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Abstract

Contrastive learning has achieved state-of-the-art performance in various self-supervised
learning tasks and even outperforms its supervised counterpart. Despite its empirical suc-
cess, theoretical understanding of the superiority of contrastive learning is still limited.
In this paper, under linear representation settings, (i) we provably show that contrastive
learning outperforms the standard autoencoders and generative adversarial networks, two
classical generative unsupervised learning methods, for both feature recovery and in-domain
downstream tasks; (ii) we also illustrate the impact of labeled data in supervised contrastive
learning. This provides theoretical support for recent findings that contrastive learning with
labels improves the performance of learned representations in the in-domain downstream
task, but it can harm the performance in transfer learning. We verify our theory with
numerical experiments.
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1. Introduction

Deep supervised learning has achieved great success in various applications, including com-
puter vision (Krizhevsky et al., 2012), natural language processing (Vaswani et al., 2017),
and scientific computing (Han et al., 2018). However, its dependence on manually as-
signed labels, which is usually difficult and costly, has motivated research into alternative
approaches to exploit unlabeled data. Self-supervised learning is a promising approach
that leverages the unlabeled data itself as supervision and learns representations that are
beneficial to potential in-domain downstream tasks.

At a high level, there are two common approaches for feature extraction in self-supervised
learning: generative and contrastive (Liu et al., 2021; Jaiswal et al., 2021).

Both approaches aim to learn latent representations of the original data, while the
difference is that the generative approach focused on minimizing the reconstruction error
from latent representations, and the contrastive approach targets to decrease the similarity
between the representations of contrastive pairs constructed by data augmentation. Recent
works have shown the benefits of contrastive learning in practice (Chen et al., 2020a; He
et al., 2020; Chen et al., 2020b,c). However, these works did not explain the popularity of
contrastive learning — what is the advantage of contrastive learning and where does it come
from?

Additionally, recent works aim to further improve contrastive learning by introducing
label information. Specifically, Khosla et al. (2020) proposed the supervised contrastive
learning, where the contrasting procedures are performed across different classes rather than
different instances. With the help of label information, their proposed method outperforms
self-supervised contrastive learning and classical cross-entropy-based supervised learning.
However, despite this improvement in in-domain downstream tasks, Islam et al. (2021)
found that such improvement in transfer learning is limited and even negative for such
supervised contrastive learning. This phenomenon motivates us to rethink the impact of
labeled data in the contrastive learning framework.

In this paper, we first establish a theoretical framework to study contrastive learning
under the linear representation setting. Under this framework, we provide a theoretical
analysis of the feature learning performance of the contrastive learning on the spiked co-
variance model (Bai and Yao, 2012; Yao et al., 2015; Zhang et al., 2018) and theoretically
justify why contrastive learning outperforms standard autoencoders and generative adver-
sarial networks (GANs) (Goodfellow et al., 2014) —contrastive learning is able to remove
more noise by constructing contrastive samples via augmentations. Moreover, we investi-
gate the impact of label information in the contrastive learning framework and provide a
theoretical justification of why labeled data help to gain accuracy in in-domain regression
and classification while can hurt multi-task transfer learning.

1.1 Related Works

The idea of contrastive learning was firstly proposed in Hadsell et al. (2006) as an effective
method to perform dimensional reduction. Following this line of research, Dosovitskiy et al.
(2014) proposed to perform instance discrimination by creating surrogate classes for each
instance and Wu et al. (2018) further proposed to preserve a memory bank as a dictionary
of negative samples. Other extensions based on this memory bank approach include He

2



The Power of Contrast for Feature Learning: A Theoretical Analysis

et al. (2020); Misra and Maaten (2020); Tian et al. (2020); Chen et al. (2020c). Rather
than keeping a costly memory bank, another line of work exploits the benefit of mini-batch
training where different samples are treated as negative to each other (Ye et al., 2019; Chen
et al., 2020a). Moreover, Khosla et al. (2020) explores the supervised version of contrastive
learning where pairs are generated based on label information.

Despite its success in practice, the theoretical understanding of contrastive learning is
still limited. Previous works provide provable guarantees for contrastive learning under
conditional independence assumption (or its variants) (Arora et al., 2019; Lee et al., 2021;
Tosh et al., 2021; Tsai et al., 2020). Specifically, they assume the two contrastive views
are independent conditioned on the label and show that contrastive learning can provably
learn representations beneficial for in-domain downstream tasks. In addition to this line of
research, there exist several alternative perspectives for studying the theoretical properties
of contrastive learning. To name a few, Wang and Isola (2020); Graf et al. (2021) explored
the representation geometry, HaoChen et al. (2021) analyzed the augmentation graph, Tian
(2022) proposed a two-player game theory framework, Zimmermann et al. (2021) demon-
strated the connection between contrastive learning and nonlinear Independent Component
Analysis (Hyvärinen et al., 2009), Saunshi et al. (2022) showed that the importance of
inductive bias in contrastive learning, and Jing et al. (2021) investigated the dimensional
collapse phenomenon. Furthermore, Tian et al. (2021); Wang et al. (2021) have also ex-
plored the ability of self-supervised learning to learn features even without contrastive pairs,
specifically in the context of linear representation settings.

More relevant to this paper, Wen and Li (2021) considered representation learning under
the sparse coding model and studied the optimization properties in shallow ReLU neural
networks. However, the assumptions that features are extremely sparse and signals follow
Gaussian distribution seem strong for real data. Garg and Liang (2020) studied the combi-
nation of supervised learning and self-supervised learning. They derived sample complexity
bounds in a PAC-learning style for various settings. Specifically, the authors assume that
there is a ground-truth representation such that it can keep both self-supervised loss and su-
pervised loss at a very low threshold. However, as the authors admit, it is hard to determine
such a threshold in practical settings. For example, since the unlabeled data and labeled
data come from different domains, such as Image-Net and CIFAR-10, domain-specific fea-
tures may have a much lower loss compared with domain-transferable features.

While the aforementioned previous works aim to demonstrate that contrastive learning
is capable of learning meaningful representations, it was left untouched why contrastive
learning outperforms other representation learning methods. We also shed light on the
impact of labeled data in a contrastive learning framework, which is underexplored in prior
works. A detailed comparison with existing literature is deferred to Appendix A.1.

1.2 Outline

This paper is organized as follows. Section 2 provides the setup for the data-generating
process and the loss function. In Section 3, we review the connection between PCA and
autoencoders/GANs. We also establish a theoretical framework to study contrastive learn-
ing in the linear representation setting. Under this framework, we evaluate the feature
recovery performance and in-domain downstream task performance of contrastive learning
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and autoencoders. In Section 4, we analyze the supervised contrastive learning. In Section
5, we verify our theoretical results given in Sections 3 and 4. Finally, we summarize our
analysis and provide future directions in Section 6.

1.3 Notations

In this paper, we use O,Ω,Θ to hide universal constants and we write ak . bk for two
sequences of positive numbers {ak} and {bk} if and only if there exists a universal constant
C > 0 such that ak < Cbk for any k. We write ak � bk when ak . bk and ak & bk holds
simultaneously. We use ‖ · ‖, ‖ · ‖2, ‖ · ‖F to represent the `2 norm of vectors, the spectral
norm of matrices, and Frobenius norm of matrices respectively. Let Od,r be a set of d × r
orthogonal matrices. Namely, Od,r , {U ∈ Rd×r : U>U = Ir}. We write n � d when
there exists a sufficiently small constant c depending on the constant and independent of
n, d and r such that d/n < c holds. d � r is defined similarly. We use |A| to denote the
cardinality of a set A. For any n ∈ N+, let [n] = {1, 2, · · · , n}. We use ‖ sin Θ(U1, U2)‖F to
refer to the sine distance between two orthogonal matrices U1, U2 ∈ Od,r, which is defined
by: ‖sin Θ (U1, U2)‖F ,

∥∥U>1⊥U2

∥∥
F

, where U1⊥ ∈ Od−r,r is any orthogonal complement of

U1. More properties of sine distance can be found in Section A.3. We use {ei}di=1 to denote
the canonical basis in d-dimensional Euclidean space Rd, that is, ei is the vector whose i-th
coordinate is 1 and all the other coordinates are 0. Let I{A} be an indicator function that
takes 1 when A is true, otherwise takes 0. We write a∨ b and a∧ b to denote max(a, b) and
min(a, b), respectively.

2. Setup

Here we introduce loss and data-generative models that will be used for the theoretical
analysis later.

2.1 Linear Representation Settings for Contrastive Learning

Given an input x ∈ Rd, contrastive learning aims to learn a low-dimensional representation
h = f(x; θ) ∈ Rr by contrasting different samples, that is, maximizing the agreement
between positive pairs, and minimizing the agreement between negative pairs. Suppose we
have n data points X = [x1, x2, · · · , xn] ∈ Rd×n from the population distribution D. The
contrastive learning task can be formulated to the following optimization problem:

min
θ
L(θ) = min

θ

1

n

n∑
i=1

`(xi,BPosi ,BNegi ; f(·; θ)) + λR(θ), (1)

where `(·) is a contrastive loss and λR(θ) is a regularization term; BPosi ,BNegi are the sets of
positive samples and negative samples corresponding to xi, the details of which are described
below.

Linear Representation and Regularization Term We consider the linear represen-
tation function f(x;W ) = Wx, where the parameter θ is a matrix W ∈ Rr×d. This linear
representation setting has been widely adopted in other theory papers to understand self-
supervised contrastive learning (Jing et al., 2021; Wang et al., 2021; Tian et al., 2021) and
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shed light upon other complex machine learning phenomena such as in Tripuraneni et al.
(2021). Moreover, since regularization techniques have been widely adopted in contrastive
learning practice (Chen et al., 2020a; He et al., 2020; Grill et al., 2020), we further consider
penalizing the representation by a regularization term R(W ) = ‖WW>‖2F /2 to encour-
age the orthogonality of W and therefore promote the diversity of wi to learn different
representations. The reason we use such quadratic regularization instead of a standard
`2 regularization is to encourage a diverse representation in the linear representation set-
ting by penalizing on the similarity 〈wi, wj〉2, we defer a formal discussion and numerical
experiments about this regularization in the Appendix A.2.

Linear Contrastive Loss The contrastive loss is set to be the average similarity (mea-
sured by the inner product) between positive pairs minus that between negative pairs:

`(x,BPosx ,BNegx , f(·; θ)) = −
∑

xPos∈BPos
x

〈f(x, θ), f(xPos, θ)〉
|BPosx |

+
∑

xNeg∈BNeg
x

〈f(x, θ), f(xNeg, θ)〉
|BNegx |

,

(2)
where BPosx ,BNegx are sets of positive samples and negative samples corresponding to x.
This loss function has been commonly used in contrastive learning (Hadsell et al., 2006) and
metric learning (Schroff et al., 2015; He et al., 2018). In Khosla et al. (2020), the authors
show that the inner-product based linear loss (2) is an approximation of the NT-Xent
contrastive loss when one positive and one negative are used, which has been highlighted in
recent contrastive learning practice (Sohn, 2016; Wu et al., 2018; Oord et al., 2018; Chen
et al., 2020a). In Li et al. (2021), the authors proposed the SSL-HSIC contrastive loss,
which can be reduced to this linear loss when the kernel k(·, ·) is chosen to be a simple inner
product. Following Li et al. (2021), we provide the results in Table 1, which shows that
linear contrastive loss can also work well with some additional training techniques.

Testing Accuracy InfoNCE Linear contrastive loss

CIFAR10 65.11± 0.51 66.07± 0.46

STL10 71.02± 0.47 70.30± 0.31

Table 1: InfoNCE loss v.s. Linear contrastive loss. We train a ResNet-18 encoder on
CIFAR-10 and STL-10 datasets with different contrastive loss functions. To train the linear
contrastive loss, we follow the HSIC regularization techniques used in Li et al. (2021), which
helps linear contrastive loss yield comparable performance to standard InfoNCE. We repeat
each experiment for ten runs and report the mean and standard deviation of accuracy.
Detailed experimental settings can be found in Section 5.2.

2.2 Generation of Positive and Negative Pairs

There are two common approaches to generating positive and negative pairs, depending on
whether or not label information is available. When the label information is not available,
the typical strategy is to generate different views of the original data via augmentation
(Hadsell et al., 2006; Chen et al., 2020a). Two views of the same data point serve as the
positive pair for each other, while those of different data serve as negative pairs.
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Definition 1 (Augmented Pairs Generation in the Self-supervised Setting) Given
two augmentation functions g1, g2 : Rd → Rd and n training samples B = {xi}i∈[n], the aug-
mented views are given by: {(g1(xi), g2(xi))}i∈[n]. Then for each view gv(xi), v = 1, 2, the

corresponding positive samples and negative samples are defined by: BPosi,v = {gs(xi) : s ∈
[2] \ {v}} and BNegi,v = {gs(xj) : s ∈ [2], j ∈ [n] \ {i}}.

The loss function of the self-supervised contrastive learning problem can then be written
as:

LSelfCon(W )= − 1

2n

n∑
i=1

2∑
v=1

[
〈Wgv(xi),Wg[2]\{v}(xi)〉−

∑
j 6=i

2∑
s=1

〈Wgv(xi),Wgs(xj)〉
2n− 2

]
+
λ

2
‖WW>‖2F .

(3)

In particular, we adopt the following augmentation in our analysis.

Definition 2 (Random Masking Augmentation) The two views of the original data
are generated by randomly dividing its dimensions into two sets, that is, g1(xi) = Axi, and g2(xi) =
(I −A)xi, where A = diag(a1, · · · , ad) ∈ Rd×d is the diagonal masking matrix with {ai}di=1

being i.i.d. random variables sampled from a Bernoulli distribution with mean 1/2.

Remark 3 In this paper, we focus on random masking augmentation, which has also been
used in other works on the theoretical understanding of contrastive learning, eg. Wen and
Li (2021). However, our primary interest lies in comparing the performance of contrastive
learning with autoencoders and analyzing the impact of labeled data, while their work focuses
on understanding the training process of neural networks in contrastive learning. Random
masking augmentation is an analog of the random cropping augmentation used in practice.
As shown in Chen et al. (2020a), cropping augmentation achieves overwhelming perfor-
mance on linear evaluation (ImageNet top-1 accuracy) compared with other augmentation
methods, please see Figure 5 in Chen et al. (2020a) for details.

When the label information is available, Khosla et al. (2020) proposed the following
approach to generate positive and negative pairs.

Definition 4 (Pairs Generation in the Supervised Setting) In a K-class classifica-
tion problem, given nk samples for each class k ∈ [K]: {xki : i ∈ [nk]}Kk=1 and let n =∑K

k=1 nk, the corresponding positive samples and negative samples for xki are defined by

BPosi,k = {xkj : j ∈ [nk] \ i} and BNegi,k = {xsj : s ∈ [K] \ k, j ∈ [ns]}. That is, the positive

samples are the remaining ones in the same class with xki and the negative samples are the
samples from different classes.

Correspondingly, the loss function of the supervised contrastive learning problem can be
written as:

LSupCon(W ) = − 1

nK

K∑
k=1

n∑
i=1

[∑
j 6=i

〈Wxki ,Wxkj 〉
n− 1

−
n∑
j=1

∑
s 6=k

〈Wxki ,Wxsj〉
n(K − 1)

]
+
λ

2
‖WW>‖2F . (4)
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2.3 Data Generating Process

In real-world scenarios, data often comprises both signal (relevant information) and noise (ir-
relevant distractions). For instance, in image classification, the signal might be the primary
subject of interest, while the noise could represent background elements. Self-supervised
learning methods, without predefined tasks, aim to extract generalized patterns from data,
ideally capturing as much of the signal as possible. It is commonly understood that signals
tend to exhibit specific low-complexity structures, often being low-rank and showing higher
correlations across coordinates. In contrast, background noise might lack a distinct struc-
ture, potentially being dense (or full rank) with lower coordinate correlations. To delve into
this structural difference more rigorously, we consider an additive data-generating model.
Here, the observed data emerges as a combination of a low-rank signal and dense noise.

x = U?z + ξ, Cov(z) = ν2Ir, Cov(ξ) = Σ, (5)

where z ∈ Rr and ξ ∈ Rd are both zero mean sub-Gaussian independent random variables,
and ν ∈ R is a constant represents the signal strength. In particular, U? ∈ Od,r and
Σ = diag(σ2

1, · · · , σ2
d). The first term U?z represents the signal of interest residing in a

low-dimensional subspace spanned by the columns of U?. The second term ξ is the dense
noise with heteroskedastic noise. Given that, the ideal low-dimensional representation is to
compress the observed x into a low-dimensional representation spanned by the columns of
U?. This model is known as the spiked covariance model (Johnstone, 2001; Bai and Yao,
2012; Yao et al., 2015; Zhang et al., 2018). It was proposed from the empirical observation
that the eigenvalues of the sample covariance matrix of phoneme data have few ”spikes”,
which corresponds to the low-dimensional structure of data generation. The model has been
used in the literature of PCA (Johnstone, 2001; Deshpande and Montanari, 2014; Zhang
et al., 2018) and Contrastive Learning (Wen and Li, 2021).

In this paper, we aim to learn a good projection W ∈ Rr×d onto a lower-dimensional
subspace from the observation x. Since the information of W is invariant with the trans-
formation W ← OW for any O ∈ Or,r, the essential information of W is contained in the
right eigenvector of W . Thus, we quantify the goodness of the representation W using the
sine distance ‖ sin Θ(U,U?)‖F , where U is the top-r right eigenspace of W . It is notable
that we only assume that noise and signal follow a sub-Gaussian distribution. This includes
bounded noise/signals such as images, sound data, or text data.

3. Comparison of Self-Supervised Contrastive Learning and
Autoencoders/GANs

Generative and contrastive learning are two popular approaches of self-supervised learning.
Recent experiments have highlighted the improved performance of contrastive learning com-
pared with the generative approach. For example, in Figure 1 of Chen et al. (2020a) and Fig-
ure 7 of Liu et al. (2021), it is observed that state-of-the-art contrastive self-supervised learn-
ing has more than 10 percent improvement over state-of-the-art generative self-supervised
learning, with the same number of parameters. In this section, we rigorously demonstrate
the advantage of contrastive learning over autoencoders/GANs, the representative methods
in generative self-supervised learning, by investigating the linear representation settings
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under the spiked covariance model (5). The investigation is conducted for both feature
recovery and in-domain downstream tasks.

Hereafter, we focus on the linear representation settings. This section is organized as
follows: in Section 3.1 we first review the connection between principal component analysis
(PCA) and autoencoders/GANs, which are two representative methods in generative ap-
proaches in self-supervised learning, under linear representation settings. Then we establish
the connection between contrastive learning and PCA in Section 3.2. Based on these con-
nections, we make the comparison between contrastive learning and autoencoder on feature
recovery ability (Section 3.3) and in-domain downstream performance (Section 3.4).

3.1 Autoencoders, GANs and PCA

Autoencoders are popular unsupervised learning methods to perform dimensional reduction.
Autoencoders learn two functions: encoder f : Rd → Rr and decoder g : Rr → Rd. While
the encoder f compresses the original data into low-dimensional features, and the decoder
g recovers the original data from those features. It can be formulated to be the following
optimization problem for samples {xi}ni=1 (Ballard, 1987; Fan et al., 2019):

min
f,g

ExL(x, g(f(x))). (6)

By minimizing this loss, autoencoders try to preserve the essential features to recover the
original data in the low-dimensional representation. In our setting, we consider the class
of linear functions for f and g. The loss function is set as the mean squared error. Write
f(x) = WAEx and g(x) = WDEx. Namely, we consider the following problem.

min
WAE,WDE

1

n
‖X −WDEWAEX‖2F .

Let X = (x1, . . . , xn) ∈ Rd×n. By Theorem 2.4.8 in Golub and Loan (1996), the optimal
solution is given by the eigenspace of XX>, which exactly corresponds to the result of PCA.
Thus, in linear representation settings, autoencoders are equivalent to PCA, which is also
often known as undercomplete linear autoencoders (Bourlard and Kamp, 1988; Plaut, 2018;
Fan et al., 2019). We write the obtained low-rank representation by autoencoders as

WAE = (UAEΣAEV
>

AE)>, (7)

where UAE is the top-r eigenvectors of matrix XX>, ΣAE is a diagonal matrix of spectral
values and VAE = [v1, · · · , vr] ∈ Rr×r can be any orthonormal matrix.

We also note that GANs (Goodfellow et al., 2014) is related to PCA. Namely, Feizi et al.
(2020) showed that the global solution for GANs recovers the empirical PCA solution as
the generative model.

To see this, let W2 be the second-order Wasserstein distance. Also let G be the set of
linear generator functions from Rr → Rd. Consider the following W2 GAN optimization
problem:

min
g∈G
W2

2 (Pn,Pg(Z)), (8)
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where Pn denotes the empirical distribution of i.i.d. data x1, . . . , xn ∈ Rd and Pg(Z) is
the generated distribution with generator g and Z ∼ N(0, Ir). Note that the optimization
problem Equation (8) can be written as minPn,Z

ming∈G E[‖X − g(Z)‖2], where the first
minimization is over probability distributions which have marginals Pn and PZ . By Theorem
2 in Feizi et al. (2020), the optimizer of problem Equation (8) is obtained as ĝ : Z 7→ ĜZ,
where Ĝ satisfies ĜĜ> = UAEΣ2

AEU
>
AE. This implies W>AE : Rr → Rd is also a solution to the

optimization problem Equation (8). Hence GANs learn the PCA solution as a generator.

From this equivalence among ordinary PCA, autoencoders, and GANs, we only focus
on autoencoders hereafter for brevity.

3.2 Contrastive Learning and Diagonal-Deletion PCA

Here we bridge PCA and contrastive learning with certain augmentations under the linear
representation setting. Recall that the optimization problem for self-supervised contrastive
learning is formulated as:

min
W∈Rr×d

LSelfCon(W ) := − 1

2n

n∑
i=1

2∑
v=1

[
〈Wgv(xi),Wg[2]\{v}(xi)〉−

∑
j 6=i

2∑
s=1

〈Wgv(xi),Wgs(xj)〉
2n− 2

]
+
λ

2
‖WW>‖2F .

(9)

To compare contrastive learning with autoencoders, we now derive the solution of the
optimization problem (9). We start with the general result for self-supervised contrastive
learning with augmented pairs generation in Definition 1, and then turn to the special case
of random masking augmentation (Definition 2).

Proposition 5 For two fixed augmentation functions g1, g2 : Rd → Rd, denote the aug-
mented data matrices as X1 = [g1(x1), · · · , g1(xn)] ∈ Rd×n and X2 = [g2(x1), · · · , g2(xn)] ∈
Rd×n, when the augmented pairs are generated as in Definition 1, all the optimal solutions
of contrastive learning problem (9) are given by:

WCL = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a positive constant, σi is the i-th largest eigenvalue of the following matrix:

X1X
>
2 +X2X

>
1 −

1

2(n− 1)
(X1 +X2)(1n1>n − In)(X1 +X2)>, (10)

ui is the corresponding eigenvector and V = [v1, · · · , vr] ∈ Rr×r can be any orthonormal
matrix.

The proof is given in Appendix B.1.

Proposition 5 is a general result for augmented pairs generation with fixed and deter-
ministic augmentation functions. The result itself only depends on the augmented data
matrices, thus it is straightforward to generalize to the case where different augmentation
functions are applied to different samples, we omit it here for the simplicity of notations.
Moreover, when the augmentation is sampled from a stochastic distribution, we can also
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characterize the optimal solution of the expected loss in the same way. Specifically, if we
apply the random masking augmentation (2), we can further obtain a result to characterize
the optimal solution. For any square matrix A ∈ Rd×d, we denote D(A) to be A with all
off-diagonal entries set to be zero and ∆(A) = A−D(A) to be A with all diagonal entries
set to be zero. Then we have the following corollary for random masking augmentation.

Corollary 6 Under the same conditions as in Proposition 5, if we use random masking
(Definition 2) as our augmentation function, then the minimizer of the expected loss function
of contrastive learning problem (9) over the distribution of random augmentations (i.e.,
Eg1,g2LSelfCon(W )) is given by:

WCL = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a positive constant, σi is the i-th largest eigenvalue of the following matrix:

∆(XX>)− 1

n− 1
X(1n1>n − In)X>, (11)

ui is the corresponding eigenvector and V = [v1, · · · , vr] ∈ Rr×r can be any orthonormal
matrix.

The proof is given in Appendix B.2.

With Proposition 5 and Corollary 6 established, we can find that the self-supervised
contrastive learning equipped with augmented pairs generation and random masking aug-
mentation can eliminate the effect of random noise on the diagonal entries of the observed
covariance matrix. Since Cov(ξ) = Σ is a diagonal matrix, when the diagonal entries
Cov(U?z) = ν2U?U?> only take a small proportion of the total Frobenius norm, the con-
trasting augmented pairs will preserve the core features while eliminating most of the ran-
dom noise and give a more accurate estimation of core features.

3.3 Feature Recovery from Noisy Data

After bridging both autoencoder and contrastive learning with PCA, now we can perform
the analysis of feature recovery ability to understand the benefit of contrastive learning
over autoencoders. As mentioned above, our target is to recover the subspace spanned
by the columns of U?, which can further help us obtain information on the unobserved
z that is important for in-domain downstream tasks. However, the observed data has a
covariance matrix of ν2U?U?>+Σ rather than the desired ν2U?U?>, which brings difficulty
to representation learning. We demonstrate that contrastive learning can better exploit the
structure of core features and obtain better estimation than autoencoders in this setting.

We start with autoencoders. In the noiseless case, the covariance matrix is ν2U?U?> and
autoencoders can perfectly recover the core features. However, in noisy cases, the random
noises sometimes perturb the core features, which makes autoencoders fail to learn the core
features. Such noisy cases are widespread in real applications such as measurement errors
and backgrounds in images such as grasses and sky. Interestingly, we will later show that
contrastive learning can better recover U? despite the presence of large noise.

10
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To provide rigorous analysis, we first introduce the incoherent constant (Candès and
Recht, 2009).

Definition 7 (Incoherent Constant) We define the incoherence constant of U ∈ Od,r

as

I(U) = max
i∈[d]

∥∥∥e>i U∥∥∥2
. (12)

Intuitively, the incoherent constant measures the degree of the incoherence of the dis-
tribution of entries among different coordinates, or loosely speaking, the similarity between
U and canonical basis {ei}di=1. For uncorrelated random noise, the covariance matrix is di-
agonal and its eigenspace is exactly spanned by the canonical basis {ei}di=1 (if the diagonal
entries in Σ are all different), which attains the maximum value of the incoherent constant.
On the contrary, the core features usually exhibit certain correlation structures and the
corresponding eigenspace of the covariance matrix is expected to have a lower incoherent
constant.

We then introduce a few assumptions which our theoretical results are built on. Recall
that in the spiked covariance model (5), x = U?z + ξ, Cov(z) = ν2Ir and Cov(ξ) =
diag(σ2

1, · · · , σ2
d).

Assumption 8 (Regular Covariance Condition) The condition number of covariance
matrix Σ = diag(σ2

1, · · · , σ2
d) satisfies κ := σ2

(1)/σ
2
(d) < C, where σ2

(j) represents the j-th

largest number among σ2
1, · · · , σ2

d and C > 0 is a universal constant.

Assumption 9 (Signal to noise ratio condition) Define the signal-to-noise ratio ρ :=
ν/σ(1), we assume ρ = Θ(1), implying that the covariance of noise is of the same order as
that of the core features.

Assumption 10 (Incoherent Condition) The incoherent constant of the core feature
matrix U? ∈ Od,r satisfies I(U?) = O(r log d/d).

The incoherent constant often appears in the literature of matrix completion (Candès and
Recht, 2009) and PCA (Zhang et al., 2018). The order of I(U?) can be arbitrary as long
as it decreases to 0 as d → ∞. One can directly adapt the later results to this setting. If
U is distributed uniformly on Od,r, then the expectation of incoherent constant is of order
r log d/d.

Lemma 11 (Expectation of incoherent constant over a uniform distribution)

EU∼Uniform(Od,r)I(U) = O
(r
d

log d
)
. (13)

Thus, we set I(U?) to the order r log d/d for simplicity. The proof is given in Appendix
B.6.

Here we provide a remark on the implication of our assumptions, and we defer a further
discussion on how to generalize our main results under weaker assumptions in Remark 15.
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Remark 12 The three assumptions above can be explained as follows: Assumption 8 im-
plies that the variances of all dimensions are of the same order. For Assumption 9, we focus
on a large noise regime where the noise may hurt the estimation significantly. Here we as-
sume the ratio lies in a constant range, but our theory can easily adapt to the case where
ρ has a decreasing order. Specifically, for Theorems 13, 14, 17 and 18 presented below, we
derive an explicit dependence on ρ of each result in the appendix. One can check Equations
(46), (57), (59), (60), (61) and (62) for details. Assumption 10 implies a stronger corre-
lation among the coordinates of core features, which is the essential property to distinguish
them from random noise.

Now we are ready to present our first result, showing that the autoencoders are unable to
recover the core features in the large-noise regime. Due to the equivalence among PCA,
autoencoders, and GANs we presented in Section 3.1, for brevity, we only focus on autoen-
coders hereafter.

Theorem 13 (Recovery Ability of Autoencoders, Lower Bound) Consider the spiked
covariance model (5), under Assumptions 8-10 and n > d � r, let WAE be the learned
representation of autoencoders with singular value decomposition WAE = (UAEΣAEV

>
AE)>

(as in Equation (7)). If we further assume {σ2
i }di=1 are different from each other and

σ2
(1)/(σ

2
(r) − σ

2
(r+1)) < Cσ for some universal constant Cσ. Then there exist two universal

constants Cρ > 0, c ∈ (0, 1), such that when ρ < Cρ, we have

E ‖sin Θ (U?, UAE)‖F ≥ c
√
r. (14)

The proof is given in Appendix B.7. The condition d � r means that there exists a
sufficiently small constant c > 0 independent of d and r such that r/d < c holds. The
additional assumptions {σ2

i }di=1 are different from each other and σ2
(1)/(σ

2
(r) − σ

2
(r+1)) < Cσ

for some universal constant Cσ are made to ensure the identifiability of top-r eigenspace.
We need these conditions to guarantee the uniqueness of UAE. As an extreme example, the
top-r eigenspace of the identity matrix can be any r-dimensional subspace and thus not
unique. To avoid discussing such arbitrariness of the output, we make these assumptions
to guarantee the separability of the eigenspace.

Then we investigate the feature recovery ability of the self-supervised contrastive learn-
ing approach.

Theorem 14 (Recovery Ability of Contrastive Learning, Upper Bound) Under the
spiked covariance model (5), random masking augmentation in Definition 2, Assumptions
8-10 and n > d � r, let WCL be any solution that minimizes Equation (3), and denote its
singular value decomposition as WCL = (UCLΣCLV

>
CL)>, then we have

E ‖sin Θ (U?, UCL)‖F .
r3/2

d
log d+

√
dr

n
. (15)

The proof is given in Appendix B.9. The two terms in equation (15) can be explained as
follows: the first term is due to the shift between the distributions of the augmented data
and the original data. Specifically, the random masking augmentation generates two views
with disjoint nonzero coordinates and thus can mitigate the influence of random noise on
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the diagonal entries in the covariance matrix. However, such augmentation slightly hurts
the estimation of core features. This bias, appearing as the first term in Equation (15), is
measured by the incoherent constant defined in Equation (12). The second term corresponds
to the estimation error of the population covariance matrix.

Theorems 13 and 14 characterize the difference in feature recovery ability between au-
toencoders and contrastive learning. The autoencoders fail to recover most of the core
features in the large-noise regime since ‖ sin Θ(U,U?)‖F has a trivial upper bound

√
r. In

contrast, with the help of data augmentation, the contrastive learning approach mitigates
the corruption of random noise while preserving core features. As n and d increase, it
yields a consistent estimator of core features and further leads to better performance in the
in-domain downstream tasks, as shown in the next section.

Remark 15 Here we discuss the potential generalization of our results to the setting with
weaker assumptions. Intuitively speaking, the random masking augmentation exploits the
prior knowledge that the core features in the original signal are more structural across dif-
ferent coordinates compared with the random noise. Thus the essential requirements are

1. Noise is less correlated between different coordinates compared with core features.

2. Core features and noise are very different, i.e., ‖ sin Θ(U?, UΣ)‖F is large.

Those two requirements correspond to the diagonal assumption on Σ and incoherent as-
sumption on U? (Assumption 10). In particular, the latter is to give a lower bound for
‖ sin Θ(U?, UΣ)‖F when Σ is diagonal and heteroskedasticity. For more general Σ and U?,

it suffices to assume ‖∆(Σ)‖2
ν2

= o(1), and ‖ sin Θ(U?, UΣ)‖F = Ω(
√
r), and we can still

draw a similar comparison under these assumptions. Notice that by Lemma 11, when U?

is randomly chosen we will immediately have E‖ sin Θ(U?, UΣ)‖F = (1 − o(1))
√
r. Similar

arguments also apply to all of the later results in this paper and we omit them for simplicity.

Remark 16 Similar random masking augmentation (as in Definition 2) can also apply to
autoencoders. Although directly applying this augmentation would not work as well since it
will not affect the optimal solution (see discussion in Appendix C), an alternative strategy
is to reconstruct the whole data from the masked one. This method was originally proposed
as denoising autoencoders (DAEs) for general augmentation Vincent et al. (2008), and
was proven to be powerful with masking augmentation in a recently proposed representation
learning method, masked autoencoders (MAEs) (He et al., 2021). DAEs are a variant of au-
toencoders that are trained to reconstruct the original image from randomly masked patches.
It has been found that DAEs (especially MAEs) outperform other self-supervised methods
like MoCo v3, DINO, and BEiT after fine-tuning (He et al., 2021). More specifically, under
the same setup described in Section 2, let A be the random masking augmentation defined
in Definition 2. We adopt the symmetric linear encoders and decoders. Given samples
X = [x1, . . . , xn] ∈ Rd×n, we formally define the loss minimization problem1 of DAEs as

min
W∈Rr×d:WW>=2Ir

1

n
EA
[
‖W>WAX −X‖2F

]
. (16)

1. In (He et al., 2021), the loss function is computed on masked coordinates only, but as the authors noted,
“This choice is purely result-driven: computing the loss on all pixels leads to a slight decrease in accuracy
(e.g., 0.5%).” Hence we will analyze the loss with respect to all coordinates for simplicity.
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Notice that the DAEs may not preserve the norm of the input since EA[‖Axi‖2] = (1/2)‖xi‖2.
As a result, we optimize the loss under the scaled constraint WW> = 2Ir.

Then, we claim that under the same conditions as in Theorem 14, DAEs behave similarly
to contrastive learning: Let WDAE be any solution that minimizes equation (16), and denote
its singular value decomposition as WDAE = (UDAEΣDAEV

>
DAE)>, then we have (the proof

is given in Appendix C.)

E ‖sin Θ (U?, UDAE)‖F .
r3/2

d
log d+

√
dr

n
. (17)

From Theorem 13, we know that under high dimensional settings with large sample sizes,
DAEs (or masked autoencoders) significantly outperform classic autoencoders. Moreover,
compared to Theorem 14, the upper bounds of DAEs are the same as contrastive learning
with random masking augmentations. We also provide experimental results on synthetic
datasets to verify this result in Appendix C. Although they have similar performance in our
linear representation framework because both of them exploit the masking views to eliminate
noise, the difference could arise from other aspects such as network architecture and training
algorithms, for example, He et al. (2021) used a vision Transformer (Dosovitskiy et al.,
2020) while Chen et al. (2020a) used a ResNet (He et al., 2016).

3.4 Performance on In-Domain Downstream Tasks

In the previous section, we have seen that contrastive learning can recover the core feature
effectively. In practice, we are interested in using the learned features on in-domain down-
stream tasks. He et al. (2020) experimentally showed the overwhelming performance of
linear classifiers trained on representations learned with contrastive learning against several
supervised learning methods in those in-domain downstream tasks.

Following the recent success, here we evaluate the in-domain downstream performance
of simple predictors, which take a linear transformation of the representation as an input.
Let WCL and WAE be the learned representations based on train data X ∈ Rn×d. We
observe a new signal x̌ = U?ž + ξ̌ independent of X following the spiked covariance model
(5). For simplicity, assume ž follows N(0, ν2Ir) and is independent of ξ̌. We consider two
major types of in-domain downstream tasks: classification and regression. For the binary
classification task, we observe a new supervised sample y̌ following the binary response
model:

y̌|ž ∼ Ber(F (〈ž, w?〉/ν)), (18)

where F : R→ [0, 1] is a known monotone increasing function satisfying 1−F (u) = F (−u)
for any u ∈ R , and w? ∈ Rr is a unit vector of coefficients. Notice that our model (18)
includes a logistic model (when F (u) = 1/(1+e−u)) and probit models (when F (u) = Φ(u),
where Φ is the cumulative distribution function of the standard normal distribution.) We
can also interpret model (18) as a shallow neural network model with width r for binary
classification. For the regression task, we observe a new supervised sample y̌ following the
linear regression model:

y̌ = 〈ž, w?〉/ν + ε̌, (19)
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where ε̌ ∼ (0, σ2
ε ) is independent of ž, , and w? ∈ Rr is a unit vector of coefficients as before.

We can interpret this model as a principal component regression model (PCR) (Jolliffe,
1982) under standard error-in-variables settings2, where we assume that the coefficients lie
in a low-dimensional subspace spanned by column vectors of U?. We either estimate or
predict the signal based on the observed samples contaminated by the measurement error
ξ̌. For details of PCR in error-in-variables settings, see, for example, Ćevid et al. (2020);
Agarwal et al. (2020); Bing et al. (2021).

In classification setting, we specify 0-1 loss, that is, `c(δ) , I{y̌ 6= δ(x̌)} for some
predictor δ taking values in {0, 1}. For regression task, we employ the squared error loss
`r(δ) , (y̌ − δ(x̌))2. Based on some learned representation W , we consider a class of linear
predictors. Namely, δW,w(x̌) , I{F (w>Wx̌) ≥ 1/2} for classification task and δW,w(x̌) ,
w>Wx̌ for regression task, where w ∈ Rr is a weight vector w ∈ Rr. Note that the
learned representation depends only on unsupervised samples X. Let ED[·] and EE [·] the
expectations with respect to (X,Z) and (y̌, x̌, ž), respectively.

Our goal as stated above is to bound the prediction risk of predictors {δW,w : w ∈
Rr} constructed upon the learned representations WCL and WAE, that is, the quantity
infw∈Rr EE [`(δWCL,w)] and infw∈Rr EE [`(δWAE,w)].

Now we state our results on the performance of the in-domain downstream prediction
task.

Theorem 17 (Excess Risk for In-Domain Downstream Task: Upper Bound) Suppose
the conditions in Theorem 14 hold. Then, for the regression task, we have

ED[ inf
w∈Rr

EE [`r(δWCL,w)]− inf
w∈Rr

EE [`r(δU?>,w)] .
r3/2

d
log d+

√
dr

n
,

and for the classification task,

ED[ inf
w∈Rr

EE [`c(δWCL,w)]− inf
w∈Rr

EE [`c(δU?>,w)] = O

(
r3/2

d
log d+

√
dr

n

)
∧ 1.

The proofs are given in Appendix B.11.

This result shows that the price of estimating U? by contrastive learning on an in-domain
downstream prediction task can be made small in the case where the core feature lies in a
relatively low-dimensional subspace, and the number of samples is relatively large compared
to the ostensible dimension of data.

However, the in-domain downstream performance of autoencoders is not as good as
contrastive learning. We obtain the following lower bound for the in-domain downstream
prediction risk with the autoencoders.

Theorem 18 (Excess Risk for In-Domain Downstream Task: Lower Bound)) Suppose
the conditions in Theorem 13 hold. Assume r ≤ rc holds for some constant rc > 0. Addi-
tionally assume that ρ = Θ(1) is sufficiently small and n� d� r. Then, For the regression

2. In error-in-variables settings, the bias term of the measurement error appears in prediction and estimation
risk. Since our focus lies in proving a better performance of contrastive learning against autoencoders,
we ignore the unavoidable bias term here by considering the excess risk.
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task,

ED[ inf
w∈Rr

EE [`r(δUAE,w)]− inf
w∈Rr

EE [`r(δU?,w)] ≥ c′c,

and for classification task, if F is differentiable at 0 and F ′(0) > 0, then

ED[ inf
w∈Rr

EE [`c(δUAE,w)]− inf
w∈Rr

EE [`c(δU?,w)] ≥ c′r,

where c′r > 0 and c′c > 0 are constants independent of n and d.

The proof is given in Appendix B.11. The condition n � d � r means that there exists a
sufficiently small constant c > 0 independent of n, d and r such that d/n ∨ r/d < c holds.

The constant c′ appearing in Theorem 18 is a constant term independent of d and n.
Thus, when d is sufficiently large compared to r and d/n is small, the upper bound of
in-domain downstream task performance via contrastive learning in Theorem 17 is smaller
than the lower bound of in-domain downstream task performance via autoencoders. The
assumption of r ≤ rc in Theorem 18 is assumed for clarity of presentation. Using the
same techniques in the proof of Theorem 18, one can obtain a constant lower bound for
autoencoders with slightly stronger assumptions, for example, ρ2 = O(1/ log d) with n� dr,
without assuming r ≤ rc. Our theory can be adapted to both of these assumptions.

4. The Impact of Labeled Data in Supervised Contrastive Learning

Recent works have explored adding label information to improve contrastive learning (Khosla
et al., 2020). Empirical results show that label information can significantly improve the
accuracy of the in-domain downstream tasks. However, when domain shift is considered,
the label information hardly improves and even hurts transferability (Islam et al., 2021).
For example, in Table 2 of Khosla et al. (2020) and the first column in Table 4 of Islam et al.
(2021), supervised contrastive learning shows significant improvement with 7%-8% accuracy
increase on in-domain downstream classification on ImageNet and Mini-ImageNet. On the
contrary, in Table 4 of Khosla et al. (2020) and Table 4 of Islam et al. (2021), supervised
contrastive learning hardly increases the predictive accuracy compared to the self-supervised
contrastive learning (the difference of mean accuracy is less than 1%) and can harm signif-
icantly on some datasets (e.g. 5.5% lower for SUN 397 in Table 4 of Khosla et al. (2020)).
These results indicate that some mechanisms in supervised contrastive learning hurt model
transferability while the improvement in source tasks is significant. Moreover, in Table 4
of Islam et al. (2021), it is observed that combining supervised learning and self-supervised
contrastive learning together achieves the best transfer learning performance compared to
each of them individually. Motivated by those empirical observations, in this section, we aim
to investigate the impact of labeled data in contrastive learning and provide a theoretical
foundation for these phenomena.

4.1 Feature Mining in Multi-Class Classification

We first demonstrate the impact of labels in contrastive learning under the standard single-
sourced (i.e. no transfer learning) setting. Suppose our samples are drawn from r + 1
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different classes with probability pk for class k ∈ [r + 1], and
∑r+1

k=1 pk = 1. For each class,
samples are generated from a class-specific Gaussian distribution:

xk = µk + ξk, ξk ∼ N (0,Σk), ∀k = 1, 2, · · · , r + 1. (20)

We assume the norms of µk, ∀k ∈ [r+1] are in the same order, that is, denote ν = ‖µ1‖/
√
r,

we have ‖µk‖ = O(
√
rν),∀k ∈ [r + 1]. We further assume Σk = diag(σ2

1,k, · · · , σ2
d,k),

denote σ2
(1) = max1≤i≤d,1≤j≤r+1 σ

2
i,j and assume

∑r+1
k=1 pkµ

k = 0, where the last assumption

is added to ensure identifiability since the classification problem (20) is invariant under
translation. Denote Λ =

∑r+1
k=1 pkµ

kµk>, we assume rank(Λ) = r and C1ν
2 < λ(r)(Λ) <

λ(1)(Λ) < C2ν
2 for two universal constants C1 and C2. We remark that this model is a

labeled version of the spiked covariance model (5) since the core features and random noise
are both sub-Gaussian. We use r + 1 classes to ensure that µk’s span an r-dimensional
space, and denote its orthonormal basis as U?. Recall that our target is to recover U?.

Remark 19 Here we focus on explaining the impact of label information in the SupCon
algorithm(Khosla et al., 2020). SupCon is designed for multi-class classification tasks and
it requires using the class label to find positive samples. In that case, labels from a linear
function of the latent features can not be used as class labels in a multi-class classification
setting. Hence we proposed to use the Gaussian Mixture Model (20) to generate class labels
while keeping the most consistency with models used earlier(i.e., the spiked covariance model
(5)).

As introduced in Definition 4, the supervised contrastive learning introduced by Khosla et al.
(2020) allows us to generate contrastive pairs using labeled information and discriminate
instances across classes. When we have both labeled data and unlabeled data, we can
perform contrastive learning based on pairs that are generated separately for the two types
of data.

Data Generating Process Formally, let us consider the case where we draw n samples
as unlabeled data X = [x1, · · · , xn] ∈ Rd×n from the Gaussian mixture model (20) with
p1 = p2 = · · · = pr+1. For the labeled data, we draw (r + 1)m samples; m samples
for each of the r + 1 classes in the Gaussian mixture model, and denote them as X̂ =
[x̂1, · · · , x̂(r+1)m] ∈ Rd×(r+1)m. We discuss the above case for simplicity. More general
versions that allow different sample sizes for each class are considered in Theorem D.2 (in
the appendix). We study the following hybrid loss to illustrate how the label information
helps promote performance over self-supervised contrastive learning:

min
W∈Rr×d

L(W ) := min
W∈Rr×d

LSelfCon(W ) + αLSupCon(W ), (21)

where α > 0 is the ratio between supervised loss and self-supervised contrastive loss. Here
we consider this generalized hybrid loss to show the benefit of exploiting additional unlabeled
data. If we choose α→∞ it will correspond to the original SupCon loss.

We first provide a high-level explanation of why label information can help learn core
features. When the label information is unavailable, no matter how much (unlabeled) data
we have, we can only take them (and their augmented views) as positive samples. In such
a scenario, performing augmentation leads to an unavoidable trade-off between estimation
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bias and accuracy. However, if we have additional class information, we can contrast between
data in the same class to extract more beneficial features that help distinguish a particular
class from others and therefore reduce the bias.

Theorem 20 Suppose the labeled and unlabeled samples are generated as the process men-
tioned above. If Assumptions 8-10 hold, n > d � r and let WCL be any solution that
minimizes the supervised contrastive learning problem in Equation (21), and denote its sin-
gular value decomposition as WCL = (UCLΣCLV

>
CL)>, then we have

E‖ sin Θ(UCL, U
?)‖F .

1

1 + α

(
r3/2

d
log d+

√
dr

n

)
+

α

1 + α

√
dr

m
.

The proof is given in Appendix D.2

Corollary 21 From Theorem 20, it directly follows that when we have m labeled data for
each class and no unlabeled data (α→∞),

E‖ sin Θ(UCL, U)‖F .

√
dr

m
.

The first bound in Theorem 20 demonstrates how the effect of labeled data changes with
the ratio α in the hybrid loss in Equation (21). In addition, compared with Theorem 14,
when we only have labeled data (α→∞), the second bound in Theorem 20 indicates that
with labeled data being available, the supervised contrastive learning can yield consistent
estimation as m → ∞ while the self-supervised contrastive learning consists of an irre-
ducible bias term O(r3/2 log d/d). At a high level, label information can help gain accuracy
by creating more positive samples for a single anchor and therefore extract more decisive
features. One should notice a caveat that when labeled data is extremely rare compared to
unlabeled data, the estimation of supervised contrastive learning suffers from high variance.
In comparison, self-supervised contrastive learning, which can exploit a much larger number
of samples, may outperform it.

4.2 Information Filtering in Multi-Task Transfer Learning

In this section, we show that the theoretical tools developed in this paper can be used
to illustrate the role of label information when using contrastive learning in the transfer
learning setting. Label information can tell us the beneficial information for the in-domain
downstream task, and learning with labeled data will filter out useless information and pre-
serve the decisive parts of core features. However, in transfer learning, the label information
is sometimes rather found to hurt the performance of contrastive learning. For example, in
Table 4 of Islam et al. (2021), while supervised contrastive learning gains 8% improvement
in source tasks by incorporating label information, it improves only 1% on generalizing to
new datasets on average and can even hurt on some datasets. Such observation implies that
label information in contrastive learning has very different roles for generalization on source
tasks and new tasks. In this section, we consider two regimes of transfer learning – tasks
are insufficient/abundant. In both regimes, we provide theories to support the empirical
observations and further demonstrate how to wisely combine supervised and self-supervised

18



The Power of Contrast for Feature Learning: A Theoretical Analysis

contrastive learning to avoid those harms and achieve better performance. Specifically, we
consider a transfer learning problem with regression setting and binary classification
setting. Suppose we have T source tasks which share a common data generative model (5).
For the t-th task, the labels are generated by yt = 〈wt, z〉/ν in a regression setting while
yt = sign(〈wt, z〉) in a binary classification setting, where wt ∈ Rr is a unit vector varying
across tasks. These two settings share the same distribution for x only differ in the way to
generate the labels yt.

To incorporate label information, we maximize the Hilbert-Schmidt Independence Cri-
teria (HSIC) (Gretton et al., 2005; Barshan et al., 2011), which has been widely used in
literature (Song et al., 2007a,b,c; Barshan et al., 2011).

4.2.1 Hilbert-Schmidt Independent Criteria

Gretton et al. (2005) proposed the Hilbert Schmidt Independent Criteria (HSIC) to measure
the dependence between two random variables. It computes the Hilbert-Schmidt norm of the
cross-covariance operator associated with their Reproducing Kernel Hilbert Space (RKHS).
Such measurement has been widely used as a supervised loss function in feature selection
(Song et al., 2007c), feature extraction (Song et al., 2007a), clustering (Song et al., 2007b)
and supervised PCA (Barshan et al., 2011).

The basic idea behind HSIC is that two random variables are independent if and only
if any bounded continuous functions of the two random variables are uncorrelated. Let
F be a separable RKHS containing all continuous bounded real-valued functions mapping
from X to R and G be that for maps from Y to R. For each point x ∈ X , there exists a
corresponding element φ ∈ F such that 〈φ(x), φ (x′)〉F = k (x, x′), where k : X × X → R is
a unique positive definite kernel. Likewise, define the kernel l(·, ·) and feature map ψ for G.
The empirical HSIC is defined as follows.

Definition 22 (Empirical HSIC (Gretton et al., 2005)) Let Z := {(x1, y1), . . ., (xm, ym)}
⊆ X ×Y be a series of m independent and identically distributed observations. An estimator
of HSIC, written as HSIC(Z,F ,G), is given by

HSIC(Z,F ,G) := (m− 1)−2 tr(KHLH),

where H,K,L ∈ Rm×m,Kij := k (xi, xj) , Lij := l (yi, yj) and H := Im − (1/m)1m1>m.

In our setting, we aim to maximize the dependency between learned features WX ∈ Rr×n
and label y ∈ Rn via HSIC. Substituting K ← X>W>WX and L ← yy>, we obtain our
supervised loss for the representation matrix W :

HSIC(X, y;W ) =
1

(n− 1)2
tr
(
X>W>WXHyy>H

)
. (22)

A more commonly used supervised loss in the regression task is the mean squared
error. Here we explain the equivalence of maximizing HSIC with penalty ‖WW>‖2F and
minimizing the mean squared error in the regression task.

Recall that in the contrastive learning framework, we first learn the representation via a
linear transformation and then perform linear regression to learn a predictor with the learned
representation. Consider the mean squared error L(δ) = (1/n)

∑n
i=1(δ(xi) − yi)2, where
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δ(xi) is a predictor of yi. Also consider a linear class of predictors δW,w(xi) = w>Wxi with
parameter w ∈ Rr. Assume that both X and y are centered. For any fixed representation
W , the minimum mean squared error is given by

min
w∈Rr

L(δW,w) =
1

n
‖(WX)>w? − y‖2

=
1

n

(
y>y − tr

(
X>W>(WXX>W>)−1WXyy>

))
,

where w? = (WXX>W>)−1WXy. Ignoring the constant term y>y, it can be seen that
the only essential difference between the minimization problem minw∈Rr L(δW,w) and max-
imizing HSIC in Equation (22) is the normalization term (WXX>W>)−1/2 for W . Thus,
minimizing the mean squared error is equivalent to maximizing HSIC with regularization
term ‖WW>‖2F . Since LSelfCon contains the regularization term ‖WW>‖2F , we can jointly
use LSelfCon and HSIC as a surrogate for the standard regression error to avoid the singu-
larity of learned representation W .

4.2.2 Main results

First, we consider the regression setting. Before stating our results, we prepare some nota-
tions. Suppose we have n unlabeled data X = [x1, · · · , xn] ∈ Rd×n and m labeled data for
each source task X̂t = [x̂t1, · · · , x̂tm], yt = [yt1, · · · , ytm],∀t = 1, . . . , T where xi and x̂tj are in-
dependently drawn from the spiked covariance model (5), we learn the linear representation
via the joint optimization:

min
W∈Rr×d

L(W ) := min
W∈Rr×d

LSelfCon(W )− α
T∑
t=1

HSIC(X̂t, yt;W ), (23)

where α > 0 is a pre-specified ratio between the self-supervised contrastive loss and HSIC.
A more general setting, where the ratio α and the number of labeled data for each source
task are allowed to depend on t, is considered in the appendix, see Section D.2 for details.
We now present a theorem showing the recoverability of W by minimizing the hybrid loss
function (23).

Theorem 23 In the regression setting where yt = 〈wt, z〉/ν , suppose Assumptions 8-10
hold for the spiked covariance model (5) and n > d� r, if we further assume that α > C for
some constant C, T < r and wt’s are orthogonal to each other, and let WCL be any solution
that optimizes the problem in Equation (23), and denote its singular value decomposition
as WCL = (UCLΣCLV

>
CL)>, then we have:

E‖ sin Θ(UCL, U
?)‖F .

√
r − T

(
r log d

d
+

√
d

n
+ αT

√
d

m
∧ 1

)
+
√
T

(
r log d

αd
+

1

α

√
d

n
+ T

√
d

m

)
.

(24)

The proof is given in Appendix D.6.
Similar to Section 3.4, we can obtain an in-domain downstream task risk in a supervised

contrastive learning setting. Consider a new test task where a label is generated by y̌ =
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〈w?, ž〉/ν with x̌ = U?ž + ξ̌. Recall that the loss in the in-domain downstream task is
measured by the squared error: `r(δ) := (y̌ − δ(x̌))2. We obtain the following result.

Theorem 24 Suppose the conditions in Theorem 23 hold. Then,

ED[ inf
w∈Rr

EE [`r(δWCL,w)]− inf
w∈Rr

EE [`r(δU?>,w)]

.
√
r − T

(
r log d

d
+

√
d

n
+ αT

√
d

m
∧ 1

)
+
√
T

(
r log d

αd
+

1

α

√
d

n
+ T

√
d

m

)
.

(25)

The proof is given in Appendix D.7.
In Theorem 23 and Theorem 24, as α goes to infinity (corresponding to the case where

we only use the supervised loss), the upper bounds in Equations (24) and (25) are reduced to√
r − T + T 3/2

√
d/m, which is worse than the r3/2 log d/d rate obtained by self-supervised

contrastive learning (Theorem 14). This implies that when the model focuses mainly on
the supervised loss, the algorithm will extract the information only beneficial for the source
tasks and fail to estimate other parts of core features. As a result, when the target task
has a very different distribution, labeled data will bring extra bias and therefore hurt the
transferability. Additionally, one can minimize the right-hand side of Equation (24) to
obtain a sharper rate. Specifically, we can choose an appropriate α such that the upper
bound becomes

√
r2(r − T ) log d/d (when n,m → ∞), obtaining a smaller rate than that

of the self-supervised contrastive learning. These facts provide theoretical foundations for
the recent empirical observations that smartly combining supervised and self-supervised
contrastive learning achieves significant improvement in transferability compared with per-
forming each of them individually (Islam et al., 2021).

Remark 25 A heuristic intuition of this surprising fact is that when tasks are not diverse
enough, supervised training will only focus on the features that are helpful to predict the
labels of source tasks and ignore other features. For example, we have unlabeled images
which contain cats or dogs and the background can be sandland or forest. If the source task
focuses on classifying the background, supervised learning will not learn features associated
with cats and dogs, while self-supervised learning can learn these features since they are
helpful to discriminate different images. As a result, although supervised learning can help
to classify sandland and forest, it can hurt performance on the classification of dogs and
cats and we should incorporate self-supervised contrastive learning to learn these features.

When the tasks are abundant enough then estimation via labeled data can recover core
features completely. Similar to Theorem 23 and Theorem 24, we have the following results.

Theorem 26 In the regression setting where yt = 〈wt, z〉/ν, suppose Assumptions 8-10
hold for the spiked covariance model (5) and n > d � r, if we further assume that T > r
and λ(r)(

∑T
i=1wiw

>
i ) > c for some constant c > 0, suppose WCL is the optimal solution of

optimization problem Equation (23), and denote its singular value decomposition as WCL =
(UCLΣCLV

>
CL)>, then we have:

E‖ sin Θ(UCL, U
?)‖F .

√
r

α+ 1

(
r

d
log d+

√
d

n

)
+ T

√
dr

m
. (26)
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The proof is given in Appendix D.8.

Theorem 27 Suppose the conditions in Theorem 26 hold. Then,

ED[ inf
w∈Rr

EE [`r(δWCL,w)]− inf
w∈Rr

EE [`r(δU?>,w)] .

√
r

α+ 1

(
r

d
log d+

√
d

n

)
+ T

√
dr

m
. (27)

The proof is given in Appendix D.9.
Theorem 26 and Theorem 27 show that in the case where tasks are abundant, as α goes

to infinity (corresponding to the case where we use the supervised loss only), the upper
bounds in Equations (26) and (27) are reduced to T

√
rd/m. This rate can be worse than

the
√
r3 log d/d +

√
rd/n rate obtained by self-supervised contrastive learning when m is

small. Recall that when the number of tasks is small, labeled data introduce extra bias term√
r − T (Theorem 23 and Theorem 24). We note that when the tasks are abundant enough,

the harm of labeled data is mainly due to the variance brought by the labeled data. When
m is sufficiently large, supervised learning on source tasks can yield a consistent estimation
of core features, whereas self-supervised contrastive learning can not.

In extending our results from regression to the binary classification setting, the only
difference is in the label generation process, and we can obtain similar results with some
modification of the proofs. The corresponding feature recovery bounds of Theorem 23
(where the tasks are insufficient) and Theorem 26 (where the tasks are abundant) are
stated as follows:

Theorem 28 In the classification setting where yt = sign(〈wt, z〉/ν), suppose the conditions
in Theorem 23 hold and z in the spiked covariance model (5) follows a Gaussian distribution,
then we have:

E‖ sin Θ(UCL, U
?)‖F .

√
r − T

(
r log d

d
+

√
d

n
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√
d
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∧ 1

)
+
√
T

(
r log d

αd
+

1

α

√
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n
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√
d

m

)
.

(28)

Theorem 29 In the classification setting where yt = sign(〈wt, z〉/ν) , suppose the con-
ditions in Theorem 26 hold and z in the spiked covariance model (5) follows a Gaussian
distribution, then we have:

E‖ sin Θ(UCL, U
?)‖F .

√
r

α+ 1

(
r

d
log d+

√
d

n

)
+ T

√
dr

m
. (29)

As the feature recovery bounds remain to be the same, the counterpart of the in-domain
downstream tasks results, Theorem 24 and Theorem 27, in this classification setting follows
immediately. For the sake of space, we defer the generalized version and proofs in Theorem
D.10 and Theorem D.11 in the appendix.

5. Numerical Experiments

5.1 Linear Model with Synthetic Data

To verify our theory, we conducted numerical experiments on the spiked covariance model
(5) under a linear representation setting and contrastive loss functions defined in (3) and
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loge(α) -5 -4 -3 -2 -1 0 1 2 3 4 5

T = 8, r = 10 0.0242 0.0231 0.0199 0.0141 0.0122 0.0125 0.0184 0.0345 0.0499 0.0535 0.0587

T = 20, r = 10 0.0223 0.0163 0.0156 0.0096 0.0079 0.0055 0.0064 0.0064 0.0067 0.0070 0.0079

Table 2: In-domain downstream performance in transfer learning against the penalty pa-
rameter α. T is the number of source tasks.

loge(α) -5 -4 -3 -2 -1 0 1 2 3 4 5

T = 8, r = 10 2.0373 2.0371 2.0228 1.9908 2.0021 2.0055 2.0010 2.0362 2.0699 2.0705 2.0813

T = 20, r = 10 2.0352 2.0292 2.0030 1.9871 1.9740 1.9690 1.9766 1.9702 1.9790 1.9714 1.9672

Table 3: Feature recovery performance in transfer learning against the penalty parameter
α. T is the number of source tasks.

(23). As we have explicitly formulated the loss function and derived its equivalent form
in the main body and appendix, we simply minimize the corresponding loss by gradient
descent to find the optimal linear representation W . For self-supervised contrastive learning
with random masking augmentation, we independently draw the augmentation function by
Definition 2 and apply them to all samples in each iteration. To ensure convergence, we set
the maximum number of iterations for it (typically 10000 or 50000 depending on dimension
d).

We report two criteria to evaluate the quality of the representation, in-domain down-
stream error, and sine distance. To obtain the sine distance for a learned representation
W , we perform singular value decomposition to get W = (UΣV >)> and then compute
‖ sin Θ(U,U?)‖F . To obtain the in-domain downstream task performance, in the compari-
son between autoencoders and contrastive learning, we first draw n labeled data from spiked
covariance model (5) with labels generated as in Section 3.4, then we train the model by
using the data without labels to obtain the linear representation W , and learn a linear
predictor w using the data with labels and compute the regression error. In the transfer
learning setting, we draw some labeled data from the source tasks and additional unlabeled
data. The number of labeled data is set to be m = 1000 and the number of unlabeled
data is set to be n = 1000. Then train with them to obtain the linear representation W ,
and draw labeled data from a new source task to learn a linear predictor w to compute
the regression error. In particular, we subtract the optimal regression error obtained by
the best representation U?> for each regression error and report the difference, or more
precisely, the excess risk as in-domain downstream performance.

The results are reported in Fig. 1 and 2 and Table 2 and 3. As predicted by Theorems
13 and 14, the feature recovery error and in-domain downstream task risk of contrastive
learning decrease as d increases (Fig. 1: Left) and as n increases (Fig. 1: Center) while
that of autoencoders is insensible to the changes in d and n. Consistent with our theory, in
Fig. 1: Right, it is observed that when tasks are not abundant, the transfer performance
exhibit a U -shaped curve, and the best result is achieved by choosing an appropriate α.
When tasks are abundant and labeled data are sufficient, the error remains small when we
take large α.
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Figure 1: The vertical axes indicate the downstream regression error. We subtract the
regression error of the ground truth features to measure the excess error. Left: Comparison
of in-domain downstream task performance between contrastive learning and autoencoders
the dimension d. The sample size n is set as n = 20000. Center: Comparison of in-domain
downstream task performance between contrastive learning and autoencoders the dimension
n. The dimension d is set as d = 40. Right: In-domain downstream task performance in
transfer learning against penalty parameter α in log scale. T is the number of source tasks
and r is the dimension of the representation function. We set the number of labeled data
and unlabeled data as m = 1000 and n = 1000 respectively.

Figure 2: Left: Comparison of learned feature between contrastive learning and autoen-
coders against the dimension d. The sample size n is set as n = 20000. Center: Comparison
of feature recovery performance between contrastive learning and autoencoders against the
dimension n. The dimension d is set as d = 40. Right: Feature recovery performance
in transfer learning against penalty parameter α in log scale. T is the number of source
tasks. We set the number of labeled data and unlabeled data as m = 1000 and n = 1000
respectively.
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5.2 Neural Nets with Real-World Dataset

In this section, we provide experimental results in real-world datasets to support our theo-
retical results. Although our model settings and assumptions might be violated under this
scenario, as we shall see, our findings still remain valid in practice.

We conduct the experiments using the datasets STL-10 (Coates et al., 2011) and CIFAR-
10 (Krizhevsky, 2009) with the neural nets architecture ResNet-18 (He et al., 2016). Our
experiments are carried out based on linear evaluation following SimCLR (Chen et al.,
2020a), where we first train a ResNet-18 encoder and a two-layer MLP projector with
unlabeled augmented data. We then freeze the encoder, train a logistic regression on top of
it with labeled data, and lastly evaluate the performance on the test data. Following Chen
et al. (2020a), we apply augmentations including resized cropping, horizontal flipping, color
distortion, and Gaussian blurring to generate the augmented data, and use the InfoNCE
loss function to train the network. All training is carried out with the Adam optimizer
(Kingma and Ba, 2015), batch size 256, learning rate 3 × 10−4, weight decay 10−4, and
a cosine annealing learning rate scheduler for 100 epochs. Our codes are implemented in
Pytorch and run on an NVIDIA V100 GPU.

Contrastive learning v.s. standard autoencoders: Here we provide real-world evi-
dence for our theoretical findings in Section 3.3 by comparing the performance of contrastive
learning versus a standard autoencoder. The architecture of encoders is the same for these
two methods, and we use an inversed ResNet-18 as the decoder. During the training time,
we use the encoder-decoder architecture and mean squared error loss to reconstruct the
input, and then we train a linear classifier on the features learned by the encoder. The
results are listed in Table 4, we can find that contrastive learning demonstrates superior
performance over the standard autoencoder.

Testing Accuracy Contrastive Learning Standard Autoencoder

CIFAR10 65.11± 0.51 44.76± 0.16
STL10 71.02± 0.47 39.00± 0.58

Table 4: Comparison of linear evaluation performance of contrastive learning and autoen-
coders.

The impact of labeled data in transfer learning Now we we provide real-world
evidence for our theoretical findings in Section 4.2. Following the joint optimization for-
mulation in equation 23, we combine the InfoNCE loss function for unlabeled data and
cross-entropy loss for labeled data with a ratio α. For both STL-10 and CIFAR-10 datasets,
we divide the test data into two sets, one consists of the first five classes and the other one
consists of the remaining five classes. During training, we use the training data as unlabeled
data and the first set of test data as the labeled data to train the model jointly, and then
train a linear classifier with the second set of test data on features learned by the encoder.
As predicted by Theorem 23, when α is small, introducing labeled data from the first five
classes would be beneficial to learn better representations and improve the performance on
the last five classes; when α is large, labeled data from the first five classes will make the
model only focus on features that are useful to discriminate the first five classes and ignore
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other features, thus introducing labeled data could be harmful to the performance on the
last five classes. Testing accuracy on the last five classes with different α are listed in table
5, it is observed that the accuracy first increases and then decreases as α grows, which is
consistent with our theoretical results.

Testing Accuracy α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

CIFAR10 74.27 75.52 74.86 75.31 75.21 74.86 74.46 73.85 72.20 69.17 51.31

STL10 82.56 83.54 83.27 83.24 83.21 83.03 82.34 82.11 80.94 76.88 52.37

Table 5: Transfer learning performance with different α. For each experiment, we
report the average accuracy for three independent runs.

6. Conclusion

In this work, we establish a theoretical framework to study contrastive learning under the
linear representation setting. We theoretically prove that contrastive learning, compared
with autoencoders and GANs, can obtain a better low-rank representation under the spiked
covariance model, which further leads to better performance in in-domain downstream tasks.
We also highlight the impact of labeled data in supervised contrastive learning and multi-
task transfer learning: labeled data can reduce the domain shift bias in contrastive learning,
but it harms the learned representation in transfer learning. To our knowledge, our result
is the first theoretical result to guarantee the success of contrastive learning by comparing
it with existing representation learning methods. However, to get a tractable analysis, like
many other theoretical works in representation learning (Du et al., 2020; Lee et al., 2021;
Tripuraneni et al., 2021), our work starts with linear representations, which still provides
important insights. Recently, Wen and Li (2021) and Refinetti and Goldt (2022) studied the
training dynamics of autoencoders and contrastive learning with nonlinear shallow neural
networks. Extending our results to these more complex models is an interesting direction
for future work.
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Appendix A. Background and omitted discussion

A.1 Comparison with other works

Here we compare the results in this paper with some closely related works.

To rigorously analyze contrastive learning, we consider the random masking augmen-
tation strategy which is also analyzed in Wen and Li (2021). In Wen and Li (2021), the
authors aim to understand the training dynamics of contrastive learning in a shallow non-
linear neural network and focus more on dealing with nonlinearity. In comparison, our work
focus on the comparison between contrastive learning and autoencoders and the role of la-
bel information in contrastive learning. To make the problem mathematically tractable, we
adopt a linear model, which is simple but enough to shed light on many mysterious phenom-
ena in practice. Moreover, while they assume a sparse coding model, where the features are
extremely sparse, and Gaussianity of signals and noise, our analysis only requires that the
features are sub-Gaussian (5). Furthermore, our technique allows the signal-to-noise ratio
to have different orders, as long as it decreases slowly, while their analysis is restricted to
a particular signal-to-noise ratio. Tian (2022) studied the relationship between contrastive
learning and PCA from a game-theoretic point of view. Specifically, the authors decompose
the gradient descent on the contrastive loss into two dynamics, namely the max-player and
min-player. It is proven that in deep linear networks, the max-player is equivalent to PCA
and the landscape has no spurious minimum. While the results on max-player can be ap-
plied to a family of contrastive loss, it is still difficult to analyze the min-player in a general
setting. In our paper, we use a linear contrastive loss (2) to explicitly obtain the features
learned by contrastive learning. Moreover, our results can be directly extended to a deep
linear network setting by the equivalence of a single linear transformation and a deep linear
network. The major difference is the non-convexity of the loss landscape.

Garg and Liang (2020) studied the combination of supervised learning and self-supervised
learning. They viewed training with unlabeled data as functional regularization on learn-
ing the representation function, and obtained sample complexity bounds in a PAC-learning
style for various settings. In particular, they found that such functional regularization can
help to reduce the amount of labeled data needed, and showed autoencoders and masked
self-supervision as two concrete examples. Apart from Garg and Liang (2020), this paper
focuses on a regime in combining self-supervised learning and supervised learning, where a
trade-off between labeled data and unlabeled data exists.

Specifically, Theorem 3 in Garg and Liang (2020) assumes that a ground truth repre-
sentation exists such that it can keep both self-supervised loss and supervised loss at a very
low threshold. However, as the authors admit, it is hard to determine such a threshold
in practical settings. For example, since the unlabeled data and labeled data come from
different domains, such as Image-Net and CIFAR-10, domain-specific features may have a
much lower loss compared with domain-transferable features. In our paper, we first study
the regime where tasks are not diverse enough in Theorem 23 (which corresponds to the
case where ground truth does not exist) and show the trade-off between supervised loss and
self-supervised loss. Then in Theorem 26 we show that when tasks are abundant (which
corresponds to the case where ground truth exists), labeled data helps to achieve better er-
ror bounds, which is similar to the result of Garg and Liang (2020). Our result of Theorem
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23 provides novel insight into the regime where tasks are not diverse, which has been left
untouched in the literature.

In Li et al. (2021), the authors proposed a novel self-supervised loss function based on
HSIC and discussed the relationship between InfoNCE and the proposed SSL-HSIC loss.
The SSL-HSIC loss measures the dependence between the output features and one-hot
encoded labels(which serve as the indicators of positive samples) and minimizing the SSL-
HSIC loss encourages the network to discriminate augmented views from different samples.
In comparison to this self-supervised loss, we use HSIC in Section 4.2 as a supervised loss
to measure the dependence between output features and the true labels, which is a common
usage of HSIC in previous works (Barshan et al., 2011; Song et al., 2007c). Moreover, we
want to point out that the proposed estimator of SSL-HSIC (see Equation (11) in Li et al.
(2021)) can be reduced to the linear loss we use in this paper when the kernel k(·, ·) is
chosen to be a simple inner product. The authors argued that the standard InfoNCE loss
may yield meaningless features in some cases thus the proposed HSIC-based loss could be a
better alternative, and provided empirical results illustrating the comparable performance
of SSL-HSIC. It remains to be further explored the benefits of such an HSIC-based method.

Lee et al. (2021) studied self-supervised learning under a conditional independence as-
sumption, and showed that with the optimal representation learned in pretext tasks, the
in-domain downstream risk is guaranteed to be small. In the contrastive learning context,
for example, an image classification downstream task, such an assumption implies that
the augmented views generated from the same picture are roughly independent conditional
on its ground-truth class, which could be too strong since two views are usually strongly
correlated. Such an assumption would be closer to supervised contrastive learning as we
have discussed in Section 4.1 where we contrast two independent samples from the same
class, such sample pairs are independent conditional on the true label, but it requires label
information and thus not applied to self-supervised contrastive learning. Compared with
this work, we studied a specific data-generating model where the two views are obtained
by practical augmentation and thus could be more close to a real-world setting. It is also
remarkable that inLee et al. (2021), their analysis can be adapted to the nonlinear repre-
sentation setting in the sense that they directly assumed that the optimal representation
is obtained. However, the representation learning in the contrastive learning context, even
under a linear representation setting, could be non-convex. Thus our analysis starts from
a simple setting to obtain a deep understanding of what could be learned in the pretext
tasks.

Saunshi et al. (2022) proposed a novel perspective that theoretical analysis of contrastive
learning must take the inductive bias into account. It is shown that without considering the
function class, it is possible that the learned features totally fail in downstream classification
tasks. Furthermore, it is shown that within the linear representation class, contrastive self-
supervised learning is guaranteed to learn meaningful features under certain conditions.
In our paper, we have restricted ourselves to a similar linear representation setting and
avoided the collapse raised by complicated models. Compared with their analysis in a
linear representation setting, our bounds provide an exact order while their results still need
to quantify the expressivity and inconsistency measure, which is very difficult without very
strong assumptions. Moreover, their analysis requires a finite input space and augmentation
set, which is much stronger than our data-generating model.
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Later than our paper, Fu et al. (2022) considered a similar issue of transfer learning
performance of the supervised contrastive method. The authors argue that directly mini-
mizing the supervised contrastive method will lead to feature collapse, which implies that
within each class, all data points will have the same embedding and thus the supervised
contrastive method loses information that could be useful for transfer learning. This intu-
ition is similar to our setting in Section 4.2, and based on it the authors proposed a new
loss function that combines the supervised contrastive loss and within-class self-supervised
loss together. At a high level, this new loss function is quite similar to equation 23 since
they are both linear interpolations of self-supervised contrastive loss and supervised loss,
and the common motivation is to encourage the model to learn more background features.
And our analysis in Section 4.2 can provide a theoretical foundation for when could such
interpolation work and how to choose the ratio α.

A.2 Disucssion about the regularization term

In this paper we use a quadratic regularization term R1(W ) = ‖WW>‖2F instead of a
standard `2 regularization term R2(W ) = ‖W‖2F . Denote W T = [w1, · · · , wr], then we can
write these two terms as:

R1(W ) =
r∑
i

‖wi‖4 +
∑
i,j

〈wi, wj〉2, R2(W ) =
r∑
i

‖wi‖2

The main difference between these two terms is that except for penalizing the norm of
representation wi, it also penalizes the similarity between different representations. In par-
ticular, in the linear representation setting, where we will deal with optimization problems
like

min
W∈Rr×d

tr
(
WAW>

)
+
λ

2
R(W )

where A is a symmetric matrix determined by data and augmentation, we can easily find
that the `2 regularization would fail. To see this, we can rewrite the loss function as

tr
(
WAW>

)
+
λ

2
‖W‖2F =

r∑
i=1

(w>i Awi +
λ

2
‖wi‖2) =

r∑
i=1

w>i (A+
λ

2
I)wi,

it is easy to find that the optimal solution of each wi would be at infinity. Moreover, even if
we add constraints like ‖wi‖ < C,∀i ∈ [r], the optimal solution of each wi would all be the
eigenvector corresponding to the smallest eigenvalue of A thus the model would only learn a
single representation from the data. In contrast, the quadratic regularization term encour-
ages the diversity of representation by penalizing the similarity between representations,
i.e., 〈wi, wj〉2. In this situation, we have:

tr
(
WAW>

)
+
λ

2
‖WW>‖2F =

λ

2
‖W>W +

1

λ
A‖2F −

1

2λ
‖A‖2F

and it is easy to find that the optimal solution of wi would be finite and each wi corresponds
to different eigenvectors of A and is orthogonal to each other, which implies that they would
learn totally different representations. As a result, the quadratic regularization term would
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Testing Accuracy weight decay=0.0001 quadratic regularization=0.0001

CIFAR10 65.11± 0.51 65.54± 0.26

STL10 71.02± 0.47 71.39± 0.39

Table 6: Quadratic regularization v.s. weight decay. We compare the top-1 accuracy
of linear classifiers trained on features learned by SimCLR with the ResNet-18 encoder and
different regularization methods. We repeat each experiment for 5 runs and report the mean
and standard deviation. More details are provided in Section 5.2

be more helpful to self-supervised learning with linear representation. In real-world prac-
tice, `2 regularization can still work well with the help of non-linearity and normalization
techniques, but we also provide an empirical observation that applying quadratic regular-
ization would be helpful to improve the performance compared with using standard weight
decay. We would also like to point out that in the linear regime, the choice of λ ∈ R+

would only affect the norm of wi and makes no difference to the direction of wi and the
quality of representation, thus we do not specify this value in our analysis. Similar regu-
larization techniques are also used in Liu et al. (2021) for theoretical analysis in the linear
representation setting.

We verify this conjecture in neural networks, and the results are provided in Table 6.
The first column corresponds to training with standard weight decay, and in the setting of
the second column, we do not apply weight decay for each weight matrix of fully connected
layers in the encoder, and add an additional regularization term λ‖W TW‖2F on the loss
function instead. Note that the quadratic regularization does not apply to convolution
layers and bias terms, thus we keep the weight decay on these parameters. We search the
regularization parameter in each settings from λ = 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001
and find that λ = 0.0001 yields the best performance in each settings and datasets.

It is observed that quadratic regularization slightly improves the performance of con-
trastive learning, which is consistent with our intuition.

A.3 Background on distance between subspaces

In this section, we will provide some basic properties of sine distance between subspaces.
Recall the definition:

‖sin Θ (U1, U2)‖F ,
∥∥∥U>1⊥U2

∥∥∥
F

=
∥∥∥U>2⊥U1

∥∥∥
F
. (30)

where U1, U2 ∈ Od,r are two orthogonal matrices. Similarly, we can also define:

‖sin Θ (U1, U2)‖2 ,
∥∥∥U>1⊥U2

∥∥∥
2

=
∥∥∥U>2⊥U1

∥∥∥
2
.

We first give two equivalent definitions of this distance:

Proposition A.1

‖sin Θ (U1, U2)‖2F = r −
∥∥∥U>1 U2

∥∥∥2

F
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Proof Write U = [U1, U1⊥] ∈ Od,d. We have

r = ‖U2‖2F = ‖U>U2‖2F =
∥∥∥U>1⊥U2

∥∥∥2

F
+
∥∥∥U>1 U2

∥∥∥2

F
,

then by definition of sine distance, we can obtain the desired equation.

Proposition A.2

‖sin Θ (U1, U2)‖2F =
1

2
‖U1U

>
1 − U2U

>
2 ‖2F

Proof Expand the right hand and use Proposition A.1 we have:

1

2
‖U1U

>
1 − U2U

>
2 ‖2F =

1

2
(‖U1U

>
1 ‖2F + ‖U2U

>
2 ‖2F − 2 tr

(
U1U

>
1 U2U

>
2

)
)

=
1

2
(r + r − 2 tr

(
U>1 U2U

>
2 U1

)
)

=r − ‖U>1 U2‖2F = ‖sin Θ (U1, U2)‖2F .

With Propositions A.1 and A.2, it is easy to verify its properties to be a distance function.
Obviously, we have 0 ≤ ‖sin Θ (U1, U2)‖F ≤

√
r and ‖sin Θ (U1, U2)‖F = ‖sin Θ (U2, U1)‖F

by definition. Moreover, we have the following results:

Lemma A.3 (Lemma 1 in Cai and Zhang (2018)) For any U, V ∈ Od,r,

‖ sin Θ(U, V )‖2 ≤ inf
O∈Or,r

‖UO − V ‖2 ≤
√

2‖ sin Θ(U, V )‖2, (31)

and

‖ sin Θ(U, V )‖F ≤ inf
O∈Or,r

‖UO − V ‖F ≤
√

2‖ sin Θ(U, V )‖F . (32)

Proposition A.4 (Identity of indiscernibles)

‖sin Θ (U1, U2)‖F = 0⇔ ∃O ∈ Or×r, s.t. U1O = U2

Proof It is a straightforward corollary by definition:

‖sin Θ (U1, U2)‖F = 0⇔
∥∥∥U>1⊥U2

∥∥∥
F

= 0⇔ U2⊥ ⊥ U1

⇔ ∃O ∈ Or×r, s.t. U1O = U2.

Proposition A.5 (Triangular inequality)

‖sin Θ (U1, U2)‖F ≤ ‖sin Θ (U1, U3)‖F + ‖sin Θ (U2, U3)‖F
Proof By the triangular inequality for Frobenius norm we have:

‖U1U
>
1 − U2U

>
2 ‖F ≤ ‖U1U

>
1 − U3U

>
3 ‖F + ‖U2U

>
2 − U3U

>
3 ‖F ,

then apply Proposition A.2 to replace the Frobenius norm with sine distance we can finish
the proof.
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Appendix B. Omitted proofs for Section 3

B.1 Proofs for Section 3.1 and Section 3.2

In this section, we will provide the proof of Proposition 5 and Corollary 6, the restatement
of them and the detailed proof can be found in Proposition B.1 and Corollary B.2.

Proposition B.1 (Restatement of Proposition 5) For two fixed augmentation func-
tions g1, g2 : Rd → Rd, denote the augmented data matrices as X1 = [g1(x1), · · · , g1(xn)] ∈
Rd×n and X2 = [g2(x1), · · · , g2(xn)] ∈ Rd×n, when the augmented pairs are generated as in
Definition 1, the optimal solution of contrastive learning problem (9) is given by:

WCL = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a positive constant, σi is the i-th largest eigenvalue of the following matrix:

X1X
>
2 +X2X

>
1 −

1

2(n− 1)
(X1 +X2)(1r1

>
r − Ir)(X1 +X2)>, (33)

ui is the corresponding eigenvector and V = [v1, · · · , vr] ∈ Rr×r can be any orthonormal
matrix.

Proof [Proof of Proposition 5] When augmented pairs generation in Definition 1 is applied,
the contrastive loss can be written as:

LSelfCon(W ) =
λ

2
‖WW>‖2F −

1

n

n∑
i=1

[〈Wg1(xi),Wg2(xi)〉

− 1

4(n− 1)

∑
j 6=i

〈Wg1(xi) +Wg2(xi),Wg1(xj) +Wg2(xi)〉]

=
λ

2
‖WW>‖2F −

1

n

n∑
i=1

〈Wg1(xi),Wg2(xi)〉

+
1

4n(n− 1)

n∑
i=1

∑
j 6=i

〈Wg1(xi) +Wg2(xi),Wg1(xj) +Wg2(xi)〉

=
λ

2
‖WW>‖2F −

1

2n
tr
(
X>

1 W
>WX2 +X>

2 W
>WX1

)
+

1

4n(n− 1)
tr
(
(1n1>n − In)(X1 +X2)>W>W (X1 +X2)

)
=
λ

2
‖WW>‖2F

− 1

2n
tr

(
(X2X

>
1 +X1X

>
2 −

1

2(n− 1)
(X1 +X2)(1n1>n − In)(X1 +X2)>)W>W

)
=

1

2

∥∥∥∥λW>W − 1

2nλ

(
X2X

>
1 +X1X

>
2 −

1

2(n− 1)
(X1 +X2)(1n1>n − In)(X1 +X2)>

)∥∥∥∥2
F

−
∥∥∥∥ 1

2nλ

(
X2X

>
1 +X1X

>
2 −

1

2(n− 1)
(X1 +X2)(1n1>n − In)(X1 +X2)>

)∥∥∥∥2
F

.
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Note that the last term only depends on X, and the first term implies that when WCL is
the optimal solution, λWCLW

>
CL is the best rank-r approximation of 1

(n−1)λXHX
>, where

H := 1n1>n − In. Applying Lemma E.4 to the first term, we can conclude that WCL satisfies
the desired conditions.

Corollary B.2 (Restatement of Corollary 6) Under the same conditions as in Propo-
sition 5, if we use random masking (Definition 2) as our augmentation function, then in
expectation over the data augmentation, the optimal solution of contrastive learning problem
(9) is given by:

WCL = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a positive constant, σi is the i-th largest eigenvalue of the following matrix:

∆(XX>)− 1

n− 1
X(1n1>n − In)X>, (34)

ui is the corresponding eigenvector and V = [v1, · · · , vr] ∈ Rr×r can be any orthonormal
matrix.

Proof [Proof of Corollary 6] Following the proof of Proposition 5, now we only need to
compute the expectation over the augmentation distribution defined in Definition 2:

LSelfCon(W ) =
λ

2
‖WW>‖2F − E(g1,g2)[

1

n

n∑
i=1

[〈Wg1(xi),Wg2(xi)〉

− 1

4(n− 1)

∑
j 6=i
〈Wg1(xi) +Wg2(xi),Wg1(xj) +Wg2(xi)〉]]

=
λ

2
‖WW>‖2F − E(g1,g2)[

1

2n
tr((X2X

>
1 +X1X

>
2

− 1

2(n− 1)
(X1 +X2)(1n1>n − In)(X1 +X2)>)W>W )]. (35)

Note that by the definition of random masking augmentation, we have X1 = AX,X2 =
(I − A)X, which implies X1 + X2 = X. On the other hand, X1 and X2 have no common
nonzero entries, hence the matrix X1X

>
2 + X2X

>
1 only consists of off-diagonal entries and

each of the off-diagonal entry denoted as xij appears if and only if ai + aj = 1. Moreover,
if it appears, we must have xij equals to the (i, j)-th element of XX>. With this result, we
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can then compute the expectation in Equation (35):

LSelfCon(W ) =
λ

2
‖WW>‖2F − E(g1,g2)

[
1

2n
tr((X2X

>
1 +X1X

>
2

− 1

2(n− 1)
(X1 +X2)(1n1>n − In)(X1 +X2)>)W>W )

]
=
λ

2
‖WW>‖2F −

1

2n
tr

((
1

2
∆(XX>)− 1

2(n− 1)
X(1n1>n − In)X>

)
W>W

)
=

1

2

∥∥∥∥λW>W − 1

4nλ

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)∥∥∥∥2

F

−
∥∥∥∥ 1

4nλ

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)∥∥∥∥2

F

.

By a similar argument as in the proof of Proposition 5, we can conclude that WCL satisfies
the desired conditions.

Remark B.3 Note that the two views generated by random masking augmentation have
disjoint non-zero dimensions, hence contrasting such positive pairs yields a correlation be-
tween different dimensions only. That is why the first term in equation (34) appears to be
∆(XX>) where the diagonal entries are eliminated.

B.2 Proofs for Section 3.3

In this section, we will prove Lemma 11, Theorems 13 and 14 in Section 3.3. The restatement
and proof of them can be found in Lemma B.6, Theorem B.7, and Theorem B.9.

Before starting the proof, we give two technical lemmas to help the proof.

Lemma B.4 (Uniform distribution on the unit sphere (Marsaglia, 1972)) If x1, x2, · · · , xn
i.i.d. ∼ N (0, 1), then (x1/

√∑n
i=1 x

2
i , · · · , xn/

√∑n
i=1 x

2
i ) is uniformly distributed on the

unit sphere Sd = {(x1, · · · , xn) ∈ Rn :
∑n

i=1 x
2
i = 1}.

Lemma B.5 If x1, x2, · · · , xn i.i.d. ∼ N (0, 1), then:

E max
1≤i≤n

x2
i ≤ 2 log(n).

Proof Denote Y = max1≤i≤n x
2
i , then we have:

exp(tEY ) ≤ E exp(tY ) ≤ E
n∑
i=1

exp
(
tx2
i

)
= nE exp

(
tx2
i

)
.

Note that the moment-generating function of chi-square distribution with v degrees of free-
dom is:

MX(t) = (1− 2t)−v/2.
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Then combine this fact with Equation (B.2) we have:

exp(tEY ) ≤ n(1− 2t)−
1
2 ,

which implies:

EY ≤ log(n)

t
− 1− 2t

2t
, ∀t < 1

2
.

In particular, take t→ 1
2 yields:

EY ≤ 2 log(n)

as desired.

Lemma B.6 (Restatement of Lemma 11)

EU∼Uniform(Od,r)I(U?) = O
(r
d

log d
)
. (36)

Proof [Proof of Lemma 11] Denote the columns of U as U = [u1, · · · , ur] ∈ Od,r, we have:

EU∼Uniform(Od,r)I(U) =EU∼Uniform(Od,r) max
i∈[d]

r∑
j=1

|e>i uj |2

≤EU∼Uniform(Od,r)

r∑
j=1

max
i∈[d]
|e>i uj |2

=rEu∼Uniform(Sd) max
i∈[d]
|e>i u|2.

By Lemma B.4 we can transform this expectation on the uniform sphere distribution into
normalized multivariate Gaussian variables:

EU∼Uniform(Od,r)I(U) = rEx1,··· ,xd
maxi∈[d] x

2
i∑d

j=1 x
2
j

. (37)

where x1, x2, · · · , xd are i.i.d. standard normal random variables. Apply Chebyshev’s in-
equality we know that:

P

(
|1
d

d∑
i=1

x2
j − 1| > ε

)
≤ 2

dε2
.

In particular, take ε = 1 we have:

P

(
d∑
i=1

x2
j <

d

2

)
≤ 8

d
.
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Then take it back into Equation (37) and apply Lemma B.5 we obtain:

EU∼Uniform(Od,r)I(U) =rEx1,··· ,xd
maxi∈[d] x

2
i∑d

j=1 x
2
j

I{
d∑
i=1

x2
j <

d

2
}

+ rEx1,··· ,xd
maxi∈[d] x

2
i∑d

j=1 x
2
j

I{
d∑
i=1

x2
j ≥

d

2
}

≤rP

(
d∑
i=1

x2
j <

d

2

)
+

2r

d
Ex1,··· ,xd max

i∈[d]
x2
i

≤8r

d
+

4r log d

d

as desired.

Now we start proving our main results. Note that UAE is the top-r left eigenspace of
the observed covariance matrix and U? is that of the core feature covariance matrix, and
by Assumption 9 the observed covariance matrix is dominated by the covariance of random
noise. The Davis-Kahan theorem provides a technique to estimate the eigenspace distance
via estimating the difference between target matrices. We will adopt this technique to prove
the lower bound of the feature recovery ability of autoencoders in Theorem 13.

Theorem B.7 (Restatement of Theorem 13) Consider the spiked covariance model Eq.(5),
under Assumptions 8-10 and n > d � r, let WAE be the learned representation of autoen-
coder with singular value decomposition WAE = (UAEΣAEV

>
AE)> (as in Eq.(7)). If we

further assume {σ2
i }di=1 are different from each other and σ2

(1)/(σ
2
(r)−σ

2
(r+1)) < Cσ for some

universal constant Cσ. Then there exist two universal constants Cρ > 0, c ∈ (0, 1), such
that when ρ < Cρ, we have

E ‖sin Θ (U?, UAE)‖F ≥ c
√
r. (38)

Proof [Proof of Theorem 13] Denote M = ν2U?U?> to be the target matrix, xi = U?zi +
ξi, i = 1, 2, · · ·n to be the samples generated from model 5 and let X = [x1, · · · , xn] ∈
Rd×n, Z = [z1, · · · , zn] ∈ Rr×n, E = [ξ1, · · · , ξn] ∈ Rd×n to be the corresponding matrices.
In addition, we write the column mean matrix X̄ ∈ Rn×d of a matrix X ∈ Rn×d to be
X̄ = 1

nX1n1>n , that is, each column of X̄ is the column mean of X. We denote the sum

of variance σ2
i as σ2

sum =
∑d

i=1 σ
2
i . As shown in Equation (7), autoencoders find the top-r

eigenspace of the following matrix:

M̂1 =
1

n
X(In −

1

n
1n1>n )X> =

1

n
(U?Z + E)(U?Z + E)> − 1

n
(U?Z̄ + Ē)(U?Z̄ + Ē)>.

The rest of the proof is divided into three steps for the sake of presentation.
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Step 1. Bound the difference between M̂1 and Σ In this step, we aim to show
that the data recovery of autoencoders is dominated by the random noise term. Note that
Σ = Cov(ξ) = Eξξ>, we just need to bound the norm of the following matrix:

M̂1−Σ =
1

n
U?ZZ>U?>+

1

n
(U?ZE>+EZ>U?>)+(

1

n
EE>−Σ)− 1

n
(U?Z̄+Ē)(U?Z̄+Ē)>,

(39)
and we will deal with these four terms separately.

1. For the first term, note that Ezz> = ν2Ir, the first term can then be divided into two
terms

1

n
U?ZZ>U?> = M + U?(

1

n
ZZ> − Ezz>)U?>. (40)

Then apply the concentration inequality of Wishart-type matrices (Lemma E.3) we
have:

E‖ 1

n
ZZ> − Ezz>‖2 ≤ (

√
r

n
+
r

n
)ν2.

Plug it back into (40) we obtain the bound for the first term:

‖ 1

n
UZZ>U>‖2 ≤ ‖M‖2 + ‖U‖2‖

1

n
ZZ> − Ezz>‖2‖U‖2 ≤

(
1 +

√
r

n
+
r

n

)
ν2. (41)

2. For the second term, since Z and E are independent, we must have EU?ZE> = 0, so
apply Lemma E.2 twice we have:

1

n
E‖EZ>U?‖2 =

1

n
EZ [EE [‖EZ>U?‖2|Z]]

.
1

n
EZ [‖Z‖2(σsum + r1/4√σsumσ(1) +

√
rσ(1))]

.
1

n
EZ [‖Z‖2]

√
dσ(1)

.
1

n

√
dσ(1)(r

1/2ν + (nr)1/4ν + n1/2ν)

.

√
d√
n
σ(1)ν.

(42)

3. For the third term, apply Lemma E.3 again yields:

E‖ 1

n
EE> − Σ‖2 ≤

(√
d

n
+
d

n

)
σ2

(1). (43)

4. For the last term, note that each column of Z̄ and Ē are the same, so we can rewrite
it as:

1

n
(U?Z̄ + Ē)(U?Z̄ + Ē)> = (U?z̄ + ξ̄)(U?z̄ + ξ̄)>,
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where z̄ = 1
n

∑n
i=1 zi and ξ̄ = 1

n

∑n
i=1 ξi. Since z and ξ are independent zero mean

sub-Gaussian random variables and Cov(z) = ν2Ir,Cov(ξ) = Σ, we can conclude that:

E‖ 1

n
(U?Z̄ + Ē)(U?Z̄ + Ē)>‖2 ≤ E‖z̄z̄>‖2 + 2E‖z̄ξ̄>‖2 + E‖ξ̄ξ̄>‖2

.
rν2

n
+

√
d√
n
σ(1)ν +

dσ2
(1)

n
.

(44)

To sum up, combine equations (41)(42)(43)(44) together we obtain the upper bound for the
2 norm expectation of matrix M̂ − Σ:

E‖M̂1 − Σ‖2 . ν2

(
1 +

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+

√
d

n
σ(1)ν. (45)

Step 2. Bound the sine distance between eigenspaces As we have shown in step
1, the target matrix of autoencoders is close to the covariance matrix of random noise, that
is, Σ. Note that Σ is assumed to be a diagonal matrix with different elements, hence its
eigenspace only consists of canonical basis ei. Denote UΣ to be the top-r eigenspace of Σ
and {ei}i∈C to be its corresponding basis vectors, apply the Davis-Kahan Theorem E.1 we
can conclude that:

E‖ sin Θ(UAE, UΣ)‖F ≤
2
√
rE‖M̂1 − Σ‖2
σ2

(r) − σ
2
(r+1)

.
√
r

1

σ2
(1)

(
ν2

(
1 +

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+

√
d

n
σ(1)ν

)

.
√
r

(
ρ2 +

√
d

n
+ ρ

√
d

n

)
.

Step 3. Obtain the final result by triangular inequality By Assumption 10 we
know that the distance between canonical basis and the eigenspace of core features can be
large:

‖ sin Θ(U?, UΣ)‖2F = ‖U>Σ⊥U?‖2F =
∑

i∈[d]\C

‖e>i U?‖2 = ‖U?‖2F −
∑
i∈C
‖e>i U?‖2

≥ r − rI(U?) = r −O
(
r2

d
log d

)
.

Then apply the triangular inequality of sine distance (Proposition A.5) we can obtain the
lower bound of autoencoders.

E‖ sin Θ(UAE, U
?)‖F ≥ E‖ sin Θ(U?, UΣ)‖F − E‖ sin Θ(UAE, UΣ)‖F

≥
√
r −O

(
r√
d

√
log d

)
−O

(
√
r

(
ρ2 +

√
d

n
+ ρ

√
d

n

))
.

(46)
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By Assumption 9, it implies that when n and d are sufficiently large and ρ is sufficiently
small (smaller than a given constant Cρ > 0), there exists a universal constant c ∈ (0, 1)
such that:

E‖ sin Θ(UAE, U
?)‖F ≥ c

√
r.

To start the proof, we introduce a technical lemma first.

Lemma B.8 (Lemma 4 in Zhang et al. (2018)) If M ∈ Rp×p is any square matrix
and ∆(M) is the matrix M with diagonal entries set to 0 , then

‖∆(M)‖2 ≤ 2‖M‖2.

Here, factor ” 2 ” in the statement above cannot be improved.

Theorem B.9 (Restatement of Theorem 14) Under the spiked covariance model Eq.(5),
random masking augmentation in Definition 2, Assumptions 8-10 and n > d � r, let
WCL be any solution that minimizes Eq.(3), and denote its singular value decomposition as
WCL = (UCLΣCLV

>
CL)>, then we have

E ‖sin Θ (U?, UCL)‖F .
r3/2

d
log d+

√
dr

n
. (47)

Proof [Proof of Theorem 14] The proof strategy is quite similar to that of Theorem 13
and we follow the notation defined in the first paragraph of that proof. As we have shown
in Corollary 6, under our linear representation setting, the contrastive learning algorithm
finds the top-r eigenspace of the following matrix:

M̂2 =
1

n

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)
=

1

n
∆((U?Z + E)(U?Z + E)>)− 1

n− 1
(U?Z̄ + Ē)(U?Z̄ + Ē)>

+
1

n(n− 1)
(U?Z + E)(U?Z + E)>.

To prove the theorem, first we need to bound the difference between M̂2 and M . We
aim to show that the contrastive learning algorithm is dominated by the core feature term.
Note that Σ = EUzz>U>, we just need to bound the norm of the following matrix:

M̂2 −M =(
1

n
∆(U?ZZ>U?>)−M) +

1

n
∆(U?ZE> + EZ>U?>) +

1

n
∆(EE>)

− 1

n− 1
(U?Z̄ + Ē)(U?Z̄ + Ē)> +

1

n(n− 1)
(U?Z + E)(U?Z + E)>.

(48)

and we will also deal with these five terms separately.
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1. For the first term, we can divide it into two parts:

1

n
∆(U?ZZ>U?>)−M = ∆(

1

n
U?ZZ>U?T −M) + ∆(M)−M. (49)

Then apply Lemma B.8 and Lemma E.3 we have:

E‖∆(
1

n
U?ZZ>U?> −M)‖2 ≤ 2E‖ 1

n
U?ZZ>U?> −M‖2 ≤ 2(

√
r

n
+
r

n
)ν2.

Using the incoherent condition I(U) = O( rd log d), we know that:

‖M −∆(M)‖2 ≤ ν2 max
i∈[d]
‖e>i U?‖22 = ν2I(U?) .

r

d
log dν2.

Combine the two equations above together we obtain the bound for the first term:

E‖ 1

n
∆(U?ZZ>U?>)−M‖2 ≤ E‖∆(

1

n
U?ZZ>U?> −M)‖2 + ‖M −∆(M)‖2 (50)

. ν2(
r

d
log d+

r

n
+

√
r

n
). (51)

2. For the second term, apply equation (42) yields:

1

n
E‖∆(U?ZE> + EZ>U?>)‖2 ≤

4

n
E‖EZ>U?>‖2 .

√
d√
n
σ(1)ν. (52)

3. For the third term, apply equation (43) yields:

E‖ 1

n
∆(EE>)‖2 = E‖∆(

1

n
EE> − Σ)‖2 ≤ 2‖ 1

n
EE> − Σ‖2 . (

√
d

n
+
d

n
)σ2

(1). (53)

4. For the fourth term, apply equation (44) yields:

E‖ 1

n− 1
(U?Z̄ + Ē)(UZ̄ + Ē)>‖2 .E‖ 1

n
(UZ̄ + Ē)(UZ̄ + Ē)>‖2

.
rν2

n
+

√
d√
n
σ(1)ν +

dσ2
(1)

n
.

(54)

5. For the last term, by equations (41)(42)(43) we know:

E‖ 1

n
(U?Z + E)(U?Z + E)>‖2

. ‖Σ‖2 +

(
1 +

√
r

n
+
r

n

)
ν2 +

√
d

n
σ(1)ν +

(√
d

n
+
d

n

)
σ2

(1).

Thus we can conclude that:

E‖ 1

n(n− 1)
(U?Z + E)(U?Z + E)>‖2 .

d

n
σ2

(1) +
r

n
ν2. (55)
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To sum up, combine equations (50)(52)(53)(54)(55) together we obtain the upper bound
for the 2 norm expectation of matrix M̂2 −M :

E‖M̂2 −M‖2 . ν2

(
r

d
log d+

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+ σ(1)ν

√
d

n
. (56)

With the upper bound for ‖M̂2−M‖2, simply apply Lemma E.1 we can obtain the desired
bound for sine distance:

E‖ sin Θ(UCL, U
?)‖F ≤

2
√
rE‖M̂2 −M‖2

ν2

.
√
r

1

ν2

(
ν2

(
r

d
log d+

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+ σ(1)ν

√
d

n

)

=
√
r

((
r

d
log d+

√
r

n
+
r

n

)
+ ρ−2

(√
d

n
+
d

n

)
+ ρ−1

√
d

n

)

.
r3/2

d
log d+

√
dr

n
.

(57)

Moreover, there exists an orthogonal matrix Ô ∈ Or×r depending on UCL such that:

E‖U>UCLÔ − Ir‖F = E‖UCLÔ − U‖F ≤
2
√
rE‖M̂2 −M‖2

ν2
.
r3/2

d
log d+

√
dr

n
.

which finishes the proof.

B.3 Proofs for Section 3.4

In this section, we will provide the proof of Theorems 17 and 18 with both regression and
classification settings. The corresponding statement and proof can be found in Theorems
B.10 and B.11.

For notation simplicity, define the prediction risk of predictor δ for classification and
regression tasks as Rc(δ) := ED[`c(δ)] and Rr(δ) := ED[`r(δ)], respectively. Define Σx :=
ν2U?U?> + Σ. We write δU,w for δU>,w with a slight abuse of notation.

For two matrices A and B of the same order, we define A � B when A− B is positive
semi-definite.

Theorem B.10 (Restatement of Theorem 17) Suppose the conditions in Theorem 14
hold. Then, for the classification task, we have

ED[ inf
w∈Rr

EE [`c(δWCL,w)]− inf
w∈Rr

EE [`c(δU?>,w)] = O

(
r3/2

d
log d+

√
dr

n

)
∧ 1,

and for regression tasks,

ED[ inf
w∈Rr

EE [`r(δWCL,w)]− inf
w∈Rr

EE [`r(δU?>,w)] .
r3/2

d
log d+

√
dr

n
.
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Theorem B.11 (Restatement of Theorem 18) Suppose the conditions in Theorem 13
hold. Assume r ≤ rc holds for some constant rc > 0. Additionally assume that ρ = Θ(1) is
sufficiently small and n� d� r. Then, For the regression task,

ED[ inf
w∈Rr

EE [`r(δUAE,w)]− inf
w∈Rr

EE [`r(δU?,w)] ≥ c′c,

and for classification task, if F is differentiable at 0 and F ′(0) > 0, then

ED[ inf
w∈Rr

EE [`c(δUAE,w)]− inf
w∈Rr

EE [`c(δU?,w)] ≥ c′r,

where c′r > 0 and c′c > 0 are constants independent of n and d.

The proofs of Theorem B.10 and B.11 relies on Lemma B.15, B.16, B.17, B.18 and B.20
which are proved later in this section.
Proof [Proof of Theorem B.10: Classification Task Part] Lemma B.17 gives for any U ∈
Od,r,

ED[ inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)] (58)

≤ ((κ(1 + ρ2))3 + κρ2(1 + ρ−2)2 + (κρ2 ∨ 1)−1)ED[‖ sin Θ(U,U?)‖2]. (59)

Substituting U ← UAE combined with Assumption 9 and κ = O(1) concludes the proof.

Proof [Proof of Theorem B.10: Regression Part] Note that under Assumption 9 and κ =
O(1), (1 + ρ−2)/(1 + κ−1ρ−2)2 = O(1). Lemma B.20 gives for any U ∈ Od,r,

ED[ inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w)] = O
(
(1 + ρ−2)ED[‖ sin Θ(U,U?)‖2]‖w?‖2

)
. (60)

Theorem 14 with substitution U ← UAE gives the desired result.

Proof [Proof of Theorem B.11: Classification Part] Lemma B.16 gives that for c1 :=
1 − 1/(2κrc) ∈ (0, 1), we can take n � d � r and sufficiently small ρ > 0 so that
ED[‖ sin Θ(UAE , U

?)‖2F ] ≥ c1r holds. By Lemma B.18,

ED[ inf
w∈Rr

Rc(δUAE ,w)− inf
w∈Rr

Rc(δU?,w)]

&
(1 + ρ2)3/2

(1 + κρ2)3/2
ρ2

(
1

1 + ρ2
− κ(r − ‖ sin Θ(UAE , U

?)‖2F )

)
≥ (1 + ρ2)3/2

(1 + κρ2)3/2
ρ2

(
1

1 + ρ2
− κ(1− c1)r

)
≥ (1 + ρ2)3/2

(1 + κρ2)3/2
ρ2

(
1

1 + ρ2
− 1

2

)
, (61)

where the last inequality follows since r ≤ rc. If we further take ρ = Θ(1) < 1/2, the right
hand becomes a positive constant. This concludes the proof.
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Proof [Proof of Theorem B.11: Regression Part] From proposition B.19, we have

inf
w∈Rr

Rr(δUAE ,w)− inf
w∈Rr

Rr(δU?,w)

= w?>((I + (1/ν2)U?>ΣU?)−1

− U?>UAE(U>AEU
?U?>UAE + (1/ν2)U>AEΣUAE)−1U>AEU

?)w?.

Thus from Lemma B.15,

inf
w∈Rr

Rr(δUAE ,w)− inf
w∈Rr

Rr(δU?,w)

≥
(

1

1 + ρ−2
+ ρ2κ

(
‖ sin Θ(UAE , U

?)‖2F − r
))
‖w?‖2. (62)

Using Lemma B.16 and by the same argument in the proof of Theorem 18: Classification
Part, we conclude the proof.

Lemma B.12 For any U ∈ Od,r,

λmin(ν2U?>U(U>ΣxU)−1U>U?) ≥ ν2

ν2 + σ2
(1)

(1− ‖ sin Θ(U,U?)‖22).

Proof Since λmin(AC) ≥ λmin(A)λmin(C) for symmetric positive semi-definite matrices A
and C,

λmin(ν2U?>U(U>ΣxU)−1U>U?)

≥ λmin(U>U?U?>U)λmin(ν2(U>ΣxU)−1)

≥ λmin(I − (I − U>U?U?>U))
ν2

λmax(ν2U>U?U?>U + U>ΣU)

≥ ν2

ν2 + σ2
(1)

(1− ‖ sin Θ(U,U?)‖22),

where we used Weyl’s inequality λmin(A+C) ≥ λmin(A)−‖C‖2 in the second inequality.

Lemma B.13 For any U ∈ Od,r,

λmax(ν2U?>U(U>ΣxU)−1U>U?) ≤ ν2

ν2(1− ‖ sin Θ(U,U?)‖2) + σ2
(d)

.
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Proof Since ‖AC‖2 ≤ ‖A‖2‖C‖2,

λmax(ν2U?>U(U>ΣxU)−1U>U?) ≤ λmax(ν2(U>ΣxU)−1)

≤ ν2

λmin(ν2U>U?U?>U + U>ΣU)

≤ ν2

λmin(ν2I − ν2(I − U>U?U?>U) + U>ΣU)

≤ ν2

ν2(1− ‖ sin Θ(U,U?)‖2) + σ2
(d)

,

where we used Weyl’s inequality λmin(A+C) ≥ λmin(A)−‖C‖2 and λmin(ν2I +U>ΣU) ≥
ν2 + σ2

(d).

Lemma B.14 For any U ∈ Od,r,

‖ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?‖2

= O

(
1

1− ‖ sin Θ(U,U?)‖22 + κ−1ρ−2

1 + ρ−2

1 + κ−1ρ−2
‖ sin Θ(U,U?)‖2

)
.

Proof Observe that

‖(U?>ΣxU
?)−1 − U?>U(U>ΣxU)−1U>U?‖2

≤ ‖(U?>ΣxU
?)−1 − (U>ΣxU)−1‖2 + ‖(U>ΣxU)−1 − U?>U(U>ΣxU)−1U>U?‖2

:= (T1) + (T2).

For the term (T1),

(T1) = ‖(U>ΣxU)−1(U>ΣxU)(U?>ΣxU
?)−1 − (U>ΣxU)−1(U?>ΣxU

?)(U?>ΣxU
?)−1‖2

≤ ‖(U>ΣxU)−1‖2‖U>ΣxU − U?>ΣxU
?‖2‖(U?>ΣxU

?)−1‖2.

Note

‖U>ΣxU − U?>ΣxU
?‖2 = ‖ν2U>U?U?>U − ν2I + U>ΣU − U?>ΣU?‖2
≤ ν2‖ sin Θ(U,U?)‖22 + ‖U>Σ(U − U?) + (U − U?)>ΣU?‖2
≤ ν2‖ sin Θ(U,U?)‖22 + 2σ2

(1)‖U − U
?‖2.

Also we have λmin(U>ΣxU) ≥ ν2(1−‖ sin Θ(U,U?)‖22)+σ2
(d) from the proof of Lemma B.13

and λmin(U?>ΣxU
?) ≥ ν2 + σ2

(d). Therefore

(T1) ≤ 1

(ν2 + σ2
(d))(ν

2(1− ‖ sin Θ(U,U?)‖22) + σ2
(d))

(ν2‖ sin Θ(U,U?)‖22 + 2σ2
(1)‖U − U

?‖2).
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For the term (T2),

(T2) = ‖(U>ΣxU)−1 − U?>(U? + (U − U?))(U>ΣxU)−1(U? + (U − U?))>U?‖2
= ‖ − U?>(U − U?)(U>ΣxU)−1 − (U>ΣxU)−1(U − U?)>U?

− U?>(U − U?)(U>ΣxU)−1(U − U?)>U?‖2

≤ 1

ν2(1− ‖ sin Θ(U,U?)‖22) + σ2
(d)

(2‖U − U?‖2 + ‖U − U?‖22).

From Lemma A.3, ‖ sin Θ(U,U?)‖2 ≤ ‖U−U?‖2. Finally from these results and ‖U−U?‖22 ≤
2‖U − U?‖2,

‖ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?‖2

= O

(
ν2

ν2(1− ‖ sin Θ(U,U?)‖22) + σ2
(d)

ν2 + σ2
(1)

ν2 + σ2
(d)

‖U − U?‖2

)
.

Since LHS does not depend on the orthogonal transformation U ← UO where O ∈ Or,r, we
obtain

‖ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?‖2

= O

(
ν2

ν2(1− ‖ sin Θ(U,U?)‖22) + σ2
(d)

ν2 + σ2
(1)

ν2 + σ2
(d)

inf
O∈Or,r

‖UO − U?‖2

)
.

Combined again with Lemma A.3, we obtain the desired result.

Lemma B.15 For any U ∈ Od,r,

λmin(ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?)

≥ ν2

ν2 + σ2
(1)

− ν2

σ2
(d)

(r − ‖ sin Θ(U,U?)‖2F ).

Proof Observe

λmin(ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?)

≥ λmin((I + (1/ν2)U?>ΣU?)−1)− ‖U?>U(U>U?U?>U + (1/ν2)U>ΣU)−1U>U?‖2.

Since U>U?U?>U � 0, it follows that (U>U?U?>U + (1/ν2)U>ΣU)−1 � ν2(U>ΣU)−1.
Thus

‖U?>U(U>U?U?>U + (1/ν2)U>ΣU)−1U>U?‖2
≤ ν2λmax((U>ΣU)−1)‖U?>U‖22

≤ ν2

σ2
(d)

‖U?>U‖2F

=
ν2

σ2
(d)

(r − ‖ sin Θ(U,U?)‖2F ),
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where we used λmax((U>ΣU)−1) ≤ 1/λmin(U>ΣU) ≤ 1/σ2
(d) and ‖sin Θ (U1, U2)‖2F = r −∥∥U>1 U2

∥∥2

F
from Proposition A.1. Combined with Lemma B.13, we obtain

λmin(ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?)

≥ ν2

ν2 + σ2
(1)

− ν2

σ2
(d)

(r − ‖ sin Θ(U,U?)‖2F ).

Lemma B.16 Suppose the conditions in Theorem 13 hold. Fix c1 ∈ (0, 1). There exists a
constant c2 > 0 such that if

√
r log d/d ∨ ρ2 ∨ d/n < c2, then,

ED‖ sin Θ(UAE, U
?)‖2F ≥ c1r,

where c1 ∈ (0, 1) is a universal constant.

Proof By Cauchy-Schwartz inequality,

ED‖ sin Θ(UAE , U
?)‖2F − r

≥ (ED‖ sin Θ(UAE , U
?)‖F )2 − r

= (ED‖ sin Θ(UAE , U
?)‖F −

√
r)
(
ED‖ sin Θ(UAE , U

?)‖F +
√
r
)
.

From Theorem 13, there exists a constant c3 > 0 such that we have

ED ‖sin Θ (U?, UAE)‖F ≥
√
r − c3

r√
d

√
log d− c3

√
r

(
ρ2 +

√
d

n
+ ρ

√
d

n

)
.

Therefore combined with a trivial bound ‖ sin Θ(UAE , U
?)‖F ≤

√
r,

ED‖ sin Θ(UAE , U
?)‖2F − r ≥ −rc3

r1/2

√
d

√
log d+ ρ2 +

√
d

n
+ ρ

√
d

n

≥ −rc3

(
2
r1/2

√
d

√
log d ∨ 6ρ2 ∨ 6

√
d

n

)
, .

where we used ρ
√
d/n ≤ ρ2 ∨ d/n ≤ ρ2 ∨

√
d/n since d < n. Thus we can take c2 =

6(1− c1)/c3. This concludes the proof.

Lemma B.17 For any U ∈ Od,r,

ED[ inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)]

≤ ((κ(1 + ρ2))3 + κρ2(1 + ρ−2)2 + (κρ2 ∨ 1)−1)ED[‖ sin Θ(U,U?)‖2].
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Proof Recall that we are considering the class of linear classifiers {δU,w : w ∈ Rr}, where
δU,w(x̌) = I{F (x̌>Uw) > 1/2}. For notational simplicity, write β := Uw and β? := U?w?.

Rc(δU,w) = PE(δU,w(x̌) 6= y̌) = PE(y̌ = 0, F (x̌>β) > 1/2) + PE(y̌ = 1, F (x̌>β) ≤ 1/2).

Since F (0) = 1/2 and F is monotone increasing, the false positive probability becomes

PE(y̌ = 0, F (x̌>β) > 1/2) = PE(y̌ = 0, x̌>β > 0)

= EE [EE [I{y̌ = 0}|x̌, ž]I{x̌>β > 0}]
= EE [(1− F (ν−1ž>U?>β?))I{x̌>β > 0}].

Write ω := x̌>β and ω? := ν−1ž>U?>β?. From assumption, (ω?, ω) jointly follows a normal
distribution with mean 0. Write v?2 := Var(ω?) = w?>w?, v2 := Var(ω) = β>Σxβ, where
Σx := ν2U?U?>+Σ. Let τ := Cor(ω?, ω) = νw?>U?>β/(v?v). By a formula for conditional
normal distribution, we have ω|ω? ∼ N(τvω?/v?, v2(1− τ2)). This gives

PE(y̌ = 0, F (x̌>β) > 1/2)

= EE [(1− F (ω?))I{ω > 0}]
= EE [(1− F (ω?))EE [I{ω > 0}|ω?]]
= EE [(1− F (ω?))PE(ω > 0|ω?)]

= EE
[
(1− F (ω?))PE

(
ω − τvω?/v?

v(1− τ2)1/2
> − τvω?/v?

v(1− τ2)1/2

∣∣∣∣ω?)]
= EE [(1− F (ω?))Φ(αω?/v?)]

= EE [(1− F (ω?))Φ(αω?/v?)I{ω? > 0}] + EE [(1− F (ω?))Φ(αω?/v?)I{ω? < 0}],

where Φ is cumulative distribution function of N(0, 1) and α := τ/(1−τ2)1/2. We define ΨF

as ΨF (s2) := 2Eu∼N(0,s2)[F (u)I{u > 0}]. When F (u) = 1/(1 + e−u), ΨF (s2) is called the
logistic-normal integral, whose analytical form is not known (Pirjol, 2013). Since a random
variable ω? is symmetric about mean 0 and F (u) = 1− F (−u),

EE [(1− F (ω?))Φ(αω?/v?)I{ω? < 0}] = EE [(1− F (−ω?))(1− Φ(αω?/v?))I{ω? > 0}]
= EE [F (ω?)(1− Φ(αω?/v?))I{ω? > 0}].

Hence

PE(y̌ = 0, F (x̌>β) > 1/2)

= EE [(Φ(αω?/v?) + F (ω?)− 2F (ω?)Φ(αω?/v?))I{ω? > 0}]

=
1

2
ΨF (v?2)− EE [(2F (ω?)− 1)Φ(αω?/v?)I{ω? > 0}].

Note that the true negative probability is exactly the same as the false positive probability
under our settings:

PE(y̌ = 1, F (x̌>β) ≤ 1/2) = EE [F (x̌>β?)I{x̌>β ≤ 0}]
= EE [F (−x̌>β?)I{x̌>β ≥ 0}]
= EE [(1− F (x̌>β?))I{x̌>β ≥ 0}]
= PE(y̌ = 0, F (x̌>β) > 1/2).
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Therefore

Rc(δU,w) = ΨF (v?2)− 2EE [(2F (ω?)− 1)Φ(αω?/v?)I{ω? > 0}].

Let

τmax,U := sup
w∈Rr

νw?>U?>Uw/(w?>w?w>U>ΣxUw)1/2,

τmax,U? := sup
w∈Rr

νw?>w/(w?>w?w>U?>ΣxU
?w)1/2.

From Cauchy-Schwartz inequality,

τ2
max,U =

ν2w?>U?>U(U>ΣxU)−1U>U?w?

w?>w?
,

τ2
max,U? =

ν2w?>(U?>ΣxU
?)−1w?

w?>w?
.

Define αmax,U := τmax,U/(1− τ2
max,U )1/2 and αmax,U? := τmax,U?/(1− τ2

max,U?)1/2. Then,
since on the event where ω? > 0, α 7→ Φ(αω?/v?) is monotone increasing and 2F (w?) − 1
is non-negative, we have

inf
w∈Rr

Rc(δU,w) = ΨF (v?2)− 2EE [(2F (ω?)− 1)Φ(αmax,Uω
?/v?)I{ω? > 0}]

inf
w∈Rr

Rc(δU?,w) = ΨF (v?2)− 2EE [(2F (ω?)− 1)Φ(αmax,U?ω?/v?)I{ω? > 0}].

This yields

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

= 2EE [(2F (ω?)− 1)(Φ(αmax,U?ω?/v?)− Φ(αmax,Uω
?/v?))I{ω? > 0}].

Note that for any a, b ≥ 0,

|Φ(b)− Φ(a)| ≤ φ(a ∧ b)|b− a|,

where φ is a density function of standard normal distribution. Observe

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

≤ 2EE [(2F (ω?)− 1)|Φ(αmax,U?ω?/v?)− Φ(αmax,Uω
?/v?)|I{ω? > 0}]

.
2

v?

∫ ∞
0

(2F (ω?)− 1)|αmax,U? − αmax,U |ω?φ((αmax,U? ∧ αmax,U )ω?/v?)
φ(ω?/v?)

v?
dω?

.
|αmax,U? − αmax,U |

v?

∫ ∞
0

(2F (ω?)− 1)φ((αmax,U? ∧ αmax,U )ω?/v?) dω?

=
|αmax,U? − αmax,U |
αmax,U? ∧ αmax,U

∫ ∞
0

(2F (ω?)− 1)
exp
(
−1/(2((αmax,U? ∧ αmax,U )−2v?2))ω?2

)√
2π((αmax,U? ∧ αmax,U )−2v?2)

dω?

=
|αmax,U? − αmax,U |
αmax,U? ∧ αmax,U

(ΨF (((αmax,U? ∧ αmax,U?)−2v?2))− 1/2),
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where we used supu>0 uφ(u) <∞. Since (a− b) = (a2 − b2)/(a+ b) ≤ (a2 − b2)/(a ∧ b) for
a, b > 0, and ΨF ≤ 1, we obtain

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w) .
|α2

max,U? − α2
max,U |

α2
max,U? ∧ α2

max,U

.

When τmax,U? ≥ τmax,U , since τ 7→ τ2/(1− τ2) is increasing in τ > 0,

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w) .
α2

max,U? − α2
max,U

α2
max,U

=
τ2

max,U? − τ2
max,U

(1− τ2
max,U?)τ2

max,U

. (63)

From Lemma B.12 and B.13, we have

ν2

ν2 + σ2
(1)

(1− ‖ sin Θ(U,U?)‖22) ≤ τ2
max,U ≤

ν2

ν2(1− ‖ sin Θ(U,U?)‖22) + σ2
(d)

,

ν2

ν2 + σ2
(1)

≤ τ2
max,U? ≤

ν2

ν2 + σ2
(d)

. (64)

Then, Equation (63) becomes

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

.
ν2 + σ2

(d)

σ2
(d)

ν2 + σ2
(1)

ν2(1− ‖ sin Θ(U,U?)‖22)
(τ2

max,U? − τ2
max,U )

≤
ν2 + σ2

(d)

σ2
(d)

ν2 + σ2
(1)

ν2(1− ‖ sin Θ(U,U?)‖22)
‖ν2(U?>ΣxU

?)−1 − ν2U?>U(U>ΣxU)−1U>U?‖2

≤ (κρ2 + 1)(ρ−2 + 1)2

(1 + κ−1ρ−2)(1− ‖ sin Θ(U,U?)‖22)2
‖ sin Θ(U,U?)‖2

=
κρ2(ρ−2 + 1)2

(1− ‖ sin Θ(U,U?)‖22)2
‖ sin Θ(U,U?)‖2.

where the last inequality follows from Lemma B.14.

On the event where ‖ sin Θ(U,U?)‖22 ≤ 1/2,

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w) . κρ2(1 + ρ−2)2‖ sin Θ(U,U?)‖2.
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When τmax,U? < τmax,U , on the event where ‖ sin Θ(U,U?)‖2 ≤ κ−1ρ−2/2,

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

.
ν2 + σ2

(1)

ν2

ν2(1− ‖ sin Θ(U,U?)‖22) + σ2
(d)

−ν2‖ sin Θ(U,U?)‖22 + σ2
(d)

(τ2
max,U − τ2

max,U?)

≤
(ν2 + σ2

(1))
2

ν2

1

−ν2‖ sin Θ(U,U?)‖22 + σ2
(d)

× ‖ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?‖2

≤ (1 + ρ−2)3

(−‖ sin Θ(U,U?)‖22 + κ−1ρ−2)3
‖ sin Θ(U,U?)‖2

. (κ(1 + ρ2))3‖ sin Θ(U,U?)‖2,

where we used Lemma B.14 again.

In summary, on the event where ‖ sin Θ(U,U?)‖2 ≤ κ−1ρ−2/2 ∧ 1/2,

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

. ((κ(1 + ρ2))3 + κρ2(1 + ρ−2)2)‖ sin Θ(U,U?)‖2.

On the other hand, on the event where ‖ sin Θ(U,U?)‖2 > κ−1ρ−2/2∧1/2, we have a trivial
inequality infw∈Rr Rc(δU,w)− infw∈Rr Rc(δU?,w) ≤ 1. This gives

ED[ inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)]

. ((κ(1 + ρ2))3 + κρ2(1 + ρ−2)2)ED[‖ sin Θ(U,U?)‖2]

+ PD(‖ sin Θ(U,U?)‖2 > κ−1ρ−2/2 ∧ 1/2)

. ((κ(1 + ρ2))3 + κρ2(1 + ρ−2)2 + (κρ2 ∨ 1))ED[‖ sin Θ(U,U?)‖2],

where the last inequality follows from Markov’s inequality.

Lemma B.18 Suppose U ∈ Od,r satisfies 1/(1 + ρ2)− κ(r − ‖ sin Θ(U,U?)‖2F ) ≥ 0. Then,

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

&
(1 + ρ2)3/2

(1 + κρ2)3/2
ρ2

(
1

1 + ρ2
− κ(r − ‖ sin Θ(U,U?)‖2F )

)
.

Proof We firstly bound the term τ2
max,U? − τ2

max,U . From Lemma B.15,

τ2
max,U? − τ2

max,U ≥ λmin(ν2(U?>ΣxU
?)−1 − ν2U?>U(U>ΣxU)−1U>U?)

≥ ν2

ν2 + σ2
(1)

− ν2

σ2
(d)

(r − ‖ sin Θ(U,U?)‖2F ). (65)
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From assumption, RHS of Equation (65) is non-negative. Then using the inequality a− b =
(a2 − b2)/(a+ b) ≥ (a2 − b2)/(2a) for a ≥ b ≥ 0,

αmax,U? − αmax,U &
1

αmax,U?
(α2

max,U? − α2
max,U?)

≥
(1− τ2

max,U?)1/2

τmax,U?

τ2
max,U? − τ2

max,U

(1− τ2
max,U?)(1− τ2

max,U )
.

From Equation (64) and Equation (65),

αmax,U? − αmax,U

&

(
ν2 + σ2

(d)

ν2

)1/2(
ν2 + σ2

(1)

σ2
(1)

)3/2(
ν2

ν2 + σ2
(1)

− ν2

σ2
(d)

(r − ‖ sin Θ(U,U?)‖2F )

)

= (1 + κ−1ρ−2)1/2(1 + ρ2)3/2

(
ν2

ν2 + σ2
(1)

− ν2

σ2
(d)

(r − ‖ sin Θ(U,U?)‖2F )

)
. (66)

From the proof of Lemma B.17,

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

= 2EE [(2F (ω?)− 1)(Φ(αmax,U?ω?/v?)− Φ(αmax,Uω
?/v?))I{ω? > 0}].

Note that for any b ≥ a ≥ 0, Φ(b)−Φ(a) ≥ φ(b)(b− a). Since we assume RHS of Equation
(65) is positive, αmax,U? ≥ αmax,U . Thus on the event where ω? > 0, αmax,U?ω?/v? ≥
αmax,Uω

?/v?. Observe

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

≥ 2EE [(2F (ω?)− 1)φ(αmax,U?ω?/v?)(αmax,U?ω?/v? − αmax,Uω
?/v?)I{ω? > 0}]

=
2

v?
(αmax,U? − αmax,U )

∫ ∞
0

(2F (ω?)− 1)ω?
φ(ω?/v?)

v?
φ(αmax,U?ω?/v?) dω?

'
αmax,U? − αmax,U

v?

∫ ∞
0

(2F (ω?)− 1)ω? exp
(
−(1/2)(1 + α2

max,U?)ω?2/v?2
)

dω?

'
αmax,U? − αmax,U

1 + α2
max,U?

∫ ∞
0

(2F ((1 + α2
max,U?)−1/2v?ω?)− 1)ω? exp

(
−(1/2)ω?2

)
dω? ,

where in the last equality we transformed w? → (1 + α2
max,U?)1/2w?/v?. Since F (u) is

differentiable at 0 and F (0) = 1/2,

F (u)− 1/2 = F ′(0)u+ o(u).
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Thus there exists a constant ε > 0 only depending on F such that 2(F (u)− 1/2) ≥ F ′(0)u
for all u ∈ [0, ε] since F ′(0) > 0. This gives

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

&
αmax,U? − αmax,U

1 + α2
max,U?

F ′(0)(1 + α2
max,U?)−1/2v?

×
∫ ε(1+α2

max,U? )1/2v?

0
ω?2 exp

(
−(1/2)ω?2

)
dω?

&
αmax,U? − αmax,U

1 + α2
max,U?

(1 + α2
max,U?)−1/2v?

∫ εv?

0
ω?2 exp

(
−(1/2)ω?2

)
dω?

&
αmax,U? − αmax,U

1 + α2
max,U?

(1 + α2
max,U?)−1/2.

The last inequality follows since v? = ‖w?‖ = 1 by assumption. It is noted that α2
max,U? ≤

ν2/σ2
(d) from Equation (64). Therefore with Equation (66),

inf
w∈Rr

Rc(δU,w)− inf
w∈Rr

Rc(δU?,w)

&
1

(1 + κρ2)3/2
(1 + κ−1ρ−2)1/2(1 + ρ2)3/2

(
1

1 + ρ−2
− κρ2(r − ‖ sin Θ(U,U?)‖2F )

)
&

(1 + ρ2)3/2

(1 + κρ2)3/2
ρ2

(
1

1 + ρ2
− κ(r − ‖ sin Θ(U,U?)‖2F )

)
.

Proposition B.19 For any U ∈ Od,r,

inf
w∈Rr

Rr(δU,w) = ν2w?>(I − ν2U?>U(ν2U>U?U?>U + U>ΣU)−1U>U?)w? + σ2
ε .

Proof [Proof of Proposition B.19] Generate random variables (x̌, ž, ξ̌, ε̌) following the model
(19). We calculate the prediction risk of δU,w as:

Rr(δU,w) := EE(y̌ − x̌>Uw)2

= VarE(ν
−1ž>w? + ε̌)2 − 2CovE(ν

−1ž>w? + ε̌, U?ž + ξ̌)Uw

+ w>U>VarE(U
?ž + ξ̌)Uw

= ‖w?‖2 + σ2
ε − 2νw?>U?>Uw + w>(ν2U>U?U?>U + U>ΣU)w

= (w −A−1b)>A(w −A−1b)− b>A−1b+ ‖w?‖2 + σ2
ε ,

where A := ν2U>U?U?>U + U>ΣU and b := νU>U?w?. From this, we obtain

inf
w∈Rr

Rr(δU,w) = w?>
(
I − U?>U(U>U?U?>U + (1/ν2)U>ΣU)−1U>U?

)
w? + σ2

ε .
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Lemma B.20 For any U ∈ Od,r,

inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w) = O
(
(1 + ρ−2)ED[‖ sin Θ(U,U?)‖2]‖w?‖2

)
.

Proof [Proof of Lemma B.20] From proposition B.19, we have

inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w)

= w?>
(

(I + (1/ν2)U?>ΣU?)−1 − U?>U(U>U?U?>U + (1/ν2)U>ΣU)−1U>U?
)
w?.

Note that infw∈Rr Rr(δU,w)−infw∈Rr Rr(δU?,w) ≡ infw∈Rr Rr(δUO,w)−infw∈Rr Rr(δU?,w) for
any orthogonal matrix O ∈ Or,r. Take Õ ∈ Or,r such that ‖UÕ−U?‖2 ≤

√
2‖ sin Θ(U,O)‖2

without loss of generality, since we can always take a sequence (Õm)m≥1 such that ‖UOm−
U?‖2 ≤

√
2‖ sin Θ(U,O)‖2 + 1/m from Lemma A.3.

Lemma B.14 gives

inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w)

= O

(
1

1− ‖ sin Θ(U,U?)‖22 + κ−1ρ−2

1 + ρ−2

1 + κ−1ρ−2
‖ sin Θ(U,U?)‖2‖w?‖2

)
.

On the event where ‖ sin Θ(U,U?)‖22 < 1/2,

inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w) = O

(
1 + ρ−2

(1 + κ−1ρ−2)2
‖ sin Θ(U,U?)‖2‖w?‖2

)
.

On the event where ‖ sin Θ(U,U?)‖22 ≥ 1/2, we utilize the trivial upper bound

inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w) ≤ ‖(I + ν−2U?>ΣU?)−1‖2‖w?‖2 ≤
ν2

ν2 + σ2
(d)

‖w?‖2.

Combining these results, we have

ED[ inf
w∈Rr

Rr(δU,w)− inf
w∈Rr

Rr(δU?,w)]

.
1 + ρ−2

(1 + κ−1ρ−2)2
ED[‖ sin Θ(U,U?)‖2]‖w?‖2

+
1

1 + κ−1ρ−2
‖w?‖2PD(‖ sin Θ(U,U?)‖2 ≥ 1/

√
2)

.
1 + ρ−2

(1 + κ−1ρ−2)2
ED[‖ sin Θ(U,U?)‖2]‖w?‖2,

where the last inequality follows by Markov’s inequality.
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Appendix C. Discussion about Autoencoders and random masking
augmentation

In the following, we show that our results do not change if we applied the same augmen-
tation (2) for autoencoders. As discussed in Section 3.1, we can ignore the bias term in
autoencoders for simplicity, which only serves as centralization of the data matrix. In that
case, we applied random augmentation g1(x) = Ax and g2(x) = (I − A)x to the original
data {xi}ni=1, and the optimization problem can be formulated as follows:

min
WAE ,WDE

1

2n
EA[‖AX −WDEWAEAX‖2F + ‖(I −A)X −WDEWAE(I −A)X‖2F ]. (67)

Then, similar to Theorem 5 for contrastive learning, we can also obtain an explicit solution
for this optimization problem.

Theorem C.1 The optimal solution of autoencoders with random masking augmentation
(67) is given by:

WAE = W>DE = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a positive constant, σi is the i-th largest eigenvalue of the following matrix:

1

2
∆(XX>) +D(XX>), (68)

ui is the corresponding eigenvector and V = [v1, · · · , vr] ∈ Rr×r can be any orthonormal
matrix.

Proof We first derive the equivalent form for this objective function:

1

2n
EA[‖AX −WDEWAEAX‖2F + ‖(I −A)X −WDEWAE(I −A)X‖2F ]

=
1

2n
EA[tr

(
X>A>AX

)
+ tr

(
X>A>WDEWAEAX

)
+ tr

(
X>A>W>AEW

>
DEWDEWAEAX

)
+ tr

(
X>(I −A)>(I −A)X

)
+ tr

(
X>(I −A)>WDEWAE(I −A)X

)
+ tr

(
X>(I −A)>W>AEW

>
DEWDEWAE(I −A)X

)
]

=
1

2n
EA[tr

(
X>AX

)
+ tr

(
AXX>A>WDEWAE

)
+ tr

(
AXX>A>W>AEW

>
DEWDEWAE

)
+ tr

(
X>(I −A)X

)
+ tr

(
(I −A)XX>(I −A)>WDEWAE

)
+ tr

(
(I −A)XX>(I −A)>W>AEW

>
DEWDEWAE

)
]

=
1

2n
EA[tr

(
X>X

)
+ tr

(
M̂WDEWAE

)
+ tr

(
M̂W>AEW

>
DEWDEWAE

)
],

(69)
where M̂ := AXX>A> + (I − A)XX>(I − A)>. Note that by Definition 2 we have A =
diag(a1, · · · , ad) and ai follows the Bernoulli distribution, so we have:

EAM̂ =
1

2
∆(XX>) +D(XX>) (70)
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Again, by Theorem 2.4.8 in Golub and Loan (1996), the optimal solution of Eq.(67) is given
by the eigenvalue decomposition of EAM̂ = 1

2∆(XX>) + D(XXT ), up to an orthogonal
transformation, which finishes the proof.

With Theorem C.1 established, we can now derive the space distance for autoencoders with
random masking augmentation.

Theorem C.2 Consider the spiked covariance model Eq.(5), under Assumptions 8-10 and
n > d � r, let WAE be the learned representation of augmented autoencoder with singular
value decomposition WAE = (UAEΣAEV

>
AE)> (i.e., the optimal solution of optimization

problem 67). If we further assume {σ2
i }di=1 are different from each other and σ2

(1)/(σ
2
(r) −

σ2
(r+1)) < Cσ for some universal constant Cσ. Then there exist two universal constants

Cρ > 0, c ∈ (0, 1), such that when ρ < Cρ, we have

E ‖sin Θ (U?, UAE)‖F ≥ c
√
r. (71)

Proof Step1, similar to the proof of Theorem B.7, we first bound the difference between
M̂ := ∆(XX>) + 2D(XX>) and Σ := Cov(ξξ>). Note that:

‖M̂−Σ‖2 = ‖XX>−Σ−1

2
∆(XX>)‖2 ≤ ‖XX>−Σ‖2+

1

2
‖∆(XX>−Σ)‖2+

1

2
‖∆(Σ)‖2 (72)

Since Σ is a diagonal matrix, then by Lemma B.8 we have:

‖M̂ − Σ‖2 ≤ 2‖XX> − Σ‖2 (73)

Now, directly apply equation (41)(42)(43) we can obtain that:

E‖M̂ − Σ‖2 . ν2

(
1 +

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+

√
d

n
σ(1)ν. (74)

Step 2, bound the sin Θ distance between eigenspaces. As we have shown in step 1, the
target matrix of the autoencoder is close to the covariance matrix of random noise, i.e., Σ.
Note that Σ is assumed to be a diagonal matrix with different elements, hence its eigenspace
only consists of canonical basis ei. Denote UΣ to be the top-r eigenspace of Σ and {ei}i∈C
to be its corresponding basis vectors, apply the Davis-Kahan Theorem E.1 we can conclude
that:

E‖ sin Θ(UAE , UΣ)‖F ≤
2
√
rE‖M̂ − Σ‖2
σ2

(r) − σ
2
(r+1)

.
√
r

1

σ2
(1)

(
ν2

(
1 +

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+

√
d

n
σ(1)ν

)

.
√
r

(
ρ2 +

√
d

n
+ ρ

√
d

n

)
.

Step 3, obtain the final result by triangular inequality. By Assumption 10 we know that
the distance between canonical basis and the eigenspace of core features can be large:

‖ sin Θ(U?, UΣ)‖2F = ‖U>Σ⊥U?‖2F =
∑

i∈[d]/C

‖e>i U?‖2 = ‖U?‖2F −
∑
i∈C
‖e>i U?‖2

≥ r − rI(U?) = r −O
(
r2

d
log d

)
.

(75)
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Then apply the triangular inequality of sin Θ distance (Proposition A.5) we can obtain the
lower bound of the autoencoder.

E‖ sin Θ(UAE , U
?)‖F ≥ E‖ sin Θ(U?, UΣ)‖F − E‖ sin Θ(UAE , UΣ)‖F

≥
√
r −O

(
r√
d

√
log d

)
−O

(
√
r

(
ρ2 +

√
d

n
+ ρ

√
d

n

))
.

By Assumption 9, it implies that when n and d are sufficiently large and ρ is sufficiently
small (smaller than a given constant Cρ > 0), there exists a universal constant c ∈ (0, 1)
such that:

E‖ sin Θ(UAE , U
?)‖F ≥ c

√
r.

Compared with Theorem 13, we can find that random masking augmentation makes no
difference to autoencoders, which justifies the fairness of our comparison between contrastive
learning and autoencoders.

However, contrary to the autoencoders with random-masking augmentation, we show
that the representations obtained by DAEs behave as the representations obtained by con-
trastive learning.
Proof [Proof of Remark 16] Let L := (1/n)‖X−W>WAX‖2F be the loss function of DAEs.
Then,

EAL =
1

n
tr

(
W>W

(
1

2
D(XX>) +

1

4
∆(XX>)

)
W>W −W>WXX>

)
+ (const.). (76)

We minimize the loss over W such that WW> = 2Ir. Then, the loss becomes

arg min
WW>=2Ir

EAL = arg min
WW>=2Ir

1

n
tr

(
W

(
D(XX>) +

1

2
∆(XX>)

)
W> −WXX>W>

)
= arg max

WW>=2Ir

tr

(
W

1

n
∆(XX>)W>

)
.

Thus, the solution to the (expected) loss minimization problem is the top-r eigenvectors of
∆(n−1XX>), i.e., W> =

√
2OPr(∆(n−1XX>)), where O is any orthogonal matrix from

Or,r. We use the same argument as in the proof of Theorem B.9. First note that

1

n
∆(XX>) =

1

n
∆(U?ZZ>U?>) +

1

n
∆(U?ZE + EZ>U?>) +

1

n
∆(EE>).

By Lemmas B.8, E.3 and the incoherent condition I(U) = O( rd log d), we have:

E
∥∥∥∥∆

(
1

n
U?ZZ>U?>

)
− ν2U?U?>

∥∥∥∥
2

≤ 2E
∥∥∥∥ 1

n
U?ZZ>U?> − ν2U?U?>

∥∥∥∥
2

+ E
∥∥∥∆
(
ν2U?U?>

)
− ν2U?U?>)

∥∥∥
2

. 2(

√
r

n
+
r

n
)ν2 +

r

d
log dν2. (77)
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For the second term, applying equation (42) yields:

1

n
E‖∆(U?ZE> + EZ>U?>)‖2 ≤

4

n
E‖EZ>U?>‖2 .

√
d√
n
σ(1)ν. (78)

For the third term, applying equation (43) yields:

E‖ 1

n
∆(EE>)‖2 = E‖∆(

1

n
EE> − Σ)‖2 ≤ 2‖ 1

n
EE> − Σ‖2 . (

√
d

n
+
d

n
)σ2

(1). (79)

Combining equations (77)(78)(79) gives

E
∥∥∥∥∆

(
1

n
XX> − ν2U?U?>

)∥∥∥∥
2

. ν2

(
r

d
log d+

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+ σ(1)ν

√
d

n
.

From Lemma E.1, we obtain the desired bound:

E‖ sin Θ(UDAE, U
?)‖F ≤

2
√
r

ν2
E
∥∥∥∥∆

(
1

n
XX> − ν2U?U?>

)∥∥∥∥
2

.
r3/2

d
log d+

√
dr

n
.

Here we provide some experimental results about DAEs on synthetic datasets as analog
to Figure 1 and 2, the settings are the same as described in Section 5.1. The results are
summarized in Figure 3, as we can observe, the performance of DAEs is comparable with
contrastive learning, which aligns with our theoretical results above.

Appendix D. Omitted proofs for Section 4

D.1 Proofs for Section 4.1

In this section, we will provide the proof of a generalized version of Theorem 20 to cover
the imbalanced setting, the statement and the detailed proof can be found in Theorem D.2.

In the main body, we assume the unlabeled data and labeled data are both balanced
for the sake of clarity and simplicity. Now we allow them to be imbalanced and provide a
more general analysis. Suppose we have n unlabeled data X = [x1, · · · , xn] ∈ Rd×n and nk
labeled data Xk = [x1

k, · · · , x
nk
k ] ∈ Rd×nk for class k, the contrastive learning task can be

formulated as:

min
W∈Rr×d

L(W ) := min
W∈Rr×d

LSelfCon(W ) + LSupCon(W ;α). (80)

In addition, we write a generalized version of the supervised contrastive loss function to
cover the imbalanced cases:

LSupCon(W ;α) = − 1

r + 1

r+1∑
k=1

αk
nk

nk∑
i=1

[
∑
j 6=i

〈Wxki ,Wxkj 〉
nk − 1

−
∑n

j=1

∑
s 6=k〈Wxki ,Wxsj〉∑
s 6=k ns

]+
λ

2
‖WW>‖2F ,

(81)
where αk > 0 is the weight for supervised loss of class k. Again we first provide a theorem
to give the optimal solution to the contrastive learning problem.
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Figure 3: Comparison of denoising autoencoders, autoencoders, and contrastive learning on
synthetic datasets. Left Column: The vertical axes indicate the downstream regression
error. We subtract the regression error of the ground truth features to measure the excess
error. Top Row: Comparison of in-domain downstream task performance of autoencoders,
contrastive learning, and denoising autoencoders the dimension d. The sample size n is set
as n = 20000. Bottom Row: Comparison of in-domain downstream task performance
of autoencoders, contrastive learning, and denoising autoencoders the dimension n. The
dimension d is set as d = 40.
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Theorem D.1 The optimal solution of the supervised contrastive learning problem (80) is
given by :

WCL = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a positive constant, σi is the i-th largest eigenvalue of the following matrix:

1

4n

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)
+

1

r + 1

r+1∑
k=1

αk
nk

[
1

nk − 1
Xk(1nk

1>nk
− Ink

)X>k −
1∑
t6=k nt

Xk1k1
>
s X

>
s

]
,

ui is the corresponding eigenvector and V = [v1, · · · , vr] ∈ Rr×r can be any orthonormal
matrix.

Proof Under this setting, combined with the result obtained in Corollary 6, the contrastive
loss can be rewritten as:

L(W ) =
λ

2
‖WW>‖2F −

1

2n
tr

((
1

2
∆(XX>)− 1

2(n− 1)
X(1n1>n − In)X>

)
W>W

)

− 1

r + 1

r+1∑
k=1

αk
1

nk

nk∑
i=1

 1

nk − 1

∑
j 6=i
〈Wxki ,Wxkj 〉 −

1∑
t6=k nt

∑
s 6=k

ns∑
j=1

〈Wxki ,Wxsj〉

.
Then we deal with the last term independently, note that:

nk∑
i=1

 1

nk − 1

∑
j 6=i
〈Wxki ,Wxkj 〉 −

1∑
t6=k nt

∑
s 6=k

ns∑
j=1

〈Wxki ,Wxsj〉


=

1

nk − 1

nk∑
i=1

∑
j 6=i
〈Wxki ,Wxkj 〉 −

1∑
t6=k nt

nk∑
i=1

∑
s 6=k

ns∑
j=1

〈Wxki ,Wxsj〉

=
1

nk − 1
tr
(
Xk(1nk

1>nk
− Ink

)X>k W
>W

)
− 1∑

t6=k nt

∑
s 6=k

tr
(
Xk1k1

>
s X

>
s W

>W
)
.

Thus we have:

L(W ) =
λ

2
‖WW>‖2F −

1

4n
tr

(
(∆(XX>)− 1

n− 1
X(1n1>n − In)X>)W>W

)
− 1

r + 1

r+1∑
k=1

αk
nk

[
1

nk − 1
tr
(
Xk(1nk

1>nk
− Ink

)X>k W
>W

)
− 1∑

t6=k nt

∑
s 6=k

tr
(
Xk1k1

>
s XW

>W
)

].

Then by a similar argument as in the proof of Proposition 5, we can conclude that the
optimal solution WCL must satisfy the desired conditions.

With the optimal solution obtained in Theorem D.1, we can provide a generalized version
of Theorem 20 to cover the imbalance cases.
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Theorem D.2 (Generalized version of Theorem 20) If Assumptions 8-10 hold, n >
d� r and let WCL be any solution that minimizes the supervised contrastive learning prob-
lem in Equation (80), and denote its singular value decomposition as WCL = (UCLΣCLV

>
CL)>,

then we have

E‖ sin Θ(UCL, U)‖F .
ν2

λr(T )

(
r3/2

d
log d+

√
dr

n

+
1

r + 1

r+1∑
k=1

αk

[∑
s 6=k

√
nsd∑
t6=k nt

(

√
d

nk
+
√
r) +

√
dr

nk

])
,

where T , 1
4

∑r+1
k=1 piµ

kµk> + 1
r+1

∑r+1
k=1 αk(µ

kµk> −
∑

s 6=k
ns∑
t6=k nt

1
2(µkµs> + µsµk>)).

Proof [Proof of Theorem D.2] For labeled data X = [x1, · · · , xn], we write it to be
X = M + E, where M = [µ1, · · · , µn] and E = [ξ1, · · · , ξn] are two matrices consisting
of class mean and random noise. To be more specific, if xi subject to the k-th cluster, then
µi = µk and ξi ∼ N (0,Σk). Since the data is randomly drawn from each class, µi follows
the multinomial distribution over µ1, · · · , µr with probability p1, · · · , pr+1. Thus µi follows
a subgaussian distribution with covariance matrix N =

∑r+1
k=1 pkµ

kµk>.

As shown in Theorem D.1, the optimal solution of contrastive learning is equivalent to
PCA of the following matrix:

T̂ ,
1

4n
(∆(XX>)− 1

n− 1
X(1n1>n − In)X>)

+
1

r + 1

r+1∑
k=1

αk
nk

[
1

nk − 1
Xk(1nk

1>nk
− Ink

)X>k

− 1∑
t6=k nt

∑
s6=k

1

2
(Xk1k1

>
s X

>
s +Xs1s1

>
kX

>
k )].

Again we will deal with these terms separately,

1. For the first term, as we have discussed, X can be divided into two matrices M and
E, each of them consisting of sub-gaussian columns. Again we can obtain the result
as in (56) (the proof is totally the same):

E‖ 1

n
(∆(XX>)− 1

n− 1
X(1n1>n − In)X>)−N‖2 . ν2(

r

d
log d+

√
r

n
)+σ2

(1)

√
d

n
. (82)

2. For the second term, notice that:

Xk(1nk
1>nk
− Ink

)X>k =

nk∑
i=1

∑
j 6=i

(µk + ξki )(µk + ξkj )>

=nk(nk − 1)µkµk> + (nk − 1)µk(

nk∑
i=1

ξki )> + (nk − 1)(

nk∑
i=1

ξki )µk> +

nk∑
i=1

∑
j 6=i

ξki ξ
kT
j ,

(83)

60



The Power of Contrast for Feature Learning: A Theoretical Analysis

and that:

1∑
t6=k nt

∑
s 6=k

Xk1k1
>
s X

>
s =

1∑
t6=k nt

∑
s 6=k

nk∑
i=1

(µk + ξki )

ns∑
j=1

(µs + ξsj )
>

=
1∑
t6=k nt

∑
s 6=k

[nknsµ
kµs> + nkµ

k(

ns∑
j=1

ξsj )
> + ns

nk∑
i=1

ξki µ
s> +

nk∑
i=1

ξki

ns∑
j=1

ξsTj ].

(84)

Since ξki ∼ N (0,Σk), we can conclude that:

E‖ 1

nk

nk∑
i=1

ξki ‖2 ≤

√√√√E‖ 1

nk

nk∑
i=1

ξki ‖22 =

√
d

nk
σ(1). (85)

Moreover, we have

1

nk(nk − 1)
E‖

nk∑
i=1

∑
j 6=i

ξki ξ
kT
j ‖2 ≤

1

nk(nk − 1)
E‖EkE>k ‖2 +

nk
nk − 1

E‖ξ̄kξ̄k>‖2

.
d

nk
σ2

(1).

(86)

Take equation (85) and (86) back into (83) we can conclude:

E‖ 1

nk(nk − 1)
Xk(1nk

1>nk
− Ink

)X>k − µkµk>‖2 .

√
d

nk
σ(1)

√
rν +

d

nk
σ2

(1). (87)

On the other hand, by equation (85) we know:

E‖ 1∑
t6=k nt

∑
s 6=k

ns∑
j=1

ξsj‖2 ≤
∑
s 6=k

ns∑
t6=k nt

E‖ 1

ns

ns∑
i=1

ξsi ‖2 .
∑
s 6=k

ns∑
t6=k nt

√
d

ns
σ(1). (88)

Notice that:

E‖ 1∑
t6=k nt

1

nk

∑
s 6=k

nk∑
i=1

ξki

ns∑
j=1

ξsTj ‖2 ≤ E‖
∑
s 6=k

ns∑
t6=k nt

ξ̄kξ̄s
>‖2

≤
∑
s 6=k

ns∑
t6=k nt

E‖ξ̄kξ̄s>‖2 .
∑
s 6=k

ns∑
t6=k nt

d
√
nkns

σ2
(1).

(89)

Thus take equations (88) and (89) back into equation (84) we have:

E‖ 1

nk

1∑
t6=k nt

∑
s 6=k

Xk1k1
>
s X

>
s −

∑
s 6=k

ns∑
t6=k nt

µkµs>‖2 (90)

.
∑
s 6=k

√
nsd∑
t6=k nt

(

√
d

nk
σ2

(1) + σ(1)

√
rν). (91)
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Then combine equations (82)(87)(90) together, we can obtain the following result:

E‖T̂ − 1

4
N − 1

r + 1

r+1∑
k=1

αk(µ
kµk> −

∑
s 6=k

ns∑
t6=k nt

1

2
(µkµs> + µsµk>))‖2

.ν2

(
r

d
log d+

√
r

n

)
+ σ2

(1)

√
d

n

+
1

r + 1

r+1∑
k=1

αk

∑
s 6=k

√
nsd∑
t6=k nt

(√
d

nk
σ2

(1) +
√
rσ(1)ν

)
+

√
d

nk
σ(1)

√
rν +

d

nk
σ2

(1)

.
Since we have assumed that rank(

∑r+1
k=1 pkµ

kµk>) = r we can find that the top-r eigenspace
of matrix:

T =
1

4

r+1∑
k=1

piµ
kµk> +

1

r + 1

r+1∑
k=1

αk

µkµk> −∑
s 6=k

ns∑
t6=k nt

1

2
(µkµs> + µsµk>)


is spanned by U?, then apply Lemma E.1 again we have:

E‖ sin Θ(USCL, U)‖F ≤
2
√
rE‖N̂ −N‖2
λr(N)

.

√
r

λr(T )

[
ν2

(
r

d
log d+

√
r

n

)
+ σ2

(1)

√
d

n

+
1

r + 1

r+1∑
k=1

αk

[∑
s 6=k

√
nsd∑
t6=k nt

(√
d

nk
σ2

(1) +
√
rσ(1)ν

)
+

√
d

nk

√
rσ(1)ν +

d

nk
σ2

(1)

]]

.
ν2

λr(T )

r3/2

d
log d+

√
dr

n
+

1

r + 1

r+1∑
k=1

αk

∑
s 6=k

√
nsd∑
t6=k nt

(√
d

nk
+
√
r

)
+

√
dr

nk

.

Now we use this result to derive Theorem 20. Since ‖µk‖ = O(
√
rν) and

∑r+1
k=1 pkµ

k = 0,

approximately we have ν2

λr(N) ≈
1

mink∈[r][1+αk] . Although we can not obtain the closed-form

eigenvalue in general, in a special case, where α = α1 = · · · = αr+1, m = n1 = n2 = · · · =
nr+1 and 1

r+1 = p1 = p2 = · · · = pr+1, it is easy to find that:∑
s 6=k

1

2
(µkµs> + µsµk>) = −µkµk>,

which further implies that:

T =
1

4

r+1∑
k=1

pkµ
kµk> +

1

r + 1

r+1∑
k=1

α(1 +
1

r
)µkµk>, λr(T ) = [

1

4
+ α(1 +

1

r
)]λ(N).

and we can obtain the result in Theorem 20.
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D.2 Proofs for Section 4.2

In this section, we will provide the proof of the generalized version of Theorems 23 and 26
to cover the imbalanced setting, the statement and detailed proof can be found in Theorems
D.6 and D.8. With the two generalized theorems proven, Theorems 23, 24, 26, 27 holds
immediately.

First, we prove a useful lemma to illustrate that the supervised loss function only yields
estimation along a 1-dimensional space. Consider a single source task, where the data
x = U?z + ξ is generated by the spiked covariance model and the label is generated by

y = 〈w?, z〉/ν

suppose we have collect n labeled data from this task, denote the data asX = [x1, x2, · · · , xn] ∈
Rd×n and the label y = [y1, y2, · · · , yn] ∈ Rn, then we have the following result.

Lemma D.3 Under the conditions similar to Theorem 14, we can find an event A such
that P(AC) = O(

√
d/n) and:

E
[∥∥∥∥ 1

(n− 1)2
XHyy>HX> − ν2U?w?w?>U?>

∥∥∥∥
F

I{A}
]
.

√
d

n
σ(1)ν. (92)

The proof strategy is to estimate the difference between the two rank-1 matrices via bound-
ing the difference of the corresponding vector component. We first provide a simple lemma
to illustrate the technique:

Lemma D.4 Suppose α, β ∈ Rd are two vectors, then we have:

‖αα> − ββ>‖F ≤
√

2(‖α‖2 + ‖β‖2)‖α− β‖2.

Proof Denote α = (α1, · · · , αd), β = (β1, · · · , βd), then we have:

‖αα> − ββ>‖2F ≤
d∑
i=1

d∑
j=1

|αiαj − βiβj |2 ≤ 2

d∑
i=1

d∑
j=1

|αiαj − αiβj |2 + |αiβj − βiβj |2

≤2

d∑
i=1

d∑
j=1

|αi|2|αj − βj |2 + |βj |2|αi − βi|2 ≤ 2(‖α‖22 + ‖β‖22)‖α− β‖22

≤2(‖α‖2 + ‖β‖2)2‖α− β‖22.

Take square root on both sides we can finish the proof.

Now we can prove the Lemma D.3.
Proof [Proof of Lemma D.3] Clearly, we have:

‖ 1

(n− 1)2
XHyy>HX> − ν2U?w?w?>U?>‖F

≤ n2

(n− 1)2
‖ 1

n2
XHyy>HX> − ν2U?w?w?>U?>‖F +

2n+ 1

(n− 1)2
‖ν2U?w?w?>U?>‖F

.‖ 1

n2
XHyy>HX> − ν2U?w?w?>U?>‖F +

r

n
ν2,

(93)
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thus we can replace the 1
(n−1)2

with 1
n in equation (92) and conclude the proof. Denote

N̂ , 1
n2XHyy

>HX>, note that both of N̂ and Uw?w?>U> are rank-1 matrices. We first
bound the difference between 1

nXHy and Uw?:

‖ 1

n
XHy − νU?w?‖ =‖ 1

nν
(U?Z + E)HZ>w? − νU?w?‖

≤‖ 1

nν
(U?Z + E)HZ> − νU?‖2

≤1

ν
(‖ 1

n
U?ZZ> − ν2U?‖2 +

1

n
‖EZ>‖2 +

1

n
‖U?ZZ̄>‖2 +

1

n
‖EZ̄>‖2).

(94)
We deal with the four terms in (94) separately:

1. For the first term, apply Lemma E.3 we have:

E‖ 1

n
U?ZZ> − ν2U?‖2 ≤ E‖ 1

n
ZZ> − ν2Ir‖2 ≤

(
r

n
+

√
r

n

)
ν2. (95)

2. For the second term, apply Lemma E.2 twice we have:

1

n
E‖EZ>‖2 =

1

n
EZ [EE [‖EZ>‖2|Z]]

.
1

n
EZ [‖Z‖2(σsum + r1/4√σsumσ(1) +

√
rσ(1))]

.
1

n
EZ [‖Z‖2]

√
dσ(1)

.
1

n

√
dσ(1)(r

1/2ν + (nr)1/4ν + n1/2ν)

.

√
d√
n
σ(1)ν.

(96)

3. For the third term and fourth term, from equation (44) we know:

E
1

n
‖U?ZZ̄>‖2 + E

1

n
‖EZ̄>‖2 ≤ E‖z̄z̄>‖2 + E‖ξ̄z̄>‖2 ≤

r

n
ν2 +

√
d

n
νσ(1). (97)

Combine these three equations (95)(96)(97) together we have:

E‖ 1

n
XHy − νU?w?‖ .

√
d

n
σ(1). (98)

With equation (98), we can now turn to the difference between N̂ and Uw?w?>U>. By
Lemma D.4 we know that:

‖N̂ − ν2U?w?w?>U?>‖F . (‖ 1

n
XHy‖+ ‖νU?w?‖)‖ 1

n
XHy − νU?w?|‖.

Using Markov’s inequality, we can conclude from (98) that:

P(‖ 1

n
XHy − νU?w?‖ ≥ ν) ≤

E‖ 1
nXHy − νU

?w?‖
ν

.

√
d

n
.
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Then denote A = {ω : ‖ 1
nXHy − ν

2U?w?‖2 < ν} we have:

E‖N̂ − ν2U?w?w?>U?>‖F I{A} .E(‖ 1

n
XHy‖+ ‖νU?w?‖)‖ 1

n
XHy − νU?w?|‖I{A}

.ν(E‖ 1

n
XHy − νU?w?‖) .

√
d

n
σ(1)ν.

which finished the proof.

In the main body, we assume the number of labeled data and the ratio of the loss function is
both balanced. Now we will provide a more general result to cover the imbalance occasions.
Formally, suppose we have n unlabeled data X = [x1, · · · , xn] ∈ Rd×n and ni labeled data
Si Xi = [x1

i , · · · , x
ni
i ], yi = [y1

i , · · · , y
n1
i ], ∀i = 1, · · ·T for source task , we learn the linear

representation via joint optimization:

min
W∈Rr×d

L(W ) := min
W∈Rr×d

LSelfCon(W )−
T∑
t=1

αi HSIC(X̂t, yt;W ), (99)

To investigate its feature recovery ability, we first give the following result.

Theorem D.5 For the optimization problem (99), if we apply augmented pairs generation
in Definition 1 with random masking augmentation 2 for unlabeled data, then the optimal
solution is given by:

WCL = C

(
r∑
i=1

uiσiv
>
i

)>
,

where C > 0 is a constant, σi is the i-th largest eigenvalue of the following matrix:

1

4n

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)
+

T∑
i=1

αi
(ni − 1)2

XiHniyiy
>
i HniX

>
i ),

ui is the corresponding eigenvector, V = [v1, · · · , vr] ∈ Rr×r can be any orthogonal matrix
and Hni = Ini − 1

ni
1ni1

>
ni

is the centering matrix.
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Proof Under this setting, combined with the result obtained in Corollary 6, the loss
function can be rewritten as:

L(W ) =
λ

2
‖WW>‖2F −

1

2n
tr

((
1

2
∆(XX>)− 1

2(n− 1)
X(1n1>n − In)X>

)
W>W

)
−

T∑
t=1

αi
1

(ni − 1)2
tr
(
X>i W

>WXiHyiy
>
i H

)
=
λ

2

∥∥∥∥WW> − 1

4nλ

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)
−

T∑
i=1

αi
λ(ni − 1)2

XiHniyiy
>
i HniX

>
i )

∥∥∥∥2

F

− λ

2

∥∥∥∥ 1

4nλ

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)
+

T∑
i=1

αi
λ(ni − 1)2

XiHniyiy
>
i HniX

>
i

∥∥∥∥2

F

.

Then by a similar argument as in the proof of Proposition 5, we can conclude that the
optimal solution WCL must satisfy the desired conditions.

Then we can give the proofs of Theorem 23 and Theorem 26 under our generalized setting,
one can easily obtain those under balanced setting by simply setting α = α1 = · · · = αT
and m = n1 = · · · = nT , which is consistent with Theorem 23 and Theorem 26 in the main
body.

Theorem D.6 (Generalized version of Theorem 23) In the regression setting where
yt = 〈wt, z〉/ν , suppose Assumptions 8-10 hold for spiked covariance model (5) and n >
d� r, if we further assume that T < r and wt’s are orthogonal to each other, and let WCL

be any solution that optimizes the problem in Equation (99), and denote its singular value
decomposition as WCL = (UCLΣCLV

>
CL)>, then we have:

E‖ sin(Θ(UCL, U
?))‖F .

( √
r − T

mini∈[T ]{αi, 1}
+

√
T

mini∈[T ] αi

)(
r

d
log d+

√
d

n

)

+

T∑
i=1

(√
r − T

αi + mini∈[T ]{αi, 1}
mini∈[T ]{αi, 1}

+
√
T
αi + mini∈[T ] αi

mini∈[T ] αi

)√
d

ni
.

Proof [Proof of Theorem D.6] As shown in Theorem D.5, optimizing loss function (99) is
equivalent to find the top-r eigenspace of matrix

1

4n

(
∆(XX>)− 1

n− 1
X(1n1>n − In)X>

)
+

T∑
i=1

αi
(ni − 1)2

XiHniyiy
>
i HniX

>
i .
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Again denote M̂2 , 1
n(∆(XX>) − 1

n−1X(1n1>n − In)X>) and N̂i , 1
(ni−1)2

XiHyiy
>
i HX

>
i .

By equation (56) we know that:

E‖M̂2 −M‖2 . ν2

(
r

d
log d+

√
r

n
+
r

n

)
+ σ2

(1)

(√
d

n
+
d

n

)
+ σ(1)ν

√
d

n
.

By Theorem D.3 we know that for each task Si, we can find an event Ai such that P(Ai) =

O(
√

d
n):

E‖N̂i − ν2U?wiw
>
i U

?>‖F I{Ai} .
√

d

ni
σ(1)ν.

The target matrix is N = ν2U?U?>+
∑T

i=1 αiν
2U?wiw

T
i U

?>, and we can obtain the upper

bound for the difference between N and N̂ :

E‖N̂ −N‖2I{∩Ti=1Ai} ≤
1

4
E‖M̂2 −M‖2 +

T∑
i=1

αiE‖N̂i − ν2U?wiw
>
i U

?>‖F I{Ai}

.ν2(
r

d
log d+

√
r

n
+
r

n
) + σ2

(1)

(√
d

n
+
d

n

)
+ σ(1)ν

√
d

n
+

T∑
i=1

[
αi

√
d

ni
σ(1)ν

]
.

(100)

We divide the top-r eigenspace UCL of WCLW
>
CL into two parts: the top-T eigenspace U

(1)
CL

and top-(T + 1) to top-r eigenspace U
(2)
CL . Similarly, we also divide the top-r eigenspace U?

of N into two parts: U?(1) and U?(2). Then applying Lemma E.1 we can bound the sine
distance for each part: on the one hand,

E‖ sin
(

Θ(U
(1)
CL , U

?(1))
)
‖F

=E‖ sin
(

Θ(U
(1)
CL , U

?(1))
)
‖F I{∩Ti=1Ai}+ E‖ sin

(
Θ(U

(1)
CL , U

?(1))
)
‖F I{∪Ti=1A

C
i }

≤
√
TE‖N̂ −N‖2I{∩Ti=1Ai}
λ(T )(N)− λ(T+1)(N)

+
√
TP(∪Ti=1A

C
i )

.

√
T

mini∈[T ] αiν2

(
ν2 r

d
log d+ σ2

(1)

√
d

n
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T∑
i=1

αi

√
d

ni
σ(1)ν

)
+
√
T
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i=1

√
d

ni

.

√
T

mini∈[T ] αi

(
r

d
log d+

√
d

n

)
+
√
T

T∑
i=1

αi + mini∈[T ] αi

mini∈[T ] αi

√
d

ni
.
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On the other hand,

E‖ sin
(

Θ(U
(2)
CL , U

?(2))
)
‖F

= E‖ sin
(

Θ(U
(2)
CL , U

?(2))
)
‖F I{∩Ti=1Ai}+ E‖ sin

(
Θ(U

(2)
CL , U

?(2))
)
‖F I{∪Ti=1A

C
i }

≤
√
r − TE‖N̂ −N‖2I{∩Ti=1Ai}

min{λ(T )(N)− λ(T+1)(N), λ(r)(N)}
+
√
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.

√
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(1)

√
d

n
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T∑
i=1

αi

√
d
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+
√
r − T
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i=1

√
d
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.

√
r − T

mini∈[T ]{αi, 1}

(
r

d
log d+

√
d

n

)
+
√
r − T

T∑
i=1

(
αi

mini∈[T ]{αi, 1}
+ 1

)√
d

ni
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Note that:
‖ sin(Θ(UCL, U

?))‖2F
= r − ‖U>CLU

?‖2F
≤ r − ‖U (1)>

CL U?(1)‖2F − ‖U
(2)T
CL U?(2)‖2F

≤ T − ‖U (1)>
CL U?(1)‖2F + (r − T )− ‖U (2)>

CL U?(2)‖2F
≤ ‖ sin Θ(U

(1)
CL , U

?(1))‖2F + ‖ sin Θ(U
(1)
CL , U

?(1))‖2F ,
and the sine distance has trivial upper bounds:

‖ sin Θ(U
(1)
CL , U

?(1))‖2F ≤ T, ‖ sin Θ(U
(2)
CL , U

?(2))‖2F ≤ r − T

Thus we can conclude:

E‖ sin(Θ(UCL, U
?))‖F

≤ E‖ sin
(

Θ(U
(1)
CL , U

?(1))
)
‖F + E‖ sin

(
Θ(U

(2)
CL , U

?(2))
)
‖F

.

( √
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mini∈[T ]{αi, 1}

(
r

d
log d+
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)
+

T∑
i=1

√
r − T

αi + mini∈[T ]{αi, 1}
mini∈[T ]{αi, 1}

√
d

ni

)
∧
√
r − T

+

( √
T

mini∈[T ] αi

(
r

d
log d+

√
d

n

)
+

T∑
i=1

√
T
αi + mini∈[T ] αi

mini∈[T ] αi

√
d

ni

)
∧
√
T .

Theorem D.7 (Restatement of Theorem 24) Suppose the conditions in Theorem 23
hold. Then,

ED[ inf
w∈Rr

EE [`r(δWCL,w)]− inf
w∈Rr

EE [`r(δU?>,w)] (101)

.
√
r − T

(
r log d

d
+

√
d

n
+ αT

√
d

m
∧ 1

)
+
√
T

(
r log d

αd
+

1

α

√
d

n
+ T

√
d

m

)
. (102)
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Proof [Proof of Theorem D.7] Theorem 24 follows directly from Lemma B.20 and Theorem
23.

Theorem D.8 (Generalized version of Theorem 26) In the regression setting where
yt = 〈wt, z〉/ν , suppose Assumptions 8-10 hold for spiked covariance model (5) and n >
d � r, if we further assume that T ≥ r and

∑T
i=1 αiwiw

>
i is full rank, suppose WCL is

the optimal solution of optimization problem Equation (99), and denote its singular value
decomposition as WCL = (UCLΣCLV

>
CL)>, then we have:

E‖ sin(Θ(UCL, U
?))‖F .

√
r

1 + ν2λ(r)(
∑T

i=1 αiwiw
>
i )

(
r

d
log d+

√
d

n

)

+
√
r

T∑
i=1

(
αi

1 + ν2λ(r)(
∑T

i=1 αiwiw
>
i )

+ 1

)√
d

ni
.

Proof [Proof of Theorem D.8] The proof strategy is similar to that of Theorem 23, here
the difference is that each direction can be accurately estimated by the labeled data and we
do not need to separate the eigenspace. Directly applying Lemma E.1 and equation (100)
we have:

E‖ sin(Θ(UCL, U
?))‖F

= E‖ sin(Θ(UCL, U
?))‖F I{∩Ti=1Ai}+ E‖ sin(Θ(UCL, U

?))‖F I{∪Ti=1A
C
i }

.

√
rE‖N̂ −N‖2I{∩Ti=1Ai}

λ(r)(N)
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.
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log d+ σ2

(1)

√
d

n
+

T∑
i=1

αi

√
d

ni
σ(1)ν

)
+
√
r

T∑
i=1

√
d

ni
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√
r

1 + λ(r)(
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i=1 αiwiw
>
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(
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d
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n

)
+
√
r

T∑
i=1

(
αi

1 + λ(r)(
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i=1 αiwiw
>
i )

+ 1

)√
d

ni
.

Theorem D.9 (Restatement of Theorem 27) Suppose the conditions in Theorem 26
hold. Then,

ED[ inf
w∈Rr

EE [`r(δWCL,w)]− inf
w∈Rr

EE [`r(δU?>,w)] .

√
r

α+ 1

(
r

d
log d+

√
d

n

)
+ T

√
dr

m
. (103)

Proof [Proof of Theorem 27] Theorem 27 follows directly from Lemma B.20 and Theorem
26.
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Now we move to a binary classification setting, where labels y are generated by y =
sign(〈w?, z〉) instead of y = 〈w?, z〉/ν in previous regression setting. We first give the
corresponding generalized version of Theorem 28 and Theorem 29 to cover the general
imbalanced settings.

Theorem D.10 (Generalized version of Theorem 28) In the classification setting where
yt = sign(〈wt, z〉) , suppose Assumptions 8-10 hold for spiked covariance model (5), z fol-
lows a Gaussian distribution, and n > d � r, if we further assume that T < r and wt’s
are orthogonal to each other, and let WCL be any solution that optimizes the problem in
Equation (99), and denote its singular value decomposition as WCL = (UCLΣCLV

>
CL)>, then

we have:

E‖ sin(Θ(UCL, U
?))‖F .

( √
r − T

mini∈[T ]{αi, 1}
+

√
T

mini∈[T ] αi

)(
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log d+
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(√
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mini∈[T ]{αi, 1}

+
√
T
αi + mini∈[T ] αi

mini∈[T ] αi

)√
d

ni
.

Theorem D.11 (Generalized version of Theorem 29) In the classification setting where
yt = sign(〈wt, z〉) , suppose Assumptions 8-10 hold for spiked covariance model (5), z follows
a Gaussian distribution, and n > d� r, if we further assume that T ≥ r and

∑T
i=1 αiwiw

>
i

is full rank, suppose WCL is the optimal solution of optimization problem Equation (99),
and denote its singular value decomposition as WCL = (UCLΣCLV

>
CL)>, then we have:

E‖ sin(Θ(UCL, U
?))‖F .

√
r

1 + ν2λ(r)(
∑T

i=1 αiwiw
>
i )

(
r

d
log d+

√
d

n

)

+
√
r

T∑
i=1

(
αi

1 + ν2λ(r)(
∑T

i=1 αiwiw
>
i )

+ 1

)√
d

ni
.

The only difference between these two settings is the distribution of labels y. Thus to
prove Theorem D.10 and Theorem D.11, we only need to recover Lemma D.3 in this binary
classification setting. Since in the classification setting the labels are discrete and could be
harder to analyze, we make the Gaussian assumption on z to make problems mathematically
tractable in these two Theorems.

Lemma D.12 (Classification version of Lemma D.3) In the binary classification set-
ting, under the conditions similar to Theorem 14 and assume z in the spiked covariance
model (5) follows a Gaussian distribution, we can find an event A such that P(AC) =
O(
√
d/n) and:

E
[∥∥∥∥ 1

(n− 1)2
XHyy>HX> − 2ν2

π
U?w?w?>U?>

∥∥∥∥
F

I{A}
]
.

√
d

n
σ(1)ν. (104)
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Proof Again, by (93) we have:

‖ 1

(n− 1)2
XHyy>HX> − 2ν2

π
U?w?w?>U?>‖F

.‖ 1

n2
XHyy>HX> − 2ν2

π
U?w?w?>U?>‖F +

r

n
ν2,

thus we can replace the 1
(n−1)2

with 1
n in equation (104) and conclude the proof. Denote

N̂ , 1
n2XHyy

>HX>, note that both of N̂ and Uw?w?>U> are rank-1 matrices. We first

bound the difference between 1
nXHy and

√
2ν2

π Uw?:

‖ 1

n
XHy −

√
2ν2

π
U?w?‖ =‖ 1

n
(U?Z + E)Hy −

√
2ν2

π
U?w?‖

≤‖ 1

n
U?Zy −

√
2ν2

π
U?w?‖+

1

n
‖Ey‖+

1

n
‖U?Zȳ‖+

1

n
‖Eȳ‖.

(105)
We deal with the four terms in (105) separately:

1. For the first term, note that: 1
nZy = 1

n

∑n
i=1 zi sign(z>i w

?) and zi ∼ N (0, ν2Ir), thus
zi sign(z>i w

?) follows a folded Gaussian distribution, which is a reflection of standard
Gaussian distribution along the normal plane of w?, thus

E‖ 1

n
U?Zy −

√
2ν2

π
U?w?‖ ≤ E‖ 1

n
Zy −

√
2ν2

π
w?‖ ≤

√
E‖ 1

n
Zy −

√
2ν2

π
w?‖2

≤
√
r

n
ν

(106)

2. For the second term, note that y and E are independent and |y| = 1 almost surely

1

n
E‖Ey‖ =

1

n
E‖

n∑
i=1

ξi‖ ≤
1

n

√√√√E‖
n∑
i=1

ξi‖2 .

√
d

n
σ(1) (107)

3. For the third term and fourth terms, we have:

E
1

n
‖U?Zȳ‖+ E

1

n
‖Eȳ‖ ≤ E

1

n
‖

n∑
i=1

zi‖+ E
1

n
‖

n∑
i=1

ξi‖ .
√
r

n
ν +

√
d

n
σ(1). (108)

Combine these three equations (106)(107)(108) together we have:

E‖ 1

n
XHy −

√
2ν2

π
U?w?‖ .

√
d

n
σ(1). (109)

With equation (109), we can now turn to the difference between N̂ and 2ν2

π Uw?w?>U>. By
Lemma D.4 we know that:

‖N̂ − 2ν2

π
U?w?w?>U?>‖F . (‖ 1

n
XHy‖+ ‖

√
2ν2

π
U?w?‖)‖ 1

n
XHy −

√
2ν2

π
U?w?‖.
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Using Markov’s inequality, we can conclude from (109) that:

P(‖ 1

n
XHy −

√
2ν2

π
U?w?‖ ≥ ν) ≤

E‖ 1
nXHy −

√
2ν2

π U?w?‖
ν

.

√
d

n
.

Then denote A = {ω : ‖ 1
nXHy −

√
2ν2

π U?w?‖2 < ν} we have:

E‖N̂ − 2ν2

π
U?w?w?>U?>‖F I{A} .E(‖ 1

n
XHy‖+ ‖

√
2ν2

π
U?w?‖)‖ 1

n
XHy −

√
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π
U?w?|‖I{A}

.νE‖ 1

n
XHy −

√
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π
U?w?‖ .

√
d

n
σ(1)ν.

which finished the proof.

With Lemma D.12 established, it is straightforward to obtain the same results as in Theo-
rem 23, Theorem 24, Theorem 26 and Theorem 27 for this binary classification setting.

Appendix E. Useful lemmas

In this section, we list some of the main techniques that have been used in the proof of the
main results.

Lemma E.1 (Theorem 2 in Yu et al. (2015)) Let Σ, Σ̂ ∈ Rp×p be symmetric, with
eigenvalues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p and assume
that min (λr−1 − λr, λs − λs+1) > 0 where λ0 := ∞ and λp+1 := −∞. Let d := s − r + 1,
and let V = (vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal
columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Then

‖ sin Θ(V̂ , V )‖F ≤
2 min

(
d1/2‖Σ̂− Σ‖2, ‖Σ̂− Σ‖F

)
min (λr−1 − λr, λs − λs+1)

.

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2 min

(
d1/2‖Σ̂− Σ‖2, ‖Σ̂− Σ‖F

)
min (λr−1 − λr, λs − λs+1)

.

Lemma E.2 (Lemma 2 in Zhang et al. (2018)) Assume that E ∈ Rp1×p2 has inde-
pendent sub-Gaussian entries, Var (Eij) = σ2

ij , σ
2
C = maxj

∑
i σ

2
ij , σ

2
R = maxi

∑
j σ

2
ij , σ

2
(1) =

maxi,j σ
2
ij . Assume that

‖Eij/σij‖ψ2
:= max

q≥1
q−1/2 {E (|Eij | /σij)q}1/q ≤ κ.

Let V ∈ Op2,r be a fixed orthogonal matrix. Then

P (‖EV ‖2 ≥ 2 (σC + x)) ≤ 2 exp

(
5r −min

{
x4

κ4σ2
(1)σ

2
C

,
x2

κ2σ2
(1)

})
,

E‖EV ‖2 . σC + κr1/4
(
σ(1)σC

)1/2
+ κr1/2σ(1).
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Lemma E.3 (Theorem 6 in Cai et al. (2020)) Suppose Z is a p1-by- p2 random ma-
trix with independent mean-zero sub-Gaussian entries. If there exist σ1, . . . , σp ≥ 0 such
that ‖Zij/σi‖ψ2

≤ CK for constant CK > 0, then

E
∥∥∥ZZ> − EZZ>

∥∥∥
2
.
∑
i

σ2
i +

√
p2

∑
i

σ2
i ·max

i
σi.

Lemma E.4 (The Eckart-Young-Mirsky Theorem (Eckart and Young, 1936)) Suppose
that A = UΣV T is the singular value decomposition of A. Then the best rank- k approxi-
mation of the matrix A w.r.t the Frobenius norm, ‖ · ‖F , is given by

Ak =
k∑
i=1

σiuiv
T
i .

that is, for any matrix B of rank at most k

‖A−Ak‖F ≤ ‖A−B‖F .
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