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Abstract

In recent years, persistent homology (PH) has been successfully applied to real-world data
in many different settings. Despite significant computational advances, PH algorithms do
not yet scale to large datasets preventing interesting applications. One approach to address
computational issues posed by PH is to select a set of landmarks by subsampling from the
data. Currently, these landmark points are chosen either at random or using the maxmin
algorithm. Neither is ideal as random selection tends to favour dense areas of the data
while the maxmin algorithm is very sensitive to noise. Here, we propose a novel approach
to select landmarks specifically for PH that preserves coarse topological information of the
original dataset. Our method is motivated by the Mayer-Vietoris sequence and requires
only local PH calculations thus enabling efficient computation. We test our landmarks on
artificial data sets which contain different levels of noise and compare them to standard
landmark selection techniques. We demonstrate that our landmark selection outperforms
standard methods as well as a subsampling technique based on an outlier-robust version of
the k-means algorithm for low sampling densities in noisy data with respect to robustness
to outliers.
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1. Introduction

One of the practical challenges of applying persistent homology (PH) is that it is compu-
tationally difficult for large data sets. Building a filtration on a data set with N points
results in spaces of the size O(2N ), although in practice this can be reduced to O(N n̂+1)
by posing a limit n̂ on the dimension of the topological features considered (Otter et al.,
2017). Following the construction of a filtration, the algorithm for computing PH in the
worst case has a complexity of O(k3), where k is the number of points, edges, triangles, and
higher-dimensional simplices constructed on the data points in the filtration. In practice,
the complexity is often linear (Otter et al., 2017; Edelsbrunner et al., 2002). Methods exist
to approximate specific filtrations or to reduce the sizes of the vector spaces associated to
the data by a filtration, for an overview of such methods that have been implemented in
software packages, see Otter et al. (2017). Despite such improvements, computation is still
very challenging on large data sets and can pose a hard limit on the filtrations that can

c©2023 Bernadette J. Stolz.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-1526.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-1526.html


Stolz

be applied to a particular data set. In such cases it can become necessary to preprocess
data before applying PH. For point cloud data one can, for example, use subsampling tech-
niques to identify so-called landmarks of the data set and then define a filtration on the
landmarks (de Silva and Carlsson, 2004). A filtration on well-chosen landmarks retains
topologically important global information about the full data set and one can even choose
to include information from non-landmark points when constructing its simplices. An ex-
ample for such a filtration is the lazy witness filtration which was first introduced by de Silva
and Carlsson (2004) and has been used to study noisy artificial data sets (Kovacev-Nikolic,
2012), primary visual cortex cell populations (Singh et al., 2008), and cancer gene ex-
pression data (Lockwood and Krishnamoorthy, 2015). Roughly, the lazy witness filtration
consists of the following steps:1

1. Selection of a (small) subset2 of landmark points L from the data set D.

2. Construction of a lazy witness filtration on the landmarks L where the landmarks are
vertices and data points from the full data set D can serve as witnesses for higher-order
interactions, i.e. simplices, on the set of landmarks in the filtration.

Even though the choice of landmarks from the data inevitably has a large influence on the
results that can be obtained, currently there are only two standard approaches to select
landmarks: uniform random selection and selection via the maxmin algorithm. Neither is
ideal and in particular the maxmin algorithm tends to include outliers (de Silva and Carls-
son, 2004; Adams and Tausz, 2015), which poses problems since large real-world data sets
often include noise. In the biological application of the lazy witness filtration by Lockwood
and Krishnamoorthy (2015), for example, the maxmin algorithm leads to the discovery of
loops in the data set which we could not reproduce using uniform random landmark selec-
tion or when discarding a small proportion of the initially chosen maxmin landmarks from
the data set and choosing a new set of landmarks with the maxmin algorithm. We also
note that the results of the lazy witness filtration are difficult to interpret. In addition to
the mentioned disadvantages of the maxmin algorithm, neither of the proposed landmark
selection methods were designed specifically for PH. While there are other methods that
address subsampling for PH (Cohen-Steiner et al., 2007; Niyogi et al., 2008; Dufresne et al.,
2019) these do not explicitly consider noisy data. Because existing approaches are not ideal,
it is desirable to develop new methods that lead to a reduction of large and noisy data while
preserving topological properties. Ideally, the reduced data set can be used as input for PH
directly without additional preprocessing steps.

While one of the appeals of PH is its ability to study multi-scale data sets globally,
local PH around a data point can also produce useful insights, see for example Bendich
et al. (2012); Ahmed et al. (2014); Fasy and Wang (2016); Stolz et al. (2020); Wheeler et al.
(2021). Here, we present a novel landmark selection technique that allows us to obtain
outlier-robust PH landmarks from noisy point cloud data. Our method is motivated by
the Mayer-Vietoris sequence and relies on computing the Vietoris-Rips filtration (Carlsson,
2009; Ghrist, 2008) locally, in a small neighbourhood around each data point, where the

1. For the full definition see de Silva and Carlsson (2004).
2. Although there is no systematic lower bound for the number of landmark points, (de Silva and Carlsson,

2004) suggest using > 5% of the data points as landmarks.
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aforementioned computational problems of PH vanish. Our algorithm then uses PH output
to define a score for each data point which allows us to identify suitable candidates for
landmarks. We investigate two different flavours of our approach, one using high scores
to identify candidate landmarks and one using low scores. We apply our approach to
very simple artificial data sets that consist of signal points sampled from an object with
a topologically interesting structure, such as a sphere, a torus, or a Klein bottle, as well
as noise points. A consequence of the inclusion of noise is that a large data set cannot be
reduced by applying subsampling techniques developed to infer the (persistent) homology
of data (Cohen-Steiner et al., 2007; Niyogi et al., 2008; Dufresne et al., 2019). The (global)
PH of landmarks selected in our proposed method is close to the PH of signal points in the
original data set. In comparison to existing landmark selection procedures, we demonstrate
that our landmarks based on local PH perform very well on our data sets, in particular for
low sampling densities, with respect to robustness to outliers. We further investigate the
performance of our landmarks in comparison with an outlier-robust version of the k-means
algorithm (Chawla and Gionis, 2013) which we modify for landmark selection and again
find that they are superior for low sampling densities. Our PH landmarks present a valuable
addition to the two existing techniques for landmark selection for PH and we believe that
they may also be of interest in a broader data science context.

Local homology has previously been used to infer the stratification of data (Bendich
et al., 2012; Mileyko, 2021; Nanda, 2020; Robinson et al., 2018; Stolz et al., 2020) as well
as road network analysis (Ahmed et al., 2014; Fasy and Wang, 2016) and, more recently,
the analysis of topological complexity of data as it passes through different layers of neural
networks (Wheeler et al., 2021). A Mayer-Vietoris sequence similar to the one that moti-
vates our landmark selection approach has been used to show Wasserstein stability bounds
of the Vietoris-Rips filtration on finite point clouds (Skraba and Turner, 2020) and local
computations motivated by the Mayer-Vietoris sequence have also been applied with the
goal of parallelising PH computations (Casas, 2019). Although the idea behind our notion
of local persistent homology is similar to some of those used previously (Ahmed et al., 2014;
Bendich et al., 2012; Fasy and Wang, 2016; Wheeler et al., 2021), in comparison to these
approaches, our definition does not use relative homology and can be readily computed by
considering the Vietoris-Rips complex on points in a small local neighbourhood.

Our paper is structured as follows: in Section 2, we review existing standard techniques
for landmark selection. We then mathematically motivate and introduce our novel landmark
selection technique, which we refer to as PH landmarks, and also present an outlier-robust
version of the k-means algorithm (Chawla and Gionis, 2013) modified for landmark selection,
k − − landmarks, in Section 3. In Section 4 we introduce our data sets. We compare our
PH landmarks to existing techniques as well as k−− landmarks in Section 5 followed by a
discussion in Section 6.

2. Existing Landmark Selection Methods

The two standard methods for selecting landmarks L ⊂ D in a data set D = {y1, . . . , yN} are
random landmark selection and the maxmin algorithm. Both are implemented as standard
procedures for use in combination with the lazy witness filtration in the PH software package
javaPlex (Tausz et al., 2014).
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Figure 1: Example of a point cloud and landmarks selected at random (landmarks are
shown in cyan). We observe that the dimension 1 barcode based on a Vietoris-
Rips filtration on the selected landmarks does not capture the persistent homology
of the point cloud correctly.

2.1 Random Landmark Selection

The simplest way to choose landmarks L = {l1, l2, . . . , lm} from a point cloud D is to select
m points from D uniformly at random. For data sets whose points are evenly distributed,
random selection achieves good coverage at a small computational cost. However, as soon
as there are large differences in the density of the data, random selection will favour points
from more dense regions, which can result in landmarks that do not represent the point
cloud well. In extreme cases, the landmarks do not carry any topological similarity to the
original point cloud. We show such an example in Figure 1.

2.2 The Maxmin Algorithm

The sequential maxmin algorithm chooses the first landmark l1 ∈ D randomly. Inductively,
for i ≥ 2 and a landmark set Li−1 = {l1, l2, . . . , li−1}, the algorithm selects the next land-
mark li ∈ D\Li−1 such that for a chosen metric d : D ×D → R with d(y, L) = minl∈L d(y, l)
the function mapping

y 7→ d(y, Li−1),

is maximised for y ∈ D. We show pseudocode for the procedure in Algorithm 3 in Appendix
A.1. The method has been used successfully for image data by Adams and Carlsson (2009);
Carlsson et al. (2008). Landmarks chosen in this way cover the data set well, are evenly
spaced, and represent the underlying topological features better than landmarks selected
at random. The algorithm does, however, tend to include outliers (de Silva and Carlsson,
2004; Adams and Tausz, 2015). We show an example of a point cloud where the selected
landmarks do not represent the underlying topology of the data correctly in Figure 2.
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Figure 2: Example of a point cloud and landmarks selected by the maxmin algorithm (land-
marks are shown in dark blue). We observe that the dimension 1 barcode based
on a Vietoris-Rips filtration on the selected landmarks does not capture the PH
of the point cloud correctly.

According to de Silva and Carlsson (2004), the maxmin algorithm is best suited to
produce the qualities desired from landmarks. They do not recommend the use of clustering
algorithms as an alternative due to the high computational cost and potential to accentuate
accidental features.

2.3 Dense Core Subsets

The tutorial accompanying the PH software package javaPlex (Adams and Tausz, 2015)
mentions that using so-called dense core subsets before applying the maxmin algorithm
can help overcome the selection of outliers as landmarks. This approach, however, is not
considered as one of the standard approaches for landmark selection and we did not find
examples where it was used in practice for this purpose. De Silva and Carlsson (2004) and
Carlsson et al. (2008) apply dense core subsets to identify dense regions in their data sets.
The authors subsequently use the maxmin landmarks to study the topology of these dense
regions.

Dense core subsets are based on assigning density values to every point: for an integer
K, the density value assigned to a point y ∈ D is 1

ρK(y) , where ρK(y) is the distance to the
K-th nearest neighbour of y. Large values of K provide a measure of the global density
around the point in the data set, while smaller values of K give a more local perspective.
Using the density values, one can select the m densest points in the data set as a dense core
subset. Given a data set, it is not clear what values of K to use. Different values for K and
m can produce markedly different subsets (de Silva and Carlsson, 2004).

For our comparisons in Subsection 5.3, instead of selecting a dense subset and then
performing the maxmin algorithm to select landmarks, as proposed by Adams and Tausz
(2015), we choose the m densest points in the data as landmarks. This enables us to deter-
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mine how the information on which our own landmark selection technique (PH landmarks)
is based differs from that given by the K-th nearest neighbour of a data point.

3. Proposed Landmark Selection Methods

Currently existing methods for landmark selection that enable subsequent PH analysis on
large and noisy point cloud data are not ideal and have, in particular, not been designed
with PH in mind. De Silva and Carlsson (2004) state the most pertinent qualities for a
landmark set to be good coverage of the data set and even spacing of the landmarks. While
these are certainly important properties for many data sets, we find that in the context of
PH, the aim of a landmark selection method should be to represent the underlying topology
of the data set. Such landmarks could then be used either in combination with the lazy
witness complex or simply as a subsample of the data set to which PH can be applied. Since
outliers can artificially introduce topological features such as loops, we in particular require
outlier-robust landmark selection techniques. Based on these observations we formulate the
following goals for landmark selection methods intended for PH:

1. Good representation of the underlying topology of the data set, even at low sampling
densities with small variance of the results between different landmark realisations.

2. Robustness to outliers, ideally including a measure for how much we consider a specific
point to be an outlier.

We now introduce novel landmark selection methods to achieve these goals: Persistent
homology landmarks (PH landmarks) and k − − landmarks. We design PH landmarks
specifically for the application of PH, while k − − landmarks are based on a variant of
the k-means algorithm, whose outlier-robust properties make it a promising candidate to
overcome the downsides of both the random and the maxmin landmark selection.

3.1 Mathematical Motivation

The use of our notion of local PH is inspired by the Mayer-Vietoris sequence, which can
enable computation of the homology of a space X by considering subspaces, whose homology
is easier to compute. The Mayer-Vietoris sequence for a topological space X is a special
type of long exact sequence. By long exact sequence we mean a sequence of abelian groups
Ai and group homomorphisms Φi, i ∈ Z, of the form

· · · → Ai
Φi−→ Ai+1

Φi+1−−−→ Ai+2
Φi+2−−−→ . . .

such that im Φi = ker Φi+1. For more definitions and background, see for example Munkres
(1984).

Theorem 1 (Mayer-Vietoris sequence) Let X be a simplicial complex with subcom-
plexes A,B ⊂ X such that X = A ∪B. Then there exists an exact sequence

· · · → Hn(A ∩B)
Φ∗−−→ Hn(A)⊕Hn(B)

Ψ∗−−→ Hn(X)
∂∗−→ Hn−1(A ∩B)→ . . .

→ H0(X)→ 0,
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where Hn(·) denotes the n-th homology group and Φ∗, Ψ∗, and ∂∗ are homomorphisms. The
sequence is called the Mayer-Vietoris sequence.

For a proof see, for example, Munkres (1984), page 142. We can use the Mayer-Vietoris
sequence to connect the homology of a simplicial complex X to the local homology around
a vertex x̂ ∈ X. We do this via two simplicial subcomplexes that can be defined around
the vertex x̂ ∈ X: the link of the vertex x̂ ∈ X and the closed star of the vertex x̂ ∈ X.

Definition 2 (Closed star of a vertex) Let X be a simplicial complex and x̂ ∈ X a
vertex. Then the closed star of x̂ in X, denoted by St x̂, is the subcomplex of X that
contains all the simplices which have x̂ as one of their vertices.

Definition 3 (Link of a vertex) Let X be a simplicial complex and x̂ ∈ X a vertex.
Then the link Lk x̂ is the union of all simplices of X lying in St x̂ that are disjoint from x̂.

We show a simplicial complex, the closed star of a vertex and the link of a vertex in Figure 3.
Denoting the simplicial complex of all simplices in X that are disjoint from x̂ as X \ x̂, we

St x      Lk x

Figure 3: Examples of a simplicial complex, the closed star of a vertex x̂, and the link of a
vertex x̂. We show the vertex x̂ in red and highlight the closed star and the link
in yellow.

make the following observations for x̂ ∈ X:

Remark 4

1. X = (X \ x̂) ∪ St x̂.

2. Lk x̂ = (X \ x̂) ∩ St x̂.

Based on these definitions and observations we can now consider the following Mayer-
Vietoris sequence:

· · · → Hn(Lk x̂)
Φ−→ Hn(X \ x̂)⊕Hn(St x̂)

Ψ−→ Hn(X)
∂−→ Hn−1(Lk x̂)→ . . .

→ H0(X)→ 0.
(1)
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Now, St x̂ is contractible: every simplex that contains x̂ is contractible and the intersection
of simplices in St x̂ is either empty or a simplex that contains x̂ and is hence also contractible.
Thus Hn(St x̂) = 0 for n > 0. We observe that if we can ensure that Hn(Lk x̂) =
Hn−1(Lk x̂) = 0, for n > 0 we obtain

0 −→ Hn(X \ x̂)
Ψ−→ Hn(X) −→ 0, (2)

which gives us an isomorphism Ψ between Hn(X \ x̂) and Hn(X).
The Mayer-Vietoris sequence given by Equation 1 connects the homology of the large

simplicial complexes X and X \ x̂, which are both global and expensive to compute, to the
homology of the link Lk x̂, which a purely local computation and therefore easy to perform.

In practice, we are however working with point cloud data D. We therefore consider
the PH of the point cloud D, rather than the homology, and apply the Mayer-Vietoris
sequence 1 to the simplicial complexes that we obtain from the data by constructing a
filtration. We consider a simplicial complex X in this filtration. A data point y ∈ D is
now a vertex ŷ in X. Instead of Hn(Lk ŷ) = 0, we need to quantify the failure of the

isomorphism PHn(D \ y)
Ψ−→ PHn(D) via a score based on the PHn(Lk y), which we will

define in Section 3.2. To make computation easier, instead of looking just at the link of ŷ
in the simplicial complex X, we extend the link to a δ-neighbourhood of ŷ in X, which we
define to be the collection of simplices whose vertices are within a distance of at most δ
from y in D:

Definition 5 (δ-link of a data point y) Let X be a simplicial complex in a metric space
constructed from a data set D, ŷ ∈ X a vertex, δ > 0 a distance and δ(ŷ) a δ-neighbourhood
of ŷ in X. Then the δ-link Lkδ y is the union of all simplices in X that are disjoint from
ŷ and contained in δ(ŷ) .

Building on the δ-link of a data point we can define the δ-star of a data point:

Definition 6 (Closed δ-star of a data point y) Let X be a simplicial complex in a met-
ric space constructed from a data set D, ŷ ∈ X a vertex, δ > 0 a distance and δ(ŷ) a

δ-neighbourhood of ŷ in X. Then the closed δ-star St
δ
ŷ is the union of the δ-link Lkδ y

with the vertex ŷ and all simplices [ŷ, σ] where σ ∈ X and σ is fully contained in δ(ŷ).

We note that the closed δ-star of a data point is always contractible by construction.
We show an example of a data point, its δ-link and its closed δ-star in Figure 4. From now
on, we refer to computing the PH of the δ-link of a point in a data set as computing the
local PH of a data point. Our notion of local PH of a data point is motivated by the Mayer-
Vietoris sequence and we use the property given by Equation 2 to define a new landmark
selection method, in which we select points y in a data set D which are ‘closest’ to giving
us the desired isomorphism between PHn(D \ y) and PHn(D) as landmarks. Note that a
similar computation for local PH is performed by Wheeler et al. (2021).

3.2 Persistent Homology Landmarks

Following our local PH computations, we can now define the score |PHn(Lkδ y)| by which

we measure the failure of the isomorphism PHn(D \ y)
Ψ−→ PHn(D).
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Figure 4: Examples of a data point y and its δ-neighbourhood in a point cloud, the δ-
link of y and the closed δ-star of y. We show the data point y in red and its
δ-neighbourhood in light red highlighting the points within δ in blue. We use
the data points within the δ-neighbourhood to build a Vietoris-Rips complex for
a fixed filtration value ε > 0, which represents the simplicial complex X in the
definitions of the δ-link and the closed δ-star. We only show the subcomplexes
of the Vietoris-Rips complex (or their extensions in the case of the closed δ-star)
that are relevant to the illustrated definitions.

Definition 7 (|PHn(Lkδ y)|) Let D be a point cloud, y ∈ D a data point, d : D×D → R a

distance function, ∆y = {ỹ ∈ D\{y} | d(ỹ, y) ≤ δ}, n = 0, 1, 2 and Bn(Lkδ y) = {[ηi, ζi)}I(n)
i=1

the n-dimensional barcode of the Vietoris-Rips filtration performed on ∆y excluding infinitely
persisting features. Then

|PHn(Lkδ y)| = max
n

max
i=1,...,I(n)

{ζi − ηi}.

We can re-express our observation from Equation 2 for point cloud data D and PH in
the following way: if for a data point y ∈ D and a neighbourhood radius δ > 0 we can
ensure that |PHn(Lkδ y)| = |PHn−1(Lkδ y)| = 0, then for n > 0 we obtain

0 −→ PHn(D \ y)
Ψ−→ PHn(D) −→ 0, (3)

where PHn denotes the n-th homology groups associated with the different filtration steps.
As we are working with data however, we are unlikely to achieve such strict conditions—
indeed, we would achieve these under trivial conditions. For |PHn(Lkδ y)| ≈ small and
|PHn−1(Lkδ y)| ≈ small, however, we obtain something close to an isomorphism between
PHn(D \ y) and PHn(D).

The larger |PHn(Lkδ y)| of a point is, the further away we are from an isomorphism
between PHn(D \ y) and PHn(D). Consequently, the inclusion or exclusion of the point
changes the PH of the data set more than for a point where |PHn(Lkδ y)| is small. Under
the assumption that each point has at least two neighbours within distance δ, the choice
of δ determines by how much we allow the Bottleneck distance (for a definition see, for
example, Otter et al., 2017) to differ between the persistence diagrams of the filtration on
the point cloud containing y and a point cloud not containing y. We can therefore think of
it as a resolution parameter. There are now two possible strategies for landmark selection:

9



Stolz

• PH landmarks I: representative landmarks. We chose points with small |PHn(Lkδ y)|
values as landmarks. Their inclusion or exclusion in the full data set does not alter
the PH of the full data set dramatically. Hence, the landmarks represent the data
well and they do not introduce accidental topological features that can, for example,
be caused by outlier points in the landmark set.

• PH landmarks II: vital landmarks. Landmarks are points with large |PHn(Lkδ y)|
values. For such points we are far away from an isomorphism between PHn(D\ ŷ) and
PHn(D). Hence their exclusion from the data set would change the PH dramatically.

It is not immediately clear which strategy would work better for noisy data sets. In a de-
noised point cloud, we would expect vital landmarks to capture the overall PH of the data
well while representative landmarks could be removed from the point cloud without dra-
matical changes to the PH. In a noisy data set, however, noise can also introduce unwanted
topological features. The removal of such noise, while strongly altering the PH of the de-
noised data set in comparison to the noisy version, would in such a case be desired. We
therefore consider both approaches and compute |PHn(Lkδ y)| for dimensions n = 0, 1, 2.
Motivated by results from our computations, we define two versions for |PHn(Lkδ y)| which
we use in practice. To avoid confusion with Definition 7, we refer to these values obtained
in practical computations as the PH outlierness of a point y ∈ D:

out0,1,2PH (y) = max {|B0(Lkδ y)|, |B1(Lkδ y)|, |B2(Lkδ y)|},

where |Bn(Lkδ y)| is the length of the longest finite interval in the PH barcode for dimen-
sion n. We also refer to out0,1,2PH (y) as outlierness over all (computed) dimensions. We

observe that out0,1,2PH (y) is usually determined by dimension 0, where we find the longest
non-infinitely persisting features in our data sets (see Subsection 5.1). To avoid this be-
haviour, we additionally use a version for PH outlierness which is restricted to dimension 1
in the PH calculation:

out1PH(y) = |B1(Lkδ y)|. (4)

We also refer to out1PH(y) as dimension 1 outlierness. In situations where either of the two
definitions can be used, we denote PH outlierness as outPH(y).

To avoid choosing points as landmarks that are very far away from other data points,
we determine points S = {s1, . . . , so} with fewer than two neighbours within their δ-
neighbourhood to be super outliers. We assign super outliers s ∈ S to have out1PH(s) =

out0,1,2PH (s) = −∞ and include them into the landmark set only once all other points y ∈ D\S
have been chosen as landmarks. Note that the resolution parameter δ strongly influ-
ences the number of super outliers. As long as we have enough points in the data set
that are not considered to be super outliers, we choose our landmarks to be the points
L = {l1, l2, . . . , lm} ⊂ D \ S such that outPH(li) ≤ outPH(y) for all y ∈ D \ {L ∪ S} and
i = 1, . . . ,m for PH landmarks I (representative landmarks) and outPH(li) ≥ outPH(y) for
all y ∈ D \ {L ∪ S} and i = 1, . . . ,m for PH landmarks II (vital landmarks). We show the
pseudocode for PH landmarks I in Algorithm 1, an algorithm for PH landmarks II can be
formulated accordingly.

When using out1PH(y) in Algorithm 1, it is important to note, that one can obtain data
points y with out1PH(y) = 0. To avoid that the order of inclusion of such points in the
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Algorithm 1 The PH landmark algorithm

Input: Data points D = {y1, . . . , yN},
a distance function d : D ×D → R
number of landmarks m,
local neighbourhood radius δ > 0.

Output: A set of m PH landmarks L = {l1, . . . , lm}, a set of o super outliers
S = {s1, . . . , so}.
for all y ∈ D do

Find ∆y = {ỹ ∈ D \ {y} | d(ỹ, y) ≤ δ}
if |∆y| > 2 then

Compute Vietoris-Rips filtration for ∆y for n = 0, 1, 2.
Compute outPH(y)

else
S ← S ∪ {y}

end if
end for
Re-order the points in D \ S such that outPH(y1) ≤ outPH(y2) ≤ · · · ≤ outPH(yN−o)
L← {y1, . . . , ymin{m,N−o}}
if N − o < m then
L← L ∪ {s1, . . . , sm−N+o}

end if

landmark set is determined by a possibly systematic and non-random ordering of the points
in the original data set, which could, for example, favour noise points to be added before
signal points or vice versa, we ensure that all points with out1PH(y) = 0 are randomly
permuted in the ordering of the PH outlierness scores.

3.3 k −− Landmarks

The k-means−− algorithm was developed by Chawla and Gionis (2013) to overcome the
extreme sensitivity of the k-means algorithm to outliers. The authors formulate their ap-
proach as a generalisation of the k-means algorithm: for an input data set D = {y1, . . . , yN}
the algorithm provides a set of k cluster centres L̂ = {l̂1, . . . , l̂k} and a set of j outliers
O = {o1, . . . , oj}, O ⊂ D. For a given distance function d : D × D → R and y ∈ D the
authors use the following term in their algorithm:

c(y, L̂) := arg min
l̂∈L̂

d(y, l̂).

We show the pseudocode in Algorithm 4 in Section A.2. For our application of the algorithm
to landmark selection, we further define

c̃(D, l̂) := arg min
y∈D

d(y, l̂).

We show our modified version of the k-means−− algorithm for landmark selection in Algo-
rithm 2.

11



Stolz

Algorithm 2 The k-means−− algorithm (Chawla and Gionis, 2013) modified for landmark
selection

Input: Data points D = {y1, . . . , yN}, a distance function d : D × D → R, number of
clusters k and number of outliers j.

Output: A set of k cluster centers L = {l1, . . . , lk}, L ⊂ D,
a set of j outliers O = {o1, . . . , oj}, O ⊂ D.
L̂0 ← {k random points of D}
e0 = −1
i← 1
while (continuation criterion > 10−4 and i < 100 ) do

for all y ∈ D do
compute d(y, l̂i−1)

end for
Re-order the points in D such that d(y1, L̂i−1) ≥ d(y2, L̂i−1) ≥ · · · ≥ d(yN , L̂i−1)
Oi ← {y1, . . . , yk}
Di ← D \Oi = {yk+1, . . . , yN}Figure
for r = 1 to k do
Pr ← {y ∈ Di | c(y, L̂i−1) = l̂i−1,r}
l̂i,r ← mean(Pr)

end for
L̂i ← {l̂i,1, . . . , l̂i,k}
for y ∈ Di do

compute d(y, L̂i)
end for
ei ←

∑
y∈Di d(y, L̂i)

2

continuation criterion ← |ei − ei−1|
i← i+ 1

end while
L← ∅
DL ← Di−1

while |L| < k do
for l̂ ∈ L̂ do
ml̂ ← miny∈DL d(y, l̂)

end for
Re-order {l̂1, . . . , l̂k̂} such that ml1 ≤ ml2 ≤ · · · ≤ mlk̂
s← 1
repeat
L← L ∪ {ys}, where ys = c̃(DL, l̂s)
s← s+ 1

until ys = yt for some t < s
L← L \ {ys}
DL ← DL \ L
L̂← L̂ \ {l̂1, . . . , l̂s−1}

end while

12



Outlier-Robust Subsampling Techniques for Persistent Homology

3.4 Implementation

We implement PH landmark selection method in Matlab using Ripser (Bauer, 2021) for
the computation of the local Vietoris-Rips complexes. We also implement the k −− land-
marks algorithm in Matlab. For the calculation of maxmin landmarks, random landmarks,
and dense core subsets we use the inbuilt functions in the javaPlex package (Tausz et al.,
2014). We make an improved python version of our code for PH landmarks available on
https://github.com/stolzbernadette/Outlier-robust-subsampling-techniques-f

or-persistent-homology.

4. Data Sets

We introduce the data sets to which we apply the different landmark selection methods.
The data sets are chosen to be simple to allow us to determine effects of the landmark
selection. The data sets consist of signal points that are sampled from a topologically
interesting structure—a sphere, a Klein bottle, or a torus—and noise points that we design
to be topologically different from the signal.

4.1 3-Dimensional Data Sets

We consider four 3-dimensional data sets.

4.1.1 Sphere-Cube Data Set.

For a given number of points N and probability p we sample signal points uniformly at
random from the surface of the unit sphere with probability p and noise points from the
(filled) cube [−1, 1]3 ⊂ R3 with probability 1− p.

4.1.2 Sphere-Plane Data Set

For a given number of points N we sample signal points uniformly at random from the
surface of the unit sphere with probability p and noise points from the xy-plane [−3, 3]2 ⊂ R2

with probability 1− p.

4.1.3 Sphere-Line Data Set

For a given number of points N we sample signal points uniformly at random from the
surface of the unit sphere with probability p and noise points from (α, 0, 0), where α ∈
[−50, 50] ⊂ R, with probability 1− p.

4.1.4 Sphere-Laplace Line Data Set

For a given number of points N we sample signal points uniformly at random from the
surface of the unit sphere with probability p and we sample noise points from (α, 0, 0) with
probability 1 − p, where α is sampled from [−50, 50] ⊂ R and Laplace distributed with
µ = 4 and σ = 0.5. We use the Laplacian random number generator code (Chen, 2019) to
generate α.
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4.2 4-Dimensional Data Sets

We consider two 4-dimensional data sets.

4.2.1 Torus Data Set

We use the following parametrisation of the torus T :

(x, y, z, ω) = (cos(γ), sin(γ), cos(ϕ), sin(ϕ)),

where γ, ϕ ∈ (0, 2π). We add noise Tnoise to the torus using the equation

(xnoise, ynoise, znoise, ωnoise) = (r ∗ cos(γ), r ∗ sin(γ), r̂ ∗ cos(ϕ), r̂ ∗ sin(ϕ)),

where r, r̂ ∈ (0, 2).
For a given number of points N we sample signal points uniformly at random from T

with probability p and noise points from Tnoise with probability 1− p.

4.2.2 Klein Bottle Data Set

We use the following parametrisation of the Klein bottle K:

x = cos(γ) ∗ (r ∗ cos(ϕ) + C),

y = sin(γ) ∗ (r ∗ cos(ϕ) + C),

z = cos(γ/2) ∗ r ∗ sin(ϕ),

ω = sin(γ/2) ∗ sin(ϕ),

where γ, ϕ ∈ (0, 2π), r = 3 and C = 2. We define noise Knoise for the Klein bottle using the
equations

xnoise = cos(γ) ∗ (rnoise ∗ cos(ϕ) + Cnoise),

ynoise = sin(γ) ∗ (rnoise ∗ cos(ϕ) + Cnoise),

znoise = cos(γ/2) ∗ rnoise ∗ sin(ϕ),

ωnoise = sin(γ/2) ∗ sin(ϕ),

where rnoise is sampled uniformly from the interval [2, 4] ⊂ R and Cnoise is sampled uniformly
from the interval [1, 3] ⊂ R. We use and adapt the code from Otter et al. (2017). For a given
number of points N we sample signal points uniformly at random from K with probability
p and noise points from Knoise with probability 1− p.

5. Results

We present our results for the proposed landmark selection methods, i.e. PH landmarks and
k −− landmarks. We first study PH landmark selection in detail on the sphere-cube data
set with p = 0.6, then proceed to showing our results in comparison to the current standard
methods on our various data sets, i.e. landmark selection via the maxmin algorithm and
random landmark selection. We then compare our methods to dense core subsets and finally
investigate the influence of the δ parameter on the performance of PH landmarks. For all
landmark selection techniques we use the Euclidean distance as distance function. All of
our data sets consist of 3000 points.

14
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5.1 PH Landmarks Case Study on the Sphere-Cube Data Set with p = 0.6

We apply PH landmark selection with δ = 0.2 to the sphere-cube data set where a data
point has a probability of 0.6 to be located on the surface of the unit sphere and 0.4 to be
located in the unit cube. As for all of our data sets, we find that the PH outlierness values
out0,1,2PH (y), as defined in Equation 3.2, are determined by the maximal non-infinite bar in
the dimension 0 barcode. We show example barcodes for dimension 0 for a noise point, a
sphere point, and a super outlier in Figure 5. In general, we expect a noise point to be
located in a sparser region of this data set and thus to either be classified as a super outlier,
or to exhibit a barcode with a small number of long bars and very few, or no, short bars. For
a sphere point, we expect the dimension 0 barcode to have many short bars and occasionally
some longer bars caused by noise points that lie within the δ-neighbourhood. Note that for
the examples in Figure 5, we choose the noise point with the highest outlierness score and
the sphere point with the lowest outlierness score in the data set to illustrate model cases
for the method. We find that for these example points, the dimension 0 barcodes behave
as expected. To explore whether the outlierness scores reflect the properties of the different
types of points as expected, we consider histograms of the outlierness scores out0,1,2PH (y) of
all data points in Figure 6. We find that we have 48 super outliers in the data set. For the
noise and sphere points, we can see that the outlier scores are distributed differently and
that by including points with low outlier scores as landmarks first, we should preferentially
obtain sphere points rather than noise points. Landmarks chosen in this way correspond to
representative landmarks (PH landmarks I) described in Subsection 3.2.

As our landmark selection approach is motivated by Equation 3 which holds for PH in
dimensions n > 0, it is not immediately clear that representative landmarks are preferable
to vital landmarks both for n = 0 and dimensions n > 0. We examine a variant of the
method where we restrict ourselves to local PH in dimension 1. In this case dimension 1
PH outlierness values correspond to the persistence of the most persistent feature in the
local dimension 1 barcode (see Equation 4). We show a histogram of the distribution of
the dimension 1 PH outlierness scores in Figure 7. We observe that the clearest difference
between the sphere points and the noise points is that a large proportion of noise points
has out1PH(y) = 0, while a clear majority of the sphere points has out1PH(y) > 0. This
can again be explained by the fact that sphere points have more neighbours within their
δ-neighbourhood and therefore are more likely to form features in dimension 1. From
these observations it seems that here it is more beneficial to use vital landmarks (PH
landmarks II), described in Subsection 3.2, for landmark selection based on dimension 1.
For PH landmarks based on dimension 1 we thus choose points with large dimension 1 PH
outlierness scores as landmarks and discard points with low dimension 1 PH outlierness
scores from the data set as outliers whose removal does not alter the PH of the data set
much.

5.2 Comparison of Persistent Homology Landmarks and k −− Landmarks to
Standard Landmark Selection Methods

We compare our proposed methods for landmark selection, the k−− landmarks and the PH
landmarks, to the current standard methods for landmark selection, i.e. random landmarks
and maxmin landmarks. Using the different techniques we choose m landmarks from N data
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Figure 5: Schematic illustration of three different types of points y found in the sphere-
cube data set, p = 0.6, and their local dimension 0 barcodes for δ = 0.2: noise
point, sphere point, and super outlier. The δ-neighbourhoods are shown in light
red balls around the corresponding data points. We calculate the PH outlierness
out0,1,2PH (y) for every point based on its local Vietoris-Rips barcode and ignore
super outliers (indicated by the red cross drawn over the super outlier barcode).
We highlight the bars in the barcodes that are used to determine out0,1,2PH (y) in
yellow.
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PH outlierness scores

0 0.1 0.2 0.3 0.4
0

50

100

150

Sphere points
Noise points
Super outliers

Figure 6: Histograms of the PH outlierness out0,1,2PH (y) values obtained on the sphere-cube
data set, p = 0.6, from local PH with δ = 0.2. The horizontal axis represents
the outlierness scores, the vertical axis shows the number of points. Note that we
assign super outliers to have PH outlierness out0,1,2PH (y) = −∞, but for illustrative

purposes we present them here at out0,1,2PH (y) = 0.
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Figure 7: Histograms of the PH outlierness out1PH(y) values obtained on the sphere-cube
data set, p = 0.6, from local PH with δ = 0.2, considering only features in
dimension 1. The horizontal axis represents the outlierness scores, the vertical
axis shows the number of points. Note that we assign super outliers to have PH
outlierness out1PH(y) = −∞, but for illustrative purposes we represent them here
at out1PH(y) = 0.
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points. This corresponds to a landmark sampling density of mN . For the k−− landmarks, we
define the number of clusters to be k = pm and the number of outliers to be j = (1− p)m,
where p is the probability with which a point in the respective data set was sampled from
the signal data, i.e. the sphere, torus, or Klein bottle. We consider both the case where we
choose the k −− cluster centres and the outliers found by the algorithm as our landmarks
as well as the case where we only consider the k −− cluster centres to be landmarks. For
the PH landmarks we choose δ = 0.2 for the 3-dimensional data sets, δ = 0.5 for the torus
data and δ = 0.6 for the Klein bottle. In all our data sets, we find that when looking for the
maximal persistence of a feature across all dimensions, the value of out0,1,2PH (y) is exclusively
determined by dimension 0. We therefore also include a variation of PH landmarks that
only considers the local dimension 1 barcode for the calculation of out1PH(y). For the PH
landmark version where we use all dimensions to determine the outlierness scores, we choose
data points with small out0,1,2PH (y) as our landmarks (representative landmarks). For the
version where we restrict ourselves to dimension 1, we choose points with large out1PH(y)
scores as landmarks (vital landmarks).

For all our data sets, our aim for the landmarks is to contain a high fraction of signal
points, even when sampling only a small fraction of the data as landmarks. In Figures 8–
13 we show plots of the fraction of signal points in the various landmark sets at different
sampling densities. Since in the PH landmark selection we allow super outliers as landmarks
once all other points are taken, we expect the fraction of signal landmarks for sampling
density 1 to represent the probability of signal points in the data set, except in the variant
of the k−− landmarks where we include only the cluster centres as landmarks (referred to
as ‘kMinusMinusOutlierFree’ in the plots). Note that for this variant of k−− landmarks for
data sets with p ≤ 0.5, it is possible to obtain a signal fraction of 0 even for sampling density
1 if the algorithm selects all k = pm cluster centres to be located among noise points. For
the maxmin, random and k − − landmarks we show the average fraction of signal points
and its standard deviation across 20 realisations of the selection algorithms.

As expected, we observe that the maxmin algorithm tends to select noise points as
landmarks for all data sets with only one exception (see Figures 8–13): for the sphere-
Laplace data, the maxmin algorithm performs well (see Figure 11), as the noise is located
in a cluster far away from the signal and hence maximising the distance between landmarks
results in many points being selected from the sphere. The fraction of signal landmarks for
random selection also behaves as we expect for all data sets in Figures 8–13: the selected
landmarks are representative for the whole data set with an almost constant fraction of
signal points over all sampling densities that corresponds to the fraction of signal points in
the data set. For the k−− landmarks, we can see a clear improvement in the signal fraction
in most data sets in Figures 8—13 when considering only cluster centres as landmarks—the
inclusion of outliers gives the k − − landmarks similarly bad properties as the maxmin
landmarks. The k−− landmarks that do not include outliers tend to perform well for high
sampling densities, where the number outlier points corresponds roughly to the number
of noise points in the data set. For low sampling densities however, the method only
outperforms random selection for most of the sphere-cube and Klein bottle data sets (see
Figures 8 and 13). For the sphere-plane, sphere-line and the sphere Laplace-line data sets
the reason for this lies in the nature of the noise, which leads to the selection of cluster
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centres in the noise data. We also notice large standard deviations from the average fraction
of signal points in the k −− landmark over 20 realisations.

With exception of the sphere-line and sphere-Laplace data sets (see Figures 10 and 11),
the PH landmark selection techniques I and II both outperform the standard methods as
well as the k − − landmarks clearly for most cases, especially for low sampling densities.
Interestingly, the k − − landmarks perform very well on the Klein bottle data set (see
Figure 13), beating both PH landmarks for very small sampling densities. For the sphere-
line and sphere-Laplace data sets (see Figures 10 and 11), PH landmarks II restricted to
dimension 1 outperform all other methods for low sampling densities while PH landmarks
I across all dimensions perform worse than all other methods in most cases. The noise in
these data sets is located on lines in dense regions of the data set where the local PH does
not find any topological features in dimension 1, but many features with low persistence in
dimension 0. In general, the two versions of PH landmarks start coinciding as soon as super
outliers are added to the data set which we can observe in the plots as a rapid drop in the
fraction of signal points. We add the super outliers to the landmarks in random order (once
all other points are already selected as landmarks) and hence both PH landmark methods
differ only slightly in the development of their signal fractions after the addition of super
outliers. We note there are cases in which the PH landmarks thrive because the points
that are not super outliers are predominantly signal points. This is not the case for the
sphere-line and the sphere-Laplace data sets with p = 0.6 (see Figures 10 and 11) for which
the dimension 1 PH landmarks II perform very well. Both of these data sets have less than
4 super outliers. Interestingly, there seems to be a trend for the dimension 1 PH landmarks
II to outperform PH landmarks I on data sets with high signal content, i.e. for p > 0.6
across all data sets. For lower signal content the PH landmarks I perform strongly. For the
Klein bottle data set, dimension 1 PH landmarks II outperform PH landmarks I in almost
all cases.

Overall, the results underline that both PH landmarks I and II represent the PH of
the data set well and are robust to outliers, in particular for low sampling densities. They
outperform standard methods in a large majority of cases and, moreover, via the PH out-
lierness score they give us a notion of how much a point can be considered an outlier for the
respective variant of the method. k − − landmarks perform better than random selection
in most cases and perform very well, in particular, for high sampling densities. Given the
much higher computational cost and the large fluctuations in signal fraction between dif-
ferent realisations of the method, using random selection instead of k−− landmarks could
however present a more practical approach.
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Figure 8: Comparison of the fraction of sphere points in selected landmark points for dif-
ferent landmark selection techniques on the sphere-cube data set for δ = 0.2.
We consider landmark selection via the maxmin algorithm, random selection, PH
landmarks I using out0,1,2PH (y), PH landmarks II using out1PH(y), k−− landmarks
using both cluster centres and outliers as landmarks (kMinusMinus), and k − −
landmarks using only cluster centres as landmarks (kMinusMinusOutlierFree).

Sphere Probability = 0.3

0 0.2 0.4 0.6 0.8 1Sampling density
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

tio
n 

of
 s

ph
er

e 
po

in
ts

Sphere Plane data set 
Sphere Probability = 0.6

0 0.2 0.4 0.6 0.8 1Sampling density
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

of
 s

ph
er

e 
po

in
ts

Sphere Plane data set 
Sphere Probability = 0.9

0 0.2 0.4 0.6 0.8 1Sampling density
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

of
 s

ph
er

e 
po

in
ts

Sphere Plane data set 

MaxMin
Random
PH landmarks I, all dim
PH landmarks II, dim 1
kMinusMinus
kMinusMinusOutlierFree

Figure 9: Comparison of the fraction of sphere points in selected landmark points for dif-
ferent landmark selection techniques on the sphere-plane data set for δ = 0.2.We
consider landmark selection via the maxmin algorithm, random selection, PH
landmarks I using out0,1,2PH (y), PH landmarks II using out1PH(y), k−− landmarks
using both cluster centres and outliers as landmarks (kMinusMinus), and k − −
landmarks using only cluster centres as landmarks (kMinusMinusOutlierFree).
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Figure 10: Comparison of the fraction of sphere points in selected landmark points for
different landmark selection techniques on the sphere-line data set for δ = 0.2.We
consider landmark selection via the maxmin algorithm, random selection, PH
landmarks I using out0,1,2PH (y), PH landmarks II using out1PH(y), k−− landmarks
using both cluster centres and outliers as landmarks (kMinusMinus), and k−−
landmarks using only cluster centres as landmarks (kMinusMinusOutlierFree).
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Figure 11: Comparison of the fraction of sphere points in selected landmark points for differ-
ent landmark selection techniques on the sphere-Laplace data set for δ = 0.2.We
consider landmark selection via the maxmin algorithm, random selection, PH
landmarks I using out0,1,2PH (y), PH landmarks II using out1PH(y), k−− landmarks
using both cluster centres and outliers as landmarks (kMinusMinus), and k−−
landmarks using only cluster centres as landmarks (kMinusMinusOutlierFree).
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Figure 12: Comparison of the fraction of sphere points in selected landmark points for
different landmark selection techniques on the Torus data set for δ = 0.5.We
consider landmark selection via the maxmin algorithm, random selection, PH
landmarks I using out0,1,2PH (y), PH landmarks II using out1PH(y), k−− landmarks
using both cluster centres and outliers as landmarks (kMinusMinus), and k−−
landmarks using only cluster centres as landmarks (kMinusMinusOutlierFree).
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Figure 13: Comparison of the fraction of sphere points in selected landmark points for dif-
ferent landmark selection techniques on the Klein bottle data set for δ = 0.6.We
consider landmark selection via the maxmin algorithm, random selection, PH
landmarks I using out0,1,2PH (y), PH landmarks II using out1PH(y), k−− landmarks
using both cluster centres and outliers as landmarks (kMinusMinus), and k−−
landmarks using only cluster centres as landmarks (kMinusMinusOutlierFree).
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5.3 Comparisons between Persistent Homology Landmark Selection Methods
and Dense Core Subsets

We now provide a more in detail study of the two PH landmark selection techniques, in
particular concerning the influence of the δ parameter. We also compare the techniques to
two dense core subsets, using for K = 1 and K = 50, which we consider as landmark sets.
We present our results in Figures 14–19. We present only the plots for data sets with a
signal probability p = 0.6.

For the dense core subsets, we find that for all data sets except the sphere-plane, sphere-
line, and sphere-Laplace data sets (see Figures 15–17) the local density measure K = 1
outperforms the more global density measure K = 50. Indeed, in these cases, the dense
core subset with K = 1 captures a larger fraction of signal points than most of our PH
landmarks. For the sphere-cube data set (see Figure 14), we seem to outperform the dense
core subset with K = 1 for a small range of low sampling densities for δ = 0.05, which is
a δ value where most of the data points are classified as super outliers. Our definition of
super outliers as points with less than two neighbours in their δ-neighbourhoods, seems to
imply that, for this data set, the distance to the second closest neighbour is more relevant
for low sampling densities than the distance to the closest neighbour. Interestingly, for the
data sets where the local dense core subset with K = 1 performs well (see Figures 14, 18,
and 19 ), we also see that smaller values of δ give us better results, both for PH landmarks
I across all dimensions and PH landmarks II restricted to dimension 1. For the sphere-line
data set (see Figure 16), where we have a better performance for the dense core subset with
K = 50, larger δ-neighbourhoods are more advantageous for both PH landmark versions. In
this case, we perform as well as the dense core subset with K = 50 for δ = 0.3, 0.35, 0.4 for
dimension 1 PH landmarks II. In the sphere-Laplace data set (see Figure 17) PH landmarks
II clearly outperform both dense core subsets. Here again, we find the trend that larger δ
values are advantageous for PH landmarks II. The fact that dense core subsets perform well
on most of our data sets is determined by our signal points lying in denser regions of the
data than the noise points. It is only in the sphere-Laplace data set (see Figure 17), where
the noise does not obey this characteristic and we observe that the local PH information in
this case is richer than the distance to the K-th neighbour.

Finally, we show how the number of super outliers depends on the choice of δ in Figure 20.
We observe that small δ values lead to a drastic increase in the proportion of super outliers
in the data set. This underlines that, even though one can think of δ as a resolution
parameter, depending on the data set, the proportion of super outliers is an important
factor to consider.

Overall, PH landmarks outperform all standard techniques on most data sets as well as
two dense core subsets on the sphere-Laplace for a broad range of δ-values. To obtain signal
fractions that are high and stable over a long range of low sampling densities we recommend
to choose δ as small as possible without having too many super outliers in the data.
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Figure 14: Comparison of the fraction of sphere points in selected PH landmark points for
different values of δ and dense core subsets on the sphere-cube data set, p = 0.6.
We show PH landmarks I using out0,1,2PH (y) (left) and PH landmarks II using
out1PH(y) (right).
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Figure 15: Comparison of the fraction of sphere points in selected PH landmark points
for different values of δ and dense core subsets on the sphere-plane data set,
p = 0.6. We show PH landmarks I using out0,1,2PH (y) (left) and PH landmarks II
using out1PH(y) (right).
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Figure 16: Comparison of the fraction of sphere points in selected PH landmark points for
different values of δ and dense core subsets on the sphere-line data set, p = 0.6.
We show PH landmarks I using out0,1,2PH (y) (left) and PH landmarks II using
out1PH(y) (right).
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Figure 17: Comparison of the fraction of sphere points in selected PH landmark points
for different values of δ and dense core subsets on the sphere-Laplace data set,
p = 0.6. We show PH landmarks I using out0,1,2PH (y) (left) and PH landmarks II
using out1PH(y) (right).
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Figure 18: Comparison of the fraction of sphere points in selected PH landmark points for
different values of δ and dense core subsets on the torus data set, p = 0.6. We
show PH landmarks I using out0,1,2PH (y) (left) and PH landmarks II using out1PH(y)
(right).
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Figure 19: Comparison of the fraction of sphere points in selected PH landmark points for
different values of δ and dense core subsets on the Klein bottle data set, p = 0.6.
We show PH landmarks I using out0,1,2PH (y) (left) and PH landmarks II using
out1PH(y) (right).
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Figure 20: Influence of the choice of δ on the number of super outliers for different data
sets.
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6. Discussion

We proposed novel outlier-robust landmark selection techniques: k−− landmarks and two
versions of PH landmarks. PH landmark selection is the first landmark selection method
developed specifically for the use of PH.

The k − − landmarks outperformed existing standard landmark selection methods—
random selection and maxmin selection—in many cases. They however tended to do so
for large sampling densities, which are not very relevant for data subsampling. While
k−− landmarks did meet our goals for an outlier-robust landmark selection technique, this
algorithm has a high computational cost and is difficult to use on a data set with unknown
properties as one has to predetermine the number of outliers for the algorithm to find.

We found that both versions of PH landmarks outperformed the existing standard land-
mark selection techniques on data sets containing noise, in particular for low landmark
sampling densities. We observed this for a wide range of δ resolution values. In most of
our data sets, PH landmarks II (vital landmarks) restricted to dimension 1 for calculating
the outlierness values slightly outperformed the PH landmarks I (representative landmarks)
considering all dimensions (which coincides with a restriction to dimension 0 in our cases)
for data sets with a high signal content and a low noise content. We further observed that
the type of noise (structured, e.g. sampled from a manifold, versus unstructured) influ-
ences the performance of the landmark selection strategy: PH landmarks I (representative
landmarks) performed better for higher noise content, but typically in combination with
unstructured noise. Our observations underline our interpretation of the two landmark
selection strategies: for data sets with high (topological) signal content, vital landmarks
(PH landmarks II) with high out1PH(y) correspond to points that have at least four local
neighbours that are spread out enough to create a persistent loop in dimension 1. Re-
moving a central point from such a neighbourhood can thus create a loop in dimension 1
and possibly contribute to holes in higher dimensions. Keeping the central point in this
case is vital. The focus on dimension 1 local PH also automatically discards noise points
located along lines which typically do not contribute to the overall topological structure
of the data. Additionally, local PH in dimension 1 can also capture geometric anomalies
(see Stolz et al., 2020, although note that in this case the computations rely on annular
regions rather than δ-neighbourhoods), which can be an advantage when working with data
that has structured noise, in particular if this noise has boundary regions as such points
will (correctly) not be selected as vital landmarks. In contrast, for data sets with low to
medium noise content, which is unstructured, representative landmarks (PH landmarks I)
with low out0,1,2PH (y) are points with neighbours that are pairwise close to each other. The
neighbours of representative landmarks can either be far away (within the local neighbour-
hood) or close to the landmark point in the centre, they can form clusters or trace out a
path around the landmark point (such cases would not be captured by density measures).
Unstructured noise, however, will typically not give rise to such neighbourhoods and have
high out0,1,2PH (y). Thus while the noise does not have any interesting underlying topology,
it can introduce topological noise, e.g. by contributing large loops between noise points
and/or signal points. This type of noise - as opposed to the representative landmarks - is
not representative of the topology of the signal data. We summarise our observed trends
for good performance of PH landmark selection techniques depending on signal density and
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Type of noise Signal density Better performing landmark type

Structured High PH landmarks II, out1PH(y)

Unstructured High PH landmarks II, out1PH(y)

Unstructured Medium, low PH landmarks I, out0,1,2PH (y)

Table 1: Overview of landmark selection strategy performance. We observe trends for which
of the two PH landmark selection strategies performs better depending on the
type of noise in the data (structured, e.g. sampled from a plane or line, versus
unstructured, e.g. sampled from the unit cube) and the signal density (high,
i.e. approximately 90% of the data points are signal points, versus medium, i.e.
approximately 60% of the data points are signal points, versus low, i.e. less than
30% of the data points are signal points). In all cases we consider low sampling
density, i.e. we only include trends observed when sampling up to 50% of data
points as landmarks. We restrict ourselves to cases where we observed a clear trend
in landmark performance on our data sets, note that this might not generalise to
other data sets.

noise type in Table 1. We hope that this summary can serve as guidance for the reader
interested in applying a PH landmark selection strategy to data.

Dimension 1 PH landmarks II further outperformed dense core subsets showing that the
method can capture richer information than just considering the K-th nearest neighbour
as shown on the sphere-Laplace data set. On our other data sets, both versions of PH
landmarks were outperformed by dense core subsets since in these data sets the signal
points tend to be located in denser parts of the data than noise points. Overall, however,
we consider PH landmarks to be a more practical approach than dense core subsets as they
only require the choice of one parameter, δ. In contrast, when applying dense core subsets
as suggested by Adams and Tausz (2015), one needs to choose the parameter K to obtain a
density estimate, followed by the number of densest points to be chosen from the data set,
which are then used to obtain maxmin landmarks. De Silva and Carlsson (2004) observed
that when studying dense core subsets the choices of parameters can indeed result in strong
topological differences in the selected point clouds. With only one parameter choice we
expect both versions of PH landmarks to deliver more consistent results.

We hypothesise that PH landmarks II using out1PH(y) will lead to better results in
high-dimensional data in practice, especially in cases where signal data is sparse. The
parameter δ would then have to be large enough to ensure that local PH in dimension 1
produces non-trivial barcodes for a large proportion of data points. For very large data sets
with potentially high noise content, calculating out0,1,2PH (y) or even a version restricted to
dimension 0 for PH landmarks I could therefore be computationally advantageous.

We believe that PH landmarks contribute a valuable alternative to the current standard
landmark selection techniques for PH, in particular for noisy data sets. The PH outlierness
values as well as the number of super outliers with respect to the δ resolution could further
be used to provide interesting insight into data sets for exploratory data analysis and could
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be incorporated in novel data analysis techniques which aim to take properties of shape of
the data into account without performing computationally expensive PH analyses of the full
data set. Identifying representative and vital landmarks in data sets could be of interest to
study processes underlying the data, for example in biology. While methods from Machine
Learning are excellent at classifying such data, the underlying mechanisms often remain
hidden to these methods and results by themselves can be difficult to interpret. Building
on our work, it would be interesting to investigate different definitions of PH outlierness
in future studies. Testing the applicability of PH landmarks to real-world data sets with
different types of noise or different levels of sparsity will be the subject of future work.
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Appendix A. Appendix

A.1 Pseudocode for Maxmin Algorithm (Adams and Tausz, 2015)

Algorithm 3 The maxmin algorithm (Adams and Tausz, 2015)

Input: Data points D = {y1, . . . , yN},
a distance function d : D ×D → R
number of landmarks m.

Output: A set of m maxmin landmarks L = {l1, . . . , lm}.
Select y ∈ D at random
l1 ← y
L1 ← {l1}
D1 ← D \ {l1}
for i = 2 to m do

for all y ∈ Di−1 do
Calculate d(y, Li−1)

end for
Find li such that d(li, Li−1) = maxy∈D d(y, Li−1)
Li ← Li−1 ∪ {li}
Di ← Di−1 \ {li}

end for
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A.2 Pseudocode for k-means−− Algorithm (Chawla and Gionis, 2013)

Algorithm 4 The k-means−− algorithm (Chawla and Gionis, 2013)

Input: Data points D = {y1, . . . , yN},
a distance function d : D ×D → R,
number of clusters k and number of outliers j.

Output: A set of k cluster centers L̂ = {l̂1, . . . , l̂k},
a set of j outliers O = {o1, . . . , oj}, O ⊂ D.
L̂0 ← {k random points of D}
i← 1
while (No convergence achieved) do

for all y ∈ D do
compute d(y, L̂i−1)

end for
Re-order the points in D such that d(y1, L̂i−1) ≥ d(y2, L̂i−1) ≥ · · · ≥ d(yN , L̂i−1)
Oi ← {y1, . . . , yk}
Di ← D \Oi = {yk+1, . . . , yN}
for r = 1 to k do
Pr ← {y ∈ Di | c(y, L̂i−1) = l̂i−1,r}
l̂i,r ← mean(Pr)

end for
L̂i ← {l̂i,1, . . . , l̂i,k}
i← i+ 1

end while
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