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Abstract

We consider recovering causal structure from multivariate observational data. We assume
the data arise from a linear structural equation model (SEM) in which the idiosyncratic
errors are allowed to be dependent in order to capture possible latent confounding. Each
SEM can be represented by a graph where vertices represent observed variables, directed
edges represent direct causal effects, and bidirected edges represent dependence among
error terms. Specifically, we assume that the true model corresponds to a bow-free acyclic
path diagram; i.e., a graph that has at most one edge between any pair of nodes and is
acyclic in the directed part. We show that when the errors are non-Gaussian, the exact
causal structure encoded by such a graph, and not merely an equivalence class, can be
recovered from observational data. The method we propose for this purpose uses estimates
of suitable moments, but, in contrast to previous results, does not require specifying the
number of latent variables a priori. We also characterize the output of our procedure when
the assumptions are violated and the true graph is acyclic, but not bow-free. We illustrate
the effectiveness of our procedure in simulations and an application to an ecology data set.

Keywords: Causal discovery, Graphical model, Latent variables, Non-Gaussian data,
Structural equation model

1. Introduction

We consider the problem of discovering causal structure from multivariate data when only
observational data is available, but latent confounding may exist between the observed
variables. In our main result, we show that if the data are generated under a recursive
linear structural equation model with non-Gaussian idiosyncratic errors, the exact causal
structure can be recovered provided the confounding is limited to pairs of variables which
do not have a direct effect on each other. These models correspond to bow-free acyclic path
diagrams (BAPs).
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1.1 Linear structural equation models and graphs

Structural equation models (SEMs) are multivariate statistical models that encode causal
relationships and are popular in the social and biological sciences (Bollen, 1989; Shipley,
2016). SEMs may be formulated to explicitly include latent unobserved variables, but in
this article we consider a setup in which the latent variables have been marginalized out
and the models only explicitly refer to effects of the observed variables. This approach has,
in particular, been fruitful for causal discovery (Evans, 2019).

A linear SEM assumes that we observe a sample comprised of i.i.d. copies of a random
vector Y = (Yv : v ∈ V ) that solves the equation system

Yv =
∑
u6=v

βv,uYu + εv, v ∈ V. (1)

The direct effect of Yu on Yv is encoded by βv,u, and εv is an idiosyncratic error term of
mean zero. Note that our setup assumes throughout, and without loss of generality, that
Y is centered. We collect the effects βv,u into a p × p matrix B = (βv,u)u,v∈V and the
error terms into a vector ε = (εv)v∈V . Because the matrix B encodes the direct causal
effect of Yu onto Yv for all u, v ∈ V , we will use the term direct effects to refer to the
matrix B. Each copy of the error vector ε is drawn i.i.d. with expectation 0, but we allow
for unobserved confounding between different variables, say Yv and Yu, by allowing the
corresponding errors, εv and εu, to be dependant. In vector form (1) reads Y = BY + ε,
which is uniquely solved by

Y = (I −B)−1ε (2)

when I −B is invertible. Letting Ω := E(εεT ) = (ωv,u)u,v∈V be the covariance matrix of ε,
we obtain that the covariance matrix of the observed variables in Y is

Σ := E(Y Y T ) = (I −B)−1Ω(I −B)−T . (3)

Throughout the article, we describe SEMs using the language of graphical models or
path diagrams (Maathuis et al., 2019). We represent each SEM by a mixed graph G =
(V,E→, E↔), where each vertex v ∈ V corresponds to an observed variable, and E→ and
E↔ are sets of directed edges and bidirected edges, respectively. Let u, v ∈ V be two
distinct vertices. We represent a direct effect of u on v by the directed edge u → v ∈ E→
and say that u is a parent of child v. So, βv,u 6= 0 only if u is a parent of v. If there exists
a sequence of directed edges from u to v, we say that u is an ancestor of its descendant
v. Unobserved confounding between v and u is represented by v ↔ u ∈ E↔, and we say
that v and u are siblings. So, ωv,u 6= 0 only if u and v are siblings. The sibling relation is
symmetric; i.e., u being a sibling of v implies that v is a sibling of u. We denote the sets
of parents, children, ancestors, descendants, and siblings of v as pa(v), ch(v), an(v), de(v),
and sib(v), respectively. We let An(v) := an(v) ∪ {v}. The problem of interest is then to
infer the graph corresponding to a given data-generating SEM.

We assume that the true model is a recursive SEM. In graphical terms, this means that
the mixed graph G = (V,E→, E↔) corresponding to the model does is acyclic; i.e., there
are no directed cycles such that one can follow a directed path which begins and ends at
the same vertex. There then exists a (not necessarily unique) total ordering of V under
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Figure 1: The graph on the left has a bow between 2 and 3 so it is not a BAP. The graph on
the right has a bidirected edge between 1 and 3, but since there is no directed edge between
1 and 3, this does not constitute a bow, and thus the graph is a BAP.

which u ≺ v implies v 6∈ an(u). If, in addition, the graph G contains no bidirected edges,
i.e., E↔ = ∅, then G is a directed acyclic graph (DAG). A bow in G is a subgraph of two
vertices u and v that contains both a directed and a bidirected edge; i.e., u↔ v and either
u → v or v → u. In this article, we primarily consider mixed graphs that are acyclic and
do not contain bows, though in Section 5 we also consider the case where the true graph
may contain bows. Following Drton et al. (2009), we refer to these graphs as bow-free
acyclic path diagrams (BAPs). Said explicitly, a mixed graph is a BAP if (1) it is acylic
and (2) for any u, v such that u ∈ sib(v), u → v 6∈ E and v → u 6∈ E; Figure 1 gives a
simple example of graphs with and without bows. Bow-free structure can arise in particular
through conditional randomization of treatments; compare Figure 1 in Drton et al. (2009).
The class of BAPs was also considered, e.g., by Brito and Pearl (2002) and Nowzohour et al.
(2017).

1.2 Previous work

Most work on causal discovery with latent variables focuses on recovering causal structure
in the form of an ancestral graph. For settings without selection effects, as considered
here, ancestral graphs are special cases of BAPs that satisfy the additional restriction that
an(v)∩sib(v) = ∅ for all nodes v. By adding bidirected edges to E↔, every ancestral graph G
can be transformed into a maximal ancestral graph (MAG) while preserving the conditional
independence relations in G. Gaussian MAG models can then be entirely characterized by
conditional independence (Richardson and Spirtes, 2002). However, for any MAG there are
generally other MAGs that are Markov equivalent, i.e., encode the same set of conditional
independence relations. Markov equivalent MAGs have the same adjacencies but the edges
may be of different orientations or types. The Markov equivalence class of any MAG can
be compactly represented by a partial ancestral graph (PAG) (Ali et al., 2009).

Spirtes et al. (2000) propose the Fast Causal Inference algorithm (FCI) to estimate
the PAG corresponding to the underlying causal graph. Zhang (2008) added additional
orientation rules such that the output of FCI is complete. Colombo et al. (2012), Claassen
et al. (2013), and Chen et al. (2021) develop additional variants—RFCI, FCI+, and lFCI,
respectively—which only require a polynomial number of conditional independence tests
if the degree of the graph is bounded, or in the last case exploit possible local separation
properties. Triantafillou and Tsamardinos (2016) select a MAG via a greedy search which
maximizes a penalized Gaussian likelihood, and Bernstein et al. (2020) propose a greedy
search over partial orderings of the variables. Efforts are also underway to refine the picture
provided by conditional independence by considering additional non-parametric constraints
imposed by SEM (Verma and Pearl, 1990; Shpitser et al., 2014; Evans, 2016). In a different
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vein, Nowzohour et al. (2017) propose a greedy search which assumes that the true model
is a linear SEM with Gaussian errors which corresponds to a BAP.

The previously mentioned methods have enjoyed great success but operate in a regime
in which only an equivalence class of graphs (e.g., via the PAG) can be discovered and
different graphs in the equivalence class may have conflicting causal interpretations. In
contrast, Shimizu et al. (2006) show that when the true model is a recursive linear SEM
with non-Gaussian errors, the exact graph—not just an equivalence class—can be identified
from observational data using independent component analysis (ICA). Instead of ICA, the
subsequent DirectLiNGAM (Shimizu et al., 2011) and Pairwise LiNGAM (Hyvärinen and
Smith, 2013) methods use an iterative procedure to estimate a causal ordering. Wang and
Drton (2020) give a modified method that is also consistent in high-dimensional settings in
which the number of variables p exceeds the sample size n, and Tramontano et al. (2022)
consider high-dimensional polytree models. However, all of the above methods for the linear
non-Gaussian acyclic model (LiNGAM) do not allow for possible latent confounding.

Hoyer et al. (2008) consider the setting where the data is generated by a LiNGAM model,
but some variables are unobserved. Using existing results from overcomplete ICA, they show
that the canonical DAG—roughly a DAG in which all unobserved variables have no parents
and at least two children—can be identified when all parent-child pairs in the observed set
are unconfounded. However, the result critically requires the number of latent variables
in the canonical model to be known in advance and requires all unobserved confounding
to be linear. For example, suppose v ∈ sib(u), and the confounding is caused by a hidden
variable Yh. Then a generative procedure where ε̌v ⊥⊥ ε̌u, εv = ε̌v+αvYh, and εu = ε̌u+αuYh
would be allowed; however, εu = ε̌u + αuY

2
h would be precluded. Furthermore, even when

the model is correctly specified, Shimizu and Bollen (2014) state “current versions of the
overcomplete ICA algorithms are not very computationally reliable since they often suffer
from local optima,” and indeed Hoyer et al. (2008) use a maximum likelihood procedure
with mixtures of Gaussians instead of overcomplete ICA in their simulations.

To avoid using overcomplete ICA and improve practical performance, Entner and Hoyer
(2010) and Tashiro et al. (2014) both propose procedures which test subsets of the observed
variables and seek to identify as many pairwise ancestral relationships as possible; i.e., either
(1) u ∈ an(v), (2) v ∈ an(u), or (3) v 6∈ an(u) and u 6∈ an(v). Entner and Hoyer (2010)
apply ICA to all subsets of the observed variables which do not have latent confounding.
Tashiro et al. (2014) apply an iterative procedure similar to DirectLiNGAM to each subset
of variables. They show that the procedure used for certifying ancestral relationships is
sound in the presence of confounding, but do not characterize the class of graphs which can
be identified. In the appendix, we show a simple ancestral graph that cannot be discovered
using the method of Entner and Hoyer (2010). For ParcelLiNGAM, we show in Section 2
that all ancestral relationships can indeed be discovered when the true causal graph itself
is ancestral, but that the method will not identify all ancestral relationships for any non-
ancestral BAP.

The identifiability results of Section 3 and 4 are found in Chapter 4 of Wang (2018),
the Ph.D. dissertation of the first author. Maeda and Shimizu (2020) propose Repetitive
Causal Discovery (RCD) for discovering mixed graphs. RCD uses a causal functional model-
based algorithm, and similar to our approach—but in constrast to Tashiro et al. (2014)—
RCD iteratively uses previously discovered structure to inform later steps. However, in
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Section 2 we show that RCD is not able to identify all BAPs. Similar to Hoyer et al.
(2008), Salehkaleybar et al. (2020) use overcomplete ICA and thus crucially require all
confounding to be linear. They extend the results of Hoyer et al. (2008) by showing that
under weak conditions, the total number of variables (unobserved and observed) in the
system can be identified and a causal ordering can be identified from population quantities.
However, in order to identify causal effects (i.e., determine the graph beyond just ancestral
relations), they require a condition which precludes many BAPs (Salehkaleybar et al., 2020,
Assumption 2).

1.3 Contribution

As our main contribution, we show that when the data are generated by a linear non-
Gaussian SEM that corresponds to a BAP, then the exact BAP—not just an equivalence
class—can be consistently recovered. This implies that the causal effects can also be iden-
tified. Specifically, we show how to recover the BAP from higher-order moments, avoiding
the use of overcomplete ICA in contrast to Hoyer et al. (2008) and Salehkaleybar et al.
(2020). Thus, it does not require linearity in how the observed variables depend on the
unobserved variables. Our result also does not require knowledge of the number of latent
variables or knowledge about the distribution of the errors. It does, however, rely on a
genericity assumption for the linear coefficients and error moments that, in particular, rules
out Gaussian behavior of the considered moments.

The Bow-free Acyclic non-Gaussian (BANG) method we propose for recovery of BAPs
uses a series of independence tests between (suitably estimated) regressors and residuals
to certify causal structure. When the maximum in-degree (both directed and bidirected
edges) is bounded, the total number of tests performed is bounded by a polynomial in
the number of variables considered. We also characterize what the BANG procedure will
return—given population values—when the model is misspecified and the true generating
procedure corresponds to a graph with bows. In simulations, we confirm that the method
reliably discovers exact causal structure when given a large enough sample and outperforms
existing methods in some settings.

As a secondary contribution, we also show that the previously proposed ParcelLiNGAM
(Tashiro et al., 2014) is indeed sound and complete for ancestral graphs. We also show
that—in contrast to BANG—ParcelLiNGAM and RCD (Maeda and Shimizu, 2020) are
not able to identify every BAP.

1.4 Preliminaries

Throughout, we often let a node v ∈ V stand in for the variable Yv. We use superscripts
when referring to i.i.d. copies of random variables; i.e., Y (i) refers to the ith copy of random
variable Y . For a set C ⊂ V , we let YC = (Yc : c ∈ C) be the vector of variables indexed
by an element of C. Furthermore, for a matrix B and index sets R and C, let BR,C be
the submatrix of B corresponding to the Rth rows and Cth columns. For some positive
integer z, we also let [z] indicate the set {1, . . . , z}. When applying a function to a set
of arguments, we mean the union of the values obtained by applying the function to each
element; e.g., when C is a set of nodes, pa(C) =

⋃
c∈C pa(c). In addition, in a slight abuse
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of notation, we will at times use the notation for a path to refer to the set of nodes on that
path; i.e., ` = v1 → v2 → v3 may also refer to the set {v1, v2, v3}.

The notions of sound (i.e., correct) and complete (i.e., maximally informative) are often
used to describe the output of causal discovery methods based on conditional independence
tests (Spirtes et al., 2000). We adapt these notions for discovery of ancestral relationships in
a mixed graph G. Let ≺0 be a (potentially partial) ordering of V . We say that the ordering
≺0 is sound with respect to ancestral relationships in G if u ≺0 v implies that v 6∈ an(u)
holds. We say that the ordering ≺0 is complete with respect to ancestral relationships in G
if u ∈ an(v) implies u ≺0 v.

2. Ancestral graphs

Before discussing the main results, we first build intuition for causal discovery with non-
Gaussian data by considering the simpler setting of ancestral graphs. We show that given
population information, the previously proposed ParcelLiNGAM1 procedure (Tashiro et al.,
2014) is sound and complete for ancestral relationships when the true graph is ancestral.
However, it is not complete for certifying ancestral relationships in non-ancestral BAPs.
We also give an example of a BAP which the RCD method (Maeda and Shimizu, 2020) can
not identify.

2.1 Determining causal relationships in ancestral graphs

Recall from (2) that Y = (I −B)−1ε so that Yv is a linear combination of εs for all s such
that

[
(I −B)−1

]
v,s
6= 0. For generic linear coefficients, this set is equal to an(v). Thus,

for c 6∈ sib(v) ∪ de(sib(v)) ∪ de(v), the variable Yc is a linear combination of error terms
which are independent of εv, i.e., Yc ⊥⊥ εv. Thus, for v ∈ V and a set C ⊆ V \ {v} such
that pa(v) ⊆ C ⊆ V \ [sib(v)∪ de(sib(v))∪ de(v)], the population regression coefficients for
predicting v from C are

DT
v,C =

[
E
(
YCY

T
C

)]−1 E (YCYv)

=
[
E
(
YCY

T
C

)]−1 E
(
YC(Y T

C B
T
v,C + εv)

)
=
[
E
(
YCY

T
C

)]−1 [E (YCY T
C

)
BT
v,C + E (YCεv)

]
= BT

v,C ,

(4)

where Bv,C = (βv,u)u∈C is comprised of the direct effects of C onto v. The last equality
in (4) crucially requires that E (YCεv) = 0, as implied by the independences pointed out
above. The regression residual ηv.C obtained from the coefficients in Dv,C then satisfies

ηv.C := Yv −Dv,CYC = Yv −Bv,pa(v)Ypa(v) = εv. (5)

As noted, ηv.C is independent of the regressors YC .

In contrast, if C contains a descendant of v, a sibling of v, or a descendant of a sibling
of v, then in general E (YCεv) 6= 0, Dv,C 6= Bv,C , and ηv.C 6= εv. It follows, in general,
that there exists some c ∈ C such that ηv.C 6⊥⊥ Yc. Although the first order conditions

1. Tashiro et al. (2014) give two variants of the ParcelLiNGAM algorithm which they label Algorithm 2
and 3. Algorithm 3 requires less computation and applies Algorithm 2 to a subset of the variables.
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of the least squares criterion ensure that regressors and residuals are uncorrelated, when
the errors are non-Gaussian, dependence can still be detected by using a non-parametric
independence test (Gretton et al., 2005; Székely and Rizzo, 2009; Bergsma and Dassios,
2014; Pfister et al., 2018) or examining the higher order moments—e.g., E(Y k

c εv) for k > 1
(Wang and Drton, 2020). Non-Gaussian errors are crucial because for a Gaussian random
variable, uncorrelated and independent are equivalent so the residuals are independent of
the regressors regardless of C. But when the errors are non-Gaussian, the independence of
residuals and regressors can be used to certify that C ⊆ V \ [sib(v) ∪ de(sib(v)) ∪ de(v)].

This idea can be directly applied to discover a topological ordering of the variables

by finding the largest set C
(max)
v such that the residual when regressing v onto C

(max)
v is

independent of Y
C

(max)
v

. When G is ancestral then an(v) ⊆ C(max)
v = V \[sib(v)∪de(sib(v))∪

de(v)]. Thus, to form ≺̂, an initial estimate of a topological ordering, we can set c≺̂v for

all c ∈ C(max)
v . When there is no unique total ordering, there may be pairs u, v such that

u ∈ C(max)
v \ an(v) and v ∈ C(max)

u \ an(u). In this case, we can simply remove either (or
both) u≺̂v or v≺̂u from the initial ordering to obtain a relation that is a valid ordering.

The basic intuition of certifying an ancestral relationship by testing independence of
residuals and regressors motivates the DirectLiNGAM (Shimizu et al., 2011) and Pairwise
LiNGAM (Hyvärinen and Smith, 2013) procedures. To begin, one can select a root node,
one without any parents or latent confounding, by finding a variable which is independent of
all the residuals formed by regressing another variable onto it. Once a root is identified, its
effect on the remaining variables can be removed and the root finding procedure recurs on
the sub-graph of the remaining variables. The sequence of selected roots forms a topological
ordering of the variables. An ordering of the nodes can also be identified in the opposite
direction by finding sinks—nodes which have no children or latent confounding—by testing
whether the residuals of a variable, when regressed onto all other variables, is independent
of all other variables. Once a sink is identified, we simply recur onto the sub-graph of the
remaining variables. We use top-down to refer to a procedure which successively identifies
roots, and we use bottom-up to refer to a procedure which successively identifies sinks.

When we allow for latent confounding, a (certifiable) root or sink may not exist in the
graph or in one of subsequent sub-graphs considered, so the Pairwise lvLiNGAM (Entner
and Hoyer, 2010) and ParcelLiNGAM (Tashiro et al., 2014) procedures aim to estimate
ancestral relationships between pairs of variables rather than a total ordering. We show in
the appendix that lvLiNGAM may fail to discover even simple ancestral graphs, so we focus
our discussion primarily on ParcelLiNGAM. Roughly speaking, ParcelLiNGAM applies both
the top-down and bottom-up procedure to all subsets of V and certifies as many ancestral
relationships as possible. Tashiro et al. (2014) show that the certification procedure is sound,
but do not characterize a class of graphs for which the entire ParcelLiNGAM procedure is
complete. In Lemma 1, we show that given population values, ParcelLiNGAM is indeed
sound and complete for all ancestral graphs. Details are left for the appendix, but in short,
we show that when a graph is ancestral, applying the bottom-up procedure to the subset
An(v) will identify that an(v) ≺ v for all v.

Lemma 1 Suppose Y is generated by a recursive linear SEM that corresponds to an ances-
tral graph G. With generic model parameters and population information (i.e., the distri-
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1 2 3 4

(a)

1 2 3 4

(b)

Figure 2: The graph in (a) is a non-ancestral BAP which would be correctly identified by
BANG but not Pairwise LvLiNGAM, ParcelLiNGAM, or RCD. The graph in (b) shows the
graph which would be identified by Pairwise LvLiNGAM, ParcelLiNGAM, and RCD.

bution of Y ), the ordering, ≺̂, returned by Algorithm 2 of ParcelLiNGAM (Tashiro et al.,
2014) is sound and complete for ancestral relationships in G.

2.2 Non-ancestral graphs

When G is not ancestral, the set of ancestral relationships that are certified by the described
approach is still sound, but in general it is not complete. Indeed, in a non-ancestral graph,
there exists some v ∈ V such that sib(v) ∩ an(v) 6= ∅. Thus, even if c ∈ C = pa(v), it
is generally not true that εv ⊥⊥ Yc. This implies that E (YCεv) 6= 0 and the population
regression coefficients Dv,C no longer coincide with direct effects Bv,C . Indeed, in Lemma 2
we show that ParcelLiNGAM is no longer complete for non-ancestral BAPs; i.e., in every
graph G which is bow-free but not ancestral, there are ancestral relations which will not
be identified. We also show in the appendix that RCD (Maeda and Shimizu, 2020) cannot
identify the BAP shown in Figure 2.a.

Lemma 2 Suppose Y is generated by a recursive linear SEM that corresponds to a graph G
which is bow-free but not ancestral. With generic parameters and population information,
both Algorithm 2 and Algorithm 3 of ParcelLiNGAM (Tashiro et al., 2014) will return a
partial ordering which is sound, but not complete for ancestral relationships in G.

As a preview of the work ahead, in Example 1, we exhibit some of the complexities of
discovering a non-ancestral graph by testing independence of residuals and regressors.

Example 1 Consider discovering ancestral relationships in the BAP displayed in Fig-
ure 2.a.

Nodes 1 and 2: For this unconfounded pair, the direct approach of regressing Y2 onto Y1

yields the regression coefficent E(Y1Y2)/E(Y 2
1 ) = β2,1 and the residual Y2 − β2,1Y1 = ε2 is

independent of the regressor Y1 = ε1. This independence certifies precedence of 1 before 2
in the graph, a relationship that would be discovered by ParcelLiNGAM and RCD.

Nodes 2 and 3: For general distributions in the model, there will not exist d3,2 ∈ R such
that Y3 − d3,2Y2 ⊥⊥ Y2 since Y2 depends on ε1 and 1 ∈ sib(3). However, we can consider
replacing Y2 by an adjusted regressor. Having established that 1 → 2, we may take the
adjusted regressor to be the residual Y2 − β2,1Y1 = ε2 found when regressing Y2 onto Y1 in
the above first step. The choice d32 = β3,2 then yields that Y3−d3,2ε2 = ε3 +β3,2β2,1ε1 ⊥⊥ ε2.
This independence establishes that 2 precedes 3.
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Nodes 3 and 4: At this point the latent confounding is such that the strategy considered
so far fails. Indeed, for a general distribution in the model, there is no coefficient d43 such
that the residual Y4 − d43Y

′
3 is independent of the adjusted regressor Y ′3 = Y3 − β32ε2 =

ε3 + β32β21ε1 from the previous step (since 1 ∈ sib(4)). Other regressors such as Y ′3 = Y3

or Y ′3 = ε3 also do not yield independence as 1 ∈ sib(4) or 1 ∈ sib(3), respectively.
Nevertheless, we can progress by giving up on the regression focus. Observe instead that

setting d4,3 = β4,3 yields ε3 ⊥⊥ ε4 = Y4 − d4,3Y3. In this case, the independence test focuses
on the error term and not the regressor and is able to certify that 3 precedes 4. In the
sequel, we will show that this alternative type of independence certificate is in fact sound
and complete for parental relationships in BAPs. In the present example, since there are
no other parental relationships that can be certified, but dependencies still remain, we may
conclude (correctly) that all other pairs are siblings.

3. Bow-free acyclic path diagrams

We now turn to a larger class of graphs, namely, graphs that are bow-free and acyclic.
These are then not necessarily ancestral. We begin by presenting results that will be used
to motivate the discovery algorithm presented in subsequent Section 4. Specifically, the
results in this section provide a certificate of ancestral relationships. We establish this
certificate by showing that an identification formula produces correct direct causal effects
when it is applied to suitable sets of ancestors and fails to do so otherwise. The latter
statement requires assumptions of genericity of the considered distribution. The certificate
is derived from a series of lemmas that investigate specific aspects. Most proofs in this
section are deferred to the appendix.

3.1 Comments on genericity assumptions

Throughout, we will consider higher order moments as a proxy for independence; i.e., for
random variables X and Z with E(X) = E(Z) = 0 and K > 2, we will use E(XK−1Z) = 0
as a stand-in for X ⊥⊥ Z and E(XK−1Z) 6= 0 as a stand-in for X 6⊥⊥ Z. For fixed K, the
vanishing of moments and independence are equivalent for random variables derived using
generic model parameters, which are the matrix B and the moments of ε. Crucially, the
moments are polynomials of the model parameters which will allow us to leverage basic
algebraic results to show identifiability. In particular, as done above, we make statements
which hold for generic parameters. By generic, we mean that the parameters for which the
statements do not hold have measure 0 with respect to Lebesgue measure. In the sequel,
we will fix K > 2, and consider moments of the form E(XK−1Z) which depend only on
the moments of ε up to degree K; i.e., E

(∏
v∈V ε

rv
v

)
for all r ∈ Zp≥0 with ‖r‖1 ≤ K. Thus,

when we refer to generic error moments, we mean generic values for the error moments up
to degree K.

Readers may be familiar with genericity assumptions in the form of faithfulness condi-
tions that in simpler settings may be phrased in terms of conditional independence con-
straints. In our more involved setting, an exact characterization of the set of parameters for
which the statements fail is difficult—this is analogous to the situation in Brito and Pearl
(2002) or also Foygel et al. (2012). Although, in principle, one could recursively collect
polynomials whose joint non-vanishing is sufficient for our conclusions to hold, this provides
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little additional insight. This said, existing results on distributional equivalence of BAPS
with Gaussian errors (Nowzohour, 2017) do imply that error moments which correspond
to a Gaussian distribution must be avoided. Put another way, fixing the covariance for a
multivariate Gaussian determines all higher order moments. Thus, it is necessary for identi-
fication that the higher-order moments of the data generating distribution be different than
the higher-order moments of the Gaussian distribution which shares the same covariance as
the data generating distribution.

In addition, our genericity assumptions must avoid parameter values for which the direct
effect of u on v—in some marginal model—vanishes for some u ∈ pa(v). This is like
a faithfulness assumption for Gaussian graphical models where certain partial correlations
which are generally non-zero may vanish for specific configurations of the model parameters.
However, the set of parameters for which the partial correlations vanish is a set of measure
zero with respect to Lebesgue measure. In contrast to the Gaussian model which is fully
defined by the first and second moments, we explicitly consider higher order moments. Thus
our notion of genericity or faithfulness is also with respect to higher order moments.

3.2 Setup

We now define and review some additional notions that will be helpful for the upcoming
results. Specifically, we introduce the concept of marginal direct effects, which is used in
Section 3.3 to show that the direct effect of a parent onto its child does not disappear even
in sub-models where some observed variables have been marginalized away. In addition,
in Algorithm 1 defined in Section 4, we keep a running estimate of the direct effects in
a matrix D; i.e., D is an estimate of B which we update iteratively. In this section, we
describe the involved updates to D, whose entries can be seen as marginal direct effects for
some particular marginal model.

Consider the BAP G = (V,E→, E↔) and corresponding parameter B = (βu,v)u,v∈V . For
a directed path l = v1 → . . .→ vs, define the pathweight of l as W (l) :=

∏s−1
j=1 βvj+1,vj . Let

Lv,u be the set of all directed paths from u to v in E→. Given a set C with u ∈ C, we

can partition Lv,u into disjoint sets as Lv,u =
⋃
c∈C L

(c)
v,u(C), where L(c)

v,u(C) is the subset of

paths in Lv,u such that c is the last node in C to appear on the path. Thus, L(u)
v,u(C) is also

the set of paths from u to v which do not pass through C \ u.
For a set A ⊂ V and u, v ∈ A, let the marginal direct effect be the direct effect between

u, v in the sub-model obtained by marginalizing out all variables in Ac := V \ A. For
convenience, let Λ = I − B. Then the marginal direct effects for all u, v ∈ A are encoded
by the matrix

B̃(A) = I −
[(

Λ−1
)
A,A

]−1
= I −

[(
ΛA,A − ΛA,Ac(ΛAc,Ac)−1ΛAc,A

)−1
]−1

= I − ΛA,A − ΛA,Ac(ΛAc,Ac)−1ΛAc,A.
(6)

In particular, B̃(A)v,u = βv,u +
∑

s∈Ac βv,s
∑

t∈Ac π′s,tβt,u where

π′s,t = ((ΛAc,Ac)−1)s,t

is the total effect of t on s in the sub-graph of G induced by Ac. Graphically, this total
effect corresponds to the sum of the pathweights of all paths from t to s which only pass
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through nodes in Ac. This implies that

B̃(C ∪ {v})v,u =
∑

l∈L(u)v,u(C)

W (l). (7)

Moreover, this implies that for u, v ∈ A, B̃(A)v,u 6= 0 only if u ∈ an(v).
Let D ∈ Rp×p be some estimate of the direct effects B; the support of D and B may

differ. Let E
(D)
→ be the set of directed edges defined by the support of D. Define the pseudo-

parents of v given D, paD(v), to be the set of parents of v in E
(D)
→ and define the pseudo-

ancestors of v given D, anD(v), to be the ancestors of v in E
(D)
→ and AnD(v) = anD(v)∪{v}.

Typically we will only consider matrices D such that paD(v) ⊆ an(v); i.e, Dv,u 6= 0
only if u ∈ an(v). However, it will sometimes be useful to place an additional restriction on
D. Consider a family of sets C = (Cv)v∈V where Cv ⊆ V \ {v}. Such a family defines the
matrix-valued function HC which maps B ∈ Rp×p to D ∈ Rp×p given by

Dv,u =

{
B̃(Cv ∪ {v})v,u if u ∈ Cv,
0 else.

(8)

Thus, for any D which is the output of HC , the vth row corresponds to the marginal direct
effects of the sub-model induced by Cv ∪ {v}. Each element Dv,u is the sum of pathweights
for a (not necessarily strict) subset of the paths from v to u, and thus is a polynomial in
the elements of B. The specific paths over which the sum is taken—and thus specific form
of the polynomial—depends on C. Finally, let D be the set of functions HC obtained from
all families C = (Cv)v∈V with Cv ⊆ V \ {v}.

3.3 Certifying ancestral relationships in non-ancestral graphs

In general, we use the symbol γ to denote residuals. Specifically, for c ∈ V , let γc(D) denote
the resulting residual of variable c when positing D to be the matrix of direct effects; i.e.

γc(D) = Yc −Dc,V YV . (9)

For v ∈ V , we introduce the debiased direct effect δv(C,A, S,D) as a function of sets C
and A with C ⊆ A ⊆ V \ {v} and matrices S,D ∈ Rp×p, where S is the (possibly sample)
covariance of Y :

δv(C,A, S,D) =
{

[(I −D)C,ASA,C ]−1 (I −D)C,ASA,v

}T
. (10)

Overloading the notation slightly, let γv(C, S,D) denote the residual when using the
debiased direct effect in (10) calculated with C, S and D, and setting A = AnD(C); i.e.,

γv(C, S,D) = Yv − δv(C,AnD(C), S,D)YC . (11)

When the arguments for γc(D) and γv(C, S,D) are clear from the context, we will suppress
the additional notation.

Lemma 3 Suppose Y is generated by a linear SEM with parameters B and Ω whose sup-
ports respect the sparsity imposed by the BAP G. For node v ∈ V and sets of nodes
C ⊆ A ⊆ V \ {v}, suppose

11
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(i) pa(v) ⊆ C ⊆ an(v) \ sib(v),

(ii) A = An(C),

(iii) DA,A = BA,A, and

(iv) SA∪{v},A∪{v} = ΣA∪{v},A∪{v}.

Then δv(C,A, S,D) = Bv,C .

Proof For any v ∈ V and set C such that pa(v) ⊆ C ⊆ an(v) \ sib(v), it follows from (3)
that [

(I −B)Σ(I −B)T
]
u,v

= ωu,v = 0

for all u ∈ C because C ∩ sib(v) = ∅. Since Bv,V \C = 0 and BC,V \an(v) = 0, this yields

Bv,CΣC,an(v)(I −BT )an(v),C = Σv,an(v)(I −BT )an(v),C ,

so that
Bv,C = Σv,an(v)(I −BT )an(v),C

(
ΣC,an(v)(I −BT )an(v),C

)−1
.

Lemma 3 states that given the population covariance and direct effects between vertices
which are “causally upstream” of v, selecting appropriate sets C and A such that pa(v) ⊆
C ⊆ an(v) \ sib(v) and A = An(C) allows recovery of the direct effect of C onto v. Since δv
only involves matrix inversion and multiplication, it is a rational function of the elements
of S and D. The specific form of the function is determined by the sets C and A.

We use the name debiased direct effect because δv can be calculated by the following
alternative procedure. First form the errors εC by regressing each c ∈ C onto its parents.
and regress Yv onto εC . This would yield the total effect of C on v, but since Yv contains
terms involving εA, it will be biased by dependence between εC and εA. Given BA,A,
however, ΩA,A can be computed from Σ. Thus, the naive regression coefficients can be
debiased to give the true direct effects. The assumption that C ∩ sib(v) = ∅ ensures that
we do not need to also correct for dependence between εC and εv which we would not be
able to calculate with the given information.

Of course, in practice, we do not a priori know the relationships between candidate sets
C and v, but the following results show we can certify whether we have selected appropriate
sets C and A. Specifically, Algorithm 1, which is proposed in Section 4, will certify that
C ⊆ an(v) \ sib(v) by testing if

E
(
γc(D)K−1γv(C, S,D)

)
= 0 ∀c ∈ C. (12)

Corollary 4 Suppose the conditions in Lemma 3 hold, then for every c ∈ C, we have
γc(D) ⊥⊥ γv(C, S,D) and E(γK−1

c (D)γv(C, S,D)) = 0.

Proof By assumption DC,A = BC,A so that γC(D) = εC . In addition, Lemma 3 implies
that δ(C,A, S,D) = Bv,C , so γv(C, S,D) = εv. Since we assume C ∩ sib(v) = ∅, it holds
that γc ⊥⊥ γv for all c ∈ C.
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12 3 4 5

Figure 3: When D2,1 = β2,1 and D5,4 = β5,4, naively testing (12) would mistakenly certify
2 and 5 as ancestors of 3.

In Algorithm 1, we use (12) as a certificate that C ⊆ an(v)\sib(v), and indeed Corollary 4
shows that C ⊆ an(v)\sib(v) is part of a set of sufficient conditions for (12) to hold. However,
it is not necessary and more care is needed to ensure that (12) will not mistakenly certify
a set C if C 6⊆ an(v) \ sib(v). We first state Lemma 5 which gives a necessary condition
for (12) that will be useful in deriving subsequent results.

Lemma 5 Let v ∈ V and C ⊆ V \ {v}. Suppose D ∈ Rp×p such that Ds,t 6= 0 only if
t ∈ an(s). Then, for generic B and error moments, if δv(C, anD(C), S,D) 6= B̃(C∪{v})v,C ,
then E(γc(D)K−1γv(C, S,D)) 6= 0 for some c ∈ C.

Lemma 8 shows that if C ∩ sib(v) 6= ∅, then there exists some c ∈ C, such that
E(γK−1

c (D)γv(C, S,D)) 6= 0. Ensuring that we do not mistakenly certify non-ancestors
of v is a bit more delicate because, depending on D, (12) may actually hold for some set
C 6⊆ an(v) when C ∩ sib(v) = ∅. In particular there are two cases of potential ways a set
can be misscertified. First, C may contain a node c 6∈ an(v) ∪ de(v). Alternatively, C may
contain a descendant of v which already has the effect of v removed; for instance, for some
c such that v ∈ an(c) \ pa(c), if Dc,V = Bc,V then γc(D) will not contain any term with εv.
Consider the example in Figure 3, and let D2,1 = β2,1 and D5,4 = β5,4. The set C = {2, 5}
would satisfy (12) for v = 3 because 2 is neither an ancestor or descendant of 3 and 5 is an
ancestor of 2, but adjusting 5 by 4 removes the effect of 3.

More generally, suppose that C ∩ sib(v) = ∅ but C 6⊆ an(v), and let C1 = C ∩ an(v)
and C2 = C \ an(v). Thus, C1 should rightfully be certified, but C2 should not. However,
if D is such that E(γc(D)K−1γv(C, S,D)) = 0 for all c ∈ C, then C (including C2) could be
mistakenly certified as a subset of an(v)\sib(v). Fortunately, Lemma 6 implies that instead
of testing all possible sets C ⊆ V \ {v}, we can use an additional pre-screening procedure
to filter out problematic sets, C 6⊆ an(v) which would otherwise satisfy (12).

Specifically, Lemma 6 implies that

E(γc(D)K−1γv(C1, S,D)) = 0 ∀c ∈ C1. (13)

Thus, we still would have certified that C1 ⊆ an(v) \ sib(v). Furthermore, after adjusting v
for C1, the resulting residuals of v—γv(C1, S,D)—would also be independent of γc for all
c ∈ C2; i.e.,

E(γc(D)K−1γv(C1, S,D)) = 0 ∀c ∈ C2. (14)

Thus, we can screen out non-ancestors of v which might otherwise be miscertified, by
removing any c ∈ C such that for some C ′ ⊆ C \ {c},

E(γc(D)K−1γv(C
′, S,D)) = 0. (15)
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This is implemented in Algorithm 2. A concern is then the question whether the pre-
screening procedure implemented in Algorithm 2 may mistakenly rule out a parent or sibling
of v. To show that this does not happen for generic parameters, we derive Lemma 7 below.

Lemma 7 and 8 both require that D = HC(B); i.e., for each v ∈ V , Dv,C is the marginal
direct effect of C on v where C is the set of non-zero entries in Dv,V . In Algorithm 3, we
only update Dv,C to δv(C,A, S,D) when E(γK−1

c (D)γv(C, S,D)) = 0 for all c ∈ C. As
shown by Lemma 5, this implies that δv(C,AnD(C), S,D) is the marginal direct effect of C
on v so that the updated D = HC(B) for some HC ∈ D.

Lemma 6 Consider v ∈ V and C ⊆ V \ {v}. Let D ∈ Rp×p such that Ds,t 6= 0 only if
t ∈ an(s). Suppose C 6⊆ an(v), but that E(γc(D)K−1γv(C, S,D)) = 0 for all c ∈ C. Then
for generic B and error moments, C1 = C ∩ [an(v) \ sib(v)],

E(γc(D)K−1γv(C1, S,D)) = 0 ∀c ∈ C.

Lemma 7 Suppose D = HC(B) for some HC ∈ D with C = (Cs)s∈V such that Cs ⊆
an(s) \ sib(s). Let v ∈ V be such that we have E(γc(D)K−1γv(paD(v), S,D)) = 0 for all
c ∈ paD(v). If q ∈ (pa(v) \ paD(v)) ∪ sib(v), then for generic B and error moments,
E
(
γq(D)K−1γv(D)

)
6= 0.

Lemma 8 Consider v ∈ V and C such that C ⊆ V \ {v}. Suppose D = HC(B) for
some HC ∈ D with C = (Cs)s∈V such that Cs ⊆ an(s) \ sib(s) for all v ∈ V . If C ∩
sib(v) 6= ∅, then for generic B and error moments, there exists some q ∈ C such that
E
(
γq(D)K−1γv(C,Σ, D)

)
6= 0.

Thus far we have been concerned with discovering sets which contain ancestors but not
siblings of some node v. Corollary 9 shows that when we have identified such a set which
is also a superset of the parents of v, we can prune away ancestors which are not parents.
This motivates the pruning procedure described in Algorithm 4.

Corollary 9 Suppose D = B. For v ∈ V and generic B and error moments, suppose
pa(v) ⊆ C ⊆ an(v) \ sib(v). If q ∈ C \ pa(v), then for all c ∈ C

E(γc(D)K−1γv(C \ {q},Σ, D)) = 0. (16)

If q ∈ pa(v), then there exists some c ∈ C such that

E(γc(D)K−1γv(C \ {q},Σ, D)) 6= 0. (17)

4. Graph estimation algorithm

Using the claims established above, we present the Bow-free Acyclic non-Gaussian (BANG)
procedure in Algorithm 1 which completely identifies the underlying causal structural of the
linear SEM when it corresponds to a BAP.

The algorithm starts with a complete bidirected graph so that the posited siblings for
each node, ŝib(v), are initialized to V \ v and the posited parents p̂a(v), are initialized to ∅.
The method then iteratively certifies ancestors which are not siblings by considering whether
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(12) holds for progressively larger sets. When we certify that C ⊆ an(v)\ sib(v), C is added

to p̂a(v), C is removed from ŝib(v), and D is updated. This procedure is repeated until no
additional ancestral relationships can be certified. Any remaining dependency between the
residuals are then assumed to be due to a bidirected edge. In the algorithm, whenever we
specify a test for X ⊥⊥W , we mean testing E(XK−1W ) = 0 for some prespecified K > 2.

4.1 Graph identification

We first show that when given population values, the BANG procedure will return the
correct graph.

Theorem 10 Suppose Y is generated by a linear SEM which corresponds to a BAP G.
Then for generic choices of B and error moments, Algorithm 1 will output Ĝ = G when
given population moments of Y .

Proof The lemmas in Section 3 make statements about different individual quantities
being non-zero for generic B and error moments. Since we will only consider a finite set of
these quantities, the union of the null sets to be avoided for each individual quantity is also
a null set. Thus, in this proof, we may assume that quantities that are generically non-zero
are all actually non-zero.

Our proof proceeds by induction. In particular, let σ be a topological ordering consistent
with the directed portion of underlying graph G; i.e., σ(u) < σ(v) implies that u 6∈ de(v).
Let the zth induction step be defined as an entire step of testing progressively larger sets
C until all parents of v = σ−1(z) have been discovered. Thus, there are at most p steps.
Note that since we do not know the ordering a priori and simply cycle over all variables and
progressively larger sets, it could be that zth induction step is actually completed (i.e., all
the parents of σ−1(z) are discovered) chronologically before the (z − 1)th induction step is
done.

If, as we show, the induction hypothesis below holds through the final step p, then after
Line 10 of Algorithm 1, the procedure obtains p̂a(v) such that pa(v) ⊆ p̂a(v) ⊆ an(v)\sib(v)
and D = B where D is an estimate of the direct effects and B are the true direct effects.
This implies that γv(D) = εv for all v so that γv(D) 6⊥⊥ γu(D) if and only if u ∈ sib(v) so

that ŝib(v) = sib(v). Then, using Algorithm 4, prunes away from p̂a(v) any nodes which
are ancestors but not parents so that p̂a(v) = pa(v).

Algorithm 1 BANG procedure

1: Input: Data Y ∈ Rp×n and S ∈ Rp×p which is the (potentially sample) covariance of Y

2: For all v ∈ V , set p̂a(v) = ∅ and ŝib(v) = V \ {v}
3: Set all elements of D ∈ Rp×p to be 0 and l = 1
4: while maxv |ŝib(v)| ≥ l do
5: for v ∈ V do
6: Prune ŝib(v) using Algorithm 2

7: Certify pseudo-parents of v and update p̂a(v), ŝib(v), and D using Algorithm 3
8: end for
9: if D was updated, reset l = 1; else set l = l + 1
10: end while
11: Remove ancestors which are not parents from p̂a(v) for all v ∈ V using Algorithm 4

12: Return: Ê→ = {(u, v) : u ∈ p̂a(v)}, Ê↔ = {{u, v} : u ∈ ŝib(v)}
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Algorithm 2 Prune ŝib(v)

1: Input: v, ŝib(v), Y , D
2: Set γ(D) = Y −DY
3: for u ∈ ŝib(v) do
4: if γu(D) ⊥⊥ γv(D) then

5: Remove u from ŝib(v) and remove v from ŝib(u)
6: end if
7: end for
8: Return: ŝib(v) for all v ∈ V ,

Algorithm 3 Certify pseudo-parents

1: Input: v, p̂a(v), ŝib(v), D, S, Y , l
2: Set C? = ∅
3: for C ⊆ ŝib(v) such that |C| = l do
4: if γC(D) ⊥⊥ γv(C ∪ p̂a(v), S,D) then
5: C? = C? ∪ C
6: end if
7: end for
8: p̂a(v) = p̂a(v) ∪ C?

9: Dv,p̂a(v) = δv(p̂a(v), S,D)

10: ŝib(v) = ŝib(v) \ p̂a(v)

11: ŝib(s) = ŝib(s) \ {v} ∀s ∈ p̂a(v)

12: Return: D, ŝib(v) and p̂a(v) for all v ∈ V ,

As the induction hypothesis for step z, let v = σ−1(z) and suppose that:

1. For A = σ−1([z − 1]), DA,A = BA,A and p̂a(a) ⊇ pa(a) ∀a ∈ A;

2. D = HC(B) for some HC ∈ D where ∀s ∈ V , p̂a(s) ⊆ an(s) \ sib(s) (i.e., Cs ⊆
an(s) \ sib(s));

3. For all u ∈ V , ŝib(u) ⊇ sib(u) and pa(u) ⊆ {ŝib(u) ∪ p̂a(u)}.

The first condition assumes all directed edges upstream of v have been identified. The second
condition assumes that each row in the current value of D corresponds to a marginal direct
effect and that nothing has been misscertified into p̂a(v). The third condition assumes no
siblings or parents have been incorrectly pruned.

For the base case, when z = 1, the first condition is trivially satisfied because by
definition there are no edges upstream of v = σ−1(1). The second condition is satisfied
because p̂a(v) is initialized to be empty and D is initialized to be all 0’s which is the

marginal direct effect for the empty set. Finally, since ŝib(v) is initialized to V \ {v},
the third condition also holds. We now show that when the conditions hold for the zth
step—after completion—the induction conditions will hold for step z + 1.

Condition 3: By assumption, DA,A = BA,A and D = HC(B) for some HC ∈ D, so
AnD(pa(v)) = An(pa(v)). Lemma 7 implies that for all u ∈ V , Algorithm 2 does not

mistakenly remove any siblings or parents of u from ŝib(v). Furthermore, Lemma 8 implies

that Algorithm 3 will not remove any siblings from ŝib(v). Thus pa(u) ⊆
(
ŝib(u) ∪ p̂a(u)

)
and ŝib(u) ⊇ sib(u) continue to hold, and Condition 3 is satisfied for the next step.

Condition 2: Algorithm 3 only adds C to C? if C ∪ p̂a(v) satisfies (12). Lemma 8
implies that any set C such that C ∩ sib(v) 6= ∅ will not be added. We now show that any
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Algorithm 4 Prune ancestors which are not parents

1: Input: p̂a(v) and ŝib(v) for all v ∈ V , D, S, Y , l
2: Form topological ordering σ such that σ(u) < σ(v) implies v 6∈ anD(u)
3: for v ∈ σ−1([p]) do
4: for s ∈ p̂a(v) do

5: if γc ⊥⊥ γv(p̂a(v) \ {s}, S,D) for all c ∈ p̂a(v) then
6: p̂a(v) = p̂a(v) \ {s}
7: Dv,s = 0
8: end if
9: end for
10: end for

set C 6⊆ an(v) will not be added to C? (and eventually p̂a(v)) because it either will not be
considered by Algorithm 3 or will not satisfy (12).

For some v ∈ V , let C ⊆ V \ p̂a(v) and C1 = C ∩ an(v). If C 6⊆ an(v) and C1 6= C,
the set C ∪ p̂a(v) will only be considered by Algorithm 3 after the set C1 ∪ p̂a(v). If
C ∪ p̂a(v) satisfies (12), then Lemma 6 implies that C1 ∪ p̂a(v) also satisfies (12). Thus,
C1 would first be certified into p̂a(v). Lemma 6 further implies that for any c ∈ C,
E(γc(D)K−1γv(C1 ∪ p̂a(v), S,D) = 0, so that after C1 is placed in p̂a(v) and D is updated,
we have E(γc(D)K−1γv(D)) = 0 for all c ∈ C \ C1. Hence, Algorithm 2 will subsequently

remove C \C1 from ŝib(v). Thus, C will only be considered if C ⊆ an(v) or if C∪ p̂a(v) does
not satisfy (12). Thus, any updates preserve C? ⊆ an(v) \ sib(v). Because C? is the union
of certified sets, Lemma 28 implies that C? will also be certified. Finally, Lemma 5 implies
that after C? is added to p̂a(v), the resulting update to the vth row of D is a marginal
direct effect so that D = HC(B) for some HC ∈ D. Thus, Condition 2 continues to hold.

Condition 1: By the acyclicity assumption, |pa(v)| ≤ z − 1. So by successively test-
ing larger sets, and resetting the counter after each update, if we do not first certify all
parents of v as part of smaller sets, we will eventually consider C = pa(v). The induc-
tion hypothesis and Lemma 4 ensure that E(γK−1

c (D)γv(C, S,D)) = 0 for all c ∈ C so
that C will be certified into p̂a(v). Lemma 5 implies the resulting update which sets
Dv,p̂a(v) = δv(p̂a(v),AnD(p̂a(v)), S,D) will result in Dv,V = Bv,V . Thus, induction step z
will be completed, and Condition 1 continues to hold.

After p steps, D = B, so γv(D) = εv for all v and E(γu(D)K−1γv(D)) 6= 0 if and only if

u ∈ sib(v). If ŝib(v) 6= ∅ for any v then after the last update to D, there will be at least one

more pass through Algorithm 2 so any non-siblings will be removed and ŝib(v) = sib(v) for

all v ∈ V . If ŝib(v) = ∅ for all v, then by the induction conditions, sib(v) ⊆ ŝib(v) = ∅, so

again, sib(v) = ŝib(v).

By Condition 2, pa(v) ⊆ p̂a(v) ⊆ an(v)\sib(v), and Corollary 9 implies that Algorithm 4
removes any ancestors from p̂a(v) which are not parents but does not remove any parents.
Thus, p̂a(v) = pa(v).

Theorem 10 shows that the graph is correctly identified given population values by suc-
cessively testing whether a quantity is zero or non-zero. However, the quantities considered
are non-linear functions of the data so in finite samples, in addition to sample variability,
the sample quantities will typically be biased. Nonetheless, the following corollary shows
that there exists a cut-off η1 > 0 such that checking whether each sample statistic is greater
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than or less than η1/2 as a proxy for independence will yield consistent estimates of G as
long as the sample moments of Y are consistent for the population moments. The value of
η1 depends on the model parameters, but some η1 > 0 must exist for generic B and error
moments. This implies pointwise consistency of BANG when the tests are “appropriately”
tuned. Of course η1 depends on quantities that are unknown in practice, so in applications
we find ourselves in a similar position as for other existing constraint-based algorithms in
causal discovery (e.g., PC or FCI algorithm) where algorithm output delicately depends on
suitable specification of levels for statistical tests which act as tuning parameters.

Corollary 11 Suppose Y is a sample comprised of i.i.d. vectors Y (1), . . . , Y (n) generated
by a linear SEM that corresponds to the BAP G. Then, for generic choices of B and error
moments, there exist η1, η2 > 0 such that when the sample moments are within an η2-ball of
the population moments of Y , Algorithm 1 will output Ĝ = G when comparing the absolute
value of the sample statistics to η1/2 as a proxy for the independence tests.

Proof In Theorem 10, we showed that BANG will correctly identify the true BAP as
long as certain expectations encoding absence of edges and paths are all 0 and further
expectations encoding presence of edges/paths are all non-zero (which holds for generic B
and error moments). For a fixed BAP G, let S0 be the set of expectations which should be 0,
and let S1 be the set of expectations which should be non-zero. Let η1 = minS1 |E(γk−1

c γv)|.
For generic parameters, η1 > 0.

We note that when D = HC(B) for some HC ∈ D, the maps which take moments of Y to
E(γc(D)K−1γv(C,Σ, D)) are rational functions and are thus Lipschitz within a sufficiently
small ball around the population moments of Y . Thus, there must exist some η2 > 0
such that when the sample moments are within η2 of the population moments, the sample
quantities in S0 and S1 are within η1/2 of the population quantities.

This implies that all estimates corresponding to quantities which are 0 are less than
η1/2 in absolute value, and all estimates that correspond to quantities which are generically
non-zero are greater than η1/2 in absolute value. Thus, comparing the absolute value of
the sample quantities to η1/2 accurately determines whether the parameters belong to S0

or S1 and thus yields a correct estimate Ĝ.

4.2 Practical concerns

For any BAP, identification with population values holds for all but a null set of B and
error moments. As discussed in Section 3, this is similar to the faithfulness assumption re-
quired in Gaussian graphical models. However, the typical Gaussian faithfulness condition
only regards the linear coefficients and error covariances, whereas our notion involves linear
coefficients as well as the higher order moments of the errors. Given a finite number of
samples, consistent recovery of the graph would also require an analogue to “strong faith-
fulness;” i.e., the quantities which we require to be non-zero must be bounded away from 0
by a sufficiently large amount. As shown in Uhler et al. (2013), a careful characterization
of strong faithfulness is already difficult in the Gaussian setting, and even more so for our
setting. Nonetheless, we can make some general conclusions. The quantities we consider for
identification are continuous in the error moments. As previously stated, we require that
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the higher-order moments of the data generating distribution must be different than the
higher-order moments of the Gaussian distribution which shares the same covariance as our
data generating distribution. Thus, if the higher-order moments of the errors are close to
the higher-order moments of the Gaussian distribution which shares the same covariance,
then the quantities we require to be non-zero would likely still be close to 0. Thus, we
would require a very large sample size to consistently determine that the population quan-
tity is non-zero. As we see in the simulations, when the errors come from a multivariate
T distribution with moderately large degrees of freedom, which is not too different from a
Gaussian, the finite sample performance suffers considerably.

Throughout the proof, we examine high order moments as a proxy for independence.
Since these quantities are polynomials of the parameters, it allows us to make algebraic ar-
guments that facilitate the analysis. However, in practice, one could use any non-parametric
independence test instead (Gretton et al., 2005; Székely and Rizzo, 2009; Bergsma and Das-
sios, 2014; Pfister et al., 2018). In Section 6, we use dHSIC (Pfister et al., 2018) which per-
forms well when the sample size is small. However, simply calculating the statistic requires
O(n2) time rendering the permutation or bootstrap procedures required for calibrating a
null distribution prohibitively expensive; we thus use the “gamma approximation” to the
null distribution. However, even this becomes infeasible for n > 2000 and p = 6.

When the sample size is large, we choose an implementation which is tied to the theoret-
ical analysis and test whether moments are zero or non-zero. Specifically, we use empirical
likelihood to test the joint hypothesis that E(γK−1

c γv) = 0 for all c ∈ C. Empirical likeli-
hood is useful as it does not require explicit estimation of the variances of γK−1

c γv in order
to form a well-calibrated test statistic, and the empirical likelihood ratio statistic converges
to a known reference distribution under mild conditions. In addition, pooling together all
the tests into one omnibus test helps mitigate multiple testing. The empirical likelihood
approach is typically less powerful than dHSIC at detecting dependence; however, the com-
putation time required for the test is an order of magnitude smaller. When testing whether
moments are zero or non-zero, a specific value of K must be selected. This should corre-
spond to a moment of the errors which is not consistent with the Gaussian distribution.
If the data is skewed, K = 3 could suffice since the third moment of the Gaussian is zero,
but the third moment of the data is non-zero. If the data is either heavy or light tailed
relative to the Gaussian (regardless of whether the data is skewed or symmetric), K = 4
should suffice. One can also combine the results of multiple values and test E(γk−1

c γv) = 0
for all k = {3, . . . ,K} for some arbitrarily large K, but in practice, using larger values of
K requires more samples for accurate estimation and testing.

Given an oracle independence test, if the in-degree of each node (counting both directed
and bidirected edges) is bounded by some constant s, then the total number of tests required
is bounded by a polynomial of the number of variables. Again, let σ be a topological ordering
of the nodes consistent with G. As shown in the proof of Theorem 10, at step z, once all
the ancestors of σ−1([z − 1]) have been identified, then we need only test sets C up to size
|pa(σ−1(z))| ≤ s to certify the parents of σ−1(z) and subsequently update D. Thus, l, the
size of sets considered, will never exceed s. In between any update to D, for each node there
will no more than

∑s
k=1

(
p
k

)
≤ ps sets considered. In addition, each time l is incremented,

for each node we screen no more than p − 1 potential siblings using Algorithm 2. By the
acyclicity assumption, there are at most p(p− 1)/2 < p2 ancestral relationships to discover,
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which would cause an update to D. Thus, to fully discover B, there will be no more
than p2 × p(ps + sp) independence tests. Once D is fully updated so that D = B, then

ŝib(v) = sib(v) for all v ∈ V . So that for each v ∈ V there will be at most an additional
cycle through all sets with size less than s which will again result in p(ps + sp) additional
tests. We conclude that Algorithm 4 will check at most p(p − 1)/2 discovered ancestral
relationships. Thus, there must be less than O(ps+3) total independence tests. Practically
speaking, the computational effort for calculating the residuals is small, and indeed the
computational expense for each step is primarily due to the independence test.

Finally, we note that after a graph has been estimated, the resulting D and empirical
covariance of γ could be used as estimates for B and Ω. Alternatively, the empirical like-
lihood procedure of Wang and Drton (2017) could be used for both point estimates and
simultaneous confidence intervals.

5. Discovery in the presence of bows

In Section 4, we show that BANG recovers the true graph when the data is generated by
a linear SEM corresponding to a BAP. It is unclear, however, how to test this assumption
directly in practice. Hence, it is interesting to study what BANG will output if the true
data generating process is a linear SEM which corresponds to an acyclic mixed graph
G = (V,E→, E↔) which is not bow-free.

In this section, we show that, given population values, BANG will return a BAP
Ḡ =

(
V, Ē→, Ē↔

)
which we subsequently define. We use p̄a(v) and ¯sib(v) to denote the

parents and siblings of node v in Ḡ. Although Ḡ can be quite different from G, certain key
properties important for interpretation are preserved. In particular, p̄a(v) ⊆ an(v), so that
any directed edge in the output is not in the opposite direction of the true effect. Thus,
roughly speaking, in the presence of bows, the procedure is sound—though potentially not
complete—for identifying ancestral relations. In addition, any member of ¯sib(v) must be
connected to v by a bi-directed path in G, so in the presence of bows, the procedure is
complete—though potentially not sound—for identifying confounded relationships. How-
ever, roughly speaking, a bidirected edge indicates less certainty about a causal relationship
than a directed or absent edge, so the BANG procedure can be considered “conservative” in
the sense of not being overconfident when positing causal relationships. In this sense, it is
similar to some existing procedures; e.g., RCD (Maeda and Shimizu, 2020). In Example 2,
we show a graph with bows and its corresponding “projection” Ḡ.

For v ∈ V , we recursively define a set of nodes which we will call the irremovable nodes.
We denote this set by irr(v). Roughly speaking, irr(v) contains all nodes, whose total effect
will never be fully removed from v by the BANG procedure.

Definition 12 Let v ∈ V , and define Irr(v)0 = {v}. For k = 1, . . . , p, we define recursively
Irr(v)k = [pa(Irr(v)k−1) ∩ sib(Irr(v)k−1)] ∪ Irr(v)k−1. Then the set of irremovable nodes is
defined as irr(v) = Irr(v)p.

Every w ∈ irr(v) is connected to v by both a directed path which only passes through
irr(v) as well as a path of bidirected edges which also only passes through nodes which are
in irr(v). In addition, irr(v) ⊆ sib(irr(v)) and Irr(v)1 contains all nodes which form a bow
which ends at v. Given irr(v) we now define the bidirected edges in Ḡ.
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(a) True model, G.
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(b) Bow-free graph, Ḡ.

Figure 4: Graphs used in Example 2. The “projection” of (a) into a BAP is shown in (b)
where dotted lines indicate edges that differ from the “true model.”

Definition 13 The siblings of a node v ∈ V in Ḡ are

¯sib(v) = {u : sib(irr(v)) ∩ irr(u) 6= ∅} \ {v}. (18)

In other words, the elements of ¯sib(v) are all nodes which are irremovable from v, the siblings
of those nodes, and any other nodes whose irremovable nodes have a sibling in irr(v).

Definition 14 The parents of a node v ∈ V in Ḡ are

p̄a(v) = pa(irr(v)) \ ¯sib(v). (19)

Note that by definition p̄a(v) ∩ ¯sib(v) = ∅, which prevents bows.

Since every u ∈ irr(v) has a directed path to v which only passes through irr(v), Defini-
tion 14 implies that for every u ∈ p̄a(v), there exists a path l = u→ s1 → . . .→ s|l|−2 → v
such that {s1, . . . , s|l|−2} ⊆ irr(v). By construction, every path from w ∈ V to v either is
entirely contained in irr(v) or passes through p̄a(v).

Definition 15 Let G = {V,E→, E↔} be an acyclic directed mixed graph. Let Ē→ and Ē↔
be given by Definitions 13 and 14. We term Ḡ = {V, Ē→, Ē↔} the BAP projection of G.

Example 2 Consider the graph G from panel (a) of Figure 4. There is a bow between 3
and 5. Thus, Irr(5)1 = {3} ∪ {5}.

Furthermore, 1 ∈ pa(3)∩ sib(5) ⊆ pa(Irr(5)1)∩ sib(Irr(5)1); thus, 1 ∈ Irr(5)2. Similarly,
4 ∈ pa(5) ∩ sib(3) ⊆ pa(Irr(5)1) ∩ sib(Irr(5)1); thus 4 ∈ Irr(5)2. No other nodes are in
pa({3, 5}) so Irr(5)2 = {1, 4} ∪ {3, 5}.

Next, note that 2 ∈ pa(4) but 2 6∈ sib(Irr(5)2) so it is not a member of Irr(5)3. Also,
6 6∈ pa(Irr(5)2), so it is also not a member of Irr(5)3. Thus, for s = 3, . . . , 6, Irr(5)s =
Irr(5)2 = {1, 3, 4, 5} and irr(5) = {1, 3, 4, 5}.

There are no other bows in the graph, so irr(v) = {v} for all other nodes and ¯sib(5) =
{1, 3, 4}. As 2 ∈ pa(irr(5)) \ ¯sib(5), we have 2 ∈ p̄a(5).

As we will show, when applied to population values corresponding to the graph G in (a),
BANG will recover the BAP projection Ḡ displayed in panel (b). The dotted lines in (b)
indicate edges in Ḡ which are different from the edges in G.

To develop our result on estimation of Ḡ, we first show that the distribution of Y is also
in the model implied by BAP Ḡ.
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Lemma 16 Let G be an acyclic directed mixed graph, and suppose the random vector Y
follows a distribution in the linear SEM given by G. Let Ḡ =

(
V, Ē→, Ē↔

)
be the projection

of G given by Definition 15. Then Ḡ is a BAP. Furthermore, the distribution of Y is equal
to the distribution in the linear SEM given by Ḡ when defining edge weights and errors as
follows:

β̄v,u =

{∑
l∈L(u)v,u(p̄a(v))

W (l) if u ∈ p̄a(v),

0 else,

ε̄v = εv +
∑

w∈irr(v)

εw
∑
l∈Lv,w
l⊆irr(v)

W (l).

(20)

Proof Acyclicity of G implies acyclicity of the projection Ḡ because p̄a(v) ⊆ an(v). Fur-
thermore, by definition, p̄a(v) does not include ¯sib(v), so Ḡ does not contain any bows.
Thus, Ḡ is a BAP.

We now show that the distribution of Y belongs to the SEM given by Ḡ. Recall the

definition of L(w)
v,w(an(v)) from Section 3.2. Note that L(w)

v,w(an(v)) = ∅ for any w 6∈ p̄a(v) ∪
¯sib(v) because if w 6∈ ¯sib(v) and there was a path from w to v for which w was the last

node, then w would be in p̄a(v). Hence,

Yv = εv +
∑

w∈an(v)

πv,wεw = εv +
∑

w∈an(v)

εw
∑
l∈Lv,w

W (l)

= εv +
∑

w∈an(v)

εw

 ∑
l∈Lv,w

p̄a(v)∩l 6=∅

W (l) +
∑
l∈Lv,w

p̄a(v)∩l=∅

W (l)



= εv +
∑

w∈an(v)

εw

 ∑
s∈p̄a(v)

∑
l∈L(s)v,w(p̄a(v))

W (l) +
∑
l∈Lv,w
l⊆irr(v)

W (l)



= εv +
∑

w∈an(v)

εw

 ∑
s∈p̄a(v)

πs,w
∑

l∈L(s)v,s(p̄a(v))

W (l) +
∑
l∈Lv,w
l⊆irr(v)

W (l)


= εv +

∑
s∈p̄a(v)

∑
w∈an(v)

πs,wεw
∑

l∈L(s)v,s(p̄a(v))

W (l) +
∑

w∈an(v)

εw
∑
l∈Lv,w
l⊆irr(v)

W (l).

(21)
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Because an(s) ⊆ an(v) if s ∈ p̄a(v) ⊆ an(v), we have that

(21) = εv +
∑

s∈p̄a(v)

Ys
∑

l∈L(s)v,s(p̄a(v))

W (l) +
∑

w∈an(v)

εw
∑
l∈Lv,w
l⊆irr(v)

W (l)

=
∑

s∈p̄a(v)

Ys
∑

l∈L(s)v,s(p̄a(v))

W (l)

︸ ︷︷ ︸
β̄v,s

+ εv +
∑

w∈irr(v)

εw
∑
l∈Lv,w
l̄⊆irr(v)

W (l)

︸ ︷︷ ︸
ε̄v

. (22)

Our claim now follows because the coefficients β̄v,u respect the constraints given by Ḡ. In-
deed, β̄v,u = 0 if u 6∈ p̄a(v). Furthermore, if irr(u) ∩ sib(irr(v)) = ∅, then ε̄v only contains
terms which are independent of the terms in ε̄u. Thus, εv ⊥⊥ εu if u 6∈ ¯sib(v).

Though, as we subsequently show, it is true that given population values BANG returns
Ḡ, Lemma 16 does not immediately imply that BANG will discover Ḡ; it simply implies
that the distributions implied by G are a subset of distributions implied by Ḡ. It must
further be shown that for generic parameters (of the full model), the distribution of Y does
not lie in any sub-model of Ḡ.

Replacing B with B̄, Lemma 3, Corollary 4, Lemma 5, and Lemma 6 still directly hold in
this setting. We restate these results below for completeness, but note that the proofs follow
in analogy to the previously proved lemmas. Thus, to prove an analogue to Theorem 10, it
remains to show analogues to Lemma 7, Lemma 8, and Corollary 9.

Corollary 17 (Analogue of Lemma 3 and Corollary 4) Suppose Y is generated by a
linear SEM which corresponds to a acyclic mixed graph G. Let Ḡ be the projection of G
and B̄ be the corresponding direct effects defined in (20). For a node v ∈ V and a set
C ⊆ A ⊆ V \ v, suppose:

1. p̄a(v) ⊆ C ⊆ ān(v) \ ¯sib(v)

2. A = Ān(C)

3. DA,A = B̄A,A

4. S{A,v},{A,v} = Σ{A,v},{A,v}

Then δv(C,A, S,D) = B̄v,C . Furthermore, for every c ∈ C, γc(D) ⊥⊥ γv(C, S,D) and
E(γK−1

c (D)γv(C, S,D)).

Proof By Lemma 16, the distribution of Y is equivalent to the BAP defined by Ḡ, B̄ and
ε̄. Thus, the result directly follows by applying Lemma 3 and Corollary 4 to Ḡ, B̄ and ε̄.

In the following statements, we will at times make statements about sets of nodes in
Ḡ; however, the requirement of generic parameters will always refer to parameters in the
model which may have bows defined by G. Let B̌(C ∪ {v})v,C be the marginal direct effect
of C ∪ {v} in Ḡ; i.e., the analogue of B̃, as defined in (6), but using B̄ instead of B.

23



Wang and Drton

Corollary 18 (Analogue of Lemma 5) Let v ∈ V , and consider any set C ⊆ A ⊆
V \ {v}. Suppose D ∈ Rp×p with Ds,t 6= 0 only if t ∈ ān(s). Then, for generic B and
error moments, if δv(C,A, S,D) 6= B̌(C ∪ v)v,C , then E(γK−1

c (D)γv(C, S,D)) 6= 0 for some
c ∈ C.

Corollary 19 (Analogue of Lemma 6) Consider v ∈ V and set C ⊆ V \ {v}. Let D ∈
Rp×p such that Ds,t 6= 0 only if t ∈ ān(s). Suppose C 6⊆ ān(v), but E(γc(D)K−1γv(C, S,D)) =
0 for all c ∈ C. Then for generic B and error moments, C1 = C ∩

[
ān(v) \ ¯sib(v)

]
,

E(γc(D)K−1γv(C1, S,D)) = 0

for all c ∈ C.

Lemma 20 (Analogue of Lemma 7) Suppose D = HC(B̄) for some HC ∈ D with C =
(Cs)s∈V such that Cs ⊆ ān(s) \ ¯sib(s) for all s ∈ V . Let v ∈ V be such that we have
E(γc(D)K−1γv(D)) = 0 for all c ∈ paD(v). If q ∈

( ¯pa(v)\paD(v)
)
∪ ¯sib(v), then for generic

B and error moments, E
(
γq(D)K−1γv(D)

)
6= 0.

Lemma 21 (Analogue of Lemma 8) Consider v ∈ V and sets A,C such that C ⊆ A ⊆
V \{v}. Suppose D = HC(B̄) for some HC ∈ D with C = (Cs)s∈V such that Cs ⊆ ān(s) ¯sib(s)
for all s ∈ V . Suppose u ∈ C and u ∈ ¯sib(v), then for generic B and error moments, there
exists some q ∈ C such that E

(
γq(D)K−1γv(C,Σ, D)

)
6= 0.

Corollary 22 (Analogue of Corollary 9) Suppose D = B̄. Then, for v ∈ V and generic
B and error moments, suppose p̄a(v) ⊆ C ⊆ ān(v)\ ¯sib(v) and E(γc(D)K−1γv(C,Σ, D)) = 0
for all c ∈ C. If q ∈ C \ p̄a(v), the for all c ∈ C

E(γq(D)K−1γv(C \ {q},Σ, D)) = 0. (23)

If q ∈ pa(v), then there exists some c ∈ C such that

E(γq(D)K−1γv(C \ {q},Σ, D)) 6= 0. (24)

Lemma 20 and 21 require two intermediate results which we state here for completeness.

Lemma 23 Let D = HC(B̄) for some HC ∈ D with C = (Cs)s∈V such that Cs ⊆ ān(s) \
¯sib(s) for all s ∈ V . Suppose there exists some path l = s1 → s2 → . . . s|l|−1 → v such that
l ∩ Cv = ∅. Further suppose that u ∈ sib(s1) \ l and u 6∈ Cv. Then for generic parameters

E
(
γv(D)K−1γs1(D)

)
6= 0 and E

(
γv(D)K−1γu(D)

)
6= 0, (25)

so that s1 and u will not be pruned from ŝib(v) by Alg 2. Furthermore, for any C such that
u ∈ C, for generic parameters there exists some c ∈ C such that

E
(
γc(D)K−1γv(C,Σ, D)

)
6= 0, (26)

so that u will not be certified into p̂a(v).
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Lemma 24 Suppose irr(u) ∩ sib(irr(v)) 6= ∅ and D = HC(B̄) for some C = (Cs)s∈V such
that Cs ⊆ ān(s) \ ¯sib(s) for all s ∈ V . Then, for generic parameters

E
(
γv(D)K−1γu(D)

)
6= 0 (27)

so that u will not be pruned from ŝib(v) by Alg 2. Furthermore, for any C ⊆ V \ v such
that u ∈ C, for generic parameters, there exists some c ∈ C such that

E
(
γc(D)K−1γv(C,Σ, D)

)
6= 0, (28)

so that u will not be certified into p̂a(v).

Theorem 25 Suppose Y is generated under the linear SEM given by an acyclic directed
mixed graph G with BAP projection Ḡ as defined by (18) and (19). Then for generic choices
of B and error moments, BANG will output Ĝ = Ḡ when given population values of Y .

Proof The proof exactly mirrors the proof of Theorem 10, but using the lemmas developed
for the misspecified case.

6. Numerical results

We consider two implementations of BANG2: one which uses empirical likelihood to test
whether moments are zero or non-zero and another which uses dHSIC (Pfister et al., 2018)
to test whether certain variables are independent or not. We compare these implementa-
tions against ParcelLiNGAM (Tashiro et al., 2014), RCD (Maeda and Shimizu, 2020), and
two methods for Gaussian data—FCI+ (Claassen et al., 2013) with Gaussian conditional
independence tests (i.e. vanishing partial correlations) and Greedy BAP Search (GBS)
(Nowzohour et al., 2017). For ParcelLiNGAM we use the Matlab implementation available
from the author’s website3; for RCD we use the lingam python package4; for FCI+, we use
the R package pcalg (Kalisch et al., 2012); and for GBS we use the R package greedyBaps

(Nowzohour, 2017).
Our experiments consider structure learning in two settings: ancestral graphs and BAPs.

In each case, we simulate errors from gamma, lognormal, and uniform distributions. In
addition, we include a setting with errors drawn from T13 as a counter example to show
how performance can suffer when the errors are close to Gaussian. Finally, we show that
when applied to ecology data the BANG method recovers a model close to the ground truth.

We also note that in the implementation, we include a symbolic version that allows
interested readers to track the population steps of the algorithm.

6.1 Comparison with ParcelLiNGAM

ParcelLiNGAM is designed to discover ancestral relationships, not graph structure. Also,
as shown in Section 2 it is sound and complete for ancestral graphs, but not non-ancestral

2. Available at https://github.com/ysamwang/ngBap
3. https://sites.google.com/site/sshimizu06/Plingamcode
4. https://github.com/cdt15/lingam
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graphs. Thus, to give ParcelLiNGAM the most favorable comparison, we only consider
ancestral graphs, and to compare performance, we measure the accuracy in identifying
ancestral relationships; i.e., for each (u, v), is u ∈ an(v) or instead is u 6∈ an(v)? The
accuracy is defined as (True Positives + True Negatives)/Total Cases.

We let p = 6 and consider three settings with varying levels of sparsity with d directed
edges and b bidirected edges: sparse (d = p/2, b = p/2), medium (d = p, b = p), and dense
(d = 3p/2, b = p). We let n = 500, 1000, 1500.

To generate a random ancestral graphs, we first select d directed edges uniformly from
the set {(i, j) : i < j}, and then select b bidirected edges uniformly from the set {(i, j) :
i 6∈ an(j) and j 6∈ an(i)} when generating ancestral graphs if the set of possible bidirected
edges is less than b, we select as many as possible. We then draw the directed edgeweights
uniformly from (.6, 1). Note that the graphs are all ancestral, but may not be maximal.

For the idiosyncratic errors, we first form the covariance Ω by drawing ωij = ωji uni-
formly from (.3, .5) for all (i, j) ∈ E↔, and setting all other elements to 0. To ensure that Ω
is positive definite, we set Ωii = 1 +

∑
j 6=i |ωij |. We consider five settings where the errors

marginally follow uniform, gamma, lognormal, and T with d.f. = 13. We draw the gamma
errors using lcmix (Dvorkin, 2012), uniform using MultiRNG (Demirtas et al., 2019), T13

by using univariate copulas to transform a multivariate normal with covariance Ω, and the
lognormal errors are formed by exponentiating multivariate normal draws with covariance
Ω.

We then set Y (i) = (I −B)−1ε(i). Finally, because the output generally depends on the
ordering of the variables in the data matrix, we also randomly permute the labeling of the
variables so that 1, . . . , p is generally not a valid ordering. This entire process is repeated
200 times for each setting.

The results are given in Table 1. For BANG with dHSIC or empirical likelihood, the
value is bolded if the accuracy is significantly larger than the ParcelLiNGAM accuracy (mea-
sured using a two-sample paired T-test with with α = .05). For ParcelLiNGAM, the value
is bolded if the accuracy is significantly larger than both of the BANG implementations.
In general, we see that ParcelLiNGAM tends to do better when the graph is dense; this is
particularly drastic when the errors are uniform, but less so for the other error types. Under
the “medium” and “sparse” graph regimes, BANG tends to outperform ParcelLiNGAM,
particularly the dHSIC implementation. In the sparse regime, the difference is quite drastic
for all error settings. In general, when the errors are T and not too far from Gaussian, all
three methods suffer.

6.2 Comparison with FCI+, GBS, and RCD

We now compare BANG against FCI+ and GBS, which both identify an equivalence class
of graphs as well as RCD which selects a unique graph. We compare FCI+, GBS, and
BANG on ancestral graphs generated as described in the previous section. Furthermore, we
compare GBS, RCD and BANG on possibly non-ancestral BAPs. The graphs are generated
by the same procedure, except when generating BAPs we do not enforce the ancestral
condition and instead draw bidirected edges from the set {(i, j) : i 6∈ pa(j) and j 6∈ pa(i)}.
We let n = 2500, 5000, 7500, 10000, 25000, 50000, but for computational reasons we only use
RCD and the dHSIC implementation of BANG for n ≤ 7500.
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Regime dist n DH EL PL
500 0.887 0.892 0.893
1000 0.921 0.907 0.928Gamma
1500 0.925 0.908 0.937
500 0.886 0.865 0.889
1000 0.880 0.868 0.887Lognormal
1500 0.892 0.873 0.902
500 0.510 0.524 0.550
1000 0.479 0.504 0.597T
1500 0.508 0.523 0.643
500 0.732 0.679 0.848
1000 0.786 0.713 0.859

Dense

Unif
1500 0.809 0.718 0.865
500 0.867 0.899 0.808
1000 0.911 0.861 0.893Gamma
1500 0.951 0.884 0.922
500 0.914 0.885 0.860
1000 0.915 0.872 0.888Lognormal
1500 0.922 0.880 0.909
500 0.587 0.563 0.540
1000 0.548 0.558 0.582T
1500 0.532 0.552 0.606
500 0.761 0.753 0.784
1000 0.817 0.819 0.808

Medium

Unif
1500 0.839 0.833 0.829
500 0.930 0.913 0.664
1000 0.960 0.930 0.697Gamma
1500 0.979 0.959 0.710
500 0.965 0.902 0.686
1000 0.965 0.893 0.708Lognormal
1500 0.970 0.895 0.715
500 0.747 0.695 0.520
1000 0.707 0.706 0.530T
1500 0.703 0.696 0.550
500 0.869 0.897 0.646
1000 0.911 0.943 0.675

Sparse

Unif
1500 0.918 0.951 0.685

Table 1: The average accuracy of each procedure in identifying ancestral relationships across
200 replications. DH: BANG using dHSIC independence tests, EL: BANG using empirical
likelihood moment tests, PL: ParcelLiNGAM. All procedures use independence tests with
α = .01.

To compare performance, we record the proportion of the times each method recovers
the equivalence class corresponding to the true graph (or a graph in the equivalence class of
the true graph). For BANG and RCD, we also record the proportion of times it recovers the
exact graph. We also show the structural Hamming distance of the estimated graph to the
true graph (i.e., the number of edges which would would need to be added/deleted/modified
to transform the estimated graph into the true graph). For FCI+, RCD, and BANG we
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set the nominal level of each hypothesis test performed to α = .05, .01, .001. In the plots,
we show the results for the best performing α in each setting. For GBS, we allow 100
random restarts, the same number used in the simulations by Nowzohour (2017). For
BANG with EL, we set K = 3 for the gamma and lognormal errors (since they are skewed)
and let K = 4 for the uniform and T13 (since they are symmetric). In the simulations with
ancestral graphs, to check whether the equivalence class is recovered, we take the graph
estimated by BANG, RCD, and GBS and project it into a PAG. In the simulations with
BAPs, since there is no known graphical characterization for the equivalence class of BAPs,
we follow Nowzohour (2017) and say that the estimated and true graph are in the same
equivalence class if the score of the estimated graph is within 10−10 of score of the true
graph. We repeat the experiment 200 times for each simulation setting. The results for
ancestral graphs are shown in Figures 5 and 6, and the results for BAPs are shown in
Figures 7 and 8.

When only considering ancestral graphs in Figures 5 and 6, there are a number of
settings—particularly in the medium and dense regime—in which BANG and RCD are
able to recover the exact graph more often than GBS and FCI recover the equivalence class.
In most cases, the dHSIC implementation of BANG outperforms the EL implementation.
Performance of RCD and BANG is generally comparable, although BANG seems to slightly
outperform RCD when the errors are Gamma and Uniform. As expected, BANG and RCD
both perform poorly when the errors are drawn from a T distributions, though RCD slightly
outperforms BANG.

When considering BAPs, we allow the graph to be non-ancestral, but do not explicitly
enforce that the graph is non-ancestral. Thus, under the generating procedure, the random
graph is still ancestral with probability .87, .27, .06 under the sparse, medium, and dense
regimes respectively. As shown in Figures 7 and 8, in the sparse setting, although BANG-
dHSIC generally outperforms RCD, RCD still shows decent performance because the vast
majority of graphs are still ancestral.

In the medium and dense settings, when the graph is more likely to be non-ancestral,
we see that BANG clearly outperforms RCD in recovering the true graph when the errors
are Gamma, Lognormal and Uniform. As expected, both RCD and BANG perform poorly
when the errors are drawn from a T distribution, though in contrast to the other settings,
it seems that RCD slightly outperforms BANG.s GBS tends to perform well in the sparse
setting; in particular it does well with the T errors when all other procedures do poorly.
However, it performs poorly in the medium or dense setting across all error types.

6.3 Computational feasibility of larger problems

To demonstrate the feasibility on larger problems, we apply BANG to problems where
p = 15 and n = 5000, 10000, 25000, 50000. We draw random BAPS and SEM parameters
as before and consider graphs with d = 25 directed edges and b = 20 bidirected edges.
We draw the errors from a gamma distribution and use empirical likelihood tests with a
nominal level of α = .05, .01, .001. Table 2 records the results of 50 replications at each
setting. We see that BANG performs well statistically when n is large, and at the largest
sample size is able to recover the exact graph over half the time. Moreover, the procedure
is computationally feasible even with the largest sample size n = 50000. We show timing
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Figure 5: The performance of each method on random ancestral graphs with p = 6 across
200 replications. The dotted lines indicate the proportion of times the estimated graph
corresponds to the PAG of the true graph; the solid lines indicate the proportion of times
BANG or RCD identifies the exact graph. The horizontal axis shows sample size in hun-
dreds.

results for a single cpu, however, this could be further improved since many of the required
tests can be performed in parallel.

6.4 Data example

Grace et al. (2016) use a structural equation model to examine the relationships between
land productivity and the richness of plant diversity. They consider measurements taken at
1126 plots which are locations across 39 different sites. A graphical model from the original

SHD Exact Recov. Time

n α = .05 .01 .001 .05 .01 .001 .05 .01 .001

5000 25.0 25.0 28.0 0.00 0.00 0.00 174.3 98.1 58.6
10000 14.5 19.0 24.5 0.04 0.06 0.02 380.3 312.8 241.7
25000 10.5 12.0 11.0 0.14 0.14 0.12 2004.8 1881.5 1490.3
50000 3.0 0.5 0.0 0.26 0.50 0.52 6783.4 3691.5 4237.1

Table 2: The results of random BAPs with p = 15. The SHD columns show the median
structural Hamming distance; the Exact Recov. columns show the proportion of the time
the exact graph is recovered, and the Time columns show the computational time in seconds.
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Figure 6: The performance of each method on random ancestral graphs with p = 6 across
200 replications measured by structural Hamming distance. The solid line indicates the
average, the dotted line indicates the median. The horizontal axis shows sample size in
hundreds.

paper is in Figure 9. We consider their plot level model which includes: plot productivity,
plot biomass, plot shade, plot richness, plot soil suitability, site richness, site biomass, site
productivity.

Beginning with the graphical model shown in Figure 9, we first remove any edges which
they found were not significant (denoted by NS in Figure 9). Note that this removes the
cycle in the plot specific measurements, but there is still a cycle between site productivity,
biomass and richness. The nodes for climate, disturbance and suitability, actually represent
multiple variables which are used in the SEMs. For climate and disturbance, the separate
measures are both highly correlated, so it seems reasonable to use bidirected edges between
site productivity, biomass and richness when marginalizing out those variables, despite the
fact that they are actually separate measures. To keep the bow-free assumption, we do
not include the directed edges between site productivity, site biomass and site richness.
This results in ancestral relationships in the full model which are not otherwise captured
in the marginalized model. Thus, we add directed edges from site productivity to plot
biomass and plot richness; from site biomass to plot productivity and plot richness; from
site richness to plot productivity and plot biomass. For suitability, there is both a site
suitability, which is a parent of site richness, and a plot suitability which is a parent of plot
richness. Although there is no explicit specification in their SEM of how site suitability
relates into plot suitability, it seems reasonable to assume that site suitability has a direct
effect on plot suitability, as is the case for all other site vs plot measures. Thus, we include
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Figure 7: The performance of each method on random bow-free acyclic graphs with p = 6
across 200 replications. The dotted lines indicate the proportion of times the estimated
graph is in the equivalence class of the truth; the solid lines indicate the proportion of
times BANG or RCD identifies the exact graph. The horizontal axis shows sample size in
hundreds.

a bidirected edge between plot suitability and site richness. This results in the BAP shown
in Figure 10a. We consider this model the ground truth.

For BANG, we use empirical likelihood and selected the nominal test level, .01, so that
there are roughly the same number of directed edges in the estimated and ground truth
graphs, 11 and 13 respectively. The discovered graph is shown in Figure 10b. Of the 28 pairs
of nodes, BANG correctly identifies the correct relation (→,←,↔ or no edge) for 16 of the
pairs. Naively, letting the probability of guessing each relationship to be 1/4, this results in
a binomial probability of P (X ≥ 16) = .00029. This probability does not account for the
dependency between edges since there is an acyclic restriction, but it suggests that BANG
is discovering reasonable structure. There are 7 bidirected edges in the estimated graph
compared to 4 in the ground truth model. This behavior is somewhat expected since there
is still likely to be uncontrolled confounding which is either not actually fully accounted
for in the ground truth model or direct causes which cannot be fully explained by a linear
relationship. For comparison, we also use the GBS procedure with 500 random restarts.
In Figure 11, we plot the resulting score against the number of correct edges for each of
the 500 runs. There seems to be a positive association between the score and the correct
number of edges. Although one initialization resulted in a graph with 16 correct edges it
did not have the highest score, and each of the resulting estimated graphs with maximum
score (up to optimization error) only has 12 correct edges.
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Figure 8: The performance of each method on random bow-free acyclic graphs with p = 6
across 200 replications as measured by structural Hamming distance. The solid line indicates
the average, the dotted line indicates the median. The horizontal axis shows sample size in
hundreds.

Figure 9: Full model from Grace et al. (2016).

7. Discussion

Borrowing intuition from the LiNGAM line of work (Shimizu et al., 2006), we show that
when a SEM corresponds to a BAP and the errors are non-Gaussian, one can identify the
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(a) BAP representation of plot specific model from Grace et al. (2016).
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(b) Discovered model (BANG).
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Figure 11: The left panel shows the score and number of correct edges for each of the
500 random initializations of GBS on the Grace et al. (2016) ecology data. The estimated
graphs with the highest score has 12 correct edges. The right panel shows a histogram of
the number of correct edges from the 500 random restarts. The blue line represents the
graph with the highest score and the red line represents the number of correct edges for the
BANG procedure.

exact causal structure from observational data. We propose the BANG algorithm and show
that it consistently identifies the graph. This extends previous work on BAPs by Nowzohour
et al. (2017) by identifying an exact graph rather than a larger equivalence class. In addition,
this extends the work on non-Gaussian SEMs with confounding by not requiring advance
knowledge of the number of latent variables, not requiring the effect of confounders to be
linear, or provably recovering a larger class of graphs. Finally, we also show that in the
presence of bows, our proposed procedure is “conservative” in certifying causal relationships
and explicitly characterize the returned output in the population setting.
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Since the number of independence tests considered is a polynomial of the number of
variables, under additional assumptions, future work might investigate conditions under
which the graph might also be consistently recovered in a sparse high dimensional setting
where the number of variables is larger than the number of samples. Theoretical results
may be straightforward; however, considering the results in Section 6 where very large
sample sizes are needed for recovery with high probability, this may require significant
methodological improvements. One such improvement is a pre-screening procedure. Loh
and Bühlmann (2014) show for DAGs, even with non-Gaussian errors, the precision matrix
encodes causal structure. A similar statement can be shown for BAPs, where a non-zero
entry in the precision implies that two nodes are in the same mixed component—roughly
a set of nodes which are connected by bidirected edges plus the parents of those nodes;
see Tian (2005); Foygel et al. (2012) for a formal definition. Thus, starting with a sparse
estimate of the precision could reduce the search space and improve empirical performance.
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Appendix A. Proofs from Section 2

We first restate two lemmas from Tashiro et al. (2014) which imply that the sink and source
certification procedures used by ParcelLiNGAM are sound. Strictly speaking, the lemmas
require linear confounders, but the results trivially generalize to our setting in which the
effects of confounders are represented via correlated errors.

Also, as stated, the lemmas do not require faithfulness because they consider the full
latent variable LiNGAM model where βv,p 6= 0 for all p ∈ pa(v). Because the graph is
acyclic, this implies that every non-source has at least one parent with a non-zero total
effect. However, this does not hold when considering sub-models induced by marginalizing
out subsets of the variables; i.e., βv,p 6= 0 for all p ∈ pa(v) in the full model does not imply
that all parents (or ancestors) in a sub-model induced by marginalization have non-zero
total effects on their children (or descendants). A simple example is given in Figure 12.
Thus, to show that ParcelLiNGAM is sound and complete, we require that the marginal
direct effect of an ancestor on its descendants does not disappear for any model induced by
marginalization. This is similar to the notion of parental faithfulness required in Wang and
Drton (2020) and is true for generic linear coefficients. Hence, in the proofs of Lemma 1 and
2 we assume generic model parameters, and then apply Lemmas 26 and 27 assuming that
they hold for all subsets of the variables as well. Finally, we use the notation Khead and Ktail

which was used in ParcelLiNGAM. In particular, ParcelLiNGAM is an iterative procedure
which keep two orderings of nodes: Khead, which is an estimate of the causal ordering from
the top downwards (i.e., from root to the leaves), and Ktail, which is an estimate of the
causal ordering from the bottom upwards (i.e., from the leaves to the roots).

1 2 3
β2,1 = 1 β3,2 = −1

β3,1 = 1

Figure 12: When considering the entire graph with nodes {1, 2, 3}, the lemmas holds since
every non-source has at least one parent with a non-zero total effect. However, when only
considering the sub-graph induced by {1, 3}, the marginal direct effect of 1 on 3 is 0 so 3 is
a source in that sub-model despite the fact that it is a sink in the full model.

Lemma 26 (Lemma 1 in Tashiro et al. (2014)) Assume all model assumptions of the latent

variable LiNGAM are met. Denote by r
(j)
i the population residuals when Yi are regressed

onto Yj. Then a variable Yj is exogenous in the sense that is has no parent observed variable

or latent confounder if and only if Yj is independent of its residuals r
(j)
i for all i 6= j.

Lemma 27 (Lemma 2 in Tashiro et al. (2014)) Assume all model assumptions of the latent
variable LiNGAM are met. Denote by Y(−j) a vector that contains all the variables other

than Yj. Denote by r
(−j)
j the population residuals when Yj is regressed onto Y(−j). Then a

variable Yj is a sink in the sense that is has no parent observed variable or latent confounder

if and only if Y(−j) is independent of its residual r
(−j)
j .
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A.1 Lemma 1

Suppose Y is generated by a recursive linear SEM that corresponds to an ancestral graph
G. With generic model parameters and population information (i.e., the distribution of
Y ), the ordering, ≺̂, returned by Algorithm 2 of ParcelLiNGAM is sound and complete for
ancestral relationships in G.

Proof We first consider Algorithm 2 which applies Algorithm 1 to all sets in the powerset
of V . Since Lemma 26 and 27 explicitly concern the certificate used to place nodes into
Khead or Ktail, they trivially imply that any output Khead and Ktail method is sound. It
remains to be shown that the procedure is complete for ancestral relationships. By the
ancestral assumption, every v ∈ V is a sink in the set An(v) since it does not share a
confounder with any ancestor, so when applying Algorithm 1 to An(v) either all of An(v)
will be put into Khead or v will be put into Ktail. Regardless, it will be identified that u ≺ v
for all u ∈ An(v) \ v = an(v). Thus, Algorithm 2 is thus complete.

Now consider Algorithm 3 which first applies Algorithm 1 to V and identifies Khead and
Ktail. It then applies Algorithm 2 to Ures := V \ {Khead ∪Ktail}. Khead and Ktail are both
total orderings so the orientation rules in Step 4 of Algorithm 1 will completely identify all
ancestral relationships between any u, v such that (1) u, v ∈ Khead∪Ktail, (2) u ∈ Khead and
v ∈ Ures ∪Ktail, or (3) u ∈ Ures and v ∈ Ktail. Thus, it remains to show that the remaining
steps of Algorithm 3 completely discover all ancestral relationships between any pair u, v
such that u, v ∈ Ures.

By the soundness of the certification procedure, Khead∪an(Khead) = Khead and Khead∩
S = ∅ where S = {v ∈ V : sib(v) 6= ∅}. Similarly Ktail ∪ de(Ktail) = Ktail. It is well known
that when A ⊂ V is an ancestral set, the residuals when regressing V \A onto A correspond
to a model which can be represented by the sub-graph induced by V \ A (e.g., Chen et al.
(2019, Lemma 2)). In addition, removing a set which contains all of its descendants does
not change the induced sub-graph; for instance see Drton (2018, Section 5). Thus, the
residuals formed in Step 4, Rres, correspond to the sub-graph induced by Ures, which is also
ancestral. Thus, applying the proof for Algorithm 2 implies that Step 5 of Algorithm 1
discovers all ancestral relations for u, v ∈ Ures. Thus Algorithm 3 is also complete.

A.2 Lemma 2

Suppose Y is generated by a recursive linear SEM that corresponds to a graph G which
is bow-free but not ancestral. With generic parameters and population information, both
Algorithm 2 and Algorithm 3 of ParcelLiNGAM will return a partial ordering which is
sound, but not complete for ancestral relationships in G.

Proof Algorithm 2 applies Algorithm 1 to the powerset of V , and we first consider the
output of Algorithm 1 on a set M ⊆ V .

Let S = {v ∈ V : sib(v) 6= ∅}. In a graph which is not ancestral, there must exist some
u, v ∈ V such that u ∈ sib(v) ∩ an(v). Let

Z(u, v) = {z : {u ∪ de(u)} \ de(v)}. (29)
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Now consider testing any set M ⊆ V such that v ∈M and M ∩ Z(u, v) 6= ∅. Let

Ztop = {z ∈ Z(u, v) : an(z) ∩ {M ∩ Z(u, v)} = ∅},

so that Ztop are nodes in M ∩ Z(u, v) which are not downstream of any other nodes in
M ∩ Z(u, v). Thus any z ∈ Ztop will not be exogenous since it shares a latent confounder
(acting through u) with v and similarly v will not be a sink. Thus, Lemma 26 implies that
no z ∈ Z(u, v) will be placed into Khead which further implies no de(Z(u, v)) will be placed
into Khead. Similarly, Lemma 27 implies that v will not be placed into Ktail which further
implies no ancestor of v will be put into Ktail. Together, this implies that M∩Z(u, v) ⊆ Ures

so that running Algorithm 1 on M will return inconclusive ancestral relationships between
all z ∈ Z(u, v). Since this holds for any M ⊆ V such that v ∈ M and M ∩ Z(u, v) 6= ∅,
Algorithm 2 will not discover that z ≺ v for any z ∈ Z(u, v). Since Z(u, v) ∩ an(v) 6= ∅
Algorithm 2 is not complete.

Algorithm 3 uses additional steps (Steps 2-4) before applying Algorithm 2. We show
that these additional steps do not rectify the problem. First note that when applying
Algorithm 1 to V (Step 2), Khead ⊆ V \ {S ∪ de(S)} and Ktail ⊆ V \ An(S). This is true
because, by definition, any s ∈ S is not exogenous since it shares a common confounder
with some other s′ ∈ S. Thus, no s ∈ S will be put into Khead and subsequently no de(S)
will be put into Khead. For the same reason, no s ∈ S will be put into Ktail since it is not
a sink and subsequently no an(S) will be put into Ktail.

Since Z(u, v) ⊆ {u ∪ de(u)} and u ∈ S, then Z(u, v) ∩Khead = ∅. Thus, Step 4 will not
remove from any z ∈ Z(u, v) the effect of u or the effect of the latent confounder shared by
u and v. Thus, as shown above, Step 5 of Algorithm 3 (applying Algorithm 2 to Rres) will
still fail to identify that z ∈ an(v) for any z ∈ Z(u, v).
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A.3 Counterexamples: Pairwise LvLiNGAM

Pairwise LvLiNGAM will fail to discover any relationships in the simple ancestral graph
shown in Figure 13. This is because all subsets of V = {1, 2, 3} are confounded.

3

1 2

Figure 13: An ancestral graph which Pairwise LvLiNGAM will fail to identify.

A.4 Counterexamples: RCD

We step through the RCD procedure when applied to the graph in Figure 2. We follow
the notation from Algorithm 1 in Maeda and Shimizu (2020): xj is the observed data for
variable j; at each step we consider a set U ⊆ V where |U | = l + 1 for some counter l;
Mi is the set of verified ancestors of i; HU =

⋂
j∈U Mj , and yj is the resulting residual

when xj is regressed onto HU . When regressing xj onto some set H, we let dj,u.H denote
the population regression coefficient corresponding to u ∈ H. When performing a HSIC
minimizing regression of yi onto yj for j ∈ U \ i we let λ be a potential solution and SUi is
the resulting residual. Finally S denotes a possible sink which might be certified at each
step.

1 2 3 4

(a)

1 2 3 4

(b)

Figure 14: The graph in (a) is a non-ancestral BAP which would be correctly identified by
BANG but not Pairwise LvLiNGAM, ParcelLiNGAM, or RCD. The graph in (b) shows the
graph which would be identified by Pairwise LvLiNGAM, ParcelLiNGAM, and RCD.
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We walk through the RCD procedure with the correction that line 9 of Algorithm 1 of
Maeda and Shimizu (2020) is actually the intersection of sets—i.e., HU =

⋂
j∈U Mj—instead

of the union as stated in the original text.

• U = {1,2} : M = {∅,∅,∅,∅}; l = 1 HU = ∅

– y1 = ε1; y2 = ε2 + β2,1x1

– Let i = 1: 1 ∈ pa(2) so there is no value of λ such that y2 ⊥⊥ y1 − λy2

– Let i = 2: Setting λ = β2,1 yields

y2 − λy1 = ε2 ⊥⊥ y1.

– S = 2. Update M2 = {1}.

• U = {1,3} : M = {∅,{1},∅,∅}; l = 1 HU = ∅

– 1 ∈ sib(3) so there is no updates to M .

• U = {1,4} : M = {∅,{1},∅,∅}; l = 1 HU = ∅

– 1 ∈ sib(4) so there is no update to M .

• U = {2,3} : M = {∅,{1},∅,∅}; l = 1 HU = ∅

– y2 = ε2 + β2,1ε1; y3 = ε3 + β3,2(ε2 + β2,1ε1)

– Let i = 2: 2 ∈ pa(3) so there is no value of λ such that y3 ⊥⊥ y2 − λy3.

– Let i = 3: In order for SU3 ⊥⊥ y2, it is necessary that SU3 not contain a ε2 term.
This implies that λ must be β3,2 so that SU3 = y3 − λy2 = ε3. However, since
1 ∈ sib(3), then

y3 − λy2 = ε3 6⊥⊥ y2 = ε2 + β2,1ε1.

so there is no update to M .

• U = {2,4} : M = {∅,{1},∅,∅}; l = 1 HU = ∅

– 2 ∈ sib(4) so there is no update.

• U = {3,4} : M = {∅,{1},∅,∅}; l = 1 HU = ∅

– y3 = ε3 + β3,2x2; y4 = ε4 + β4,3x3

– Let i = 3: 3 ∈ pa(4) so there is no value of λ such that y4 ⊥⊥ y3 − λy4

– Let i = 4: For SU4 ⊥⊥ y3, it is necessary that SU4 not contain a ε3 term. This
implies that λ must be β4,3, so that SU4 = y4 − λy3 = ε4. However, since
1 ∈ sib(4), then

SU4 = y4 − λy3 = ε4 6⊥⊥ ε3 + β3,2(ε2 + β2,1ε1)

so there is no update to M .
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This is all subsets of size 2, but since an update has occurred, l remains 1, and the
procedure will cycle through all subsets of size 2 again. However, since M2 is the only
non-empty set, HU is the same for all pairs, so the outcomes are the same as before the
second time through. M is not updated so l = 2 and we test all sets of size 3.

• U = {1,2,3} : M = {∅,{1},∅,∅}; l = 2 HU = ∅

– Let i = 1: 1 ∈ pa(2) so no update can be made.

– Let i = 2: M2 ∩ U 6= ∅ so it is not tested.

– Let i = 3: y1 = ε1 and y2 = x2 both do not contain a ε3 term, so SU3 must
contain a ε3 term. Since 1 ∈ sib(3), then SU3 cannot be independent of y1, so no
update is made.

– No update is made.

• U = {1,2,4} : M = {∅,{1},∅,∅}; l = 2 HU = ∅

– Let i = 1: 1 ∈ pa(2) so no update can be made.

– Let i = 2: M2 ∩ U 6= ∅ so it is not tested.

– Let i = 4: y1 = ε1 and y2 = x2 both do not contain a ε4 term, so SU4 must
contain a ε4 term. Since 1 ∈ sib(4), then SU4 cannot be independent of y1, so no
update is made.

– No update is made.

• U = {1,3,4} : M = {∅,{1},∅,∅}; l = 2 HU = ∅

– Let i = 1: 1 ∈ pa(2) so no update can be made.

– Let i = 3: 3 ∈ pa(4) so no update can be made.

– Let i = 4: y1 = ε1 and y3 = x3 both do not contain a ε4 term, so SU4 must
contain a ε4 term. Since 1 ∈ sib(4), then SU4 cannot be independent of y1, so no
update is made.

– No update is made.

• U = {2,3,4} : M = {∅,{1},∅,∅}; l = 2 HU = ∅

– Let i = 2: 2 ∈ pa(3) so no update can be made.

– Let i = 3: 3 ∈ pa(4) so no update can be made.

– Let i = 4: y2 = x2 and y3 = x3 both do not contain a ε4 term, so SU4 must
contain a ε4 term. Since 2 ∈ sib(4), then SU4 cannot be independent of y2, so no
update is made.

– No update is made.

Since no updates have been made, l = 3.

• U = {1,2,3,4} : M = {∅,{1},∅,∅}; l = 3 HU = ∅
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– Let i = 1: 1 ∈ pa(2) so no update can be made.

– Let i = 2: 2 ∈ pa(3) so no update can be made.

– Let i = 3: 3 ∈ pa(4) so no update can be made.

– Let i = 4: y1 = ε1, y2 = x2, and y3 = x3 both do not contain a ε4 term, so SU4
must contain a ε4 term. Since sib(4) = {1, 2}, then SU4 cannot be independent
of y1 or y2, so no update is made.

– No update is made.

The algorithm will terminate and has only discovered 1→ 2.
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Appendix B. Proofs from Section 3

B.1 Lemma 5

Let v ∈ V and C ⊆ V \ {v}. Suppose D ∈ Rp×p such that Ds,t 6= 0 only if t ∈ an(s).
Then, for generic B and error moments, if δv(C, anD(C), S,D) 6= B̃(C ∪ {v})v,C , then
E(γc(D)K−1γv(C, S,D)) 6= 0 for some c ∈ C.
Proof Since E

(
γK−1
c γv

)
is a rational function of the model parameters, by Okamoto

(1973, Lemma 1), showing that the quantity is non-zero for some parameters is sufficient
for showing that it vanishes only over a null set. Without loss of generality, let C be ordered
such that C = {c1, . . . , c|C|} where ci is not a descendant of cj for any j < i. Note that

γv = εv +
∑

a∈an(v)

πv,aεa −
∑
c∈C

δv,cYc

= εv +
∑

a∈an(v)

πv,aεa −
∑
c∈C

δv,c(εc +
∑

a∈an(c)

πc,aεa).
(30)

Suppose i is the minimum index for which δci 6= B̃v,ci so that δcj = B̃v,cj for all j < i. Then,
the coefficient of εci in Yv −

∑
j<i δv,cjYcj is

πv,ci −
∑
j<i

δv,cjπcj ,ci = πv,ci −
∑
j<i

β̃v,cjπcj ,ci

=
∑

l∈Lv,ci

W (l)−
∑
j<i


 ∑
l∈L

(cj)
v,cj

(C)

W (l)


 ∑
l∈Lcj ,ci

W (l)




=
∑

l∈Lv,ci

W (l)−
∑
j<i

 ∑
l∈L

(cj)
v,ci

(C)

W (l)


=

∑
l∈L(ci)v,ci

W (l) = B̃(C)v,ci . (31)

For all j > i, cj is not a descendant of ci so Ycj does not include any terms of εci . By

assumption, δci 6= B̃v,ci , so let δci = B̃v,ci − α for α 6= 0 so that

γv = αεci + η and γci = εci + ζ, (32)

where η and ζ do not contain εci . Then,

E
(
γK−1
ci γv

)
= E

(
[εci + ζ]K−1 [αεci + η]

)
= E

([
εK−1
ci +

K−2∑
k=0

εkciζ
K−1−k

]
[αεci + η]

)

= αE
(
εKci
)

+ E
(
εK−1
ci η

)
+ E

([
K−2∑
k=0

εkciζ
K−1−k

]
[αεci + η]

)
.
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Since the last two terms do not involve E(εKci ), we can always select some E(εKci ) such that

E
(
εKci
)
6= −

(
E
(
εK−1
ci η

)
+ E

([∑K−2
k=0 εkciζ

K−1−k
]

[αεci + η]
))

α

which ensures that E
(
γK−1
ci γv

)
6= 0.

B.2 Proof of Lemma 6

Consider v ∈ V and C ⊆ V \ {v}. Let D ∈ Rp×p such that Ds,t 6= 0 only if t ∈ an(s).
Suppose C 6⊆ an(v), but that E(γc(D)K−1γv(C, S,D)) = 0 for all c ∈ C. Then for generic
B and error moments, C1 = C ∩ [an(v) \ sib(v)],

E(γc(D)K−1γv(C1, S,D)) = 0 ∀c ∈ C.

Proof For convenience, let A = AnD(C), A1 = AnD(C1), A2 = A \ A1, and Λ =
I − D and Π = (I − D)−1. Note that A2 ∩ de(A1) = ∅; this implies DA1,A2 = 0 and[
(I −DA,A)−1

]
A1,A2

= 0. So that

(I −D)C1,ASA,C =
[
ΛC1,A1 ΛC1,A2

] [SA1,C1

SA2,C1

]
=
[
ΛC1,A1 0

] [SA1,C1

SA2,C1

]
= ΛC1,A1SA1,C1 ,

and

(I −D)C1,AΣA,v =
[
ΛC1,A1ΛC1,A2

] [ΣA1,v

ΣA2,v

]
=
[
ΛC1,A10

] [ΣA1,v

ΣA2,v

]
= (I −D)C1,A1ΣA1,v.

Thus,

δv(C1, A, S,D) = [(I −D)C1,ASA,C1 ]−1 (I −D)C1,AΣA,v

= [(I −D)C1,A1SA1,C1 ]−1 (I −D)C1,A1ΣA1,v

= δv(C1, A1, S,D).

By Lemma 5, for generic B and error moments, if

E(γc(D)K−1γv(C, S,D)) = 0,

then for every q 6∈ C1, δvq(C,A, S,D) = 0.

γv(C, S,D) = Yv − YCδv(C,A, S,D)

= Yv − YC1(C1, A1, S,D)

= γv(C1, A1, S,D).
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So if for all c ∈ C,

E
(
γc(D)K−1γv(C,Σ, D)

)
= 0, (33)

then for all c ∈ C
E
(
γc(D)K−1γv(C1, S,D)

)
= 0. (34)

B.3 Proof of Lemma 7

Suppose D = HC(B) for some HC ∈ D with C = (Cs)s∈V such that Cs ⊆ an(s) \ sib(s).
Let v ∈ V be such that we have E(γc(D)K−1γv(paD(v), S,D)) = 0 for all c ∈ paD(v). If
q ∈ (pa(v)\paD(v))∪sib(v), then for generic B and error moments, E

(
γq(D)K−1γv(D)

)
6= 0.

Proof For notational convenience, let C = paD(v). First consider q ∈ pa(v) \ paD(v).
E(γc(D)K−1γv(C,AnD(C), S,D)) = 0 for all c ∈ paD(v) implies that

γv(D) = Yv − YpaD(v)(Dv,paD(v))
T

=

(
πv,q −

∑
c∈C

B̃(C ∪ {v})v,cπc,q

)
εq + η

=

πv,q − ∑
c∈C∩de(q)

B̃(C ∪ {v})v,cπc,q

 εq + η

= αεq + η

(35)

where η does not involve εq. For any c ∈ de(q), B̃(C ∪ {v, q})v,C = B̃(C ∪ {v})v,C because
there are no paths from c to v which pass through q, so marginalizing q does not change
the marginal direct effect. Thus, as shown in Lemma 5,

α = πq,v −
∑

c∈C∩de(q)

B̃(C ∪ {q, v})v,Cπc,q

= B̃(C ∪ {q, v})v,q.
(36)

The set of points, B such that q ∈ pa(v), but the marginal direct effect B̃(C ∪{q, v})vq = 0
have Lebesgue measure 0, so by the same argument as Lemma 5 when α 6= 0, for generic
error moments, E(γK−1

q γv) 6= 0.
Now consider q ∈ sib(v). Since paD(v) ⊆ an(v) for all v ∈ V , then γv = εv + η where

η does not involve εv and γq = εq + ζ where ζ does not involve εq. Then, using the same
argument as the previous lemmas, selecting

E(εK−1
q εv) 6= −E

(
K−2∑
t=0

(
K − 1

t

)
εtqζ

K−1−t(εv + η) + εK−1
q η

)
(37)

ensures that E(γK−1
q γv) 6= 0
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B.4 Proof of Lemma 8

Consider v ∈ V and C such that C ⊆ V \ {v}. Suppose D = HC(B) for some HC ∈ D with
C = (Cs)s∈V such that Cs ⊆ an(s) \ sib(s) for all v ∈ V . If C ∩ sib(v) 6= ∅, then for generic
B and error moments, there exists some q ∈ C such that E

(
γq(D)K−1γv(C,Σ, D)

)
6= 0.

Proof We again appeal to Okamoto (1973, Lemma 1), and show that the quantity is non-
zero for generic B and the error moments by constructing a single point (of B and the error
moments) at which the quantity of interest is non-zero. In particular, select q ∈ C ∩ sib(v).
We then represent γv as

γv = εv +
∑

a∈an(v)

πv,aεa −
∑
c∈C

δv,c
∑

z∈An(c)

πc,zεz

= αεq + η,

(38)

where

α = πv,q +
∑
c∈C

δv,cπc,q

η = (1−
∑
c∈C

δv,cπc,v)εv +
∑

a∈an(v)\q

πv,aεa −
∑
c∈C

δv,c
∑

z∈An(c)\q

πc,zεz

and δv,c is the c-th element of δv from (10). Similarly, we represent γq

γq = εq +
∑

a∈an(q)

πv,aεa −
∑

s∈paD(q)

dq,s
∑

t∈An(s)

πs,tεt

= εq + ζ

(39)

where ζ does not involve εq. The coefficient on εq is 1 since D = HC(B) implies that
dq,s 6= 0 only if s ∈ an(q). For S = Σ and any HC ∈ D, α is a rational function of B and Ω
because both Π and δ only involve matrix inversions and multiplications of D and S which
in turn are rational functions of B and Ω. We now show that for some point B and Ω,
α 6= 0. In particular, let B = 0 and ωqv 6= 0, but ωij = 0 for all other i 6= j. At this point,
πv,q = πc,q = 0 for all c ∈ C \ q so that

α = δv,q. (40)

B = 0 implies that D = 0 for all D ∈ D and SC,C = ΩC,C . In addition, SC\q,v = 0 since all
treks between nodes in C or between treks C \ {q} and v have path weights of 0. However,
there is a single trek between q and v, namely the bidirected edge, so Sqv = ωqv. Then,

α = δv,C = [SC,C ]−1 SC,v =
ωqv
ωqq
6= 0. (41)

Thus, for generic choice of B and Ω, α 6= 0. Now, we finally examine the quantity of
interest, which is a rational function of the error moments and B, and play the same game
as before. In particular,
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E
(
γK−1
q γv

)
= E

(
[εq + ζ]K−1 [αεq + η]

)
= E

([
εK−1
q +

K−2∑
k=0

εkqζ
K−1−k

]
[αεq + η]

)

= αE
(
εKq
)

+ E
(
εK−1
q η

)
+ E

([
K−2∑
k=0

εkqζ
K−1−k

]
[αεq + η]

)
.

The last two terms do not involve E(εKq ) so we select E
(
εKq
)

such that

E
(
εKq
)
6= −

(
E
(
εK−1
q η

)
+ E

([∑K−2
k=0 εkqζ

K−1−k
]

[αεq + η]
))

α
(42)

to ensure that E
(
γK−1
q γv

)
6= 0. Thus, there exists some point such that E

(
γK−1
q γv

)
6= 0.

This implies there is a null set of B and error moments which we must avoid for each
HC ∈ D, but since |D| is finite, then the union of these null sets is again a null set.

B.5 Proof of Corollary 9

Suppose D = B. For v ∈ V and generic B and error moments, suppose pa(v) ⊆ C ⊆
an(v) \ sib(v). If q ∈ C \ pa(v), then for all c ∈ C

E(γc(D)K−1γv(C \ {q},Σ, D)) = 0. (43)

If q ∈ pa(v), then there exists some c ∈ C such that

E(γc(D)K−1γv(C \ {q},Σ, D)) 6= 0. (44)

Proof Suppose q ∈ C \ pa(v) and without loss of generality, assume that q is the last
element in C. Then, Lemma 3 implies that

δv(C,AnD(C),Σ, D) = Bv,(C\{q},q) =
[
Bv,(C\{q}) 0

]
=
[
δv(C \ {q},Σ, D) 0

] (45)

so that for all c ∈ C

E(γc(D)K−1γv(C \ {q},Σ, D)) = E(γq(D)K−1γv(C,Σ, D)) = 0. (46)

Now consider the second statement when q ∈ pa(v). If E(γc(D)K−1γv(C \ {q},Σ, D)) 6= 0
for some c ∈ C \ {q} then the statement trivially holds. Thus, it remains to be shown
that E(γq(D)K−1γv(C \ {q},Σ, D)) 6= 0 when E(γc(D)K−1γv(C \ {q},Σ, D)) = 0 for all
c ∈ C \ {q}. This is directly implied by Lemma 7
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Lemma 28 Fix v ∈ V and sets C1, C2 ⊆ an(v) \ sib(v), and suppose D = HC(B) for some
HC ∈ D with C = (Cs)s∈V such that Cs ⊆ an(s) \ sib(s) for all v ∈ V . For generic B and
error moments, if E(γc(D)γv(C1,Σ, D)) = 0 for all c ∈ C1 and E(γc(D)γv(C2,Σ, D)) = 0
for all c ∈ C2, then E(γc(D)γv(C3,Σ, D)) = 0 for all c ∈ C3 = C1 ∪ C2. That is, if C1 and
C2 are certified by Eq. (12), then C1 ∪ C2 will also be certified.

Proof We begin by showing that for generic parameters, certification of C ⊆ an(v)\ sib(v)
via (12) is equivalent to a graphical condition for v and C given D. Furthermore, we show
that when this graphical condition holds for C1 and C2 given D, then it also holds for
C1 ∪ C2 given D. Thus, if C1 and C2 are certified, then C1 ∪ C2 will also be certified.

Let an(v | C) = {a ∈ an(v) : ∃ a path from a to v which does not pass through C}.
Then, we say that v is “uncounfounded” with C given D if for each a ∈ an(v | C), we have
an(C | paD(C)) ∩ {a} ∪ sib(a) = ∅.

We first show that certification of C for generic parameters implies that v is “uncoun-
founded” with C given D.

By Lemma 5, for generic parameters, C is certified only if δv,C = B̌(C ∪ {v}). Thus,

γv(C,Σ, D) = Yv − B̌(C ∪ {v})v,CYC

= εv +
∑

a∈an(v)

πv,aεa −
∑
c∈C

∑
z∈An(c)


 ∑
l∈L(c)v,c(C)

W (l)


 ∑
l∈Lc,z

W (l)


 εz

= εv +
∑

a∈an(v)

 ∑
l∈Lv,a

W (l)−
∑

l∈
⋃

c∈C L
(c)
v,a(C)

W (l)

 εa.
(47)

The set of paths Lv,a and
⋃
c∈C L

(c)
v,a(C) are equal—which for generic parameters is equiv-

alent to the coefficient for εa in γv being 0—if and only if all directed paths from a to
v pass through C. Thus, εa appears in γv(C,Σ, D) for all a ∈ an(v | C). Similarly, εz
for z ∈ an(c) appears in γc(D) if and only if z ∈ an(c | paD(c)) because D = HC(B) for
some HC ∈ D implies that Dc,paD(c) = B̌(paD(c) ∪ {c}). As previously shown, when C is
certified by (12), if εa appears in γv(C,Σ, D), then εz for z ∈ {a} ∪ sib(a) cannot appear
in any γc for any c ∈ C. Thus, if C is certified, then for every a ∈ an(v | C), we have
an(C | paD(C)) ∩ {a} ∪ sib(a) = ∅, and v is “unconfounded” with C given D.

We now show the reverse direction that when v is “uncounfounded” with C given
D, C will be certified. In particular, we show that distribution of Y lies within another
model (which we denote using Ỹ ) for which C satisfies the conditions in Lemma 1; thus,
E(γ̃cγ̃v(C, S, D̃) = 0 for all c ∈ C.

For all a ∈ an(v), we construct Ỹ as follows. Let ε̃a = γa(D) and let

Ỹa :=
∑

z∈paD(a)

da,zỸz + ε̃a.

Since Ya =
∑

z∈paD(a) da,zYz + γa(D), then Ỹa = Ya for all a ∈ an(v). Furthermore, let
πv,a.C :=

∑
l∈Lv,a\

⋃
c∈C L

(c)
v,a(C)

W (l) be the sum of all pathweights of paths from a to v which
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do not pass through C. Finally, define

ε̃v = Yv −
∑
c∈C

B̌(C ∪ v)v,cYc = εv +
∑

a∈an(v|C)

πv,a.Cεa

and set
Ỹv :=

∑
c∈C

B̌(C ∪ v)v,cỸc + ε̃v,

so that Ỹv = Yv. By construction Dan(v),an(v) are the true direct effects between Ỹan(v). In
addition, because D = HC(B) for some HC ∈ D such that Cs ⊆ an(s) \ sib(s) for all v ∈ V ,
for each c ∈ C and v is “unconfounded” with C given D, then εz does not appear in γc(D)
for any z ∈ {v}∪an(v | C)∪sib(an(v | C)). Thus, ε̃c ⊥⊥ ε̃v, so that p̃a(v) = C ⊆ ãn(v)\ ˜sib(v)
and the conditions for Lemma 3 are satisfied.

Because an(v | C1∪C2) ⊆ an(v | C1)∩an(v | C2), if C1 and C2 are “unconfounded” with
v given D, then C1 ∪ C2 is also unconfounded with v given D. This implies that C1 ∪ C2

will also be certified by (12).
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Appendix C. Proofs from Section 5

C.1 Proof of Corollary 18

Let v ∈ V , and consider any set C ⊆ A ⊆ V \ {v}. Suppose D ∈ Rp×p with Ds,t 6= 0 only
if t ∈ ān(s). Then, for generic B and error moments, if δv(C,A, S,D) 6= B̌(C ∪ v)v,C , then
E(γK−1

c (D)γv(C, S,D)) 6= 0 for some c ∈ C.
Proof The proof exactly follows that of Lemma 5; however, some of the quantities in G
are replaced with the corresponding quantities in Ḡ.

Without loss of generality, let C be ordered such that C = {c1, . . . , c|C|} where ci 6∈
de(cj) (note that this is in the original graph G) for any j < i. Note that

γv(C, S,D) = ε̄v +
∑

a∈ān(v)

π̄v,aε̄a −
∑
c∈C

δv,cYc

= ε̄v +
∑

a∈ān(v)

π̄v,aε̄a −
∑
c∈C

δv,c(ε̄c +
∑

a∈ān(c)

π̄c,aε̄a).
(48)

Suppose i is the minimum index for which δci 6= B̌v,ci so that δcj = B̃v,cj for all j < i. Then,
the coefficient of εci in Yv −

∑
j<i δv,cjYcj is

π̄v,ci −
∑
j<i

δv,cj π̄cj ,ci = π̄v,ci −
∑
j<i

β̌v,cj π̄cj ,ci

=
∑

l∈L̄v,ci

W (l)−
∑
j<i


 ∑
l∈L̄

(cj)
v,cj

(C)

W (l)


 ∑
l∈L̄cj ,ci

W (l)




=
∑

l∈L̄v,ci

W (l)−
∑
j<i

 ∑
l∈L̄

(cj)
v,ci

(C)

W (l)


=

∑
l∈L̄(ci)v,ci

W (l) = B̌(C ∪ v)v,ci .

For all j > i, cj 6∈ de(ci) so Ycj does not include any terms of εci (note this is not ε̄ci).

By assumption, δv,ci 6= B̌v,ci , so let δv,ci = B̌v,ci − α for α 6= 0 so that

γv = αεci + η and γci = εci + ζ, (49)

where η and ζ do not contain εci . Then,

E
(
γK−1
ci (D)γv(C, S,D)

)
= E

(
[εci + ζ]K−1 [αεci + η]

)
= E

([
εK−1
ci +

K−2∑
k=0

εkciζ
K−1−k

]
[αεci + η]

)

= αE
(
εKci
)

+ E
(
εK−1
ci η

)
+ E

([
K−2∑
k=0

εkciζ
K−1−k

]
[αεci + η]

)
.
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Since the last two terms do not involve E(εKci ), we can always select some E(εKci ) such that

E
(
εKci
)
6= −

(
E
(
εK−1
ci η

)
+ E

([∑K−2
k=0 εkciζ

K−1−k
]

[αεci + η]
))

α

which ensures that E
(
γK−1
ci γv

)
6= 0.

C.2 Proof of Corollary 19

Consider v ∈ V and set C ⊆ V \ {v}. Let D ∈ Rp×p such that Ds,t 6= 0 only if t ∈ ān(s).
Suppose C 6⊆ ān(v), but that E(γc(D)K−1γv(C, S,D)) = 0 for all c ∈ C. Then for generic
B and error moments, C1 = C ∩

[
ān(v) \ ¯sib(v)

]
,

E(γc(D)K−1γv(C1, S,D)) = 0

for all c ∈ C.
Proof The proof exactly follows the proof of Lemma 6, except replaces all quantities in G
with quantities in Ḡ.

C.3 Proof of Lemma 20

Suppose D = HC(B̄) for some HC ∈ D with C = (Cs)s∈V such that Cs ⊆ ān(s) \ ¯sib(s) for
all s ∈ V . Let v ∈ V be such that we have E(γc(D)K−1γv(D)) = 0 for all c ∈ paD(v). If
q ∈

( ¯pa(v)\paD(v)
)
∪ ¯sib(v), then for genericB and error moments, E

(
γq(D)K−1γv(D)

)
6= 0.

Proof Suppose q ∈ p̄a(v) \ paD(v). Then there exists a directed path l from q to v such
that l \ {q} ⊆ irr(v) from q to v. Since Cv ⊆ ān(v) \ ¯sib(v), then irr(v) ∩ Cv = ∅ because
irr(v) ⊆ ¯sib(v). Thus, l ∩ Cv = ∅ so Lemma 23 implies that E

(
γq(D)K−1γv(D)

)
6= 0 for

generic parameters.
Suppose q ∈ ¯sib(v). Then either q ∈ sib(irr(v)) or irr(q) ∩ sib(irr(v)) 6= ∅. If q ∈

sib(irr(v)), then there exists some path l such that l \ {q} ⊆ irr(v) from s1 to v where
either q = s1 (if q ∈ irr(v)) or q ∈ sib(s1) (if q ∈ sib(irr(v)) \ irr(v)). In this case,
l ⊆ irr(v) ∩Cv = ∅, so Lemma 23 implies that E

(
γq(D)K−1γv(D)

)
6= 0 for generic parame-

ters. If irr(q) ∩ sib(irr(v)) 6= ∅, then Lemma 24 implies the desired result.

C.4 Proof of Lemma 21

Consider v ∈ V and sets A,C such that C ⊆ A ⊆ V \ {v}. Suppose D = HC(B̄) for some
HC ∈ D with C = (Cs)s∈V such that Cs ⊆ ān(s) ¯sib(s) for all s ∈ V . Suppose u ∈ C
and u ∈ ¯sib(v), then for generic B and error moments, there exists some q ∈ C such that
E
(
γq(D)K−1γv(C,Σ, D)

)
6= 0.

Proof If q ∈ ¯sib(v), then either q ∈ sib(irr(v)) or irr(q) ∩ sib(irr(v)) 6= ∅. If irr(q) ∩
sib(irr(v)) 6= ∅, then Lemma 24 implies the desired result. Now, consider the first case
where q ∈ sib(irr(v)). Then either q ∈ sib(v) or q ∈ sib(irr(v) \ sib(v). If q ∈ sib(v),
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then the desired result is implied by Lemma 8. If q ∈ sib(irr(v) \ sib(v) then there exists
some path l ⊆ irr(v) from s1 to v where q ∈ sib(s1). Furthermore, l ⊆ irr(v) ∩ Cv = ∅,
so Lemma 23 implies that there exists some c ∈ C such that E

(
γc(D)K−1γv(D)

)
6= 0 for

generic parameters.

C.5 Proof of Corollary 22

Suppose D = B̄. Then, for v ∈ V and generic B and error moments, suppose p̄a(v) ⊆ C ⊆
ān(v) \ ¯sib(v) and E(γc(D)K−1γv(C,Σ, D)) = 0 for all c ∈ C. If q ∈ C \ p̄a(v), the for all
c ∈ C

E(γq(D)K−1γv(C \ {q},Σ, D)) = 0. (50)

If q ∈ pa(v), then there exists some c ∈ C such that

E(γq(D)K−1γv(C \ {q},Σ, D)) 6= 0. (51)

Proof Corollary 17 implies for any q ∈ C \ p̄a(v),

δv(C,AnD(C),Σ, D) = B̄v,(C\{q},q) =
[
B̄v,(C\{q}) 0

]
=
[
δv(C \ {q},AnD(C \ {q}),Σ, D) 0

]
(52)

so that

E(γq(D)K−1γv(C \ {q},Σ, D)) = E(γq(D)K−1γv(C,Σ, D)) = 0. (53)

Now consider the second statement when q ∈ p̄a(v). If E(γc(D)K−1γv(C\{q},Σ, D)) 6= 0
for some c ∈ C \ {q} then the statement trivially holds. Thus, it remains to be shown that
E(γq(D)K−1γv(C\{q},Σ, D)) 6= 0 when E(γc(D)K−1γv(C\{q},Σ, D)) = 0 for all c ∈ C\{q}.
This is directly implied by Lemma 20.

C.6 Proof of Lemma 23

Let D = HC(B̄) for some HC ∈ D with C = (Cs)s∈V such that Cs ⊆ ān(s) \ ¯sib(s) for all
s ∈ V . Suppose there exists some path l = s1 → s2 → . . . s|l|−1 → v such that l ∩ Cv = ∅.
Further suppose that u ∈ sib(s1) \ l and u 6∈ Cv. Then for generic parameters

E
(
γv(D)K−1γs1(D)

)
6= 0 and E

(
γv(D)K−1γu(D)

)
6= 0, (54)

so that s1 and u will not be pruned from ŝib(v) by Alg 2. Furthermore, for any C such that
u ∈ C, for generic parameters there exists some c ∈ C such that

E
(
γc(D)K−1γv(C,Σ, D)

)
6= 0, (55)

so that u will not be certified into p̂a(v).
Proof Because Cv ⊆ an(v), we can write:

γv(D) = εv +
∑

a∈an(v)

ζv,aεa. (56)
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We first show that ζv,s 6= 0 for all s ∈ l. Note that ζv,s = πv,s −
∑

a∈an(v) dv,aπa,s is a
rational function of the parameters because dv,a, πa,s, and πv,s are rational functions of the
parameters. Thus, showing that ζv,s 6= 0 for specific parameter values implies that it is
non-zero for generic parameter values.

Specifically, consider the set of edgeweights where all edges in the path l are set to 1, and
all other edges are set to 0. Then, πv,s′ = πs′,s′′ = 1, for any s′, s′′ ∈ l and πv,w′ = πw′,w′′ = 0
if either w′ or w′′ is not in l. Then, for any D = HC(B̄) where paD(v) ∩ l = ∅, dv,w = 0 for
all w 6∈ l since the only non-zero path to v is l. Furthermore, let ωs,s = 1 for all s ∈ V and
let ωs1,u = 1.

Since l ∩ paD(v) = ∅, we have

γv(D) = Yv −
∑

w∈paD(v)

dv,wYw

=
∑

s∈an(v)

πv,sεs −
∑

w∈paD(v)

dv,wYw

=
∑
s∈l

πv,sεs.

(57)

Thus, ζv,s = πv,s −
∑

w∈paD(v) dv,wπw,s = πv,s = 1 for all s ∈ l. This implies that ζv,s 6= 0
for generic B.

Furthermore, since all directed edges pointing into s1 are 0, then γs1(D) = εs1 . For
notational convenience, let φ =

∑
s∈l\s1 ζv,sεs so that γv(D) = ζv,s1εs1 + φ. Then

E(γv(D)K−1γs1(D)) = E
(

(ζv,s1εs1 + φ)K−1 εs1

)
= E

(
ζK−1
v,s1 ε

K
s1 +

K−2∑
k=0

ζkv,s1ε
k+1
s1 φK−1−k

)
.

(58)

Since
∑K−2

k=0 ζkv,s1ε
k+1
s1 φK−1−k does not include any terms with εKs1 , we can pick

E(εKs1) 6= −
E
(∑K−2

k=0 ζkv,s1ε
k+1
s1 φK−1−k

)
ζK−1
v,s1

(59)

so that E(γv(D)K−1γs1(D)) 6= 0. Because E(γv(D)K−1γs1(D)) is a rational function of
the model parameters, this implies that E(γv(D)K−1γu(D)) is non-zero for generic model
parameters.

Similarly, γu(D) = εu so that

E(γv(D)K−1γu(D)) = E
(

(ζv,s1εs1 + φ)K−1 εu

)
= E

(
ζK−1
v,s1 ε

K−1
s1 εu + εu

K−2∑
k=0

ζkv,s1ε
k
s1φ

K−1−k

)
.

(60)

Since εu
∑K−2

k=0 ζkv,s1ε
k
s1φ

K−1−k does not include any terms with εK−1
s1 εu we can pick

E(εK−1
s1 εu) 6= −

E
(
εu
∑K−2

k=0 ζkv,s1ε
k
s1φ

K−1−k
)

ζK−1
v,s1

(61)
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so that E(γv(D)K−1γu(D)) 6= 0. This implies that E(γv(D)K−1γu(D)) 6= 0 for generic
parameters.

We now show that u will not be certified into p̂a(v). Recall that

δv(C,A,Σ, D) =
{

[(I −D)C,AΣA,C ]−1 (I −D)C,AΣA,v

}T
= (ΣC,C)−1 ΣC,v. (62)

There are no non-zero treks between w and v for any w 6∈ l∪u, so Σw,v = 0 for all w ∈ C \u.
Furthermore, Σu,v = 1 since there is a single trek between u and v and all edge weights
on that trek are 1. Furthermore, ΣC,C is a diagonal matrix with ωc,c = 1 on the diagonals
(i.e., ΣC,C is the identity) since there are no non-zero treks between any nodes in C. Thus,
δv(C,A,Σ, D) is 0 except for the element corresponding to u which is 1/ωu,u = 1.

Thus,

γv(C,Σ, D) =
∑
s∈l

εs −
1

ωu,u
εu. (63)

For notational convenience, let φ =
∑

s∈l εs and let ζv,u = −1/ωu,u. Using a similar
argument as before, picking

E(εKu ) 6= −
E
(∑K−2

k=0 ζkv,uε
k+1
u φK−1−k

)
ζK−1
v,u

(64)

implies that E(γv(C,Σ, D)K−1γu(D)) 6= 0.

C.7 Proof of Lemma 24

Suppose irr(u) ∩ sib(irr(v)) 6= ∅ and D = HC(B̄) for some C = (Cs)s∈V such that Cs ⊆
ān(s) \ ¯sib(s) for all s ∈ V . Then, for generic parameters

E
(
γv(D)K−1γu(D)

)
6= 0 (65)

so that u will not be pruned from ŝib(v) by Alg 2. Furthermore, for any C ⊆ V \ v such
that u ∈ C, for generic parameters, there exists some c ∈ C such that

E
(
γc(D)K−1γv(C,Σ, D)

)
6= 0, (66)

so that u will not be certified into p̂a(v).

Proof We first show that u will not be pruned out of ŝib(v) by Alg 2. We subsequently
show that u will not be certified into p̂a(v).

Not pruned from ŝib(v): Let q ∈ irr(u) ∩ sib(irr(v)) and w ∈ sib(q) ∩ irr(v). Then
there exists a directed path l1 from w to v such that l1 ⊆ irr(v) so that Cv ∩ l1 = ∅. As
shown in Lemma 23, this implies that γv(D) = ζv,wεw + φv where ζv,w 6= 0 for generic
parameters and some term φv which does not include εw. A similar statement can be made
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for q and u so that γu(D) = ζu,qεq + φu. Thus,

E
(
γv(D)K−1γu(D)

)
= E

(
[ζv,wεw + φv]

K−1 [ζu,qεq + φu]
)

= E

(
ζK−1
v,w εK−1

w [ζu,qεq + φu] + [ζu,qεq + φu]

K−2∑
k=0

ζkv,wε
k
wφ

K−k−1
v

)
= E

(
ζK−1
v,w εK−1

w ζu,qεu + ζK−1
v,w εK−1

v φq

+ [ζu,qεq + φu]
K−2∑
k=0

ζkv,wε
k
wφ

K−k−1
v

)
.

(67)
Since ζK−1

v,w εK−1
w φu + [ζu,qεq + φu]

∑K−2
k=0 ζkv,wε

k
wφ

K−k−1
v does not involve any terms with

εK−1
w εq, we can select

E
(
εK−1
w εq

)
6= −

E
(
ζK−1
v,w εK−1

w φu + [ζu,qεq + φu]
∑K−2

k=0 ζkv,wε
k
wφ

K−k−1
v

)
ζK−1
v,w ζu,q

(68)

so that E
(
γv(D)K−1γu(D)

)
6= 0. This implies that E

(
γv(D)K−1γu(D)

)
6= 0 for generic

parameters.

Not certified into p̂a(v): We now show that u will not be certified into p̂a(v) so

that u will remain in ŝib(v). Specifically, we show that any set C will not be certified if
u ∈ C. If u ∈ sib(irr(v)) or if C ∩ sib(irr(v)) 6= ∅, then Lemma 23 directly completes the
proof. Thus, it remains to be shown that C will not be certified even if u 6∈ sib(irr(v))
and C ∩ sib(irr(v)) = ∅. Without loss of generality, assume that 1, . . . , p is a valid causal
ordering of V . We consider two cases: (1) irr(u) ∩ irr(v) 6= ∅ and (2) irr(u) ∩ irr(v) = ∅.

For the first case, let w = max(irr(u) ∩ irr(v)). Then there exist two directed paths l1
and l2 such that l1 is a directed path from w to v with l1 ⊆ irr(v), l2 is a directed path from
w to u with l2 ⊆ irr(u), and {w} = l1 ∩ l2. Let s0 = min{s ∈ C : Cs ∩ l2 = ∅} so that s0

is the most upstream node in l2 whose currently estimated parent set, Cs, does not contain
any other nodes in l2. The set over which the min is taken is non-empty because l2 ⊂ irr(u)
so that Cu ∩ l2 = ∅. For each s ∈ C, let ms = max(l2 ∩ Cs) where ms = 0 if l2 ∩ Cs is
empty. Now set the directed edges on l1 and all directed edges on l2 before s0 to 1/p3. Set
ωv,v = 1 for all v ∈ V , and set all other directed and bidirected edgeweights to 0. Finally,
for any node s in l2, let L(s) denote the position of s in l2; i.e., if l = s1 → s2 → s3 . . . then
L(si) = i.

Suppose s ∈ C ∩ l2 and s < s0. Since the only non-zero directed edges are within l2 and
ms = max(Cs ∩ l2), then all non-zero directed paths from Cs to s must pass through ms.
Thus, for Cs the marginal direct effect is 0 for any t 6= ms and the marginal direct effect of
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ms is πs,ms = p−3(L(s)−L(ms)). Thus, for s < s0

γs(D) = Ys −Ds,CsYCs = Ys − πs,msYms

= εs +
∑
s′∈l2

s>s′>ms

πs,s′εs′ + πs,msYms − πs,msYms

= εs +
∑
s′∈l2

s>s′>ms

πs,s′εs′

(69)

and
Ys = εs +

∑
s′∈l2
s′<s

πs,s′εs′ . (70)

Because Cs0 ∩ l2 = ∅, no node in Cs0 has a non-zero directed path to s. Thus, Ds0,V is the
zero vector and

γs0(D) = Ys0 = εs + πs0,wεw +
∑
s∈l2\w

πs0,sεs. (71)

For all other s ∈ C, then either s 6∈ l2 or s ∈ l2 but s > s0. Then all directed paths into
s have weight 0, so Ds,V = 0. Thus,

γs(D) = Ys = εs. (72)

Notably, γs(D) only contains a term with εw if s = s0. We now show that under these
parameters, when checking the certificate for C, δv,s0(C,D,Σ) 6= 0.

Note that (I −D)C,AΣA,C = E
(
(YC −DC,AYA)Y T

C

)
= E

(
γCY

T
C

)
and (I −D)C,AΣA,v =

E ((YC −DC,AYA)Yv) = E (γCYv). Then, letting M = (I −D)C,AΣA,C for convenience, we
first show that M is diagonally dominant so that it is non-singular and MV \s0,V \s0 is also
non-singular.

For any s ∈ C, since all edgeweights are positive and E(εsεr) = 0 for s, r ∈ C, we have

Ms,s = E

[εs +
∑
s′∈l2

s>s′>ms

πs,s′εs′ ][εs +
∑
s′∈l2
s′<s

πs,s′εs′ ]

 > E(ε2
s) = 1. (73)

If s > s0 then γs = εs, but since all directed edges downstream of s are set to 0, then
εs does not appear in any other YC\s so Ms,C\s = 0. Similarly, since Ys = εs, then then
εs does not appear in any other γC\s so MC\s,s = 0. It then remains to characterize Mr,s

when r, sMs0. In this case,

Ms,r = E

[εs +
∑
s′∈l2

s>s′>ms

πs,s′εs′ ][εr +
∑
s′∈l2
s′<r

πr,s′εs′ ]


=

∑
s′∈l2
s′<r

s>s′>ms

πs,s′πr,s′E
(
ε2
s′
)

< p max
j,k∈V

(π2
j,k) <

1

p2
.

(74)
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Thus, |Ms,r| < 1
p2

for any s 6= r and Ms,s ≥ 1. This implies that M and MV \s0,V \s0 are
both diagonally dominant so that

|(M−1)s0,s0 | =
∣∣∣∣det(MV \s0,V \s0)

det(M)

∣∣∣∣ 6= 0. (75)

Letting F = (I −D)C,AΣA,v, we have:

(F )s = E(γsYv) = E


εs +

∑
s′∈l2

s>s′>ms

πs,s′εs′


εv +

∑
s′′∈l1

πv,s′′εs′′


 . (76)

Since l1 ∩ l2 = w and all covariances are set to 0, then Fs 6= 0 only if γs contains εw. Thus,
Fs = 0 for all s 6= s0 and Fs0 = E(πs0,wπv,wε

2
w) 6= 0. Combining all the results, we then

have that the s0 element of δv,C(C,D,Σ) is Ms0,s0Fs0 6= 0. Since Ys0 is the only Y which
has an εs0 term, it holds that

γv(C,Σ, D) = Yv − δv,CYC = δv,s0εs0 + φv, (77)

where φv does not involve εs0 . Similarly, we can write

γs0(D) = Ys0 −Ds0,V Y = εs0 + φs0 , (78)

where φs0 does not involve εs0 . Then,

E
(
γs0(D)K−1γv(C,Σ, D)

)
= E

(
[εs0 + φs0 ]K−1 [δv,s0εs0 + φv]

)
= E

(
εK−1
s0 [δv,s0εs0 + φv] + [δv,s0εs0 + φv]

K−2∑
k=0

εks0φ
K−k−1
s0

)

= E

(
εKs0δv,s0 + εK−1

s0 φv + [δv,s0εs0 + φv]
K−2∑
k=0

εks0φ
K−k−1
s0

)
.

(79)
Therefore, selecting

E
(
εKs0
)
6= −

E
(
εKs0δv,s0 + εK−1

s0 φv + [δv,s0εs0 + φv]
∑K−2

k=0 εks0φ
K−k−1
s0

)
δv,s0

(80)

implies that E
(
γs0(D)K−1γv(C,Σ, D)

)
6= 0 and thus E

(
γs0(D)K−1γv(C,Σ, D)

)
6= 0 for

generic parameters.
Now we slightly modify the argument above to the case where irr(u) ∩ irr(v) = ∅. Let

w ∈ sib(irr(v)) ∩ irr(u), and let q ∈ sib(w) ∩ irr(v). Select two paths, l1 and l2, such
that l1 ∩ l2 = ∅ where l1 is be a path from q to v which only passes through irr(v) and
l2 to be a path from w to u which only passes through irr(u). Similar to before, let
s0 = min({s ∈ C : Cs ∩ l2 = ∅}) so that s0 is the most upstream node in l2 whose currently
estimated parent set, Cs, does not contain any other nodes in l2. The set over which the
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min is taken is non-empty because l2 ⊂ irr(u) so that Cu ∩ l2 = ∅. For all s ∈ C ∩ l2 such
that s < s0, let ms = max(l2 ∩ C2) where Cs is the set of sets in C. Now consider the set
of parameters where all directed edges on l1 and all directed edges before s0 on l2 are set
to 1/p3. Let E(εwεq) = 1, and set all other directed and bidirected edgeweights to 0. In
addition, set ωv,v = 1 for all v ∈ V .

Using the same argument as before, M = (I − D)C,AΣA,C is diagonally dominant so
(M−1)s0,s0 6= 0. Furthermore, letting F = (I −D)C,AΣA,v, we have:

(F )s = E(γsYv) = E


εs +

∑
s′∈l2

s>s′>ms

πs,s′εs′


εv +

∑
s∈l1

πv,sεs


 . (81)

Since l1 ∩ l2 = ∅ and the only errors with non-zero covariance are w and q, then (F )s 6= 0
only if γs contains εw. By construction, only γs0 contains εw so F is zero except for the
element corresponding to s0 and Fs0 = E(πs0,wεwπv,qεq) = πs0,wπv,qE(εwεq) 6= 0. This
implies that δ(C,Σ, D)s0 = (M−1)s0,s0Fs0 6= 0.

Since Ys0 is the only Y which has an εs0 term, we obtain that

γv(C,Σ, D) = Yv − δv,CYc = δv,s0εs0 + φv, (82)

where φv does not include any terms with εs0 . Similarly, γs0(D) = εs0 +φs0 where φs0 does
not involve εs0 . Then,

E
(
γs0(D)K−1γv(C,Σ, D)

)
= E

(
[εs0 + φs0 ]K−1 [δv,s0εs0 + φv]

)
= E

(
εK−1
s0 [δv,s0εs0 + φv] + [δv,s0εs0 + φv]

K−2∑
k=0

εks0φ
K−k−1
s0

)

= E

(
εKs0δv,s0 + εK−1

s0 φv + [δv,s0εs0 + φv]
K−2∑
k=0

εks0φ
K−k−1
s0

)
(83)

Thus, selecting

E
(
εKs0
)
6= −

E
(
εKs0δv,s0 + εK−1

s0 φv + [δv,s0εs0 + φv]
∑K−2

k=0 εks0φ
K−k−1
s0

)
δv,s0

. (84)

implies that E
(
γs0(D)K−1γv(C,Σ, D)

)
6= 0 and thus E

(
γs0(D)K−1γv(C,Σ, D)

)
6= 0 for

generic parameters.
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