1κ
∗
rsc,2

√
log(p)/Nk′

}
,

we have the oracle inequality for estimation error of β̂,

‖û(k) − u0‖2 ≤ max

{
14
√
suλu/κ

∗
rsc,1, 7Mσ3max‖u0‖2 sup

k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
/κ∗rsc,1

}
,

‖û(k) − u0‖1 ≤ max

{
84suλu/κ

∗
rsc,1, 21Mσ6max‖u0‖22 sup

k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥2
2
/(κ∗rsc,1λu)

}
.

The constants κ∗rsc,1, κ
∗
rsc,2 are the restrictive strong convexity parameters specified in Lemma

20.
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The proof of Lemma 13 repeats the proof of the oracle inequality for Theorem 1, so we put
the detail to Section C.

To use Lemma 13 for the estimation rate of û, we only need to verify two conditions.
First, the event Ω(k) occurs with probability tending to one. Second, the oracle choice of λu

is of order
√

log(p)/N .

Repeating Theorem 1 for each β̂
(k,k′)

, we have under (28)∥∥∥β̂(k,k′)
− β0

∥∥∥
2

= op(1).

Then by Lemma 20, the sets whose intersection forms Ω(k) each occurs with probability
tending to one. Since we set the number of fold finite K ≤ 10, we can take union bound to
obtain that Ω(k) occurs with probability tending to one.

We may write

ṁ(k,k′)
(
u0; β̂

(k,k′)
)
− E

{
ṁ(k)

(
u0; β̂

(k,k′)
)
| Dc

k′

}
=

1

Nk′

∑
i∈Ik′∪Jk′

g′(β̂
(k,k′)T

Xi)XiX
T
iu0 − Ei∈Ik′∪Jk′

{
g′(β̂

(k,k′)T

Xi)XiX
T
iu0 | Dc

k′

}
. (A.24)

Each element in (A.24) is an empirical process. Under Assumptions 1b and 2a, we can show
that each summand is a sub-exponential random variable by Lemma 17-e, 17-f,∥∥∥g′(β̂(k,k′)T

Xi)Xi,jX
T
iu0

∥∥∥
ψ1

≤M‖Xi,j‖ψ2‖XT
iu0‖ψ2 ≤Mσ2max‖u0‖2/2.

Hence, we can apply the Bernstein’s inequality to show that∥∥∥ṁ(k,k′)
(
u0; β̂

(k,k′)
)
− E

{
ṁ(k,k′)

(
u0; β̂

(k,k′)
)
| Dc

k′

}∥∥∥
∞

= Op

(√
log(p)/Nk′

)
.

Using the fact that Nk′ � N , we obtain that the oracle λu is of order Op

(√
log(p)/N

)
.

Therefore, we can apply Lemma 13 to obtain

‖û(k) − u0‖2 =Op

(√
su log(p)/N + sup

k′ 6=k

∥∥∥β̂(k,k′)
− β0

∥∥∥
2

)
=Op

(√
(sβ + su) log(p)/N + (1− ρ)

√
sγ log(p+ q)/n

)
.

Part 2: Asymptotic approximation

Under Assumption 2b-i, we also have the tightness of ‖û(k)‖2 from the bound of ‖u0‖2

‖u0‖2 ≤ ‖Σ−10 ‖2‖xstd‖2 ≤ σ−2min , ‖û(k)‖2 ≤ ‖u0‖2 + ‖û(k) − u0‖2 = Op(1). (A.25)

Define the scores of in-fold data as

˙̀†(k)(β;γ) =
1

Nk

∑
i∈Jk

Xi{g(βTXi)− g(γTWi)}+
∑
i∈Ik

Xi{g(βTXi)− Yi}

 ,
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˙̀ (k)
imp(γ) =

1

nk

∑
i∈Ik

Xi{g(γTWi)− Yi}. (A.26)

Since x̂T
stdβ is the average over K (at most 10) cross-fitted estimators, it suffices to study

one of the cross-fitted estimators,

x̂T
stdβ

(k)

= xT
stdβ̂

(k)

− ˙̀†(k)(β̂
(k)

; γ̂(k))− (1− ρ) ˙̀ (k)
imp(γ̂

(k)), x̂T
stdβ =

1

K

K∑
k=1

x̂T
stdβ

(k)

. (A.27)

We denote the expected Hessian matrices of losses in (A.26) as

H(β) = E
{
g′(βTXi)XiX

T
i

}
, Σ0 = H(β0),

Himp(γ) = E
{
g′(γTWi)XiW

T
i

}
, Σimp = Himp(γ0). (A.28)

Our analysis of the approximation error is based on the first order Mean Value Theorem
identity,

E{ ˙̀†(k)(β̂
(k)

; γ̂(k)) | Dc
k}+ (1− ρ)E{ ˙̀ (k)

imp(γ̂
(k)) | Dc

k}

=E{ ˙̀†(k)(β0;γ0)}︸ ︷︷ ︸
=0

+H(β̃){β̂
(k)

− β0} − (1− ρ)Himp(γ̃){γ̂(k) − γ0}

+ (1− ρ)E{ ˙̀ (k)
imp(γ0)}︸ ︷︷ ︸
=0

+(1− ρ)Himp(γ̃){γ̂(k) − γ0}

=H(β̃){β̂
(k)

− β0} (A.29)

for some β̃ on the path from β̄(γ̂) to β0 and some γ̃ on the path from γ̂ to γ0. The
conditional expectation notation is declared at Definition 11. Based on (A.29), we analyze

the approximation error for
√
n
(
x̂T

stdβ
(k)

− xT
stdβ0

)
through the following decomposition,

√
n
(
x̂T

stdβ
(k)

−
√
nxT

stdβ0

)
+
√
nuT

0
˙̀†(k)(β0;γ0) +

√
n(1− ρ)uT

0
˙̀ (k)

imp(γ0)

=
√
nxT

std(β̂
(k)

− β0)−
√
nû(k)T ˙̀†(k)(β̂

(k)

; γ̂(k))−
√
n(1− ρ)û(k)T ˙̀ (k)

imp(γ̂
(k))

+
√
nuT

0
˙̀†(k)(β0;γ0) + (1− ρ)uT

0
˙̀ (k)

imp(γ0) +
√
nû(k)TE{ ˙̀†(k)(β̂

(k)

; γ̂(k)) | Dc
k}

+
√
n(1− ρ)û(k)TE{ ˙̀ (k)

imp(γ̂
(k)) | Dc

k} −
√
nû(k)TH(β̃){β̂

(k)

− β0}

=
√
n
{

xstd −H(β̃)u0

}T

(β̂
(k)

− β0)︸ ︷︷ ︸
T1

+
√
n
(
u0 − û(k)

)T H(β̃)(β̂
(k)

− β0)︸ ︷︷ ︸
T2

+
√
nû(k)T

[
E{ ˙̀†(k)(β̂

(k)

; γ̂(k)) | Dc
k} −

{
˙̀†(k)(β̂

(k)

; γ̂(k))− ˙̀†(k)(β0;γ0)
}]

︸ ︷︷ ︸
T3

+
√
n(1− ρ)û(k)T

[
E{ ˙̀ (k)

imp(γ̂
(k)) | Dc

k} −
{

˙̀ (k)
imp(γ̂

(k))− ˙̀ (k)
imp(γ0)

}]
︸ ︷︷ ︸

T4
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+
√
n
(
u0 − û(k)

)T
{

˙̀†(k)(β0;γ0) + (1− ρ) ˙̀ (k)
imp(γ0)

}
︸ ︷︷ ︸

T5

(A.30)

Here we state the rates for T1-T5,

T1 = Op

(√
n‖β̂

(k)

− β0‖22
)
, T2 = Op

(√
n‖û(k) − u0‖2‖β̂

(k)

− β0‖2
)
,

T3 = Op

(
ρ‖β̂

(k)

− β0‖2 +
√
ρ(1− ρ)‖γ̂(k) − γ0‖2

)
,

T4 = Op
(
(1− ρ)‖γ̂(k) − γ0‖2

)
, T5 = Op

(
‖û(k) − u0‖2

)
.

With the assumed estimation rate in (A.22), we have

T1 + T2 + T3 + T4 + T5 = op(1).

Thus, we have shown

√
n
(
x̂T

stdβ − xT
stdβ0

)
=

1

K

K∑
k=1

√
n
(
x̂T

stdβ − xT
stdβ0

)
=

1

K

K∑
k=1

−
√
nuT

0
˙̀†(k)(β0;γ0)−

√
n(1− ρ)uT

0
˙̀ (k)

imp(γ0) + op(1)

=−
√
nuT

0
˙̀†(β0;γ0)−

√
n(1− ρ)uT

0
˙̀

imp(γ0) + op(1).

Using the indicator Ri = I(i ≤ n), we can alternatively write

x̂T
stdβ−xT

stdβ0 =
1

N

N∑
i=1

Ri
ρ

uT
0 Xi{Yi−g(γT

0 Wi)}−uT
0 Xi{g(γT

0 Wi)−g(βT
0 Xi)}+op

(
(ρn)−1/2

)
.

(A.31)
We provide the details of T1-T5 in Section C2.

Part 3: Variance estimation

Finally, we show that asymptotic variance VSAS defined in (29) is bounded from infinity and
zero with the consistent estimator V̂SAS defined in (23).

By the Cauchy-Schwartz inequality, we have a bound for the variance

VSAS =E
[
(uT

0 Xi)
2{(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}2

]
+ ρ(1− ρ)E[(uT

0 Xi)
2{g(γT

0 Wi)− g(βT
0 Xi)}2]

≤
√
E [(uT

0 Xi)4]E [{(1− ρ) · g(γT
0 Wi) + ρ · g(βT

0 Xi)− Yi}4]

+ ρ(1− ρ)
√

E [(uT
0 Xi)4]E [{g(γT

0 Wi)− g(βT
0 Xi)}4]

Under Assumptions 1a, 2a, we have the sub-Gaussian and sub-exponential variables

‖uT
0 Xi‖ψ2 ≤ ‖u0‖2σmax/

√
2 ≤ σ−2min σmax/

√
2,
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‖(1− ρ) · g(γT
0 Wi) + ρ · g(βT

0 Xi)− Yi‖ψ2 ≤ 2(ν1 ∨ ν2),
‖g(γT

0 Wi)− g(βT
0 Xi)‖ψ2 ≤ 2{‖g(γT

0 Wi)− Yi‖ψ2 ∨ ‖g(βT
0 Xi)− Yi‖ψ2} ≤ 2(ν1 ∨ ν2).

By the bound for the moments of sub-Gaussian and sub-exponential random variables stated
in Lemma 17-b, we have

VSAS ≤ 8
√

2σ−4min σ
2
max(ν1 ∨ ν2)2.

Under Assumptions 1b, 2a, 2b-i and 2c, we have a lower bound for VSAS,

VSAS ≥uT
0E[XiX

T
i {(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}2]u0

≥‖u0‖22σ4min

≥M−2σ−4maxσ
4
minν3‖xstd‖22,

which is bounded away from zero.
We analyze the estimation error of variance V̂SAS − VSAS through the decomposition,

V̂SAS − VSAS

=
K∑
k=1

nk
n

(
1

nk

∑
i∈Ik

(û(k)TXi)
2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂

(k)T

Xi)− Yi}2

− Ei∈Ik
[
(û(k)TXi)

2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}2 | Dc
k

])


T ′1

+

K∑
k=1

nk
n

(
Ei∈Ik

[
(û(k)TXi)

2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}2 | Dc
k

]
− E

[
(uT

0 Xi)
2{(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}2

])
 T ′2

+ ρ(1− ρ)

K∑
k=1

Nk − nk
N − n

(
K

Nk − nk

∑
i∈Jk

(û(k)TXi)
2{g(β̂

(k)T

Xi)− g(γ̂(k)TWi)}2

− Ei∈Ik
[
(û(k)TXi)

2{g(β̂
(k)T

Xi)− g(γ̂(k)TWi)}2 | Dc
k

])


T ′3

+ ρ(1− ρ)
K∑
k=1

Nk − nk
N − n

(
Ei∈Ik

[
(û(k)TXi)

2{g(β̂
(k)T

Xi)− g(γ̂(k)TWi)}2 | Dc
k

]
− E

[
(uT

0 Xi)
2{g(βT

0 Xi)− g(γT
0 Wi)}2

])
 T ′4

Here we state the rates for T ′1-T
′
4,

T ′1 = Op

(
n−1/2

)
, T ′2 = Op

(
‖û− u0‖2 + (1− ρ)‖γ̂ − γ0‖2 + ρ‖β̂ − β0‖2

)
,

T ′3 = Op

(
ρ(1− ρ)N−1/2

)
, T ′4 = Op

(
ρ(1− ρ)

{
‖û− u0‖2 + ‖γ̂ − γ0‖2 + ‖β̂ − β0‖2

})
.
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With the assumed estimation rate in (A.22), we have

T ′1 + T ′2 + T ′3 + T ′4 = op(1).

We provide the details of T ′1-T
′
4 in Section C2.

Part 4: Conclusion with estimation rates

From the approximation in Part 2 and the boundedness and non-degeneracy of VSAS in Part
3, we have shown the asymptotic normality of the cross-fitted debiased estimator

√
nV
−1/2

SAS

(
x̂T

stdβ − xT
stdβ0

)
 N(0, 1).

Together with the consistency of V̂SAS in Part 3, we have

√
nV̂
−1/2

SAS

(
x̂T

stdβ − xT
stdβ0

)
 N(0, 1).

Part 5: Sufficient dimension condition

We have established the rate of estimation for γ̂, β̂ and û from Lemma 21, Theorem 1 and
Part 4 of this proof above. Since we only keep one fold of the data away for the cross-fitted
estimators, they follow the same rates of estimation,

‖γ̂(k) − γ0‖2 = Op

(√
sγ log(p+ q)/n

)
,

‖β̂
(k)

− β0‖2 = Op

(√
sβ log(p)/N + (1− ρ)

√
sγ log(p+ q)/n

)
,

‖û(k) − u0‖2 = Op

(√
(sβ + su) log(p)/N + (1− ρ)

√
sγ log(p+ q)/n

)
.

Applying the rates of estimation, we show dimension assumption (28) is sufficient for (A.22).

B4 Efficiency of SAS Inference

Relative Efficiency to Supervised Learning

Proof [Proof of Proposition 9] We prove the Proposition by direct calculation

VSL − VSAS

=E[(uT
0 Xi)

2{Y − g(βT
0 Xi)}2]− E[(uT

0 Xi)
2{Y − (1− ρ) · E(Y |Si,Xi)ρ · g(βT

0 Xi)}2]
=E[(uT

0 Xi)
2{(1− ρ2)g(βT

0 Xi)
2 − 2(1− ρ)g(βT

0 Xi)E(Y |Si,Xi) + (1− ρ2)E(Y |Si,Xi)
2}]

=(1− ρ)2E[(uT
0 Xi)

2{E(Y |Si,Xi)− g(βT
0 Xi)}2]

+ 2ρ(1− ρ)E[(uT
0 Xi)

2{E(Y |Si,Xi)
2 + g(βT

0 Xi)
2}].

The last expression is the sum of expectations of complete squares, so it must be non-
negative. Thus, we have shown that the SAS asymptotic variance is no greater than the
supervised learning variance. The equality holds only if 1) ρ = 1 all samples are labelled;
2) or ρ = 0 and uT

0 Xi{E(Y |Si,Xi)− g(βT
0 Xi)} = 0 almost surely.
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Efficiency Bound among Semi-parametric RAL Estimators

Proof [Proof of Proposition 10] The proof follows the flow of Section D.2 in Kallus and
Mao (2020). The semi-parametric model for the observed data is

Mobs =

{
fX,Y,S,R(x, y, s, r) = fX(x)fS|X(s|x)

{
ρfY |S,X(y|s,x)

}r
(1− ρ)1−r :

fX, fS|X, fY |S,X are arbitrary pdf/pmf,

}
. (A.32)

We consider the parametric sub-model

Mpar =

{
fX,Y,S,R(x, y, s, r; ζ) = fX(x; ζ)fS|X(s|x; ζ)

{
ρfY |S,X(y|s,x; ζ)

}r
× (1− ρ)1−r : ζ ∈ Rd

}
. (A.33)

The score vector of the parametric sub-model is

Ψ(X, Y,S, R)

=
∂ log{fX,Y,S,R(X, Y,S, R; ζ)}

∂ζ

∣∣∣∣
ζ=ζ0

=
∂ log{fX(X; ζ)}

∂ζ

∣∣∣∣
ζ=ζ0

+
∂ log{fS|X(S|X; ζ)}

∂ζ

∣∣∣∣
ζ=ζ0

+R
∂ log{fY |S,X(Y | S,X; ζ)}

∂ζ

∣∣∣∣
ζ=ζ0

=ΨX(X) + ΨS(S,X) +RΨY (Y,S,X). (A.34)

Next, we decompose the the Hilbert space of mean zero finite variance random variables
measurable to σ{X,S, R, Y R}, denoted as H. The model tangent space spanned by the
score (A.34) is a linear sub-space of H,

Λ = ΛX ⊕ ΛS ⊕ ΛY ,

ΛX =
⋃
Mpar

span{ΨX(X)} = {h(X) ∈ H : E[h(X)] = 0},

ΛS =
⋃
Mpar

span{ΨS(S,X)} = {h(S,X) ∈ H : E[h(S,X) | X] = 0},

ΛY =
⋃
Mpar

span{RΨY (Y,S,X)} = {Rh(Y,S,X) ∈ H : E[h(Y,S,X) | S,X] = 0}. (A.35)

The orthogonal space of model tangent space Λ is

Λ⊥ = {h(R,S,X) ∈ H : E[h(R,S,X) | S,X] = 0}, H = Λ⊕ Λ⊥. (A.36)

Now, we verify that the supervised learning influence function

φSL(θ;β) =
R

ρ
uT

0 X{Y − g(βTX)}
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is indeed an influence function for xT
stdβ by showing

E{φSL(θ0;β0)Ψ(X, Y,S, R)} = xstd

d

dζ
β(ζ)

∣∣∣∣
ζ=ζ0

.

Since β(ζ) is an implicit function of ζ through the moment condition

Eζ [X{g(β(ζ)TX)− Y } = 0,

we solve for its derivative by differentiating the moment condition

d

dζ
Eζ [X{g(β(ζ)TX)− Y }]

∣∣∣∣
ζ=ζ0

=0

d

dζ
Eζ [X{g(βT

0 X)− Y }]
∣∣∣∣
ζ=ζ0

+ Eζ0
{XXTg′(βT

0 X)} d

dζ
β(ζ)

∣∣∣∣
ζ=ζ0

=0

−Θ0Eζ0
[X{g(βT

0 X)− Y }{ΨX(X) + ΨS(S,X) + ΨY (Y,S,X)}] =
d

dζ
β(ζ)

∣∣∣∣
ζ=ζ0

.

Then, we verify that the supervised learning influence function is valid

d

dζ
xT

stdβ(ζ)

∣∣∣∣
ζ=ζ0

=− Eζ0

[
R

ρ
uT

0 X{g(βT
0 X)− Y }Ψ(X, Y,S, R)

]
=E{φSL(θ0;β0)Ψ(X, Y,S, R)}.

Finally, we derive the efficient influence function by subtract from φSL its projection onto
Λ⊥ = ΛR. Let Π[h(D) | Λ] be the projection of h(D) ∈ H to the space Λ. We can easily
calculate the projection of φSL onto ΛR,

Π[φSL(θ0;β0) | ΛR] =E{φSL(θ0;β0) | R,S,X} − E{φSL(θ0;β0) | S,X}

=
R

ρ
uT

0 X{E(Y | S,X)− g(βTX)} − uT
0 X{E(Y | S,X)− g(βTX)}.

The efficient influence function is thus obtained

φeff(θ0;β0) =φSL(θ0;β0)−Π[φSL(θ0;β0) | ΛR]

=
R

ρ
uT

0 X{Y − g(βTX)} − R

ρ
uT

0 X{E(Y | S,X)− g(βTX)}

+ uT
0 X{E(Y | S,X)− g(βTX)}

=
R

ρ
uT

0 X{Y − E(Y | S,X)}+ uT
0 X{E(Y | S,X)− g(βTX)}.
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Appendix C. Auxiliary Results

C1 General

Lemma 14 Under Assumptions 1a, 1b, 2a, the residuals of the imputed loss are sub-
Gaussian random variables ,

‖g(βTXi)− g(γTWi)‖ψ2 ≤ 4 max{ν1, ν2,M‖β − β0‖2σmax/
√

2,M‖γ − γ0‖2σmax/
√

2}
Similarly,

‖Yi − g(γTWi)‖ψ2 ≤ 2 max{ν1,M‖γ − γ0‖2σmax/
√

2},
‖g(γTWi)− g(γT

0 Wi)‖ψ2 ≤M‖γ − γ0‖2σmax/
√

2,

‖g(βTXi)− g(βT
0 Xi)‖ψ2 ≤M‖β − β0‖2σmax/

√
2,

‖ρ · g(βTXi) + (1− ρ) · g(γTWi)− Y ‖ψ2 ≤ 4 max{(1− ρ)ν1, ρν2,

ρM‖β − β0‖2σmax/
√

2, (1− ρ)M‖γ − γ0‖2σmax/
√

2},
‖g(βTXi)− g(βT

0 Xi)− g(γTWi) + g(γT
0 Wi)‖ψ2 ≤

√
2Mσmax max{‖β − β0‖2, ‖γ − γ0‖2}.

Proof [Proof of Lemma 14] To establish the sub-exponential tail, we consider the following
decomposition

g(βTXi)− g(γTWi) ={g(βT
0 Xi)− Yi} − {g(γT

0 Wi)− Yi}
+ {g(βTXi)− g(βT

0 Xi)} − {g(γTWi)− g(γT
0 Wi)}.

(A.37)

According to Assumption 1a, the first two terms on the right-hand side of (A.37) are sub-
Gaussian,

‖g(βT
0 Xi)− Yi‖ψ2 ≤ ν1, ‖g(γT

0 Wi)− Yi‖ψ2 ≤ ν2.
According to Assumption 1b, the latter two terms on the right-hand side of (A.37) are
bounded by

|g(βTXi)− g(βT
0 Xi)| ≤M |(β − β0)

TXi|, |g(γTWi)− g(γT
0 Wi)| ≤M |(γ − γ0)

TWi|.
Under Assumption 2a, (β − β0)

TXi and (γ − γ0)
TWi are sub-Gaussian random variables,

‖(β − β0)
TXi‖ψ2 ≤ ‖β − β0‖2σmax/

√
2

‖(γ − γ0)
TWi‖ψ2 ≤ ‖γ − γ0‖2σmax/

√
2.

By Lemma 17-e,

‖g(βTXi)− g(βT
0 Xi)‖ψ2 ≤M‖(β − β0)

TXi‖ψ2 ≤M‖β − β0‖2σmax/
√

2

‖g(γTWi)− g(γT
0 Wi)‖ψ2 ≤ ‖(γ − γ0)

TWi‖ψ2 ≤M‖γ − γ0‖2σmax/
√

2.

Finally, we apply Lemma 17-d

‖g(βTXi)− g(γTWi)‖ψ2 ≤4 max
{
‖g(βT

0 Xi)− Yi‖ψ2 , ‖g(γT
0 Wi)− Yi‖ψ2 ,

‖g(βTXi)− g(βT
0 Xi)‖ψ2 , ‖g(γTWi)− g(γT

0 Wi)‖ψ2

}
≤4 max

{
ν1, ν2,M‖β − β0‖2σmax/

√
2,M‖γ − γ0‖2σmax/

√
2
}
.

Therefore, we have reached the conclusion.
We may obtain the rest of bounds following the same derivation.
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C2 Inference

Analysis of Estimated Precision Matrix

Proof [Proof of Lemma 13]
The definition of the cross-fitted loss functions m(k,k′) and their derivatives can be found

at (A.23). By the definition of û(k), we have∑
k′ 6=k

Nk′

N −Nk
m(k,k′)

(
û(k); β̂

(k,k′)
)

+ λu‖û(k)‖1 ≤
∑
k′ 6=k

Nk′

N −Nk
m(k,k′)

(
u0; β̂

(k,k′)
)

+ λu‖u0‖1.

Denote the standardized estimation error as δ = (û(k)−u0)/‖û(k)−u0‖2. Due to convexity
of the loss function, we have for t = ‖û(k) − u0‖2 ∧ 1∑
k′ 6=k

Nk′

N −Nk
m(k,k′)

(
u0 + tδ; β̂

(k,k′)
)

+λu‖u0+tδ‖1 ≤
∑
k′ 6=k

Nk′

N −Nk
m(k,k′)

(
u0; β̂

(k,k′)
)

+λu‖u0‖1.

(A.38)
By the triangle inequality ‖u0‖1 − ‖u0 + tδ‖1 ≤ t‖δ‖1, we have from (A.38)∑

k′ 6=k

Nk′

N −Nk

{
m(k,k′)

(
u0 + tδ; β̂

(k,k′)
)
−m(k,k′)

(
u0; β̂

(k,k′)
)}
≤ tλu‖δ‖1 (A.39)

Because the loss functions m(k) are quadratic functions of u, we can apply the restricted
strong convexity event Ω(k) to obtain

m(k,k′)
(
u0 + tδ; β̂

(k,k′)
)
−m(k,k′)

(
u0; β̂

(k,k′)
)
− tδTṁ(k,k′)

(
u0; β̂

(k,k′)
)

=t2δT
m̈

(k,k′)
(
β̂

(k,k′)
)
δ

≥t2κ∗rsc,1 − tκ∗rsc,1κ
∗
rsc,2

√
log(p)/Nk′‖δ‖1. (A.40)

Applying (A.40) to (A.39), we have with large probability∑
k′ 6=k

Nk′

N −Nk

{
tδTṁ(k,k′)

(
u0; β̂

(k,k′)
)

+ t2κ∗rsc,1 − tκ∗rsc,1κ
∗
rsc,2

√
log(p)/Nk′‖δ‖1

}
≤ tλu‖δ‖1

where ‖δ‖2 = 1 from definition. Thus, we have reach

tκ∗rsc,1 ≤ λu‖δ‖1 −
∑
k′ 6=k

Nk′

N −Nk

{
δTṁ(k,k′)

(
u0; β̂

(k,k′)
)
− κ∗rsc,1κ

∗
rsc,2

√
log(p)/Nk′‖δ‖1

}
.

(A.41)

The target parameter u0 can be identify by E
{

ṁ(k,k′)
(
u0; β̂

(k,k′)
)
| Dc

k′

}
= 0. We use

the fact to do a careful analysis of δTṁ(k,k′)
(
u0; β̂

(k,k′)
)

by the decomposition∣∣∣δTṁ(k,k′)
(
u0; β̂

(k,k′)
)∣∣∣ =δT

[
ṁ(k,k′)

(
u0; β̂

(k,k′)
)
− E

{
ṁ(k,k′)

(
u0; β̂

(k,k′)
)
| Dc

k′

}]
+ δT

[
E
{

ṁ(k,k′)
(
u0; β̂

(k,k′)
)
| Dc

k′

}
− E

{
ṁ(k,k′) (u0;β0) | Dc

k′

}]
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≤‖δ‖1
∥∥∥ṁ(k,k′)

(
u0; β̂

(k,k′)
)
− E

{
ṁ(k,k′)

(
u0; β̂

(k,k′)
)
| Dc

k′

}∥∥∥
∞

+
∥∥∥Ei∈Ik′∪Jk′ [XiX

T
iu0{g(βT

0 Xi)− g(β̂
(k,k′)T

Xi)} | Dc
k′ ]
∥∥∥
2
. (A.42)

We establish the rate for L2-norm of the population score at u0 through analyzing

sup
‖v‖2=1

Ei∈Ik′∪Jk′ [v
TXiX

T
iu0{g(βT

0 Xi)− g(β̂
(k,k′)T

Xi)} | Dc
k′ ],

whose bound can be derived from Assumptions 1b, 2a, 2a, the Cauchy-Schwartz inequality
and Lemma 17-b,

Ei∈Ik′∪Jk′ [v
TXiX

T
iu0{g(βT

0 Xi)− g(β̂
(k,k′)T

Xi)} | Dc
k′ ]

≤MEi∈Ik′∪Jk′ [|v
TXiX

T
iu0{

(
β0 − β̂

(k,k′)
)T

Xi}| | Dc
k′ ]

≤M
[
E{(vTXi)

4}E{(vTXi)
4}
]1/4√√√√Ei∈Ik′∪Jk′

[{(
β0 − β̂

(k,k′)
)T

Xi

}2

| Dc
k′

]

≤Mσ3max‖v‖2‖u0‖2
∥∥∥β0 − β̂

(k,k′)
∥∥∥
2
.

Hence, we have shown∥∥∥Ei∈Ik′∪Jk′ [XiX
T
iu0

{
g(βT

0 Xi)− g
(
β̂

(k,k′)T

Xi

)}
| Dc

k′

]∥∥∥
2
≤Mσ3max‖u0‖2

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
.

(A.43)
By the bound for (A.42) through (A.43) and the definition of λβ, we have the bound

from (A.41)

tκ∗rsc,1 ≤ 2λu‖δ‖1 +Mσ3max‖u0‖2 sup
k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
. (A.44)

Hence, we can reach an immediate bound for estimation error from (A.44) without con-
sidering the sparsity of u0. We shall proceed to derive a sharper bound that involves the
sparsity of u0. We separately analyze two cases.

Case 1:

Mσ3max‖u0‖2 sup
k=1,...,K

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
≥ ‖δ‖1λu/3

In this case, the estimation error is dominated by β0 − β̂
(k,k′)

. We simply have from (A.44)

tκ∗rsc,1 ≤ 7Mσ3max‖u0‖2 sup
k=1,...,K

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
,

tκ∗rsc,1‖δ‖1λu/3 ≤ 7Mσ6max‖u0‖22 sup
k=1,...,K

∥∥∥β0 − β̂
(k,k′)

∥∥∥2
2
.

Thus, we have

‖û(k) − u0‖2 ≤ 7Mσ3max‖u0‖2 sup
k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
/κ∗rsc,1,
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‖û(k) − u0‖1 ≤ 21Mσ6max‖u0‖22 sup
k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥2
2
/(κ∗rsc,1λu). (A.45)

Case 2:
Mσ3max‖u0‖2 sup

k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
≤ ‖δ‖1λu/3 (A.46)

In this case, the estimation error is comparable to the situation that we have the true β0

for the Hessian. Thus, the sparsity of u0 may affect the estimation error.
Following the typical approach to establish the cone condition for δ, we analyze the

symmetrized Bregman’s divergence,

(û(k) − u0)
T
∑
k′ 6=k

Nk′

N −Nk

{
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
− ṁ(k,k′)

(
u0; β̂

(k,k′)
)}

=‖û(k) − u0‖2
∑
k′ 6=k

Nk′

N −Nk
δT

{
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
− ṁ(k,k′)

(
u0; β̂

(k,k′)
)}

. (A.47)

Due to the convexity of the quadratic loss m(k,k′)
(
·; β̂

(k,k′)
)

, the symmetrized Bregman’s

divergence (A.47) is nonnegative through a mean-value theorem,

(û(k) − u0)
T
∑
k′ 6=k

Nk′

N −Nk

{
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
− ṁ(k,k′)

(
u0; β̂

(k,k′)
)}

=
∑
k′ 6=k

Nk′

N −Nk

∑
i∈Ik′∪Jk′

g′(β̂
(k,k′)T

Xi){(û(k) − u0)
TXi}2

≥0.

Denote the indices set of nonzero coefficient in u0 as Ou = {j : u0,j 6= 0}. We denote the δOu

and δOc
u

as the sub-vectors for δ at positions in Ou and at positions not in Ou, respectively.
The solution û(k) satisfies the KKT condition∥∥∥∥∥∥

∑
k′ 6=k

Nk′

N −Nk
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)∥∥∥∥∥∥
∞

≤ λu,

∑
k′ 6=k

Nk′

N −Nk
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
j

= −λu sign(û(k)

j ), j : û(k)

j 6= 0.

From the KKT condition and the definitions of δ and Ou, we have

δj
∑
k′ 6=k

Nk′

N −Nk
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
j
≤ |δj |λu, j ∈ Ou;

δj
∑
k′ 6=k

Nk′

N −Nk
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
j

=
−û(k)

j λu sign(û(k)

j )

‖û(k) − u0‖2
= −λu|δj |, j ∈ Oc

u. (A.48)

Applying the (A.48) to (A.47), we have the upper bound,

δT
∑
k′ 6=k

Nk′

N −Nk

{
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
− ṁ(k,k′)

(
u0; β̂

(k,k′)
)}
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=
∑
j∈Ou

δj
∑
k′ 6=k

Nk′

N −Nk
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
j

+
∑
j∈Oc

u

δj
∑
k′ 6=k

Nk′

N −Nk
ṁ(k,k′)

(
û(k); β̂

(k,k′)
)
j

+
∑
k′ 6=k

Nk′

N −Nk
δTṁ(k,k′)

(
u0; β̂

(k,k′)
)

≤λu

∑
j∈Ou

|δj | − λu

∑
j∈Oc

u

|δj |+ δT ˙̀†(β0; γ̂)

≤λu‖δOu‖1 − λu‖δOc
u
‖1 +

∣∣∣∣∣∣
∑
k′ 6=k

Nk′

N −Nk
δTṁ(k,k′)

(
u0; β̂

(k,k′)
)∣∣∣∣∣∣ .

Then, we apply (A.42), the definition of λu and (A.46),

0 ≤ λu‖δOu‖1 − λu‖δOc
u
‖1 +

2

3
λu‖δ‖1, and λu‖δOc

u
‖1 ≤ 5λu‖δOu‖1.

Therefore, we can bound the L1 norm of δ by the cone property,

‖δ‖1 ≤ 6λu‖δOu‖1 ≤ 6
√
su‖δ‖2 = 6

√
su. (A.49)

Now, we apply the cone condition (A.49) and the case condition (A.46) to the bound
(A.44),

tκ∗rsc,1 ≤ 14
√
suλu, tκ

∗
rsc,1‖δ‖1 ≤ 84suλu

Thus, we obtain the rate for estimation error

‖û(k) − u0‖2 ≤ 14
√
suλu/κ

∗
rsc,1, ‖û(k) − u0‖1 ≤ 84suλu/κ

∗
rsc,1. (A.50)

Conclusion:
Since Case 1 and Case 2 are the complement of each other, one of them must occur.

Thus, the bound of estimation error is controlled by the larger bound in the two cases,

‖û(k) − u0‖2 ≤ max

{
14
√
suλu/κ

∗
rsc,1, 7Mσ3max‖u0‖2 sup

k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥
2
/κ∗rsc,1

}
,

‖û(k) − u0‖1 ≤ max

{
84suλu/κ

∗
rsc,1, 21Mσ6max‖u0‖22 sup

k′ 6=k

∥∥∥β0 − β̂
(k,k′)

∥∥∥2
2
/(κ∗rsc,1λu)

}
,

which is our oracle inequality.

Analysis for Terms T1-T5 in Part 1

To show
T1 =

√
n
{

xstd −H(β̃)u0

}
(β̂

(k)

− β0) = Op

(√
n‖β̂

(k)

− β0‖22
)
,

we rewrite the term as a conditional expectation

T1 =
√
nuT

0

{
Σ0 −H(β̃)

}
(β̂

(k)

− β0)

46



SAS Inference High-d GLM

=
√
nEi∈Jk

[
uT

0 Xi(β̂
(k)

− β0)
TXi{g′(β̃

T

Xi)− g′(β̂
(k)T

Xi)} | Dc
k

]
.

Under Assumptions 1b, 2a, we derive the bound for the expectation using the Cauchy-
Schwartz inequality and Lemma 17-b,

|T1| ≤M
√
nEi∈Jk

[
uT

0 Xi{(β̂
(k)

− β0)
TXi}2 | Dc

k

]
≤M

√
nEi∈Jk

{
(uT

0 Xi)2 | Dc
k

}
Ei∈Jk

[
{(β̂

(k)

− β0)
TXi}4 | Dc

k

]
≤M

√
n8‖uT

0 Xi‖2ψ2
‖(β̂

(k)

− β0)
TXi‖4ψ2

≤
√
nM‖u0‖2

∥∥∥β̂(k)

− β0

∥∥∥2
2
σ3max. (A.51)

Since ‖u0‖2 is bounded according to (A.25), we have established in

|T1| = Op

(√
n‖β̂

(k)

− β0‖22
)

as declared.

To show

T2 =
√
n
(
u0 − û(k)

)T H(β̃)(β̂
(k)

− β0) = Op

(√
n‖β̂

(k)

− β0‖2‖û(k) − u0‖2
)
,

we rewrite the term as a conditional expectation

T2 =
√
nEi∈Jk

[(
u0 − û(k)

)T
Xi(β̂

(k)

− β0)
TXig

′(β̃
T

Xi) | Dc
k

]
.

Similar to (A.51), we derive the bound for the expectation under Assumptions 1b, 2a
through the Cauchy-Schwartz inequality and Lemma 17-b, 17-f,

|T2| ≤M
√
nEi∈Jk

[
|
(
u0 − û(k)

)T
Xi(β̂

(k)

− β0)
TXi| | Dc

k

]
≤2M

√
n‖
(
u0 − û(k)

)T
Xi(β̂

(k)

− β0)
TXi‖ψ1

≤2M
√
n‖
(
u0 − û(k)

)T
Xi‖ψ2‖(β̂

(k)

− β0)
TXi‖ψ2

≤M
√
n‖û(k) − u0‖2‖β̂

(k)

− β0‖2σ2max.

This bound immediately implies

T2 = Op

(√
n‖β̂ − β0‖2‖û(k) − u0‖2

)
.

To show

T3 =
√
nû(k)T

[
E{ ˙̀†(k)(β̂

(k)

; γ̂(k)) | Dc
k} −

{
˙̀†(k)(β̂

(k)

; γ̂(k))− ˙̀†(k)(β0;γ0)
}]

=Op

(
ρ‖β̂

(k)

− β0‖2 +
√
ρ(1− ρ)‖γ̂(k) − γ0‖2

)
,
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we rewrite the term as two empirical processes with diminishing summands

T3 =−
√
n

1

Nk

∑
i∈Jk

(
û(k)TXi{g(β̂

(k)T

Xi)− g(βT
0 Xi)− g(γ̂(k)TWi) + g(γT

0 Wi)}

− Ei∈Jk
[
û(k)TXi{g(β̂

(k)T

Xi)− g(βT
0 Xi)− g(γ̂(k)TWi) + g(γT

0 Wi)} | Dc
k

])
−
√
n

1

Nk

∑
i∈Ik

(
û(k)TXi{g(β̂

(k)T

Xi)− g(βT
0 Xi)}

− Ei∈Jk
[
û(k)TXi{g(β̂

(k)T

Xi)− g(βT
0 Xi)} | Dc

k

])
.

We have used the identity E{ ˙̀†(k)(β0;γ0) | Dc
k} = 0 above. Using Lemmas 14, 17-h and

Assumptions (2a) and (2a), we show that each summand is sub-exponential

‖û(k)TXi{g(β̂
(k)T

Xi)− g(βT
0 Xi)− g(γ̂(k)TWi) + g(γT

0 Wi)}‖ψ1

≤‖û(k)TXi‖ψ2‖g(β̂
(k)T

Xi)− g(βT
0 Xi)− g(γ̂(k)TWi) + g(γT

0 Wi)‖ψ2

≤Mσ2max‖û(k)‖2
(
‖β̂

(k)

− β0‖2 + ‖γ̂(k) − γ0‖2
)
,

‖û(k)TXi{g(β̂
(k)T

Xi)− g(βT
0 Xi)}‖ψ1 ≤Mσ2max‖û(k)‖2‖β̂

(k)

− β0‖2/2.

Applying the Bernstein’s inequality, we obtain

T3 = Op

(
‖û(k)‖2

{√
ρ‖β̂

(k)

− β0‖2 +
√
ρ(1− ρ)‖γ̂(k) − γ0‖2

})
.

We achieve the stated rate with the tightness of ‖û(k)‖2 from (A.25).
To show

T4 =
√
n(1− ρ)û(k)T

[
E{ ˙̀ (k)

imp(γ̂
(k)) | Dc

k} −
{

˙̀ (k)
imp(γ̂

(k))− ˙̀ (k)
imp(γ0)

}]
=Op

(
(1− ρ)‖γ̂(k) − γ0‖2

)
,

we rewrite the term as the empirical process with diminishing summands

T4 =−
√
n(1− ρ)

1

nk

∑
i∈Ik

(
û(k)TXi{g(γ̂(k)TWi)− g(γT

0 Wi)}

− Ei∈Jk
[
û(k)TXi{g(γ̂(k)TWi)− g(γT

0 Wi)} | Dc
k

])
.

We have used the identity E{ ˙̀ (k)
imp(γ0) | Dc

k} = 0 above. Similar to the analysis of T3, we
show that each summand is sub-exponential

‖û(k)TXi{g(γ̂(k)TWi)− g(γT
0 Wi)}‖ψ1 ≤Mσ2max‖û(k)‖2‖γ̂(k) − γ0‖2/2.

Applying the Bernstein’s inequality, we obtain

T4 = Op
(
(1− ρ)‖û(k)‖2‖γ̂(k) − γ0‖2

)
.
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We achieve the stated rate with the tightness of ‖û(k)‖2 from (A.25).
To show

T5 =
√
n
(
u0 − û(k)

)T
{

˙̀†(k)(β0;γ0) + (1− ρ) ˙̀ (k)
imp(γ0)

}
= Op

(
‖û(k) − u0‖2

)
,

we rewrite the term as the empirical process with diminishing summands

T5 =−
√
n

1

Nk

∑
i∈Jk

(û(k) − u0)
TXi{g(βT

0 Xi)− g(γT
0 Wi)}

−
√
n

1

nk

∑
i∈Ik

(û(k) − u0)
TXi{ρ · g(βT

0 Xi) + (1− ρ) · g(γT
0 Wi)− Yi}.

The summands have zero mean because

Ei∈Jk
[
(û(k) − u0)

TXi{g(βT
0 Xi)− g(γT

0 Wi)} | Dc
k

]
=(û(k) − u0)

TE [Xi{g(βT
0 Xi)− g(γT

0 Wi)}]
=0,

Ei∈Ik
[
(û(k) − u0)

TXi{ρ · g(βT
0 Xi) + (1− ρ) · g(γT

0 Wi)− Yi} | Dc
k

]
=(û(k) − u0)

T (ρE [Xi{g(βT
0 Xi)− Yi}] + (1− ρ)E [Xi{g(γT

0 Wi)− Yi}])
=0.

Similar to the analysis of T3, we show that each summand is sub-exponential∥∥(û(k) − u0)
TXi{g(βT

0 Xi)− g(γT
0 Wi)}

∥∥
ψ1
≤
√

2σmax(ν1 ∨ ν2)‖û(k) − u0‖2∥∥(û(k) − u0)
TXi{ρ · g(βT

0 Xi) + (1− ρ) · g(γT
0 Wi)− Yi}

∥∥
ψ1
≤
√

2σmax(ν1 ∨ ν2)‖û(k) − u0‖2

Applying the Bernstein’s inequality, we obtain

T5 = Op

(
‖û(k) − u0‖2

{√
ρ(1− ρ) + 1

})
= Op

(
‖û(k) − u0‖2

)
.

Analysis for Terms T ′1-T
′
4 in Part 2

Conditionally on the out-of-fold data, the term T ′1 is the empirical average of i.i.d. mean
zero random variables,

T1 =
K∑
k=1

nk
n

(
1

nk

∑
i∈Ik

(û(k)TXi)
2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂

(k)T

Xi)− Yi}2

− Ei∈Ik
[
(û(k)TXi)

2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}2 | Dc
k

])
.

We bound the variance of each summand by the Cauchy-Schwartz inequality and Lemmas
17-b, 17-d, 17-e,

Var
i∈Ik

[
(û(k)TXi)

2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}2 | Dc
k

]
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≤Ei∈Ik
[
(û(k)TXi)

4{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}4 | Dc
k

]
≤
√

Ei∈Ik
{

(û(k)TXi)8 | L c
k

}
Ei∈Ik

[
{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂

(k)T

Xi)− Yi}8 | Dc
k

]
≤
√

48‖û(k)TXi‖8ψ2
48
(
ρ‖g(β̂

(k)T

Xi)− Yi‖ψ2 ∨ (1− ρ)‖g(γ̂(k)TXi)− Yi‖ψ2

)8
(A.52)

Under Assumption 1a, 1b, 2a, we have

‖û(k)TXi‖ψ2 ≤ (‖u0‖2 + ‖û(k) − u0‖2)σmax/
√

2 = Op
(
1 + ‖û(k) − u0‖2

)
.

We apply Lemma 14 to obtain

‖g(β̂
(k)T

Xi)− Yi‖ψ2 = Op

(
1 + ‖β̂

(k)

− β0‖2
)
,

‖g(γ̂(k)TWi)− Yi‖ψ2 = Op
(
1 + ‖γ̂(k) − γ0‖2

)
.

We have shown that the variance in (A.52) is of order

Op

(
1 + ‖û(k) − u0‖42 + ρ4‖β̂

(k)

− β0‖42 + (1− ρ)4‖γ̂(k) − γ0‖42
)
.

Thus by the Tchebychev’s inequality, we obtain

T ′1 = Op

({
1 + ‖û(k) − u0‖2 + ρ‖β̂

(k)

− β0‖2 + (1− ρ)‖γ̂(k) − γ0‖2
}
/
√
n
)

Applying the consistency of γ̂(k), β̂
(k)

and û(k) from (A.22)

T ′1 = Op

(
n−1/2

)
= op(1).

To analyze T ′2, we consider the decomposition in which the estimators are replaced by
the estimands one by one,

T ′2

=
K∑
k=1

nk
n

(
Ei∈Ik

[
(û(k)TXi)

2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}2 | Dc
k

]
− E

[
(uT

0 Xi)
2{(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}2

])
=

K∑
k=1

nk
n
Ei∈Ik

[
{(û(k) − u0)

TXi}û(k)TXi{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂
(k)T

Xi)− Yi}2 | Dc
k

]
+

K∑
k=1

nk
n
Ei∈Ik

[
{(û(k) − u0)

TXi}uT
0 Xi{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂

(k)T

Xi)− Yi}2 | Dc
k

]
+

K∑
k=1

nk
n
Ei∈Ik

[
(uT

0 Xi)
2{(1− ρ) · g(γ̂(k)TWi) + ρ · g(β̂

(k)T

Xi)− Yi}
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× [(1− ρ){g(γ̂(k)TWi)− g(γT
0 Wi)}+ ρ{g(β̂

(k)T

Xi)− g(βT
0 Xi)}] | Dc

k

]
+

K∑
k=1

nk
n
Ei∈Ik

[
(uT

0 Xi)
2{(1− ρ) · g(γT

0 Wi) + ρ · g(βT
0 Xi)− Yi}

× [(1− ρ){g(γ̂(k)TWi)− g(γT
0 Wi)}+ ρ{g(β̂

(k)T

Xi)− g(βT
0 Xi)}] | Dc

k

]
.

Following the same calculation as in (A.52), we can bound the expectations

T ′2 = Op

(
‖û(k) − u0‖2 + ρ‖β̂

(k)

− β0‖2 + (1− ρ)‖γ̂(k) − γ0‖2
)

Applying the consistency of γ̂, β̂ and û from Lemma 21, Theorem 1 and Part 1 in the proof
of Theorem 7, we have established

T ′2 = op(1).

Repeating the analyses for T ′1 and T ′2, we can show

T ′3 = Op

(
ρ
√

(1− ρ)/N
{

1 + ‖û(k) − u0‖2 + ‖β̂
(k)

− β0‖2 + ‖γ̂(k) − γ0‖2
})

= op(1),

T ′4 = Op

(
ρ(1− ρ)

{
‖û(k) − u0‖2 + ‖β̂

(k)

− β0‖2 + ‖γ̂(k) − γ0‖2
})

= op(1)

Appendix D. Additional Technical Details

D1 Definitions

We adopt the following definition of sub-Gaussian and sub-exponential random variables.

Definition 15 (Sub-Gaussian and Sub-Exponential Random Variables) The sub-
Gaussian parameter for a random variable V is defined as

‖V ‖ψ2 = inf
{
σ > 0 : E(eV

2/σ2
) ≤ 2

}
.

The random variable V is sub-Gaussian if ‖V ‖ψ2 is finite. The sub-Gaussian parameter for
a random vector U is defined as

‖U‖ψ2 = sup
‖v‖2=1

‖vTU‖ψ2 .

The sub-Gaussian parameter for a random variable V is defined as

‖V ‖ψ1 = inf
{
ν > 0 : E(e|V |/ν) ≤ 2

}
.

The random variable V is sub-exponential if ‖V ‖ψ1 is finite. The more general Orlicz norm
for α ∈ (0, 1) is defined as

‖V ‖ψα = inf
{
ν > 0 : E

[
e(|V |/ν)

α
]
≤ 2
}
.

Mimicking the (minimal) Restricted Eigenvalue condition on the minimal eigenvalue of
matrix over a cone (Bickel et al., 2009), we define the maximal Restricted Eigenvalue in
Definition 16.
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Definition 16 (Maximal Restricted Eigenvalue) For a cone-set of the indices set O ⊂
{1, . . . , p}

Cγ(ξ,O) :=
{
v ∈ Rp+q+1 : ‖vOc‖1 ≤ ξ‖vO‖1

}
, (A.53)

we define the maximal Restricted Eigenvalue of a matrix Σ as

REmax(ξ,O; Σ) = sup
v∈Cγ(ξ,O)\{0}

√
vTΣv

‖v‖2
. (A.54)

D2 Statements of Existing Results

The properties in Lemmas 17 and 18 are covered in Vershynin (2018) Chapter 2 and 4.

Lemma 17 (Properties of sub-Gaussian and sub-exponential random variables)

a) Tail-probability:

P(|V | ≥ x) ≤ 2e−x/‖V ‖ψ1 ,

P(|V | ≥ x) ≤ 2e
−x2/‖V ‖2ψ2 ;

b) Moments: E(|V |r) ≤ min{κψ,1‖V ‖rψ1
, κψ,2‖V ‖rψ2

} with κψ,1 = r!2 and κψ,2 = Γ(r/2)r,

and E(|V |) ≤
√
π‖V ‖ψ2;

c) Hierarchy: ‖V ‖ψ1 ≤ ‖V ‖ψ2;

d) Arbitrary addition: ‖
∑m

i=1 Vi‖ψ2
≤ mmaxi=1,...,m ‖Vi‖ψ2 and ‖

∑m
i=1 Vi‖ψ1

≤ mmaxi=1,...,m ‖Vi‖ψ1;

e) Multiplication with bounded random variable: ‖V1V2‖ψ2 ≤ ‖V1‖ψ2K, ‖V1V2‖ψ1 ≤
‖V1‖ψ1K for |V2| ≤ K almost surely;

f) Multiplication between sub-Gaussian random variables: ‖V1V2‖ψ1 ≤ ‖V1‖ψ2‖V2‖ψ2, in
particular, ‖V1‖ψ1 ≤ ‖V1‖ψ2/

√
log(2);

g) Hoeffding’s inequality: V1, . . . , Vm are independent mean zero sub-Gaussian random
variables. For t > 0,

P

(∣∣∣∣∣
m∑
i=1

Vi

∣∣∣∣∣ ≥ t
)
≤ 4 exp

(
− t2

κψ,3
∑m

i=1 ‖Vi‖2ψ2

)
, κψ,3 = 8.

h) Bernstein’s inequality: V1, . . . , Vm are independent mean zero sub-exponential random
variables. For t > 0, κψ,4 = 16 and κψ,5 = 4

P

(∣∣∣∣∣
m∑
i=1

Vi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

−min

t2
(
κψ,4

m∑
i=1

‖Vi‖2ψ1

)−1
, t

(
κψ,5 max

i=1,...,m
‖Vi‖ψ1

)−1
 .
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Lemma 18 Let V1, . . . , Vm be i.i.d sub-Gaussian vectors in Rp such that

‖vTV ‖2ψ2
≤ K2E{(vTV )2}

for some 1 ≤ K <∞. Then,∥∥∥∥∥ 1

m

m∑
i=1

ViV
T
i − E(V V T)

∥∥∥∥∥
2

= Op

(
p/m+

√
p/m

)
.

From Negahban et al. (2010) and Huang and Zhang (2012) among other literatures, we
have the following results concerning the LASSO under the generalized linear models.

Lemma 19 Under Assumptions 1b, 2a and 2b,

P
(
`imp(γ0 + ∆)− `imp(γ0)−∆T ˙̀

imp(γ0)

≥ κrsc,1‖∆‖2{‖∆‖2 − κrsc,2

√
log(p+ q)/n‖∆‖1},∀‖∆‖2 ≤ 1

)
≥ 1− κrsc,3e

−κrsc,4n;

P
(
`PL(β0 + ∆)− `PL(β0)−∆T ˙̀

PL(β0)

≥ κrsc,1‖∆‖2{‖∆‖2 − κrsc,2

√
log(p)/N‖∆‖1},∀‖∆‖2 ≤ 1

)
≥ 1− κrsc,3e

−κrsc,4N .

The negative log-likelihoods are defined in (8) and (10), and their gradients defined in (12).
See Definition 11 for the definition of conditional expectation notation. The constants are
all absolute.

The two inequalities in Lemma 19 are direct application of Negahban et al. (2010) Propo-
sition 2 page 22. We can construct an auxiliary loss function to prove the following lemma.

Lemma 20 Under Assumptions 1b, 2a and 2b,

P
(

1

Nk′

∑
i∈Ik′∪Jk′

g′
(
β̂

(k,k′)T

Xi

)
(∆TXi)

2

≥ 2κ∗rsc,1‖∆‖22 − κ∗rsc,1κ
∗
rsc,2

√
log(p)/N‖∆‖2‖∆‖1, ∀‖∆‖2 ≤ 1

)
≥P
(∥∥∥β̂(k)

− β0

∥∥∥
2
≤ σ2min

2σ3max

)
− κ∗rsc,3e

−κ∗rsc,4N .

The constants are all absolute.

Proof [Proof of Lemma 20] First, we show

√
g′
(
β̂

(k,k′)T

Xi

)
Xi is a sub-Gaussian random

vector whose second moment has all eigenvalues bounded away from infinity and zero.
Under Assumptions 1b and 2a, we may apply Lemma 17-e,∥∥∥∥∥vT

√
g′
(
β̂

(k,k′)T

Xi

)
Xi

∥∥∥∥∥
ψ2

≤
√
M‖vTXi‖ψ2 ≤

√
Mσmax‖v‖2/

√
2.
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Thus,

√
g′
(
β̂

(k,k′)T

Xi

)
Xi is a sub-Gaussian random vector. Under Assumptions 1b and 2a,

we can bound the maximal eigenvalue of its second moment,

vTEi∈Ik′∪Jk′
{
g′
(
β̂

(k,k′)T

Xi

)
XiX

T
i | Dc

k′

}
v ≤ME{(vTXi)

2} ≤M‖v‖22σ2max.

We derive the lower bound for the minimal eigenvalue of its second moment from Assump-
tions 1b, 2a, 2a, 2b-i, the Cauchy-Schwartz inequality and Lemma 17-b,

vTEi∈Ik′∪Jk′
{
g′
(
β̂

(k,k′)T

Xi

)
XiX

T
i | Dc

k′

}
v

≥vTEi∈Ik′∪Jk′{g
′(βT

0 Xi)XiX
T
i | Dc

k′}v

− Ei∈Ik′∪Jk′
[
(vTXi)

2
{
g(βT

0 Xi)− g
(
β̂

(k,k′)T

Xi

)}
| Dc

k′

]
≥‖v‖22σ2min −MEi∈Ik′∪Jk′

[∣∣∣∣(vTXi)
2

{(
β0 − β̂

(k,k′)
)T

Xi

}∣∣∣∣ | Dc
k′

]

≥‖v‖22σ2min −M

√√√√E{(vTXi)4}Ei∈Ik′∪Jk′

[{(
β0 − β̂

(k,k′)
)T

Xi

}2

| Dc
k′

]

≥‖v‖22
(
σ2min −Mσ3max

∥∥∥β̂(k,k′)
− β0

∥∥∥
2

)
.

Whenever
∥∥∥β̂(k)

− β0

∥∥∥
2
≤ σ2

min
2σ3

max
, we have

vTEi∈Ik′∪Jk′
{
g′
(
β̂

(k,k′)T

Xi

)
XiX

T
i | Dc

k′

}
v ≥ ‖v‖22σ2min/2.

Second, we construct an auxiliary least square loss to apply Negahban et al. (2010). Let
εi be independent standard normal random variables. Construct the loss function

L(k,k′)(v) =
1

Nk′

∑
i∈Ik′∪Jk′

{
εi + (v0 − v)T

√
g′
(
β̂

(k,k′)T

Xi

)
Xi

}2

.

By the design, we have

L(k,k′)(v0 + ∆)− L(k,k′)(v0)−∆T ∂

∂v
L(k,k′)(v0 + ∆) =

1

Nk′

∑
i∈Ik′∪Jk′

g′
(
β̂

(k,k′)T

Xi

)
(∆TXi)

2.

We apply Proposition 2 in Negahban et al. (2010) for L(k,k′)(v) conditionally on out-of-fold

data Dc
k′ and the event

{∥∥∥β̂(k,k′)
− β0

∥∥∥
2
≤ σ2

min
2σ3

max

}
to finish the proof.

Lemma 21 For a constant κcone(n, p, q, εr) �
√
sγ log(p+ q)/n, the event

Ωcone =

{
‖ ˙̀

imp(γ0)‖∞ =

∥∥∥∥∥ 1

n

n∑
i=1

Wi{g(γT
0 Wi)− Yi}

∥∥∥∥∥
∞

≤ κcone(n, p, q, εr)

}
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occur with probability greater than 1− εr under Assumptions 1a and 2a. Setting λγ = 2, we
have on event Ωcone that

γ̂ − γ0 ∈ Cγ(3, supp(γ0)) =
{
v ∈ Rp+q+1 : ‖vOc

γ
‖1 ≤ 3‖vOγ‖1

}
,

where Oγ = {j : γj 6= 0} is the indices set for nonzero coefficient in γ0. Moreover, we have

‖γ̂ − γ0‖2 = Op

(√
sγ log(p+ q)/n

)
.

The concentration on the event Ωcone is established by the union bound of element wise
concentration, which is in turn obtained by the Bernstein inequality for sub-exponential
random variables (Lemma 17-h). The rest of Lemma 21 follows Huang and Zhang (2012)
Lemma 1 page 5 (page 1843 of the issue) and Negahban et al. (2010) Corollary 5 page 23.
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