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Abstract

Compositional data, such as human gut microbiomes, consist of non-negative variables
where only the relative values of these variables are available. Analyzing compositional
data requires careful treatment of the geometry of the data. A common geometrical ap-
proach to understanding such data is through a regular simplex. The majority of existing
approaches rely on log-ratio or power transformations to address the inherent simplicial
geometry. In this work, based on the key observation that compositional data are projec-
tive, we reinterpret the compositional domain as a group quotient of a sphere, leveraging
the intrinsic connection between projective and spherical geometry. This interpretation
enables us to understand the function spaces on the compositional domain in terms of
those on a sphere, and furthermore, to utilize spherical harmonics theory for constructing
a compositional Reproducing Kernel Hilbert Space (RKHS). The construction of RKHS for
compositional data opens up new research avenues for future methodology developments,
particularly introducing well-developed kernel methods to compositional data analysis. We
demonstrate the wide applicability of the proposed theoretical framework with examples of
nonparametric density estimation, kernel exponential family, and support vector machine
for compositional data.

Keywords: Directional statistics, Group invariance, Homogeneous polynomials, Kernel
methods, Spherical harmonics

1. Introduction

The recent popularity of human gut microbiome research has presented numerous data-
analytic and statistical challenges (Calle, 2019). Among the many features of microbiomes
and metagenomic data, we address their compositional nature in this work. Compositional
data consist of n observations of (d+ 1) non-negative variables, where the values represent
the relative proportions to other variables in the data. Compositional data are commonly
observed in various scientific fields, including biochemistry, ecology, finance, and economics,
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among others. The most notable aspect of compositional data is the restriction on their
domain, where the sum of the variables is fixed, lying within a simplex denoted as ∆

d
:

∆
d
= {(x1, . . . , xd+1) ∈ Rd+1 ∣

d+1

∑
i=1

xi = 1, xi ≥ 0,∀i}, (1)

referred to in this article as the “compositional simplex.” The inclusion of zeros in (1) is
crucial, as most microbiome data contain a substantial number of zeros.

The log-ratio transformation, which transforms an open simplex to a vector space, is
arguably the most prominent approach to handling compositional data because it enables
multivariate methods to be performed on a vector space (Filzmoser et al., 2009; Tomassi
et al., 2019; Susin et al., 2020). As this transformation requires the data entirely in the

open interior of ∆
d
, denoted as Sd, zeros in the data are typically treated by substituting

them with a small positive number. However, it has been observed that the analysis results
can significantly depend on how zeros are handled (Lubbe et al., 2021). Furthermore,

transforming ∆
d

into a vector space induces non-trivial topological issues, particularly when
the data points are located at the boundary of ∆

d
(Park et al., 2022).

According to Aitchison (1994), “any meaningful function of a composition must satisfy
the requirement f(ax) = f(x) for any a ≠ 0.” In the field of geometry and topology,

a space that comprises such functions is referred to as a projective space, denoted by Pd.
Consequently, projective geometry emerges as the natural choice for modeling compositional
data and is also in accordance with the original philosophy in Aitchison (1994). Since
points within compositional domains cannot have negative values, it becomes evident that a
compositional domain can be represented as a positive cone Pd≥0 within a complete projective
space. A key property of projective spaces is that altering the length of a vector in Pd

through stretching or shrinking does not change the corresponding point. Hence, it is
possible to stretch a point within ∆

d
to a point in the first orthant sphere by dividing it

by its `2 norm. This is feasible because each point in ∆
d

or Sd≥0 effectively represents a line
passing through the origin in Rd+1

. Figure 1 visually demonstrates this idea, and it should
be noted that “stretching” is not a transformation in the context of projective geometry.

In this article, the spherical geometric representation plays a particularly important
role. Realizing Sd≥0 as the “universal cover” of the compositional domain, we show that
it is the strict fundamental domain of the reflection group action Γ � Sd, which yields
Sd≥0 = Sd/Γ. Therefore, the fundamental geometric foundation of compositional data Pd≥0

can be represented in three equivalent forms, namely the positive orthant sphere Sd≥0, the
spherical quotient Sd/Γ, and the traditional compositional simplex ∆

d
. We will rigorously

show the equivalence of these representations, establishing Pd≥0 ≅ Sd≥0 ≅ Sd/Γ ≅ ∆
d

in Section
2. While each of these equivalent representations provides a different perspective on the
geometry of the data, we particularly focus on the spherical quotient Sd/Γ for developing a
new framework for compositional data analysis. As an immediate utilization of the group
quotient, we discuss a novel nonparametric compositional density estimation method. We
also establish the asymptotic normality of the integral squared error of the estimator, which
can be useful for a goodness-of-fit test.

Our ultimate goal in this work is to construct reproducing kernel structures specifi-
cally tailored for compositional data. The aforementioned geometric interpretation of the
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Figure 1: Illustration of the stretching action from ∆
1

to S1
. It is observed that the

stretching preserves the relative compositions, which is not the case for the square root
transformation.

compositional domain as Sd/Γ establishes a novel connection between compositional data
and directional data, which refer to data existing on spheres. This connection leads us
to investigate how the functions defined on the compositional domain are related to those
on the sphere. Specifically, we focus on square-integrable functions L

2(Sd) on the sphere,
known as spherical harmonics. Notably, the theory of spherical harmonics reveals that each
Laplacian eigenspace of L

2(Sd) is a reproducing kernel Hilbert space (RKHS). By lever-
aging the structure of RKHS on spheres and also “averaging out” the group action at the
reproducing kernel level using orbital integrals, we construct a reproducing kernel structure
on compositional domains.

The proposed compositional reproducing kernel introduces a novel paradigm for ana-
lyzing compositional data. It empowers us to utilize a diverse range of machine-learning
techniques effectively with compositional data. Its immediate usefulness will be demon-
strated through the application of representer theorems for the minimum norm optimization
problem and subsequently with an application of kernel support vector machine.

In addition, we introduce a compositional kernel exponential family, which serves as
a versatile distributional model suitable for representing compositional data. We observe
that no distribution theory based on the log transformation provides a “natural” distribu-
tion on ∆

d
with non-vanishing boundaries. Some previous works used the spherical Kent

distribution to model compositional data that have been transformed by a square-root
transformation (Scealy and Welsh, 2014; Paine et al., 2020). However, the compositional
Kent distribution requires a large concentration parameter to ensure that most of the mass
lies in the first orthant. Otherwise, a “density folding” adjustment is often necessary.

We note that there are two main aspects of our work that are shared with the current
mainstream approaches to compositional data analysis. Firstly, the proposed framework
acknowledges and embraces the inherent nonlinear nature of compositional domains ∆

d
,

which is also implied in the so-called Aitchison geometry induced by the log transforma-
tion. We find links between compositional data analysis and non-Euclidean geometry in
the new compositional domain Sd≥0, which, equipped with non-linearity and compact topol-
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ogy, offers a more favorable environment for constructing meaningful distribution theories.
Secondly, we establish a connection to a structure that exhibits linearity, namely, RKHS.
One of the strong motivations of the log transformations is the ability to carry out “linear”
multivariate analysis methods based on Euclidean geometry such as linear regression and
principal component analysis. In this work, we utilize the projective geometry to “linearize”
compositional data through kernel mean embedding (Muandet et al., 2017), which enables
classical linear techniques to be effectively applied to compositional data.

1.1 Structure of the Article

We describe briefly the content of the main sections of this article:

In Section 2, we will establish a new geometric foundation for compositional domains
using projective geometry and spherical geometry. We emphasize that the classical model
based on the closed simplex ∆

d
is topologically equivalent to this new foundation. The

topological equivalence is represented as the following:

∆
d
≅ Pd≥0 ≅ Sd/Γ ≅ Sd≥0, (2)

where Sd≥0 is the first orthant sphere, which is also the fundamental domain of the group
action Γ� Sd. All of the four spaces in (2) will be referred to as “compositional domains”.
We present a direct application of our framework by proposing a compositional density
estimation method based on the principles of spherical density estimation. We demonstrate
that our compositional density estimator exhibits desirable properties, including its integral
squared error that is asymptotically normally distributed.

Section 3 will be focused on the construction of compositional reproducing kernel Hilbert
spaces (RKHS). Our approach relies on leveraging the reproducing kernel structures on
spheres, which are derived from the rich theory of spherical harmonics. While Wahba
(1981) previously constructed splines using reproducing kernel structures of spherical har-
monics on the 2-dimensional sphere (S2

), their work was limited to this specific case. In
contrast, our theory encompasses the general d-dimensional case, necessitating a compre-
hensive understanding of spherical harmonics theory. To facilitate this, we will provide a
review of spherical harmonics at the beginning of Section 3.

Section 4 will present two practical applications of the proposed compositional repro-
ducing kernels. Firstly, we prove the RHKS representer theorem for the minimum norm
regularization problem. Proof of the theorem requires a careful treatment of a notably dis-
tinctive feature of the compositional RKHS, which is that the space consists of degree 2m
homogeneous polynomials, i.e., it is finite-dimensional with no transcendental functions.
Thus, linear independence for distinct data points is not readily available. However, we
show that with a sufficiently high degree m, linear independence still holds. An empiri-
cal example with support vector machines will also be presented to showcase its practical
relevance in real-world problems. While our formulation of the representer theorem is not
necessarily new from a pure RKHS-theoretical standpoint, its purpose is to show that in-
tuitions derived from traditional statistical learning can still be employed in compositional
data analysis. The second application is the construction of the compositional exponential
family, which can be a useful model for the underlying distribution of compositional data.
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This flexible distribution family is able to account for various dependence structures among
compositional variables.

We conclude the paper in Section 5 with some discussions on relevant topics such dif-
fusion kernels by Lafferty and Lebanon (2005) and a special orthogonal group SO(d + 1).
We also discuss some computational issues regarding the implementation of the proposed
approach.

2. New Geometric Foundation of Compositional Domains

In this section, we introduce a novel characterization of compositional domains as a cone Pd≥0

in a projective space. This representation allows us to further interpret compositional do-
mains as spherical quotients obtained through reflection groups. We illustrate the practical
benefits of this new approach with an application in compositional density estimation.

2.1 Projective Geometry and Spread-out Construction

Compositional data consist of the relative proportions of d + 1 variables, implying that
each observation can be associated with a point in a projective space. In particular, a
d-dimensional projective space Pd comprises one-dimensional linear subspaces of Rd+1

. In
projective geometry, points along a line passing through the origin are considered equivalent.
Thus, instead of using classical linear coordinates (x1, . . . , xd+1), a point in Pd can be
expressed as a projective coordinate (x1 ∶ ⋅ ⋅ ⋅ ∶ xd+1) possessing the following property:

(x1 ∶ x2 ∶ ⋅ ⋅ ⋅ ∶ xd+1) = (λx1 ∶ λx2 ∶ ⋅ ⋅ ⋅ ∶ λxd+1), for any λ ≠ 0.

In compositional data analysis, it is natural to consider the non-negative projective space
as the appropriate ambient space. The cone Pd≥0, defined as follows:

Pd≥0 = {(x1 ∶ x2 ∶ ⋅ ⋅ ⋅ ∶ xd+1) ∈ Pd ∣(x1 ∶ x2 ∶ ⋅ ⋅ ⋅ ∶ xd+1) = (∣x1∣ ∶ ∣x2∣ ∶ ⋅ ⋅ ⋅ ∶ ∣xd+1∣)} ,

is a new geometric foundation in compositional data analysis, and we refer to it as the
fundamental compositional domain.

From the new geometric perspective, the compositional simplex ∆
d

can be viewed as
an equivalent representation of Pd≥0. This equivalence arises because each point in Pd≥0,
which corresponds to a non-negative line passing through the origin in Rd+1

, intersects the
compositional simplex ∆

d
at a unique point. Conversely, each point within ∆

d
determines

a unique line passing through the origin in Rd+1
. This leads to the following equivalence:

Pd≥0 ≅ ∆
d
. (3)

Another equivalent representation of the fundamental compositional domain is the first
orthant sphere Sd≥0, which is the non-negative part of a d-dimensional unit sphere Sd:

Sd = {(x1, x2, . . . , xd+1) ∈ Rd+1 ∣
d+1

∑
i=1

x
2
i = 1}.

The following lemma states that Sd≥0 is another representation of Pd≥0.
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Lemma 1. There is a canonical identification of ∆
d

with Sd≥0, namely,

∆
d f // Sd≥0g
oo ,

where f is the inflation map and g is the contraction map, with both f and g being continuous
and inverse to each other.

Proof It is straightforward to construct the inflation map f . For v ∈ ∆
d
, it is easy to

see that f(v) ∈ Sd≥0 when f(v) = v/∥v∥2, where ∥v∥2 is the `2 norm of v. Note that
the inflation map ensures that f(v) is in the same projective space as v. To construct the

contraction map g, for s ∈ Sd≥0 we define g(s) = s/∥s∥1, where ∥s∥1 is the `1 norm of s and

see that g(s) ∈ ∆
d
. One can easily check that both f and g are continuous and inverse to

each other.

Figure 1 illustrates the mapping f mentioned in Lemma 1. It visually demonstrates
that the points x and f(x) correspond to the same point within the projective space Pd.
Consequently, this identification maintains the projective characteristics of compositional
domains, which sets it apart from the square-root transforms.

The most crucial representation of the fundamental compositional domain Pd≥0 in this
work is Sd/Γ, which denotes the quotient space of the group action Γ � Sd. We define the
reflection group Γ as follows:

Definition 2. The reflection group Γ is a subgroup of general linear group GL(d + 1) and

it is generated by {γi, i = 1, . . . , d + 1}. Given the elementary basis {e1, . . . , ed+1} for Rd+1
,

the reflection γi is a linear map specified via:

γi ∶ (x1, . . . , xi−1, xi, xi+1, . . . , xd+1)↦ (x1, . . . , xi−1,−xi, xi+1, . . . , xd+1).

Each reflection γi in the group Γ is an isometry of Sd, which we denote by Γ � Sd.
Consequently, Γ can be regarded as a discrete subgroup of the isometry group of Sd. In
what follows, we establish that Sd≥0 serves as a fundamental domain for the group action
Γ � Sd in a topological sense. It is important to note that there is no universally defined
fundamental domain, but we will adopt the approach in Beardon (2012). To begin with,

we introduce the concept of an orbit. For a given point z ∈ Sd, the orbit associated with
the group Γ is defined as follows:

Orbit
Γ
z = {γ(z),∀γ ∈ Γ}. (4)

Note that one can decompose Sd into a disjoint union of orbits. The size of an orbit does
not necessarily match the size of the group ∣Γ∣ due to the existence of a stabilizer subgroup
of Γ, defined as

Γz = {γ ∈ Γ, γ(z) = z}. (5)

Every element in Orbit
Γ
z has isomorphic stabilizer subgroups. Consequently, the size of

Orbit
Γ
z is given by the quotient ∣Γ∣/∣Γz∣, where ∣ ⋅ ∣ represents the cardinality of a set. Note

that for the action Γ� Sd, possible sizes of stabilizer subgroups are finite.
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Definition 3. Let G act properly and discontinuously on a d-dimensional sphere, with
d > 1. A fundamental domain for the group action G is a closed subset F of the sphere
such that every orbit of G intersects F at at least one point and if an orbit intersects with
the interior of F , then it intersects F at only one point.

A fundamental domain is strict if every orbit of G intersects F at exactly one point. The
following proposition identifies Sd≥0 as the quotient topological space Sd/Γ, i.e., Sd≥0 = Sd/Γ.

Proposition 4. Let Γ � Sd be the group action described in Definition 2. Then Sd≥0 is a
strict fundamental domain.

In topology, there is a natural quotient map Sd → Sd/Γ. We define a contraction

mapping c ∶ Sd → Sd≥0 that operates by taking the absolute values of each component,
namely (x1, . . . , xd+1) ↦ (∣x1∣, . . . , ∣xd+1∣). Then it is straightforward to see that c is

indeed the topological quotient map Sd → Sd/Γ, under the identification Sd≥0 = Sd/Γ.

Through the application of (3), Lemma 1, and Proposition 4, we have established the
following equivalences:

Pd≥0 ≅ ∆
d
≅ Sd≥0 ≅ Sd/Γ. (6)

Remark 5. From this point onwards in the paper, we will freely interchange between
these four characterizations of a compositional domain. However, the last representation
of a compositional domain Sd/Γ (the spherical quotient representation) plays the most
important role in our development of new framework for compostional data analysis:

♠ The spherical quotient representation Sd/Γ reinterprets compositional data problems
into Γ-invariant direction statistics with the help of spread-out construction (see (7)).
This philosophy plays a key role in this paper, and two important applications of
philosophy are compositional density estimation theory (Section 2.2) and constructing
compositional reproducing kernels (Section 3).

♠ A longstanding challenge in compositional data analysis is due to the existence of the
boundary in a compositional simplex. Recall that the fundamental geometric objects
for directional statistics are spheres that are compact with no boundary. In many
ways, the perspective of Γ-invariant directional statistics has essentially eliminated
the boundary issues in compositional data analysis.

By utilizing the equivalence in (6), one can transform a compositional data problem into
one on a sphere using the spread-out construction. The main concept behind this approach
is to associate a compositional data point z ∈ ∆

d
= Sd≥0 with the Γ-orbit Orbit

Γ
z ⊂ Sd as

defined in (4). Formally, given a point z ∈ ∆
d
, we construct the following dataset (not

necessarily a set due to possible repetitions):

c
−1(z) = {∣Γz′∣ copies of z

′
, for z

′
∈ Orbit

Γ
z } , (7)

where Γz′ represents the stabilizer subgroup of Γ with respect to z
′

as defined in (5). In

general, if there are n observations in ∆
d
, the spread-out construction will generate a dataset
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(a) Compositional data on ∆
2

(b) “Spread-out” data on S2

(c) Density estimate on S2 (d) “Pulled-back” estimate on ∆
2

Figure 2: Toy compositional data on the simplex ∆
2

in (a) are spread out to a sphere S2
in

(b). The density estimate on S2
in (c) are pulled back to ∆

2
in (d).
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with n2
d+1

observations on Sd, where observations with zero coordinates are replicated. We
illustrate this concept in Figure 2 (a) and (b) with a toy data set with d = 2 and n = 100.

The spread-out construction presented in (7) essentially generates a directional dataset
from the original compositional dataset. Leveraging this concept, it becomes quite feasible
to adapt methods from directional statistics for practical application to compositional data.
For instance, one can conduct independence or uniformity tests for a compositional dataset
by simply performing an appropriate test for the “augmented” directional dataset (Jupp and
Spurr, 1985; Jupp, 2008). Moreover, the spread-out approach could be used for obtaining
density estimates for compositional data, which we will delve into in the following subsection.

2.2 Application to Compositional Density Estimation

Directional statistics has a rich history of exploring density estimation techniques for spher-
ical data, tracing back to the late 1970s (Beran, 1979). Subsequently, Hall et al. (1987) and
Bai et al. (1989) laid the groundwork for a comprehensive framework in spherical density
estimation theory. In this section, we formulate nonparametric density estimation for com-
positional data, building upon the rich development in spherical density estimation. The
main idea is that instead of directly estimating the density on ∆

d
, we can obtain density

estimates for the spread-out data on Sd, which in turn allows us to derive compositional
density estimates.

Consider a random vector Z distributed on Sd≥0, or equivalently on the compositional
simplex ∆

d
. Let p(⋅) denote its probability density function. The following proposition

provides an expression for the density of the spread-out random vector Γ(Z) defined on the

entire sphere Sd.

Proposition 6. Let Z be a random variable on Sd≥0 with probability density p(⋅). Then the

induced random variable Γ(Z) = {γ(Z)}γ∈Γ, has the following density p̃(⋅) on Sd:

p̃(z) = ∣Γz∣
∣Γ∣ p(c(z)), z ∈ Sd,

where ∣Γz∣ is the cardinality of the stabilizer subgroup Γz of z.

Let c∗ denote the corresponding operation for functions, analogous to the contraction
map c applied to data points. It is evident that when given a probability density p̃ on Sd,
we can derive the original density on the compositional domain by utilizing the “pull back”
operation c∗:

p(z) = c∗(p̃)(z) = ∑
x∈c−1(z)

p̃(x), z ∈ Sd≥0.

Now consider estimating the density on Sd with the spread-out data. For x1, . . . , xn ∈ Sd,
a density estimate by Hall et al. (1987) is given by

f̂n(z) =
ch
n

n

∑
i=1

K (1 − zTxi
h

) , z ∈ Sd,

where K is a kernel function that satisfies common assumptions in Assumption 1, and ch is
a normalizing constant. Applying this to the spread-out data γ(xi), i = 1, . . . , n, we have a
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density estimate of p̃(⋅) defined on Sd:

f̂
Γ
n (z) =

ch
n∣Γ∣ ∑

1≤i≤n,γ∈Γ

K (1 − zTγ(xi)
h

) , z ∈ Sd,

from which a density estimate on the compositional domain is obtained by applying c∗.
That is,

p̂n(z) = c∗f̂Γ
n (z) = ∑

x∈c−1(z)
f̂

Γ
n (x), z ∈ Sd≥0. (8)

Figure 2 (c) and (d) illustrate this process with toy data using the Gaussian kernel.

The consistency of the spherical density estimate f̂n has been established by Zhao and
Wu (2001) and Garćıa-Portugués et al. (2015), where it is shown that the integral squared
error (ISE), ∫Sd(f̂n − f)

2
dz, where the integration is with respect to the Lesbegue measure

on Sd, follows a normal distribution as the sample size increases. Similarly, we can show that
the ISE of the proposed compositional density estimator p̂n on the compositional domain
also converges to a normal distribution through the central limit theorem (CLT). However,
it is worth noting that the CLT for the ISE of spherical densities in Zhao and Wu (2001)
assumes a finite support condition on the kernel function K. Although Garćıa-Portugués
et al. (2015) relaxes this condition in their analysis of directional-linear data, their result
does not directly apply to the pure directional context, thus their proof is not directly
applicable. The following theorem establishes the asymptotic normality for ISE of our
density estimator in (8). The proof of the theorem can be found in Appendix A.1.

Theorem 7. Asymptotic normality for ISE holds for both directional and compositional
data under the mild conditions specified in Appendix A.1, without finite support condition
on the kernel function K.

2.2.1 Comparison with Existing Approaches

We also give an empirical comparison between the proposed estimate in (8) and two existing
methods for compositional density estimation from Aitchison and Lauder (1985). The

existing methods are based on two kernels defined on open simplex Sd: Dirichlet kernel and
logistic-normal kernel. The Dirichlet kernel is based on the Dirichlet density function

D(x∣α) =
Γ(α1 + ⋅ ⋅ ⋅ + αd+1)
Γ(α1) . . .Γ(αd+1)

x
α1−1
1 . . . x

αd+1−1
d+1 , x ∈ Sd,

where α = (α1, . . . , αd+1), αi > 0 is the concentration parameter. Note that the mode of
Dirichlet distribution is located at (αi − 1)/∑j(αj − 1) for each xi if every αi > 1, and the
density becomes more concentrated at the mode as αi increases. The Dirichlet kernel for
density estimation is given by

K(x, x′) = D(x∣1 + x′/h), x, x
′
∈ Sd,

where 1 is a d + 1 dimension vector of ones and h is a bandwidth parameter.
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The logistic-normal kernel uses the additive log-ratio (alr) transformation which maps

x ∈ Sd to y ∈ Rd by

yi = log(xi/xd+1), i = 1, . . . , d, (9)

with which the following multivariate Gaussian kernel

det(2πhΣ)−1/2
exp{ − 1

2
(y − y′)T (hΣ)−1(y − y′)}, y, y

′
∈ Rd,

is used for estimating the density of y where h is again a bandwidth parameter. Here, Σ is
set as a sample covariance matrix of the alr-transformed data. Note that (9) implies

xi = exp(yi)/{exp(y1) + ⋅ ⋅ ⋅ + exp(yd) + 1}, i = 1, . . . , d,

based on which a logistic-normal kernel K(x, x′) can be defined. Finally, we estimate the

density at arbitrary point x ∈ Sd as

p̂(x) = 1
n

n

∑
i=1

K(x, xi). (10)

It is important to note that these two density estimates are defined only for the open
simplex Sd. Therefore, following the recommendation of Aitchison and Lauder (1985), we
handle the zeros in each observation by replacing them with δ(c+1)(d+1−c)/(d+1)2

. Here,
c is the number of zero components in each observation, and δ is the maximum rounding-off
error, which is set to 0.001.

Figure 3 compares the density estimate of the toy data shown in Figure 2 (a) based on the
proposed method and the two existing methods based on the Dirichlet and logistic-normal
kernels respectively. The results clearly demonstrate that the proposed method provides
a more accurate representation of the data with minimal distortion. Both the Dirichlet
and logistic-normal kernel density estimates exhibit distortions in the overall shapes of the
density, particularly towards the center of the simplex and near the boundaries. Notably,
the logistic-normal kernel density estimates in (c) show an undesirable concentration of mass
towards the vertices. This distortion seems to be a consequence of the alr transformation,
which is evident from the equivalent density estimation plots of the alr-transformed data in
R2

shown in Figure 4.

3. Reproducing Kernels of Compositional Data

In this section, our goal is to construct a reproducing kernel Hilbert space (RKHS) for

compositional data, utilizing the spherical quotient representation Sd/Γ discussed in Section

2. The key concept behind this construction is the quotient map π ∶ Sd → Sd/Γ, which
allows us to establish a connection between function spaces defined on spheres and function
spaces defined on compositional domains. By leveraging this relationship, we can construct
reproducing kernels on the compositional domain Sd/Γ based on the ones defined on Sd.

Reproducing kernels on Sd were actually discovered by Laplace and Legendre in the
19th century, though they were referred to as “zonal spherical functions” at that time.
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(a) Proposed method

(b) Dirichlet kernel

(c) Logistic-normal kernel

Figure 3: Kernel density estimates of the toy compositional data from Figure 2, using (a)
the proposed method in (8); the traditional estimates in (10) with (b) Dirichlet kernel and
(c) logistic-normal kernel with varying bandwidths.
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Figure 4: Kernel density estimates of the toy compositional data from Figure 2 in the alr-
transformed space with Gaussian kernel. Each of the panels corresponds to the panels in
Figure 3(c).

Both the theory of spherical harmonics and reproducing kernel Hilbert spaces (RKHS) have
found applications in various fields, including functional analysis, representation theory of
Lie groups, and quantum mechanics. In statistics, the successful application of RKHS in
spline models by Wahba (1981) played a significant role in popularizing RKHS theory for Sd.
Their reproducing kernels were built using zonal spherical functions and motivated by spline
models on the sphere S2

. In contrast, our motivation for exploring reproducing structures
on spheres is unrelated to spline models. However, we share a common foundation, namely
the theory of spherical harmonics, as the building blocks for our approach.

Building upon the representation of a compositional domain Pd≥0 as Sd/Γ, our aim is to
construct reproducing kernels for compositions by leveraging reproducing kernel structures
on spheres. Considering that spherical harmonics theory provides reproducing kernel struc-
tures on Sd, and a compositional domain Sd/Γ is topologically covered by spheres with the
group Γ leads to the two following questions, for both of which the answers are positive.

(i) Can function spaces on Sd/Γ be identified with Γ-invariant functions on Sd?

(ii) Is it possible to construct Γ-invariant kernels using spherical reproducing kernels, with

the hope that the Γ-invariant kernels can serve as reproducing kernels on Sd/Γ?

Through the consideration of Γ-invariant objects in spherical function spaces, we will
construct reproducing kernel structures for compositional domains, thereby establishing
compositional RKHS. This opens up new opportunities to develop a framework for com-
positional data analysis, where we elevate compositional data points to functions via re-
producing kernels, and classical statistical concepts such as means and variance-covariances
are transformed into linear functionals and linear operators within the function space. This
“kernel methods” framework provides fresh perspectives on various essential statistical top-
ics, including dimension reduction, regression analysis, and many other inference problems.

3.1 Spherical Harmonics and Reproducing Kernels

This section provides a brief overview of the theory of spherical harmonics. For a more
comprehensive introduction, we refer to Atkinson and Han (2012). Recall that a periodic

13
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function f in R with a period of one can be represented by Fourier expansions of the form:

f(x) ∼ A0 +
∞

∑
n=1

[an cos(2πnx) + bn sin(2πnx)].

Noting that a function with periodicity one can be regarded as a function on the unit circle
S1

, we can view spherical harmonics theory as a generalization of the Fourier expansion, to
a general sphere Sd.

Let L
2(V) denote the space of square-integrable functions on V. For f ∈ L

2(Sd),
consider the Laplacian

∆f =
d+1

∑
i=1

∂
2
f

∂x2
i

,

and let Hi denote the i-th eigenspace of the Laplacian operator. It is well known that the
space L

2(Sd) can be orthogonally decomposed as follows:

L
2(Sd) =

∞

⨁
i=1

Hi, (11)

where the orthogonality in this decomposition is defined with respect to the inner product
in L

2(Sd), given by ⟨f, g⟩ = ∫Sd f(t)g(t)dt.
Let Pi(d+1) be the space of homogeneous polynomials of degree i in d+1 coordinates on

Sd. A homogeneous polynomial is a polynomial whose terms are all monomials of the same
degree, e.g., P4(3) includes xy

3+x2
yz. Further, let Hi(d+ 1) be the space of homogeneous

harmonic polynomials of degree i on Sd, i.e.,

Hi(d + 1) = {P ∈ Pi(d + 1)∣ ∆P = 0}. (12)

For example, x
3
y + xy3 − 3xyz

2
and x

4 − 6x
2
y

2 + y4
are members of H4(3).

Importantly, the theory of spherical harmonics establishes that each eigenspace Hi in
the decomposition (11) is precisely the space Hi(d + 1). This crucial result implies that

any function in L
2(Sd) can be approximated by a direct sum decomposition of orthogonal

homogeneous harmonic polynomials. Moreover, it is known that the Laplacian constraint
in (12) is not necessary, as stated in the following proposition:

Proposition 8. Let Pm(d + 1) be the space of degree m homogeneous polynomial of d + 1

variables on Sd and Hi be the ith eigenspace of L
2(Sd). Then

Pm(d + 1) =
⌊m/2⌋
⨁

i=⌈m/2⌉−⌊m/2⌋
H2i,

where ⌈⋅⌉ and ⌊⋅⌋ stand for ceiling and flooring integers, respectively.

Proposition 8 reveals that any L
2

function on Sd can be approximated by homogeneous
polynomials. An important feature of spherical harmonics is that it provides reproducing
structures on spheres. For the subsequent discussion, we will focus on a fixed Laplacian
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eigenspace Hi within L
2(Sd), which is a finite-dimensional Hilbert space on Sd. It is impor-

tant to note that the entire Hilbert space L
2(Sd) does not have a reproducing kernel given

that the Delta functional on L
2(Sd) is not a bounded functional

1
.

For each Laplacian eigenspace Hi within L
2(Sd), we can define a linear functional Lx

on Hi such that, for any Y ∈ Hi, Lx(Y ) = Y (x), where x is a fixed point in Sd. It is known
that there exists a function ki(x, t) such that:

Lx(Y ) = Y (x) = ∫
Sd
Y (t)ki(x, t)dt, x ∈ Sd.

The function ki(x, t), sometimes referred to as a zonal spherical function, serves as the
representation of the functional Lx(Y ). Notably, these functions ki(x, t) can be considered
as “reproducing kernels” in the sense of Aronszajn (1950). In other words, each Laplacian

eigenspace Hi can be viewed as an RKHS on Sd. The following proposition provides some
fundamental properties of ki(x, t). The proofs of these properties can be found in various
modern references on spherical harmonics, such as Stein and Weiss (1971).

Proposition 9. The following properties hold for the function ki(x, t), which is also the

reproducing kernel inside Hi ⊂ L
2(Sd) with dimension ai.

(a) For any orthonormal basis {Y1, . . . , Yai} in Hi, we can express the kernel ki(x, t) =
ai

∑
i=1

Yi(x)Yi(t), but ki(x, t) does not depend on the choice of basis.

(b) ki(x, t) is a real-valued function and symmetric, i.e., ki(x, t) = ki(t, x).

(c) For any orthogonal matrix R ∈ O(d + 1), we have ki(x, t) = ki(Rx,Rt).

(d) ki(x, x) =
ai

vol(Sd)
for any x ∈ Sd.

(e) ki(x, t) ≤
ai

vol(Sd)
for any x, t ∈ Sd.

Remark 10. The proposition mentioned above may appear obvious from a traditional
perspective as if it could be found in any textbook. Readers with extensive experience in
RKHS theory might consider it a trivial statement. However, we would like to emphasize
two important points. First, function spaces over underlying spaces with different topo-
logical structures exhibit distinct behaviors. Spheres, being compact without boundaries,
have function spaces with Laplacian operators whose eigenspaces are finite-dimensional
and possess reproducing kernel structures. These remarkable properties are not necessar-
ily expected to hold for other general topological spaces. Second, in comparison to more
commonly used classical topological spaces, such as unit intervals or vector spaces, spheres
possess a more “exotic” topological structure. Although spheres are simply connected, they

1. At first glance, this may appear contradictory to the discussion on splines on S2
in Wahba (1981).

However, upon closer examination, it is evident that a finiteness constraint was imposed in that context.
It is important to note that L

2(S2) itself is never claimed to be RKHS. Instead, the RKHS constructed
on S2

is a subspace of L
2(S2).
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exhibit nontrivial higher homotopy groups. On the other hand, intervals or vector spaces
are contractible with trivial homotopy groups. One way to appreciate the theory of spher-
ical harmonics is by recognizing that classical “näıve” expectations can still be defined on
spheres.

By utilizing the representation of a compositional domain as Sd/Γ, the function space

associated with compositional data can be identified as L
2(Sd/Γ). In other words, L

2(∆d) =
L

2(Pd≥0) = L2(Sd/Γ). In the subsequent subsection, we describe the function space within
the compositional domain in detail.

3.2 Function Spaces on Compositional Domains

Given the understanding of the function space L
2(Sd) through spherical harmonics the-

ory, it is natural to establish a connection between L
2(Sd/Γ) and L

2(Sd). For a function

h ∈ L
2(Sd/Γ), there exists an associated function π

∗(h) ∈ L
2(Sd) obtained through the

composition of maps:

π ◦ h ∶ Sd π // Sd/Γ
h // C .

Consequently, the composition π ◦ h = π
∗(h) ∈ L

2(Sd) naturally leads to an embedding
of the function space of compositional domains into that of a sphere. Thus, we have the
mapping π

∗ ∶ L2(Sd/Γ)→ L
2(Sd).

The embedding π
∗

identifies the Hilbert space of compositional domains as a subspace
of the Hilbert space of spheres. A natural question is how to characterize the subspace in
L

2(Sd) that corresponds to functions on compositional domains. The following proposition
states that a function f ∈ im(π∗) if and only if f is constant on the fibers of the projection

map π ∶ Sd → Sd/Γ, almost everywhere. In simpler terms, this means that f takes the
same values on all points within each Γ orbit, i.e., on the points that are connected by “sign
flipping”.

Proposition 11. The image of the embedding π
∗ ∶ L2(Sd/Γ)→ L

2(Sd) consists of functions

f ∈ L
2(Sd) such that up to a measure zero set, is constant on π

−1(x) for every x ∈ Sd/Γ,

where π is the natural projection Sd → Sd/Γ.

We will refer to a function f ∈ L
2(Sd) that lies in the image of the embedding π

∗
as

a Γ-invariant function. Now we construct the contraction map π∗ ∶ L
2(Sd) → L

2(Sd/Γ),
which descends every function on spheres to a function on compositional domains. For
f ∈ L

2(Sd), we define the associated Γ-invariant function f
Γ

as follows:

Proposition 12. Let f be a function in L
2(Sd). Then the following function

f
Γ(z) = 1

∣Γ∣ ∑
γ∈Γ

f(γz), z ∈ Sd, (13)

is a Γ-invariant function.

Proof Each fiber of the projection map π ∶ Sd → Sd/Γ is Orbit
Γ
z for some z in the fiber.

For any other point y on the same fiber with z for the projection π, there exists a reflection
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γ ∈ Γ such that y = γz. Then, this proposition follows from the identity f
Γ(z) = f

Γ(γz),
which can be easily checked.

Note that the contraction map f ↦ f
Γ

on spheres naturally yields the following map

π∗ ∶ L
2(Sd)→ L

2(Sd/Γ), with f ↦ f
Γ
. (14)

Furthermore, π∗ has a section given by π
∗

and the composition π∗ ◦π
∗

induces the identity
map from L

2(Sd/Γ) to itself. In particular, the contraction map π∗ is a surjection. The

relationship between L
2(Sd) and L

2(Sd/Γ) found in this section enables us to construct

reproducing kernels on ∆
d

using L
2(Sd), in Section 3.4.

3.3 Reduction to Even Degrees Homogeneous Polynomials

In this subsection, we provide a further simplification of the homogeneous polynomials in

⨁m
i=0 Hi. According to Proposition 8, if m is even, then Pm(d + 1) = ⨁m/2

i=0 H2i, and if m

is odd, then Pm(d + 1) =⨁(m−1)/2
i=0 H2i+1, where Pm(d + 1) represents the space of degree

m homogeneous polynomials in d + 1 variables. In either case (whether m is even or odd),
the degree of the homogeneous polynomials m is the same as the max{2i, ⌈m/2⌉− ⌊m/2⌋ ≤
i ≤ ⌊m/2⌋}. Consequently, we can decompose ⨁m

i=0 Hi into the direct sum decomposition
of two spaces of homogeneous polynomials:

m

⨁
i=0

Hi = Pm(d + 1)⨁Pm−1(d + 1).

However, we note that not every function within ⨁m
i=0 Hi is meaningful for ∆

d
= Sd/Γ. For

example, it is possible to find a nonzero function f ∈ ⨁m
i=0 Hi, but its Γ-invariant f

Γ
is

equal to zero. Notably, eigenspaces Hi with odd values of i do not contribute to L
2(Sd/Γ).

In other words, the odd-numbered sum ⨁m
i=0 H2i+1 is “eliminated” and yields zero under

the action of π∗. This simplification of the function space greatly streamlines computations.
In the following lemma, we will show that any monomial term of odd degree will vanish
when its Γ-invariant is taken.

Lemma 13. For every monomial ∏d+1
i=1 x

αi

i (each αi ≥ 0), if there exits k with αk being

odd, then the monomial ∏d+1
i=1 x

αi

i is a shadow function, that is, (∏d+1
i=1 x

αi

i )Γ
= 0.

An important implication of this lemma is that all “odd” pieces in L
2(Sd) = ⨁∞

i=0 Hi

do not contribute to L
2(Sd/Γ). Therefore, when employing spherical harmonics theory to

study function spaces of compositional domains, it suffices to consider only even values
of i for Hi within L

2(Sd). In summary, the function space on the compositional domain

∆
d
= Sd/Γ has the following eigenspace decomposition:

L
2(Sd/Γ) =

∞

⨁
i=0

HΓ
2i, (15)

where HΓ
2i ∶= {h ∈ H2i, h = h

Γ}.
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3.4 Reproducing Kernels on Compositional Domain

The main objective of this section is to establish reproducing kernels for compositional data.
Within each Laplacian eigenspace Hi ⊂ L

2(Sd), the Γ-invariant subspace HΓ
i , as defined in

equation (15), can be regarded as a function space on ∆
d
= Sd/Γ. To determine a potential

candidate for a reproducing kernel within HΓ
i , we first identify the representing function for

the linear functional L
Γ
z on Hi defined as follows: For any function Y ∈ Hi,

L
Γ
z (Y ) = Y Γ(z) = 1

∣Γ∣ ∑
γ∈Γ

Y (γz),

where z ∈ Sd is a given point. It can be seen that L
Γ
z and Lz coincide on the subspace HΓ

i

within Hi. Additionally, L
Γ
z can be viewed as a composite map L

Γ
z = Lz◦π∗ ∶ Hi → HΓ

i → C.
Note that although L

Γ
z is defined on Hi, it can be regarded as a “Delta functional” on

Sd/Γ = ∆
d
.

In order to find the representing function for L
Γ
z , we make use of the reproducing kernels

ki in Section 3.1. We define the compositional kernel k
Γ
i (⋅, ⋅) be Γ-invariant version of ki,

as follows:

k
Γ
i (x, y) =

1

∣Γ∣ ∑
γ∈Γ

ki(γx, y), ∀x, y ∈ Sd, (16)

It can be easily verified that k
Γ
i (z, ⋅) represents linear functionals of the form L

Γ
z , simply by

following the definitions.

Remark 14. The definition of compositional kernels in (16) is not merely a technique to
remove redundant points on spheres. Instead, it is motivated by the concept of orbital
integrals in analysis and geometry. In our case, the “integral” takes on a discrete form
since the compact subgroup is replaced by a finite discrete reflection group Γ. It is worth
noting that this type of discrete orbital integral construction is not unique to our work.
For instance, in statistical learning theory, Reisert and Burkhardt (2007) utilized a similar
construction based on orbital integrals to investigate equivariant matrix-valued kernels.

At first glance, the compositional kernel may seem to lack symmetry since we are “aver-
aging” only over the group orbit on the first variable of the function ki(x, y). However, due
to the symmetric and orthogonally invariant properties of ki(x, y), as stated in Proposition
9, the compositional kernels surprisingly exhibit symmetry:

Proposition 15. Compositional kernels are symmetric, namely k
Γ
i (x, y) = kΓ

i (y, x).

Proof Recall that ki(x, y) = ki(y, x) and that ki(Gx,Gy) = ki(x, y) for any orthogonal
matrix G. Note that every reflection γ ∈ Γ can be realized as an orthogonal matrix.
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Therefore,

k
Γ
i (x, y) =

1

∣Γ∣ ∑
γ∈Γ

ki(γx, y)

=
1

∣Γ∣ ∑
γ∈Γ

ki(y, γx) =
1

∣Γ∣ ∑
γ∈Γ

ki(γ−1
y, γ

−1(γx))

=
1

∣Γ∣ ∑
γ∈Γ

ki(γ−1
y, x)

=
1

∣Γ∣ ∑
γ∈Γ

ki(γy, x)

= k
Γ
i (y, x)

Furthermore, it turns out that the compositional kernels are Γ-invariant on both argu-
ments. In fact, they are reproducing kernels with respect to all Γ-invariant functions in Hi.
This result is stated in the following theorem:

Theorem 16. Within Hi, the compositional kernel k
Γ
i (x, y) is Γ-invariant on both argu-

ments x and y, and the compositional kernel is a reproducing kernel for HΓ
i .

Proof The double Γ-invariance can be seen from the definition and Theorem 15. The
reproducing property of k

Γ
i (x, y) can be shown by observing that for any Γ-invariant function

f ∈ HΓ
i ⊂ Hi,

< f(t), kΓ
i (x, t) > = < f(t),∑

γ∈Γ

1

∣Γ∣ki(γx, t) >

=
1

∣Γ∣ ∑
γ∈Γ

< f(t), ki(γx, t) >

=
1

∣Γ∣ ∑
γ∈Γ

f(γx) = 1

∣Γ∣ ∑
γ∈Γ

f(x) (f is Γ-invariant)

= f(x)

Now, let us delve into the construction of an RKHS on ∆
d
. Building upon the expression

(15), our approach involves approximating the function space L
2(Sd/Γ) with the finite direct

sum decomposition ⨁m
i=0 H

Γ
2i. Note that this decomposition is orthogonal, and consequently

reproducing kernels for ⨁m
i=0 H

Γ
2i can be represented by the sum ∑m

i=0 k
Γ
2i(⋅, ⋅).

Definition 17. The degree m compositional reproducing kernel Hilbert space is defined to
be the finite direct sum decomposition ⨁m

i=0 H
Γ
2i, and its reproducing kernel is

ωm(⋅, ⋅) =
m

∑
i=0

k
Γ
2i(⋅, ⋅). (17)
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It is crucial to emphasize that our RKHS is finite-dimensional, as it comprises solely of
degree 2m homogeneous polynomials. In other words, each function belonging to ⨁m

i=0 H
Γ
2i

can be represented as a degree 2m homogeneous polynomial, including the reproducing
kernel ωm(⋅, ⋅). Notably, for any point (x1, x2, . . . , xd+1) ∈ Sd, the sum ∑d+1

i=1 x
2
i is always

equal to 1, enabling us to convert each element in ⨁m
i=0 H

Γ
2i into a homogeneous polynomial.

To illustrate, let us consider the example of x
2+1. Although it is not initially a homogeneous

polynomial, we can rewrite it as x
2 + x2 + y2 + z2

= 2x
2 + y2 + z2

, which is a homogeneous
polynomial defined on the sphere S2

. In fact, it is evident that ⨁m
i=0 H

Γ
2i comprises degree

m homogeneous polynomials in terms of squared variables.

In what follows we provide details for computing (17). The Gegenbauer polynomial,
which is instrumental in calculating the reproducing kernel ki(⋅, ⋅) of the ith eigenspace of

L
2(Sd), is defined recursively by

p0(t) = 1,

p1(t) = (d − 1)t,

pi(t) =
2t(i + (d − 3)/2)

i
pi−1(t) −

i + d − 3

i
pi−2(t) for i ≥ 2.

Then the kernel ki(⋅, ⋅) is given by

ki(v1, v2) =
ai

vol(Sd)
pi(⟨v1 ⋅ v2⟩), for v1, v2 ∈ Sd,

where ai is the dimension of Laplacian eigenspace Hi:

ai = (d + ii ) − (d + i − 2
i − 2 )

for i ≥ 2, and a1 = d + 1 and a0 = 1. Also, vol(Sd) is the volume of Sd:

vol(Sd) =
π
(d+1)/2

G(1 + (d + 1)/2),

where G(⋅) indicates the gamma function. Then, by plugging in ki(v1, v2) to (17), we obtain

ωm(v1, v2) =
m

∑
i=0

a2i

∣Γ∣vol(Sd)
∑
γ∈Γ

p2i(⟨γ(v1) ⋅ v2⟩).

A simple numerical example of the calculation of ωm(⋅, ⋅) is provided in the Appendix A.6.

4. Applications of Compositional Reproducing Kernels

The introduction of compositional reproducing kernels brings forth numerous statistical and
machine-learning techniques for compositional data analysis. In this context, we present
two initial application scenarios to showcase the impact of RKHS theory on compositional
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data analysis. The first application pertains to the representer theorem, which draws moti-
vation from the advancements in kernel-based machine learning. A compositional support
vector machine (SVM) will be used to demonstrate the practical application of the repre-
senter theorem. The second example involves the construction of exponential families on
compositional domains. Out exponential distribution models define explicit distributions
on the compositional domain with non-vanishing densities on the boundary.

4.1 Compositional Representer Theorem

The representer theorem is instrumental in kernel-based learning. In this section, we focus
specifically on minimal norm interpolations and least square regularizations, which play a
crucial role in many data analytic scenarios, such as structured prediction, multi-task learn-
ing, and multi-label classification. An important assumption in the representer theorems is
linear independence of the kernel evaluations (Micchelli and Pontil, 2005). As our composi-
tional RKHS consists of finite-dimensional polynomials, the linear independence condition
is not automatically guaranteed. However, the following theorem gives a positive answer:

Theorem 18. Let {xi}ni=1 be distinct data points on a compositional domain ∆
d
. Then there

exists a positive integer M , such that for any m >M , the set of functions {ωm(xi, ⋅)}ni=1 is
a linearly independent set in ⨁m

i=0 H
Γ
2i.

Proof The quotient map c∆ ∶ Sd → ∆
d

can factor through a projective space, i.e., c∆ ∶
Sd → Pd → ∆

d
. The main idea is to prove a stronger statement, for which we show that

distinct data points in Pd give linear independence of projective kernels for large enough
m, where projective kernels are reproducing kernels in Pd whose definition is given in A.3.
Then, we construct two vector subspaces V

m
1 and V

m
2 and a linear map gm from V

m
1 to

V
m

2 . The key trick is that the matrix representing the linear map gm becomes diagonally
dominant when m is large enough, which forces the spanning sets of both V

m
1 and V

m
2 to

be linearly independent. More details of the proof are given in the Appendix A.3.

Theorem 18 indicates that when m is sufficiently large, ωm(xi, ⋅) ≠ ωm(xj , ⋅) holds for
any distinct data points xi ≠ xj . As m increases, not only do the reproducing kernels
differentiate between points, but they also assign each data point its unique “dimension.”
A natural question would be regarding the necessary magnitude of m to guarantee linear
independence in practical scenarios. In the most general case, the dimension of ⨁m

i=0 H
Γ
2i

grows rapidly with m, indicating that a very large m may not be required. However, the
situation where a large m becomes necessary can occur when there are many near-duplicates
in the data. It is important to note that this issue primarily applies to projective kernels.
For compositional kernels, which are linear combinations of projective kernels, in order to
compromise linear independence, a significant number of data points would need to be not
only extremely close to each other but also in close proximity to the boundary.

4.1.1 Minimal Norm Interpolation and Least Squares Regularization

Having established linear independence in Theorem 18, we can easily deduce the correspond-
ing representer theorems for minimal norm interpolations and least square regularizations.
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While these theorems do not introduce anything new from the perspective of general RKHS
theory, we include them here for the sake of completeness.

The first representer theorem we present addresses the minimal norm interpolation prob-
lem. Given a fixed set of distinct points {xi}ni=1 in ∆

d
and a set of numbers {yi}ni=1, let I

m
y

denote the set of functions that interpolate the given data:

I
m
y = {f ∈

m

⨁
i=0

HΓ
2i ∶ f(xi) = yi}.

Our objective is to find f0 with the minimum `2 norm, expressed as:

∥f0∥ = inf{∥f∥, f ∈ Imy }.

Theorem 19. For a set of distinct compositional data points {xi}ni=1, choose m large enough
so that the reproducing kernels {ωm(xi, t)}ni=1 are linearly independent, then the unique
solution to the minimal norm interpolation problem min{∥f∥, f ∈ ⨁m

i=0 H
Γ
2i ∶ f(xi) = yi}

is given by the linear combination of the kernels:

f0(t) =
n

∑
i=1

ci ωm(xi, t),

where {ci}ni=1 is the unique solution of the following system of linear equations:

n

∑
j=1

ωm(xi, xj)cj = yi, 1 ≤ i ≤ n.

Proof For any other f in I
m
y , define g = f − f0. By considering the decomposition:

∥f∥2
= ∥g + f0∥2

= ∥g∥2 + 2 < f0, g > +∥f0∥2
, one can argue that the cross term

< f0, g >= 0. The detail can be found in the Appendix A.4. We point out that the
linear independence of reproducing kernels guarantees the uniqueness and existence of f0.

The second representer theorem is for a more realistic scenario with `2 regularization,
which has the following objective:

min
f

n

∑
i=1

(f(xi) − yi)2
+ µ∥f∥2

. (18)

The goal is to find a Γ-invariant function fµ ∈⨁m
i=0 H

Γ
2i that minimizes (18). The solution

to this problem is provided by the following representer theorem:

Theorem 20. For a set of distinct compositional data points {xi}ni=1, choose m large enough
so that the reproducing kernels {ωm(xi, t)}ni=1 are linearly independent. Then the solution
to (18) is given by

fµ(t) =
n

∑
i=1

ci ωm(xi, t),
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Figure 5: The toy data set used to train kernel SVM.

where {ci}ni=1 is the solution of the following system of linear equations:

µci +
n

∑
j=1

ωm(xi, xj)cj = yi, 1 ≤ i ≤ n.

Proof The detail of this proof can be found in the Appendix A.5, but we point out how the
linear independence condition plays a role here. In the middle of the proof we must show
that µfµ(t) = ∑n

i=1 [(yi − fµ(xi))ωm(xi, t)], where fµ(t) = ∑n
i=1 ωm(xi, t)ci. We use the

linear independence in Theorem 18 to establish the equivalence between this linear equation
system of {ci}ni=1 and that given in the theorem.

Remark 21. It is important to note that without the assumption of linear independence,
the uniqueness of linear combinations of reproducing kernels may not hold, although a repre-
senter theorem can still be obtained. However, by assuming linear independence, we ensure
the uniqueness of the solution for {ci}ni=1 through a full rank system of linear equations, as
well as canonical transitions between different systems of linear equations (as demonstrated
in Theorem 20). This provides both computational convenience and theoretical elegance.
Moreover, linear independence is also desired for higher-rank generalizations. In the con-
text of learning vector-valued functions, Micchelli and Pontil (2005) and Muandet et al.
(2017) assumed linear independence conditions. While the present work focuses on classical
numerical valued functions, our approach suggests a direction for establishing such linear
independence conditions even for more complex learning questions involving vector-valued
functions.

4.1.2 Compositional Kernel SVM

In this section, we showcase the effectiveness of our compositional kernel in conjunction
with a kernel support vector machine (SVM) using a toy dataset depicted in Figure 5. The
toy dataset consists of 100 observations from two classes, exhibiting a certain degree of
overlap. For comparison purposes, we also implement existing kernel SVM methods for
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(a) Compositional kernel

(b) Gaussian RBF kernel

(c) Polynomial kernel

Figure 6: Classification boundaries of kernel SVM with the proposed compositional kernel
and two existing kernels applied to alr transformed data.
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compositional data, namely the Gaussian RBF kernel K(x, x′) = exp(−∥x − x′∥2/σ2) and

the polynomial kernel K(x, x′) = (1+x⋅x′)d after the additive log ratio (alr) transformation.
As similarly done in Section 2.2.1, we replace zeros with a small number before applying
the alr transformation.

To implement the proposed compositional kernel, we utilized the gegenbauerC function
in Matlab to compute ki(⋅, ⋅) and the fitcsvm function for SVM. While we varied the
hyperparameters of each kernel function, we kept the penalty parameter in SVM fixed at its
default value. The degree of polynomials controls the complexity of both the compositional
kernel and the alr-polynomial kernel, whereas the parameter σ in the alr-Gaussian kernel
serves a similar purpose. The classification boundaries on the simplex for each method are
depicted in Figure 6. As the hyperparameters change, all three methods exhibit noticeable
changes in the classification boundary. Notably, in (b) and (c), the results are disrupted near
the simplex edges, leading to unstable classification. In contrast, the compositional kernel
does not display any peculiarities around the edges, indicating its robustness in handling
such scenarios.

4.2 Compositional Exponential Family

Having established the RKHS, one can use it to define exponential families of probability
distributions. Recall that for a function space H equipped with the inner product ⟨⋅, ⋅⟩ on
a general topological space X , where k(x, ⋅) denotes its reproducing kernel, the density of
an exponential family p(x, θ) (Canu and Smola, 2006) with parameter θ ∈ H is given by:

p(x, θ) = exp{⟨θ(⋅), k(x, ⋅)⟩ − g(θ)},

where g(θ) = log ∫X exp (⟨θ(⋅), k(x, ⋅)⟩)dx.

For compositional data, we define the density of the mth degree exponential family as:

pm(x, θ) = exp {⟨θ(⋅), ωm(x, ⋅)⟩ − g(θ)} , x ∈ Sd/Γ, (19)

where θ ∈⨁m
i=0 H

Γ
2i and

g(θ) = log∫
Sd/Γ

exp (⟨θ(⋅), ωm(x, ⋅)⟩)dx.

The density (19) can be expressed in a more explicit form by utilizing homogeneous

polynomials. As mentioned earlier, any function within ⨁m
i=0 H

Γ
2i can be represented as a

degree m homogeneous polynomial with squared variables, as shown in Lemma 13. Thus,
the density in (19) can be written as follows for x = (x1, . . . , xd+1) ∈ Sd≥ 0:

pm(x, θ) = exp{sm(x2
1, x

2
2, . . . , x

2
d+1; θ) − g(θ)}, (20)

where sm represents a polynomial on the squared variables x
2
i , with θ represented as the

coefficients. The normalizing constant g(θ) can be computed by integrating over the entire
sphere as follows:

g(θ) = ∫
Sd/Γ

exp(sm)dx = 1

∣Γ∣ ∫Sd
exp(sm)dx.
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Figure 7 displays three examples of a compositional exponential distribution. The three
densities respectively have the following functional sm:

s4(x, θ1) = −2x
4
1 − 2x

4
2 − 3x

4
3 + 9x

2
1x

2
2 + 9x

2
1x

2
3 − 2x

2
2x

2
3,

s4(x, θ2) = −x
4
1 − x

4
2 − x

4
3 − x

2
1x

2
2 − x

2
1x

2
3 − x

2
2x

2
3,

s4(x, θ3) = −3x
4
1 − 2x

4
2 − x

4
3 + 9x

2
1x

2
2 − 5x

2
1x

2
3 − 5x

2
2x

2
3.

The diversity of density contours shown in Figure 7 indicates that the proposed composi-
tional exponential family is capable of modeling data with a broad spectrum of locations
and correlation structures. Further exploration is warranted, especially concerning the es-
timation of parameters. Maximum likelihood estimation, coupled with regression-based
approaches such as the one discussed by Beran (1979), serves as a natural starting point
for tackling this task.

(a) p4(x, θ1) (b) p4(x, θ2) (c) p4(x, θ3)

Figure 7: Three exemplary densities from the compositional exponential family. See text
for specification of the parameters θ1, θ2, and θ3.

5. Discussion

This research utilizes projective and spherical geometries to enhance the geometric un-
derstanding of compositional data. We propose a new nonparametric density estimation
method and construct a reproducing kernel Hilbert space existing on the reinterpreted
compositional domain. The proposed framework provides a novel approach to explore and
analyze compositional data, eliminating the need for ad-hoc treatment of zeros on the
boundary.

A practically important issue that needs to be addressed in future work is the computa-
tional complexity of the proposed RKHS, which may be significant if d is large. For instance,
the kernel SVM experiment discussed in Section 4.1.2 took between 52.15 to 92.41 seconds
to compute on an M1 MacBook Pro with 16 GB of memory, while other competing meth-
ods took much less computation times. To mitigate this computational burden, we plan to
explore two potential approaches. The first approach involves subsampling the expanded
data across the entire sphere, leveraging the symmetrical nature of Γ. By doing so, we can
effectively reduce the number of terms involved in kernel evaluations, thereby enhancing
computational efficiency. The second approach entails reducing the dimensionality of the
data using techniques such as compositional principal component analysis.
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As the editor has pointed out, a diffusion kernel proposed by Lafferty and Lebanon
(2005), specifically the Fisher information kernel for multinomial distribution, which we
call “Fisher kernel”, could also be used for compositional data. The Fisher kernel is a
solution to the heat equation that involves the Laplacian thus the application of this kernel
could capture similar features of the data. However, there seem to be three important issues
to address when one considers the Fisher kernel for compositional data. Firstly, the square-
root transformation of the normalized multinomial counts may be necessary when the data
are mapped into the sphere in order to preserve the Fisher information. This might yield a
substantial difference in the results. Secondly, the Fisher kernel approach cannot naturally
deal with the zeros in the simplex boundary, which was why a “rounding” procedure for the
simplex boundary was suggested by Lafferty and Lebanon (2005) as a remedy. The third
question regards the reproducing property and the characterization of the RKHS associated
with the Fisher kernel. These considerations lead to an interesting direction of research on
the Γ-invariant Fisher kernel.

It is also worth mentioning that even though not as intuitive as our approach, a similar
result could be derived by harmonic analysis on special orthogonal group SO(d + 1), of

which Sd is a homogeneous space, as the editor has pointed out. In fact, in directional
statistics, using tensors to represent data points has been considered by Arnold et al. (2018)
who explored statistical analysis of directional data in the coset space SO(3)/K, where
K denotes a finite subgroup of SO(3). Note that the compositional domain is given by

Sd/Γ = O(d + 1) \O(d)/Γ which is a double coset space, and the reflection group Γ is not
a subgroup of the special orthogonal group SO(d + 1).
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Appendix A. Proofs and Example

A.1 Proof of Theorem 7

Assumption 1. For all kernel density estimators and bandwidth parameters in this paper,
we assume the following:

H1 The kernel function K ∶ [0,∞) → [0,∞) is continuous such that both λd(K) and

λd(K2) are bounded for d ≥ 1, where λd(K) = 2
d/2−1

vol(Sd)∫
∞

0
K(r)rd/2−1

dr.

H2 If a function f on Sd ⊂ Rd+1
is extended to the entire Rd+1\{0} via f(x) = f(x/∥x∥),

then the extended function f needs to have its first three derivatives bounded.

H3 The bandwidth parameter hn → 0 as nh
d
n →∞.
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Let f be the extended function from Sd to Rd+1 \ {0} via f(x/∥x∥), and let

φ(f, x) = −xT ▽ f(x) + d−1(▽2
f(x) − xT (Hxf)x) = d−1

tr[Hxf(x)],

where Hxf is the Hessian matrix of f at the point x.

Define the following:

bd(K) =
∫
∞

0
K(r)rd/2

dr

∫
∞

0
K(r)rd/2−1

dr

and

φ(hn) =
4bd(K)2

d2
σ

2
xh

4
n.

Proof The strategy in Zhao and Wu (2001) in the directional set-up follows that in Hall
(1984), whose key idea is to give asymptotic bounds for degenerate U-statistics so that one
can use Martingale theory to derive the central limit theorem. The step where the finite
support condition was used in Zhao and Wu (2001), is when they were trying to prove

the asymptotic bound:E(G2
n(X1, X2)) = O(h7d), where Gn(x, y) = E[Hn(X,xHn(X, y))]

with Hn = ∫
Sd
Kn(z, x)Kn(z, y)dz and the centered kernel Kn(x, y) = K[(1 − xT y)/h2] −

E{[K(1 − xTX)/h2]}. During that proof, they were trying to show the following term

T1 = ∫
Sd
f(x)dx∫

Sd
f(y)dy × {∫

Sd
f(z)dz ∫

Sd
K[(1 − uTx)/h2]K[(1 − uT z)/h2]du

⋅ ∫
Sd
K[(1 − uT y)/h2]K[(1 − uT z)/h2]du}

2

is O(h7d), for which the finite support condition was substantially used.

The idea to avoid this assumption was based on the observation in Garćıa-Portugués
et al. (2015) where they only concern the case of directional-linear CLT, whose result can not
be directly used to the only directional case. Based on the method provided in Lemma 10 in
Garćıa-Portugués et al. (2015), one can easily deduce the following asymptotic equivalence:

∫
Sd
K
j(1 − xT y

h2
)φi(y)dy ∼ hdλd(Kj)φi(x),

where λd(Kj) = 2
d/2−1

vol(Sd−1)∫
∞

0
K
j(r)rd/2−1

dr. As a special case we have:

∫
Sd
K

2(1 − xT y

h2
)dy ∼ hdλd(K2)C, with C being a positive constant.

Now we will proceed with the proof without the finite support condition:
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T1 = ∫
Sd
f(x)dx∫

Sd
f(y)dy × {∫

Sd
f(z)dz ∫

Sd
K[(1 − uTx)/h2]K[(1 − uT z)/h2]du

⋅ ∫
Sd
K[(1 − uT y)/h2]K[(1 − uT z)/h2]du}

2

∼ ∫
Sd
f(x)dx∫

Sd
f(y)dy {∫

Sd
f(z)[λd(K)hdK(1 − xT z

h2
)] × [λd(K)hdK(1 − yT z

h2
)]dz}

2

∼ λd(K)4
h

4d ∫
Sd
f(x)dx∫

Sd
f(y)[λd(K)hdK(1 − xT y

h2
)f(y)]

2
dy

= λd(K)6
h

6d ∫
Sd

{∫
Sd
K

2(1 − xT y

h2
)f3(y)dy} f(x)dx

∼ λd(K)6
h

6d ∫
Sd
λd(K2)hdC ⋅ f3(x)f(x)dx

= Cλd(K)6
λd(K2)h7d ∫

Sd
f(x)dx = O(h7d).

Thus we have proved T1 = O(h7d) without finite support assumption, then the rest of the
proof will follow through as in Zhao and Wu (2001). Now combining this with the following
equality

∫
Sd
≥0

(p̂n − p)2
dx = ∣Γ∣∫

Sd
(f̂n − p̃)2

dy

proves the CLT of compositional ISE.

A.2 Proof of Lemma 13

Proof A direct computation yields:

(∏d+1
i=1 x

αi

i )Γ
=

1

∣Γ∣ ∑
si∈{±1}

d+1

∏
i=1

(sixi)αi

=
1

∣Γ∣ ∑
si∈{±1}

∏
i≠k

(sixi)αix
αk

k + ∑
si∈{±1}

∏
i≠k

(sixi)αi(−xk)αk

= x
αk

k

1

∣Γ∣ ∑
si∈{±1}

∏
i≠k

(sixi)αi − x
αk

k

1

∣Γ∣ ∑
si∈{±1}

∏
i≠k

(sixi)αi

= 0.

A.3 Proof of Theorem 18

We sketch a slightly more detailed (not complete) proof:
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Proof This is the most technical lemma in this article. We will sketch the philosophy of
the proof in here, which can be intuitively understood topologically.

Recall that we can produce a projective space Pd by identifying every pair of antipodal
points of a sphere Sd (identify x with −x), in other words Pd = Sd/Z2 where Z2 = {0, 1}
is a cyclic group of order 2. Then we can define a projective kernel in Hi ⊂ L

2(Sd) to be
k
p
i (x, ⋅) = [ki(x, ⋅)+ki(−x, ⋅)]/2. We can also denote the projective kernel inside ⨁m

i=0 H2i

by k
p
m(x, ⋅) = ∑m

i=0 k
p
2i(x, ⋅).

Now we spread out the data set {xi}ni=1 by “spread-out” construction in Section 2.1, and
denote the spread-out data set as {Γ ⋅ xi}ni=1 = {c−1

∆ (xi)}ni=1 (a data set, not a set because
of repetitions). A compositional reproducing kernel kernel is a summation of spherical
reproducing kernels of on c

−1
∆ (xi), divided by the number of elements in c

−1
∆ (xi). This data

set c
−1
∆ (xi) has antipodal symmetry, then a compositional kernel is a linear combination

of projective kernels. Notice that different compositional kernels are linear combinations
of different projective kernels. It suffices to show the linear independence of projective
kernels for distinct data points and large enough m, which implies the linear independence
of compositional kernels {ωm(xi, ⋅)}ni=1.

Now we are focusing on the linear independence of projective kernels. A projective kernel
can be seen as a reproducing kernel for a point in Pd. For a set of distinct points {yi}li=1 ⊂ Pd,
we will show that the corresponding set of projective kernels {kpm(yi, ⋅)}li=1 ⊂ ⨁m

i=0 H2i is
linearly independent for an integer l and a large enough m.

Consider two vector subspace V
m

1 = span[{(yi⋅t)2m}li=1] and V
m

2 = span[{kpm(yi, t)}li=1],
both of which are inside ⨁m

i=0 H2i ⊂ L
2(Sd) (here we are implicitly using Proposition 8).

Then we can define a linear map hm ∶ V
m

1 → V
m

2 by setting hm((yi ⋅ t)2m) = ∑l
j=1⟨(yi ⋅

t)2m
, k
p
m(yj , t)⟩kpm(yj , t). The matrix representation of hm with respect to these spanning

sets is an l× l symmetric matrix whose diagonal elements are 1’s, and off diagonal elements
are [(yi ⋅ yj)]2m

. Notice that yi ≠ yj in Pd, which means that they are not antipodal to

each other in Sd, thus ∣yi ⋅ yj∣ < 1. When m is large enough, all off-diagonal elements will
go to zero while diagonal elements always stay constant, then the matrix representing hm
will become a diagonally dominant matrix, which is full rank. When the linear map hm has
full rank, both spanning sets {(yi ⋅ t)2m}li=1 and {kpm(yi, t)}li=1 have to be a basis for V

m
1

and V
m

2 correspondingly, then the set of projective kernels {kpm(yi, t)}mi=1 have to be linearly
independent when m is large enough.

A.4 Proof of Theorem 19

Proof Note that the set I
m
y = {f ∈ ⨁m

i=0 H2i ∶ f(xi) = yi} is non-empty, because the f0

defined by the linear system of equation is naturally in I
m
y . Let f be any other element in

I
m
y , define g = f − f0, then we have:

∥f∥2
= ∥g + f0∥2

= ∥g∥2
+ 2⟨f0, g⟩ + ∥f0∥2

.
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Notice that g ∈⨁m
i=0 H2i and that g(xi) = 0 for 1 ≤ i ≤ n, we have:

⟨f0, g⟩ = ⟨∑n
i=1 ωm(xi, ⋅)ci, g(⋅)⟩

=

n

∑
i=1

ci⟨ωm(xi, ⋅), g(⋅)⟩.

=

n

∑
i=1

cig(xi) = 0.

Thus ∥f∥2
= ∥g + f0∥2

= ∥g∥2+∥f0∥2
, which implies that f0 is the solution to the minimal

norm interpolation problem.

A.5 Proof of Theorem 20

Proof First define the loss functional E(f) = ∑n
i=1 ∣f(xi) − yi∣2 + µ∥f∥2

. For any Γ-

invariant function f = f
Γ
∈⨁m

i=0 H2i, let g = f − fµ, then a simple computation yields:

E(f) = E(fµ) +
n

∑
i=1

∣g(xi)∣2 − 2
n

∑
i=1

(yi − fµ(xi))g(xi) + 2µ⟨fµ, g⟩ + µ∥g∥2
.

I want to show ∑n
i=1(yi − fµ(xi))g(xi) = µ⟨fµ, g⟩, and an equivalent way of writing this

equality is:

n

∑
i=1

⟨(yi − fµ(xi))ωm(xi, t), g(t)⟩ = µ⟨fµ, g⟩.

Now I claim that µfµ(t) = ∑n
i=1 [(yi−fµ(xi)) ⋅ωm(xi, t)], which implies the above equality.

To prove this claim, plug this linear combination fµ = ∑n
i=1 ci ⋅ ωm(xi, t) into the claim,

then we get a system of linear equations in {ci}ni=1, thus the proof of the claim breaks down
to checking the system of linear equations in {ci}ni=1, produced by the claim.

Note that {ωm(xi, t)}ni=1 is a linearly independent set, so one can check that the system
of linear equations in {ci}ni=1 produced by the claim is true, if and only if {ci}ni=1 satisfy
µck +∑n

i=1 ci ⋅ ωm(xi, xk) = yk for every k with 1 ≤ k ≤ n, which is given by the condition
of this theorem. The equivalence of these two systems of linear equations is given by
the linear independence of the set {ωm(xi, t)}ni=1. Therefore we conclude that the claim
µfµ(t) = ∑n

i=1 [(yi − fµ(xi)) ⋅ ωm(xi, t)] is true.
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To finish the proof of this theorem, notice that

E(f) = E(fµ) +∑n
i=1 ∣g(xi)∣

2 − 2∑n
i=1(yi − fµ(xi))g(xi) + 2µ < fµ, g > +µ∥g∥2

= E(fµ) +
n

∑
i=1

∣g(xi)∣2 + µ∥g∥2
+ 2[µ⟨fµ, g⟩ −

n

∑
i=1

(yi − fµ(xi))g(xi)]

= E(fµ) +
n

∑
i=1

∣g(xi)∣2 + µ∥g∥2

+2[µ⟨fµ, g⟩ −∑n
i=1⟨(yi − fµ(xi)) ⋅ ωm(xi, t), g(t)⟩]

= E(fµ) +
n

∑
i=1

∣g(xi)∣2 + µ∥g∥2

+2[⟨(µfµ(t) −∑n
i=1 [(yi − fµ(xi)) ⋅ ωm(xi, t)])ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

, g(t)⟩]

= E(fµ) +
n

∑
i=1

∣g(xi)∣2 + µ∥g∥2
.

The term ∑n
i=1 ∣g(xi)∣

2+µ∥g∥2
in the above equality is always non-negative, thus E(fµ) ≤

E(f), then the theorem follows.

A.6 A simple example of the compositional kernel evaluation

Suppose we have two composition points in ∆
2
: x = (0.2, 0.5, 0.3)′ and y = (0.1, 0.4, 0.5)′.

We first map them to S2
≥0: xs = (0.324, 0.811, 0.486)′ and ys = (0.154, 0.617, 0.771)′. We

compute the degree m compositional kernel given xs and ys as

ωm(xs, ys) =
m

∑
i=0

a2i

∣Γ∣vol(S2) ∑
γ∈Γ

p2i(⟨γ(xs) ⋅ ys⟩),

where γ(xs) includes all eight sign-flipped versions of xs. For instance with m = 2, ω2(xs, ys)
is

1

∣Γ∣vol(S2)
(a0 ∑

γ∈Γ

p0(⟨γ(xs) ⋅ ys⟩) + a2 ∑
γ∈Γ

p2(⟨γ(xs) ⋅ ys⟩) + a4 ∑
γ∈Γ

p4(⟨γ(xs) ⋅ ys⟩)),

which equals 0.803.
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