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Abstract

Zero-inflated count data arise in a wide range of scientific areas such as social science,
biology, and genomics. Very few causal discovery approaches can adequately account for
excessive zeros as well as various features of multivariate count data such as overdisper-
sion. In this paper, we propose a new zero-inflated generalized hypergeometric directed
acyclic graph (ZiG-DAG) model for inference of causal structure from purely observational
zero-inflated count data. The proposed ZiG-DAGs exploit a broad family of generalized
hypergeometric probability distributions and are useful for modeling various types of zero-
inflated count data with great flexibility. In addition, ZiG-DAGs allow for both linear and
nonlinear causal relationships. We prove that the causal structure is identifiable for the
proposed ZiG-DAGs via a general proof technique for count data, which is applicable be-
yond the proposed model for investigating causal identifiability. Score-based algorithms are
developed for causal structure learning. Extensive synthetic experiments as well as a real
dataset with known ground truth demonstrate the superior performance of the proposed
method against state-of-the-art alternative methods in discovering causal structure from
observational zero-inflated count data. An application of reverse-engineering a gene regula-
tory network from a single-cell RNA-sequencing dataset illustrates the utility of ZiG-DAGs
in practice.

Keywords: Bayesian network; Causal identifiability; Directed acyclic graph; Observa-
tional zero-inflated count data; Single-cell RNA-sequencing.

1. Introduction

Discovering causal structure of an unknown system is an important task in practically all
areas of science. Knowing the causal structure is not only useful for predicting a system’s
behavior under external interventions, but also has implications for machine learning tasks
such as covariate shift and transfer learning (Schölkopf et al., 2012). The most effective
and principled way for causal discovery is to conduct controlled experiments. However, it
is often expensive, unethical, or even impossible in certain fields such as genomics (Opgen-
Rhein and Strimmer, 2007) and social sciences (Bollen, 1989). Hence, causal discovery
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approaches that can infer the unknown causal structures from purely observational data
are often desired.

This paper considers causal discovery for purely observational zero-inflated count data.
Observational zero-inflated count data are common across multiple disciplines, for instance,
educational psychology (Fox, 2013), genomics (Kang et al., 2011), ecology (Barry and Welsh,
2002), behavior studies (Hua et al., 2014), and economics (Staub and Winkelmann, 2013).
A specific application, by which we are motivated, is to reverse-engineer gene regulatory
networks from single-cell RNA-sequencing (scRNA-seq) data. The scRNA-seq technology
measures the abundance of mRNA within single cells, resulting in count data with excessive
zeros because of technological limits in sequencing the low amounts of mRNA in individual
cells. For causal structure learning from observational zero-inflated count data, we work
under the framework of causal Bayesian networks (BNs), which have been widely used for
representing causal relationships among variables via directed acylic graphs (DAGs).

Learning the structure of BNs is not trivial because the size of the space of possible
graph structures grows super-exponentially in the number of variables. Furthermore, BNs
may not be distinguishable from each other with observational data. Multiple DAGs can
encode the same conditional independence assertions and in general, DAGs are identifiable
only up to Markov equivalence class (MEC) in which all DAGs encode the same set of con-
ditional independences (Heckerman et al., 1995). Therefore, in the past, many approaches
have focused on identifying the MEC rather than individual DAGs (Spirtes et al., 2000;
Chickering, 2002; Kalisch and Bühlman, 2007; Castelletti et al., 2018). For example, the
well-known PC algorithm infers a set of conditional independencies and recovers a MEC that
is compatible with the inferred conditional independencies (Spirtes et al., 2000). The GES
algorithm performs greedy search over the space of MECs and obtains the best-scored MEC
(Chickering, 2002). However, DAGs within the same MEC may have drastically different
causal interpretations.

Since 2006, it has been shown that for some classes of BNs, the exact graph structure, not
just the MEC, may be identifiable from observational data alone. For continuous variables,
BNs are often represented by sparse additive noise models. Under this formulation, the
underlying DAG is identifiable if the functional form of the additive noise model is linear
with non-Gaussian noises (Shimizu et al., 2006; Wang and Drton, 2020) and if the functional
form is nonlinear with mild regularity assumptions on the function-noise pair (Hoyer et al.,
2008; Peters et al., 2011, 2014). Peters and Bühlmann (2014); Chen et al. (2019) have also
shown that unique identification of DAG structure is possible under linear additive noise
models with Gaussian noises having equal variances.

The vast majority of the existing works that establish identifiability theorems for BNs
have focused on continuous variables; identifiability issues of BNs for count data are less
studied. Park and Raskutti (2015) proposed linear Poisson BNs for observational count
data and investigated the overdispersion scores to prove that the unique identification of
the underlying DAG is possible. However, the applicability of Poisson BNs may be limited
due to the restrictive assumption of Poisson distribution that the variance is equal to the
mean. Park and Park (2019) generalized the idea of Poisson BNs to a family of generalized
hypergeometric distributions that includes the Poisson distribution, the hyper-Poisson dis-
tribution, the negative binomial distribution, and many more. An identifiability theorem
for the generalized hypergeometric BNs was established using the moment ratio scores. Al-
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though the generalized hypergeometric BNs are a quite general class of count BNs, they
tend not to adequately model count data with excessive zeros.

There have been a few recent BNs that are fully identifiable for observational zero-
inflated data. Using Hurdle conditional distributions, Yu et al. (2020) proposed fully
identifiable BNs for zero-inflated Gaussian data. Recently, we (Choi et al., 2020) devel-
oped zero-inflated Poisson BNs for observational zero-inflated count data. We have shown,
theoretically and empirically, that the underlying causal DAG can be identified from ob-
servational data alone. However, the zero-inflated Poisson BNs have the same limitation
as Poisson BNs, that is, Poisson distribution is a restrictive distribution. In particular,
the Poisson-based BNs do not adequately account for overdispersion, a common feature of
count data. Hence it is desirable to further develop a more general class of count BNs that
can account for a broad range of multivariate count data with excessive zeros.

In this paper, we introduce a fairly general class of count BNs for observational zero-
inflated count data, termed zero-inflated generalized hypergeometric DAGs (ZiG-DAGs).
We extend the zero-inflated Poisson BNs (Choi et al., 2020) to zero-inflated generalized
hypergeometric models, which include many common count distributions. Therefore, the
proposed ZiG-DAGs are capable of modeling various types of zero-inflated count data,
for example, overdispersed zero-inflated count data. In addition, we allow for both linear
and nonlinear causal relationships in order to flexibly capture real causality in practice
whereas Choi et al. (2020) only considers linear causal relationships. Based on a new general
proof technique, we prove that the proposed ZiG-DAG is uniquely identifiable, justifying
its use for casual discovery. The general proof technique can be potentially used to check
identifiability for other discrete BNs as well. The established identifiability theorems do
not require the causal faithfulness assumption (Uhler et al., 2013) typically required by
constraint-based algorithms. For the structure learning of ZiG-DAGs, we develop score-
based algorithms: exhaustive search for small graphs and greedy search for moderate-to-
large graphs. Specifically, we consider two different greedy search algorithms to deal with
the local optima problem of greedy search. We empirically demonstrate that the proposed
methods compare favorably against state-of-the-art alternatives. We also illustrate the
utility of ZiG-DAGs in real-world problems using a scRNA-seq dataset.

The remainder of this paper is organized as follows. We set up necessary notations
and definitions for BNs in Section 2.1 and we introduce the proposed ZiG-DAG models for
observational zero-inflated count data in Section 2.2. Section 3 establishes identifiability
theorems for the proposed ZiG-DAGs. In Section 4, we develop score-based algorithms for
causal structure learning of ZiG-DAGs. We demonstrate the utility of our methods through
synthetic data in Section 5 and real-world applications in Section 6. Section 7 provides our
closing discussion.

2. Bayesian Networks for Observational Zero-inflated Count Data

2.1 Notation and Background

We start with some basic notations for DAGs and BNs. Let X = {X1, . . . , Xd} denote a
set of d random variables. A DAG G = (V ,E) consists of a set of nodes V = {1, . . . , d}
corresponding to the variables X and a set of directed edges E ⊂ V × V representing
the causal relationships between the nodes V without cycles. If we have a directed edge
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(j, k) ∈ E (or slightly abusing the notation, j → k ∈ E) for j, k ∈ V , node j is called a
parent of k and node k is called a child of j. We denote the set of parents of node j in G by
paG(j) and the set of children of j in G by chG(j). Node k is said to be a descendant of node
j if there exists a directed path j = j0 → j1 → · · · → jl = k and otherwise is said to be a
non-descendant of j. We use ndG(j) to denote the set of non-descendants of j (excluding j
itself). A BN B for X is a pair B = (G, p) with the joint distribution p(·) factorizing over
G as follows:

p(X1, . . . , Xd) =

d∏
j=1

p(Xj |XpaG(j)), (1)

where XpaG(j) = {Xk : k ∈ paG(j)} and p(Xj |XpaG(j)) is the conditional probability dis-
tribution of Xj given its parents. We say a joint distribution p(·) is (local) Markov with
respect to a DAG G if each variable Xj is independent of its non-descendants XndG(j) =
{Xk : k ∈ ndG(j)} given its parents XpaG(j). The factorization in (1) is equivalent to the
Markov property of p(·) (Verma and Pearl, 1990). In this paper, we make the causal Markov
assumption – p(·) is Markov with respect to the causal DAG G – so that we can interpret
G causally; in other words, each node is assumed to be independent of all its non-effects
conditional on all its direct causes.

In general, the DAG G of a BN B = (G, p) is not identifiable from the joint distribution
p(·). Indeed, the joint distribution p(·) is Markov with respect to many different DAGs
including all fully connected DAGs. Therefore, we have many possible BNs with different
graph structures for the same joint distribution. To overcome this indeterminacy, one
can make additional assumptions and obtain a restricted model for which the graph is
identifiable from the joint distribution. A common assumption in the literature for learning
BNs is faithfulness. A joint distribution p(·) is faithful with respect to a DAG G if the
graph G encodes all the conditional independence constraints in the joint distribution p(·).
If faithfulness is assumed, DAGs are identifiable up to MEC (Spirtes et al., 2000). Two
DAGs G and G′ are Markov equivalent if the two DAGs encodes the same set of conditional
independence constraints and a MEC is defined by a set of DAGs that are Markov equivalent.
For example, despite the seemingly different graph structures, the DAGs in Figure 1(a)-(c)
forms a MEC, which encodes the only conditional independence X1 ⊥⊥ X2|X3, whereas
the DAG in Figure 1(d) encodes the marginal independence of X1 and X2 only and forms
another MEC. Since both the Markov property and faithfulness only constrain conditional
independencies in the joint distribution, we cannot distinguish DAGs in the same MEC,
which impose the same set of conditional independence assertions. For instance, the well-
known PC algorithm (Spirtes et al., 2000) and the GES algorithm (Chickering, 2002), under
the faithfulness assumption, aim to find the best MEC rather than the best individual DAG.

In many applications of BNs, a specific family of distributions is assumed for the con-
ditional distribution of each node given its parents. For example, we will assume that the
conditional probability for each node comes from a zero-inflated count model. Even with
such distributional assumptions, the DAG may still be non-identifiable due to the distribu-
tion equivalence. Two DAGs G and G′ are distribution equivalent if for every BN B = (G, p)
there exists a different BN B′ = (G′, p′) such that the joint distributions are identical, i.e.,
p(X1, . . . , Xd) = p′(X1, . . . , Xd). For example, for Gaussian BNs or multinomial BNs, they
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Figure 1: Examples of DAGs with three nodes. DAGs in (a)-(c) are Markov equivalent and
form a Markov equivalence class that encodes X1 ⊥⊥ X2|X3. DAG in (d) forms
another Markov equivalence class that encodes X1 ⊥⊥ X2.

are distribution equivalent if and only if they are Markov equivalent. Hence, we can identify
only the MEC from the joint distribution for Gaussian and multinomial BNs. Hence, not
surprisingly, if we assume that data are generated from one of the three DAGs in Figure
1(a)-(c), the best answer that we can achieve using Gaussian BNs or multinomial BNs is
that one of them is the true model. This is unsatisfactory for many applications and it
has been recently shown that there exist certain cases where we can overcome the issue of
distribution equivalence and the graph structure is fully identifiable. The existing works
often represent continuous BNs as sparse additive noise models and under this framework,
the underlying DAG is identifiable if the functional form of the additive noise model is
linear and the noises are non-Gaussian (Shimizu et al., 2006), if nonlinear functions are
considered with very mild additional conditions (Hoyer et al., 2008; Peters et al., 2011),
or if the functions are linear and the noises are Gaussian with equal variance (Peters and
Bühlmann, 2014). However, most existing approaches focus on BNs for continuous data,
and the identifiability of BNs for count data are much less studied (Park and Raskutti,
2015; Park and Park, 2019; Choi et al., 2020).

2.2 Zero-Inflated Generalized Hypergeometric Directed Acyclic Graphs

We consider a broad family of discrete distributions for count data. Kemp (1968a,b) defines
a family of generalized hypergeometric probability distributions (GHPDs), which includes
a lot of common probability distributions for count data and has many useful properties
such as recurrence relationships for both their probabilities and their factorial moments.
Let (a)k = a(a+ 1) · · · (a+k− 1) denote the ascending (rising) factorial with (a)0 = 1. The
generalized hypergeometric function is then defined as

pFq(a1, . . . , ap; b1, . . . , bq;λ) =
∑
i≥0

(a1)i · · · (ap)iλi

(b1)i · · · (bq)ii!
.
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Note that a1, . . . , ap are exchangeable and so are b1, . . . , bq. A distribution is said to be a
GHPD if its probability generating function can be written in the following form:

G(s;a, b, λ) =
pFq(a1, . . . , ap; b1, . . . , bq;λs)

pFq(a1, . . . , ap; b1, . . . , bq;λ)
, (2)

where a = (a1, . . . , ap) and b = (b1, . . . , bq). A large number of discrete distributions
for count data belong to the class of GHPDs, for example, binomial, Poisson, negative
binomial, hypergeometric, beta-binomial, and beta-negative binomial. Table 1 provides
some examples of GHPDs with their probability generating functions (see also Kemp 1968a;
Dacey 1972; Johnson et al. 2005).

Table 1: Examples of GHPDs and their probability generating functions

Distributions Probability generating function Parameters

Binomial
1F0(−n; ;−ps/(1− p))
1F0(−n; ;−p/(1− p))

0 < p < 1

Poisson
0F0(; ; θs)

0F0(; ; θ)
θ > 0

Hyper-Poisson
1F1(1;ψ; θs)

1F1(1;ψ; θ)
ψ > 0, θ > 0

Geometric
1F0(1; ; qs)

1F0(1; ; q)
0 < q < 1

Negative Binomial
1F0(k; ; qs)

1F0(k; ; q)
k > 0, 0 < q < 1

Hypergeometric
2F1(−n,−Np;N −Np− n+ 1; s)

2F1(−n,−Np;N −Np− n+ 1; 1)
n,N ∈ N, 0 < p < 1

Beta-Negative Binomial
2F1(k, `; k + `+m; s)

2F1(k, `; k + `+m; 1)
k, `,m ≥ 0

Extended Generalized Waring
2F1(k, `; k + `+m; θs)

2F1(k, `; k + `+m; θ)
k, ` > 0,m ∈ R, 0 < θ < 1

We define, by using the GHPDs, ZiG-DAGs for observational zero-inflated count data.
In order to explicitly account for excessive zeros in count data, we adopt the zero-inflated
model. We say a BN B = (G, p) for random counts X is a ZiG-DAG if for each node
j ∈ V , the conditional distribution p(Xj |XpaG(j)) of the factorization (1) has a probability
generating function of the following form,

Gj
(
s;XpaG(j)

)
= πj

(
XpaG(j)

)
+
(
1− πj

(
XpaG(j)

))
G
(
s;aj , bj , λj

(
XpaG(j)

))
, (3)

where G(s;aj , bj , λj) is a GHPD probability generating function defined by (2) with aj =
(aj1, . . . , ajpj ) and bj = (bj1, . . . , bjqj ). Here, πj(·) and λj(·) are functions/mappings from
XpaG(j) to R, which connect the parents XpaG(j) of node j to its conditional distribution,

where XpaG(j) ⊂ {0, 1, 2, . . .}
|paG(j)|. For a ZiG-DAG, the probability mass function of each
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conditional distribution is given by

Pr
(
Xj = x|XpaG(j)

)
=

{
πj
(
XpaG(j)

)
+
(
1− πj

(
XpaG(j)

))
GHP

(
0;aj , bj , λj

(
XpaG(j)

))
if x = 0,(

1− πj
(
XpaG(j)

))
GHP

(
x;aj , bj , λj

(
XpaG(j)

))
if x = 1, 2, . . . ,

where GHP (x;aj , bj , λj) is the probability mass function of a GHPD of which the prob-
ability generating function is given by G (s;aj , bj , λj). Particularly, πj(·) ∈ (0, 1) is the
probability that extra zeros occur in addition to the zeros that arise from the GHPD, and
λj(·) is the power parameter of GHPD that is closely related to its moments. For example,
in the Poisson probability generating function G(s;aj , bj , λj) = 0F0(; ;λjs)/0F0(; ;λj), λj
represents the mean of the Poisson distribution. As another example, in the negative bino-
mial probability generating function G(s;aj , bj , λj) = 1F0(k; ;λjs)/1F0(k; ;λj), λj denotes
the probability of “success”, which can be reparametrized in terms of the first and second
moments of the negative binomial distribution.

For πj(XpaG(j)) and λj(XpaG(j)), we consider both linear and nonlinear functional forms.
We use the logit function, logit(·), as link function for πj , where logit(ρ) = log(ρ/(1 − ρ))
for 0 < ρ < 1. Let hj(·), j = 1, . . . , d, denote any suitable link function for λj , which
is assumed to be strictly increasing for invertibility. First, we define linear ZiG-DAGs by
assuming logit(πj(XpaG(j))) and hj(λj(XpaG(j))) vary linearly with the parents XpaG(j) of
node j ∈ V .

Definition 1 (Linear ZiG-DAGs) We say a BN B = (G, p) is a linear ZiG-DAG if the
joint distribution p(·) factorizes with respect to the DAG G as in (1) with each conditional
distribution p(Xj |XpaG(j)) having a probability generating function (3), where πj(XpaG(j))
and λj(XpaG(j)) are given by

logit
(
πj(XpaG(j))

)
=

∑
k∈paG(j)

αjkXk + δj ,

hj
(
λj(XpaG(j))

)
=

∑
k∈paG(j)

βjkXk + γj , (4)

with some strictly increasing functions hj.

The zero-inflated Poisson BN in our recent work (Choi et al., 2020) is a special case
of the proposed linear ZiG-DAG. Furthermore, in order to allow more flexible causal re-
lationships, we propose nonlinear ZiG-DAGs by adopting the additive model framework.
Particularly, for each Xj , we model logit(πj(XpaG(j))) and h(λj(XpaG(j))) as the sum of
nonlinear functions of Xk, k ∈ paG(j).

Definition 2 (Nonlinear ZiG-DAGs) We say a BN B = (G, p) is a nonlinear ZiG-DAG
if the joint distribution p factorizes with respect to the DAG G as in (1) with each conditional
distribution p(Xj |XpaG(j)) having a probability generating function (3), where πj(XpaG(j))
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and λj(XpaG(j)) are given by

logit
(
πj(XpaG(j))

)
=

∑
k∈paG(j)

fjk(Xk) + µj ,

hj
(
λj(XpaG(j))

)
=

∑
k∈paG(j)

gjk(Xk) + νj , (5)

with some strictly increasing functions hj and nonlinear functions fjk and gjk.

Without loss of generality, we assume that E [fjk(Xk)] = E [gjk(Xk)] = 0,∀j ∈ V , k ∈
paG(j) because they can always otherwise be absorbed into the intercepts µj and νj . If
zero-inflated random counts X follow either a linear ZiG-DAG or a nonlinear ZiG-DAG,
they satisfy, by definition, the Markov property (conditional independencies) encoded in
the underlying DAG. As mentioned earlier, BNs may not be identifiable due to Markov
and distribution equivalence. In the next section, we will show that under the proposed
ZiG-DAG models, the causal graph structure is identifiable from observational data alone.

3. Identifiability Theory

Recently, much effort has been directed to show that some assumptions on the conditional
distribution of each node can impose non-independence constraints on the joint distribution
so that the DAG of a BN is identifiable (Shimizu et al., 2006; Hoyer et al., 2008; Peters
et al., 2014; Peters and Bühlmann, 2014). However, the existing literature mostly addresses
the identifiability issue of BNs for continuous data, and there are much fewer identifiability
results on BNs for count data. Park and Raskutti (2015); Park and Park (2019) developed
BNs by using Poisson and the generalized hypergeometric family and showed that their
causal orderings are identifiable. Our recent work (Choi et al., 2020) investigated the
identifiability of the zero-inflated Poisson BNs. These three methods are special cases of the
proposed ZiG-DAGs; however, none of their proof techniques is applicable in our setting.
Therefore, before we state the main identifiability theories for both linear and nonlinear
ZiG-DAGs, we provide a general framework to check the identifiability of discrete BNs. We
provide a sufficient condition under which two discrete BNs with different DAGs must have
different joint distributions. The proofs of the identifiability theorems for the proposed
ZiG-DAGs are based on such a sufficient condition. Specifically, Proposition 4 formulates
the sufficient condition in terms of probability generating functions for the conditional
distribution of each node given its parents. As discrete distributions are often defined by
the probability generating function, one can potentially use Proposition 4 to verify the
identifiability of other discrete BNs. We first state two assumptions that our identifiability
theories require:

Condition 3 We assume (i) there exists no unmeasured confounder, and (ii) there is no
selection bias.

No unmeasured confounder (also known as causal sufficiency) and no selection bias are
commonly adopted in the literature for causal structure learning (Chickering, 2002; Shimizu
et al., 2006; Peters and Bühlmann, 2014; Maathuis et al., 2018). The BN factorization (1)
does not hold if either or both assumptions in Condition 3 are violated.
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For two discrete BNs B = (G, p) and B∗ = (G∗, p∗), we denote pa(j) = paG(j), pa∗(j) =
paG∗(j), ch(j) = chG(j), ch∗(j) = chG∗(j), and nd(j) = ndG(j) for the ease of notation.
We let Gj(s;xpa(j)) and G∗j (s;xpa∗(j)) denote the probability generating functions for the
conditional distributions p(xj |xpa(j)) and p∗(xj |xpa∗(j)) of B and B∗, respectively. Note that

by definition, p(xj |xpa(j)) = G
(xj)
j (0;xpa(j)) where G

(xj)
j denotes the xj-th derivative of Gj .

Proposition 4 Let B = (G, p) and B∗ = (G∗, p∗) be any two discrete BNs, where G =
(V ,E) and G∗ = (V ,E∗). Suppose that for every node j ∈ V for which

G
(xj+1)
j (0;xpa(j))

G
(xj)
j (0;xpa(j))

=
G∗j

(xj+1)(0;xpa∗(j))

G∗j
(xj)(0;xpa∗(j))

∏
k∈ch∗(j)∩nd(j)

G∗k
(xk)(0;xpa∗(k)\{j}, xj + 1)

G∗k
(xk)(0;xpa∗(k)\{j}, xj)

(6)

holds for all possible x1, . . . , xd, it is also true that pa(j) = pa∗(j) and ch∗(j) ∩ nd(j) = ∅
holds. Then, if the joint distributions of B and B∗ are equivalent, i.e., p = p∗, we have
E = E∗.

All proofs can be found in the appendices. The main idea behind the proof is to show
that if the observational joint distributions p and p∗ are identical, then the proposition
condition (6) necessarily implies that G and G∗ have to be identical. Given any topological
ordering of the graph G, we first show that the parent sets, in G and G∗, of the last node
in the ordering have to be identical if the joint distributions are the same. Then we use
mathematical induction to show that this is also true for any node of V and therefore G
and G∗ have to be identical.

Sometimes, it is also of interest to identify the model parameters. When the graph
structure is identifiable, the parameter identifiability simplifies to a question of whether
parameters associated with the conditional distribution of each node are identifiable. Since
Proposition 4 implies that the graph structure is already identifiable, if a conditional distri-
bution of each node is uniquely determined by the associated parameters, then we necessarily
have a one-to-one correspondence between the joint distribution of the BN and the set of
all associated parameters, and hence parameters are identifiable.

Corollary 5 Let Ξ = {Ξj}j∈V and Ξ∗ = {Ξ∗j}j∈V be sets of parameters that are associated
with discrete BNs B and B∗, respectively, where Ξj and Ξ∗j denote the sets of parameters
associated with the conditional distribution of the node j only. Suppose that for any j ∈ V ,
the assumption in Proposition 4 holds and, furthermore, Ξj = Ξ∗j whenever p(xj |xpa(j)) =
p∗(xj |xpa∗(j)). Then, if the joint distributions of B and B∗ are equivalent, i.e., p = p∗, we
have Ξ = Ξ∗.

Using Proposition 4 and Corollary 5, we prove identifiability of the underlying DAG
and the associated parameters for both the linear ZiG-DAG and the nonlinear ZiG-DAG in
Theorems 6 and 7.

Theorem 6 Let B = (G, p) be a linear ZiG-DAG. Assume Condition 3 holds. Then, if the
variables are not binary, the graph G is identifiable from the joint distribution p(X). For
given (pj , qj) (which characterizes the generalized hypergeometric function pjFqj ) and given
hj (the link function for λj), there is a unique set of parameters for the linear ZiG-DAG
that induces the observed distribution p(X).
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Theorem 7 Let B = (G, p) be a nonlinear ZiG-DAG. Assume Condition 3 holds. Then,
if the variables are not binary, the graph G is identifiable from the joint distribution p(X).
For given (pj , qj) (which characterizes the generalized hypergeometric function pjFqj ) and
given hj (the link function for λj), there is a unique set of parameters for the nonlinear
ZiG-DAG that induces the observed distribution p(X).

In Theorems 6 and 7, the assumptions that pj , qj , hj are given, which we make for
parameter identifiability, indicates that the conditional distribution of each node in ZiG-
DAGs should take a specific GHPD model among the family of GHPDs along with a specific
link function. One example of such a combination would be the Poisson distribution with
the log link function. Furthermore, the assumption excludes limiting cases of a given GHPD.
For instance, if we use the negative binomial distribution for a node, we do not allow it to
degenerate to a Poisson distribution, since the negative binomial distribution has pj = 1,
qj = 0, while the Poisson distribution has pj = 0, qj = 0. This assumption seems reasonable
since we have to decide which GHPD and link function to use in practice. In Sections 5
and 6, for the proposed ZiG-DAG, we consider the Poisson distribution, the hyper-Poisson
distribution, and the negative binomial distribution with the log link function. With such
choices of GHPD and link function, Theorems 6 and 7 state that both the causal structure
and the model parameters for the proposed ZiG-DAGs are fully identifiable from the joint
distribution.

Theorems 6 and 7 do not require faithfulness to prove that the exact graph structure
is identifiable under the proposed ZiG-DAG models. While continuous BNs such as linear
Gaussian BNs may have accidental cancellation of positive and negative causal effects and
hence may become unfaithful, the proposed ZiG-DAGs do not allow such cancellation due to
inherent asymmetry of count distributions. Faithfulness can be violated in an equilibrium-
maintaining system such as a biological system (Andersen, 2013) and in datasets with lim-
ited sample size (Uhler et al., 2013). In such cases, therefore, causal discovery approaches
that require the faithfulness assumption are not favorable. In our specific motivating ap-
plication of reverse-engineering gene regulatory networks from scRNA-seq data, one should
avoid the common practice of “Gaussianizing” raw scRNA-seq data because then one needs
to additionally make the faithfulness assumption that may not be suitable in gene regula-
tory systems; instead, directly working with raw zero-inflated count data with the proposed
ZiG-DAG does not suffer from this limitation.

4. Algorithms

In this section, we discuss algorithms for learning the causal structures of both the linear
ZiG-DAGs and the nonlinear ZiG-DAGs. We will consider score-based approaches, which
complement the Bayesian inference procedure developed in our recent work (Choi et al.,
2020).

4.1 Structure Learning for Linear ZiG-DAGs

Suppose that we are given zero-inflated count data x = {x(1), . . . ,x(n)} that are n in-
dependent realizations of X from a linear ZiG-DAG model B = (G, p). For the linear
ZiG-DAG, we denote the model parameters by θ = {α,β, δ,γ,a, b} with α = {αjk}(j,k)∈E ,

10
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β = {βjk}(j,k)∈E , δ = {δj}j∈V ,γ = {γj}j∈V ,a = {aj}j∈V , and b = {bj}j∈V . We let
p(·|θ,G) denote the joint distribution of the linear ZiG-DAG given the model parameters θ
and the DAG G. We score each DAG by the Bayesian information criterion (BIC),

BIC(G|x) = −2

n∑
i=1

log p(xi|θ̂,G) + |θ| log(n), (7)

where θ̂ denotes the maximum likelihood estimate of the model parameters and |θ| denotes
the number of model parameters. As the individual DAG is identifiable for the proposed
ZiG-DAGs, the consistency of the BIC ensures that the true DAG uniquely achieves the
minimum BIC with probability converging to 1 as n→∞ (Claeskens et al., 2008). We take
two strategies to minimize the BIC given by (7) with respect to the DAG G: (1) exhaustive
search and (2) greedy search.

Exhaustive Search For small graphs where the number of nodes d is small, the BIC can
be minimized by computing the scores for all possible DAGs and find the DAG with the
lowest score. This approach is exact and is useful for small d (say, d ≤ 4). As the number
of nodes d grows, however, this approach becomes computationally infeasible very quickly
because the number of DAGs grows super-exponentially in d.

Greedy Search For larger graphs, exhaustive search is infeasible; we will use greedy
search instead. Greedy search algorithms in the context of BN learning consider local
moves from the current graph and makes the locally optimal choice at each iteration. We
consider two strategies, hill climbing (HC) and tabu search (TS) algorithms.

The HC algorithm explores the neighborhood of the current DAG in the space of all
possible DAGs. The neighborhood is defined using local moves. At each iteration, the
algorithm scores all the DAGs that can be reached from the current graph by an edge
addition, deletion, or reversal. The current DAG is then replaced by the DAG that provides
the largest improvement, i.e., largest decrease in BIC in our case. We stop the algorithm if
the improvement is no longer possible. We summarize the HC procedure in Algorithm 1.
Although this algorithm finds a local optimal graph, there is no guarantee that the graph
obtained by HC is a global optimum.

In order to avoid being trapped in local optima, the TS algorithm allows s additional
local moves (edge addition, deletion, and reversal) when we reach a local optimal graph for
which the score cannot be improved. These additional steps explore new territories around
the local optimum even if they do not improve the score and may find new direction to
arrive at a better structure. Note that the final solution should be the best DAG found
anywhere during the search, not the DAG at which the algorithm stops. Furthermore, we
keep a list (the tabu list) of all local moves that we have applied within the last t iterations.
During the search over the neighborhood of the current DAG, our TS algorithm do not
consider local modifications that reverse the local moves in the tabu list. For example, if
we add an edge j → k, we cannot delete the edge in the next t steps. This forces the search
to explore new directions in the space of DAGs, instead of tweaking with the same parts of
the current solution. Our TS algorithm is summarized in Algorithm 2.
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Algorithm 1 Hill climbing

1: Input: data x, initial DAG G0.
2: Compute BIC(G0|x) and set BICmax = BIC(G0|x).
3: Set Gmax = G0.
4: repeat
5: Initialize Improvement = false.
6: for all DAGs G′ reachable from Gmax by an edge addition, deletion, or reversal do
7: Compute BIC(G′|x).
8: if BIC(G′|x) < BICmax then
9: Set Gmax = G′ and BICmax = BIC(G′|x).

10: Set Improvement = true.
11: end if
12: end for
13: until Improvment is false
14: Output: DAG Gmax.

Algorithm 2 Tabu search

1: Input: data x, initial DAG G0, number of additionally allowed steps s, size of the tabu
list t.

2: Compute BIC(G0|x) and set BICmax = BIC(G0|x).
3: Set G∗ = Gmax = G0.
4: Initialize LastImprovement = 0.
5: while LastImprovement < s do
6: Initialize BIC∗ =∞.
7: for all DAGs G′ reachable from G∗ by an edge addition, deletion, or reversal do
8: if G′ does not reverse local moves in the tabu list, (i.e., in the last t steps) then
9: Compute BIC(G′|x).

10: if BIC(G′|x) < BIC∗ then
11: Set G∗ = G′ and BIC∗ = BIC(G′|x).
12: end if
13: end if
14: end for
15: if BIC∗ < BICmax then
16: Set Gmax = G∗ and BICmax = BIC∗.
17: Set LastImprovement = 0.
18: else
19: Set LastImprovement = LastImprovement+ 1.
20: end if
21: end while
22: Output: DAG Gmax.
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4.2 Structure Learning for Nonlinear ZiG-DAGs

While our identifiability theory for nonlinear ZiG-DAGs is general, for structure learning,
we need to make specific choice of the nonlinear functions fjk and gjk. For example, one
can expand fjk and gjk with the Fourier bases if the functional relationship is expected
to be periodic. Similarly, if we expect that the relationship might show a very localized
behavior, wavelets can be a good choice. In this paper, we employ spline basis expansion
for fjk and gjk. Splines are popular in semiparametric function estimation because of the
ease of their construction, their flexibility and accuracy to approximate a smooth function,
and their interpretability through the representation by a compact set of basis functions
and coefficients. Particularly, fjk and gjk are modeled by cubic B-splines,

fjk(·) =

Mf∑
l=1

ζjklBjkl(·) and gjk(·) =

Mg∑
l=1

ηjklCjkl(·),

where {Bjkl(·)}
Mf

l=1 and {Cjkl(·)}
Mg

l=1 are cubic B-spline basis functions with some pre-specified
knots. In summary, the nonlinear ZiG-DAG model is parameterized by spline coefficients
ζjkl, ηjkl and the other node-specific model parameters µj , νj ,aj , bj . The BIC for each
DAG can be evaluated in the same way with (7) and we can use either exhaustive search
or greedy search as in Section 4.1 for estimating the underlying graph for nonlinear ZiG-
DAGs. The R implementation of the proposed method is available in the R package ZiGDAG
(https://github.com/junsoukchoi/ZiGDAG.git).

5. Experiments

We empirically evaluate the causal discovery performance of both linear and nonlinear ZiG-
DAG models with synthetic data. We compare the proposed method with state-of-the-art
BN learning algorithms for count data: the overdispersion scoring (ODS) algorithm for
Poisson BNs (Park and Raskutti, 2015) and the moments ratio scoring (MRS) algorithm
for generalized hypergeometric BNs (Park and Park, 2019). We also consider the ZiDAG
for zero-inflated Gaussian data (Yu et al., 2020) with the log(x + 1) transformation of the
synthetic count data.

5.1 Linear ZiG-DAG

We first consider a linear ZiG-DAG, where the conditional distribution of each node has a
probability generating function given by (3) withG (s;aj , bj , λj) = 1F1 (1;ψj , λjs) /1F1 (1;ψj , λj).
That is, the conditional distribution of each node follows a zero-inflated hyper-Poisson,
which is a quite flexible distribution as the hyper-Posson distribution allows for both
overdispersion and underdisperion in count data. We sample data from the linear ZiG-
DAG with different sample sizes n ∈ {250, 500, 1000, 2000} and different numbers of nodes
d ∈ {10, 25, 50, 100}. For each simulation setting, we set the causal DAG G by randomly
generating a sparse DAG with d edges. Given the DAG, we generate coefficients (αjk, βjk)
in (4) from independent uniform distributions: αjk ∼ U(0.5, 2) and βjk ∼ U(−2,−0.5) for
k ∈ paG(j) and j ∈ V . The intercepts δj and γj in (4) are chosen uniformly at random from
(−1.5, 1) and (1, 1.5), respectively. The additional parameters ψj for the GHPD (hyper-
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Poisson distribution) are sampled as log(ψj) ∼ U(−2, 2). These ranges are chosen so that
the resulting observations are not all zeros or do not have extremely large values. Each
simulation setting is repeated 50 times, and the simulated datasets have ∼ 50% zeros.

For ZiG-DAG, we implement both HC and TS algorithms as introduced in Section 4.
Since they are greedy, initial values can affect the outcome. We consider two ways of ini-
tialization: first, we start HC (HC0) and TS (TS0) at the empty graph; and second, we
initialize HC (HC1) and TS (TS1) with the DAGs obtained by MRS, which are expected to
be better than empty graphs. To assess the causal discovery performance of each method,
we calculate the true positive rate (TPR), the false discovery rate (FDR), and the Mat-
tews correlation coefficient (MCC) for selection of true directed edges. MCC is a balanced
measure of binary classification that takes a value between −1 and 1 with 1 indicating per-
fect agreement between the true and estimated graphs (i.e., perfect selection), 0 indicating
random guess, and −1 indicating total disagreement.

We summarize in Tables 2-3 the operating characteristics of each method for different
combinations of the sample size n and the number of nodes d. For every simulation setting,
the proposed methods consistently outperform ODS, MRS, and ZiDAG. Specifically, as
the sample size increases, our greedy search algorithms find the causal structure more
accurately as expected. Our approaches also show satisfactory performance for various
graph sizes including moderately large graphs (d = 100). We make additional observations
for difference between the HC and TS algorithms. When the greedy search algorithms
starts at the empty graph, i.e., HC0 and TS0, the performance of TS is better than that of
HC. However, if we consider HC1 and TS1 for which we provide more informative initial
DAG, there is no statistically significant difference between HC1 and TS1 in most cases. In
subsequent simulations, for simplicity, we leave out HC1, TS0 and TS1, and only consider
HC0 to learn the proposed ZiG-DAGs from data.

Model Misspecification When the conditional distribution of each node in a ZiG-DAG
model is misspecified, our identifiability theories do not guarantee that we can find the true
DAG. Therefore, an important question is how well our algorithms recovers the true graph
when misspecified distributions are used. We investigate this empirically. We choose the
simulation scenario with n = 1000 and d = 50, and apply two different linear ZiG-DAG
models. The first one is a linear ZiG-DAG (ZiG-DAG-HP) using the zero-inflated hyper-
Poisson distribution as above. The second one is another linear ZiG-DAG (ZiG-DAG-NB)
where the conditional distribution of each node is assumed to follow a zero-inflated negative
binomial distribution. In ZiG-DAG-NB, every conditional distribution is misspecified, as
the true data-generating model is ZiG-DAG-HP. The simulation results are shown in Figure
2. Both ZiG-DAG-HP and ZiG-DAG-NB are better than ODS, MRS, and ZiDAG. Although
ZiG-DAG-NB is a misspecified model, its performance is still better than the alternative
state-of-the-art approaches. This shows that the proposed ZiG-DAG is useful for learning
the true causal structure even if the true conditional distributions are misspecified.

5.2 Nonlinear ZiG-DAG

We next assess the performance of the nonlinear ZiG-DAG models. We sample data from
a nonlinear ZiG-DAG with n = 500 and d = 10, where the conditional distribution of each
node is again assumed to be a zero-inflated hyper-Poisson. We randomly choose the true
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Table 2: Linear ZiG-DAG. Average operating characteristics over 50 simulations for differ-
ent sample sizes n ∈ {250, 500, 1000, 2000} with d = 50. The standard error for
each statistic is given within parentheses.

Sample size, n

Method Measure 250 500 1000 2000

HC0
TPR 0.728 (0.009) 0.844 (0.009) 0.924 (0.008) 0.946 (0.007)
FDR 0.387 (0.009) 0.226 (0.009) 0.125 (0.009) 0.083 (0.009)
MCC 0.660 (0.008) 0.804 (0.009) 0.897 (0.009) 0.930 (0.008)

HC1
TPR 0.802 (0.009) 0.892 (0.007) 0.958 (0.005) 0.971 (0.004)
FDR 0.354 (0.008) 0.203 (0.008) 0.101 (0.008) 0.074 (0.007)
MCC 0.713 (0.008) 0.840 (0.007) 0.926 (0.007) 0.947 (0.005)

TS0
TPR 0.739 (0.009) 0.862 (0.009) 0.932 (0.007) 0.956 (0.006)
FDR 0.391 (0.009) 0.222 (0.009) 0.121 (0.009) 0.074 (0.008)
MCC 0.663 (0.009) 0.815 (0.008) 0.903 (0.008) 0.939 (0.007)

TS1
TPR 0.798 (0.009) 0.889 (0.008) 0.953 (0.006) 0.971 (0.004)
FDR 0.369 (0.009) 0.214 (0.009) 0.110 (0.008) 0.073 (0.007)
MCC 0.702 (0.009) 0.832 (0.008) 0.919 (0.007) 0.948 (0.005)

ODS
TPR 0.418 (0.006) 0.454 (0.004) 0.474 (0.005) 0.474 (0.003)
FDR 0.710 (0.005) 0.726 (0.004) 0.753 (0.004) 0.776 (0.003)
MCC 0.331 (0.005) 0.335 (0.004) 0.323 (0.004) 0.305 (0.003)

MRS
TPR 0.662 (0.006) 0.755 (0.004) 0.809 (0.004) 0.816 (0.003)
FDR 0.467 (0.006) 0.454 (0.005) 0.464 (0.004) 0.505 (0.003)
MCC 0.585 (0.006) 0.633 (0.004) 0.650 (0.004) 0.626 (0.003)

ZiDAG
TPR 0.619 (0.010) 0.710 (0.009) 0.756 (0.007) 0.778 (0.007)
FDR 0.291 (0.010) 0.243 (0.009) 0.243 (0.008) 0.252 (0.008)
MCC 0.656 (0.010) 0.727 (0.009) 0.751 (0.008) 0.758 (0.008)

nonlinear functions fjk and gjk in (5) from three candidates, respectively:

f1(z) =
1

2
z (z − 3) , f2(z) = sin (z) , f3(z) = exp

(
1

2
z − 1

)
,

and

g1(z) = −1

2

(
z − 3

2

)2

, g2(z) = cos (z) , g3(z) = −1

2
log (z + 1) .

The intercepts µj , νj in (5) and the additional parameters ψj for the hyper-Poisson are
generated as in Section 5.1: µj ∼ U(−1.5,−1), νj ∼ U(1, 1.5), and log(ψj) ∼ U(−2, 2).
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Table 3: Linear ZiG-DAG. Average operating characteristics over 50 simulations for differ-
ent numbers of nodes d ∈ {10, 25, 50, 100} with n = 1000. The standard error for
each statistic is given within parentheses.

Number of nodes, d

Method Measure 10 25 50 100

HC0
TPR 0.948 (0.012) 0.891 (0.013) 0.924 (0.008) 0.864 (0.007)
FDR 0.067 (0.015) 0.166 (0.019) 0.125 (0.009) 0.255 (0.008)
MCC 0.932 (0.015) 0.855 (0.017) 0.897 (0.009) 0.800 (0.007)

HC1
TPR 0.912 (0.014) 0.977 (0.005) 0.958 (0.005) 0.870 (0.006)
FDR 0.141 (0.021) 0.060 (0.009) 0.101 (0.008) 0.269 (0.008)
MCC 0.869 (0.020) 0.956 (0.007) 0.926 (0.007) 0.795 (0.007)

TS0
TPR 0.964 (0.010) 0.925 (0.011) 0.932 (0.007) 0.869 (0.006)
FDR 0.051 (0.013) 0.130 (0.017) 0.121 (0.009) 0.254 (0.008)
MCC 0.951 (0.013) 0.892 (0.015) 0.903 (0.008) 0.803 (0.007)

TS1
TPR 0.932 (0.014) 0.969 (0.005) 0.953 (0.006) 0.874 (0.007)
FDR 0.103 (0.020) 0.081 (0.009) 0.110 (0.008) 0.267 (0.009)
MCC 0.902 (0.019) 0.941 (0.007) 0.919 (0.007) 0.798 (0.008)

ODS
TPR 0.386 (0.010) 0.419 (0.008) 0.474 (0.005) 0.543 (0.004)
FDR 0.677 (0.009) 0.775 (0.006) 0.753 (0.004) 0.761 (0.003)
MCC 0.262 (0.010) 0.265 (0.007) 0.323 (0.004) 0.350 (0.003)

MRS
TPR 0.742 (0.010) 0.874 (0.009) 0.809 (0.004) 0.733 (0.004)
FDR 0.331 (0.011) 0.423 (0.009) 0.464 (0.004) 0.623 (0.002)
MCC 0.664 (0.010) 0.695 (0.009) 0.650 (0.004) 0.519 (0.003)

ZiDAG
TPR 0.640 (0.017) 0.700 (0.012) 0.756 (0.007) 0.794 (0.006)
FDR 0.295 (0.016) 0.368 (0.016) 0.243 (0.008) 0.254 (0.007)
MCC 0.632 (0.018) 0.649 (0.015) 0.751 (0.008) 0.768 (0.006)

For learning the nonlinear ZiG-DAG, we use Mf = Mg = 4 spline basis with a knot being
placed at the 50% quantile of the data. We also consider the linear ZiG-DAG for comparison.
Additionally, since ZiDAG allows for both linear and nonlinear causal relationships, in this
simulation study, we use ZiDAG with nonlinear implementation.

We report in Table 4 the simulation results based on 50 repetitions. Overall, the nonlin-
ear ZiG-DAG outperforms the other approaches including the linear ZiG-DAG. Especially,
the nonlinear ZiG-DAG results in extremely low FDR compared to the other competitors.
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Figure 2: Box plots of operating characteristics for ZiG-DAG-HP, ZiG-DAG-NB, ODS,
MRS, and ZiDAG applied to synthetic datasets generated from a linear ZiG-DAG
with n = 1000 and d = 50.

Not surprisingly, in this nonlinear simulation setting, ZiDAG gives better results than the
linear ZiG-DAG.

Table 4: Nonlinear ZiG-DAG. Average operating characteristics over 50 simulations with
n = 500 and d = 10. The standard error for each statistic is given within paren-
theses.

Nonlinear ZiG-DAG Linear ZiG-DAG ODS MRS ZiDAG

TPR 0.622 (0.014) 0.662 (0.018) 0.614 (0.008) 0.588 (0.020) 0.568 (0.013)
FDR 0.179 (0.018) 0.377 (0.017) 0.417 (0.010) 0.405 (0.022) 0.249 (0.014)
MCC 0.684 (0.017) 0.596 (0.020) 0.546 (0.007) 0.540 (0.023) 0.616 (0.014)

5.3 Non-zero-inflation

Although the proposed ZiG-DAG models are primarily developed to deal with excessive
zeros in count data, they are also applicable and robust to count data generated from non-
zero-inflated distributions. We perform additional simulations to support this claim. We
generate data from a negative binomial BN, which does not include any zero-inflation com-
ponents. The parameters for the negative binomial BN are sampled uniformly at random
in a similar way to Section 5.1. The resulting data have ∼26% zeros, which are much less
than the zero-inflated case. As in Section 5.1, we consider ZiG-DAG-HP and ZiG-DAG-NB
that assume a zero-inflated hyper-Poisson distribution and a zero-inflated negative binomial
distribution for the conditional distribution of each node, respectively. Furthermore, we con-
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sider two distinctive MRS algorithms that learn DAGs for hyper-Poisson BNs (MRS-HP)
and negative binomial BNs (MRS-NB). Since MRS-NB requires an input of the dispersion
parameter of the negative binomial distribution, we provide it with the true dispersion
parameter value.

The simulation results are shown in Table 5. Even though the data are not zero-inflated,
our approaches, ZiG-DAG-HP and ZiG-DAG-NB, generally show better performance than
the alternative methods (ODS, MRS-HP, MRS-NB, and ZiDAG). Even though MRS-NB
uses the correct distributional model and the true dispersion parameter, it shows worse
performance than our methods as well as ZiDAG with respect to FDR and MCC. This
might be because the performance of the MRS algorithm highly relies on the choice of
external methods for the skeleton estimation. In our experiments, MRS utilizes the R

package MXM to estimate the skeleton of DAG, which might provide unreliable skeleton
estimates in this simulation setting.

Table 5: Non-zero-inflation. Average operating characteristics over 50 simulations for a
negative binomial BN with n = 500 and d = 50. The standard error for each
statistic is given within parentheses.

ZiG-DAG-HP ZiG-DAG-NB ODS MRS-HP MRS-NB ZiDAG

TPR 0.692 (0.009) 0.774 (0.007) 0.306 (0.004) 0.637 (0.008) 0.714 (0.008) 0.582 (0.008)
FDR 0.342 (0.010) 0.334 (0.008) 0.658 (0.005) 0.514 (0.009) 0.455 (0.009) 0.267 (0.010)
MCC 0.668 (0.009) 0.712 (0.007) 0.310 (0.004) 0.546 (0.008) 0.615 (0.008) 0.647 (0.009)

5.4 Latent Confounders

Recall that Theorems 6 and 7 in Section 3 assume causal sufficiency (Condition 3), that is,
there exist no latent confounders. Although the causal sufficiency assumption is common
in the causal literature, in real applications, it is difficult to check whether an unmeasured
latent confounder exists, and there is always a possibility that we do not observe some
variables of interest. Therefore, we test how sensitive our method is to the existence of
latent confounders. We consider two true causal DAGs in Figure 3 that have three nodes,
X1, X2, X3. Given each causal graph, we generate zero-inflated count data from a linear
ZiG-DAGs and treat X3 as an unmeasured confounder (i.e., hide it from the algorithms).

The graph in Figure 3(a) assumes a casual effect of X2 on X1, which is confounded by
X3. For the simulation truth corresponding to Figure 3(a), we assume that the conditional
distribution of each node is a zero-inflated hyper-Poisson similarly to Section 5.1. We denote
c = (α13, β13) = (α23, β23) and d = (α12, β12), and set δj = −1, γj = 0 and ψj = 5. We con-
sider different levels of confounding effects c = σ× (−0.8, 0.8) where σ ∈ {0, 0.1, 0.2, . . . , 1},
while fixing the causal effect d = (0.8,−0.8). For each level of confounding effect, we sim-
ulate 50 datasets with sample size n = 250. Figure 4(a) plots the average accuracy (ACC)
over 50 repeat simulations of ZiG-DAG for identifying the true causal direction X2 → X1.
We also consider MRS and ZiDAG as benchmarks. Our approach finds the true causal
direction quite well across the confounding levels, while ZiDAG becomes worse when the
confounding effect is relatively large (σ > 0.5). MRS does not work well in this case.

18



Model-Based Causal Discovery for Zero-Inflated Count Data

X1 X2

X3

c c

X1 X2

X3

d

c c

(a) (b)

Figure 3: Two different confounding scenarios with a confounder X3.
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Figure 4: Plots of average ACC of ZiG-DAG, MRS, and ZiDAG against different levels of
confounding effect σ under the confounding scenarios of (a) Figure 3(a) and (b)
Figure 3(b).

Next, we consider the DAG in Figure 3(b). There is no causal effect between X1 and X2

whereas the confounding effect by X3 is still present. Therefore, we set d = 0; otherwise
the same simulation truth with Figure 3(a) is used. We consider the same confounding
effects with Figure 3(a). Figure 4(b) displays the resulting ACCs of ZiG-DAG, MRS, and
ZiG-DAG, again averaged over 50 repeat simulations. In the range of the confounding level
being considered, ZiG-DAG does not add any spurious causal relation between X1 and X2.
In summary, the empirical results in Figure 4(a)-(b) indicate that the proposed ZiG-DAG
is relatively robust to the presence of hidden confounders.
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6. Real Data Analyses

We illustrate the utility of the proposed ZiG-DAG by performing two analyses of a scRNA-
seq dataset (Li et al., 2017) that consists of 561 cells from 11 primary colorectal cancer
(CRC) tumors and matched normal mucosa.

6.1 Real-Data Validation with Known Causal Relationships

Using the real scRNA-seq data and known causal relationships in the biological literature,
we validate the causal identifiability of ZiG-DAG and compare it to other state-of-the-
art alternatives. First, from the TRRUST database (Han et al., 2018), we extract a list
of literature-curated pairs of transcription factor and its target. This list establishes a
biological ground truth of cause-and-effect relationships with the transcription factors being
causes and the targets being effects. We extract from our scRNA-seq data the pairs of genes
on the list for which the maximum information coefficient (Reshef et al., 2011), a measure
of linear and nonlinear correlations between two variables, is greater than 0.5. This results
in 47 pairs for validation.

We apply the proposed ZiG-DAG to each pair of genes. Specifically, we use a nonlinear
ZiG-DAG where the conditional distribution of each node is a zero-inflated hyper-Poisson
distribution. For comparison, we apply MRS and ZiDAG to the same dataset. We calculate
the accuracy of identifying true causal relationships for ZiG-DAG, MRS, and ZiDAG, and
the results are 60%, 51%, and 53%, respectively. Out of a total of 47 pairs, the proposed ZiG-
DAG correctly identifies 28 causal relationships. This indicates that the proposed method
is capable of finding true causal relationships in real data: the p-value for a binomial test
is 0.0002 when compared to random guesses. Furthermore, among the three count BNs,
ZiG-DAG has the highest accuracy.

6.2 Reverse Engineering of Gene Regulatory Network

In this section we aim to reconstruct a gene regulatory network for d = 26 genes from the
TGF-β signaling pathway, which has been shown as the most activated signaling pathway in
the analysis of Li et al. (2017). Before reconstructing the gene regulatory network, we filter
cell doublets and multiplets using an R package for single cell genomics, Seurat (Hao et al.,
2021), and retain 472 cells, which contain ∼ 40% zeros. To estimate the gene regulatory
network, we use the HC algorithm for the nonlinear ZiG-DAG that assumes a zero-inflated
hyper-Poisson distribution as the conditional distribution of each node. We initialize the
algorithm with the DAG obtained by MRS, which shows promising performance in the
experiments of Section 5.1.

Figure 5 displays the estimated gene regulatory network for d = 26 genes of the TGF-β
signaling pathway. In total, 26 directed edges are found by our nonlinear ZiG-DAG. Some
of the estimated gene regulations are consistent with known regulatory relationships in
the existing biological literature. For example, the proposed model finds gene regulations
involving SMAD proteins, which are main signal transducers for receptors of the TGF-β
superfamily. Specifically, SMAD2 affects mRNA profiles of ZFYVE9 (Runyan et al., 2009)
and RBX1 regulates the SMAD4 protein stability (Inoue and Imamura, 2008). Moreover, the
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Figure 5: The estimated gene regulatory network for d = 26 genes of the TGF-β signaling
pathway using the nonlinear ZiG-DAGs.

estimated network also confirms the fact that ROCK is a well-known downstream effector of
RHOA.

Furthermore, we can find 2 hub genes in the estimated network: RHOA and SKP1 with out-
degrees of 7 and 5. Hub genes are of particular importance because they are often involved
in essential regulatory relationships. In fact, the importance of our hub genes in TGF-β
signaling has been supported by the existing literature. RHOA is a small GTPase of the
RHO family, whose inactivation plays key roles in colorectal cancer progression/metastasis
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by interacting with many members of TGF-β signaling pathway (Rodrigues et al., 2014;
Dopeso et al., 2018). SKP1 belongs to the SCF complex, which is a RING-type E3 ubiquitin
ligase that participates in the degradation of a wide variety of proteins that regulates TGF-β
signaling (Inoue and Imamura, 2008).

7. Discussion

We have proposed a novel BN model, ZiG-DAG, to infer causal relationships in observa-
tional zero-inflated count data. ZiG-DAGs are built upon a fairly general class of count dis-
tributions, namely generalized hypergeometric probability distributions, and therefore can
account for various types of zero-inflated count data including overdispersed or underdis-
persed zero-inflated count data. We have also considered not only linear causal relationships
but also nonlinear relationships. The identifiability theory for the proposed ZiG-DAGs has
been established using a general proof technique, which can potentially be used to show
identifiability of other discrete BN models. The proposed ZiG-DAG models are paired with
two structure learning procedures, exhaustive search and greedy search. Through extensive
numerical experiments and real data analysis, we have empirically validated the identifiabil-
ity theory for ZiG-DAGs and have shown its superior performance against state-of-the-art
alternatives.

There are a few future research directions that can be taken. First, the proposed ap-
proach can be extended for modeling interventional zero-inflated count data. This may be
done by modifying the likelihood according to the do-calculus framework of Pearl (2009).
The second direction is to establish an identifiability theory in the presence of latent con-
founders. Although we have empirically shown in Section 5.4 that ZiG-DAG is relatively
robust against confounding, we do not yet have theoretical support of it; the proofs of our
identifiability theorems are not directly applicable as they rely on the factorization (1),
which requires causal sufficiency. Third, the acyclicity of BNs may be restrictive in applica-
tions where the underlying systems have feedback loops, for example, genetic systems. We
may relax this acyclicity restriction by using directed cyclic graphs.
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Appendix A. Proof of Propostion 4

First, we state a lemma on the conditions under which conditional distributions of the same
node are identical in two discrete BNs, which is needed for the proof of Proposition 4.

Lemma 8 Suppose that B = (G, p) and B∗ = (G∗, p∗) are any two discrete BNs, and
(1, 2, . . . , d) is the topological ordering of the DAG G of B. If for j′ ∈ V , we have pa(j′) =
pa∗(j′), ch∗(j′) ∩ nd(j′) = ∅, and

j′∏
j=1

p(xj |xpa(j)) =

j′∏
j=1

p∗(xj |xpa∗(j)), (8)

then the conditional distribution of node j′ is the same in B and B∗, i.e., p(xj′ |xpa(j′)) =
p∗(xj′ |xpa∗(j′)).

Proof Since (1, . . . , d) is the topological ordering of G and ch∗(j′) ∩ nd(j′) = ∅, node j′

cannot be a parent of nodes {1, 2, . . . , j′−1} in both B and B∗, and hence in (8), p(xj |xpa(j))
and p∗(xj |xpa∗(j)) for j = 1, . . . , j′−1 are functions of all the variables x1, . . . , xd but xj′ . The
only terms in (8) that depends on xj′ are p(xj′ |xpa(j′)) and p∗(xj′ |xpa∗(j′)). Furthermore,
both p(xj′ |xpa(j′)) and p∗(xj′ |xpa∗(j′)) are functions of xj′ and xpa∩(j′), where we denote
pa∩(j) = pa(j′) = pa∗(j′). Let x1, . . . , xj′−1, xj′+1, . . . , xd be fixed. Then, (8) is simplified
as

Cp(xj′ |xpa(j′)) = C∗p∗(xj′ |xpa∗(j′)) (9)

where C =
∏j′−1
j=1 p(xj |xpa(j)) and C∗ =

∏j′−1
j=1 p

∗(xj |xpa∗(j)) are constants not depending
on xj′ . If we sum up (9) over all possible xj′ , we have

C
∑
xj′

p(xj′ |xpa(j′)) = C∗
∑
xj′

p∗(xj′ |xpa∗(j′)).

Due to the fact that
∑

xj′
p(xj′ |xpa(j′)) = 1 and

∑
xj′
p∗(xj′ |xpa∗(j′)) = 1, we obtain C = C∗,

and since x1, . . . , xd are arbitrary, it follows that p(xj′ |xpa(j′)) = p∗(xj′ |xpa∗(j′)) for any pos-
sible xj′ and xpa∩(j).

We now provide the proof of Proposition 4. We show that if the joint distributions p
and p∗ are equivalent, then the identity of the causal structures G and G∗ automatically
follows from the proposition assumption.

Proof We assume that the joint distributions of B and B∗ are the same, i.e.,

d∏
j=1

p(xj |xpa(j)) =

d∏
j=1

p∗(xj |xpa∗(j)) (10)

for all possible values of x1, . . . , xd. Without loss of generality, assume that (1, . . . , d) is the
topological ordering of the DAG G of B, i.e., the nodes are labeled such that there is no
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directed edge in G from later nodes to earlier nodes. Such orderings must exist (although
not necessarily unique) because of the acyclicity of DAGs. We then show by mathematical
induction that pa(j) = pa∗(j) for all j = 1, 2, . . . , d (hence E = E∗), which contradicts our
assumption that E 6= E∗.

We begin with the last node d that has no child in the graph G. Taking the ratio of (10)
at xd + 1 and xd, we obtain

p(xd + 1|xpa(d))
p(xd|xpa(d))

=
p∗(xd + 1|xpa∗(d))
p∗(xd|xpa∗(d))

∏
k∈ch∗(d)

p∗(xk|xpa∗(k)\{d}, xd + 1)

p∗(xk|xpa∗(k)\{d}, xd)

for all x1, . . . , xd. Note that this implicitly assumes that the conditional distributions
p(xj |xpa(j)) and p∗(xj |xpa∗(j)), j = 1, . . . , p, are positive over their supports. The above
ratio can be rewritten using probability generating functions as follows:

G
(xd+1)
d (0;xpa(d))

G
(xd)
d (0;xpa(d))

=
G∗d

(xd+1)(0;xpa∗(d))

G∗d
(xd)(0;xpa∗(d))

∏
k∈ch∗(d)

G∗k
(xk)(0;xpa∗(k)\{d}, xd + 1)

G∗k
(xk)(0;xpa∗(k)\{d}, xd)

.

The proposition assumption then indicates pa(d) = pa∗(d) and ch∗(d) = ch∗(d)∩nd(d) = ∅.
Moreover, Lemma 8 implies that p(xd|xpa(d)) = p∗(xd|xpa∗(d)).

Now assume that for any j = j′+1, . . . , d, it holds that pa(j) = pa∗(j), ch∗(j)∩nd(j) = ∅
and p(xj |xpa(j)) = p∗(xj |xpa∗(j)). We then show that it also holds for j = j′. First, observe
that the ratio of (10) at xj′ + 1 and xj′ is given by

p(xj′ + 1|xpa(j′))
p(xj′ |xpa(j′))

∏
k∈ch(j′)

p(xk|xpa(k)\{j′}, xj′ + 1)

p(xk|xpa(k)\{j′}, xj′)

=
p∗(xj′ + 1|xpa∗(j′))
p∗(xj′ |xpa∗(j′))

∏
k∈ch∗(j′)

p∗(xk|xpa∗(k)\{j′}, xj′ + 1)

p∗(xk|xpa∗(k)\{j′}, xj′)
. (11)

Note that the induction assumption implies ch(j′) = ch∗(j′) \ nd(j′) and

p(xk|xpa(k)\{j′}, xj′ + 1)

p(xk|xpa(k)\{j′}, xj′)
=
p∗(xk|xpa∗(k)\{j′}, xj′ + 1)

p∗(xk|xpa∗(k)\{j′}, xj′)

for k ∈ ch(j′) = ch∗(j′) \ nd(j′). Therefore, we can simplify (11) into a similar form of the
case j = d:

G
(xj′+1)

j′ (0;xpa(j′))

G
(xj′ )

j′ (0;xpa(j′))
=
G∗j′

(xj′+1)(0;xpa∗(j′))

G∗j′
(xj′ )(0;xpa∗(j′))

∏
k∈ch∗(j′)∩nd(j′)

G∗k
(xk)(0;xpa∗(k)\{j′}, xj′ + 1)

G∗k
(xk)(0;xpa∗(k)\{j′}, xj′)

.

It again follows from the proposition assumption and Lemma 8 that pa(j′) = pa∗(j′),
ch∗(j′) ∩ nd(j′) = ∅, and p(xj′ |xpa(j′)) = p∗(xj′ |xpa′(j′)), which completes the proof.
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Appendix B. Proof of Corollary 5

Proof Due to Proposition 4 and its assumption, the equivalence of the joint distributions of
B and B∗ (i.e., p = p∗) implies E = E∗, which in turn implies p(xj |xpa(j)) = p∗(xj |xpa∗(j))
for any j ∈ V . Then by the corollary assumption, Ξj = Ξ∗j for any j ∈ V . Hence, Ξ = Ξ∗.

Appendix C. Proof of Theorem 6

Proof We use Proposition 4 to prove that the DAG is identifiable for the linear ZiG-DAGs.
Furthermore, we use Corollary 5 to show that the model parameters are also identifiable
up to permutations of aj and bj , given that (pj , qj), which characterize the generalized
hypergeometric function, and the link function hj are fixed for each j ∈ V . Let B and B∗
be two arbitrary linear ZiG-DAGs and we show that they satisfy the sufficient condition
of Proposition 4. Let j ∈ V be a node such that the identity (6) holds. We show that
pa(j) = pa∗(j) and ch∗(j) ∩ nd(j) = ∅. We use the superscript * to indicate parameters
that define the linear ZiG-DAG B∗.

First, we show ch∗(j)∩nd(j) = ∅. Suppose by way of contradiction that ch∗(j)∩nd(j) 6=
∅, and let k′ ∈ ch∗(j) ∩ nd(j) such that ch∗(k′) ∩ ch∗(j) ∩ nd(j) = ∅; such k′ always exists
due to the acyclicity of G∗. For (6), let xj = 0 while fixing xl for l ∈ V \ {j, k′}. Then, if
k′ /∈ pa(j), it is simplified to

C1 =

C2

1+exp(α∗
k′j+δ̃

∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (β

∗
k′j+γ̃

∗
k′ ))

1+exp(δ̃∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (γ̃

∗
k′ ))

for xk′ = 0

C2r
xk′ for xk′ 6= 0,

and if k′ ∈ pa(j), it takes the following form:

C3Hj(βjk′xk′ + γ̃j)

1 + exp(αjk′xk′ + δ̃j)pjFqj (aj ; bj ;Hj(βjk′xk′ + γ̃j))

=

C2

1+exp(α∗
k′j+δ

∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (β

∗
k′j+γ

∗
k′ )))

1+exp(δ∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (γ

∗
k′ )))

for xk′ = 0

C2r
xk′ for xk′ 6= 0,

where Hj = h−1j , H∗k′ = (h∗k′)
−1, δ̃j =

∑
l∈pa(j)\{k′} αjlxl + δj , γ̃j =

∑
l∈pa(j)\{k′} βjlxl + γj ,

δ̃∗k′ =
∑

l∈pa∗(k′)\{j} α
∗
k′lxl + δ∗k′ , γ̃

∗
k′ =

∑
l∈pa∗(k′)\{j} β

∗
k′lxl + γ∗k′ , and

r =
H∗k′(β

∗
k′j + γ̃∗k′)

H∗k′(γ̃
∗
k′)

.

Here, C1, C2, C3 are some constants not depending on xk′ . The above identities are well
defined since each conditional distribution (or equivalently, the derivatives of the probability
generating function) should be positive over the entire support in our definition of the linear
ZiG-DAG. Since xk′ is not a binary variable (i.e., it takes integers beyond {0, 1}), taking
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the ratio of each of the above equations at xk′ + 1 and xk′ , we observe that if k′ /∈ pa(j),

r =
1 + exp(α∗k′j + δ̃∗k′)p∗k′

Fp∗
k′

(a∗k′ ; b
∗
k′ ;H

∗
k′(β

∗
k′j + γ̃∗k′))

1 + exp(δ̃∗k′)p∗k′
Fp∗

k′
(a∗k′ ; b

∗
k′ ;H

∗
k′(γ̃

∗
k′))

= 1;

and if k′ ∈ pa(j),

r =
1 + exp(α∗k′j + δ̃∗k′)p∗k′

Fp∗
k′

(a∗k′ ; b
∗
k′ ;H

∗
k′(β

∗
k′j + γ̃∗k′))

1 + exp(δ̃∗k′)p∗k′
Fp∗

k′
(a∗k′ ; b

∗
k′ ;H

∗
k′(γ̃

∗
k′))

×
Hj(βjk′ + γ̃j)

{
1 + exp(δ̃j)pjFqj (aj ; bj ;Hj(γ̃j))

}
Hj(γ̃j)

{
1 + exp(αjk′ + δ̃j)pjFqj (aj ; bj ;Hj(βjk′ + γ̃j))

}
and

r =
Hj

(
βjk′(xk′ + 1) + γ̃j

){
1 + exp(αjk′xk′ + δ̃j)pjFqj (aj ; bj ;Hj(βjk′xk′ + γ̃j))

}
Hj

(
βjk′xk′ + γ̃j

){
1 + exp(αjk′(xk′ + 1) + δ̃j)pjFqj (aj ; bj ;Hj(βjk′(xk′ + 1) + γ̃j))

}
for any possible positive value of xk′ in the support of Xk′ . Since these equations hold for all
possible values of xl, l ∈ V \ {j, k′}, in both cases, we have that r = 1 and α∗k′j = β∗k′j = 0.
This indicates k′ /∈ ch∗(j), which contradicts the assumption that k′ ∈ ch∗(j)∩ nd(j)(6= ∅).

We now show pa(j) = pa∗(j). Given the above result, ch∗(j)∩nd(j) = ∅, we can simplify
(6) as

(aj1 + xj) · · · (ajpj + xj)Hj(
∑

k∈pa(j) βjkxk + γj)

(bj1 + xj) · · · (bjqj + xj)(xj + 1)

=
(a∗j1 + xj) · · · (a∗jp∗j + xj)H

∗
j (
∑

k∈pa∗(j) β
∗
jkxk + γ∗j )

(b∗j1 + xj) · · · (b∗jq∗j + xj)(xj + 1)
. (12)

for a positive integer xj . For l ∈ pa(j)\pa∗(j), taking the ratio of (12) at xl = 1 and xl = 0,
we obtain

Hj(
∑

k∈pa(j)\{l} βjkxk + βjl + γj)

Hj(
∑

k∈pa(j)\{l} βjkxk + γj)
= 1,

which leads to βjl = 0. Next, if xj = 0, (6) is simplified as

aj1 · · · ajpjHj(
∑

k∈pa(j) βjkxk + γj)

bj1 · · · bjqj{1 + exp(
∑

k∈pa(j) αjkxk + δj)pjFqj (aj ; bj ;Hj(
∑

k∈pa(j)∩pa∗(j) βjkxk + γj))}

=
a∗j1 · · · a∗jp∗jH

∗
j (
∑

k∈pa∗(j) β
∗
jkxk + γ∗j )

b∗j1 · · · b∗jq∗j {1 + exp(
∑

k∈pa∗(j) α
∗
jkxk + δ∗j )p∗jFq∗j (a∗j ; b

∗
j ;H

∗
j (
∑

k∈pa(j)∩pa∗(j) β
∗
jkxk + γ∗j ))}

.

(13)

Again, take the ratio of (13) at xl = 1 and xl = 0 for l ∈ pa(j) \ pa∗(j). We have

1 + exp(
∑

k∈pa(j)\{l} αjkxk + αjl + δj)pjFqj (aj ; bj ;Hj(
∑

k∈pa(j)∩pa∗(j) βjkxk + γj))

1 + exp(
∑

k∈pa(j)\{l} αjkxk + δj)pjFqj (aj ; bj ;Hj(
∑

k∈pa(j)∩pa∗(j) βjkxk + γj))
= 1,
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and therefore αjl = 0. The finding that αjl = βjl = 0 for l ∈ pa(j) \ pa∗(j) implies that
pa(j) \ pa∗(j) = ∅. Similarly, we get pa∗(j) \ pa(j) = ∅, and hence pa(j) = pa∗(j).

Next, we show that the model parameters of the linear ZiG-DAGs are also identifiable
(up to permutations of aj and bj), under the assumption that pj , qj , and hj are fixed (i.e.,
pj = p∗j , qj = q∗j , and hj = h∗j ). We already know pa(j) = pa∗(j) and thus we denote
pa∩(j) = pa(j) = pa∗(j). According to Corollary 5, it suffices to show that p(xj |xpa(j)) =
p∗(xj |xpa∗(j)) implies that αjk = α∗jk, βjk = β∗jk for k ∈ pa∩(j), δj = δ∗j , γj = γ∗j , and aj
and a∗j , as well as bj and b∗j , are equivalent up to a permutation. If we take the ratio of
p(xj |xpa(j)) = p∗(xj |xpa∗(j)) at xj + 1 and xj , we observe that

(aj1 + xj) · · · (ajpj + xj)Hj(
∑

k∈pa∩(j) βjkxk + γj)

(bj1 + xj) · · · (bjqj + xj)(xj + 1)

=
(a∗j1 + xj) · · · (a∗jpj + xj)Hj(

∑
k∈pa∩(j) β

∗
jkxk + γ∗j )

(b∗j1 + xj) · · · (b∗jqj + xj)(xj + 1)
(14)

for xj 6= 0, and

aj1 · · · ajpjHj(
∑

k∈pa∩(j) βjkxk + γj)

bj1 · · · bjqj{1 + exp(
∑

k∈pa∩(j) αjkxk + δj)pjFqj (aj ; bj ;Hj(
∑

k∈pa∩(j) βjkxk + γj))}

=
a∗j1 · · · a∗jpjHj(

∑
k∈pa∩(j) β

∗
jkxk + γ∗j )

b∗j1 · · · b∗jqj{1 + exp(
∑

k∈pa∩(j) α
∗
jkxk + δ∗j )pjFqj (a

∗
j ; b
∗
j ;Hj(

∑
k∈pa∩(j) β

∗
jkxk + γ∗j ))}

(15)

for xj = 0. Since (14) and (15) hold for any possible value of xk for k ∈ pa∩(j), we must
have αjk = α∗jk, βjk = β∗jk for k ∈ pa∩(j), δj = δ∗j , and γj = γ∗j . It is also easy to see that
aj and a∗j , as well as bj and b∗j , are equivalent up to a permutation.

Appendix D. Proof of Theorem 7

Proof To show that the graph structure of the nonlinear ZiG-DAGs is identifiable, we
show pa(j) = pa∗(j) and ch∗(j) ∩ nd(j) = ∅, assuming the identity (6) holds for node
j ∈ V for two arbitrary nonlinear ZiG-DAGs B and B∗. Additionally, in order to establish
the parameter identifiability of the nonlinear ZiG-DAGs, we show that equivalence of the
parameters follows p(xj |xpa(j)) = p∗(xj |xpa∗(j)), under the assumption that for each j ∈ V ,
pj , qj , and hj are fixed. We use the superscript * to indicate parameters that define the
nonlinear ZiG-DAG B∗.

We first show ch∗(j) ∩ nd(j) = ∅. Suppose on the contrary that ch∗(j) ∩ nd(j) 6= ∅.
Consider k′ ∈ ch∗(j)∩nd(j) such that ch∗(k′)∩ch∗(j)∩nd(j) = ∅, as in the proof of Theorem
6. Under the nonlinear ZiG-DAGs, letting xj = 0 while fixing xl for all l ∈ V \ {j, k′}, we
can simplify (6) as

C1 =

C2

1+exp(f∗
k′j(1)+µ̃

∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (g

∗
k′j(1)+ν̃

∗
k′ ))

1+exp(f∗
k′j(0)+µ̃

∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (g

∗
k′j(0)+ν̃

∗
k′ ))

for xk′ = 0

C2r
xk′ for xk′ 6= 0,
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if k′ /∈ pa(j), and

C3Hj(gjk′(xk′) + ν̃j)

1 + exp(fjk′(xk′) + µ̃j)pjFqj (aj ; bj ;Hj(gjk′(xk′) + ν̃j))

=

C2

1+exp(f∗
k′j(1)+µ̃

∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (g

∗
k′j(1)+ν̃

∗
k′ ))

1+exp(f∗
k′j(0)+µ̃

∗
k′ )p∗k′

Fp∗
k′
(a∗

k′ ;b
∗
k′ ;H

∗
k′ (g

∗
k′j(0)+ν̃

∗
k′ ))

for xk′ = 0

C2r
xk′ for xk′ 6= 0,

if k′ ∈ pa(j), where C1, C2, C3 are some constants, Hj = h−1j , H∗k′ = (h∗k′)
−1, µ̃j =∑

l∈pa(j)\{k′} fjl(xl) + µj , ν̃j =
∑

l∈pa(j)\{k′} gjl(xl) + νj , µ̃
∗
k′ =

∑
l∈pa∗(k′)\{j} f

∗
k′l(xl) + µ∗k′ ,

ν̃∗k′ =
∑

l∈pa∗(k′)\{j} g
∗
k′l(xl) + ν∗k′ , and r =

H∗
k′ (g

∗
k′j(1)+ν̃

∗
k′ )

H∗
k′ (g

∗
k′j(0)+ν̃

∗
k′ )

. The above identities are well

defined, because in our definition of the nonlinear ZiG-DAG, each conditional distribution
(or equivalently, the derivatives of the probability generating function) should be positive
over the entire support.

Because xk′ is not binary (i.e., it takes integers beyond {0, 1}), if we take the ratio of
the first equation above at xk′ + 1 and xk′ , we obtain that if k′ /∈ pa(j),

r =
1 + exp(f∗k′j(1) + µ̃∗k′)p∗k′

Fp∗
k′

(a∗k′ ; b
∗
k′ ;H

∗
k′(g

∗
k′j(1) + ν̃∗k′))))

1 + exp(f∗k′j(0) + µ̃∗k′)p∗k′
Fp∗

k′
(a∗k′ ; b

∗
k′ ;H

∗
k′(g

∗
k′j(0) + ν̃∗k′))))

= 1.

If k′ ∈ pa(j), we take the ratio of the second equation and obtain

r =
1 + exp(f∗k′j(1) + µ̃∗k′)p∗k′

Fp∗
k′

(a∗k′ ; b
∗
k′ ;H

∗
k′(g

∗
k′j(1) + ν̃∗k′))))

1 + exp(f∗k′j(0) + µ̃∗k′)p∗k′
Fp∗

k′
(a∗k′ ; b

∗
k′ ;H

∗
k′(g

∗
k′j(0) + ν̃∗k′))))

×
Hj(gjk′(1) + ν̃j)

{
1 + exp(fjk′(0) + µ̃j)pjFqj (aj ; bj ;Hj(gjk′(0) + ν̃j))

}
Hj(gjk′(0) + ν̃j)

{
1 + exp(fjk′(1) + µ̃j)pjFqj (aj ; bj ;Hj(gjk′(1) + ν̃j))

}
and

r =
Hj(gjk′(xk′ + 1) + ν̃j)

{
1 + exp(fjk′(xk′) + µ̃j)pjFqj (aj ; bj ;Hj(gjk′(xk′) + ν̃j))

}
Hj(gjk′(xk′) + ν̃j)

{
1 + exp(fjk′(xk′ + 1) + µ̃j)pjFqj (aj ; bj ;Hj(gjk′(xk′ + 1) + ν̃j))

}
for any possible positive value of xk′ in the support of Xk′ . Similar to the proof of Theorem
6, we necessarily have in both cases that r = 1 as well as f∗k′j(0) = f∗k′j(1), g∗k′j(0) = g∗k′j(1).
Now, we consider the ratio of (6) at xk′ = 1 and xk′ = 0 with arbitrary xj 6= 0. Observe
that

1 + exp(f∗k′j(xj) + µ̃∗k′)p∗k′
Fq∗

k′
(a∗k′ ; b

∗
k′ ;Hk′(g

∗
k′j(xj) + ν̃∗k′)

1 + exp(f∗k′j(xj + 1) + µ̃∗k′)p∗k′
Fq∗

k′
(a∗k′ ; b

∗
k′ ;Hk′(g

∗
k′j(xj + 1) + ν̃∗k′)

= 1

holds for any xj 6= 0, indicating f∗k′j(xj) = f∗k′j(xj + 1) and g∗k′j(xj) = g∗k′j(xj + 1) for all
possible xj 6= 0. All together, we have f∗k′j(xj) = f∗k′j(xj + 1) and g∗k′j(xj) = g∗k′j(xj + 1)

for any possible value of xj . Because we have assumed E
[
f∗jk(Xk)

]
= E

[
g∗jk(Xk)

]
= 0 for

all j, k, where Xk are count random variables, it implies that f∗k′j(xj) = g∗k′j(xj) = 0 for
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any value of xj in its support, and hence k′ /∈ ch∗(j). This contradicts the assumption that
k′ ∈ ch∗(j) ∩ nd(j)(6= ∅).

Next, we show pa(j) = pa∗(j). Let l ∈ pa(j) \ pa∗(j). Since ch∗(j) ∩ nd(j) = ∅, by
taking the ratio of (6) at xl + 1 and xl, we have

rj(xj ;xl + 1,xpa(j)\{l})

rj(xj ;xl,xpa(j)\{l})
= 1

for all xj and xpa(j), where

rj(xj ;xpa(j)) =


aj1···ajpjHj(

∑
k∈pa(j) gjk(xk)+νj)

bj1···bjqj {1+exp(
∑

k∈pa(j) fjk(xk)+µj)pjFqj (aj ;bj ;Hj(
∑

k∈pa(j) gjk(xk)+νj))}
if xj = 0

(aj1+xj)···(ajpj+xj)Hj(
∑

k∈pa(j) gjk(xk)+νj)

(bj1+xj)···(bjqj+xj)(xj+1) if xj 6= 0.

It easily follows that fjl(xl+1) = fjl(xl) and gjl(xl+1) = gjl(xl) for all possible values of xl,

and combining this again with the assumption that E
[
f∗jk(Xk)

]
= E

[
g∗jk(Xk)

]
= 0, we have

pa∗(j) \ pa(j) = ∅. Similarly, we obtain pa∗(j) \ pa(j) = ∅, which implies pa(j) = pa∗(j).

Lastly, we show that if pj , qj , and hj are fixed (i.e., pj = p∗j , qj = q∗j , and hj = h∗j ),
we can deduce from p(xj |xpa(j)) = p∗(xj |xpa∗(j)) that (fjk, gjk) = (f∗jk, g

∗
jk) for k ∈ pa∩(j),

µj = µ∗j , νj = ν∗j , and aj and bj are equivalent to a∗j and b∗j up to permutations. Here,
we denote pa∩(j) = pa(j) = pa∗(j) as in the proof of Theorem 6. Consider the ratio of
p(xj |xpa(j)) = p∗(xj |xpa∗(j)) at xj + 1 and xj . We observe that if xj 6= 0,

(aj1 + xj) · · · (ajpj + xj)Hj(
∑

k∈pa∩(j) gjk(xk) + νj)

(bj1 + xj) · · · (bjqj + xj)(xj + 1)

=
(a∗j1 + xj) · · · (a∗jpj + xj)Hj(

∑
k∈pa∩(j) g

∗
jk(xk) + ν∗j )

(b∗j1 + xj) · · · (b∗jqj + xj)(xj + 1)
, (16)

and otherwise,

aj1 · · · ajpjHj(
∑

k∈pa∩(j) gjk(xk) + νj)

bj1 · · · bjqj{1 + exp(
∑

k∈pa∩(j) fjk(xk) + µj)pjFqj (aj ; bj ;Hj(
∑

k∈pa∩(j) gjk(xk) + νj))}

=
a∗j1 · · · a∗jpjHj(

∑
k∈pa∩(j) g

∗
jk(xk) + νj)

b∗j1 · · · b∗jqj{1 + exp(
∑

k∈pa∩(j) f
∗
jk(xk) + µ∗j )pjFqj (a

∗
j ; b
∗
j ;Hj(

∑
k∈pa∩(j) g

∗
jk(xk) + ν∗j ))}

.

(17)

Note that (16) and (17) hold for all possible values of xk for k ∈ pa∩(j). If it is combined
with E [fjk(Xk)] = E [gjk(Xk)] = 0, our identifiability condition for the nonlinear functions
fjk and gjk, we get µj = µ∗j , νj = ν∗j , and fjk(xk) = f∗jk(xk) and gjk(xk) = g∗jk(xk) for
all possible values of xk for k ∈ pa∩(j). Then, it is clear that aj and bj , respectively, are
equivalent to a permutation of a∗j and b∗j , which completes the proof.
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