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Abstract

We study sparse linear regression over a network of agents, modeled as an undirected graph
(with no centralized node). The estimation problem is formulated as the minimization
of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus
constraint—the latter being instrumental to obtain distributed solution methods. While
penalty-based consensus methods have been extensively studied in the optimization literature,
their statistical and computational guarantees in the high dimensional setting remain unclear.
This work provides an answer to this open problem. Our contribution is two-fold. First,
we establish statistical consistency of the estimator: under a suitable choice of the penalty
parameter, the optimal solution of the penalized problem achieves near optimal minimax
rate O(s log d/N) in `2-loss, where s is the sparsity value, d is the ambient dimension, and
N is the total sample size in the network—this matches centralized sample rates. Second,
we show that the proximal-gradient algorithm applied to the penalized problem, which
naturally leads to distributed implementations, converges linearly up to a tolerance of the
order of the centralized statistical error—the rate scales as O(d), revealing an unavoidable
speed-accuracy dilemma. Numerical results demonstrate the tightness of the derived sample
rate and convergence rate scalings.
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1. Introduction

We study high-dimensional sparse estimation over a network of m agents, modeled as an
undirected graph. No centralized agent is assumed in the network; agents can communicate
only with their immediate neighbors. Each agent i owns a data set (yi, Xi), generated
according to the linear model

yi = Xiθ
∗ + wi, (1)

where yi ∈ Rn is the vector of n observations, Xi ∈ Rn×d is the design matrix, wi ∈ Rn
is observation noise, and θ∗ ∈ Rd is the unknown s-sparse parameter common to all local
models. In the high-dimensional setting, as postulated here, the ambient dimension d is
larger than the total sample size N = n ·m and s� d.

A standard approach to estimate θ∗ from {(yi, Xi)}mi=1 is to solve the LASSO problem,
whose Lagrangian form reads

θ̂ ∈ arg min
θ∈Rd

1

m

m∑

i=1

1

2n
‖yi −Xiθ‖2 + λ‖θ‖1, (2)

where λ > 0 controls the sparsity of the solution θ̂. Since the objective function involves the
entire data set {(yi, Xi)}mi=1 across the network, and routing local data to other agents is
infeasible (e.g., due to privacy issues) or highly inefficient, Problem (2) cannot be solved
by each agent i independently. This calls for the design of distributed algorithms whereby
agents alternate computations, based on available local information, with communications
with neighboring nodes. To this end, a widely adopted approach is to decompose (2) by
introducing local estimates θi’s of the common variable θ, each one controlled by one agent,
and forcing consensus among the agents (e.g., Nedić et al. 2018):

min
θ∈Rmd

1

m

m∑

i=1

1

2n
‖yi −Xiθi‖2 +

λ

m
‖θ‖1, subject to V θ = 0, (3)

where θ = [θ>1 , . . . , θ
>
m]> is the ‘stack vector’ of all the local copies θi’s, and V is a positive

semidefinite consensus-enforcing matrix, i.e., V θ = 0 if and only if all θi’s are equal.
The objective function in (3) is now (additively) separable in the agents’ variables;

however, there is still a coupling across the θi’s, due to the consensus constraint V θ = 0. To
resolve this coupling, a widely adopted strategy in the literature of distributed optimization
is to employ an inexact penalization of the constraint via a quadratic function. This leads to
the following relaxed formulation:

θ̂ ∈ arg min
θ∈Rmd

1

m

m∑

i=1

1

2n
‖yi −Xiθi‖2 +

1

2mγ
‖θ‖2V +

λ

m
‖θ‖1, (4)

where ‖θ‖2V , θ>V θ, and γ > 0 is a free parameter controlling the violation of the consensus
constraint V θ = 0. Invoking standard results of penalty methods (see, e.g., Nesterov et al.
(2018)), it is not difficult to check that, when γ ↓ 0, every limit point of the resulting sequence
θ̂ = θ̂(γ) is a solution of (3). This justifies the use of (4) as an approximation of (3) (for
sufficiently small γ).
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Problem (4) unlocks distributed solution methods. Here, we consider the proximal
gradient algorithm (Nesterov et al., 2018) that, based upon a suitable choice of the matrix V ,
is readily implementable over the network. This resembles the renowned Distributed Gradient
Descent algorithms (DGD) (see Section 1.3), which are among the most studied distributed
schemes in the literature. Motivated by the popularity of the penalized formulation (4) and
associated DGD algorithms, the goal of this paper is to study the statistical properties of the
estimator (4) as well as computational guarantees of the aforementioned DGD algorithm.
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Figure 1: Proximal gradient in the high-dimensional setting (4): linear convergence up to
some tolerance; different curves refer to different values of the penalty parameter γ. Notice
the speed-accuracy dilemma.

1.1 Challenges and open problems

While penalty-based formulations like (4) and related solution methods have been extensively
studied in the optimization literature, the statistical properties of the solution θ̂ in the
high-dimensional setting (d� N) remain unknown, and so are the convergence guarantees of
the proximal gradient algorithm applied to (4). Postponing to Section 1.3 a detailed review
of the literature, here we point out the following. Statistics: classical sample complexity
analysis of LASSO error ‖θ̂ − θ∗‖2 for (2) (e.g., Wainwright 2019) is not directly applicable
to the penalized problem (4)—for instance, it is unclear whether each agent’s error ‖θ̂i− θ∗‖2
can match centralized sample complexity. Distributed optimization: When it comes to
algorithms for solving (4), existing studies are of pure optimization type, lacking of statistical
guarantees. If nevertheless invoked to predict convergence of the proximal gradient algorithm
applied to (4), they would certify sublinear convergence of the optimization error, since the
objective function in (4) is not strongly convex on the entire space (recall d > N). This
results in a pessimistic prediction, as shown by the exploratory experiment in Figure 1:
the average estimation error (1/m) ·∑m

i=1 ‖θti − θ∗‖2 decreases linearly up to a tolerance
(floor); different curves refer to different values of the penalty parameter γ. The figure also
plots the (square) estimation error achieved by solving (2)—termed as centralized estimation
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error—and the average of the (square) estimation errors achieved by each agent solving the
LASSO problem using only its local data—termed as local estimation error. The experiment
seems to suggest that statistical error comparable to centralized ones are still achievable
where data are distributed over a network. However this requires a sufficiently small γ, and
thus results in slow convergence rates.

To the best of our knowledge, a theoretical understanding of these phenomena remains
an open problem; questions are abundant, such as: (i) Is centralized statistical consistency
(quantified by sample complexity N = o(s log d)) provably achievable when data are dis-
tributed across the network? What is the role/impact of the network? (ii) Is it feasible
for the distributed proximal gradient method to yield statistically optimal solutions while
maintaining linear convergence? (iii) How do sample and convergence rates of the algorithm
interact with model parameters, specifically γ, d, N , and network configurations?

1.2 Major contributions

This work addresses the above questions—our contributions can be summarized as follows.

1) Statistical analysis of the penalized LASSO problem (4): We establish non-
asymptotic error bounds on the estimation error averaged over the agents, (1/m)

∑m
i=1 ‖θ̂i−

θ∗‖2, under proper tuning of λ and γ. Our results are of two types. (i) A deterministic
bound, under a strong convexity requirement on the objective in (4) restricted to certain
directions containing the augmented LASSO error θ̂ − 1m ⊗ θ∗ (cf. Theorem 6)—this
bound sheds light on the role of the network and consensus errors (via γ) into the estima-
tion process; and (ii) a (sample) convergence rate (1/m)

∑m
i=1 ‖θ̂i−θ∗‖2 = O(s log d/N)

(cf. Theorem 7), which holds with high probability (w.h.p.) under standard Gaussian
data generation models (cf. Assumption 1). This matches the statistical error of the
LASSO estimator (2), thereby unveiling for the first time that statistical consistency
over networks is feasible under a similar order of sample size N as employed in the
centralized setting, even when the number of local samples n is insufficient.

2) Algorithmic guarantees: To compute such estimators in a distributed fashion, we
leverage the proximal-gradient algorithm applied to (4), and study its convergence and
statistical properties (cf. Theorem 10 and Theorem 13). A major result is proving that,
in the setting (ii) above, the algorithm converges linearly up to a fixed tolerance which
can be driven below the statistical precision of the centralized LASSO problem (2).
Specifically, to enter an ε-neighborhood of a statistically optimal solution, it takes

O
(

1

1− ρ ·
λmax(Σ)

λmin(Σ)
· dm logm · log

1

ε

)

number of communications (iterations), where ρ ∈ [0, 1) is a measure of the connectivity
of the network (the smaller ρ is, the more connected the graph); and λmax(Σ)/λmin(Σ)
is the restricted condition number of the LASSO loss function [see (2)], with λmax (resp.
λmin) denoting the largest (resp. smallest) eigenvalue of the covariance matrix Σ of the
data (cf. Assumption 1). This shows that centralized statistical accuracy is achievable
over a given network (without moving data) but at the price of a linear rate (and thus
communication cost) that scales as O(d). This ‘speed-accuracy dilemma’ is confirmed
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by our experiments (cf. Section 5). A similar phenomenon has been observed previously
in low-dimensional settings (strongly convex losses) (Yuan et al., 2016, Theorem 3).
However, our results demonstrating this dilemma in the high-dimensional setting as
well, imply that this appears to be a “scarlet letter” of DGD-like algorithms.

1.3 Related works

Statistical analysis: Statistical properties of the LASSO solution θ̂ of (2) along with
several other regularized M-estimators have been extensively studied in the literature (see,
e.g., (Tibshirani, 1996, Hastie et al., 2015, Wainwright, 2019) and references therein). In-
troducing suitably restricted notions of strong convexity of the loss—e.g., (Bickel et al.,
2009, Candes and Tao, 2006, de Geer and Buhlmann, 2009, Sahand et al., 2012, Wainwright,
2019)—(nonasymptotic) error bounds and sample complexity for such estimators under high-
dimensional scaling are established. For instance, for the LASSO estimator (2), statistical
errors read ‖θ̂ − θ∗‖2 = O(s log d/N).

These conditions and results for (2) do not transfer directly to the lifted, penalized
formulation (4)—it is not even clear the relation between θ̂ [cf. (2)] and θ̂1, . . . , θ̂m [cf. (4)].
A new solution and statistical analysis is needed for the “augmented” LASSO estimator θ̂
(4), possibly revealing the role of the network on the statistical properties of θ̂.

Centralized optimization algorithms: Referring to solution methods for centralized
sparse linear regression problems, several studies are available in the literature, including
(Becker et al., 2011, Beck and Teboulle, 2009, Bredies and Lorenz, 2008, Hale et al., 2008,
Tseng and Yun, 2009, Zhou and So, 2017, Wen et al., 2017, Bolte et al., 2009) and (Agarwal
et al., 2012). Since (2) is not strongly convex in a global sense, classical (accelerated)
first-order methods like (Becker et al., 2011, Beck and Teboulle, 2009) are known to converge
at sublinear rate; others (Bredies and Lorenz, 2008, Hale et al., 2008) are proved to achieve
linear convergence if initialized in a neighborhood of the solution of (2); and (Tseng and Yun,
2009, Zhou and So, 2017, Wen et al., 2017, Bolte et al., 2009) showed linear convergence
(in particular) of the proximal-gradient algorithm, invoking global regularity conditions of
the loss (2), such as the Luo-Tseng’s bound (Luo and Tseng, 1993) or the KL property
(Bolte et al., 2009, Pan and Liu, 2018). These studies are of pure optimization type—e.g.,
convergence focuses on iteration complexity of the optimization error, no statistical analysis
of the limit points is provided. Furthermore, they are not suitable for the high-dimensional
regime (i.e., “d,N growing”). A closer related work is (Agarwal et al., 2012), which establishes
global linear convergence of the proximal-gradient algorithm for (2) up to the statistical
precision of the model, under a restricted strong convexity (RSC) and restricted smoothness
(RSM) assumption. The method is not directly implementable over mesh networks, because of
the lack of a centralized node. Furthermore, it is unclear whether RSC/RSM conditions hold
for the penalized sum-loss in (4). On the other hand, a naive application of the RSC/RSM
to each agent’s loss fi(θi) = (1/2n)‖yi −Xiθi‖2 in (4) (without accounting for the penalty,
coupling term (1/γ)‖θ‖2V ), would require a local sample scaling n = O(s log d) to hold. This
conclusion is unsatisfactory because it would state that the centralized minimax error bound
‖θ̂ − θ∗‖2 = O(s log d/N) is not achievable over networks—a fact that is confuted by our
theoretical findings and experiments.
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Divide and Conquer (D&C) methods: When it comes to decomposition methods for
statistical estimation and inference, the statistical community is best acquainted with D&C
methods. D&C algorithms postulate the existence of a node in the network (a.k.a. master
node) connected to all the others (termed worker nodes), which combines the estimators
produced by each worker using its local data set. D&C algorithms for M -estimation in
low-dimension, covering the asymptotics d,N → ∞ while d/N → c ∈ [0, 1), have been
extensively studied in the literature; representative examples include Rosenblatt and Nadler
(2016), Wang et al. (2018), Chen et al. (2021), Bao and Xiong (2021), Jianqing et al. (2021).
More relevant to this work are the D&C methods applicable to sparse linear regression in
high-dimension, i.e., d > N and d/N → ∞, which include Lee et al. (2015), Battey et al.
(2018), Wang et al. (2017), Jordan et al. (2018). Lee et al. (2015), Battey et al. (2018)
devised a one-shot approach averaging at the master node “debiased” local LASSO estimators.
Wang et al. (2017), Jordan et al. (2018) independently improved the sample complexity of
Lee et al. (2015) hinging on ideas from Shamir et al. (2014)—Table 1 provides the sample
and communication complexity of these methods, which can be summarized as follows. By
performing a single round of communication from the workers to the master node, resulting
in a O(d) communication cost, these algorithms achieve the centralized statistical error
O(s log d/N) as long as the local sample size is sufficiently large, i.e., n = Ω(ms2 log d) (see
Table 1). Alternatively, for fixed n, this imposes a constraint on the maximum number of
workers, i.e., m = O(n/(s2 log d)), which limits the range of applicability of these methods
to small-size (star) networks. The dependence of n on m can be removed at the cost of
multiple communication rounds; to our knowledge, the state of the art is Wang et al. (2017)
showing that n = Ω(s2 log d) suffices under logm communication rounds, resulting in a total
communication cost of O(d logm). None of these methods is directly implementable over
mesh networks, because of the lack of a centralized node. Naive attempts of decentralizing
D&C methods over mesh networks by replacing the exact average at the master node with
local consensus updates fail to achieve centralized statistical consistency.

D&C Methods n & ms2 log d ms2 log d & n & s
2 log d

Communication Cost (one round) Communication Cost (multiple rounds)
Avg-Debias Lee et al. (2015) d 7

Battey et al. (2018) d 7

CSL Jordan et al. (2018) d 71

EDSL Wang et al. (2017) d d logm

Table 1: D&C algorithms for sparse linear regression in the high-dimensional, d > N and d/N →∞: local sample size
and communication cost to achieve the centralized statistical error O(s log d/N). For a single communication round,
all methods require a condition on the minimum local sample size n; multiple communication rounds can reduce the
condition on local sample size n. 1CSL Jordan et al. (2018) can be extended to multiple rounds of communication to
reduce the local sample size using the similar argument as in EDSL Wang et al. (2017).

In contrast to D&C methods, the DGD-like algorithm studied in this paper to solve
(4) provably achieves (near) optimal minimax rates with no conditions on the local sample
size, at a total communication cost however of O(d2). This raises the question whether
communication costs of O(d) are achievable in high-dimension over mesh networks by
other distributed optimization algorithms, yet with no conditions on the local sample size.
Motivated by this work, the study of other methods in high-dimension is the subject of

6



Distributed Sparse Regression via Penalization

current investigation; see, e.g., the companion work Sun et al. (2022). In fact, as discussed
next, there is no study of any other existing distributed algorithm in high-dimension.

Distributed optimization algorithms: Solving the LASSO problem (2) over mesh net-
works falls under the umbrella of distributed optimization. The literature of distributed
optimization methods is vast; given the focus of the paper, we comment next only relevant
works on decentralization of the (proximal) gradient method over mesh networks modeled
as undirected graphs. Distributed Gradient Descent (DGD) algorithms, including those
derived by penalizing consensus constraints as in (4), have been extensively studied in the
literature; see, e.g., (Nedić and Ozdaglar, 2009, Nedić et al., 2010, Chen and Sayed, 2012,
Sayed, 2014, Chen and Ozdaglar, 2012, Yuan et al., 2016, Zeng and Yin, 2018, Daneshmand
et al., 2020, Nedić et al., 2018). Among all, the most relevant distributed scheme to this
paper is (Zeng and Yin, 2018), a proximal gradient algorithm. When applied to (4), under
the additional assumption of bounded (sub)gradient of the agents’ losses (a fact that is not
guaranteed), sublinear convergence (on the objective value) to the optimal solutions of (4)
would be certified (recall that agents’ losses are not strongly convex globally). Furthermore,
the connection between the solution of the penalized problem (4) and that of the LASSO
formulation (2) remains unclear.

While different and not derived directly from (4), the other DGD-like algorithms can be
roughly commented as follows: (i) when the agents’ loss functions are strongly convex (or the
centralized loss satisfies the KL property (Zeng and Yin, 2018, Daneshmand et al., 2020)),
differentiable, and there are no constraints, DGD-like schemes equipped with a constant
stepsize, converge (only) to a neighborhood of the solution at linear rate (Yuan et al., 2016,
Zeng and Yin, 2018, Yuan et al., 2020). Convergence (in objective value) to the exact
solution is achieved only using diminishing stepsize rules, thus at the slower sublinear rate
(see, e.g., Zeng and Yin 2018, Jakovetić et al. 2014). This speed-accuracy dilemma can be
overcomed by correcting explicitly the local gradient direction so that a constant stepsize
can be used still preserving convergence to the exact solution; examples include: gradient
tracking methods (Qu and Li, 2017, Nedić et al., 2016, Xu et al., 2018, Lorenzo and Scutari,
2016, Sun et al., 2019) and primal-dual schemes (Jakovetić et al., 2011, Shi et al., 2014,
Jakovetić, 2019, Jakovetić et al., 2013, Shi et al., 2015a,b), just to name a few.

The above review of the literature shows that there is no study of statistical/computational
guarantees in the high-dimensional regime. Our comments on centralized optimization
algorithms apply here for all the aforementioned distributed ones: all the convergence
results are of pure optimization type and are confuted by our experiments (see Figure 1).
A new analysis is needed to understand the behaviour of distributed algorithms in the
high-dimensional regime. This paper represents the first study of a DGD-like algorithm
towards this direction.

1.4 Notation and paper organization

The rest of the paper is organized as follows. Section 2 introduces the assumptions on the data
model and network along with some consequences. Solution analysis of the penalized LASSO
(4) is addressed in Section 3—a deterministic error bound, based on a notion of restricted
strong convexity, is first established; then near optimal centralized sample complexity is
proved under standard data generation models (Section 3.3). The (distributed) proximal
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gradient algorithms applied to (4) is studied in Section 4. Finally, Section 5 provides some
experiments validating our theoretical findings while Section 6 draws some conclusions. All
the proofs of the presented results are relegated to the appendix.
Notation: Let [m] , {1, . . . ,m}, with m ∈ N++; 1 is the vector of all ones; ei is the i-th
canonical vector; Id is the d× d identity matrix (when unnecessary, we omit the subscript);
and ⊗ denotes the Kronecker product. Given x1, . . . , xm ∈ Rd, the bold symbol x =
[x>1 , . . . , x

>
m]> ∈ Rmd denotes the stack vector; for any x = [x>1 , . . . , x

>
m]>, we define its block-

average as xav , (1/m)
∑m

i=1 xi, and the disagreement vector x⊥ , [x>⊥1, . . . , x
>
⊥m]>, with

each x⊥i , xi − xav. Similarly, given the matrices X1, . . . , Xm ∈ Rn×d, we use bold notation
for the stacked matrix X = [X>1 , . . . , X

>
m]>. We order the eigenvalues of any symmetric

matrix A ∈ Rm×m in nonincreasing fashion, i.e., λmax(A) = λ1(A) ≥ . . . ≥ λm(A) = λmin(A).
We use ‖ · ‖ to denote the Euclidean norm; when other norms are used, e.g., `1-norm and
`∞, we will append the associate subscript to ‖ · ‖, such as ‖ · ‖1, and ‖ · ‖∞. Consistently,
when applied to matrices, ‖ · ‖ denotes the operator norm induced by ‖ · ‖. Furthermore,
we write ‖x‖A , (x>Ax)1/2, for any symmetric positive semidefinite matrix. Given S ⊆ [d]
and y ∈ Rd, we denote by |S| the cardinality of S and by yS the |S|-dimensional vector
containing the entries of y indexed by the elements of S; Sc is the complement of S. All
the log in the paper are intended natural logarithms, unless otherwise stated. Given two
univariate random variables X and Y , we say that Y has stochastic dominance over X if
X �st Y , meaning P(X ≤ t) ≥ P(Y ≤ t), for all t ∈ R (Marshall et al., 2011, p. 694).

2. Setup and Background

In this section we introduce the main assumptions on the data model and network setting
underlying our analysis along with some related consequences.

2.1 Problem setting

The following quantities associated with (1) will be used throughout the paper:

S , supp{θ∗}, s = |S|, Lmax , max
i∈[m]

λmax

(
X>i Xi

n

)
. (5)

We collect all the local data {(yi, Xi)}mi=1 into the stacked vector measures y = [y>1 , . . . , y
>
m]> ∈

RN and matrix X = [X>1 , . . . , X
>
m]> ∈ RN×d. The quadratic losses of the centralized LASSO

problem (2) and of the penalized one (4) are denoted respectively by

F (θ) ,
1

2N
‖y −Xθ‖2 and Lγ(θ) ,

1

2N

m∑

i=1

‖yi −Xiθi‖2︸ ︷︷ ︸
,fi(θi)

+
1

2mγ
‖θ‖2V . (6)

We recall next the main path/assumptions used to bound the LASSO error ‖θ̂ − θ∗‖2 in
the centralized setting (2) (e.g., Wainwright 2019). In the regime d > N , F is not strongly
convex—the d× d Hessian matrix X>X has at most rank N . Nevertheless, ‖θ̂ − θ∗‖2 can
be well-controlled requiring strong convexity of F to hold along a subset of directions. The
Restricted Eigenvalue (RE) condition suffices (Bickel et al., 2009, Candes and Tao, 2006,
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Wainwright, 2019)

1

N
‖X∆‖2 ≥ δc‖∆‖2, ∀∆ ∈ C(S) , {∆ ∈ Rd | ‖∆Sc‖1 ≤ 3‖∆S‖1}, (7)

where δc > 0 is the curvature parameter, and C(S) captures the set of “sparse” directions of
interests. The rationale behind (7) is that, since θ̂ − θ∗ can be proved to belong to C(S), if
F is strongly convex on C(S)—as requested by (7)—then small differences on the loss will
translate into bounds on ‖θ̂ − θ∗‖2.

The RE (7) imposes conditions on the design matrix X. The following RSC implies (7).

Lemma 1 Suppose that F satisfies the following RSC condition with curvature µ > 0 and
tolerance τ > 0:

1

N
‖X∆‖2 ≥ µ

2
‖∆‖2 − τ

2
‖∆‖21, ∀∆ ∈ Rd. (8)

Under µ/2− 16sτ > 0, the RE (7) holds with δc = µ/2− 16sτ .

The practical utility of the RSC condition (8) vs. the RE is that it can be certified with high
probability by a variety of random design matrices X. Here we consider the following.

Assumption 1 (Random Gaussian model) The design matrix X ∈ RN×d satisfies the
following: (i) the rows of X are i.i.d. N (0,Σ); and (ii) Σ is positive definite, with minimum
eigenvalue λmin(Σ) > 0.

Lemma 2 ((Raskutti et al., 2010, Theorem 1)) Let X ∈ RN×d be a design matrix
satisfying Assumption 1. Then, there exist universal constants c0, c1 > 0 such that, with
probability at least 1− exp(−c0N), the RSC condition (8) holds with parameters

µ = λmin(Σ) and τ = 2c1ζΣ
log d

N
, with ζΣ , max

i∈[d]
Σii. (9)

2.2 Network setting

We model the network of m agents as an undirected graph G = (V, E), where V = [m] is the
set of agents, and E is the set of the edges; {i, j} ∈ E if and only if there is a communication
link between agent i and agent j. We make the blanket assumption that G is connected,
which is necessary for the convergence of distributed algorithms to a consensual solution.

To solve (4) over G via gradient descent, each agent should be able to compute the
gradient of the objective (w.r.t. its own local variable θi) using only information from its
immediate neighbours. This imposes some extra conditions on the sparsity pattern of the
matrix V . We will use the following widely adopted structure for V .

Assumption 2 The matrix V = (Im−W )⊗Id, where W , (wij)
m
i,j=1 satisfies the following:

(a) It is compliant with G, that is, (i) wii > 0,∀i ∈ [m]; (ii) wij > 0, if {i, j} ∈ E ; and (iii)
wij = 0 otherwise; and

(b) It is symmetric and stochastic, that is, W1 = 1 (and thus also 1>W = 1>).

9



Ji, Scutari, Sun and Honnappa

It follows from the connectivity of G and Assumption 2 that

V θ = 0 iff θi = θj , ∀i 6= j ∈ [m],

and
ρ , max{|λ2(W )|, |λmin(W )|} < 1. (10)

Roughly speaking, ρ measures how fast the network mixes information (the smaller, the
faster). If G is complete graph or a star, one can choose W = 11>/m, resulting in ρ = 0.

3. Solution Analysis and Statistical Guarantees

This section presents the solution analysis of the penalized LASSO problem (4), establishing
nonasymptotic bounds of (1/m)

∑m
i=1 ‖θ̂i − θ∗‖2. Our study builds on the following steps.

1) We first determine a suitable restricted set of directions Cγ(S) [cf. (11)] which contains
the augmented LASSO error θ̂ − 1m ⊗ θ∗ under certain conditions on the sparsity-
enhancing parameter λ [cf. Proposition 3]—the set Cγ(S) plays similar role as C(S)
[cf. (7)] for the centralized LASSO (2), and sheds light on the role of the penalty
parameter γ (and thus the consensus errors) on the sparsity pattern of θ̂;

2) We then determine a RSC-like condition [cf. (15)] ensuring that, under a suitable choice
of γ controlling the consensus error, the subset Cγ(S) is well-aligned with the curved
directions of the loss Lγ of (4);

3) Results in the previous steps will translate into bounds on (1/m)
∑m

i=1 ‖θ̂i − θ∗‖2 [cf.
Theorem 6]. Quite interesting, our RSC condition holds w.h.p. under the random
model in Assumption 1 (cf. Lemma 5), which yields centralized sample complexity
(1/m)

∑m
i=1 ‖θ̂i − θ∗‖2 = O(s log d/N) (cf. Theorem 7).

3.1 The set of (almost) sparse average directions

For each given γ ∈ (0, 1), define the set

Cγ(S) , {∆ ∈ Rmd | ‖(∆av)Sc‖1 ≤ 3‖(∆av)S‖1 + h(γ, ‖∆⊥‖)}, (11)

where

h(γ, ‖∆⊥‖) , −
1− ρ
mγλ

‖∆⊥‖2 +
(

2 max
i∈[m]
‖w>i Xi‖∞/(λn) + 2

)√
d/m‖∆⊥‖. (12)

The maximum of h(γ, •) is a decreasing function of γ > 0. This suggests that, the sparsity of
the average component ∆av of directions ∆ ∈ Cγ(S) can be controlled by γ; in particular, by
decreasing γ one can make ∆av arbitrary “close” to the cone C(S) of sparse directions of the
centralized LASSO (2) [cf. (7)]. The importance of Cγ(S) is captured by the following result.

Proposition 3 Under Assumption 2 and λ satisfying

2

N
‖X>w‖∞ ≤ λ, (13)

the augmented LASSO error θ̂ − 1m ⊗ θ∗ lies in Cγ(S).

10
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Proof See Appendix A.

Therefore, the average component of the augmented LASSO error is nearly sparse for
sufficiently small γ and large λ. This will be used to pursue statistically optimal estimates.

3.2 In-network RE condition

We impose a positive curvature on the loss Lγ of (4) [cf. (6)] along suitable chosen directions
in Cγ(S). The first-order Taylor expansion of Lγ at θ′ along θ − θ′, denoted by TLγ (θ;θ′),
can be lower bounded as

TLγ (θ;θ′) , Lγ(θ)− Lγ(θ′)− 〈∇Lγ(θ′),θ − θ′〉

≥ 1

4

‖X(θ − θ′)av‖2
N︸ ︷︷ ︸

curvature along average

−
(
Lmax

2m
− 1− ρ

2mγ

)
‖(θ − θ′)⊥‖2

︸ ︷︷ ︸
nonconsensual component

. (14)

The second term on the RHS of (14) is due to the disagreement of the θi’s, and can be
controlled choosing suitably small γ. In fact, we will prove that a curvature condition on
the first term of the RHS of (14) along the directions θ − θ′ ∈ Cγ(S) is enough to establish
the desired error bounds on the LASSO error (1/m)

∑m
i=1 ‖θ̂i − θ∗‖2. This motivates the

following definition of RSC-like property of Lγ .

Assumption 3 (In-network RE) The loss function Lγ satisfies the following RSC condi-
tion with curvature δ > 0 and tolerance ξ > 0:

TL(θ;θ′) ≥ δ‖(θ − θ′)av‖2 − ξ h2(γ, ‖(θ − θ′)⊥‖), ∀θ − θ′ ∈ Cγ(S). (15)

The stipulated condition mandates a positive curvature for Lγ along consensual directions in
Cγ(S). Across the entire space, however, Lγ need not exhibit strong convexity, attributed
largely to the tolerance term accounting for consensus errors.

The following two results establish sufficient conditions for (15) to hold, for deterministic
and random design matrices X—which match those required for the centralized LASSO (see
Lemma 1 and Lemma 2).

Lemma 4 Reinstate Lemma 1, under µ/2−16sτ > 0. Then (15) holds, with δ = µ/2−16sτ
and ξ = τ , for any given γ ∈ (0, (1− ρ)/Lmax].

Proof See Appendix B.1.

Lemma 5 Let X ∈ RN×d satisfy Assumption 1. For any N and γ such that

N ≥ c2
ζΣs log d

λmin(Σ)
, and γ ∈ (0, (1− ρ)/Lmax], (16)

it holds

TLγ (θ;θ′) ≥ λmin(Σ)

4
‖(θ − θ′)av‖2 −

λmin(Σ)

64s
h2
(
γ, ‖(θ − θ′)⊥‖

)
, ∀θ,θ′ : θ − θ′ ∈ Cγ(S),

(17)

with probability at least 1− exp(−c0N). Here, c0, c2 > 0 are universal constants.

11
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Proof See Appendix B.2.

3.3 Error bounds and statistical consistency of the LASSO error of (4)

We are ready to establish consistency and convergence rates for the augmented LASSO
estimator θ̂. Our first result is a deterministic upper bound on the average error under the
In-network RE condition (15).

Theorem 6 Consider the augmented LASSO problem (4) under Assumptions 2 and 3. For
any fixed λ and γ satisfying respectively

2

N
‖X>w‖∞ ≤ λ and γ ≤ 2(1− ρ)

4Lmax + δ
, (18)

any solution θ̂ = [θ̂1, . . . , θ̂m]> satisfies

1

m

m∑

i=1

‖θ̂i − θ∗‖2

≤ 9λ2s

δ2︸ ︷︷ ︸
centralized error

+
2ξd2γ2(maxi∈[m]‖w>i Xi‖∞ + λn)4

δλ2n4(1− ρ)2
+

4dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

δn2[2(1− ρ)− 4Lmaxγ − δγ]︸ ︷︷ ︸
cost of decentralization

.

(19)

Proof See Appendix C.

Theorem 6 shows the bound on the LASSO error over the network can be decoupled in two
terms—the first one matches that of the centralized LASSO error (see, e.g., Wainwright 2019,
Theorem 7.13)—while the second one quantifies the price to pay due to the decentralization
of the optimization and consequent lack of consensus. The explicit dependence on γ shows
that the detriment effect of the consensus errors can be controlled by γ: as γ → 0, the error
bound above approaches that of the centralized LASSO solution. There is however no free
lunch; we anticipate that γ → 0 affects adversarially the convergence rate of the proximal
gradient algorithm applied to problem (4), determining thus a speed-accuracy dilemma.

The next result provides nonasymptotic rates for the LASSO error above, under the
random Gaussian model for X and the noise w in (1)—optimal centralized convergence rates
are achievable by a proper choice of γ.

Theorem 7 Consider the augmented LASSO problem (4) with d ≥ 2 under Assumption 2.
Suppose that X satisfies Assumption 1 and w ∼ N (0, σ2IN ); the sample size satisfies

N ≥ c3
ζΣs log d

λmin(Σ)
; (20)

and the parameters λ and γ are chosen according to the following

λ = c4σ

√
ζΣt0 log d

N
, (21)

γ ≤ c5
(1− ρ)

λmax(Σ)(d+ logm) + λmin(Σ)dm(logm+ 1)
, (22)

12
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for some t0 > 2. Then, any solution θ̂ = [θ̂1, . . . , θ̂m]> of problem (4) satisfies

1

m

m∑

i=1

‖θ̂i − θ∗‖2 ≤ c6
σ2ζΣt0
λmin(Σ)2

s log d

N
, (23)

with probability at least
1− c7 exp(−c8 log d). (24)

Here, c3, . . . , c8 are universal constants.

Proof See Appendix D.

The bound (23) matches the statistical error of the centralized LASSO estimator in (2)—
proving that statistical consistency over networks is achievable under the same order of the
sample size N used in the centralized setting, even when the local number n of samples does
not suffice. This is possible because agents communicate over the network—the computation
of such a solution and associated communication overhead is studied in the next section.

4. Distributed Gradient Descent Algorithm

To compute the statistically optimal estimator θ̂ over networks, we employ the proximal
gradient algorithm applied to the penalized formulation (4), which naturally decomposes
across the agents. Specifically, at iteration t, θ is updated by minimizing the first order
approximation of the objective function Lγ , which reads

θt+1 = argmin
‖θi‖1≤R ∀i∈[m]

Lγ(θt) + 〈∇Lγ(θt),θ − θt〉+
1

2βm
‖θ − θt‖2 +

λ

m
‖θ‖1, (25)

where we included an extra constraint ‖θi‖1 ≤ R to regularize the iterates, and β > 0 plays
the role of the stepsize. The following lemma shows that one can find a sufficiently large
R so that the solution of (4) does not change if we add therein the norm ball constraint
‖θi‖1 ≤ R, i ∈ [m].

Lemma 8 Consider Problem (4) under Assumption 2. Further assume that (i) X satisfies
the RSC condition (8) with δ = µ/2− 16 sτ > 0; (ii) λ satisfies (13); and (iii) γ satisfies

γ ≤ (1− ρ)

2Lmax + δ + 128(d/s)δ(maxi∈[m]‖w>i Xi‖∞/(λn) + 2
√
m)2

. (26)

Then, ‖θ̂i‖1 ≤ R, i ∈ [m], whenever R is such that

R ≥ max

{
λs

δ(1− r)

(
13 +

1

32

√
2τs

δ

)
,
1

r
‖θ∗‖1

}
, (27)

with r ∈ (0, 1).

Proof See Appendix E.

Therefore, we can focus on Problem (25) without loss of generality. Notice that the
problem is separable in {θi}i∈[m]; hence, it can be solved distributively from each agent i.
Furthermore, the solution can be computed in an explicit form, as determined next.

13
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Lemma 9 The solution to (25) reads

θt+1
i =





proxβλ‖·‖1(ψti), if
∥∥∥proxβλ‖·‖1(ψti)

∥∥∥
1
≤ R,

ΠB‖·‖1 (R)(ψ
t
i), otherwise;

(28)

where R 3 x 7→ proxh(x) ∈ R is the proximal operator (applied to ψti component-wise), and

ψti =

(
1− β

γ

)
θti +

β

γ




m∑

j=1

wijθ
t
j − γ∇fi(θti)


 .

Proof See Appendix F.

Notice that the proximal operation in (28) has a closed-form expression via soft-thresholding
(Donoho, 1995) while the projection onto the `1-ball can be efficiently computed using the
procedure in (Duchi et al., 2008). To perform the update (28), each agent i only needs to
receive the local estimates θtj from its immediate neighbors.

4.1 Linear convergence to statistical precision

Convergence rate of the optimization error θt − θ̂ is stated under the RSC condition (8), in
terms of the contraction coefficient κ and initial optimality gap η0

G:

µav ,
µ

8
− 8sτ, κ , 1− βµav

4
, and η0

G ,

(
Lγ(θ0) +

λ

m
‖θ0‖1

)
−
(
Lγ(θ̂)+

λ

m
‖θ̂‖1

)
,

(29)
where θ0 is a fixed initialization. Further, denote

ε2
stat ,

36

m

m∑

i=1

‖θ̂i − θ∗‖2 +
λ2s

1976µ2
. (30)

We can now state our convergence result.

Theorem 10 Consider the augmented LASSO problem (4) under Assumption 2. Suppose
the design matrix X satisfies the RSC condition (8) with µ ≥ c9sτ for some sufficiently large
constant c9 > 0; and the penalty parameters λ and γ satisfies

λ ≥ max

{
2‖X>w‖∞

N
, 64τ‖θ∗‖1

}
, (31)

γ ≤ 1− ρ
2Lmax + (µ/2− 16sτ)

(
1 + 128(d/s)(maxi∈[m]‖w>i Xi‖∞/(λn) + 2

√
m)2

) , (32)

respectively. Let {θti}i∈[m] be the sequence generated by Algorithm (28) under the following
choices of tuning parameters β and R

β =
γ

γLmax + 1− λmin(W )
(33)

14
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and

max

{
56λs

µ− 32sτ
, 2‖θ∗‖1

}
≤ R ≤ λ

32τ
; (34)

and initialization θ0
i ∈ Rd, i ∈ [m], such that

η0
G ≥ 4sτ · ε2

stat. (35)

Then,
1

m

m∑

i=1

‖θti − θ̂i‖2 ≤
τs

µav
· ε2

stat +

(
τs

µav

4α4

λ2s
+
α2

µav

)
, (36)

for any tolerance parameter α2 such that

min

{
Rλ

4
, η0
G

}
≥ α2 ≥ 4sτ · ε2

stat, (37)

and for all

t ≥
⌈

log2 log2

(
Rλ

α2

)⌉(
1+

Lmax log 2

µav
+

(1 + ρ) log 2

γµav

)
+

(
Lmax

µav
+

1 + ρ

γµav

)
log

(
η0
G

α2

)
. (38)

The intervals in (34) and (37) are nonempty.

Proof See Appendix G.

The theorem shows that Algorithm (28) converges at a linear rate to an optimal solution
θ̂, up to a tolerance term as specified on the right hand side of (36)—the first term therein
depends on the model parameters, while the second one is controlled by α2. Theorem 13 and
(see also Corollary 14) below proves that for the random Gaussian data generation model,
the tolerance can be driven below the statistical precision for sufficiently large N .

Remark 11 Observe that the condition (35) pertaining to the initialization does not truly im-
pose a substantial constraint. Indeed, any initial point that contravenes (35) would inherently
be situated within the centralized statistical error ball, i.e.,

η0
G ≤ 4sτ · ε2

stat
(32),Theorem 6

= O
(
sτ · λ2s

)
.

Remark 12 Algorithm (28) is closely related to the DGD algorithm studied in the literature
of distributed optimization (e.g., Zeng and Yin 2018, Nedić et al. 2018). In fact, if in (28)
one choose β = γ/2, with γ satisfying (32) [note that this choice of β is compatible with
(33)], the gradient step therein reduces to

ψti =
1

2

(
θi +

m∑

i=1

wijθ
t
j

)
− γ

2
∇fi(θti), (39)

which can be viewed as DGD with weight matrix 1
2(I +W ) and step size γ/2.
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Theorem 13 Consider the augmented LASSO problem (4) with d ≥ 2 under Assumption 2.
Suppose the design matrix X satisfies Assumption 1, w ∼ N (0, σ2IN ), and

N ≥ c10
ζΣ

λmin(Σ)
s log d. (40)

Choose the penalty parameters λ and γ satisfying respectively

λ ≥ c11 max

{
σ

√
ζΣt0 log d

N
, ζΣ ·

s log d

N

}
, (41)

and
γ ≤ c12

(1− ρ)

λmax(Σ) (d+ logm) + λmin(Σ)dm · (logm+ 1)
. (42)

for some fixed t0 > 2. Let {θti}i∈[m] be the sequence generated by Algorithm (28) under the
following choices of tuning parameters β and R

β =
γ

γc13d/n+ 1− λm(W )
, max

{
56λs

λmin(Σ)− c14sζΣ log d/N
, 2s

}
≤ R ≤ λN

c14ζΣ log d
,

(43)

and initialization θ0
i ∈ Rd, i ∈ [m], such that

η0
G ≥ c15

ζΣ

λmin(Σ)2
· s log d

N
· λ2s. (44)

Then, with probability at least (24),

1

m

m∑

i=1

‖θti − θ̂i‖2 ≤
c16

λmin(Σ)

[
α2 + ζΣ ·

s log d

N

(
1

m

m∑

i=1

‖θ̂i − θ∗‖2 +
λ2s

λmin(Σ)2
+

α4

λ2s

)]
,

(45)

for any tolerance parameter α2 such that

min

{
Rλ

4
, η0
G

}
≥ α2 ≥ c17ζΣ

(
1

m

m∑

i=1

‖θ̂i − θ∗‖2 +
λ2s

λmin(Σ)2

)
· s log d

N
, (46)

and for all

t ≥ c18

[⌈
log2 log2

(
Rλ

α2

)⌉
+ log

(
η0
G

α2

)](
κΣ(d+ logm) +

(1 + ρ)

λmin(Σ)γ

)
. (47)

Further, the range of values of R in (43) is nonempty; and the interval in (46) is nonempty
as well, with probability at least (24). Here, c10, . . . , c18 are universal constants.

Proof See Appendix H.

A suitable choice of the free parameters above leads to the following simplified result, showing
linear convergence up to a tolerance of a higher order than the statistical error.
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Corollary 14 Consider the augmented LASSO problem (4) with d ≥ 2 under Assumption 2.
Suppose the X satisfies Assumption 1, w ∼ N (0, σ2IN ) and the sample size satisfies

N ≥ c19 max

{
ζΣs log d

λmin(Σ)
,
s2ζΣ log d

σ2

}
and

d+ logm

n
≥ 1. (48)

Choose the penalty parameters λ and γ satisfying respectively

λ = c20σ

√
ζΣt0 ·

log d

N
(49)

and
γ ≤ c21

1− ρ
λmax(Σ)(d+ logm) + λmin(Σ)dm · (logm+ 1)

, (50)

for some fixed t0 ≥ 2. Let {θti}i∈[m] be the sequence generated by Algorithm (28) under the
following choices of β and R:

β =
nγ

γc13d+ n(1− λm(W ))
, max

{
c22

sσ

λmin(Σ)

√
t0ζΣ log d

N
, 2s

}
≤ R ≤ c23σ

√
t0N

ζΣ log d

(51)

and initialization θ0
i ∈ Rd, i ∈ [m], such that

η0
G ≥ c24t0

(
σζΣ

λmin(Σ)

)2

·
(
s log d

N

)2

. (52)

Then, with probability at least (24),

1

m

m∑

i=1

‖θti − θ̂i‖2

≤ c23

λmin(Σ)

(
α2 + ζΣ

s log d

N
· 1

m

m∑

i=1

‖θ̂i − θ∗‖2 + ζΣ
s log d

N
· ζΣσ

2t0
λ2

min(Σ)

s log d

N
+

1

σ2t0
α4

)
,

(53)

for any tolerance parameter α2 such that

min

{
c24Rσ

√
ζΣt0 log d

N
, η0
G

}
≥ α2 ≥ c25ζΣ·

s log d

N

(
1

m

m∑

i=1

‖θ̂i − θ∗‖2 +
σ2ζΣt0
λmin(Σ)2

· s log d

N

)
,

(54)
and for all

t ≥ c26 · κΣ ·
dm (logm+ 1)

1− ρ ·
{⌈

log2 log2

(
Rσ

α2

√
ζΣt0 log d

N

)⌉
+ log

(
η0
G

α2

)}
. (55)

The range of value of R in (51) is nonempty; and the interval in (54) is nonempty as well,
with probability at least (24).
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Proof See Appendix I.

It is not difficult to check that, in the above setting, Theorem 7 holds (in particular, (50)
implies (22); hence, by (23), we have 1

m

∑m
i=1 ‖θ̂i − θ∗‖2 = O( s log d

N ). Therefore, whenever
the sample size N = o(s log d)—a condition that is required for statistical consistency of any
centralized method by minimax results (see, e.g., Raskutti et al. 2011), the (lower bound of
the) tolerance α2 in (54) and thus the overall residual error in (53) is of smaller order than
the statistical error O( s log d

N ). Therefore, in this setting, a total number of communications
(iterations) of

O
(
κΣ ·

dm logm

1− ρ · log
1

α2

)
(56)

is sufficient to drive the iterates generated by Algorithm (28) within O(α2) of an optimal
solution θ̂ (in the sense of (53)), and thus to an estimate of θ∗ within the statistical error.
This matches centralized statistical accuracy achievable by the LASSO estimator θ̂ in (2).
Notice that no conditions on the local sample size n are required.

The expression (56) sheds light on the impact of the problem and network parameters on
the convergence. Specifically, the following comments are in order.

(i) Network dependence/scaling: The term 1/(1− ρ) > 1 captures the effect of the
network; as expected, weakly connected networks (i.e., as ρ→ 1) call for more rounds of
communication to achieve the prescribed accuracy. Recall that ρ = ρ(m) is a function
of the number of agents m (and the specific topology under consideration). Hence, the
term

m logm

1− ρ(m)
(57)

shows how the number of rounds of communications on the network scales with m,
for a given graph topology (determining ρ(m)). Our experiments in Section 5 seem to
suggest that the dependence of the communication rounds on m as predicted by (57)
is fairly tight, for different graph topologies.

Table 2 provides some estimates of the scaling of 1/(1 − ρ(m)) with m for some
representative graphs, when the lazy Metropolis rule is used for the gossip matrix W
(Nedić et al., 2018). Some graphs, for instance the Erdős-Rényi, exhibit a more favorable
scaling than others, such as line graphs. Note that equation (57) does not encapsulate
the total communication cost, which is also contingent on the density of the graph.
We defining one channel use as the communication occurring per edge connecting two
nodes. For example, in the case of an Erdős-R’enyi graph (with p = logm/m), the total
channel uses (across all nodes) per communication round is O(m logm). In contrast,
the complete graph necessitates O(m2) channel uses per communication round, even
though both graphs display a scaling of (57) with m, and thus a total number of
communication rounds of the same order.

(ii) Population condition number: The ratio λmax(Σ)
λmin(Σ) is the condition number of the

covariance matrix of the data; it can be interpreted as the restricted condition number
of the LASSO loss function F (θ) [see (6)]. Therefore, as expected, ill-conditioned
problems call for more iterations (communication) to achieve the prescribed accuracy.
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path 2-d grid complete p-Erdős-Rényi p-Erdős-Rényi

(1− ρ)−1 O(m2) O(m logm) O(1) O(1) [p = logm/m] O(1) [p = O(1)]

Table 2: Scaling of (1− ρ(m))−1 with agents’ number m, for different graph topologies.

(iii) Speed-accuracy dilemma: We proved that centralized statistical accuracy, as for the
LASSO estimator θ̂ in (2), is achievable over networks via the distributed algorithm (28).
This can be accomplished even when individual agents do not possess sufficient data
to ensure statistical consistency locally. The crucial factor making this possible is
the “assistive” role of the network via information mixing, However, equation (56)
reveals that regardless of the speed of information propagation within the network
(irrespective of how small ρ is), the total number of communication rounds necessary
to achieve a predetermined accuracy scales as O(d). Our forthcoming numerical results
will validate the precision of such scaling. Therefore, we discern that the DGD-like
scheme encounters similar speed-accuracy dilemmas in high-dimensional regimes as
observed when applied to strongly convex, smooth losses in lower-dimensional cases
(e.g., see Nedić et al. 2018). This issue seems to be inevitable and a direct consequence
of the structural updates implemented by the algorithm.

5. Numerical Results

In this section, we provide some experiments on synthetic and real data. The former are
instrumental to validate our theoretical findings. More specifically, we validate the following
theoretical results. (i) On the statistical error front, we show that with a proper choice of
γ, the solution of the distributed formulation (4) achieves the statistical accuracy of the
centralized LASSO estimator (Theorem 7). We also validate the dependency of γ with the
dimension d [cf. (22)]. On the computational front, (ii) we demonstrate that DGD-like
algorithm (28) displays linear convergence up to statistical precision; (iii) we also validate
the scaling of the communication rounds with the network size m, as predicted by (57).
(iv) Finally, we illustrate the speed-accuracy dilemma, as shown in Theorem 13. We then
proceed to experiment on real data, showing that statistical accuracy of the centralized
LASSO estimator (Theorem 7) is achievable by the distributed method (4), still at the cost
of a convergence rate scaling with O(d). All the experiments were run on a server equipped
with Intel(R) Xeon(R) CPU E5-2699A v4 @ 2.40GHz.

Experimental setup (synthetic data): The ground truth θ∗ is set by randomly
sampling a multivariate Gaussian N (0, Id) and thresholding the smallest d − s elements
to zero. The noise vector w is assumed to be multivariate Gaussian N (0, 0.25IN ). We
construct X ∈ RN×d by independently generating each row xi ∈ Rd, adopting the following
procedure (Agarwal et al., 2012): let z1, . . . , zd−1 be i.i.d. standard normal random variables,
set xi,1 = z1/

√
1− 0.252 and xi,t+1 = 0.25xi,t + zt, for t = 1, 2, . . . , d− 1. It can be verified

that all the eigenvalues of Σ = cov(xi) lie within the interval [0.64, 2.85]. We partition (X,y)
as X = [X>1 , X

>
2 , . . . , X

>
m]> and y = [y>1 , . . . , y

>
m]>, and agent i owns the data set portion

(Xi, yi) and we have m agents in total. We simulate an undirected graph G following the
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Erdös-Rényi model G(m, p), where m is the number of agents and p is the probability that
an edge is independently included in the graph. The coefficient of the matrix W are chosen
according to the Lazy Metropolis rule (Olshevsky, 2017). All results are using Monte Carlo
with 30 repetitions.

1) Statistical accuracy verification (Theorem 7). We set N = 220,m = 20, d =
400, and consider two types of graphs, namely a fully connected and a weakly connected
graph, the latter generated as Erdös-Rényi graph with edge probability p = 0.1, resulting in
ρ ≈ 0.973.

Figure 2 plots the log-average statistical error log
(∑m

i=1 ‖θ̂i − θ∗‖2/m
)
versus λ for the

fully- and weakly-connected graphs (resp.), and contrasts it with the centralized LASSO
log-error log

(
‖θ̂ − θ∗‖2

)
. The following comments are in order. (i) A careful choice of

γ (= 5 × 10−4) is required to ensure that the distributed penalty LASSO recovers the
centralized `2-error; however, with the same choice of γ, the solution achieved by the
distributed method (4) over weakly connected graph can not recover the the statistical
accuracy of the centralized LASSO estimator. (ii) The weakly connected graph requires a
smaller γ (= 1×10−4) to recover the centralized statistical error; which is consistent with the
dependence of γ on ρ as in (22). (iii) The range of λ guaranteeing the minimal `2- error in
both the centralized and distributed penalty LASSO is comparable, as predicted by condition
(20) on λ.

2) Validating γ = O((1− ρ)/d) in (22) (Theorem 7). Figure 3 plots the inverse of
largest γ (grid-searched) that guarantees centralized statistical accuracy versus the dimension,
for three choices of (N, d, s), corresponding to increasing values of d, s = dlog de,m = 5 and
adjust N such that roughly constant s log d/N (and so the centralized statistical error). The
figure shows that, as d increases, a smaller γ is required to preserve centralized statistical
errors. The scaling of such a γ is roughly O(1/d), validating the dimension-dependence of
recovery predicted in (22). Notice also that a weaker connected graph requires smaller γ to
recover the centralized statistical error, and the slope of weakly connected graph (yellow,
ρ = 0.9045) is larger than that of the fully connected (blue, ρ = 0.4897), which is consistent
with the dependence of 1/γ = O(d/(1− ρ)) as proved in (22).

3) Linear convergence and the speed-accuracy dilemma (Theorem 13). Fig-
ure 5 plots the log average optimization error versus the number of iterations generated
by the distributed proximal-gradient Algorithm (28), in the same setting of Figure 3. As
predicted by Theorem 13, linear convergence within the centralized statistical error is achiev-
able when d,N → ∞ and s log d/N = o(1), but at a rate scaling with O(d), revealing the
the speed-accuracy dilemma. 4) On the dependence of communication rounds on
network size m. To underscore the aforementioned dependence, we carried out experiments
across an array of network topologies. This comprised of three deterministic graphs—the
complete graph, path graph, and star graph—and two random graphs—the Erdös-Rényi
graph with p = O(1) (specifically p = 0.6) and p = O(logm/m) (specifically p = logm/m),
resulting in both cases a connectivity ρ roughly constant with m with high-probability (Nedić
et al., 2018, Proposition 5). In each topology, we progressively augmented the number of
nodes, m, in increments of 10, 25, 40, and 50, while maintaining a consistent total sample
size of 200 and dimension of 400. We sought the largest γ (grid-searched) and the least
number of communications for each pairing of m and graph type that attain centralized
statistical errors (within 3% accuracy). Results are presented in Figure 4, where we plotted
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Figure 2: Statistical error of the estimator θ̂ [see (4)] and the centralized LASSO estimator
θ̂ [see (2)] versus λ, using synthetic data; First row: fully connected graph (ρ = 0.4897);
Second row:. Erdös-Rényi graph with p = 0.1, (ρ ≈ 0.973). Notice that our theory explains
the behaviour of the curves only for values of λ ≥ 0.033 [as required by (22)].
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Erdös-Rényi with p = logm
m
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Figure 5: Linear convergence of Algorithm (28) up to the centralized statistical error:
estimation error generated by Algorithm (25) versus iterations (communications), using
synthetic data. Left panel: fully connected graph (ρ = 0.4897); Right panel:. Erdös-
Rényi graph with p = 0.1, (ρ ≈ 0.9045). As predicted by our theory, the scaling of γ to
recover centralized statistical consistency is γ = Θ(1/d): As d roughly doubles, going from
360 to 800, γ decreases by half. The same scaling is observed when d goes from 800 to 1560,
revealing the the speed-accuracy dilemma.

such a number of communications versus m for the aforementioned topologies. Notice that
the communications’ scaling is linear with m for the complete graph and Erdös-Rényi with
p = O(logm/m) and p = O(1). Given that we approximately achieve 1/(1− ρ(m)) = O(1)
for these three topologies Nedić et al. (2018), this result confirms the validity of (56), which
anticipates Õ(m) under such settings. Experiment on real data. We test our findings on
the data set eyedata in the NormalBeta-Prime package (Bai and Ghosh, 2019). This data
set contains gene expression data of d = 200 genes, and N = 120 samples. Data originate
from microarray experiments of mammalian eye tissue samples. We randomly divide the
data set into training sample set with size Ntrain = 80 and test data set with size Ntest = 40.
We partition the training data into m = 10 subsets. Each agent i owns the data set portion
with size 8. We run Monte Carlo simulations, with 30 repetitions. Since we do not have
access of the ground truth θ∗, we replace the `2 statistical error and the `2 optimization error
with the MSE errors

MSE∞ ,
1

mNtest

m∑

i=1

‖y∗test − ŷi‖2 and MSEt ,
1

mNtest

m∑

i=1

‖y∗test − yti‖2, (58)

respectively, where y∗test is the output of the test set, and ŷi = Xiθ̂i, i ∈ [m], are the model
forecasts; ŷti = Xiθ

t
i , i ∈ [m], are output at iteration t. m = 1 corresponds to the centralized

case, with ŷ = Xθ̂.
Our first experiment is meant to check whether the solution of the penalized problem (4)

matches the solution of the centralized LASSO via a proper choice of γ. Figure 6 plots the
MSE (log scale) vs. γ achieved by Algorithm (28) over a fully connected graph (left panel)
and a weakly Erdös-Rényi graph with p = 0.1, resulting in ρ ≈ 0.71 (right panel). The
results confirm what we have already observed on synthetic data.

Our second experiment on real data is to validate the speed-accuracy dilemma, postulated
by our theory and already validated on synthetic data (cf. Figure 5). Figure 7 plots the
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ŷ
i
‖2
)

Ntrain = 80, Ntest = 40, d = 200, s = 5,m = 10, γ = 3× 10−5

centralized
distributed

0.1 0.15 0.2 0.25 0.3

−1.2

−1.15

−1.1

λ

lo
g

(
1

m
N
te
st

m ∑ i=
1

‖y
∗ te
st
−
ŷ
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Figure 6: MSE∞ defined in (58) associated with the estimator θ̂ [see (4)] and the centralized
LASSO estimator θ̂ [see (2)] versus λ using the data set eyedata in the NormalBeta-Prime
package. First row: fully connected graph (ρ = 0.4897); Second row: Erdös-Rényi graph
with p = 0.1, (ρ ≈ 0.971). Notice that our theory explains the behaviour of the curves only
for values of λ ≥ 0.15 [as required by (22)].
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Figure 7: Linear convergence of Algorithm (28) up to the centralized statistical error, for
different values of γ, using the data set eyedata in the NormalBeta-Prime package: MSEt

defined in (58) versus the number of iterations (communications). First row: fully connected
graph (ρ = 0.4897); Second row: Erdös-Rényi graph with p = 0.1, (ρ ≈ 0.96). Left panel:
iterations up to 5× 104. Right panel: zoom in on the iterations up to 8× 102.
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log average optimization error versus the number of iterations generated by Algorithm (28),
in the same network setting as for Figure 6; different curves refer to different values of the
penalty parameter γ. Since θ∗ is no longer available when using real data, we heuristically set
R in the projection (28) as R = max1≤i≤m ‖θ̂i‖1. This max-quantity can be obtained locally
by each agent by running a min-consensus algorithms, requiring a number of communications
of the order of the diameter of the network. The figure still shows linear convergence up
to some tolerance, which is of the order of the MSE error in (58). Even on real data the
speed-accuracy dilemma is evident.

6. Concluding Remarks

We studied sparse linear regression over mesh networks. We established statistical and
computational guarantees in the high-dimensional regime of a penalty-based consensus
formulation and associated distributed proximal gradient method. This is the first attempt of
studying the behaviour of a distributed method in the high-dimensional regime; our interest
in penalty-based formulations to decentralize the optimization/estimation was motivated
by their popularity and early adoption in the literature of distributed optimization (low-
dimensional regime). We proved that optimal sample complexity O(s log d/N) for the
distributed estimator is achievable over networks, even when local sample size is not sufficient
for statistical consistency. This contrasts with D&C methods which impose a condition on
the local samples size (let alone they are readily implementable over mesh networks). On the
computational side, such statistically optimal estimates can be achieved by the distributed
proximal-gradient algorithm applied to the penalized problem, which converges at linear
rate—such a rate however scales as O(1/d), no matter how “good” the network connectivity
is, resulting in a total communication cost of O(d2).

We claim that this unfavorable communication cost is unavoidable for such penalty-
based methods, because they lack of any mechanism mixing directly local gradients (they
only average iterates). This raises the question whether communication costs of O(d) are
achievable in high-dimension over mesh networks by other distributed, iterative algorithms,
yet with no conditions on the local sample size. A first study towards this direction is
the companion work (Sun et al., 2022), where the projected gradient algorithm (Sun et al.,
2019) based on gradient tracking is studied in the high-dimensional setting. The analysis of
other distributed methods employing other forms of gradient correction, such as primal-dual
method as in (Jakovetić et al., 2011, Shi et al., 2014, Jakovetić, 2019, Jakovetić et al., 2013,
Shi et al., 2015a,b) remains an interesting topic for future investigation.
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Appendix

In this appendix we present the proofs of the results in the paper. We will use the same
notation as in the paper along with the following additional definitions.
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Recall the statistical error ν̂ , θ̂−1m⊗θ∗. For any θ ∈ Rmd partitioned as θ = [θ1, . . . , θm],
with each θi ∈ Rd, we define

ν , θ − 1m ⊗ θ∗. (59)

When needed, we decompose θ, and accordingly ν, in its average and orthogonal component

ν = 1m ⊗ νav + ν⊥, with νav =
1

m

m∑

i=1

νi. (60)

In particular, when θ = θ̂, we will write for the augmented LASSO error

ν̂ , θ̂ − 1m ⊗ θ∗ and ν̂ = 1m ⊗ ν̂av + ν̂⊥, (61)

whereas when θ = θt, with θt being the iterates generated by Algorithm (25) , we will write

νt , θt − 1m ⊗ θ∗ and νt = 1m ⊗ νtav + νt⊥. (62)

Finally, the optimization error (along with its decomposition in average and orthogonal
component) is denoted by

∆t , θt − θ̂ and ∆t = 1m ⊗∆t
av + ∆t

⊥. (63)

Table 3 below summarizes all the universal constants used in the paper along with their
range of values and associated constraints.

universal constant c̃0 c̃1 c̃2 c̃3 c̃4 c̃5 c̃6 c̃7

value > 0 > 0 > 0 > 0 max{2, 4c̃2
2, 4c̃

2
2c̃
−1
3 } > 32 c̃5/32− 1 free

universal constant c̃8 c̃9 c̃10 c̃11 c̃12 c̃13 c̃14 c̃15 c̃16

value ≥
√

6 max{128c̃1, c̃5} 1824 3648c̃1 max{3648c̃1, c̃5} 2731c̃2
1/t0 1152 57

√
6c̃8

√
6c̃8/64c̃1

universal constant c̃17 c̃18 c̃19 c̃20 c̃21 c̃22 c̃23 c̃24

value 9 72c̃1c̃17 c̃1c̃
2
8c̃17/988 8c̃1c̃17/c̃

2
8 c̃2

8/1976 11339c̃1c̃
2
8 21130c̃4 > 0

Table 3: Universal constants used in the Appendix.
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Appendix A. Proof of Proposition 3

For the sake of convenience, let us rewrite the objective function in (4) as

G(θ) = Lγ(θ) +
λ

m
‖θ‖1, with Lγ(θ) =

1

2N

m∑

i=1

‖yi −Xiθi‖2 +
1

2mγ
‖θ‖2V . (64)

By the optimality of θ̂, it follows

G(θ̂) ≤ G(1m ⊗ θ∗)

⇔ 1

2N

m∑

i=1

‖yi −Xiθ̂i‖2 +
1

2mγ
‖θ̂‖2V +

λ

m
‖θ̂‖1

≤ 1

2N

m∑

i=1

‖yi −Xiθ
∗‖2 +

1

2mγ
‖1m ⊗ θ∗‖2V

︸ ︷︷ ︸
=0 (Assumption 2)

+
λ

m
‖1m ⊗ θ∗‖1.

Using yi = Xiθ
∗ + wi and the fact that θ∗ is S-sparse, we can write

1

N

m∑

i=1

‖Xiθ̂i −Xiθ
∗‖2≤ 2

N

m∑

i=1

w>i Xiν̂i +
2λ

m

m∑

i=1

(‖(ν̂i)S‖1 − ‖(ν̂i)Sc‖1)− 1

mγ
‖θ̂‖2V .

Using the factorization ν̂ = 1m ⊗ ν̂av + ν̂⊥, the above bounds reads

1

N

m∑

i=1

‖Xiθ̂i −Xiθ
∗‖2

≤ 2

N

m∑

i=1

w>i Xi(ν̂av + ν̂⊥i) +
2λ

m

m∑

i=1

(‖(ν̂av)S + (ν̂⊥i)S‖1 − ‖(ν̂av)Sc + (ν̂⊥i)Sc‖1)− 1

mγ
‖θ̂‖2V

(a)

≤ 2

N
w>Xν̂av +

2

N

m∑

i=1

w>i Xiν̂⊥i +
2λ

m

m∑

i=1

(‖(ν̂av)S‖1 − ‖(ν̂av)Sc‖1)

+
2λ

m

m∑

i=1

‖ν̂⊥i‖1 −
1

mγ
‖ν̂⊥‖2V ,

where in (a) we used
m∑
i=1

w>i Xiν̂av = w>X ν̂av and ‖θ̂‖2V = ‖θ̂ − 1m ⊗ θ∗‖2V = ‖ν̂⊥‖2V .

We bound now the two terms w>Xν̂av and
m∑
i=1

w>i Xiν̂⊥i. We have

1

N

m∑

i=1

‖Xiθ̂i −Xiθ
∗‖2

Hölder’s
≤ 2

N
‖w>X‖∞‖ν̂av‖1 + max

i∈[m]
‖w>i Xi‖∞

2

N

m∑

i=1

‖ν̂⊥i‖1

+
2λ

m

m∑

i=1

(‖(ν̂av)S‖1 − ‖(ν̂av)Sc‖1) +
2λ

m

m∑

i=1

‖ν̂⊥i‖1 −
1

mγ
‖ν̂⊥‖2V
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(10),(13)
≤ 3λ‖(ν̂av)S‖1 − λ‖(ν̂av)Sc‖1−

1− ρ
mγ
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

) m∑

i=1

‖ν̂⊥i‖1
︸ ︷︷ ︸

Term II

.

(65)

Finally, we bound Term II. Since we have no sparsity information on ν̂⊥, we can only assert
that ‖ν̂⊥i‖1 ≤

√
d‖ν̂⊥i‖, for all i ∈ [m]. Hence,

Term II ≤ −1− ρ
mγ
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

) m∑

i=1

√
d‖ν̂⊥i‖

(12)
= λh(γ, ‖ν̂⊥‖). (66)

Using (66) in (65), we finally obtain

1

Nλ

m∑

i=1

‖Xiθ̂i −Xiθ
∗‖2 ≤ 3‖(ν̂av)S‖1 − ‖(ν̂av)Sc‖1 + h(γ, ‖ν̂⊥‖),

implying 3‖(ν̂av)S‖1 − ‖(ν̂av)Sc‖1 + h(γ, ‖ν̂⊥‖) ≥ 0, which concludes the proof. �

Appendix B. Proof of Lemma 4 and Lemma 5

B.1 Proof of Lemma 4

Fix γ ∈ (0, (1− ρ)/Lmax] and let ∆ ∈ Cγ(S). Then, we have

‖(∆av)Sc‖1 ≤ 3‖(∆av)S‖1 + h(γ, ‖∆⊥‖),

where h(γ, ‖∆⊥‖) is defined in (12). Substituting the above inequality into the RSC
condition (8), yields

1

N
‖X∆av‖2 ≥

(
µ

2
− 16sτ

)
‖∆av‖2 − τh2(γ, ‖∆⊥‖). (67)

Therefore, for all θ and θ′, with θ − θ′ ∈ Cγ(S), it holds

TL(θ;θ′)

≥
(
µ

2
− 16sτ

)
‖(θ − θ′)av‖2 − τ h2(γ, ‖(θ − θ′)⊥‖)−

(
Lmax

2m
− 1− ρ

2mγ

)
‖(θ − θ′)⊥‖2

≥δ‖(θ − θ′)av‖2 − ξ h2(γ, ‖(θ − θ′)⊥‖), (68)

where we used γ ∈ (0, (1− ρ)/Lmax], and set δ = µ/2− 16sτ, ξ = τ . This proves (15). �

B.2 Proof of Lemma 5

Let X ∈ RN×d be a design matrix satisfying Assumption 1. The RSC condition (Raskutti
et al., 2010, Theorem 1) implies that there exist c̃0, c̃1 > 0, such that for all ∆av ∈ Rd,

1

N
‖X∆av‖2 ≥

1

2
‖Σ 1

2 ∆av‖2 −
c̃1ζΣ log d

N
‖∆av‖21 (69)
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holds with probability at least 1− exp(−c̃0N). Furthermore, by condition (c) of X, we have

‖Σ 1
2 ∆av‖2 ≥ λmin(Σ)‖∆av‖2. (70)

Let ∆ ∈ Cγ(S), that is,

‖(∆av)Sc‖1 ≤ 3‖(∆av)S‖1 + h(γ, ‖∆⊥‖). (71)

Substituting (70) and (71) into (69), yields

‖X∆av‖2
N

≥
(
λmin(Σ)

2
− 32sc1ζΣ log d

N

)
‖∆av‖2 −

2c1ζΣ log d

N
h2(γ, ‖∆⊥‖)

≥ λmin(Σ)

4
‖∆av‖2 −

λmin(Σ)

64s
h2(γ, ‖∆⊥‖), for N ≥ 128sc̃1ζΣ log d

λmin(Σ)
.

The proof follows using the above bound in (14) along with γ ∈ (0, (1− ρ)/Lmax]. �

Appendix C. Proof of Theorem 6

Our starting point toward the upper bound on the average LASSO error (1/m)
∑m

i=1‖ν̂i‖2 is
lower- and upper-bounding the average of local errors (1/N)

∑m
i=1‖Xiν̂i‖2 while decomposing

θ̂ in its average component and orthogonal one. This decomposition is instrumental to
separate in the desired final bound a term of the same order of the centralized LASSO error
from the (additive) perturbation due to the lack of exact consensus.

• Step 1: Establishing the upper bound of (1/N)
m∑
i=1
‖Xiν̂i‖2.

We start with the optimality condition of Problem (4). By optimality of θ̂, it follows that

1

N

m∑

i=1

(
Xiθ̂i − yi

)>
Xiν̂i ≤

λ

m
(‖1m ⊗ θ∗‖1 − ‖θ̂‖1) +

1

2mγ
( ‖1m ⊗ θ∗‖2V︸ ︷︷ ︸
=0 (Assumption 2)

−‖θ̂‖2V ). (72)

We can then write

1

N

m∑

i=1

‖Xiν̂i‖2

(72)
≤ 2

N

m∑

i=1

(yi −Xiθ
∗)>Xiν̂i +

2λ

m
(‖1m ⊗ θ∗‖1 − ‖θ̂‖1)− 1

mγ
‖θ̂‖2V −

1

N

m∑

i=1

‖Xiν̂i‖2.

Using yi = Xiθ
∗ + wi and the fact that θ∗ is S-sparse, we can write

1

N

m∑

i=1

‖Xiν̂i‖2 ≤
2

N

m∑

i=1

w>i Xiν̂i +
2λ

m

m∑

i=1

(‖(ν̂i)S‖1 − ‖(ν̂i)Sc‖1)− 1

mγ
‖θ̂‖2V −

1

N

m∑

i=1

‖Xiν̂i‖2.

Introducing the decomposition ν̂ = 1m ⊗ ν̂av + ν̂⊥, the above bound reads

2

N

m∑

i=1

‖Xiν̂i‖2
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≤ 2

N

m∑

i=1

w>i Xi(ν̂av + ν̂⊥i) +
2λ

m

m∑

i=1

(‖(ν̂av)S + (ν̂⊥i)S‖1 − ‖(ν̂av)Sc + (ν̂⊥i)Sc‖1)− 1

mγ
‖θ̂‖2V

(a)

≤ 2

N
w>Xν̂av +

2

N

m∑

i=1

w>i Xiν̂⊥i +
2λ

m

m∑

i=1

(‖(ν̂av)S‖1 − ‖(ν̂av)Sc‖1)

+
2λ

m

m∑

i=1

‖ν̂⊥i‖1 −
1

mγ
‖ν̂⊥‖2V ,

where in (a) we used
m∑
i=1

w>i Xiν̂av = w>X ν̂av and ‖θ̂‖2V = ‖θ̂ − 1m ⊗ θ∗‖2V = ‖ν̂⊥‖2V .

We bound now the two terms w>Xν̂av and
m∑
i=1

w>i Xiν̂⊥i. We have

2

N

m∑

i=1

‖Xiθ̂i −Xiθ
∗‖2

Hölder’s
≤ 2

N
‖w>X‖∞‖ν̂av‖1 + max

i∈[m]
‖w>i Xi‖∞

2

N

m∑

i=1

‖ν̂⊥i‖1

+
2λ

m

m∑

i=1

(‖(ν̂av)S‖1 − ‖(ν̂av)Sc‖1) +
2λ

m

m∑

i=1

‖ν̂⊥i‖1 −
1

mγ
‖ν̂⊥‖2V

(10),(13)

≤ 3λ‖(ν̂av)S‖1 − λ‖(ν̂av)Sc‖1 −
1− ρ
mγ
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

) m∑

i=1

‖ν̂⊥i‖1.

We further relax the bound by dropping −λ‖(ν̂av)Sc‖1 and enlarging ‖(ν̂av)S‖1 ≤ ‖ν̂av‖1
while revealing the term 9λ2s

2δ which is of the order of the centralized LASSO error:

2

N

m∑

i=1

‖Xiν̂i‖2

≤ 2 · 3λ
√
s√

2δ
·
√
δ

2
‖ν̂av‖ −

1− ρ
mγ
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

)
‖ν̂⊥‖1

(15)
≤ 9λ2s

2δ
+

1

2

(‖Xν̂av‖2
N

+ ξh2(γ, ‖ν̂⊥‖)
)
− 1− ρ

mγ
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

)
‖ν̂⊥‖1.

(73)

• Step 2: Establishing the lower bound of (1/N)
m∑
i=1
‖Xiν̂i‖2.

Invoking the decomposition ν̂i = ν̂av + ν̂⊥i, i ∈ [m], along with the Young’s inequality,
we can write

2

N

m∑

i=1

‖Xi(ν̂av + ν̂⊥ i)‖2 ≥
1

N
‖Xν̂av‖2 −

2

N

m∑

i=1

‖Xiν̂⊥i‖2

(15)
≥ 1

2
[δ‖ν̂av‖2 − ξh2(γ, ‖ν̂⊥‖)] +

1

2N
‖Xν̂av‖2 −

2

N

m∑

i=1

‖Xiν̂⊥i‖2.

(74)
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• Step 3: Lower bound ≤ Upper bound.
Chaining (73) and (74) while adding δ

2m‖ν̂⊥‖2 on both sides, yield

1

2
δ‖ν̂av‖2 +

δ

2m
‖ν̂⊥‖2

≤9λ2s

2δ
+ ξh2(γ, ‖ν̂⊥‖) +

(
2Lmax

m
+

δ

2m
− 1− ρ

mγ

)
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

)
‖ν̂⊥‖1

≤9λ2s

2δ
+ ξh2

max +

(
2Lmax

m
+

δ

2m
− 1− ρ

mγ

)
‖ν̂⊥‖2 +

(
max
i∈[m]
‖w>i Xi‖∞

2

N
+

2λ

m

)√
md‖ν̂⊥‖

︸ ︷︷ ︸
,h1(γ,‖ν̂⊥‖)

,

(75)

where in the last inequality we used Lmax = max
i∈[m]

λmax(X>i Xi/n) [cf. (5)], and the following

upper bound for h(γ, ‖ν̂⊥‖)

h(γ, ‖ν̂⊥‖) ≤ hmax ,
dγ

λ(1− ρ)

(
maxi∈[m]‖w>i Xi‖∞

n
+ λ

)2

. (76)

Under the condition on γ as in (18), h1(γ, ‖ν̂⊥‖) is a quadratic function of ‖ν̂⊥‖ opening
downward, and it can be upper bounded over R+ as

h1 max ,
2dγ(maxi∈[m]‖w>i Xi‖∞/n+ λ)2

2(1− ρ)− 4Lmaxγ − δγ
. (77)

Using (77) in (75), we finally obtain (19).
�

Appendix D. Proof of Theorem 7

The proof builds on the following four steps: 1)We first consider as source of randomness only
the design matrix X (cf. Assumption 1) while keeping w fixed, deriving a high-probability
bound for Lmax in (5); 2) We then fix X and consider the randomness coming from the
noise w, providing high-probability bounds for the noise-dependent terms ‖X>w‖∞/N and
max1≤i≤m‖X>i wi‖∞/n; 3) We then combine the previous two results via the union bound
and establish a lower bound on λ for (13) to hold with high probability; 4) Finally, we use
the bound in 3) to obtain the final error bound on the `2-LASSO error.

Let P be a probability measure on the product sample space RN×d ⊗ RN . For brevity,
we use the same notation for the marginal distributions on RN×d and RN .
• Step 1: Randomness from X.

We define three “good” events so that the largest eigenvalue of (1/n)X>i Xi, smallest
eigenvalue of (1/N)X>X and the norm of the columns of X are well-controlled. We prove
next that these events jointly occur with high probability. Specifically, let

A1 ,

{
X ∈ RN×d

∣∣∣∣ Lmax ≤ c̃4λmax(Σ)

(
1 +

d+ logm

n

)}
, (78)
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A2 ,

{
X ∈ RN×d

∣∣∣∣ X satisfies (17)
}
,

A3 ,

{
X ∈ RN×d

∣∣∣∣ max
j=1,...,d

1√
N
‖Xej‖ ≤

√
3ζΣ

2

}
, (79)

where c̃4 > 0 is a universal constant (see (84)), and we recall from (5) and (9) that Lmax ,
maxi∈[m] λmax(X>i Xi/n), and ζΣ , max

i∈[d]
Σii, respectively. We proceed to bounding P(A1),

P(A2), and P(A3).
(i) Bounding P(A1): Recall that X = [X>1 , . . . , X

>
m]>, and X satisfies Assumption 1.

Thus, {Xi}i∈[m] are i.i.d random matrices, with i.i.d. rows drawn fromN (0,Σ). By (Vershynin,
2012, Remark 5.40) it follows that the following holds with probability at least

1− 2 exp{−c̃3t
2}, (80)

for all t ≥ 0

∥∥∥∥
1

n
X>i Xi − Σ

∥∥∥∥ ≤ max{a, a2}‖Σ‖, where a , c̃2

(√
d

n
+

t√
n

)
, (81)

with constants c̃3 and c̃2 > 0. Given (81) and using the triangle inequality, we have
∥∥∥ 1

n
X>i Xi

∥∥∥ ≤
∥∥∥ 1

n
X>i Xi − Σ

∥∥∥+
∥∥∥Σ
∥∥∥ ≤ λmax(Σ) max{a, a2}+ λmax(Σ). (82)

Applying the union bound we obtain the following bound for Lmax

P
(
Lmax ≤ λmax(Σ)(1 + max{a, a2})

)
≥ 1−m · 2 exp{−c̃3t

2}. (83)

Setting t =
√
d+ c̃−1

3 logm, yields

a = c̃2



√
d

n
+

√
d+ c̃−1

3 logm

n


 .

Therefore, we conclude

Lmax ≤ λmax(Σ)
(
1 + a+ a2

)
≤ 2λmax(Σ)

(
1 + a2

)
≤ c̃4λmax(Σ)

(
1 +

d+ logm

n

)
, (84)

with probability at least 1− 2 exp(−c̃3d) and

c̃4 = max{2, 4c̃2
2, 4c̃

2
2c̃
−1
3 } ≥ 2. (85)

(ii) Bounding P(A2): It follows readily from Lemma 5: if N ≥ 128sc̃1ζΣ log d
λmin(Σ) and γ > 0,

P(Ac2) ≤ exp(−c̃0N). (86)

(iii) Bounding P(A3): Recall Assumption 1. It follows that Xej is an isotropic Gaussian
random vector in RN with N (0,Σjj) entries. Hence, ‖Xej‖2/Σjj is a chi-squared random
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variable with degree N. Then, applying the standard bound for chi-squared random variables
(Wainwright, 2019, Example 2.11) we have

P
(∣∣∣∣

1

N

∥∥∥∥
Xej√

Σjj

∥∥∥∥
2

− 1

∣∣∣∣ ≥ t
)
≤ 2 exp(−Nt2/8), for all t ∈ (0, 1). (87)

Taking t = 1
2 in (87) and applying the union bound, we obtain

P
(

max
j∈[d]

1

N

∥∥∥∥
Xej√

Σjj

∥∥∥∥
2

≥ 3

2

)
≤ d P

(∣∣∣∣
1

N

∥∥∥∥
Xej√

Σjj

∥∥∥∥
2

− 1

∣∣∣∣ ≥
1

2

)
≤ 2 exp(−N/32 + log d). (88)

Therefore, for all N ≥ c̃5 log d, with c̃5 > 32, we have

P
(

max
j∈[d]

‖Xej‖2
N

≤ 3

2
ζΣ

)
≥1− 2 exp[−(c̃5/32) log d+ log d]

=1− 2 exp(−c̃6 log d), where c̃6 = c̃5/32− 1 > 0.

(89)

Combining the conditions on N, we have

N ≥ c̃9sζΣ log d

λmin(Σ)

(a)
≥ max

{
128sc̃1ζΣ log d

λmin(Σ)
, c̃5 log d

}
, (90)

where c̃9 = max{128c̃1, c̃5}, and in (a) we used s ≥ 1, ζΣ ≥ λmin(Σ).
Finally, we combine (84), (86), and (89); using the union bound again, we have

P(Ac1 ∪Ac2 ∪Ac3) ≤ P(Ac1) + P(Ac2) + P(Ac3) ≤ 2 exp(−c̃3d) + exp(−c̃0N) + 2 exp(−c̃6 log d).

Define A , A1 ∩A2 ∩A3,

P(A) ≥ 1− 2 exp(−c̃3d)− exp(−c̃0N)− 2 exp(−c̃6 log d). (91)

• Step 2: Randomness from w. We start with bounding ‖X>w‖∞. For fixed X ∈ A,
and w ∼ N (0, σ2IN ), recall X = [X>1 , . . . , X

>
m]>, and w = [w>1 , . . . , w

>
m]>, where for each

agent i ∈ [m], Xi ∈ Rn×d is the design matrix, wi ∈ Rn is observation noise. Then, for any
i ∈ [m] and j ∈ [d],

w>Xej
N

∣∣∣∣
X∈A

∼ N
(

0,
σ2

N
· ‖Xej‖

2

N

)
and

w>i Xiej
N

∣∣∣∣
X∈A

∼ N
(

0,
σ2

N
· ‖Xiej‖2

N

)
. (92)

Note that

max
i∈[m]

max
j∈[d]

‖Xiej‖2
N

≤ max
j∈[d]

1

m

m∑

i=1

‖Xiej‖2
n

= max
j∈[d]

‖Xej‖2
N

, (93)

due to 1
m

∑m
i=1

‖Xiej‖2
n =

‖Xej‖2
N .

By definition, for all X ∈ A ⊆ A3, 2‖Xej‖2/(3ζΣN) ≤ 1 and, by (93), 2‖Xiej‖2/(3ζΣN) ≤
1. Therefore, combining it with (92), we obtain
√

2

3ζΣ

w>Xej
N

∣∣∣∣
X∈A

∼ N
(

0,
σ2

N
· 2‖Xej‖2

3ζΣN

)
, where

2‖Xej‖2
3ζΣN

≤ 1; and
√

2

3ζΣ

w>i Xiej
N

∣∣∣∣
X∈A

∼ N
(

0,
σ2

N
· 2‖Xiej‖2

3ζΣN

)
, where

2‖Xiej‖2
3ζΣN

≤ 1.

(94)
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Denote pX(x) and pXi(xi) as the density of
√

2/(3ζΣ)w>Xej/N and
√

2/3ζΣw
>
i Xiej/N,

respectively. Let Z ∼ N (0, σ2/N), with density function pZ(z). Since 2‖Xej‖2/(3ζΣN) ≤ 1
and 2‖Xiej‖2/(3ζΣN) ≤ 1, we conclude pX(0) ≥ pZ(0) and pXi(0) ≥ pZ(0). (Horn, 1988,
Theorem 1) implies

∣∣∣∣
√

2

3ζΣ

w>Xej
N

∣∣∣∣
X∈A

∣∣∣∣ �st |Z|, as well as
∣∣∣∣
√

2

3ζΣ

w>i Xiej
N

∣∣∣∣
X∈A

∣∣∣∣ �st |Z|.

Therefore,

P
( |w>Xej |

N
≥ x

√
3ζΣ

2

∣∣∣∣ X ∈ A
)
≤ P(|Z| ≥ x) ≤ 2 exp

(
− Nx2

2σ2

)
. (95)

Notice that ‖X>w‖∞/N = maxj∈[d]|w>Xej |/N . Hence, setting x = σ
√
t0 log d/N, with

t0 > 2, the union bound implies

P
(‖X>w‖∞

N
≥ σ

√
t0 log d

N

√
3ζΣ

2

∣∣∣∣ X ∈ A
)
≤ 2 exp

(
−1

2
(t0 − 2) log d

)
. (96)

Define

D1 ,

{
w ∈ RN

∣∣∣∣
‖X>w‖∞

N
≤ σ

√
t0 log d

N

√
3ζΣ

2

}
. (97)

We have P(D1 | X ∈ A) ≥ 1− 2 exp
(
−1

2(t0 − 2) log d
)
. Combining it with (91), yields

P(A ∩D1)

=P(D1 | A)P(A)

≥[1− 2 exp{−[(t0 − 2) log d]/2}][1− 2 exp(−c̃3d)− exp(−c̃0N)− 2 exp(−c̃6 log d)]

≥1− 2 exp(−c̃3d)− exp(−c̃0N)− 2 exp(−c̃6 log d)− 2 exp{−[(t0 − 2) log d]/2.

It remains to bound maxi∈[m]‖X>i wi‖∞. Since Xi, i ∈ [m], are independent, the columns
of Xi are n dimensional i.i.d Gaussian random vectors, each element has variance at most
ζΣ, and the elements of wi ∼ N (0, σ2In). Then each element of X>i wi is the sum of n
independent sub-exponential random variables with sub-exponential norm at most σ

√
ζΣ.

Applying random matrix theorem (Vershynin, 2012, Proposition 5.16) and the union bound,
we obtain

P
(

1

n
max
i∈[m]
‖X>i wi‖∞ ≤ t

)
≥ 1− 2 exp

(
−c̃24 min

{
t2

σ2ζΣ
,

t

σ
√
ζΣ

}
n+ logmd

)
, t ≥ 0,

for some c̃24 > 0. Thus, under 2logmd ≤ c̃24n and t = σ
√

2ζΣ logmd
nc̃24

,

P

(
1

n
max
i∈[m]
‖X>i wi‖∞ ≤ σ

√
2ζΣ logmd

nc̃24

)

≥ 1− 2 exp

(
−c̃24 min

{
2σ2ζΣlogmd

c̃24nσ2ζΣ
,
σ
√

2ζΣ logmd√
c̃24nζΣσ

}
n+ logmd

)
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≥ 1− 2 exp (− log d) , (98)

while, under 2logmd > c̃24n and t = 2σ
√
ζΣ logmd
nc̃24

, it holds

P
(

1

n
max
i∈[m]
‖X>i wi‖∞ ≤

2σ
√
ζΣ logmd

nc̃24

)

≥ 1− 2 exp

(
−c̃24 min

{
4σ2ζΣlog2md

c̃2
24n

2σ2ζΣ
,
2σ
√
ζΣlogmd

c̃24nσ
√
ζΣ

}
n+ logmd

)

≥ 1− 2 exp (− log d) . (99)

Combining (98) and (99), we have

P

(
1

n
max
i∈[m]
‖X>i wi‖∞ ≤ σ

√
ζΣ min

{
2 logmd

nc̃24
,

√
2 logmd

nc̃24

})
≥ 1− 4 exp (− log d) . (100)

Define

D2 ,

{
w ∈ RN

∣∣∣∣
1

n
max
i∈[m]
‖X>i wi‖∞ ≤ σ

√
ζΣ min

{
2 logmd

nc̃24
,

√
2 logmd

nc̃24

}}
,

and D , D1 ∩D2. Then, chaining (91), (100), and (96), we finally get

P(A ∩D)

≥ 1− 2 exp(−c̃3d)− exp

(
−c̃0

c̃9sζΣ log d

λmin(Σ)

)
− 2 exp(−c̃6 log d)− 2 exp{−[(t0 − 2) log d]/2

− 4 exp(− log d)

≥ 1− 11 exp(−c̃8 log d), (101)

where c̃8 = min{1, c̃3, c̃6, (t0 − 2)/2, c̃0c̃9}.
• Step 3: Sufficient condition on λ for (13) to hold with high probability.

We first recall (13) for convenience.

2

N
‖X>w‖∞ ≤ λ.

Combining it with the high probability upper bound for ‖X>w‖∞/N in (96) (Step 2), we
conclude that, if λ satisfies

λ = c̃8σ

√
ζΣt0 log d

N
, (102)

with c̃8 ≥
√

6, then (13) holds with probability at least (101).
• Step 4: Bounding the statistical error under (22).

Recall the deterministic error bounds in Theorem 6: for any fixed λ and γ satisfying (18),

1

m

m∑

i=1

‖ν̂i‖2
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(19)
≤ 9λ2s

δ2
+

2ξd2γ2

δλ2(1− ρ)2

(
maxi∈[m]‖w>i Xi‖∞

n
+ λ

)4

+
4dγ(maxi∈[m]‖w>i Xi‖∞/n+ λ)2

δ[2(1− ρ)− 4Lmaxγ − δγ]
.

In Step 3, we provided a sufficient condition on λ to guarantee (13) holds with probability at
least as (101). Now we proceed to provide a sufficient condition on γ, not only to guarantee
γ ≤ 2(1− ρ)/(4Lmax + δ), but also contribute to restricting the error term above within the
centralized statistical error, which is of the order O(λ2s).

By Lemma 5, if N ≥ 128sc̃1ζΣ log d/λmin(Σ), with probability at least 1− exp(−c̃0N),
the in-network RE condition holds with δ = λmin(Σ)/4 and ξ = λmin(Σ)/(64s). Combining
this with the high probability upper bound derived on Lmax in (84) and the high probability
upper bound derived for maxi∈[m]‖w>i Xi‖∞/n in (100), we have

1

m

m∑

i=1

‖ν̂i‖2 ≤
144λ2s

λmin(Σ)2
+

d2γ2

(
σ
√
ζΣ min

{
2 logmd
nc̃24

,
√

2 logmd
nc̃24

}
+ λ

)4

8λ2s(1− ρ)2

︸ ︷︷ ︸
Term I

+

8dγ

(
σ
√
ζΣ min

{
2 logmd
nc̃24

,
√

2 logmd
nc̃24

}
+ λ

)2

λmin(Σ)
(

1− ρ− 4γc̃4λmax(Σ)
(

1 + d+logm
n

)
− γλmin(Σ)

8

)

︸ ︷︷ ︸
Term II

with probability larger than (101).
It remains to prove that condition (22) on γ is sufficient for Term I and Term II to be

within O(λ2s). Notice that

Term I ≤ Term II2 · λmin(Σ)2

512λ2s
. (103)

Thus it is sufficient to bound only Term II. Enforcing Term II ≤ c̃7λ
2s/λmin(Σ)2, where

c̃7 is a numerical constant, we derive the following sufficient condition on γ to ensure
Term II ≤ c̃7λ

2s/λmin(Σ)2:

γ ≤ 1− ρ

8λmin(Σ) d
c̃7s

[
σ
√
ζΣ
λ min

{
2 logmd
nc̃24

,
√

2 logmd
nc̃24

}
+ 1
]2

+ 4c̃4λmax(Σ)[1 + d+logm
n ] + λminΣ

8

.

(104)
Thus, under (104), we have

Term II ≤ c̃7
λ2s

λmin(Σ)2
⇒ Term I ≤ c̃2

7λ
4s2

λmin(Σ)4

λmin(Σ)2

512λ2s
=

c̃2
7λ

2s

512λmin(Σ)2
.

Therefore, the final statistical error satisfies

1

m

m∑

i=1

‖ν̂i‖2 ≤
(

144 + c̃7 +
c̃2

7

512

)
c̃2

8σ
2ζΣt0

λmin(Σ)2

s log d

N
= c6

σ2ζΣt0
λmin(Σ)2

s log d

N
,
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where c6 ,

(
144 + c̃7 +

c̃27
512

)
c̃2

8. Since λ satisfies (102), we have

σ
√
ζΣ

λ
min

{
2 logmd

nc̃24
,

√
2 logmd

nc̃24

}
≤ 1

c̃8

√
2m logmd

c̃24t0 log d
. (105)

Substituting (105) into (104), we have the following sufficient condition for (104)

γ ≤ 8n(1− ρ)c̃7s

32c̃4c̃7sλmax(Σ)[n+ (d+ logm)] + λmin(Σ)n

{
64d

[
1
c̃8

√
2m logmd
c̃24t0 log d + 1

]2

+ c̃7s

} .

Notice that

64d

[
1

c̃8

√
2m logmd

c̃24t0 log d
+ 1

]2

≤ 128d

[
m(logm+ 1)

3c̃24
+ 1

]
.

In addition,

s · n(1− ρ)

4sc̃4λmax(Σ)[n+ (d+ logm)] + λmin(Σ)n [16d [m(logm+ 1)/(3c̃24c̃7) + 1] + s/8]

≥ c5(1− ρ)

λmax(Σ)(d+ logm) + λmin(Σ)dm(logm+ 1)
, (106)

where c5 , 1/max{8c̃4, 32/(c̃24c̃7)} Hence, (22) is sufficient for (104). �

Appendix E. Proof of Lemma 8

Using (60), each ‖θ̂i‖1 can be bounded as

‖θ̂i‖1 ≤ ‖θ̂i − θ∗‖1 + ‖θ∗‖1 = ‖ν̂av + ν̂⊥i‖1 + ‖θ∗‖1 ≤ ‖ν̂av‖1 +
√
d ‖ν̂⊥i‖+ ‖θ∗‖1. (107)

We bound next ‖ν̂av‖1. By Proposition 3, any solution θ̂ of (4) satisfies

‖(ν̂av)Sc‖1 ≤ 3‖(ν̂av)S‖1 + h(γ, ‖ν̂⊥‖).

Therefore,

‖ν̂av‖1 ≤4‖(ν̂av)S‖1 + h(γ, ‖ν̂⊥‖)

≤4
√
s
‖ν̂‖√
m

+ h(γ, ‖ν̂⊥‖)

(a)

≤4
√
s

√
9λ2s

δ2
+

2τd2γ2(maxi∈[m]‖w>i Xi‖∞ + λn)4

δλ2n4(1− ρ)2
+

4dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

δn2[2(1− ρ)− 4Lmaxγ − δγ]

+ h(γ, ‖ν̂⊥‖)

≤12λs

δ
+

√
32sτ

δ

dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

λn2(1− ρ)
+

√
64sdγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

δn2[2(1− ρ)− 4Lmaxγ − δγ]
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+ h(γ, ‖ν̂⊥‖), (108)

where in (a) we used Theorem 6 and the fact that the RSC (8) implies the in-network RE
(15) [cf. Lemma 4], with ξ = τ and δ = µ/2− 16sτ > 0.

Substituting (108) in (107) yields

‖θ̂i‖1

≤12λs

δ
+

√
32sτ

δ

dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

λn2(1− ρ)
+

√
64sdγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

δn2[2(1− ρ)− 4Lmaxγ − δγ]

+ h(γ, ‖ν̂⊥‖) +
√
d‖ν̂⊥‖︸ ︷︷ ︸

,h2(γ,‖ν̂⊥‖)

+‖θ∗‖1

(a)
≤ 12λs

δ
+

√
32sτ

δ

dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

λn2(1− ρ)
+

√
64sdγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

δn2[2(1− ρ)− 4Lmaxγ − δγ]

+
dγ(2 maxi∈[m]‖w>i Xi‖∞ + (2 +

√
m)λn)2

4λn2(1− ρ)
+ ‖θ∗‖1

(b)
≤ 12λs

δ
+

√
32sτ

δ

dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

λn2(1− ρ)︸ ︷︷ ︸
Term I=hmax

+

√
64s

δ

√
dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

n2[2(1− ρ)− 4Lmaxγ − δγ]
︸ ︷︷ ︸

Term II

+
dγ(maxi∈[m]‖w>i Xi‖∞ + 2

√
mλn)2

λn2(1− ρ)︸ ︷︷ ︸
Term III

+ ‖θ∗‖1, (109)

where in (a) we bounded h2(γ, •) on R as

h2(γ, ‖ν̂⊥‖)
(12)
= −1− ρ

λmγ
‖ν̂⊥‖2 +

(
2 max
i∈[m]
‖w>i Xi‖∞/(λn) + 2

)√
d/m‖ν̂⊥‖+

√
d‖ν̂⊥‖

≤
dγ
(
2 maxi∈[m]‖w>i Xi‖∞ + (2 +

√
m)λn

)2

4λn2(1− ρ)
;

and in (b) we enlarged 2 +
√
m ≤ 4

√
m.

We bound now Term I—Term III using condition (26) on γ. We have the following:

hmax = Term I ≤ λs

128 δ
, (110)

Term II ≤
√
dγ(maxi∈[m]‖w>i Xi‖∞ + 2

√
mλn)2

n2[2(1− ρ)− 4Lmaxγ − δγ]
≤
√

λ2s

256 δ
,

Term III ≤ λ s

128 δ
.

Substituting the above bounds in (109) we obtain

‖θ̂i‖1 ≤
12λs

δ
+

√
32τs

δ

λs

128δ
+
λs

2δ
+

λs

128δ
+ ‖θ∗‖1
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≤λs
δ

(
13 +

1

32

√
2τs

δ

)
+ ‖θ∗‖1

(27)
≤ (1− r) ·R+ r ·R = R.

This completes the proof. �.

Appendix F. Proof of Lemma 9

Since Lγ(θ) , 1
m

∑m
i=1 fi(θi) + 1

2mγ ‖θ‖2V , we have

∇Lγ(θt) =
1

m



∇f1(θt1)

...
∇fm(θtm)


+

1

mγ
((I −W )⊗ Id)θt.

Substituting the expression of ∇Lγ(θt) into Problem (25), it is not hard to see it is separable
in the θi’s, and the update of θi given as

θt+1
i = arg min

‖θi‖1≤R

1

2

∥∥∥∥∥∥
θi − θti + β∇fi(θti) +

β

γ


θti −

m∑

j=1

wijθ
t
j



∥∥∥∥∥∥

2

+ βλ‖θi‖1.

The problem boils down to solving

min
θi

‖θi − ψti‖2 + λ′‖θi‖1

s.t. ‖θi‖1 ≤ R,
(111)

with λ′ , 2βλ and ψti defined in (28).
To solve (111) we first drop the constraint ‖θi‖1 ≤ R. The minimizer of the objective

function is given by

θ̃i = proxλ′
2
‖·‖1

(ψti). (112)

Note that θ̃i can be computed in closed form by soft-thresholding ψti .
Case 1: θ̃i satisfies the constraint in (111), i.e., ‖θ̃i‖1 ≤ R. We conclude that θ̃i is a

solution of (111).
Case 2: θ̃i violates the constraint in (111), i.e., ‖θ̃i‖1 > R. Then, the constraint must

be active at the optimal point of (111). Hence, Problem (111) is equivalent to

min
θi

‖θi − ψti‖2

s.t. ‖θi‖1 = R,
(113)

where we dropped the term λ′‖θi‖1 in the objective function, since it is constant on the
constraint set. Since (112) can be computed in closed form by soft-thresholding ψti , we
conclude ‖ψti‖1 ≥ ‖θ̃i‖1 > R, and thus the convex problem with constraint (113) is equivalent
to

min
θi

‖θi − ψti‖2

s.t. ‖θi‖1 ≤ R.
(114)

Combining the two cases completes the proof. �
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Appendix G. Proof of Theorem 10

Recall the factorization of the objective function by G and L as introduced in (64)

G(θ) = Lγ(θ) +
λ

m
‖θ‖1, with Lγ(θ) =

1

2N

m∑

i=1

‖yi −Xiθi‖2 +
1

2mγ
‖θ‖2V .

We begin (Step 1) proving a weaker result than Theorem 10, that is, linear convergence
of the error G(θt)−G(θ̂), up to the tolerance as on the RHS of (36)—this is Theorem 15
below. Then (Step 2), leveraging the curvature property of G along the trajectory of the
algorithm (see Lemma 17 in Appendix J.1), we transfer the rate decay of G(θt)−G(θ̂) on
that of the iterates error ‖θt − θ̂‖, which completes the proof of Theorem 10.
• Step 1: On linear convergence of the optimality gap G(θt)−G(θ̂).

Recall the definition of ε2
stat and µav as given in (30) and (29), respectively.

Theorem 15 Instate the setting of Theorem 10. There holds:

G(θt)−G(θ̂) ≤ α2, (115)

for any tolerance parameter α2 such that

min

{
Rλ

4
, η0
G

}
≥ α2 ≥ 4sτ · ε2

stat, (116)

and for all

t ≥
⌈

log2 log2

(
Rλ

α2

)⌉(
1 +

Lmax log 2

µav
+

(1 + ρ) log 2

γµav

)
+

(
Lmax

µav
+

1 + ρ

γµav

)
log

(
η0
G

α2

)
.

(117)

Furthermore, the interval in (116) is nonempty.

Proof See Appendix J.

• Step 2: On linear convergence of the optimality gap ‖θt − θ̂‖.
We can now proceed to prove Theorem 10. Given Theorem 15, it is sufficient to show

that (36) holds.
Recall the shorthand for the optimization error, ∆t = θt − θ̂. At high-level the idea is to

construct a lower bound of G(θt)−G(θ̂) as a function of ‖∆t‖2 by exploiting, under the RSC
condition (8), the curvature property of G along a restricted set of directions. Specifically,
we use the following curvature property proved in Lemma 17 (cf. Section J.1), which holds
under the more stringent setting of Theorem 151: for all t ≥ T ,

µav‖∆t
av‖2 − f(‖∆t

⊥‖) ≤ G(θt)−G(θ̂) +
τ

4
(v2 + 8h2

max), (118)

1. Specifically, in the proof of Theorem 15, we showed that condition on R as in (34) is more stringent than
(27) in Lemma 17—see Fact 1 in Appendix J.2.

40



Distributed Sparse Regression via Penalization

where f(‖∆t
⊥‖) is defined as [cf. (14)],

f(‖∆t
⊥‖) =

(
Lmax

2m
− 1− ρ

2mγ

)
‖∆t
⊥‖2,

v2 is given by [cf. (143)]

v2 = 144s‖ν̂av‖22 + 4 min

{
2η

λ
, 2R

}2

, with η = α2, (119)

and hmax is defined as [cf. (76)]

hmax =
dγ

λ(1− ρ)

(
maxi∈[m]‖w>i Xi‖∞

n
+ λ

)2

.

We proceed now to bound the LHS and RHS of (118). The goal is to lower bound the
LHS by a quantity proportional to ‖∆t‖2, so that (118) will provide the desired bound of
‖∆t‖2 in terms of the optimization gap G(θt) − G(θ̂) (up to a tolerance). The following
bound of f(‖∆t

⊥‖), which is a consequence of (170) serves the scope:

f(‖∆t
⊥‖) ≤ −

µav
m
‖∆t
⊥‖2.

We also upper bound the RHS of (118) to further simplify the final expression; specifically,
we use

hmax

(110)
≤ λs

64(µ− 32sτ)
(120)

and

144s‖ν̂av‖2 + 4 min

{
2α2

λ
, 2R

}2

≤ 144s‖ν̂‖2
m

+
16α4

λ2
,

where the inequality follows from ‖ν̂av‖2 ≤ ‖ν̂‖2/m and the fact that α2 ≤ Rλ/4 [cf. (37)].
Using the above bounds along with (115) in (118) yield: for all t ≥ T ,

µav
‖∆t‖2
m

≤ α2 +
τ

4

(
144s‖ν̂‖2

m
+ 8

(
λs

64(µ− 32sτ)

)2

+
16α4

λ2

)

≤ α2 +
36sτ‖ν̂‖2

m
+

τsλ2s

1976µ2
+

4τα4

λ2
, (121)

where the last inequality follows from µ ≥ c̃10sτ with c̃10 = 1824. This proves (36). �

Appendix H. Proof of Theorem 13

Given the postulated random data model and the conclusions of Theorem 10, it is sufficient
to prove the following: Step 1: Under (41) on λ, condition (31) holds with high-probability;
Step 2: Condition (42) on γ is sufficient for (32) to hold with high probability; Step 3:
Under condition (40) on N , any R in (43) satisfies also (34); furthermore, the interval of
values of R in (43) is nonempty; Step 4: Any α2 in (46) satisfies (37) with high-probability;
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and the range for α2 in (46) is nonempty with high-probability; Step 5: Given the bound
on the statistical error as in (36) and for all t satisfying (38), we conclude that (45) holds,
for all t satisfying (47), with high-probability.
• Step 1: Sufficient condition on λ for (31) to hold with high probability. To prove
this result, we follow a similar path as introduced in the proof of Theorem 7.
(i) Randomness from X. This step is the same as Step 1 in the proof of Theorem 7
(cf. Appendix D), except for the definition of the event A2 replaced here with A′2, defined as

A′2 ,

{
X ∈ RN×d

∣∣∣∣ X satisfies RSC (8) with parameters (µ, τ) =

(
λmin(Σ), 2c1ζΣ

log d

N

)}
,

(122)
where ζΣ = maxi∈[d] Σii. Lemma 2 implies

P(A′2) ≥ 1− exp(−c̃0N). (123)

Define A′ = A1 ∩A′2 ∩A3, where A1 and A3 are defined in (78) and (79) (cf. Appendix D),
respectively, and recall here for convenience

A1 ,

{
X ∈ RN×d

∣∣∣∣ Lmax ≤ c̃4λmax(Σ)

(
1 +

d+ logm

n

)}
and

A3 ,

{
X ∈ RN×d

∣∣∣∣ max
j=1,...,d

1√
N
‖Xej‖ ≤

√
3ζΣ

2

}
.

Then, similar to under condition (90), there holds (91), since N satisfies (40) with c̃12 =
max{c̃9, c̃11} c̃9 = max{128c̃1, c̃5}, and c̃11 = 3648c̃1, we have

P(A′) ≥ 1− 2 exp(−c̃3d)− exp(−c̃0N)− 2 exp(−c̃6 log d). (124)

(ii) Randomness from w. This step follows Step 2 as in the proof of Theorem 7 (cf. Ap-
pendix D) and thus is not duplicated. In particular, recalling the definitions of D1, D2, and
D therein for convenience

D1 ,

{
w ∈ RN

∣∣∣∣
‖X>w‖∞

N
≤ σ

√
t0 log d

N

√
3ζΣ

2

}
,

D2 ,

{
w ∈ RN

∣∣∣∣
maxi∈[m]‖X>i wi‖∞

n
≤ σ

√
ζΣ min

{
2 logmd

nc̃24
,

√
2 logmd

nc̃24

}}
,

and D , D1∩D2. The following the same reasoning as in Step 2 of the proof of Theorem 7,
we have, for all t0 ≥ 2,

P(A′ ∩D) ≥1− 11 exp(−c̃8 log d). (125)

(iii) Sufficient condition on λ for (31) to hold with high probability. Recall (31) for
convenience,

λ ≥ max

{
2‖X>w‖∞

N
, 64τ‖θ∗‖1

}
.
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Combining it with the high probability upper bound for ‖X>w‖∞/N derived in (125), we

conclude the following: suppose λ ≥ σ
√

6ζΣt0 log d
N , then for any tuple (X,w) ∈ A′ ∩D, and

any t0 > 2,, since 2‖X>w‖/N ≤ σ
√

6ζΣt0 log d
N , it follows that λ ≥ 2‖X>w‖∞/N. That is,

P
(
λ ≥ 2‖X>w‖∞

N

)
≥ P(A′ ∩D)

(125)
≥ 1− 11 exp(−c̃8 log d).

Furthermore, for any tuple (X,w) ∈ A′ ∩D, (122) implies τ = 2c1ζΣ log d/N . Therefore it
follows that if λ ≥ 128sc̃1ζΣ log d

N , then 64τ‖θ∗‖1. Using (41), we conclude that for any t0 > 2,

λ ≥ c11 max

{
σ

√
ζΣt0 log d

N
,
sζΣ log d

N

}
,

with c11 = max{
√

6, 128c̃1}, is sufficient for (31) to hold with probability at least (125).

• Step 2: (42) is sufficient for (32) to hold with high probability.
Recall (32) for convenience,

γ ≤ 1− ρ
2Lmax + (µ/2− 16sτ)

(
1 + 128(d/s)(maxi∈[m]‖w>i Xi‖∞/(λn) + 2

√
m)2

) .

In order to derive a sufficient condition on γ to ensure (32) holds with high probabil-
ity, we leverage Step 1 (i) above, where we derived high probability bounds for Lmax,
maxi∈[m]‖w>i Xi‖∞/n, and λ. Specifically, substituting into (32) the bounds on Lmax [as in
(84)], maxi∈[m]‖X>i wi‖∞/n [as in (125)], and the explicit expression of the RSC parameters
(µ, τ) [as in (122)], we conclude that if

γ ≤ 1− ρ
2c̃4λmax(Σ)

(
1 + d+logm

n

)
+
(
λmin(Σ)

2 − 32sc̃1ζΣ log d
N

) [
1 + 128d

s (g(m, d) + 2
√
m)

2
] ,

(126)

where g(m, d) = σ
λ

√
ζΣ min

{
2 logmd
nc̃24

,
√

2 logmd
nc̃24

}
, then (32) holds with probability at least

(24). We proceed by showing that (42) is sufficient for (126). Specifically, since

g(m, d) =
σ

λ

√
ζΣ min

{
2 logmd

nc̃24
,

√
2 logmd

nc̃24

}
(41)
≤
√

m logmd

3t0c̃24 log d
,

and
λmin(Σ)

2
≥ λmin(Σ)

2
− 32sc̃1ζΣ log d

N

(40)
≥ 0,

we obtain the more conservative condition

γ ≤ 1− ρ

2c̃4λmax(Σ)
(

1 + d+logm
n

)
+ λmin(Σ)

2

[
1 + 128d

s

(√
m logmd

3t0c̃24 log d + 2
√
m
)2
] . (127)
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We proceed to further simplify (127). Notice that

1 +
128d

s

(√
m logmd

3t0c̃24 log d
+ 2
√
m

)2
(a)
≤ 1 +

128d

s
·
[

1

3c̃24
(2 logm+ 1) + 8

]
m

(b)
≤ 256dm · [(2 logm+ 1) /c̃24 + 8] , (128)

where (a) is due to 1 ≤ 2 log d, for d ≥ 2 and t0 ≥ 2; and in (b) we upper bound both terms
by 128d · [(2 logm+ 1) /c̃24 + 8] . Using (128) and further simplification, we have

1− ρ
2c̃4λmax(Σ)

(
1 + d+logm

n

)
+ 128λmin(Σ)dm · [(2 logm+ 1) /c̃24 + 8]

≥ c12(1− ρ)

λmax(Σ) (d+ logm) + λmin(Σ)dm · (logm+ 1)
, (129)

where c12 , 1
max{4c̃4,512/c̃24,2048} . Hence, Hence, under (42), (32) holds with probability at

least (24).
• Step 3: Ensuring there exists an R fulfilling (34).

Substituting in (34) the explicit expression of the RSC parameters (µ, τ) [under the
event in (122)] as well as ‖θ∗‖1 = s, we conclude that (34) holds with probability at least
1− exp(−c̃0N), whenever R satisfies display (43),

max

{
56λs

λmin(Σ)− 64sc̃1ζΣ log d/N
, 2s

}
≤ R ≤ λN

64c̃1ζΣ log d
.

We now show that the interval (43) is non-empty. Since N satisfies (40) with c10 = c̃12 =
max{c̃5, 3648c̃1} there holds

56λs

λmin(Σ)− 64sc̃1ζΣ log d/N
≤ λN

64c̃1ζΣ log d
. (130)

Furthermore, (41) [Step 1 (iii)] implies

2s ≤ λN

64c̃1ζΣ log d
. (131)

By (130) and (131), we infer that (43) is non-empty.
• Step 4: (46) is sufficient for (37) to hold with high-probability. Substituting in
(37) the explicit expression of the RSC parameters (µ, τ) [under the event (122)], we conclude
that (46) is in fact sufficient for (37) to hold with probability at least (125).

It remains to prove that the (random) interval (46) is non-empty with high probability,
which we do next. To this end, we upper bound the statistical error

∑m
i=1‖θ̂i − θ∗‖2/m,

under (37). Recall that, with probability at least (125), (32) holds. Therefore, we can invoke
Theorem 6 to bound the statistical error, and write: with probability at least (125),

1

m

m∑

i=1

‖θ̂i − θ∗‖2
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Theorem 6
≤ 9λ2s

δ2
+

2ξ

δ

d2γ2(maxi∈[m]‖w>i Xi‖∞ + λn)4

λ2n4(1− ρ)2

︸ ︷︷ ︸
(Term I)2 in (109)

+
4

δ

dγ(maxi∈[m]‖w>i Xi‖∞ + λn)2

n2[2(1− ρ)− 4Lmaxγ − δγ]︸ ︷︷ ︸
(Term II)2 in (109)

(110)
≤ 9λ2s

δ2
+

2ξ

δ

(
λs

128 δ

)2

+
4

δ

λ2s

256 δ

(a)
=

9λ2s

(µ/2− 16sτ)2
+

2τ

µ/2− 16sτ

(
λs

128 (µ/2− 16sτ)

)2

+
4

µ/2− 16sτ

λ2s

256 (µ/2− 16sτ)

(122)
≤ 1

(λmin(Σ)− 64sc̃1ζΣ log d/N)2

(
36λ2s+

16

1282

2sc̃1ζΣ log d

N

λ2s

(λmin(Σ)− 64sc̃1ζΣ log d/N)
+

16

256
λ2s

)
,

where in (a) we used ξ = τ and δ = µ/2− 16sτ > 0 (due to Lemma 4).
Thus, with probability at least (125), we can upper bound the lower interval bound in

(46) by

8 · 36sc̃1ζΣ log d

N(λmin(Σ)− 64sc̃1ζΣ log d/N)2

(
36λ2s+

16

1282

2sc̃1ζΣ log d

N

λ2s

(λmin(Σ)− 64sc̃1ζΣ log d/N)

+
16

256
λ2s

)
+

8sc̃1ζΣ log d

N

λ2s

1976(λmin(Σ)− 64sc̃1ζΣ log d/N)2

≤ 288sc̃1ζΣ log d

N(λmin(Σ)− 64sc̃1ζΣ log d/N)2

(
sc̃1ζΣ log d

512N

λ2s

(λmin(Σ)− 64sc̃1ζΣ log d/N)
+ 37λ2s

)
.

Using the bound on N given by (40)

N ≥ c̃12sζΣ log d

λmin(Σ)
, with c̃12 = max{3648c̃1, c̃5},

we obtain 64sc̃1ζΣ log d/N ≤ λmin(Σ)/57. Substituting into the inequality above we have

8sc̃1ζΣ log d

N

(
36

m

m∑

i=1

‖θ̂i − θ∗‖2 +
λ2s

1976λmin(Σ)2

)

≤ 288sc̃1ζΣ log d

N(λmin(Σ)− 64sc̃1ζΣ log d/N)
(

56
57λmin(Σ)

) (λ2s+ 37λ2s
)
.

Applying again the lower bound on N , we further get

N(λmin(Σ)− 64sc̃1ζΣ log d/N)

≥ max

{
c̃12sζΣ log d

λmin(Σ)
(λmin(Σ)− 64sc̃1ζΣ log d/N), N · 56

57
λmin(Σ)

}
,

and thus

8sc̃1ζΣ log d

N

(
36

m

m∑

i=1

‖θ̂i − θ∗‖2 +
λ2s

1976λmin(Σ)2

)
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≤ 288sc̃1ζΣ log d
56
57λmin(Σ)

(
38λ2s

)
·min

{
λmin(Σ)

c̃12sζΣ log d
(λmin(Σ)− 64sc̃1ζΣ log d/N)−1,

57

56
λmin(Σ)−1

}

≤ min

{
4(λmin(Σ)− 64sc̃1ζΣ log d/N)−1λ2s, 11339 · sc̃1ζΣ log d

λmin(Σ)2

(
λ2s
)}
≤ min

{
λR

4
, η0
G

}
.

The last inequality follows from the conditions onR and η0
G given by (43) and (44), respectively.

• Step 5: (45) holds, for all t satisfying (47), with high probability.
Building on the conclusions of the previous steps and Theorem 10, to prove the statement

of this step, it is sufficient to show that the RHS of (45) [resp. of (47)] is an upper bound of
the RHS of (36) [resp. (38)] that holds with high probability.

We begin with the RHS of (36): with probability at least (125), there holds,

1

µ/8− 8sτ
α2 +

36sτ‖ν̂‖2
m(µ/8− 8sτ)

+
τsλ2s

1976µ2(µ/8− 8sτ)
+

4τα4

λ2(µ/8− 8sτ)

(a)

≤ 456

55λmin(Σ)

(
α2 +

72sc̃1ζΣ log d

N

1

m

m∑

i=1

‖θ̂i − θ∗‖2 +
sc̃1ζΣ log d

988N

λ2s

λmin(Σ)2

+
8sc̃1ζΣ log d

N

α4

λ2s

)

≤ c16

λmin(Σ)

[
α2 +

sζΣ log d

N

(
1

m

m∑

i=1

‖θ̂i − θ∗‖2 +
λ2s

λmin(Σ)2
+

α4

λ2s

)]
,

where in (a) we use the following fact [which holds with probability at least (125)]

µ

8
− 8sτ =

λmin(Σ)

8
− 16sc̃1ζΣ

log d

N

(40)
≥ λmin(Σ)

8
− 16sc̃1ζΣ log dλmin(Σ)

3648c̃1sζΣ log d
=

55λmin(Σ)

456
.

Next, we bound the RHS of (38), invoking the high probability bound for Lmax [as in (84)]
and the explicit expression of the RSC parameters (µ, τ) [under (122)]. We have the following
⌈

log2 log2

(
Rλ

α2

)⌉(
1 +

Lmax log 2

µav
+

(1 + ρ) log 2

γµav

)
+

(
Lmax

µav
+

1 + ρ

γµav

)
log

(
η0
G

α2

)

≤
⌈

log2 log2

(
Rλ

α2

)⌉(
1 +

λmax(Σ)

λmin(Σ)

456c̃4[1 + (d+ logm)/n] log 2

55
+

456(1 + ρ) log 2

55λmin(Σ)γ

)

+

(
λmax(Σ)

λmin(Σ)

456c̃4[1 + (d+ logm)/n]

55
+

456(1 + ρ)

55γλmin(Σ)

)
log

(
η0
G

α2

)
.

(132)

Define
c18 , 4 max

{
456c̃4 log 2

55
,
456 log 2

55

}
=

1824c̃4 log 2

55
.

Then, the RHS of (132) can be bounded as

c18

[⌈
log2 log2

(
Rλ

α2

)⌉
+ log

(
η0
G

α2

)](
κΣ(d+ logm) +

(1 + ρ)

λmin(Σ)γ

)
.

This completes the proof. �
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Appendix I. Proof of Corollary 14

The corollary is a customization of Theorem 13, under the (feasible) choices of N , λ and γ
as in the statement of the corollary.
• Step 1: On the choices of λ and γ. We show that, under (48), (49) and (50) are special
instances of (41) and (42), respectively.

Since N satisfies (48), with c̃12 = max{3648 c̃1, c̃5} and c̃13 = 2731c̃2
1/t0, there holds

σ

√
6ζΣt0 log d

N
≥ 128c̃1ζΣ

s log d

N
. (133)

Therefore, (41) reduces to

λ ≥ σ
√

6ζΣt0 log d

N
,

which is satisfied by the choice of λ as in (49), with c̃8 being any constant such that c̃8 ≥
√

6.
Consider now the condition on γ as in (42). Since we are interested in the high-dimensional

regime where N � d, we assume that d+ logm ≥ n. Using this, we can lower bound the
RHS of (42) and readily obtain the more stringent condition on γ as in (50), with c̃14 = 1152.
• Step 2: Condition on R in (51) implies (43). Using again (48), we can upper bound
the lower interval of R in (43) as

56λs

λmin(Σ)− 64sc̃1ζΣ log d/N

(48)
≤ 56λs

λmin(Σ)− λmin(Σ)/57

(49)
=

57c̃8s

λmin(Σ)
σ

√
6t0ζΣ log d

N
.

Using (49), the upper interval in the same condition reads

λN

64c̃1ζΣ log d
=

c̃8

64c̃1
σ

√
6t0N

ζΣ log d
.

Therefore, (51) is sufficient for (43) to hold, with c̃15 = 57
√

6c̃8 and c̃16 =
√

6c̃8/(64c̃1).
It remains to show that the range of value of R in (51) is nonempty. By (48),

N ≥ c̃12sζΣ log d

λmin(Σ)
⇒
√

6c̃8

64c̃1
σ

√
t0N

ζΣ log d
≥ 57

√
6c̃8

λmin(Σ)
sσ

√
t0ζΣ log d

N
,

and

N ≥ c̃13s
2ζΣ log d

σ2
⇒ N ≥ c̃13s

2ζΣ log d

c̃2
8σ

2
⇒
√

6c̃8

64c̃1
σ

√
t0N

ζΣ log d
≥ 2s.

• Step 3: (46) reduces to (54), under (49). The statement follows by a direct substitution
of (49) in (46):

λ2s

1976λmin(Σ)2
=

c̃2
8σ

2ζΣt0s log d

1976Nλmin(Σ)2
=
c̃21σ

2ζΣt0
λmin(Σ)2

s log d

N
,

where c̃21 = c̃2
8/1976, and

Rλ

4
=
Rσc̃8

4

√
ζΣt0 log d

N
, η0

G ≥
11339sc̃1ζΣ log d

Nλmin(Σ)2
λ2s = c̃22σ

2t0

(
sζΣ log d

Nλmin(Σ)

)2

,
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with c̃22 = 11339c̃1c̃
2
8. Notice that the (random) interval (54) is non-empty, with probability

at least (24). This follows from the fact that (46) is nonempty with the same probability, for
all R satisfies (43) (Theorem 13), and that (51) is sufficient for (43) to hold (Step 2 above).
• Step 4: (53) holds with high probability, for all t satisfying (55). (53) follows readily
from (45) by substitution of the values of λ and γ as in (49) and (50), respectively; and defining
the following constants c̃17 = 9, c̃18 = 72c̃1c̃17, c̃19 = c̃1c̃

2
8c̃17/988, and c̃20 = 8c̃1c̃17/c̃

2
8.

We conclude the proof showing that (55) is a stronger condition than (132). Using (49)
and (50), explicitly writen as the following

λ = c̃8σ

√
ζΣt0 log d

N

and
γ ≤ 1− ρ

2c̃4λmax(Σ)
(

1 + d+logm
n

)
+ 128λmin(Σ)dm · [(2 logm+ 1) /c̃24 + 8]

,

the RHS of (132) reads
⌈

log2 log2

(
c̃8σR

α2

√
ζΣt0 log d

N

)⌉(
1 +

λmax(Σ)

λmin(Σ)

456c̃4[1 + (d+ logm)/n] log 2

55

)

+

{⌈
log2 log2

(
c̃8σR

α2

√
ζΣt0 log d

N

)⌉
log 2 + log

(
η0
G

α2

)}

× 456(1 + ρ)

55λmin(Σ)
·

2c̃4λmax(Σ)
(

1 + d+logm
n

)
+ 128λmin(Σ)dm · [(2 logm+ 1) /c̃24 + 8]

1− ρ

+
456c̃4[1 + (d+ logm)/n]

55

λmax(Σ)

λmin(Σ)
log

(
η0
G

α2

)

ρ≤1
≤
⌈

log2 log2

(
c̃8σR

α2

√
ζΣt0 log d

N

)⌉(
1 +

λmax(Σ)

λmin(Σ)

456c̃4[1 + (d+ logm)/n] log 2

55

)

+

{⌈
log2 log2

(
c̃8σR

α2

√
ζΣt0 log d

N

)⌉
log 2 + log

(
η0
G

α2

)}

× 912

55
· 1

1− ρ ·
(

2c̃4
λmax(Σ)

λmin(Σ)

(
1 +

d+ logm

n

)
+ 128dm · [(2 logm+ 1) /c̃24 + 8]

)

+
456c̃4[1 + (d+ logm)/n]

55

λmax(Σ)

λmin(Σ)
log

(
η0
G

α2

)

(85)
≤
⌈

log2 log2

(
c̃8σR

α2

√
ζΣt0 log d

N

)⌉(
c̃4
λmax(Σ)

λmin(Σ)

456[1 + (d+ logm)/n] log 2 + 55

55

)

︸ ︷︷ ︸
,term I

+

{⌈
log2 log2

(
c̃8σR

α2

√
ζΣt0 log d

N

)⌉
log 2 + log

(
η0
G

α2

)}

× 912

55
· 1

1− ρ ·
[
4c̃4

λmax(Σ)

λmin(Σ)

d+ logm

n
+ 128dm ·

(
2 logm+ 1

c̃24
+ 8

)]
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+
456c̃4[1 + (d+ logm)/n]

55

λmax(Σ)

λmin(Σ)
log

(
η0
G

α2

)
.

︸ ︷︷ ︸
term II

(134)

Using (d+ logm)/n ≥ 1 and ρ ∈ (0, 1), we can bound term I and term II as

term I ≤ (log 2) c̃4
λmax(Σ)

λmin(Σ)

1

1− ρ
1001

55

d+ logm

n

and

term II ≤ c̃4
λmax(Σ)

λmin(Σ)

1

1− ρ
912

55

d+ logm

n
log

(
η0
G

α2

)
.

Using the above bounds along with (d+ logm)/n ≤ dm, we can further bound the RHS of
(134) as

{⌈
log2 log2

(
Rσc̃8

α2

√
ζΣt0 log d

N

)⌉
log 2 + log

(
η0
G

α2

)}
· c23

1− ρ
λmax(Σ)

λmin(Σ)
dm

·
(

2 logm+ 1

c̃24
+ 8

)
, (135)

where c26 = 22222 c̃4. This proves (55), and completes the proof of the corollary. �

Appendix J. Proof of Theorem 15

At high level the proof is organized in the following two steps. (Step 1) Under the following
event, a tolerance η > 0 and an iteration number T are given such that

G(θt)−G(θ̂) ≤ η, ∀t ≥ T, (136)

we establish a sufficient decrease of the optimization error G(θt)−G(θ̂) in the form

G(θt)−G(θ̂) ≤ κt−T (G(θT )−G(θ̂)) + tolerance, ∀t ≥ T, (137)

for suitable κ ∈ (0, 1) and tolerance > 0—this is proved in Lemma 18 (cf. Appendix J.1).
Then, (Step 2) we divide the iterations t = 0, 1, 2, . . . , into a series of disjoint epochs
[Tk, Tk+1), with 0 = T0 ≤ T1 ≤ · · · , each one with associated ηk, with η0 ≥ η1 ≥ · · · . The
tuples {(ηk, Tk)} are constructed so that G(θt) − G(θ̂) ≤ ηk, for all t ≥ Tk. This permits
to apply recursively (137) with smaller and smaller values of ηk, till the error G(θt)−G(θ̂)
is driven below a desired threshold. This second step, formalized in Proposition 19 (cf.
Appendix J.2), leverages (Agarwal et al., 2012, Th. 2).

J.1 Step 1: Sufficient decrease of the optimization error under (136)

The error decrease in the form (137) is formally stated in Lemma 18 below. It requires two
intermediate technical results, namely: (i) Lemma 16, which restricts the (average of the)
optimization error ∆t = θt − θ̂ to a set of “almost” sparse directions; and (ii) Lemma 17,
which establishes a curvature property of G along such trajectories.
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Lemma 16 (On the sparsity of ∆t
av) Consider Problem (4) under Assumption 2. Fur-

ther assume that (i) the design matrix X satisfies the RSC condition (8) with δ = µ/2−16 sτ >
0; (ii) λ satisfies (13); and (iii) γ satisfies (32). Let {θt} be the sequence generated by Algo-
rithm (25) with R chosen such that

R ≥ max

{
λs

δ(1− r)

(
13 +

1

32

√
2τs

δ

)
,
1

r
‖θ∗‖1

}
, (138)

for some r ∈ (0, 1). Under condition (136) with parameters (T, η), the following holds: for
any t ≥ T ,

‖(∆t
av)Sc‖1 ≤ 3‖(∆t

av)S‖1 + 6‖(ν̂av)S‖1 + 2hmax + min

{
2η

λ
, 2R

}
, (139)

where [cf. (76)]

hmax =
dγ

λ(1− ρ)

(
maxi∈[m]‖w>i Xi‖∞

n
+ λ

)2

. (140)

Proof See Appendix K.1.

Invoking the RSC condition (8), the next lemma links the objective- and the iterate-errors
along (139).

Lemma 17 (Curvature along (139)) Instate the assumptions of Lemma 16. Under con-
dition (136) with parameters (T, η), the following holds: for any t ≥ T ,





(
µ
8 − 8τs

)
‖∆t

av‖2 ≤ G(θt)−G(θ̂) + f(‖∆t
⊥‖) + τ

4 (v2 + 8h2
max),

(
µ
8 − 8τs

)
‖∆t

av‖2 ≤ TLγ (θ̂;θt) + f(‖∆t
⊥‖) + τ

4 (v2 + 8h2
max),

(141)

where TLγ (θ̂;θt) is the first order Taylor error of L at θt along the direction θ̂− θt [cf. (14)],

f(‖∆t
⊥‖) ,

(
Lmax

2m
− 1− ρ

2mγ

)
‖∆t
⊥‖2, (142)

and

v2 , 144s‖ν̂av‖2 + 4 min

{
2η

λ
, 2R

}2

. (143)

Proof See Appendix K.2.

Using Lemma 17, we are now ready to formally prove (137).

Lemma 18 (Descent of the objective function) Instate the assumptions of Lemma 16,
under the stronger condition µ

8 − 8τs > 0 and the additional assumption that β is chosen so
that

β ≤ γ

γLmax + 1− λmin(W )
. (144)
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Under (136) with parameters (T, η), the following holds:

G(θt)−G(θ̂) ≤ κt−T (G(θT )−G(θ̂)) + τ(36s‖ν̂av‖2 + 2h2
max + ε2), ∀t ≥ T, (145)

where
κ , 1− β

(
µ

8
− 8τs

)
∈
(

0,
1

2

)
and ε = min

{
2η

λ
, 2R

}
. (146)

Proof See Appendix K.3.

Note the structure of the tolerance term in (145): s‖ν̂av‖2 is of the order of the statistical
error; h2

max is due to the lack of consensus on the agents trajectories θti ’s, it can be controlled
by carefully choosing γ; and ε2 is a function of the threshold η. In Step 2 below we show that,
since κ < 1, one can eventually driven the error ε2 below the threshold O(s‖ν̂av‖2 + h2

max).

J.2 Step 2: Recursive application of Lemma 18

As anticipated, the key idea is to divide the iterations t = 0, 1, 2, . . . , into a series of
disjoint epochs [Tk, Tk+1), with Tk ≤ Tk+1, each one with associated ηk, such that (i)
G(θt)−G(θ̂) ≤ ηk, for all t ≥ Tk; and (ii) η0 ≥ η1 ≥ · · · . This permits to apply recursively
Lemma 18 with smaller and smaller values of ηk, till the error G(θt)−G(θ̂) is driven below
the threshold 4τ(36s‖ν̂av‖2 + 2h2

max). This construction follows the same argument as in the
proof of (Agarwal et al., 2012, Th. 2) with minor adjustments (Lemma 4 therein is replaced
with our Lemma 18) and thus is omitted.

Proposition 19 (Agarwal et al. 2012, Theorem 2) Instate the setting of Lemma 18.
Further assume,

R ≤ λ

32τ
. (147)

Then, there holds
G(θt)−G(θ̂) ≤ α2,

for any tolerance α2 such that

min

{
Rλ

4
, η0
G

}
≥ α2 ≥ 4τ(36s‖ν̂av‖2 + 2h2

max), (148)

and for all

t ≥
⌈

log2 log2

(
Rλ

α2

)⌉(
1 +

log 2

log 1/κ

)
+

log(η0
G/α

2)

log 1/κ
, (149)

where η0
G = G(θ0)−G(θ̂).

Equipped with Proposition 19, we can now complete the proof of Theorem 15. It remains
to show the following facts:
• Fact 1: The lower bound condition on R as in (34) is more stringent than that in

(138), under a proper choice of r ∈ (0, 1); and the interval in (34) is nonempty;
• Fact 2: The range of α in (116) is contained in that of (148); and the interval (116) is

nonempty;
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• Fact 3: (117) is sufficient for (149).
We prove these facts next.
• Fact 1: Choosing r = 1/2, the lower bound condition on R in (138) reads

R ≥ max

{
2λs

µ/2− 16sτ

(
13 +

1

32

√
2τs

µ/2− 16sτ

)
, 2‖θ∗‖1

}
, (150)

Recalling µ ≥ c̃10sτ = 1824sτ, the following holds for the lower bound in (150):

2λs

µ/2− 16sτ

(
13 +

1

32

√
2τs

µ/2− 16sτ

)
≤ 56λs

µ− 32sτ
.

Therefore,

max

{
2λs

µ/2− 16sτ

(
13 +

1

32

√
2τs

µ/2− 16sτ

)
, 2‖θ∗‖1

}
≤ max

{
56λs

µ− 32sτ
, 2‖θ∗‖1

}
,

which proves the desired implication.
Finally, notice that the interval in (34) is non-empty. This is a consequence of (i) the fact

56λs

µ− 32sτ
≤ λ

32τ
,

due to µ ≥ c̃10sτ = 1824sτ ; and (ii) the condition λ ≥ 64τ‖θ∗‖1, due to (31).
• Fact 2: Using the condition on γ as in (32), we have

4τ(36s‖ν̂av‖2 + 2h2
max)

(110)
≤ 4τ

(
36s

∑m
i=1‖ν̂i‖2
m

+
2λ2s2

1282 (µ/2− 16 sτ)2

)

µ≥c̃10sτ
≤ 4sτ

(
36

m

m∑

i=1

‖ν̂i‖2 +
λ2s

1976µ2

)
.

Therefore, the range of α in (116) is included in that of (148).
It remains to show that the range of α2 in (116) is nonempty, which is a consequence of

the following chain of inequalities.

4τ

(
36s
‖ν̂‖2
m

+
λ2s2

1976µ2

)

Th.6
ξ=τ (Lm. 4)
≤ 144τs




9λ2s

(µ/2− 16sτ)2
+

2τ

µ/2− 16sτ

d2γ2(max1≤i≤m‖w>i Xi‖∞ + λn)4

λ2n4(1− ρ)2

︸ ︷︷ ︸
=Term I2 [see (109)]

+
4

µ/2− 16sτ

dγ(max1≤i≤m‖w>i Xi‖∞ + λn)2

n2[2(1− ρ)− 4Lmaxγ − (µ/2− 16sτ)γ]︸ ︷︷ ︸
=Term II2 [see (109)]

+
λ2s

36 · 1976(µ− 32sτ)2
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(110)
≤ 144τs

(
9λ2s

(µ/2− 16sτ)2
+

τs

µ/2− 16sτ

λ2s

8192(µ/2− 16sτ)2
+

λ2s

64(µ/2− 16sτ)2

+
λ2s

36 · 7904(µ/2− 16sτ)2

)

(a)

≤ 144τs

(
9λ2s

(µ/2− 16sτ)2
+

1

896

λ2s

8192(µ/2− 16sτ)2
+

λ2s

64(µ/2− 16sτ)2

+
λ2s

36 · 7904(µ/2− 16sτ)2

)

<
144τs

(µ/2− 16sτ)2
· 10λ · λ s

(34)
≤ 1440τs

28(µ/2− 16sτ)
λR

(b)
<
λR

17
<
λR

4
, (151)

where (a) and (b) follow from µ/2− 16sτ ≥ 896sτ , due to µ ≥ c̃10sτ , with c̃10 = 1824. This
together with (35) shows that the range of α2 in (116) is non-empty.
• Fact 3: We obtain (117) from (149) by upper bounding the right hand side of (149).

To this end, we first lower bound log(1/κ) as:

log

(
1

κ

)
(33),(146)

= log


 1

1− γ(µ/8−8τs)
γLmax+1−λmin(W )


 (10)
≥ log


 1

1− γ(µ/8−8τs)
γLmax+1+ρ


 ≥ γ(µ/8− 8τs)

γLmax + 1 + ρ
.

(152)

Using (152) in (149) and using η0
G ≥ α2 [due to (148)], we can upper bound the right hand

side of (149) as
⌈

log2 log2

(
Rλ

α2

)⌉(
1 +

(γLmax + 1 + ρ) log 2

γ(µ/8− 8τs)

)
+

(γLmax + 1 + ρ)

γ(µ/8− 8τs)
log

(
η0
G

α2

)
,

which proves (117).
�

Appendix K. Proofs of auxiliary Lemmata in Section J

K.1 Proof of Lemma 16

Recalling the definitions of ∆t, νt, and ν̂ as given in (63), (62) and (61), respectively, we
have ∆t = θt − θ̂ = νt − ν̂. Therefore, ∆t

av = νtav − ν̂av. We can then bound the desired
quantity ‖(∆t

av)Sc‖1 as

‖(∆t
av)Sc‖1 ≤ ‖(νtav)Sc‖1 + ‖(ν̂av)Sc‖1. (153)

We prove below the following upper bounds for ‖(νtav)Sc‖1 and ‖(ν̂av)Sc‖1



‖(νtav)Sc‖1 ≤ 3‖(νtav)S‖1 + h(γ, ‖νt⊥‖) + min

{
2η
λ , 2R

}
,

‖(ν̂av)Sc‖1 ≤ 3‖(ν̂av)S‖1 + h(γ, ‖ν̂⊥‖).
(154)
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Using (154) in (153) and the triangle inequality yields the desired result

‖(∆t
av)Sc‖1 ≤ 3(‖(∆t

av)S‖1 + 2‖(ν̂av)S‖1) + h(γ, ‖νt⊥‖) + h(γ, ‖ν̂⊥‖) + min

{
2η

λ
, 2R

}

(76)
≤ 3‖(∆t

av)S‖1 + 6‖(ν̂av)S‖1 + 2hmax + min

{
2η

λ
, 2R

}
.

We prove next (154). From the optimality of θ̂along with (136), we deduce

G(θt)−G(1m ⊗ θ∗) ≤ η, ∀t ≥ T. (155)

Hence, for any t ≥ T , there holds

1

2N

m∑

i=1

‖Xiθ
t
i − yi‖2 +

1

2mγ
‖1m ⊗ θ∗ + νt‖2V +

λ

m
‖1m ⊗ θ∗ + νt‖1

≤ 1

2N
‖Xθ∗ − y‖2 +

1

2mγ
‖1m ⊗ θ∗‖2V +

λ

m
‖1m ⊗ θ∗‖1 + η. (156)

Subtracting
m∑
i=1
〈 1
NX

>
i (Xiθ

∗ − yi), νti 〉 from both sides and rearranging terms, we obtain

−
m∑

i=1

〈
1

N
X>i (Xiθ

∗ − yi), νti
〉

+
1

2mγ
‖1m ⊗ θ∗‖2V −

1

2mγ
‖1m ⊗ θ∗ + νt‖2V

︸ ︷︷ ︸
Term I

+ η

≥ 1

2N

m∑

i=1

‖Xi(θ
∗ + νti )− yi‖2 −

1

2N
‖Xθ∗ − y‖2 −

m∑

i=1

〈
1

N
X>i (Xiθ

∗ − yi), νti
〉

+
λ

m
(‖1m ⊗ θ∗ + νt‖1 − ‖1m ⊗ θ∗‖1)

≥ λ
m

(‖1m ⊗ θ∗ + νt‖1 − ‖1m ⊗ θ∗‖1)︸ ︷︷ ︸
Term II

, (157)

where the last inequality follows from convexity of
m∑
i=1
‖Xiθi − yi‖2/(2N).

We proceed upper (resp. lower) bounding Term I (resp. Term II). We have

Term I =
1

N
w>Xνtav +

1

N

m∑

i=1

w>i Xiν
t
⊥i −

1

2mγ
‖νt⊥‖2V

(13)

≤ λ

2
‖νtav‖1 +

1

N
max
i∈[m]
‖X>i wi‖∞‖νt⊥‖1 −

1

2mγ
‖νt⊥‖2V .

(158)

To lower bound Term II we decompose θ∗ + νti as θ
∗ + νti = θ∗S + θ∗Sc + (νti )S + (νti )Sc . Then,

invoking the decomposibility of the regularizer, we can write: for all i,

‖θ∗ + νti‖1 − ‖θ∗‖1 ≥ (‖(νtav)Sc‖1 − ‖(νtav)S‖1)− ‖νt⊥i‖1. (159)
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Using (158) and (159) in (157) yields

‖(νtav)Sc‖1 ≤ 3‖(νtav)S‖1 + h(γ, ‖νt⊥‖) +
2η

λ
. (160)

On the other hand, since ‖θti‖1 ≤ R and ‖θ∗‖1 < R, we have

‖(νtav)Sc‖1 ≤ ‖νtav‖1 ≤ ‖θ∗‖1 + ‖θtav‖1 < R+R = 2R. (161)

Using (161), we can then strengthen (160) as the first inequality in (154).
The proof of the second inequality in (154) follows the same steps and uses the fact that

‖θ̂i‖1 ≤ R, for all i ∈ [m] (Lemma 8). �

K.2 Proof of Lemma 17

To bound the (average component of the) optimization error in terms of the function
optimality gap we leverage the curvature property of Lγ [under the RSC condition (8)] along
the trajectory of the algorithm. We explicitly use the fact that the trajectory lies in the set
described by (139) [cf. Lemma 16].

Recalling that G(θ) = Lγ(θ) + λ
m‖θ‖1, by the optimality of θ̂, it follows

〈∆t,∇Lγ(θ̂)〉+
λ

m
‖θt‖1 −

λ

m
‖θ̂‖1 ≥ 0. (162)

We can then write

G(θt)−G(θ̂)
(162)
≥ TLγ (θt; θ̂)

(14)
≥ 1

4

‖X∆t
av‖2

N
−
(
Lmax

2m
− 1− ρ

2mγ

)
‖∆t
⊥‖2

RSC (8)
≥ 1

4

(
µ

2
‖∆t

av‖2 −
τ

2
‖∆t

av‖21
)
−
(
Lmax

2m
− 1− ρ

2mγ

)
‖∆t
⊥‖2

(a)
≥ 1

4

(
µ

2
‖∆t

av‖2 −
τ

2
(64s‖∆t

av‖2 + 2v2 + 16h2
max)

)
−
(
Lmax

2m
− 1− ρ

2mγ

)
‖∆t
⊥‖2,

(163)

where in (a) we used

‖∆t
av‖21

(139)
≤
(

4‖(∆t
av)S‖1 + 6‖(ν̂av)S‖1 + 2hmax + min

{
2η

λ
, 2R

})2

≤ 4(4‖(∆t
av)S‖1)2 + 4(6‖(ν̂av)S‖1)2 + 4(2hmax)2 + 4

(
min

{
2η

λ
, 2R

})2

≤ 64s‖∆t
av‖2 + 2v2 + 16h2

max,

with v2 = 144s‖ν̂av‖2 + 4 min

{
2η
λ , 2R

}2

.

Reorganizing the terms in (163) yields the first inequality in (141).
Similar arguments apply to derive the second inequality in (141) by noticing that, for

quadratic Lγ , we have TLγ (θ̂;θt) = TLγ (θt; θ̂). This concludes the proof. �
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K.3 Proof of Lemma 18

The proof follows descent arguments (see, e.g., Nesterov 2007), suitably coupled with the
curvature property established in Lemma 17 to achieve contraction up to a controllable
tolerance.

By definition of θt+1 in (25), we have Gt(θt+1) ≤ Gt(θ), for all feasible θ. Recalling that
θ̂ is feasible (Lemma 8), θω , ωθ̂+ (1−ω)θt is feasible as well, for any ω ∈ (0, 1). Therefore,

Gt(θ
t+1)

≤ Gt(θω) = (1− ω)Lγ(θt) + ωLγ(θ̂)− ωTLγ (θ̂;θt) +
ω2

2βm
‖∆t‖2 +

λ

m
‖θω‖1

(141)
≤ (1− ω)G(θt) + ωG(θ̂) + ωf(‖∆t

⊥‖) + ω
τ

4
(v2 + 8h2

max) +
ω2

2βm
‖∆t‖2

− ω
(
µ

8
− 8τs

)
‖∆t

av‖2. (164)

We proceed to relate G(θt+1) with Gt(θt+1).

G(θt+1)

= Gt(θ
t+1)− 1

2βm
‖θt+1 − θt‖2 + Lγ(θt+1)− Lγ(θt)− 〈∇Lγ(θt),θt+1 − θt〉︸ ︷︷ ︸

= 1
2N

∑m
i=1 ‖Xi(θ

t+1
i −θti)‖2+ 1

2mγ
‖θt+1−θt‖2V

(164)
≤ G(θt)− ω(G(θt)−G(θ̂)) + ωf(‖∆t

⊥‖) + ω
τ

4
(v2 + 8h2

max) +
ω2

2βm
‖∆t‖2

− ω
(
µ

8
− 8τs

)
‖∆t

av‖2 +
1

2N

m∑

i=1

‖Xi(θ
t+1
i − θti)‖2

+
1

2mγ
‖θt+1 − θt‖2V −

1

2βm
‖θt+1 − θt‖2. (165)

Subtracting G(θ̂) from both sides of the above inequality and denoting the function gap as
ηtG = G(θt)−G(θ̂), we have

ηt+1
G ≤ (1− ω) ηtG + ωf(‖∆t

⊥‖) + ω
τ

4
(v2 + 8h2

max) +
ω2

2βm
‖∆t‖2 − ω

(
µ

8
− 8τs

)
‖∆t

av‖2

+
1

2N

m∑

i=1

‖Xi(θ
t+1
i − θti)‖2 +

1

2mγ
‖θt+1 − θt‖2V −

1

2βm
‖θt+1 − θt‖2

≤ (1− ω)ηtG + ωf(‖∆t
⊥‖) + ω

τ

4
(v2 + 8h2

max) +
ω2

βm
‖∆t
⊥‖2

+ ω

(
ω

β
−
(
µ

8
− 8τs

))
‖∆t

av‖2
︸ ︷︷ ︸

≤0, for 0≤ω≤β
(
µ
8
−8τs

)
+

1

2

(
Lmax

m
+

1− λmin(W )

mγ
− 1

βm

)

︸ ︷︷ ︸
≤ 0 [condition on β in (144)]

‖θt+1 − θt‖2

(a)

≤ (1− ω)ηtG︸ ︷︷ ︸
Term I

+ ωf(‖∆t
⊥‖) +

ω2

βm
‖∆t
⊥‖2

︸ ︷︷ ︸
Term II

+ ω
τ

4
(v2 + 8h2

max)
︸ ︷︷ ︸

Term III

, (166)
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where (a) holds under the condition 0 ≤ ω ≤ β
(µ

8 − 8τs
)
. Note that µ/8 − 8τs > 0 by

assumption; hence the interval for ω is non-empty. Furthermore, ω ∈ (0, 1/2), due to

β
(µ

8
− 8τs

) (144)
≤ γ

γLmax + 1− λmin(W )
·
(µ

8
− 8τs

) (b)
<

1

2
, (167)

where in (b) we used the following lower bound for (1− λmin)/γ:

1− λmin(W )

γ

(32)
≥ 1− λmin(W )

1− ρ


2Lmax +

µ

2
− 16sτ +

128d

s

(µ
2
− 16sτ

)(maxi∈[m]‖w>i Xi‖∞
λn

+ 2
√
m

)2



(10)
≥


2Lmax +

µ

2
− 16sτ +

128d

s

(µ
2
− 16sτ

)(maxi∈[m]‖w>i Xi‖∞
λn

+ 2
√
m

)2



≥2
(µ

8
− 8τs

)
.

In (166), Term I captures the geometric decrease of the objective error, for any ω < 1;
Term II is due to consensus errors and it is controllable by choosing a sufficiently small
network regularizer γ; finally, Term III is due to the lack of strong convexity, determining a
nonzero tolerance on the achievable objective error.

We choose ω to minimize the contraction factor in Term I, resulting in

ω = β

(
µ

8
− 8τs

)
. (168)

Under this choice we can bound Term I—Term III as follows.
• Term I:

Term I =

(
1− β

(
µ

8
− 8τs

))

︸ ︷︷ ︸
κ

ηtG. (169)

Note that κ ∈ (0, 1/2), due to (167).
• Term II: Using the upper bound of γ in (26), we can bound f(‖∆t

⊥‖) [cf. (142)] as

f(‖∆t
⊥‖) ≤ −

(
Lmax

2m
+
µ− 32 sτ

4m
+

32d(µ− 32 sτ)

sm
(max
i∈[m]
‖w>i Xi‖∞/(λn) + 2

√
m)2

)
‖∆t
⊥‖2.

(170)

Therefore,

Term II
(168),(170)
≤ −β

(
µ

8
− 8τs

)
1

m

(µ
4
− 8sτ

)
‖∆t
⊥‖2 +

β

m

(
µ

8
− 8τs

)2

‖∆t
⊥‖2

≤ − β
m

(
µ

8
− 8τs

)2

‖∆t
⊥‖2 ≤ 0. (171)
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• Term III:

Term III = β

(
µ

8
− 8τs

)
τ

(
36s‖ν̂av‖22 + 2h2

max + min

{
2η

λ
, 2R

}2)
. (172)

Using (169), (171), and (172) in (166), we finally obtain: for all t ≥ T,

ηt+1
G ≤ κ ηtG + β

(
µ

8
− 8τs

)
τ

(
36s‖ν̂av‖2 + 2h2

max + min

{
2η

λ
, 2R

}2)

≤ κt−T ηTG + τ

(
36s‖ν̂av‖2 + 2h2

max + min

{
2η

λ
, 2R

}2)
.

This completes the proof. �

References

A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence of gradient methods
for high-dimensional statistical recovery. The Annals of Statistics, pages 2452–2482, April
2012.

R. Bai and M. Ghosh. Normalbetaprime: Normal beta prime prior. Statistica Sinica, 2019.
URL https://CRAN.R-project.org/package=NormalBetaPrime. R package version 2.2.

Y. Bao and W. Xiong. One-round communication efficient distributed m-estimation. In
International Conference on Artificial Intelligence and Statistics, April 2021.

H. Battey, F. Jianqing, L. Han, L. Junwei, and Z. Ziwei. Distributed testing and estimation
under sparse high dimensional models. The Annals of Statistics, 46(3):1352 – 1382, June
2018.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2:183–202, January 2009.

S. Becker, J. Bobin, and E. J. Candes. Nesta: a fast and accurate first-order method for
sparse recovery. SIAM Journal on Imaging Sciences, 4:1–39, April 2011.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. The Annals of Statistics, 37(4):1705–1732, February 2009.

J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizeations of lojasiewicz inequalities:
subgradient flows, talweg, convexity. The Transactions of the American Mathematical
Society, 322:3319–3363, June 2009.

K. Bredies and D. A. Lorenz. Linear convergence of iterative soft-thresholding. Journal of
Fourier Analysis and Applications, 14:813–837, September 2008.

E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: universal
encoding strategies. IEEE Transactions on Information Theory, 52(12):5406–5425, January
2006.

58

https://CRAN.R-project.org/package=NormalBetaPrime


Distributed Sparse Regression via Penalization

A. I. Chen and A. Ozdaglar. A fast distributed proximal-gradient method. In 2012 50th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
601–608, April 2012.

J. Chen and A. H. Sayed. Diffusion adaptation strategies for distributed optimization and
learning over networks. IEEE Transactions on Signal Processing, 60(8):4289–4305, August
2012.

X. Chen, W. Liu, and Y. Zhang. First-order newton-type estimator for distributed estimation
and inference. Journal of the American Statistical Association, pages 1–17, April 2021.

A. Daneshmand, G. Scutari, and V. Kungurtsev. Second-order guarantees of distributed
gradient algorithms. SIAM Journal on Optimization, 30(4):3029–3068, January 2020.

S. Van de Geer and P. Buhlmann. On the conditions used to prove oracle results for the
lasso. Electronic Journal of Statistics, 3(4):1360–1392, October 2009.

D. L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory,
41(3):613–627, November 1995.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the
`1-ball for learning in high dimensions. Proceedings of the 25th International Conference
on Machine Learning, pages 272–279, July 2008.

E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization: methodology
and convergence. SIAM Journal on Optimization, 19:1107–1130, October 2008.

T. Hastie, R. Tibshirani, and M. J. Wainwright. Statistical Learning with Sparsity: the Lasso
and Generalizations. Chapman & Hall/CRC, 2015.

P. S. Horn. On the stochastic ordering of absolute univariate Gaussian random variables.
The Annals of Statistics, 16(3):1327–1329, September 1988.

D. Jakovetić. A unification and generalization of exact distributed first-order methods. IEEE
Transactions on Signal and Information Processing over Networks, 5:31–46, September
2019.

D. Jakovetić, J. Xavier, and JMF. Moura. Cooperative convex optimization in networked
systems: augmented lagrangian algorithms with directed gossip communication. IEEE
Transactions on Signal Processing, 59(8):3889–3902, July 2011.

D. Jakovetić, JMF. Moura, and J. Xavier. Linear convergence rate of a class of distributed
augmented lagrangian algorithms. IEEE Transactions on Automatic Control, 60(4):922–936,
July 2013.

D. Jakovetić, J. Xavier, and JMF. Moura. Fast distributed gradient methods. IEEE
Transactions on Automatic Control, 59:1131–1146, December 2014.

F. Jianqing, G. Yongyi, and W. Kaizheng. Communication-efficient accurate statistical
estimation. Journal of the American Statistical Association, 0(0):1–11, August 2021.

59



Ji, Scutari, Sun and Honnappa

M. I. Jordan, J. D. Lee, and Y. Yang. Communication-efficient distributed statistical inference.
Journal of the American Statistical Association, November 2018.

J. D. Lee, Y. Sun, Q. Liu, and J.E. Taylor. Communication-efficient sparse regression: a
one-shot approach. Journal of Machine Learning Research, January 2015.

P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE Transactions
on Signal and Information Processing over Networks, 2:1–1, February 2016.

Z. Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods:
a general approach. Annals of Operations Research, 46:157–178, March 1993.

A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of Majorization and Its
Applications, volume 143. Springer, second edition, 2011.

A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, January 2009.

A. Nedić, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and optimization in
multi-agent networks. IEEE Transactions on Automatic Control, 55(4):922–938, April
2010.

A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27:2597–2633,
July 2016.

A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106:953–976,
September 2018.

Y. Nesterov. Gradient methods for minimizing composite objective function. Research Papers
in Economics, January 2007.

Y. Nesterov et al. Lectures on Convex Optimization, volume 137. Springer, 2018.

A. Olshevsky. Linear time average consensus and distributed optimization on fixed graphs.
SIAM Journal on Control and Optimization, 55(6):3990–4014, December 2017.

S. Pan and Y. Liu. Metric subregularity of subdifferential and KL property of exponent 1/2.
arxiv preprint, arXiv:1812.00558v3, 322, 2018.

G. Qu and N. Li. Harnessing smoothness to accelerate distributed optimization. IEEE
Transactions on Control of Network Systems, 5:1245–1260, April 2017.

G. Raskutti, M. J. Wainwright, and B. Yu. Restricted eigenvalue properties for correlated
gaussian designs. Journal of Machine Learning Research, 11:2241–2259, August 2010.

G. Raskutti, M. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional
linear regression over `q -balls. IEEE Transactions on Information Theory, 57:6976–6994,
November 2011.

60



Distributed Sparse Regression via Penalization

J. Rosenblatt and B. Nadler. On the optimality of averaging in distributed statistical learning.
Information and Inference: A Journal of the IMA, 5(4):379–404, 2016.

N. Sahand, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-
dimensional analysis of m-estimators with decomposable regularizers. Statistical Science,
27(4):538–557, November 2012.

A. H. Sayed. Adaptation, learning, and optimization over networks. Foundations and Trends
in Machine Learning, 7:311–801, January 2014.

O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International Conference on Machine Learning,
pages 1000–1008. PMLR, 2014.

W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the linear convergence of the admm
in decentralized consensus optimization. IEEE Transactions on Signal Processing, 62:
1750–1761, July 2014.

W. Shi, Q. Ling, G. Wu, and W. Yin. EXTRA: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, November 2015a.

W. Shi, Q. Ling, G. Wu, and W. Yin. A proximal gradient algorithm for decentralized
composite optimization. IEEE Transactions on Signal Processing, 63(22):6013–6023,
November 2015b.

Y Sun, A Daneshmand, and G Scutari. Distributed optimization based on gradient-tracking
revisited: enhancing convergence rate via surrogation. arXiv preprint, arXiv:1905.02637,
2019.

Y Sun, Maros M., G Scutari, and Guang C. High-dimensional inference over networks:
linearly convergence algorithms and statistical guarantees. arXiv:2201.08507, 2022.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B, 58:267–288, January 1996.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming, 117:387–423, March 2009.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed
Sensing, 2012.

M. J. Wainwright. High-Dimensional Statistics: A Non-asymptotic Viewpoint. Cambridge
University Press, 2019.

J. Wang, M. Kolar, N. Srebro, and T. Zhang. Efficient distributed learning with sparsity. In
International Conference on Machine Learning, pages 3636–3645. PMLR, May 2017.

S. Wang, F. Roosta, P. Xu, and W. W. Mahoney. Giant: Globally improved approximate
newton method for distributed optimization. Advances in Neural Information Processing
Systems, 31, 2018.

61



Ji, Scutari, Sun and Honnappa

B. Wen, X. Chen, and T. Pong. Linear convergence of proximal gradient algorithm with
extrapolation for a class of nonconvex nonsmooth minimization problems. SIAM Journal
on Optimization, 27:124–145, December 2017.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie. Convergence of asynchronous distributed gradient
methods over stochastic networks. IEEE Transactions on Automatic Control, 63(2):
434–448, July 2018.

K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, January 2016.

K. Yuan, S. Alghunaim, B. Ying, and A. H. Sayed. On the influence of bias-correction on
distributed stochastic optimization. IEEE Transactions on Signal Processing, 68:4352–4367,
July 2020.

J. Zeng and W. Yin. On nonconvex decentralized gradient descent. IEEE Transactions on
Signal Processing, 66(11):2834–2848, June 2018.

Z. Zhou and A. Man-Cho So. A unified approach to error bounds for structured convex
optimization problems. Mathematical Programming, 165:689–728, December 2017.

62


	Introduction
	Challenges and open problems
	Major contributions
	Related works
	Notation and paper organization

	Setup and Background
	Problem setting
	Network setting

	Solution Analysis and Statistical Guarantees 
	The set of (almost) sparse average directions
	In-network RE condition
	Error bounds and statistical consistency of the LASSO error of (4)

	Distributed Gradient Descent Algorithm 
	Linear convergence to statistical precision

	Numerical Results
	Concluding Remarks
	Proof of Proposition 3
	Proof of Lemma 4 and Lemma 5
	Proof of Lemma 4
	Proof of Lemma 5

	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 10
	Proof of Theorem 13
	Proof of Corollary 14
	Proof of Theorem 15
	Step 1: Sufficient decrease of the optimization error under (136)
	Step 2: Recursive application of Lemma 18

	Proofs of auxiliary Lemmata in Section J
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18


