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Abstract

The stochastic proximal point (SPP) methods have gained recent attention for stochastic
optimization, with strong convergence guarantees and superior robustness to the classic
stochastic gradient descent (SGD) methods showcased at little to no cost of computational
overhead added. In this article, we study a minibatch variant of SPP, namely M-SPP, for
solving convex composite risk minimization problems. The core contribution is a set of
novel excess risk bounds of M-SPP derived through the lens of algorithmic stability theory.
Particularly under smoothness and quadratic growth conditions, we show that M-SPP with
minibatch-size n and iteration count T enjoys an in-expectation fast rate of convergence
consisting of an O

(
1
T 2

)
bias decaying term and an O

(
1
nT

)
variance decaying term. In

the small-n-large-T setting, this result substantially improves the best known results of
SPP-type approaches by revealing the impact of noise level of model on convergence rate.
In the complementary small-T -large-n regime, we propose a two-phase extension of M-SPP
to achieve comparable convergence rates. Additionally, we establish a deviation bound
on the parameter estimation error of a sampling-without-replacement variant of M-SPP,
which holds with high probability over the randomness of data while in expectation over
the randomness of algorithm. Numerical evidences are provided to support our theoretical
predictions when substantialized to Lasso and logistic regression models.

Keywords: Minibatch stochastic proximal point methods, Convex optimization, Smooth-
ness, Excess risk, Uniform stability, Quadratic growth.

1. Introduction

We consider the following problem of regularized risk minimization over a closed convex
subset W ⊆ Rp:

min
w∈W

R(w) := Rℓ(w) + r(w), where Rℓ(w) := Ez∼D[ℓ(w; z)], (1)

where ℓ : W×Z 7→ R+ is a non-negative convex loss function whose value ℓ(w; z) measures
the loss of a hypothesis, parameterized by w ∈ W, evaluated over a data sample z ∈ Z,
D represents a distribution over Z, and r : W 7→ R+ is a data-independent non-negative
convex function whose value r(w) measures certain complexity of the hypothesis. We are
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particularly interested in the situation where the composite population risk R is strongly
convex around its minimizers, though in this setting the terms Rℓ and r are not necessarily
required to be so simultaneously. For an instance, the ℓ1-norm regularizer r(w) = µ∥w∥1 or
its grouped variants are often used for sparse learning with generalized linear models (Van de
Geer, 2008; Ravikumar et al., 2009; Negahban et al., 2012).

In statistical machine learning, it is usually assumed that the estimator only has access
to, either as a batch training set or in an online/incremental manner, a collection S = {zi}Ni=1

of i.i.d. random data instances drawn from D. The goal is to compute a stochastic estimator
ŵS based on the knowledge of S, hopefully that it generalizes well as a near minimizer of
the population risk. More precisely, we aim at deriving a suitable law of large numbers, i.e.,
a sample size vanishing rate δN so that the excess risk at ŵS satisfies R(ŵS) − R∗ ≤ δN
in expectation or with high probability over S, where R∗ := minw∈W R(w) represents the
minimal value of composite risk.

In this work, inspired by the recent remarkable success of the stochastic proximal point
(SPP) methods (Patrascu and Necoara, 2017; Asi and Duchi, 2019a,b; Davis and Drusvy-
atskiy, 2019) and their minibatch variants (Wang et al., 2017b; Zhou et al., 2019; Asi et al.,
2020), we provide a sharper generalization analysis for a class of minibatch SPP methods
for solving the stochastic composite risk minimization problem (1).

1.1 Algorithm and Motivation of Study

Minibatch Stochastic Proximal Point Algorithm. Let St = {zi,t}ni=1 be a minibatch of n
i.i.d. samples drawn from distribution D at time instance t ≥ 1 and denote

RSt(w) :=
1

n

n∑
i=1

ℓ(w; zi,t) + r(w)

as the regularized empirical risk over St. We consider the Minibatch Stochastic Proximal
Point (M-SPP) algorithm, as outlined in Algorithm 1, for composite risk minimization based
on a sequence of data minibatches S = {St}Tt=1. The precision value ϵt in the algorithm
quantifies the sub-optimality of wt for solving the inner-loop regularized ERM over the mini-
batch St. The M-SPP algorithm is generic and it encompasses several existing SPP methods
as special cases. In the extreme case when n = 1 and ϵt ≡ 0, M-SPP reduces to a composite
variant of the standard SPP method (Bertsekas, 2011), as formulated in (5). In general,
the recursion update formulation (2) can be regarded as a natural composite extension of
the existing minibatch stochastic proximal point methods for statistical estimation (Wang
et al., 2017b; Asi et al., 2020).

Prior results and limitations. The present study focuses on the generalization analysis
of M-SPP for convex composite risk optimization. Recently, it has been shown by Asi
et al. (2020, Theorem 2) that if the instantaneous loss functions are strongly convex with

respect to the parameters, then the M-SPP algorithm converges at the rate of O
(
log(nT )

nT

)
.

Prior to that, Wang et al. (2017b, Theorem 5) proved an O( 1
nT ) rate for M-SPP when the

individual loss functions are Lipschitz continuous and strongly convex. These results, among
others for SPP (Patrascu and Necoara, 2017; Davis and Drusvyatskiy, 2019), commonly
require that each instantaneous loss should be strongly convex which is too stringent to be
fulfilled in high-dimensional or infinite spaces. For an instance, the quadratic loss ℓ(w; z) =

2
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Algorithm 1: Minibatch Stochastic Proximal Point (M-SPP)

Input : Regularization modulus {γt}t≥1.
Output: w̄T as a weighted average of {wt}1≤t≤T .
Initialization Specify an initial point w0. Typically w0 = 0.
for t = 1, 2, ..., T do

Sample a minibatch St := {zi,t}ni=1
i.i.d.∼ Dn and estimate wt satisfying

Ft(wt) ≤ min
w∈W

{
Ft(w) := RSt(w) +

γt
2
∥w − wt−1∥2

}
+ ϵt, (2)

where RSt(w) := 1
n

∑n
i=1 ℓ(w; zi,t) + r(w) and ϵt ≥ 0 measures the

sub-optimality of estimation.
end

1
2(w⊤x − y)2 over a feature-label pair z = (x, y) is convex but in general not strongly
convex, although the population risk Rℓ(w) = 1

2E(y − w⊤x)2 is strongly convex provided
that the covariance matrix of random feature x is non-degenerate. In the meanwhile, the
Lipschitz-loss assumption made for the analysis (Wang et al., 2017b, Theorem 5) limits its
applicability to smooth losses like quadratic loss, not to mention an interaction between
Lipschitz continuity and strong convexity (Agarwal et al., 2012; Asi and Duchi, 2019b).

The above mentioned deficiencies of prior results motivate us to investigate the con-
vergence behavior of M-SPP for composite risk minimization beyond the setting where
each individual loss is strongly convex and Lipschitz continuous. From the perspective
of optimization, smoothness is essential for establishing strong convergence guarantees for
solving the inner-loop strongly convex risk minimization subproblems in (6), e.g., with
stochastic variance reduced algorithms (Johnson and Zhang, 2013; Xiao and Zhang, 2014)
or communication-efficient distributed optimization algorithms (Shamir et al., 2014; Zhang
and Lin, 2015; Yuan and Li, 2020). Aiming at covering such an important yet less under-
stood problem setup, we focus our study on analyzing the convergence behavior of M-SPP
when the convex loss functions are smooth and the risk function exhibits quadratic growth
property (see Assumption 2 for a formal definition).

1.2 Our Contributions and Main Results

The main contribution of the present work is a sharper non-asymptotic convergence analysis
of the M-SPP algorithm through the lens of algorithmic stability theory (Bousquet and
Elisseeff, 2002; Feldman and Vondrák, 2018). Let W ∗ := {w ∈ W : R(w) = R∗} be the
set of minimizers of the composite population risk R. We are particularly interested in the
setting where the loss function ℓ is convex and smooth but not necessarily Lipschitz (e.g.,
quadratic loss), while the population risk R satisfies the quadratic growth condition, i.e.,
R(w) − R∗ ≥ λ

2 minw∗∈W ∗ ∥w − w∗∥2, ∀w ∈ W, for some λ > 0, which can be satisfied
by strongly convex objectives, and various other statistical estimation problems (see, e.g.,
Karimi et al., 2016; Drusvyatskiy and Lewis, 2018). In this setting, if the minibatch size is
sufficiently large, then with the choices of γt = O(λρt) for an arbitrary scalar ρ ∈ (0, 0.5]
and ϵt ≡ 0, we show in Theorem 1 that the excess risk at the weighted average output
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w̄T = 2
T (T+1)

∑T
t=1 twt satisfy the following in-expectation bound:

E [R(w̄T ) −R∗] ≲
ρ [R(w0) −R∗]

T 2
+

LR∗

ρλnT
. (3)

In this composite bound, the first bias component associated with initial gap R(w0)−R∗ has
a decaying rate O

(
1
T 2

)
and the second variance component associated with R∗ converges

at the rate of O
(

1
λnT

)
. The variance decaying rate actually matches the corresponding

optimal rates of the SGD-type methods for strongly convex optimization (Rakhlin et al.,
2012; Dieuleveut et al., 2017; Woodworth and Srebro, 2021). Also, such an O

(
1
T 2 + 1

λnT

)
bounds matches those bounds for SPP (Davis and Drusvyatskiy, 2019) or M-SPP (Wang
et al., 2017b) which are in contrast obtained under a substantially stronger assumption
that each individual loss function should be strongly convex and Lipschitz as well. In the
realizable or near realizable machine learning regimes where R∗ equals to or approximates
zero, the variance term in (3) would be sharper than those bounds of Wang et al. (2017b);
Davis and Drusvyatskiy (2019). To our best knowledge, the bound in (3) is new to the
SPP-type methods with smooth and convex loss functions. More generally for arbitrary
convex risk functions, we present in Theorem 8 an O( 1√

nT
) excess risk bound for exact

M-SPP. Further, as shown in Theorem 10 and Theorem 13, similar results can be extended
to the inexact M-SPP provided that the inner-loop sub-optimality is sufficiently small.

In the regime T ≪ n which is of special interest for off-line incremental learning with

large data batches, using a balanced parameter ρ =
√

T
nλ in the excess risk bound (3)

yields an O
(

1
T
√
λnT

)
rate of convergence. This rate, in terms of n, is substantially slower

than the O( 1
λnT ) rate available for the previous small-n-large-T setup. In order to address

such a deficiency, we propose a two-phase variant of M-SSP (see Algorithm 2) to boost its
performance in the small-T -large-n regime: in the first phase, M-SPP with sufficiently small
minibatch-size is invoked over S1 to obtain w1, and then initialized by w1 the second phase
applies M-SPP to the rest minibatches. In Theorem 5, we show that the in-expectation
excess risk at the output of the second phase can be accelerated to scale as

E [R(w̄T ) −R∗] ≲
L2(R(w0) −R∗)

λ2n2T 2
+

LR∗

λnT
, (4)

which holds regardless to the mutual strength of minibatch size n and iteration count T .
In addition to the above in-expectation risk bounds, we further derive a high-probability

model estimation error bound of M-SPP based on algorithmic stability theory. Our devi-
ation analysis is carried out over a sampling-without-replacement variant of M-SPP (see
Algorithm 3). For population risk with quadratic growth property, up to an additive term
on the inner-loop sub-optimality ϵt, we establish in Theorem 17 the following deviation
bound on the estimation error D(w̄T ,W

∗) that holds with probability at least 1 − δ over
sample S while in expectation over the randomness of sampling:

E [D(w̄T ,W
∗)] ≲

√
L log(1/δ) log(T )

λ
√
nT

+

√
[R(w0) −R∗]

λT 2
+

LR∗

ρλ2nT
.

When T = Ω(n), up to the logarithmic factors, this above bound matches (in terms of the
total sample size N = nT ) the known minimax lower bounds for statistical estimation even
without computational limits (Tsybakov, 2008).
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To highlight the core contribution of this work, the following three new insights into M-
SPP make our results distinguished from the best known of SPP-type methods for convex
optimization:

1. First and for most, the fast rates in (3) and (4) reveal the impact of noise level, as
quantified by R∗, to convergence rate which has not been previously known for SPP-
type methods. These bounds are valid for smooth losses which complement the previous
ones for Lipschitz losses (Patrascu and Necoara, 2017; Wang et al., 2017b; Davis and
Drusvyatskiy, 2019).

2. Second, the risk bounds in (3) and (4) are established under the quadratic growth con-
dition of population risk. This is substantially weaker than the instantaneous-loss-wise
strong convexity assumption commonly imposed by prior analysis to achieve the com-
parable rates for SPP-type methods (Toulis and Airoldi, 2017; Wang et al., 2017b; Asi
et al., 2020).

3. Third, we provide a deviation analysis of M-SPP from the perspective of uniform algo-
rithmic stability which to our best knowledge has not yet been addressed in the previous
study on SPP-type methods.

We should emphasize that, while we provide some insights into the numerical aspects of
M-SPP through an empirical study, this work is largely a theoretical contribution.

1.3 Related Work

Our work is situated at the intersection of two lines of machine learning research: stochastic
optimization and algorithmic stability theory, both of which have been actively studied with
a vast body of beautiful and insightful theoretical results established in literature. We next
incompletely review some representative work that are closely relevant to ours.

Stochastic optimization. Stemming from the pioneering work of Robbins and Monro
(1951), stochastic gradient descent (SGD) methods have been extensively studied to approx-
imately solve a simplified version of the problem (1) with r ≡ 0 (Zhang, 2004; Nemirovski
et al., 2009; Rakhlin et al., 2012; Bottou et al., 2018). For the composite formulation, a
vast body of proximal SGD methods have been developed for efficient optimization in the
presence of potentially non-smooth regularizers (Hu et al., 2009; Duchi et al., 2010; Ghadimi
and Lan, 2012; Lan, 2012; Kulunchakov and Mairal, 2019). To address the challenges associ-
ated with stepsize selection and numerical instability of SGD (Nemirovski et al., 2009; Bach
and Moulines, 2011), a number of more sophisticated methods including implicit stochas-
tic/online learning (Crammer et al., 2006; Kulis and Bartlett, 2010; Toulis et al., 2016;
Toulis and Airoldi, 2017) and stochastic proximal point (SPP) methods (Bertsekas, 2011;
Patrascu and Necoara, 2017; Asi and Duchi, 2019a,b; Davis and Drusvyatskiy, 2019) have
recently been investigated for enhancing stability and adaptivity of stochastic (composite)
optimization. For an example, in our considered composite optimization regime, the vanilla
SPP method can be expressed as the following recursion form for i ≥ 1:

ŵspp
i := arg min

w∈W
ℓ(w; zi) + r(w) +

γi
2
∥w − ŵspp

i−1∥
2, (5)
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where zi ∼ D is a random data sample, γi is a regularization modulus and ∥·∥ stands for the
Euclidean norm. In contrast to standard SGD methods which are simple in per-iteration
computation but brittle to stepsize choice, the SPP methods are more accurate in objec-
tive approximation which leads to substantially improved stability to the choice of hyper-
parameters while enjoying strong guarantees on convergence (Asi and Duchi, 2019a,b).

An attractive feature of these above (proximal) stochastic optimization methods is that
their convergence guarantees directly apply to the population risk and the minimax op-
timal rates of order O( 1

T ) are achievable after T rounds of iteration for strongly convex
problems (Nemirovski et al., 2009; Agarwal et al., 2012; Rakhlin et al., 2012). For large-
scale machine learning, the improved memory efficiency is another practical argument in
favor of stochastic over batch optimization methods. However, due to the sequential process-
ing nature, the stochastic optimization methods tend to be less efficient for parallelization
especially in distributed computing environment where excessive communication between
nodes would be required for model update (Bottou et al., 2018).

Empirical risk minimization. At the opposite end of SGD-type and online learning, the
following defined (composite) empirical risk minimization (ERM, a.k.a., M-estimation) is
another popularly studied formulation for statistical learning (Lehmann and Casella, 2006):

ŵerm
S := arg min

w∈W

{
RS(w) :=

1

N

N∑
i=1

ℓ(w; zi) + r(w)

}
.

Thanks to the finite-sum structure, a large body of randomized incremental algorithms with
linear rates of convergence have been established for ERM including SVRG (Johnson and
Zhang, 2013; Xiao and Zhang, 2014), SAGA (Defazio et al., 2014) and Katyusha (Allen-
Zhu, 2017), to name a few. From the perspective of distributed computation, one intrinsic
advantage of ERM over SGD-type methods lies in that it can better explore the statistical
correlation among data samples for designing communication-efficient distributed optimiza-
tion algorithms (Jaggi et al., 2014; Shamir et al., 2014; Zhang and Lin, 2015; Lee et al.,
2017). Unlike stochastic optimization methods, the generalization performances of the batch
or incremental algorithms are by nature controlled by that of ERM (Bottou and Bousquet,
2007) which has long been studied with a bunch of insightful results available (Vapnik, 1999;
Bartlett et al., 2005; Srebro et al., 2010; Mei et al., 2018). Particularly for strongly con-
vex risk functions, the O( 1

N ) rate of convergence is possible for ERM (Bartlett et al., 2005;
Koltchinskii, 2006; Zhang et al., 2017), though these fast rates are in general dimensionality-
dependent for parametric learning models.

It has been recognized that SGD-type and ERM-type approaches cannot dominate each
other in terms of generalization, runtime, storage and parallelization efficiency. This mo-
tivates a recent trend of trying to propose the so called stochastic model-based methods
that can achieve the best of two worlds. Among others, a popular paradigm for such a
purpose of combination is minibatch proximal update which in each iteration updates the
model via (approximately) solving a local ERM over a stochastic minibatch (Li et al., 2014;
Wang et al., 2017b; Asi et al., 2020; Deng and Gao, 2021). This strategy can be viewed as
a minibatch extension to the SPP method and it has been shown to attain a substantially
improved trade-off between computation, communication and memory efficiency for large-
scale distributed/federated learning problems (Li et al., 2014; Wang et al., 2017a; Yuan
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and Li, 2022b). Alternatively, a number of online extensions of the incremental finite-sum
algorithms, such as streaming SVRG (Frostig et al., 2015) and streaming SAGA (Joth-
imurugesan et al., 2018), have been proposed for stochastic optimization with competitive
guarantees to ERM but at lower cost of computation.

Algorithmic stability and generalization. Since the seminal work of Bousquet and Elis-
seeff (2002), algorithmic stability has been extensively studied with remarkable success
achieved in establishing generalization bounds for strongly convex ERM estimators (Zhang,
2003; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010). Particularly, the state-of-the-
art risk bounds of strongly convex ERM are offered by approaches based on the notion of
uniform stability (Feldman and Vondrák, 2018, 2019; Bousquet et al., 2020; Klochkov and
Zhivotovskiy, 2021). It was shown by Hardt et al. (2016) that the solution obtained via
(stochastic) gradient descent is stable for smooth convex or non-convex loss functions. For
non-smooth convex losses, the stability induced generalization bounds of SGD have been
established in expectation (Lei and Ying, 2020) or deviation (Bassily et al., 2020). For
learning with sparsity, algorithmic stability theory has been employed to derive the gener-
alization bounds of the popularly used iterative hard thresholding (IHT) algorithm (Yuan
and Li, 2022a). Through the lens of uniform algorithmic stability, convergence rates of M-
SPP have been studied for convex (Wang et al., 2017b) and weakly convex (Deng and Gao,
2021) Lipschitz losses. While sharing a similar spirit to Wang et al. (2017b); Deng and Gao
(2021), our analysis customized for smooth convex loss functions is considerably different
and the resultant fast rates are of special interest in low-noise statistical settings (Srebro
et al., 2010).

1.4 Notation and Organization

Notation. The key quantities and notations frequently used in our analysis are summarized
in Table 1.
Organization. The article proceeds with the material organized as follows: In Section 2,
we analyze the risk bounds of exact M-SPP with convex and smooth loss functions and
present a two-phase variant to further improve convergence performance. In Section 3, we
extend our analysis to the more realistic setting where inexact M-SPP iteration is allowed.
In Section 4, we study the high-probability bounds on the estimation error of M-SPP. A
comprehensive comparison to some closely relevant results is highlighted in Section 5. The
numerical study for theory verification and algorithm evaluation is provided in Section 6.
The concluding remarks are made in Section 7. All the proofs of main results and some
additional results on the iteration robustness of M-SPP are relegated to appendix.

2. A Sharper Analysis of M-SPP for Smooth Loss

In this section, we analyze the convergence rate of M-SPP for smooth and convex loss
functions using the tools developed in algorithmic stability theory. In what follows, for the
sake of notation simplicity and presentation clarity of core ideas, we assume for the time
being that the inner-loop composite ERM in the M-SPP iteration procedure (2) has been
solved exactly with ϵt ≡ 0, i.e.,

wt = arg min
w∈W

{
Ft(w) := RSt(w) +

γt
2
∥w − wt−1∥2

}
. (6)
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Notation Definition

n minibatch size
T round of iteration
N total number of samples visited, i.e., N = nT
f hypothesis
ℓ loss function
r regularization term
Rℓ population risk: Rℓ(w) := E(x,y)∼D[ℓ(fw(x), y)]

R composite population risk: R(w) := Rℓ(w) + r(w)
R∗ the optimal value of composite risk, i.e., R∗ := minw∈W R(w)
W ∗ the optimal solution set of composite risk, i.e., W ∗ := arg minw∈W R(w)
St data minibatch at time instance t
SI The union of data minibatch over I, i.e., SI := {St}t∈I
Rℓ

S empirical risk over S, i.e., Rℓ
S(w) := 1

|S|
∑

(x,y)∈S ℓ(fw(x, y)

RS composite empirical risk over S, i.e., RS(w) := Rℓ
S(w) + r(w)

ϵt precision of minibatch risk minimization at time instance t
∥w∥1 ℓ1-norm of a vector w, i.e., ∥w∥1 :=

∑
i |[w]i|

∥w∥ Euclidean norm of a vector w
D(w,W ∗) the distance from w to W ∗, i.e., D(w,W ∗) = minw∗∈W ∗ ∥w − w∗∥

[T ] [T ] := {1, ..., T}
1{C} the indicator function of the condition C

Table 1: Table of notation.

A full convergence analysis for the general inexact case (i.e., ϵt > 0) will be presented in
the Section 3 via a slightly more involved perturbation analysis.

2.1 Basic Assumptions

We begin by introducing some basic assumptions that will be used in the analysis to follow.
We say a differentiable function g : W 7→ R is L-smooth if ∀s, t ∈ R,∣∣g(w) − g(w′) − ⟨∇g(w), w − w′⟩

∣∣ ≤ L

2
|w − w′|2.

As formally stated in the following assumption, we suppose that the individual loss functions
are convex and L-smooth which can be satisfied, e.g., by the quadratic loss (for regression)
and the logistic loss (for prediction).

Assumption 1 The loss function ℓ is convex and L-smooth with respect to its first argu-
ment. Also, we assume that the regularization term r is convex over W.

Let us define D(w,W ∗) := minw∗∈W ∗ ∥w − w∗∥ as the distance from w to the set W ∗ of
minimizers. The next assumption requires that the population risk has the characterization
of quadratic growth away from the set of minimizers (Anitescu, 2000; Karimi et al., 2016).

Assumption 2 The population risk function R satisfies the quadratic-growth condition,
i.e., R(w) ≥ R∗ + λ

2D
2(w,W ∗),∀w ∈ W for some λ > 0.

8
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Clearly, the quadratic growth property can be implied by the traditional strong convex-
ity condition (around the minimizers) which is satisfied by a number of popular learning
models including linear and logistic regression, generalized linear models, smoothed Huber
losses, and various other statistical estimation problems. Particularly, Assumption 2 holds
when Rℓ is strongly convex and r is convex. Notice that for risk functions with quadratic
growth property, the prior analysis of M-SPP for Lipschitz losses (Wang et al., 2017b) is
not generally applicable because Assumption 2 implies that the Lipschitz constant of loss
could be arbitrarily large if the infinite distance minw∗∈W ∗ ∥w − w∗∥ → ∞ is allowed.

2.2 Main Results

The following theorem is our main result on the in-expectation convergence rate of the exact
M-SPP when the loss is smooth and the population risk has quadratic-growth property.

Theorem 1 Suppose that Assumptions 1 and 2 hold. Consider ϵt ≡ 0 and the weighted
average output w̄T = 2

T (T+1)

∑T
t=1 twt in Algorithm 1. Let ρ be an arbitrary scalar valued

in the interval (0, 0.5].

(a) Suppose that n ≥ 64L
λρ . Set γt = λρt

4 for t ≥ 1. Then for any T ≥ 1,

E [R(w̄T ) −R∗] ≤ 4ρ [R(w0) −R∗]

T 2
+

29L

λρnT
R∗.

(b) Set γt = λρt
4 + 16L

n for t ≥ 1. Then for any T ≥ 1,

E [R(w̄T ) −R∗] ≤
(

4ρ

T 2
+

28L

λnT

)
[R(w0) −R∗] +

(
216L2

λ2ρ2n2T
+

29L

λρnT

)
R∗.

Proof The proof technique is inspired by the uniform stability arguments developed by Wang
et al. (2017b) for Lipschitz and instance-wise strongly convex loss, with several new ingre-
dients along developed for handling the smoothness and quadratic-growth property of risk
function. Particularly, we show that it is possible to extend those prior stability arguments
to smooth losses in view of a classical result from Srebro et al. (2010, Lemma 2.1) that
allows the derivative of a smooth loss to be bounded in terms of its function value. See
Appendix A.1 for the detailed proof.

A few remarks on Theorem 1 are in order.

Remark 2 The part (a) of Theorem 1 requires the minibatch size to be sufficiently larger
than the condition number of the population risk. In this case, the excess risk bound consists
of two components: the first bias component associated with initial gap R(w0) − R∗ has a
decaying rate O( 1

T 2 ), while the second variance component associated with R∗ vanishes at
the rate of O( 1

λnT ). The variance term shows that the convergence rate can be improved in
the low-noise settings where the factor of R∗ is relatively small. Extremely in the separable
case with R∗ = 0, the rate of convergence in Theorem 1(a) would scale as fast as O( 1

T 2 ).

Remark 3 Contrastively, the excess risk bound in Theorem 1(b) holds for arbitrary mini-
batch sizes. The cost, however, is a relatively slower bias decaying term O( 1

T 2 + 1
λnT ) which

is dominated by O( 1
λnT ) when T ≫ n.
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Remark 4 Let N = nT be the total number of data points accessed. When T ≫ n, the
O( 1

N ) variance decaying rates in Theorem 1 match those prior ones for SPP-type meth-
ods (Wang et al., 2017b; Davis and Drusvyatskiy, 2019) which are, however, obtained un-
der the assumption that each individual loss function should be Lipschitz continuous and
strongly convex. In comparison to the O( 1

N ) rate established for SGD with smooth loss (Lei
and Ying, 2020, Theorem 12), our results in Theorem 1 are stronger and less stringent in
the following senses: 1) our bound shows explicitly the impact of R∗ which usually represents
the noise level of model, and 2) we only require the population risk to have the quadratic-
growth property while the bound of Lei and Ying (2020, Theorem 12) not only requires the
loss to be Lipschitz but also assumes the empirical risk to be strongly convex.

Let us further look into the choice of the scalar ρ in Theorem 1. We focus the discussion
on the part (a) and similar observations apply to the part (b). We distinguish the discussion
in the following two complementary cases regarding the mutual strength of minibatch-size
n and iteration count T :

• Case I: Small-n-large-T . Suppose that n = O(1) and T → ∞ is allowed. In this
case, simply setting ρ = 0.5 yields the convergence rate of order O

(
1
T 2 + 1

λnT

)
in

Theorem 1(a).

• Case II: Small-T -large-n. Suppose that T = O(1) and n → ∞ is allowed. In this

setup, given that n ≥ 4T
λ , then with a roughly optimal choice ρ =

√
T
nλ the excess

risk bound in Theorem 1(a) will be of the order O
(

1
T
√
λnT

)
, which is substantially

slower than the previous fast rate in Case I. This is intuitive because M-SPP with
large minibatches behaves more like regularized ERM which is known to exhibit slow
rate of convergence even for strongly convex problems (Shalev-Shwartz et al., 2010;
Srebro et al., 2010). Nevertheless, such a small-T -large-n setup is of special interest
for off-line incremental learning with large minibatches and distributed statistical
learning (Li et al., 2014; Wang et al., 2017b; You et al., 2020). We next address this
critical issue of M-SPP in the subsection to follow.

2.3 A Two-Phase M-SPP Method

To remedy the deficiencies mentioned in the previous discussion, we propose a two-phase
variant of M-SSP, as outlined in Algorithm 2, to boost its performance in the small-T -
large-n regimes. The so called M-SPP-TP procedure can be regarded as sort of a restarting
argument (Nemirovskii and Nesterov, 1985; Renegar and Grimmer, 2022; Zhou et al., 2022)
for M-SPP. More specifically, the Phase-I serves as an initialization step that invokes M-
SPP to a uniform division of S1 with minibatch size m to obtain w1. Then starting from
w1, the Phase-II just invokes M-SPP to the consequent large minibatches {St}t≥2 which is
suitable for large-scale parallelization if applicable. The following theorem is a consequence
of Theorem 1 to such a two-phase M-SPP procedure.

Theorem 5 Suppose that Assumptions 1 and 2 hold. Consider ϵt ≡ 0 for implementing
M-SPP in both Phase-I and Phase-II of Algorithm 2. Consider the weighted average output
w̄T = 2

(T−1)(T+2)

∑T
t=2 twt in Phase-II.

10
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Algorithm 2: Two-Phase M-SPP (M-SPP-TP)

Input : Dataset S = {St}Tt=1 in which St := {zi,t}ni=1
i.i.d.∼ Dn, regularization

modulus {γt > 0}t∈[T ].
Output: w̄T as a weighted average of {wt}2≤t≤T .
Initialization Specify a value of w0. Typically w0 = 0.
/* Phase-I */

Divide sample S1 into disjoint minibatches of equal size m;
Run M-SPP over these minibatches to obtain the output w1;
/* Phase-II */

Initialized with w1, run M-SPP over data minibatches {St}2≤t≤T with {γt}2≤t≤T to
obtain the sequence {wt}2≤t≤T .

(a) Suppose that n ≥ 128L
λ . Set m = 128L

λ in Phase-I and γt = λt
8 for implementing

M-SPP in both Phase-I and Phase II. Then for any T ≥ 2, w̄T satisfies

E [R(w̄T ) −R∗] ≲
L2 [R(w0) −R∗]

λ2n2T 2
+

L

λnT
R∗.

(b) Set m = O(1) in Phase-I and γt = λt
8 + 16L

n for implementing M-SPP in both Phase-I
and Phase-II. Then for any T ≥ 2, w̄T satisfies

E [R(w̄T ) −R∗] ≲
L2 [R(w0) −R∗]

λ2nT
+

L3

λ3nT
R∗.

Proof See Appendix A.2 for a proof.

Remark 6 The part (a) of Theorem 5 suggests that when the minibatch size is sufficiently
large, the excess risk bound of two-phase M-SPP has a bias decaying term of scale O

(
1

n2T 2

)
and a variance term that decays at the rate of O( 1

nT ). The rate is valid even when the scales

of T relatively small, and thus is stronger than the O
(

1
T
√
nT

)
rate implied by Theorem 1

for the vanilla M-SPP in the small-T -large-n regime. It is worth to mention that both the
bias and variance components in our bound for M-SPP are faster than those derived for
strongly convex ERM (Srebro et al., 2010).

Remark 7 The excess risk bound in the part (b) of Theorem 5 is valid for arbitrary mini-
batch sizes, but at the cost of a relatively slower O( 1

nT ) bias decaying rate.

2.4 Results for Arbitrary Convex Risks

We further study the case where the loss ℓ is convex and smooth, but without requiring the
composite risk R to have the quadratic-growth property. The following is our main result
on the convergence of M-SPP in this more general setting.

11
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Theorem 8 Suppose that Assumption 1 holds. Set γt ≡ γ ≥ 16L
n . Let w̄T = 1

T

∑T
t=1wt be

the average output of Algorithm 1. Then

E [R(w̄T ) −R∗] ≲
γ

T
D2(w0,W

∗) +
L

γn
R∗.

Particularly for γ =
√

T
n + 16L

n , it holds that

E [R(w̄T ) −R∗] ≲

(
1√
nT

+
L

nT

)
D2(w0,W

∗) +
L√
nT

R∗.

Proof See Appendix A.3 for a proof.

Remark 9 The first bound of Theorem 8 implies that for any ϵ ∈ (0, 1), by setting γ =
O
(
L
ϵn

)
, R(w̄t) converges to (1 + ϵ)R∗ at the rate of O( 1

nTϵ). This bound matches the results
of Lei and Ying (2020, Theorem 4) for smooth SGD method. The second bound of Theorem 8

further shows that by setting γ = O(
√

T
n + L

n ), the excess risk of w̄T decays at the rate of

O( 1√
nT

) for both bias and variance components, which matches the corresponding bound

derived for Lipschitz-loss (Wang et al., 2017b, Theorem 4). To our best knowledge, such a
bias-variance composite rate of convergence is new for SPP-type methods with convex and
smooth loss functions.

Analogous to the robustness analysis of SPP (Asi and Duchi, 2019a,b), we have also
analyzed the iteration stability of M-SPP for convex losses with respect to the choice of
regularization modulus γt. The corresponding results, which can be found in Appendix A.4,
confirm that the choice of γt is insensitive to the gradient scale of loss functions for generating
a non-divergent sequence of estimation errors.

3. Perturbation Analysis for Inexact M-SPP

In the preceding section, we have analyzed the convergence rates of M-SPP under the
condition that the inner-loop proximal ERM subproblems constructed in its iteration pro-
cedure (2) are solved exactly, i.e., ϵt ≡ 0. To make our analysis more practical, we further
provide in this section a perturbation analysis of M-SPP when the inner-loop proximal ERM
subproblems are only required to be solved approximately up to certain precision ϵt > 0.
As a starting point, we need to impose the following Lipschitz continuity assumption on
the regularization term r.

Assumption 3 The regularization term r is Lipschitz continuous over W, i.e., |r(w) −
r(w′)| ≤ G∥w − w′∥, ∀w,w′ ∈ W.

For example, the ℓ1-norm regularizer r(w) = µ∥w∥1 satisfies this assumption with respect
to Euclidean norm as |r(w) − r(w′)| = µ|∥w∥1 − ∥w′∥1| ≤ µ∥w − w′∥1 ≤ µ

√
p∥w − w′∥.

The following theorem is our main result on the rate of convergence of the inexact
M-SPP for composite stochastic convex optimization with smooth losses.

12
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Theorem 10 Suppose Assumptions 1, 2 and 3 hold. Let ρ ∈ (0, 1/4] be an arbitrary scalar
and set γt = λρt

4 . Suppose that n ≥ 76L
λρ . Assume that ϵt ≤ ϵ

nt4
for some ϵ ∈ [0, 1]. Then for

any T ≥ 1, the weighted average output w̄t = 2
T (T+1)

∑T
t=1 twt of Algorithm 1 satisfies

E [R(w̄t) −R∗] ≲
ρ

T 2
(R(w0) −R∗) +

L

λρnT
R∗ +

√
ϵ

T 2

(
L

λρ
+ G

√
1

λρ

)
.

Proof See Appendix B.1 for a proof.

It is worth noting that our perturbation analysis for smooth losses differs significantly from
that of Wang et al. (2017b) developed for Lipschitz losses. This is mainly because in
the smooth case, the change of loss could no longer be upper bounded by the change of
prediction, and thus we need to make a more careful treatment to the perturbation caused
by inexact minimization of the regularized minibatch empirical risk. The following are a
few remarks on Theorem 10.

Remark 11 Theorem 10 suggests that the excess risk bound of exact M-SPP in the part (a)
of Theorem 1 can be extended to its inexact version, provided that the inner-loop minibatch
ERMs (2) are solved to sufficient accuracy, say, ϵt ≤ O

(
1

nt4

)
. Similarly, the result in the

part (b) of Theorem 1 for arbitrary minibatch sizes can also be extended to the inexact
M-SPP, which is omitted to avoid redundancy. Since the inner-loop minibatch ERMs are
strongly convex and the loss functions are smooth, the desired solution accuracy can be

attained in logarithmic time O
(

log
(

1
ϵt

))
in expectation via applying the variance-reduced

SGD methods (Xiao and Zhang, 2014).

Remark 12 Analogous to the discussions at the end of Section 2.2, by specifying the choice
of ρ we can derive a direct consequent result of Theorem 10 which more explicitly shows the
rate of convergence with respect to N = nT . Also for the two-phase M-SPP, in view of
Theorem 10 we can show that the bound in Theorem 5 can be extended to the inexact setting
if the minibatch optimization is sufficiently accurate. These extensions are more or less
straightforward and thus are omitted.

In the following theorem, we provide an excess risk bound for the inexact M-SPP when
the composite risk R is convex but not necessarily has quadratic-growth property.

Theorem 13 Suppose that Assumptions 1 and 3 hold. Set γt ≡ γ ≥ 19L
n . Assume that

ϵt ≤ min
{

ϵ
n2t5

, 2G2

9n2γ

}
for some ϵ ∈ [0, 1]. Then the average output w̄T = 1

T

∑T
t=1wt of

Algorithm 1 satisfies

E [R(w̄T ) −R∗] ≲
γ

T
D2(w0,W

∗) +
L

γn
R∗ +

(
L

γn
+

γ

LnT
+

G
√
γnT

)√
ϵ.

Particularly for γ =
√

T
n + 19L

n , it holds that

E [R(w̄T ) −R∗] ≲

(
1√
nT

+
L

nT

)
D2(w0,W

∗) +
L√
nT

R∗ +

(
L + G√

nT
+

1

nT

)√
ϵ.

13
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Proof See Appendix B.2 for a proof.

Remark 14 Theorem 13 confirms that the excess risk bounds established in Theorem 8 for
exact M-SPP are tolerant to sufficiently small sub-optimality of the per-iteration minibatch
proximal ERM subproblems.

4. Performance Guarantees with High Probability

So far, we have derived the excess risk bounds of M-SPP that hold in expectation. In
this section, we proceed to study high-probability guarantees of M-SPP with respect to the
randomness of training sample, still under the notion of algorithmic stability. To this end, we
first introduce a variant of M-SPP which carries out the proximal point update via sampling
without replacement over the given minibatches of data. We then show that the output of
the proposed algorithm is uniformly stable in expectation over the randomness of sampling.
As a main result of this section, for strongly convex population risk, we establish a near-
optimal high probability (over training sample) bound on the estimation error ∥w̄t − w∗∥
that holds in expectation over the randomness of inner-data sampling. Additionally, we
provide a high-probability generalization bound for arbitrary convex losses.

4.1 Sampling Without Replacement M-SPP

Let us consider the M-SPP-SWoR (M-SPP via Sampling Without Replacement) procedure
as outlined in Algorithm 3. Given a training sample S with T minibatches of data points,
at each iteration, the algorithm uniformly randomly samples one minibatch from S without
replacement for proximal update. After T rounds of iteration, all the minibatches are used
to update the model. Since this procedure is merely a random shuffling variant of M-SPP
as presented in Algorithm 1, we can see that all the in-expectation bounds established in
the previous sections for M-SPP directly apply to M-SPP-SWoR under any implementation
of shuffling. As we will show shortly in the next subsection that such a random shuffling
scheme is beneficial for boosting the on-average algorithmic stability of M-SPP which then
leads to strong high-probability guarantees for M-SPP-SWoR.

4.2 A Uniform Stability Analysis

Let S = {St}t∈[T ] and S′ = {S′
t}t∈[T ] be two sets of data minibatches. We denote by

St
.
= S′

t if St and S′
t differ in a single data point, and by S

.
= S′ if S and S′ differ in a single

minibatch and a single data point in that minibatch. The following result gives a uniform
argument stability (Bassily et al., 2020) bound of the vanilla M-SPP (Algorithm 1) that
holds deterministically, and a corresponding bound for M-SPP-SWoR (Algorithm 3) that
holds in expectation over the randomness of minibatch sampling.

Proposition 15 Suppose that Assumption 1 holds and the loss function is bounded such
that 0 ≤ ℓ(y′, y) ≤ M for all y, y′. Let S = {St}t∈[T ] and S′ = {S′

t}t∈[T ] be two sets of data
minibatches satisfying S

.
= S′. Then
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Algorithm 3: M-SPP under Sampling Without Replacement (M-SPP-SWoR)

Input : Dataset S = {St}Tt=1 in which St := {zi,t}ni=1
i.i.d.∼ Dn, regularization

modulus {γt > 0}t∈[T ].
Output: w̄T as a weighted average of {wt}1≤t≤T ..
Initialization Specify a value of w0. Typically w0 = 0.
for t = 1, 2, ..., T do

Uniformly randomly sample an index ξt ∈ [T ] without replacement.
Estimate wt satisfying

Ft(wt) ≤ min
w∈W

{
Ft(w) := RSξt

(w) +
γt
2
∥w − wt−1∥2

}
+ ϵt, (7)

where ϵt ≥ 0 measures the sub-optimality.
end

(a) The weighted average outputs w̄T and w̄′
T respectively generated by M-SPP (Algo-

rithm 1) over S and S′ satisfy

sup
S,S′

∥w̄T − w̄′
T ∥ ≤ 4

√
2LM

nmint∈[T ] γt
+

T∑
t=1

2

√
2ϵt
γt

.

(b) The weighted average outputs w̄T and w̄′
T respectively generated by M-SPP-SWoR

(Algorithm 3) over S and S′ satisfy

sup
S,S′

Eξ[T ]

[
∥w̄T − w̄′

T ∥
]
≤

T∑
t=1

{
4
√

2LM

nTγt
+ 2

√
2ϵt
γt

}
.

Proof See Appendix C.1 for its proof.

Remark 16 Suppose that the sub-optimality {ϵt}t∈[T ] are sufficiently small. If setting
γt = O(t) as used for population risks with quadratic-growth property, then Proposition 15
shows that M-SPP is O

(
1
n

)
-uniformly stable in argument, while M-SPP-SWoR has an im-

proved O
( log(T )

nT

)
uniform stability parameter that holds in expectation over the randomness

of sampling. If setting γt ≡
√

T
n as used for generic convex losses, then M-SPP is O

(
1√
nT

)
-

uniformly stable in argument while M-SPP-SWoR has an identical on-average uniform sta-
bility parameter.

In the following theorem, based on the uniform argument stability bounds in Proposi-
tion 15, we derive an upper bound on the estimation error D(w̄T ,W

∗) of M-SPP-SWoR
that holds with high probability over data sample while in expectation over the without-
replacement sampling of minibatches.
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Theorem 17 Suppose that Assumptions 1, 2, 3 hold and the loss function ℓ is bounded in
the interval (0,M ]. Let ρ ∈ (0, 1/4] be an arbitrary scalar and set γt = λρt

4 . Suppose that

n ≥ 76L
λρ . Assume that ϵt ≤ min

{
ϵ

nt4
, LM
λρn2T 2t

}
for some ϵ ∈ [0, 1]. Then with probability at

least 1− δ over S, the weighted average output w̄T of M-SPP-SWoR (Algorithm 3) satisfies

Eξ[T ]
[D(w̄T ,W

∗)]

≲

√
LM log(1/δ) log(T )

λρ
√
nT

+

√
ρ [R(w0) −R∗]

λT 2
+

L

λ2ρnT
R∗ +

√
ϵ

λT 2

(
L

λρ
+ G

√
1

λρ

)
.

Proof See Appendix C.2 for a proof.

Remark 18 We comment on the optimality of the bound in Theorem 17. Consider ρ =

O(1). The first term of scale O
(√log(1/δ) log(T )√

nT

)
represents the overhead of getting general-

ization with high probability over data. The second term is comparable to the corresponding
in-expectation estimation error bound in Theorem 10, which matches the known optimal
rates for strongly convex SGD (Rakhlin et al., 2012; Dieuleveut et al., 2017). In view of
the minimax lower bounds for statistical estimation (Tsybakov, 2008), the estimation error
bound established in Theorem 17 is near-optimal for strongly convex risk minimization.

Finally, we provide a high-probability generalization bound of M-SPP for arbitrary
convex population risk functions.

Theorem 19 Suppose that Assumptions 1 and 3 hold and the loss function ℓ is bounded

in the interval [0,M ]. Set γt ≡
√

T
n . Assume that ϵt ≤ LM

4nT 2
√
nT

. Then with probability at

least 1 − δ over S, the average output w̄T = 1
T

∑T
t=1wt of M-SPP (Algorithm 1) satisfies

|R(w̄T ) −RS(w̄T )| ≲ (LM + G
√
LM) log(N) log(1/δ)√

nT
+ M

√
log (1/δ)

nT
.

Proof See Appendix C.3 for a proof.

We remark in passing that using similar uniform stability argument, the high-probability
generalization bound in Theorem 19 can be shown to hold for convex but non-smooth loss
functions as well. We omit the detailed analysis as it is out of the scope of this article
focusing on smooth problems.

5. Comparison with Prior Methods

Comparison with M-SPP and SPP methods. The M-SPP algorithm considered in this
article is a minibatch extension of the SPP methods. The convergence analysis of SPP
has received recent wide attention in stochastic optimization community. Specially for
finite-sum optimization over N data points, an incremental SPP method was proposed and
analyzed in (Bertsekas, 2011). For learning with linear prediction models and strongly
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convex Lipschitz-loss, (Toulis et al., 2016) established a set of O( 1
Nγ ) rates of convergence

for SPP with suitable γ ∈ (0.5, 1], where N is the iteration counter. For arbitrary con-
vex loss functions, the non-asymptotic convergence performance of SPP was studied with
O( 1√

N
) rate obtained for Lipschitz losses (Patrascu and Necoara, 2017; Davis and Drusvy-

atskiy, 2019), O( 1
N ) for strongly convex and Lipschitz (Davis and Drusvyatskiy, 2019) or

smooth (Patrascu and Necoara, 2017) losses, or O
(
log(N)

N

)
rate for strongly convex non-

smooth losses (Asi and Duchi, 2019b). Recently, it has been shown that the O
(
log(N)

N

)
rate

also extends to M-SPP with strongly convex losses (Asi et al., 2020). The asymptotic and
non-asymptotic convergence behaviors of SPP for weakly convex losses (e.g., composite of
convex loss with smooth map) have been studied for stochastic optimization with (Duchi
and Ruan, 2018) or without (Davis and Drusvyatskiy, 2019) composite structures. Among
others, our work is most closely related to the minibatch proximal update method devel-
oped for communication-efficient distributed optimization (Wang et al., 2017b). From the
similar viewpoint of algorithmic stability, the O( 1

Nγ ) rates were established for that method
for Lipschitz-loss with arbitrary convexity (γ = 0.5) or strong convexity (γ = 1). In com-
parison to these prior results, our convergence results for M-SPP are new in the following
aspects:

• The convergence rates are derived for smooth losses and they explicitly show the im-
pact of noise level of a statistical model, as encoded in R∗, to convergence performance
which has not been previously known for SPP-type methods.

• The O(N−1) fast rate attained in this article is valid for population risks with quadratic-
growth property, without requiring each instantaneous loss to be strongly convex.

• We provide a near-optimal model estimation error bound of a sampling-without-
replacement variant of M-SPP that holds with high probability over the randomness
of data while in expectation over the randomness of internal sampling.

Comparison with SGD and ERM. Similar to those in Theorem 1 and Theorem 8, the
bias-variance composite rates have been known for accelerated SGD for least squares regres-
sion (Dieuleveut et al., 2017), or minibatch SGD (M-SGD) for generic convex and smooth
learning problems (Woodworth and Srebro, 2021). While the results are of similar flavor,
we came to the path in a distinct algorithmic framework using quite different proof tech-
niques. Particularly, in contrast to Woodworth and Srebro (2021), our analysis neither uses
the knowledge of model scale which is typically inaccessible in real problems, nor relies on
the restarting arguments for strongly convex problems. Also for SGD with smooth loss
functions, a fast rate of O( 1

N ) has recently been established via stability theory in the ide-
ally clean case where the optimal population risk is zero (Lei and Ying, 2020, Theorem 4).
With γ = O( 1

n), the first bound of our Theorem 8 matches that bound in the context of
M-SPP. For strongly convex problems, our results in Theorem 1 are stronger than (Lei and
Ying, 2020, Theorem 12) in the sense that the formers (ours) only require the population
risk to have quadratic-growth property while the latter requires the loss to be Lipschitz and
the empirical risk to be strongly convex. Finally, for convex ERM, similar composite risk
bounds have been established by Srebro et al. (2010); Zhang et al. (2017) under somewhat
more stringent conditions such as bounded domain and huge sample with N ≫ p.

17



Yuan and Li

Table 2 summaries a comparison of the risk bounds obtained in this work to several
prior ones for (M-)SPP, (M-)SGD and ERM.

Method Literature Risk Bound
Conditions

Loss R RS

M-SPP

Asi et al. (2020) O
(

log(N)
N

)
s.cvx — —

Wang et al. (2017b) O
(

1
N

)
Lip & s.cvx — —

Theorem 1 (our work)
O
(

1
T 2 + R∗

N

)
or

O
(

1
T 2 + 1+R∗

N

) sm & cvx qg —

Theorem 8 (our work)
O
(

1
N + R∗) or

O
(

1+R∗
√
N

)
sm & cvx — —

SPP
Asi and Duchi (2019b) O

(
log(N)

N

)
s.cvx — —

Patrascu and Necoara (2017) O
(

1
N

)
sm & s.cvx —

Davis and Drusvyatskiy (2019) O
(

1
N2 + 1

N

)
Lip & s.cvx —

M-SGD Woodworth and Srebro (2021)
O
(

1
T 2 + 1

N +
√

R∗

N

)
sm & cvx — —

O
(
e−T + R∗

N

)
sm & cvx qg —

Dieuleveut et al. (2017) O
(

1
N2 + R∗

N

)
quadratic s.cvx —

SGD
Lei and Ying (2020)

O
(

1
N + R∗) or

O
(

1+R∗
√
N

)
sm & cvx — s.cvx

Rakhlin et al. (2012) O
(

1
N

) Lip &
sm & cvx

s.cvx —

ERM
Zhang et al. (2017)

O
(

p
N + R∗

N

)
or

O
(

1
N2 + R∗

N

)
for N ≳ p

sm & cvx
Lip

& s.cvx
—

Srebro et al. (2010) O
(

1
N +

√
R∗

N

)
sm & cvx — —

Table 2: Comparison of our risk bounds to some prior results for M-SPP and SPP as well
as for SGD and ERM. Recall that T is the iteration count and N is the total
number of samples accessed. All the listed bounds hold in expectation. Here we
have used the following abbreviations: cvx (convex), s.cvx (strongly convex), Lip
(Lipschitz continuous), sm (smooth), qg (quadratic growth).

6. Experiments

In this section, we carry out a set of numerical study to demonstrate the convergence per-
formance of minibatch stochastic proximal point methods in (composite) statistical learning
problems. The main goal is to answer the following three questions associated with the key
theory and algorithms established in this article:

• Question 1: How the size of minibatch and noise level of a statistical learning model
affect the convergence speed of M-SPP for smooth loss function? This question is
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mainly about verifying Theorem 1 and Theorem 13, and it is answered through a
simulation study on Lasso estimation in Section 6.1.

• Question 2: Can the two-phase variant M-SPP-TP improve over M-SPP in the small-
T -large-n setting? The simulation results presented in Section 6.1 also answer this
question related to the verification of Theorem 5.

• Question 3: How M-SPP(-TP) methods compare with M-SGD in convergence perfor-
mance? The real-data experimental results on logistic regression tasks in Section 6.2
answer this question about algorithm comparison.

6.1 Simulation Study

We first provide a simulation study to verify our theoretical results for smooth losses when
substantialize to the widely used Lasso regression model (Wainwright, 2009) with quadratic
loss function ℓ(fw(x), y) = 1

2(w⊤x − y)2 and r(fw) = µ∥w∥1 where µ is the ℓ1-penalty
modulus. Given a model parameter w̄ ∈ Rp and a feature point x ∈ Rp drawn from standard
Gaussian distribution N (0, Ip×p), the responses y is generated according to a linear model
y = w̄⊤x + ε with a random Gaussian noise ε ∼ N (0, σ2). In this case, the population risk
function can be expressed in a close form as

R(w) =
1

2
∥w − w̄∥2 +

σ2

2
+ µ∥w∥1.

Given a set of T random n-minibatches
{
St = {xi,t, yi,t}i∈[n]

}
t∈[T ]

drawn from the above

data distribution, we aim at evaluating the convergence performance of M-SPP towards the
minimizer of R which can be expressed as

w∗ = (w̄ − µ)+ − (−w̄ − µ)+, (8)

where (·)+ is an element-wise function that preserves the positive parts of a vector.
We test with p = 5000 and N = nT = 100p, and consider a well-specified sparse

regression model where the true parameter vector w̄ is k̄-sparse with k̄ = 0.2p and its non-
zero entries are sampled from a zero-mean Gaussian distribution. We set µ = 10−3 and
initialize w(0) = 0. The inner-loop minibatch proximal Lasso subproblems are optimized via
a standard proximal gradient descent method, using either of the following two termination
criteria: 1) the difference between consecutive objective values is below 10−3 and 2) the
iteration step reaches 1000.

The following two experimental setups are considered for theory verification:

• We fix the noise level σ = 0.1 and study the impact of varying T ∈ {10, 20, 100, 500}
on the convergence performance of M-SPP. Figure 1(a) shows the evolving curves of
excess risk as functions of sample size, in a semi-log layout with y-axis representing
the logarithmic scale of excess risk. From this set of curves we can observe a clear
trend that in the early stage, M-SPP converges faster when the total number of mini-
batches is relatively large, say, T ∈ {20, 100}. This is consistent with the prediction
of Theorem 1 about the impact of T and n on convergence rates. While in the fi-
nal stage, relatively slower convergence behavior is exhibited under relatively larger
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(c) M-SPP versus M-SPP-TP

Figure 1: Simulation study on Lasso regression: Convergence performances of M-SPP and
M-SPP-TP. The y-axis represents the logarithmic scale of excess risk.

T , say, T ∈ {100, 500}. This observation can be explained by the inexact analy-
sis in Theorem 10 which shows that to guarantee the desired convergence rate, the
inner-loop proximal ERM update needs to be extremely accurate when T is relatively
large. Therefore, the question raised in Question 1 on the impact of minibatch size
on convergence rate is answered by this group of results.

Also in this setup, we have compared M-SPP and its two-phase variant M-SPP-TP
for T ∈ {5, 10}. The related results are shown in Figure 1(c), which indicate that
M-SPP-TP considerably sharpens the convergence of M-SPP in the small-T -large-n
cases. This numerical evidence supports the claim in Theorem 5 and thus affirmatively
answers Question 2.

• We fix T = 50 and study the impact of varying noise level σ ∈ {0.1, 1, 5} on the
convergence performance of M-SPP. The results are shown in Figure 1(b). From this
group of results we can see that faster convergence speed is attained at relatively
smaller noise level σ, while the speed becomes insensitive to noise level when σ is
sufficiently small (say, σ ≤ 1). This is consistent with the predication by Theorem 1,

keeping in mind that R∗ = 1
2∥w

∗ − w̄∥2 + σ2

2 + µ∥w∗∥1 ≤ ∥w̄∥2 + 1
2σ

2 as w∗ is given
by (8). The question raised in Question 1 on the impact of noise level on convergence
performance is answered by this group of results.

6.2 Experiment on Real Data

We further compare our methods with M-SGD for binary prediction problems using the
logistic loss ℓ(w⊤x, y) = log(1 + exp(−yw⊤x)). Here the M-SGD method is implemented
by an SGD solver from SGDLibrary (Kasai, 2017). For M-SPP and M-SPP-TP, the inner-
loop minibatch proximal ERMs are solved by the same SGD solver applied with a fixed
SGD-batch-size 10 and a single epoch of data processing. We initialize w(0) = 0 for all the
considered methods.
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(a) n = N/5 (b) n = N/20 (c) n = N/100

Figure 2: Real-data results on logistic regression: Test error convergence comparison on
gisette under varying minibatch size.

We use two public data sets for evaluation: the gisette data (Guyon et al., 2004)
with p = 5000, N = 6000 and the covtype.binary data (Collobert et al., 2001) with
p = 54, N = 581, 012 1. For each data set, we use half of the samples as training set and
the rest as test set. We are interested in the impact of minibatch-size n on the prediction
performance of model measured by test error. All the considered stochastic algorithms are
executed with 10 epochs of data processing, and thus the overall number of minibatches is
T = N/n×10. We replicate each experiment 10 times over random split of data and report
the results in mean-value along with error bar.

In Figure 2, we show the evolving curves (error bar shaded in color) of test error with
respect to the number of minibatches accessed on gisette, under varying minibatch size
n ∈

{
N
5 ,

N
20 ,

N
100

}
. A few observations from this set of curves are in order.

• Under the same minibatch size, M-SPP and M-SPP-TP converge faster and stabler
than M-SGD, especially when the minibatch size is relatively large such as n = N

5 in
Figure 2(a). This is as expected because when minibatch size becomes large, M-SGD
approaches to gradient descent method while M-SPP approaches ERMs. This answers
Question 3 raised at the beginning of the experiment section.

• M-SPP-TP exhibits sharper convergence behavior than M-SPP at the early stage of
iteration, especially when the minibatch-size is relatively large. This is consistent with
our theoretical results in Theorem 1 and Theorem 5.

Figure 3 shows the corresponding results on covtype under varying minibatch size n ∈{
N
20 ,

N
100 ,

N
1000

}
. From this set of results we once again see that M-SPP and M-SPP-TP

consistently outperform M-SGD under the same minibatch size, and M-SPP-TP converges
faster than M-SPP under relatively larger minibatch size (say, n = N

20).

1. Both data sets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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(a) n = N/20 (b) n = N/100 (c) n = N/1000

Figure 3: Real-data results on logistic regression: Test error convergence comparison on
covtype.binary under varying minibatch size.

7. Conclusions and Future Prospects

In this article, we presented an improved convergence analysis for the minibatch stochastic
proximal point methods with smooth and convex losses. Under the quadratic-growth con-
dition on population risk, we have shown that M-SPP with minibatch-size n and iteration
count T converges at a composite rate consisting of an O( 1

T 2 ) bias decaying component and
an O( 1

N ) variance decaying component. In the small-n-large-T case, this result substan-
tially improves the prior relevant results of SPP-type approaches which typically require
each instantaneous loss to be Lipschitz and strongly convex. Complementally in the small-
T -large-n setting, we provide a two-phase extension of M-SPP which improves the O( 1

T 2 )

bias decaying rate to O
(
log(N)
N2

)
. Perhaps the most interesting theoretical finding is that

the (dominant) variance decaying term has a factor dependence on the minimal value of
population risk, justifying the sharper convergence behavior of M-SPP in low-noise statis-
tical setting as backed up by our numerical evidence. In addition to the in-expectation
risk bounds, we have also derived a near-optimal parameter estimation error bound for a
random shuffling variant of M-SPP that holds with high probability over data distribution
and in expectation over the random shuffling. To conclude, our theory lays a novel and
stronger foundation for understanding the convex M-SPP style algorithms that have gained
recent significant attention, both in theory and practice, for large-scale machine learning (Li
et al., 2014; Wang et al., 2017a; Asi et al., 2020).

There are several key prospects for future investigation of our theory:

• It still remains open to derive exponential excess risk bounds for M-SPP that apply
to the (suffix) average or last of iterates over training data.

• Inspired by the recent progresses made towards understanding M-SPP with momen-
tum acceleration (Deng and Gao, 2021; Chadha et al., 2022), it is interesting to provide
momentum and weakly-convex extensions of our theory for smooth loss functions.
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• Last but not least, we expect that the theory developed in this article can be extended
to the setup of non-parametric learning with minibatch stochastic proximal point
methods.
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Appendix A. Proofs for the Results in Section 2

In this section, we present the technical proofs for the main results stated in Section 2.

A.1 Proof of Theorem 1

Here we prove Theorem 1 as restated below for convenience.

Theorem 1 Suppose that Assumptions 1 and 2 hold. Consider ϵt ≡ 0 and the weighted
average output w̄T = 2

T (T+1)

∑T
t=1 twt in Algorithm 1. Let ρ be an arbitrary scalar valued

in the interval (0, 0.5].

(a) Suppose that n ≥ 64L
λρ . Set γt = λρt

4 for t ≥ 1. Then for any T ≥ 1,

E [R(w̄T ) −R∗] ≤ 4ρ [R(w0) −R∗]

T 2
+

29L

λρnT
R∗.

(b) Set γt = λρt
4 + 16L

n for t ≥ 1. Then for any T ≥ 1,

E [R(w̄T ) −R∗] ≤
(

4ρ

T 2
+

28L

λnT

)
[R(w0) −R∗] +

(
216L2

λ2ρ2n2T
+

29L

λρnT

)
R∗.

We first present the following lemma which is an extension of the result (Wang et al.,
2017b, Lemma 1) to the setup of composite minimization. A proof is included here for the
sake of completeness.

Lemma 20 Assume that the loss function ℓ is convex with respect to its first argument and
the regularization function r is convex. Then for any w ∈ W, we have

RSt(wt) −RSt(w) ≤ γt
2

(
∥w − wt−1∥2 − ∥w − wt∥2 − ∥wt − wt−1∥2

)
.

Proof Since ℓ and r are both convex, RSt is convex over W. The optimality of wt implies
that for any w ∈ W and η ∈ (0, 1)

RSt(wt) +
γt
2
∥wt − wt−1∥2 ≤ RSt((1 − η)wt + ηw) +

γt
2
∥(1 − η)wt + ηw − wt−1∥2

≤(1 − η)RSt(wt) + ηRSt(w) +
γt
2

[
(1 − η)∥wt − wt−1∥2 + η∥w − wt−1∥2 − η(1 − η)∥w − wt∥2

]
,
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where in the last inequality we have used the definition of the norm ∥ · ∥. Rearranging both
sides of the above inequality yields

η(RSt(wt) −RSt(w)) ≤ ηγt
2

[
∥w − wt−1∥2 − (1 − η)∥w − wt∥2 − ∥wt − wt−1∥2

]
,

which then implies (keep in mind that η > 0)

RSt(wt) −RSt(w) ≤ γt
2

[
∥w − wt−1∥2 − (1 − η)∥w − wt∥2 − ∥wt − wt−1∥2

]
.

Limiting η → 0+ in the above inequality yields the desired bound.

The following boundedness result for smooth function is due to Srebro et al. (2010,
Lemma 3.1).

Lemma 21 If g is non-negative and L-smooth, then ∥∇g(w)∥ ≤
√

2Lg(w).

Let {Ft}t≥1 be the filtration generated by the iterates {wt}t≥1 as Ft = σ (w1, w2, ..., wt).
With Lemma 20 and Lemma 21 in place, we can further establish the following key lemma
that plays a fundamental role in proving Theorem 1.

Lemma 22 Suppose that the Assumptions 1 holds. Set γt ≥ 16L
n . Then we have

E [R(wt) −R∗ | Ft−1] ≤ γt
(
D2(wt−1,W

∗) − E
[
D2(wt,W

∗) | Ft−1

])
+

16L

γtn
R∗.

Proof Let us consider a sample set S
(i)
t which is identical to St except that one of the zi,t

is replaced by another random sample z′i,t. Denote

w
(i)
t = arg min

w∈W

{
F

(i)
t (w) := R

S
(i)
t

(w) +
γt
2
∥w − wt−1∥2

}
,

where R
S
(i)
t

(w) := 1
n

(∑
j ̸=i ℓ(w; zj,t) + ℓ(w; z′i,t)

)
+ r(w). Then we can show that

Ft(w
(i)
t ) − Ft(wt)

=
1

n

∑
j ̸=i

(
ℓ(w

(i)
t ; zj,t) − ℓ(wt; zj,t)

)
+

1

n

(
ℓ(w

(i)
t ; zi,t) − ℓ(wt; zi,t)

)
+ r(w

(i)
t ) − r(wt) +

γt
2
∥w(i)

t − wt−1∥2 −
γt
2
∥wt − wt−1∥2

=F
(i)
t (w

(i)
t ) − F

(i)
t (wt) +

1

n

(
ℓ(w

(i)
t ; zi,t) − ℓ(wt; zi,t)

)
− 1

n

(
ℓ(w

(i)
t ; z′i,t) − ℓ(wt; z

′
i,t)
)

≤ 1

n

∣∣∣ℓ(w(i)
t ; zi,t) − ℓ(wt; zi,t)

∣∣∣+
1

n

∣∣∣ℓ(w(i)
t ; z′i,t) − ℓ(wt; z

′
i,t)
∣∣∣

ζ1
≤
∥∇ℓ(w

(i)
t ; zi,t)∥ + ∥∇ℓ(wt; z

′
i,t)∥

n
∥w(i)

t − wt∥

ζ2
≤

√
2Lℓ(w

(i)
t ; zi,t) +

√
2Lℓ(wt; z′i,t)

n
∥w(i)

t − wt∥,
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where “ζ1” is due to the convexity of loss and in “ζ2”we have used Lemma 21. The bound
in Lemma 20 implies

Ft(w
(i)
t ) − Ft(wt) ≥

γt
2
∥w(i)

t − wt∥2.

Combining the preceding two inequalities yields

γt
2
∥w(i)

t − wt∥ ≤

√
2Lℓ(w

(i)
t ; zi,t) +

√
2Lℓ(wt; z′i,t)

n
,

which is identical to

∥w(i)
t − wt∥ ≤

2

(√
2Lℓ(w

(i)
t ; zi,t) +

√
2Lℓ(wt; z′i,t)

)
γtn

. (9)

Let us now consider the following population risk and empirical risk over St with respect
to the loss function ℓ:

Rℓ(w) := E(x,y)∼D[ℓ(w; z)], Rℓ
St

(w) :=
1

n

n∑
i=1

ℓ(w; zi,t).

Since St and S
(i)
t are both i.i.d. samples of the data distribution. It follows that

ESt

[
Rℓ(wt) | Ft−1

]
= ESt∪{z′i,t}

[
ℓ(wt; z

′
i,t) | Ft−1

]
=E

S
(i)
t

[
Rℓ(w

(i)
t ) | Ft−1

]
= E

S
(i)
t ∪{zi,t}

[
ℓ(w

(i)
t ; zi,t) | Ft−1

]
.

Since the above holds for all i = 1, ..., n, we can further show that

ESt

[
Rℓ(wt) | Ft−1

]
=

1

n

n∑
i=1

E
S
(i)
t ∪{zi,t}

[
ℓ(w

(i)
t ; zi,t) | Ft−1

]
=

1

n

n∑
i=1

ESt∪{z′i,t}

[
ℓ(w

(i)
t ; zi,t) | Ft−1

]
=

1

n

n∑
i=1

ESt∪{z′i,t}
[
ℓ(wt; z

′
i,t) | Ft−1

]
=

1

n

n∑
i=1

E
S
(i)
t ∪{zi,t}

[
ℓ(wt; z

′
i,t) | Ft−1

]
.

(10)

Regarding the empirical case, we find that

ESt

[
Rℓ

St
(wt) | Ft−1

]
=

1

n

n∑
i=1

ESt [ℓ(wt; zi,t) | Ft−1] =
1

n

n∑
i=1

ESt∪{z′i,t} [ℓ(wt; zi,t) | Ft−1] .
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Combining the preceding two equalities gives that

|ESt [R(wt) −RSt(wt) | Ft−1]|

=
∣∣∣ESt

[
Rℓ(wt) −Rℓ

St
(wt) | Ft−1

]∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

ESt∪{z′i,t}

[
ℓ(w

(i)
t ; zi,t) − ℓ(wt; zi,t) | Ft−1

]∣∣∣∣∣
≤ 1

n

n∑
i=1

ESt∪{z′i,t}

[∣∣∣ℓ(w(i)
t ; zi,t) − ℓ(wt; zi,t)

∣∣∣ | Ft−1

]
≤ 1

n

n∑
i=1

ESt∪{z′i,t}

[√
2Lℓ(w

(i)
t ; zi,t)∥w(i)

t − wt∥ | Ft−1

]
(9)

≤ 1

n

n∑
i=1

E
S
(i)
t ∪{zi,t}

4Lℓ(w
(i)
t ; zi,t)

γtn
+

4L
√
ℓ(w

(i)
t ; zi,t)ℓ(wt; z′i,t)

γtn
| Ft−1


ζ1
≤
(

L

γtn

)
1

n

n∑
i=1

ESt∪{z′i,t}

[
6ℓ(w

(i)
t ; zi,t) + 2ℓ(wt; z

′
i,t) | Ft−1

]
(10)
=

8L

γtn
ESt

[
Rℓ(wt) | Ft−1

]
≤ 8L

γtn
ESt [R(wt) | Ft−1] ,

where in “ζ1” we have used a2 + b2 ≥ 2ab and the last inequality is due to the fact r ≥ 0.

Let us now denote w∗
t = arg minw∈W ∗ ∥w−wt∥. Conditioned on Ft−1, taking expectation

on both sides of the bound in Lemma 20 for w = w∗
t−1 yields

ESt [RSt(wt) −R∗ | Ft−1]

≤γt
2
ESt

[
∥w∗

t−1 − wt−1∥2 − ∥w∗
t−1 − wt∥2 − ∥wt − wt−1∥2 | Ft−1

]
≤γt

2

(
∥w∗

t−1 − wt−1∥2 − ESt

[
∥w∗

t − wt∥2 | Ft−1

])
.

Combining the preceding two inequalities yields

ESt [R(wt) −R∗ | Ft−1]

=ESt [R(wt) −RSt(wt) + RSt(wt) −R∗ | Ft−1]

≤ |ESt [R(wt) −RSt(wt) | Ft−1]| + ESt [RSt(wt) −R∗ | Ft−1]

≤γt
2

(
∥w∗

t−1 − wt−1∥2 − ESt

[
∥w∗

t − wt∥2 | Ft−1

])
+

8L

γtn
ESt [R(wt) | Ft−1]

=
γt
2

(
∥w∗

t−1 − wt−1∥2 − ESt

[
∥w∗

t − wt∥2 | Ft−1

])
+

8L

γtn
ESt [R(wt) −R∗ | Ft−1] +

8L

γtn
ESt [R∗]

≤γt
2

(
∥w∗

t−1 − wt−1∥2 − ESt

[
∥w∗

t − wt∥2 | Ft−1

])
+

1

2
ESt [R(wt) −R∗ | Ft−1] +

8L

γtn
R∗,
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where in the last inequality we have used the condition γt ≥ 52L
n . After rearranging the

terms in the above inequality we obtain

ESt [R(wt) −R∗ | Ft−1] ≤γt
(
∥w∗

t−1 − wt−1∥2 − ESt

[
∥w∗

t − wt∥2 | Ft−1

])
+

16L

γtn
R∗

=γt
(
D2(wt−1,W

∗) − ESt

[
D2(wt,W

∗) | Ft−1

])
+

16L

γtn
R∗.

This implies the desired bound.

The following lemma is a direct consequence of Lemma 22.

Lemma 23 Suppose that the Assumptions 1 holds. Set γt ≥ 16L
n . Then the following holds

for all t ≥ 1:

E
[
D2(wt,W

∗)
]
≤ D2(w0,W

∗) +

t∑
τ=1

16L

γ2τn
R∗.

Proof Since R(wt) ≥ R∗ and γt ≥ 52L
n , the bound in Lemma 22 immediately implies that

ESt

[
D2(wt,W

∗) | Ft−1

]
≤ D2(wt−1,W

∗) +
16L

γ2t n
R∗. (11)

By unfolding the above recurrent from time instance t to zero we obtain that for all t ≥ 1,

E
[
D2(wt,W

∗)
]
≤ D2(w0,W

∗) +

t∑
τ=1

16L

γ2τn
R∗.

This proves the desired bound.

With all these lemmas in place, we are now ready to prove the main result in Theorem 1.
Proof [of Theorem 1] Part (a): Note that the condition on minibatch-size n implies γt =
λρt
4 ≥ λρ

4 ≥ 16L
n . Applying Lemma 22 along with the condition R(wt) −R∗ ≥ λ

2D
2(wt,W

∗)
yields

(1 − ρ)E [R(wt) −R∗ | Ft−1]

≤γtD
2(wt−1,W

∗) −
(
γt +

λρ

2

)
E
[
D2(wt,W

∗) | Ft−1

]
+

24L

γtn
R∗

≤λρt

4
D2(wt−1,W

∗) − λρ(t + 2)

4
E
[
D2(wt,W

∗) | Ft−1

]
+

26L

λρtn
R∗

≤λρt

4
D2(wt−1,W

∗) − λρ(t + 2)

4
E
[
D2(wt,W

∗) | Ft−1

]
+

27L

λρ(t + 1)n
R∗,

where in the last inequality we have used 1
t ≤ 2

t+1 for t ≥ 1. The above inequality implies

tE [R(wt) −R∗ | Ft−1]

≤(t + 1)E [R(wt) −R∗ | Ft−1]

≤λρt(t + 1)

4(1 − ρ)
D2(wt−1,W

∗) − λρ(t + 1)(t + 2)

4(1 − ρ)
E
[
D2(wt,W

∗) | Ft−1

]
+

27L

λnρ(1 − ρ)
R∗.
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Then based on the law of total expectation and after proper rearrangement we obtain

tE [R(wt) −R∗]

≤λρt(t + 1)

4(1 − ρ)
E
[
D2(wt−1,W

∗)
]
− λρ(t + 1)(t + 2)

4(1 − ρ)
E
[
D2(wt,W

∗)
]

+
27L

λnρ(1 − ρ)
R∗.

(12)

Summing the above inequality from t = 1, ..., T with proper normalization yields

2

T (T + 1)

T∑
t=1

tE [R(wt) −R∗] ≤ λρ

T (T + 1)(1 − ρ)
D2(w0,W

∗) +
28L

λρ(1 − ρ)(T + 1)n
R∗

≤ 2λρ

T (T + 1)
D2(w0,W

∗) +
29L

λρ(T + 1)n
R∗,

where in the last inequality we have used ρ ≤ 0.5. Consider the weighted output w̄T =
2

T (T+1)

∑T
t=1 twt. In view of the above inequality and the convexity and quadratic-growth

property of the risk function R we have

E [R(w̄T ) −R∗] ≤ 4ρ [R(w0) −R∗]

T (T + 1)
+

29L

λρn(T + 1)
R∗,

which then implies the desired bound in part (a).
Part (b): Note that γt = λρt

4 + 16L
n ≥ 16L

n for all t ≥ 1. According to Lemma 23, the
following bound holds for all t ≥ 1:

E
[
D2(wt,W

∗)
]

≤D2(w0,W
∗) +

t∑
τ=1

16L

γ2τn
R∗

≤D2(w0,W
∗) +

28L

λ2ρ2n
R∗

t∑
τ=1

1

τ2
≤ D2(w0,W

∗) +
29L

λ2ρ2n
R∗.

(13)

Similar to the argument in part (a), applying Lemma 22 along with the quadratic-growth
condition R(wt) −R∗ ≥ λ

2D
2(wt,W

∗) and ρ ≤ 0.5 yields

1

2
E [R(wt) −R∗ | Ft−1]

≤(1 − ρ)E [R(wt) −R∗ | Ft−1]

≤γtD
2(wt−1,W

∗) −
(
γt +

λρ

2

)
E
[
D2(wt,W

∗) | Ft−1

]
+

24L

γtn
R∗

≤λρt

4
D2(wt−1,W

∗) − λρ(t + 2)

4
E
[
D2(wt,W

∗) | Ft−1

]
+

16L

n

(
D2(wt−1,W

∗) − E
[
D2(wt,W

∗) | Ft−1

])
+

26L

λρtn
R∗,

where in the second inequality we have used γt ≥ 52L
n , and in the last inequality we have

used γt ≥ λρt
4 . Then based on the law of total expectation and after proper rearrangement
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we can show

E [R(wt) −R∗]

≤λρt

2
E
[
D2(wt−1,W

∗)
]
− λρ(t + 2)

2
E
[
D2(wt,W

∗)
]

+
25L

n

(
E
[
D2(wt−1,W

∗)
]
− E

[
D2(wt,W

∗)
])

+
27L

λtnρ
R∗,

which implies that

tE [R(wt) −R∗]

≤(t + 1)E [R(wt) −R∗]

≤λρt(t + 1)

2
E
[
D2(wt−1,W

∗)
]
− λρ(t + 1)(t + 2)

2
E
[
D2(wt,W

∗)
]

+
25L(t + 1)

n

(
E
[
D2(wt−1,W

∗)
]
− E

[
D2(wt,W

∗)
])

+
27L(t + 1)

λtnρ
R∗

≤λρt(t + 1)

2
E
[
D2(wt−1,W

∗)
]
− λρ(t + 1)(t + 2)

2
E
[
D2(wt,W

∗)
]

+
26Lt

n

(
E
[
D2(wt−1,W

∗)
]
− E

[
D2(wt,W

∗)
])

+
28L

λnρ
R∗,

where in the last inequality we have used the fact t + 1 ≤ 2t for t ≥ 1. By summing the
above inequality from t = 1, ..., T and after normalization we obtain

2

T (T + 1)

T∑
t=1

tE [R(wt) −R∗]

≤ 2λρ

T (T + 1)
D2(w0,W

∗) +
27L

nT (T + 1)

T∑
t=1

D2(wt−1,W
∗) +

29L

λρ(T + 1)n
R∗

≤ 2λρ

T (T + 1)
D2(w0,W

∗) +
27L

nT (T + 1)

T∑
t=1

(
D2(w0,W

∗) +
29L

λ2ρ2n
R∗
)

+
29L

λρ(T + 1)n
R∗

=

(
2λρ

T (T + 1)
+

27L

n(T + 1)

)
D2(w0,W

∗) +

(
216L2

λ2ρ2n2(T + 1)
+

29L

λρn(T + 1)

)
R∗,

where in the last inequality we have used (13). Using the convexity and quadratic-growth
property in the above inequality yields

E [R(w̄T ) −R∗] ≤
(

4ρ

T (T + 1)
+

28L

λn(T + 1)

)
[R(w0)−R∗]+

(
216L2

λ2ρ2n2(T + 1)
+

29L

λρn(T + 1)

)
R∗,

which then implies the desired bound in part (b). The proof is concluded.
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A.2 Proof of Theorem 5

In this subsection we prove Theorem 5 which is restated below.

Theorem 5 Suppose that Assumptions 1 and 2 hold. Consider ϵt ≡ 0 for implementing
M-SPP in both Phase-I and Phase-II of Algorithm 2. Consider the weighted average output
w̄T = 2

(T−1)(T+2)

∑T
t=2 twt in Phase-II.

(a) Suppose that n ≥ 128L
λ . Set m = 128L

λ in Phase-I and γt = λt
8 for implementing

M-SPP in both Phase-I and Phase II. Then for any T ≥ 2, w̄T satisfies

E [R(w̄T ) −R∗] ≲
L2 [R(w0) −R∗]

λ2n2T 2
+

L

λnT
R∗.

(b) Set m = O(1) in Phase-I and γt = λt
8 + 16L

n for implementing M-SPP in both Phase-I
and Phase-II. Then for any T ≥ 2, w̄T satisfies

E [R(w̄T ) −R∗] ≲
L2 [R(w0) −R∗]

λ2nT
+

L3

λ3nT
R∗.

Proof Part (a): In Phase-I, by invoking the first part of Theorem 1 with ρ = 1/2 and
T = n/m ≥ 1 (with slight abuse of notation) we get

ES1 [R(w1) −R∗] ≤ 2m2 [R(w0) −R∗]

n2
+

210L

λn
R∗. (14)

In Phase-II, conditioned on F1, summing the recursion form (12) from t = 2, ..., T with
ρ = 1/2 and proper normalization yields

2

(T − 1)(T + 2)

T∑
t=2

tES2:t [R(wt) −R∗ | F1]

≤ 6λD2(w1,W
∗)

(T − 1)(T + 2)
+

210L

λn(T + 2)
R∗ ≤ 3 (R(w1) −R∗)

(T − 1)(T + 2)
+

210L

λn(T + 2)
R∗,

where in the last inequality we have used the quadratic-growth property. Consider the
weighted average output w̄T = 2

(T−1)(T+2)

∑T
t=2 twt. Based on the above inequality and law

of total expectation we must have

E [R(w̄T ) −R∗] ≤6ES1 [R(w1) −R∗]

(T − 1)(T + 2)
+

210L

λn(T + 2)
R∗

≤6ES1 [R(w1) −R∗]

T 2
+

212L

λnT
R∗

≤12m2 [R(w0) −R∗]

n2T 2
+

213L

λnT
R∗

≤218L2 [R(w0) −R∗]

λ2n2T 2
+

213L

λnT
R∗,

where we have used the fact T ≥ 2 in multiple places and in the last but one step we have
used (14). This immediately implies the desired bound in Part (a).
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Part (b): In Phase-I, by applying second part of Theorem 1 (with ρ = 1/2 and T =
n/m ≥ 1) and preserving the leading terms we obtain that

ES1 [R(w1) −R∗] ≲

(
m2

n2
+

L

λn

)
[R(w0) −R∗] +

(
L2

λ2mn
+

L

λn

)
R∗

≲
L

λn
[R(w0) −R∗] +

L2

λ2n
R∗.

(15)

In Phase-II, based on the proof argument of the part (b) of Theorem 1 we can show that
the weighted average output w̄T = 2

(T−1)(T+2)

∑T
t=2 twt satisfies

E [R(w̄T ) −R∗] ≲

(
1

T 2
+

L

λnT

)
ES1 [R(w1) −R∗] +

(
L2

λ2n2T
+

L

λnT

)
R∗

≲

(
L

λnT 2
+

L2

λ2n2T

)
[R(w0) −R∗] +

(
L3

λ3n2T
+

L2

λ2nT 2
+

L

λnT

)
R∗

≲
L2

λ2nT
[R(w0) −R∗] +

L3

λ3nT
R∗,

where in the second step we have used (15). This proves the desired bound in Part (b).

A.3 Proof of Theorem 8

In this subsection, we prove Theorem 8 which is restated below.

Theorem 8 Suppose that Assumption 1 holds. Set γt ≡ γ ≥ 16L
n . Let w̄T = 1

T

∑T
t=1wt be

the average output of Algorithm 1. Then

E [R(w̄T ) −R∗] ≲
γ

T
D2(w0,W

∗) +
L

γn
R∗.

Particularly for γ =
√

T
n + 16L

n , it holds that

E [R(w̄T ) −R∗] ≲

(
1√
nT

+
L

nT

)
D2(w0,W

∗) +
L√
nT

R∗.

Proof Since γt ≡ γ ≥ 16L
n , the bound in Lemma 22 is valid. Based on law of total

expectation and by summing that inequality from t = 1, ..., T with proper normalization we
obtain

1

T

T∑
t=1

E [R(wt) −R∗] ≤ γ

T
D2(w0,W

∗) +
16L

γn
R∗.

Consider w̄T = 1
T

∑T
t=1wt. In view of the above inequality and convexity of R we have

E [R(w̄T ) −R∗] ≤ γ

T
D2(w0,W

∗) +
16L

γn
R∗.

This proves the first desired bound. The second bound follows immediately by substituting

γ =
√

T
n + 16L

n > 16L
n into the above bound. The proof is concluded.
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A.4 On the (Iteration) Stability of M-SPP

In this appendix subsection, we further provide a sensitivity analysis of M-SPP to the
choice of regularization modulus {γt}t≥1, under the following notion of iteration stability
essentially introduced by Asi and Duchi (2019a,b).

Definition 24 A stochastic optimization algorithm generating iterates {wt}t≥1 for mini-
mizing the population risk R(w) is staid to be stable if

sup
t≥1

D(wt,W
∗) < ∞, with probability 1.

Before presenting the main results on the iteration stability of M-SPP, we first recall the
Robbins-Siegmund nonnegative almost supermartingale convergence lemma which is typi-
cally used for establishing the stability and convergence of stochastic optimization methods
such as SPP (Asi and Duchi, 2019b).

Lemma 25 (Robbins and Siegmund (1971)) Consider four sequences of nonnegative
random variables {Ut}, {Vt}, {αt}, {βt} that are measurable over a filtration {Ft}t≥0. Sup-
pose that

∑
t αt < ∞,

∑
t βt < ∞, and

E[Ut+1 | Ft] ≤ (1 + αt)Ut + βt − Vt.

Then there exits U∞ such that Ut
a.s.−−→ U∞ and

∑
t Vt < ∞ with probability 1.

The following proposition shows that the sequence of estimation error {∥wt − w∗∥} is
non-divergent in expectation and it converges to some finite value and is bounded with
probability 1.

Proposition 26 Suppose that Assumption 1 holds. Assume that γt ≥ 16L
n and

∑
t≥1 γ

−2
t <

∞. Then we have the following hold:

(a) E [D(wt,W
∗)] < ∞;

(b) D(wt,W
∗) converges to some finite value and supt≥1D(wt,W

∗) < ∞ with probability
1.

Proof Applying Lemma 23 yields that for all t ≥ 1

E
[
D2(wt,W

∗)
]
≲ D2(w0,W

∗) +

t∑
τ=1

L

γ2τn
R∗ < ∞,

where we have used the given conditions on γt. This proves the part (a). To show the
part (b), invoking Lemma 25 with αt = Vt ≡ 0 and βt = 16L

γ2
t n

R∗ to (11) yields D(wt,W
∗)

converges to some finite value and thus supt≥1D(wt,W
∗) < ∞ almost surely.

Remark 27 Proposition 26 shows that under Assumption 1 and proper scaling conditions
on regularization modulus γt, M-SPP is stable according to Definition 24. This result extends
the corresponding iteration stability guarantee of SPP (Asi and Duchi, 2019b) to M-SPP
methods.
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Appendix B. Proofs for the Results in Section 3

In this section, we present the technical proofs for the main results stated in Section 3.

B.1 Proof of Theorem 10

In this subsection, we prove Theorem 10 which is restated below.

Theorem 10 Suppose Assumptions 1, 2 and 3 hold. Let ρ ∈ (0, 1/4] be an arbitrary scalar
and set γt = λρt

4 . Suppose that n ≥ 76L
λρ . Assume that ϵt ≤ ϵ

nt4
for some ϵ ∈ [0, 1]. Then for

any T ≥ 1, the weighted average output w̄t = 2
T (T+1)

∑T
t=1 twt of Algorithm 1 satisfies

E [R(w̄t) −R∗] ≲
ρ

T 2
(R(w0) −R∗) +

L

λρnT
R∗ +

√
ϵ

T 2

(
L

λρ
+ G

√
1

λρ

)
.

Preliminaries. In what follows, we denote by w̃t := arg minw∈W Ft(w) the exact solution
of the inner-loop minibatch ERM optimization, which plays the same role as wt in Section 2.
We first present the following lemma that upper bounds the discrepancy between the inexact
minimizer wt and the exact minimizer w̃t.

Lemma 28 Assume that the loss function ℓ is convex with respect to its first argument and
r is convex. Then for any w ∈ W, we have

∥wt − w̃t∥ ≤
√

2ϵt
γt

.

Proof Using arguments identical to those of Lemma 20 we can show that for all w ∈ W,

RSt(w̃t) −RSt(w) ≤ γt
2

(
∥w − wt−1∥2 − ∥w − w̃t∥2 − ∥w̃t − wt−1∥2

)
. (16)

Setting w = wt in the above yields

γt
2
∥wt − w̃t∥2 ≤ Ft(wt) − Ft(w̃t) ≤ ϵt,

which directly implies ∥wt − w̃t∥ ≤
√

2ϵt/γt. This proves the second desired bound.

The following lemma as an extension of Lemma 22 to the inexact setting.

Lemma 29 Suppose that the Assumptions 1, 2 and 3 hold. Assume that γt ≥ 19L
n . Then

the following bound holds for any ρ ∈ (0, 1):

E [R(wt) −R∗ | Ft−1] ≤γt

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

19L

γtn
R∗ +

(
3n +

4γt
ρλ

)
ϵt + 3G

√
2ϵt
γt

.

Alternatively, for any w∗ ∈ W ∗, under Assumptions 1 and 3 we have

E [R(wt) −R∗ | Ft−1] ≤γt
(
∥wt−1 − w∗∥2 − E

[
∥wt − w∗∥2 | Ft−1

])
+

19L

γtn
R∗

+ 3nϵt +

(
2
√

2γtE [∥wt − w∗∥ | Ft−1] + 3G

√
2

γt

)
√
ϵt.
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Proof Let us decompose E [R(wt) −R∗ | Ft−1] into the following three terms:

E [R(wt) −R∗ | Ft−1]

=E [R(wt) −R(w̃t) | Ft−1]︸ ︷︷ ︸
A

+E [R(w̃t) −RSt(w̃t) | Ft−1]︸ ︷︷ ︸
B

+E [RSt(w̃t) −R∗ | Ft−1]︸ ︷︷ ︸
C

.

We next bound these three terms respectively. To bound the term A, we can show that

|A| := |E [R(wt) −R(w̃t) | Ft−1] |

=
∣∣∣E [Rℓ(wt) −Rℓ(w̃t) | Ft−1

]
+ E [r(wt) − r(w̃t)] | Ft−1

∣∣∣
≤E [Ez|ℓ(wt; z) − ℓ(w̃t; z)| | Ft−1] + E [|r(wt) − r(w̃t)| | Ft−1]

ζ1
≤E

[
Ez

[√
2Lℓ(wt; z)∥wt − w̃t∥

]
| Ft−1

]
+ E [G∥wt − w̃t∥ | Ft−1]

≤E
[
Ez

[
L

γtn
ℓ(wt; z) +

γtn

2
∥wt − w̃t∥2

]
| Ft−1

]
+ E [G∥wt − w̃t∥ | Ft−1]

=E
[

L

γtn
Rℓ(wt) | Ft−1

]
+ ESt

[γtn
2

∥wt − w̃t∥2 + G∥wt − w̃t∥ | Ft−1

]
≤E

[
L

γtn
R(wt) | Ft−1

]
+ nϵt + G

√
2ϵt
γt

,

where in “ζ1” we have used the convexity of loss and Lemma 21 and the Assumption 3 and
in the last inequality we have used r > 0 and the perturbation bound of Lemma 28.

To bound the term B, using about the same proof arguments as for Lemma 22 we can
show that

B :=E [R(w̃t) −RSt(w̃t) | Ft−1]

≤ 8L

γtn
E [R(w̃t) | Ft−1]

=
8L

γtn
E [R(w̃t) −R(wt)] +

8L

γtn
E [R(wt) | Ft−1]

≤1

2
|A| +

8L

γtn
E [R(wt) | Ft−1] ,

where we have used the condition on minibatch size γt.
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To bound the term C, based on the definition of w̃t and by invoking Lemma 20 with
w = w∗

t−1 we can verify that

C :=E [RSt(w̃t) −R∗ | Ft−1]

≤γt
2
E
[
∥w∗

t−1 − wt−1∥2 − ∥w∗
t−1 − w̃t∥2 − ∥w̃t − wt−1∥2 | Ft−1

]
≤γt

2
E
[
∥w∗

t−1 − wt−1∥2 − ∥w∗
t−1 − w̃t∥2 | Ft−1

]
=
γt
2

(
∥w∗

t−1 − wt−1∥2 − E
[
∥w∗

t−1 − wt + wt − w̃t∥2 | Ft−1

])
=
γt
2

(
∥w∗

t−1 − wt−1∥2 − E
[
∥w∗

t−1 − wt∥2 + 2⟨w∗
t−1 − wt, wt − w̃t⟩ + ∥wt − w̃t∥2 | Ft−1

])
≤γt

2

(
∥w∗

t−1 − wt−1∥2 − E
[(

1 − ρλ

2γt

)
∥w∗

t−1 − wt∥2 −
2γt
ρλ

∥wt − w̃t∥2 | Ft−1

])
≤γt

2

(
∥w∗

t−1 − wt−1∥2 − E
[(

1 − ρλ

2γt

)
∥w∗

t − wt∥2 | Ft−1

])
+

2γtϵt
ρλ

=
γt
2

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

2γtϵt
ρλ

.

Combining the above three bounds yields

E [R(wt) −R∗ | Ft−1] = A + B + C

≤3

2
|A| +

8L

γtn
E [R(wt) | Ft−1]

+
γt
2

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

2γtϵt
ρλ

≤E
[

3L

2γtn
R(wt) | Ft−1

]
+

3n

2
ϵt +

3G

2

√
2ϵt
γt

+
8L

γtn
E [R(wt) | Ft−1]

+
γt
2

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

2γtϵt
ρλ

≤γt
2

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

9.5L

γtn
E [R(wt) | Ft−1]

+

(
3n

2
+

2γt
ρλ

)
ϵt +

3G

2

√
2ϵt
γt

=
γt
2

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

9.5L

γtn
E [R∗] +

9.5L

γtn
E [R(wt) −R∗ | Ft−1]

+

(
3n

2
+

2γt
ρλ

)
ϵt +

3G

2

√
2ϵt
γt

≤γt
2

(
D2(wt−1,W

∗) − E
[(

1 − ρλ

2γt

)
D2(wt,W

∗) | Ft−1

])
+

9.5L

γtn
E [R∗] +

1

2
E [R(wt) −R∗ | Ft−1]

+

(
3n

2
+

2γt
ρλ

)
ϵt +

3G

2

√
2ϵt
γt

,

where in the last inequality we have used the condition γt ≥ 19L
n . After rearranging the

terms in the above inequality we obtain the first desired bound.
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To derive the second bound, for any fixed w∗ ∈ W ∗, we note that the term C can be
alternatively bounded as

C ≤γt
2

(
∥w∗ − wt−1∥2 − E

[
∥w∗ − wt∥2 + 2⟨w∗ − wt, wt − w̃t⟩ + ∥wt − w̃t∥2 | Ft−1

])
≤γt

2

(
∥w∗ − wt−1∥2 − E

[
∥w∗ − wt∥2 − 2∥wt − w∗∥∥wt − w̃t∥ | Ft−1

])
≤γt

2

(
∥w∗ − wt−1∥2 − E

[
∥w∗ − wt∥2 | Ft−1

])
+
√

2γtϵtE [∥w∗ − wt∥ | Ft−1] .

Similar to the proof of the first bound, we can derive that

ESt [R(wt) −R∗ | Ft−1] = A + B + C

≤3

2
|A| +

8L

γtn
E [R(wt) | Ft−1] +

γt
2

(
∥w∗ − wt−1∥2 − E

[
∥w∗ − wt∥2 | Ft−1

])
+
√

2γtϵtE [∥w∗ − wt∥ | Ft−1]

≤γt
2

(
∥w∗ − wt−1∥2 − E

[
∥w∗ − wt∥2 | Ft−1

])
+

9.5L

γtn
R∗

+
1

2
E [R(wt) −R∗ | Ft−1] +

3n

2
ϵt +

√
2γtϵtE [∥w∗ − wt∥ | Ft−1] +

3G

2

√
2ϵt
γt

.

After rearranging the terms in the above inequality we obtain the second desired bound.

With the above preliminary results in hand, we are now in the position to prove the
main result of Theorem 10.

Proof [of Theorem 10] Since by assumption R(wt) − R∗ ≥ λ
2D

2(wt,W
∗) and γt = λρt

4 ≥
λρ
4 ≥ 19L

n , based on the first bound in Lemma 29 we can show that

(1 − 2ρ)E [R(wt) −R∗ | Ft−1]

≤γtD
2(wt−1,W

∗) −
(
γt +

ρλ

2

)
E
[
D2(wt,W

∗) | Ft−1

]
+

19L

γtn
R∗ +

(
3n +

4γt
ρλ

)
ϵt + 3G

√
2ϵt
γt

≤λρt

4
D2(wt−1,W

∗) − ρλ(t + 2)

4
E
[
D2(wt,W

∗) | Ft−1

]
+

76L

λρnt
R∗ + (3n + t) ϵt + 6G

√
2ϵt
λρt

.

Now suppose that ϵt ≤ ϵ
nt4

for some ϵ ∈ [0, 1]. Since ρ ≤ 1/4, the above implies

E [R(wt) −R∗ | Ft−1]

≤λρt

2
D2(wt−1,W

∗) − ρλ(t + 2)

2
E
[
D2(wt,W

∗) | Ft−1

]
+

152L

λρnt
R∗ +

(
6

t4
+

2

t3
+ 12G

√
2

λρt5

)√
ϵ.

The above inequality then implies

tE [R(wt) −R∗ | Ft−1] ≤(t + 1)E [R(wt) −R∗ | Ft−1]

≤λρt(t + 1)

2
D2(wt−1,W

∗) − λρ(t + 1)(t + 2)

2
E
[
D2(wt,W

∗) | Ft−1

]
+

304L

λρn
R∗ +

(
12

t3
+

4

t2
+

24G

t

√
2

λρt

)√
ϵ,
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where we have used the fact t+1
t ≤ 2 for t ≥ 1. In view of the law of total expectation,

summing the above inequality from t = 1, ..., T with natural normalization yields

2

T (T + 1)

T∑
t=1

tE [R(wt) −R∗]

≤ 2λρ

T (T + 1)
D2(w0,W

∗) +
608L

λρ(T + 1)n
R∗ +

√
ϵ

T (T + 1)

(
64 + 192G

√
2

λρ

)
≤ 4ρ

T (T + 1)
(R(w0) −R∗) +

608L

λρ(T + 1)n
R∗ +

√
ϵ

T (T + 1)

(
64 + 192G

√
2

λρ

)
,

which then immediately leads to the desired bound. The proof is concluded.

B.2 Proof of Theorem 13

In this subsection, we prove Theorem 13 as following restated.

Theorem 13 Suppose that Assumptions 1 and 3 hold. Set γt ≡ γ ≥ 19L
n . Assume that

ϵt ≤ min
{

ϵ
n2t5

, 2G2

9n2γ

}
for some ϵ ∈ [0, 1]. Then the average output w̄T = 1

T

∑T
t=1wt of

Algorithm 1 satisfies

E [R(w̄T ) −R∗] ≲
γ

T
D2(w0,W

∗) +
L

γn
R∗ +

(
L

γn
+

γ

LnT
+

G
√
γnT

)√
ϵ.

Particularly for γ =
√

T
n + 19L

n , it holds that

E [R(w̄T ) −R∗] ≲

(
1√
nT

+
L

nT

)
D2(w0,W

∗) +
L√
nT

R∗ +

(
L + G√

nT
+

1

nT

)√
ϵ.

The following lemma, which can be proved by induction (see, e.g., Schmidt et al., 2011),
will be used to prove the main result.

Lemma 30 Assume that the nonnegative sequence {uτ}τ≥1 satisfies the following recursion
for all t ≥ 1:

u2t ≤ St +

t∑
τ=1

ατuτ ,

with {Sτ}τ≥1 an increasing sequence, S0 ≥ u20 and ατ ≥ 0 for all τ . Then, the following
bound holds for all t ≥ 1:

ut ≤
√
St +

t∑
τ=1

ατ .
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The following lemma gives an upper bound on the expected estimation error E [∥w∗
0 − wt∥].

Lemma 31 Under the conditions of Theorem 13, the following bound holds for all t ≥ 1:

E [∥wt − w∗
0∥] ≤ ∥w0 − w∗

0∥ +

√
t

γ
R∗ +

6tG

γ
.

Proof Recall that w∗
0 = arg minw∈W ∗ ∥w0 − w∥. Since γt ≡ γ ≥ 19L

n , the second bound
in Lemma 29 is valid. For any t ∈ [T ], by summing that inequality with w∗ = w∗

0 from
τ = 1, ..., t we obtain

t∑
τ=1

E [R(wτ ) −R∗] + γE
[
∥wt − w∗

0∥2
]

≤γ∥w0 − w∗
0∥2 +

19L

γn
tR∗ + 3n

t∑
τ=1

ϵτ +

t∑
τ=1

(
2
√

2γE [∥w∗
0 − wτ∥] + 3G

√
2

γ

)
√
ϵτ .

(17)

Dropping the non-negative term
∑t

τ=1 ES[τ ]
[R(wτ ) −R∗] from the above inequality yields

E
[
∥wt − w∗

0∥2
]︸ ︷︷ ︸

u2
t

≤∥w0 − w∗
0∥2 +

19L

γ2n
tR∗ +

3n

γ

t∑
τ=1

ϵτ +
t∑

τ=1

(
2

√
2

γ
E [∥w∗

0 − wτ∥] + 3G

√
2

γ
√
γ

)
√
ϵτ

ζ1
≤∥w0 − w∗

0∥2 +
t

γ
R∗ +

t∑
τ=1

(
3n

γ
ϵτ +

3G
√

2

γ
√
γ

√
ϵτ

)
+

t∑
τ=1

(
2

√
2ϵτ
γ

√
E [∥w∗

0 − wτ∥2]
)

≤∥w0 − w∗
0∥2 +

t

γ
R∗ +

t∑
τ=1

4G
√

2ϵτ
γ
√
γ︸ ︷︷ ︸

St

+

t∑
τ=1

2

√
2ϵτ
γ︸ ︷︷ ︸

ατ

√
E [∥w∗

0 − wτ∥2]︸ ︷︷ ︸
uτ

 ,

where in “ζ1” we have used γ ≥ 19L
n and the basic inequality E2[X] ≤ E[X2], and in the

last inequality we have used the condition ϵτ ≤ 2G2

9n2γ
for all τ ≥ 1. By invoking Lemma 30

to the above recursion form we can derive that for all t ≥ 1,

√
E [∥wt − w∗

0∥2] ≤

√√√√∥w0 − w∗
0∥2 +

t

γ
R∗ +

t∑
τ=1

4G
√

2ϵτ
γ

+
t∑

τ=1

2

√
2ϵτ
γ

≤∥w0 − w∗
0∥ +

√
t

γ
R∗ +

t∑
τ=1

√
4G

√
2ϵτ

γ
√
γ

+
t∑

τ=1

2

√
2ϵτ
γ

≤∥w0 − w∗
0∥ +

√
t

γ
R∗ +

6Gt

γ
,

where the last inequality is due to the condition ϵτ ≤ 2G2

9γ for all τ ≥ 1. The above inequality
then directly implies the desired bound for all t ∈ [T ].
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Now we are ready to prove the main result of Theorem 13.

Proof [of Theorem 13] Dropping non-negative term γE
[
∥wt − w∗∥2

]
in (17) followed by

natural normalization yields

1

T

T∑
t=1

E [R(wt) −R∗]

≤ γ

T
∥w0 − w∗

0∥2 +
19L

γn
R∗ +

3n

T

T∑
t=1

ϵt +
1

T

T∑
t=1

(
2
√

2γE [∥wt − w∗
0∥] + 3G

√
2

γ

)
√
ϵt

ζ1
≤ γ

T
∥w0 − w∗

0∥2 +
19L

γn
R∗ +

3n

T

T∑
t=1

ϵt

+
1

T

T∑
t=1

(
2
√

2

(
√
γ∥w0 − w∗

0∥ +
√
tR∗ +

6Gt
√
γ

)
+ 3G

√
2

γ

)
√
ϵt

ζ2
≤ γ

T
∥w0 − w∗

0∥2 +
19L

γn
R∗ +

1

T

T∑
t=1

(
3nϵt + 2

√
2γϵt∥w0 − w∗

0∥ + 2
√

2tR∗ϵt +
15
√

2ϵtGt
√
γ

)
ζ3
≤ γ

T
∥w0 − w∗

0∥2 +
19L

γn
R∗

+
1

T

T∑
t=1

(
3nϵt +

γ∥w0 − w∗
0∥2

t2
+ 2t2ϵt +

2LR∗

γn
+

γntϵt
L

+
15
√

2ϵtGt
√
γ

)

≤3γ

T
∥w0 − w∗

0∥2 +
21L

γn
R∗ +

1

T

T∑
t=1

(
3nϵt + 2t2ϵt +

γntϵt
L

+
15
√

2ϵtGt
√
γ

)
,

,

where “ζ1”follows from Lemma 31, “ζ2” is due to t ≥ 1 and “ζ3” is due to ab ≤ (a2 + b2)/2.
Now consider ϵt ≤ ϵ

n2t5
for some ϵ ∈ [0, 1]. Then it follows from the preceding inequality

that

1

T

T∑
t=1

E [R(wt) −R∗]

≤3γ

T
∥w0 − w∗

0∥2 +
21L

γn
R∗ +

1

T

T∑
t=1

(
3

nt5
+

2

nt3
+

γ

nLt4
+

15
√

2G

nt1.5
√
γ

)
√
ϵ

≤3γ

T
∥w0 − w∗

0∥2 +
21L

γn
R∗ +

1

T

(
6

n
+

4

n
+

2γ

nL
+

45
√

2G

n
√
γ

)
√
ϵ.

Let w̄T = 1
T

∑T
t=1wt. Combined with the convexity of R, the above inequality implies

E [R(w̄T ) −R∗] ≲
γ

T
D2(w0,W

∗) +
L

γn
R∗ +

(
1

nT
+

γ

LnT
+

G

nT
√
γ

)√
ϵ.
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This proves the first bound. Substituting γ =
√

T
n + 19L

n > 19L
n into the above bound and

preserving the leading terms yields the following second desired bound:

E [R(w̄T ) −R∗] ≲

(
1√
nT

+
L

nT

)
D2(w0,W

∗) +
L√
nT

R∗ +

(
L + G√

nT
+

1

nT

)√
ϵ.

The proof is concluded.

Appendix C. Proofs for the Results in Section 4

In this section, we present the proofs for the high probability estimation error bounds stated
in Section 4.

C.1 Proof of Proposition 15

In this subsection, we prove Proposition 15 as below restated .

Proposition 32 Suppose that Assumption 1 holds and the loss function is bounded such
that 0 ≤ ℓ(y′, y) ≤ M for all y, y′. Let S = {St}t∈[T ] and S′ = {S′

t}t∈[T ] be two sets of data
minibatches satisfying S

.
= S′. Then

(a) The weighted average outputs w̄T and w̄′
T respectively generated by M-SPP (Algo-

rithm 1) over S and S′ satisfy

sup
S,S′

∥w̄T − w̄′
T ∥ ≤ 4

√
2LM

nmint∈[T ] γt
+

T∑
t=1

2

√
2ϵt
γt

.

(b) The weighted average outputs w̄T and w̄′
T respectively generated by M-SPP-SWoR

(Algorithm 3) over S and S′ satisfy

sup
S,S′

Eξ[T ]

[
∥w̄T − w̄′

T ∥
]
≤

T∑
t=1

{
4
√

2LM

nTγt
+ 2

√
2ϵt
γt

}
.

We first need to show the following preliminary result which is about the expansion
property of M-SPP update when performed over identical or different minibatches.

Lemma 33 Suppose that Assumptions 1 holds and the loss function ℓ is bounded in the
interval [0,M ]. From w0 = w′

0, let us define the sequences {wt}t∈[T ] and {w′
t}t∈[T ] that are

respectively generated over {St}t∈[T ] and {S′
t}t∈[T ] according to

Ft(wt) ≤ min
w∈W

{
Ft(w) := RSt(w) +

γt
2
∥w − wt−1∥2

}
+ ϵt,

F ′
t(w

′
t) ≤ min

w∈W

{
F ′
t(w) := RS′

t
(w) +

γt
2
∥w − w′

t−1∥2
}

+ ϵt.

Assume that either St = S′
t or St

.
= S′

t for all t ∈ [T ]. Let βt = 1{St ̸=S′
t}. Then the following

bound holds for all t ∈ [T ],

∥wt − w′
t∥ ≤

t∑
τ=1

{
βτ

4
√

2LM

nγτ
+ 2

√
2ϵτ
γτ

}
.
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Proof Let w∗
t = arg minw Ft(w) and w′∗

t = arg minw F ′
t(w). It follows from Lemma 20 that

RSt(w
∗
t ) −RSt(w

′∗
t ) ≤γt

2

(
∥w′∗

t − wt−1∥2 − ∥w′∗
t − w∗

t ∥2 − ∥w∗
t − wt−1∥2

)
RS′

t
(w′∗

t ) −RS′
t
(w∗

t ) ≤γt
2

(
∥w∗

t − w′
t−1∥2 − ∥w′∗

t − w∗
t ∥2 − ∥w′∗

t − w′
t−1∥2

)
.

Summing both sides of the above two inequalities yields

RSt(w
∗
t ) −RSt(w

′∗
t ) + RS′

t
(w′∗

t ) −RS′
t
(w∗

t )

≤γt
2

(
∥w′∗

t − wt−1∥2 − ∥w∗
t − wt−1∥2 + ∥w∗

t − w′
t−1∥2 − ∥w′∗

t − w′
t−1∥2 − 2∥w′∗

t − w∗
t ∥2
)

=
γt
2

(
2⟨w∗

t − w′∗
t , wt−1 − w′

t−1⟩ − 2∥w∗
t − w′∗

t ∥2
)

≤γt
2

(
∥wt−1 − w′

t−1∥2 − ∥w∗
t − w′∗

t ∥2
)

.

We need to distinguish the following two complementary cases.
Case I: St = S′

t. In this case, the previous inequality immediately leads to

∥w∗
t − w′∗

t ∥ ≤ ∥wt−1 − w′
t−1∥.

By using triangle inequality and Lemma 28 we obtain

∥wt − w′
t∥ ≤ ∥wt − w∗

t ∥ + ∥w∗
t − w′∗

t ∥ + ∥w′
t − w′∗

t ∥ ≤ ∥wt−1 − w′
t−1∥ + 2

√
2ϵt
γt

. (18)

Case II: St and S′
t differ in a single element. In this case, we have

∥w∗
t − w′∗

t ∥2

≤∥wt−1 − w′
t−1∥2 +

2

γt

(
RSt(w

′∗
t ) −RSt(w

∗
t ) + RS′

t
(w∗

t ) −RS′
t
(w′∗

t )
)

=∥wt−1 − w′
t−1∥2 +

2

γt

(
Rℓ

St
(w′∗

t ) −Rℓ
St

(w∗
t ) + Rℓ

S′
t
(w∗

t ) −Rℓ
S′
t
(w′∗

t )
)

=∥wt−1 − w′
t−1∥2 +

2

γt

 1

|St|
∑
z∈St

(ℓ(w′∗
t ; z) − ℓ(w∗

t ; z) +
1

|S′
t|
∑
z∈S′

t

(ℓ(w∗
t ; z) − ℓ(w′∗

t ; z))


≤∥wt−1 − w′

t−1∥2 +
4
√

2LM

nγt
∥w∗

t − w′∗
t ∥.

where in the last inequality we have used ℓ(·; ·) is
√

2LM -Lipschitz with respect to its first
argument which is implied by Lemma 21, and St and S′

t differ in a single element as well.
Since x2 ≤ y2 + ax implies x ≤ y + a for all x, y, a > 0, we can derive from the above that

∥w∗
t − w′∗

t ∥ ≤ ∥wt−1 − w′
t−1∥ +

4
√

2LM

nγt
.

Then based on triangle inequality and Lemma 28 we have

∥wt − w′
t∥

≤∥wt − w∗
t ∥ + ∥w∗

t − w′∗
t ∥ + ∥w′

t − w′∗
t ∥ ≤ ∥wt−1 − w′

t−1∥ +
4
√

2LM

nγt
+ 2

√
2ϵt
γt

.
(19)
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Let βt = 1{St ̸=S′
t} in which 1{C} is the indicator function of the condition C. Based on the

recursion forms (18) and (19) and the condition w0 = w′
0 we can show that for all t ∈ [T ]

∥wt − w′
t∥ ≤

t∑
τ=1

{
4βτ

√
2LM

nγτ
+ 2

√
2ϵτ
γτ

}
,

which gives the desired bound.

Now we are in the position to prove the main result in Proposition 15.
Proof [of Proposition 15] Consider a fixed pair of minibatch sets S

.
= S′.

Part (a): Let {wt}t∈[T ] and {w′
t}t∈[T ] be two solution sequences that are respectively

generated over {St}t∈[T ] and {S′
t}t∈[T ] by Algorithm 1. At each time instance t, define

random variable βt := 1{St ̸=S′
t}. Since by assumption S and S′ differ only in a single

minibatch, there must exist one and only one t ∈ [T ] such that βt = 1 and βj = 0 for all
j ∈ [T ], j ̸= t. Then in the worst case of βτ = 1 for τ = arg mini∈[t] γi, it follows from
Lemma 33 that for all t ∈ [T ],

∥wt − w′
t∥ ≤ 4

√
2LM

nmini∈[t] γi
+

t∑
i=1

2

√
2ϵi
γi

≤ 4
√

2LM

nmini∈[T ] γi
+

T∑
i=1

2

√
2ϵi
γi

.

Then the convex combination nature of w̄T and w̄′
T implies that

∥w̄T − w̄′
T ∥ ≤

∑
t γt∥wt − w′

t∥∑
t γt

≤ 4
√

2LM

nmint∈[T ] γt
+

T∑
t=1

2

√
2ϵt
γt

.

The desired result follows immediately as the above bound holds for any pair {S, S′}.
Part (b): Recall that {ξt}t∈[T ] are the uniform random indices for iteratively selecting

data minibatches from S and S′. Let {wt}t∈[T ] and {w′
t}t∈[T ] be two solution sequences that

are respectively generated over {Sξt}t∈[T ] and {S′
ξt
}t∈[T ] by Algorithm 3. Define random

variable βt := 1{
Sξt

̸=S′
ξt

}. Since by assumption S and S′ differ only in a single minibatch,

under without-replacement sampling scheme, there must exist one and only one t ∈ [T ]
such that βt = 1 and βj = 0 for all j ∈ [T ], j ̸= t. Let us define the event Et := {βt =
1 and βj ̸=t,j∈[T ] = 0} for all t ∈ [T ]. Then the uniform randomness of ξt implies that

R (Et) =
1

T
, t ∈ [T ].

Given t ∈ [T ], suppose that Eτ occurs for some τ ∈ [t]. Then it follows from Lemma 33 that

∥wt − w′
t∥ ≤ 4

√
2LM

nγτ
+

t∑
i=1

2

√
2ϵi
γi

.

Suppose that Eτ occurs for some τ ∈ {t + 1, t + 2, ..., T}, again it follows from Lemma 33
that

∥wt − w′
t∥ ≤

t∑
i=1

2

√
2ϵi
γi

.
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Then we have

Eξ[t]

[
∥wt − w′

t∥
]

=
T∑

τ=1

R (Eτ )
[
∥wt − w′

t∥ | Eτ
]

≤
t∑

τ=1

{
4
√

2LM

nTγt
+

t∑
i=1

2

T

√
2ϵi
γi

}
+

T∑
τ=t+1

{
t∑

i=1

2

T

√
2ϵt
γt

}

=
t∑

τ=1

{
4
√

2LM

nTγτ
+ 2

√
2ϵτ
γτ

}
≤

T∑
t=1

{
4
√

2LM

nTγt
+ 2

√
2ϵt
γt

}
.

It follows that

Eξ[T ]

[
∥w̄T − w̄′

T ∥
]
≤
∑

t γtEξ[t] [∥wt − w′
t∥]∑

t γt
≤

T∑
t=1

{
4
√

2LM

nTγt
+ 2

√
2ϵt
γt

}
.

The desired result then follows immediately as the above bound holds for any pair {S, S′}.

C.2 Proof of Theorem 17

In this subsection, we prove Theorem 17 that is restated below.

Theorem 17 Suppose that Assumptions 1, 2, 3 hold and the loss function ℓ is bounded in
the interval (0,M ]. Let ρ ∈ (0, 1/4] be an arbitrary scalar and set γt = λρt

4 . Suppose that

n ≥ 76L
λρ . Assume that ϵt ≤ min

{
ϵ

nt4
, LM
λρn2T 2t

}
for some ϵ ∈ [0, 1]. Then with probability at

least 1− δ over S, the weighted average output w̄T of M-SPP-SWoR (Algorithm 3) satisfies

Eξ[T ]
[D(w̄T ,W

∗)]

≲

√
LM log(1/δ) log(T )

λρ
√
nT

+

√
ρ [R(w0) −R∗]

λT 2
+

L

λ2ρnT
R∗ +

√
ϵ

λT 2

(
L

λρ
+ G

√
1

λρ

)
.

To show this result, we need to use the following restated McDiarmid’s inequality (Mc-
Diarmid, 1989) which is also known as bounded-difference inequality.

Lemma 34 (McDiarmid’s inequality) Let X1, X2, ..., XN be independent random vari-
ables valued in X . Suppose that the function h : XN 7→ R satisfies the bounded differences
property, i.e., the following inequality holds for any i ∈ [N ] and any x1, ..., xN , x′i:

|h(x1, ..., xi−1, xi, xi+1, ..., xN ) − h(x1, ..., xi−1, x
′
i, xi+1, ..., xN )| ≤ ci.

Then for any ε > 0,

P (h(X1, ..., XN ) − E [h(X1, ..., XN )] ≥ ε) ≤ exp

(
− 2ε2∑N

i=1 c
2
i

)
.
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Now we are ready to prove Theorem 17.
Proof [of Theorem 17] Let S = {St}t∈[T ] and S′ = {S′

t}t∈[T ] be two sets of data minibatches
such that S

.
= S′. Then according to Proposition 15 the weighted average outputs w̄T and

w̄′
T respectively generated by Algorithm 3 over S and S′ satisfy

sup
S,S′

Eξ[T ]

[
∥w̄T − w̄′

T ∥
]
≤

T∑
t=1

{
4
√

2LM

nTγt
+ 2

√
2ϵt
γt

}
≤

T∑
t=1

{
5
√

2LM

nTγt

}
≤ 20

√
2LM(1 + log(T ))

λρnT
,

where in the second inequality we have used the condition ϵt ≤ LM
4n2T 2γt

= LM
λρN2t

. It follows
from the triangle inequality and the above bound that

sup
S,S′

Eξ[T ]

[∣∣D(w̄T ,W
∗) −D(w̄′

T ,W
∗)
∣∣] ≤ sup

S,S′
Eξ[T ]

[
∥w̄T − w̄′

T ∥
]
≤ 20

√
2LM(1 + log(T ))

λρnT
.

Since ξ[T ] are independent on S, as a direct consequence of applying McDiarmid’s inequality

with ci ≡ c = 20
√
2LM(1+log(T ))

λρnT to h(S) := D(w̄T ,W
∗), we can show that with probability

at least 1 − δ over the randomness of S,

Eξ[T ]

[
D(w̄T ,W

∗) − ES

[
Eξ[T ]

[D(w̄T ,W
∗)]
]]

≤ c

√
nT log(1/δ)

2
=

20
√
LM log(1/δ)(1 + log(T ))

λρ
√
nT

.

We next derive a bound for ES

[
Eξ[T ]

[D(w̄T ,W
∗)]
]
. In view of Jensen’s inequality and the

quadratic growth property of F we have

ES

[
Eξ[T ]

[D(w̄T ,W
∗)]
]

=Eξ[T ]
[ES [D(w̄T ,W

∗)]]

≤Eξ[T ]

[√
ES [D2(w̄T ,W ∗)]

]
≤Eξ[T ]

[√
2

λ
ES [R(w̄T ) −R∗]

]
ζ1
≲Eξ[T ]

√ρ [R(w0) −R∗]

λT 2
+

L

λ2ρnT
R∗ +

√
ϵ

λT 2

(
L

λρ
+ G

√
1

λρ

)
=

√
ρ [R(w0) −R∗]

λT 2
+

L

λ2ρnT
R∗ +

√
ϵ

λT 2

(
L

λρ
+ G

√
1

λρ

)
,

where in “ζ1” we have used Theorem 10 and the without-replacement-sampling nature of
ξ[T ]. Therefore, based on the previous two inequalities we obtain that with probability at
least 1 − δ over S,

Eξ[T ]
[D(w̄T ,W

∗)]

≲

√
LM log(1/δ) log(T )

λρ
√
nT

+

√
ρ [R(w0) −R∗]

λT 2
+

L

λ2ρnT
R∗ +

√
ϵ

λT 2

(
L

λρ
+ G

√
1

λρ

)
,

which gives the desired bound.
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C.3 Proof of Theorem 19

Here we prove the following restated Theorem 19.

Theorem 19 Suppose that Assumptions 1 and 3 hold and the loss function ℓ is bounded

in the interval [0,M ]. Set γt ≡
√

T
n . Assume that ϵt ≤ LM

4nT 2
√
nT

. Then with probability at

least 1 − δ over S, the average output w̄T = 1
T

∑T
t=1wt of M-SPP (Algorithm 1) satisfies

|R(w̄T ) −RS(w̄T )| ≲ (LM + G
√
LM) log(N) log(1/δ)√

nT
+ M

√
log (1/δ)

nT
.

We need the following lemma essentially from Bousquet et al. (2020, Corollary 8) that
gives a near-tight generalization bound for a learning algorithm that is uniformly stable.

Lemma 35 (Bousquet et al. (2020)) Suppose that a learning algorithm Aw, parame-
terized by w, satisfies |ℓ(AwS (x), y)− ℓ(AwS′ (x), y)| ≤ ϱ for any (x, y) ∈ X ×Y and S

.
= S′.

Assume the loss function satisfies 0 ≤ ℓ(y′, y) ≤ M for all y, y′. Then for any δ ∈ (0, 1),
with probability at least 1 − δ over S,

|R(AwS ) −RS(AwS )| ≲ ϱ log(N) log

(
1

δ

)
+ M

√
log (1/δ)

N
.

With this lemma in place, we can prove the main result in Theorem 19
Proof [of Theorem 19] Let S = {St}t∈[T ] and S′ = {S′

t}t∈[T ] be two sets of data minibatches

satisfying S
.
= S′. Note that γt ≡ γ =

√
T
n . Then according to Proposition 15 the average

outputs w̄T and w̄′
T respectively generated by Algorithm 1 over S and S′ satisfy

sup
S,S′

∥w̄T − w̄′
T ∥ ≤ 4

√
2LM

nγ
+

T∑
t=1

2

√
2ϵt
γ

≤ 5
√

2LM

nγ
=

5
√

2LM√
nT

,

where in the second inequality we have used the condition ϵt ≤ LM
4nT 2

√
N

. It follows that

|ℓ(w̄T ; z) − ℓ(w̄′
T ; z)| ≤

√
2ML∥w̄T − w̄′

T ∥ ≤ 10LM√
nT

,

where we have used ℓ(·; ·) is
√

2LM -Lipschitz with respect to its first argument (which is
implied by Lemma 21). In view of Assumption 3 we have

|r(w̄T ) − r(w̄′
T )| ≤ G∥w̄T − w̄′

T ∥ ≤ 5G
√

2LM√
nT

.

The preceding two inequalities indicate that M-SPP carried out over a given sample S

is 10LM+5G
√
2LM√

nT
-uniformly stable with respect to the composite loss function ℓ + r. By

invoking Lemma 35 to M-SPP we obtain that

|R(wS) −RS(wS)| ≲ (LM + G
√
LM) log(nT )√
nT

log

(
1

δ

)
+ M

√
log (1/δ)

nT
.

The proof is concluded.
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Vitaly Feldman and Jan Vondrák. High probability generalization bounds for uniformly
stable algorithms with nearly optimal rate. In Proceedings of the Conference on Learning
Theory (COLT), pages 1270–1279, Phoenix, AZ, 2019.

Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Competing with the empirical
risk minimizer in a single pass. In Proceedings of The 28th Conference on Learning Theory
(COLT), pages 728–763, Paris, France, 2015.

47



Yuan and Li

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization I: A generic algorithmic framework.
SIAM J. Optim., 22(4):1469–1492, 2012.

Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the
NIPS 2003 feature selection challenge. In Advances in Neural Information Processing
Systems (NIPS), pages 545–552, Vancouver, Canada], 2004.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. In Proceedings of the 33nd International Conference on
Machine Learning (ICML), pages 1225–1234, New York City, NY, 2016.

Chonghai Hu, James T. Kwok, and Weike Pan. Accelerated gradient methods for stochastic
optimization and online learning. In Advances in Neural Information Processing Systems
(NIPS), pages 781–789, Vancouver, Canada, 2009.

Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I. Jordan. Communication-efficient distributed dual coordinate
ascent. In Advances in Neural Information Processing Systems (NIPS), pages 3068–3076,
Montreal, Canada, 2014.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems (NIPS), pages
315–323, Lake Tahoe, NV, 2013.

Ellango Jothimurugesan, Ashraf Tahmasbi, Phillip B. Gibbons, and Srikanta Tirthapura.
Variance-reduced stochastic gradient descent on streaming data. In Advances in Neural
Information Processing Systems (NeurIPS), pages 9928–9937, Montréal, Canada, 2018.
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