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Abstract

As machine learning powered decision-making becomes increasingly important in our daily
lives, it is imperative to strive for fairness in the underlying data processing. We pro-
pose a pre-processing algorithm for fair data representation via which supervised learning
results in estimations of the Pareto frontier between prediction error and statistical dispar-
ity. In particular, the present work applies the optimal affine transport to approach the
post-processing Wasserstein barycenter characterization of the optimal fair L2-objective
supervised learning via a pre-processing data deformation. Furthermore, we show that the
Wasserstein geodesics from the conditional (on sensitive information) distributions of the
learning outcome to their barycenter characterize the Pareto frontier between L2-loss and
the average pairwise Wasserstein distance among sensitive groups on the learning outcome.
Numerical simulations underscore the advantages: (1) the pre-processing step is compos-
itive with arbitrary conditional expectation estimation supervised learning methods and
unseen data; (2) the fair representation protects the sensitive information by limiting the
inference capability of the remaining data with respect to the sensitive data; (3) the optimal
affine maps are computationally efficient even for high-dimensional data.

Keywords: statistical parity, equalized odds, Wasserstein barycenter, Wasserstein geodesics,
conditional expectation estimation

1. Introduction

Our society is increasingly influenced by artificial intelligence as (direct or indirect) decision-
making processes become more reliant on statistical inference and machine learning. The
potentially significant long-term impact from sequences of automated (facilitate of) decision-
making has brought large concerns about bias and discrimination in machine learning [5, 38].
Machine learning based on unbiased algorithms can naturally inherit the historical biases
that exist in data and hence reinforce the bias via automated decision-making process [12].

One straightforward partial remedy is to exclude the sensitive variables from the data set
used in the learning and decision process. But such exclusion merely eliminates disparate
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treatment, which refers to direct discrimination, and leaves disparate impact, which refers
to unintended or indirect discrimination, remaining in both data and learning outcome [23].
Examples of the legal doctrine of disparate impact include Griggs v. Duke Powers Co. [10]
and Ricci v. DeStefano [1], where the decision is based on factors that are strongly correlated
with race, such as intelligence qualification in the former and the racially disproportionate
test result in the latter, are ruled illegal by the US supreme court. As a result, along with
the trending development of automated decision making, the need for more sophisticated
but practical techniques has made fairness in machine learning an important research area
[33].

Two important but potentially conflicting goals of fair machine learning are group fair-
ness, which aims to achieve similarity in predictions conditioned on sensitive information,
and individual fairness, which aims for similar treatment of similar individuals regardless
of the sensitive information. The present work targets an important definition in group
fairness: statistical parity [21], because it is closely related to disparate impact and hence
long-term structural influence [45], while individual fairness focuses more on the short-term
individual consequence. In the remainder of this paper, fairness and statistical parity are
used interchangeably1.

Before further discussing statistical parity, we note that fairness in machine learning
should not be defined by a single condition without considering the application context.
The goal of the present work is to provide theoretically reliable and explainable tools to
help practitioners obtain the optimal (w.r.t. utility) solutions at any chosen statistical dis-
parity level, provided one chooses to adopt statistical parity (or limited statistical depen-
dence between the learning outcome and the sensitive information) as a meaningful fairness
definition in one’s particular application context.

Remark 1.1 below provides a more detailed discussion on statistical parity, namely how
the utility optimization solves some major insufficiency of the original statistical parity
definition and improves statistical parity to proportional equality, a fairness concept similar
to equity in modern ethics which can be traced back to Aristotle and Plato [6, 19].

Remark 1.1 (Statistical parity enhanced by utility optimization) Statistical par-
ity is one of the most important definitions of group fairness. It has advantages such as
(1) legal support on mitigating adverse impact and (2) the long-term effect resulting from
the enforced involvement of minority groups or diversity in learning outcome via affirma-
tive action [27]. On the other hand, there are three major criticisms about statistical parity
that are often mentioned, e.g. see [21, 26]: (1) reduced utility, (2) self-fulfilling prophecy,
(3) subset targeting. However, we notice that the first two are insufficiencies with respect
to utility. Therefore, the proposed method mitigates these two insufficiencies.

1 (Utility) The development of the Pareto frontier allows us to achieve a desirable sta-
tistical disparity level with theoretically provable minimum (hence necessary) utility
sacrifice. Equivalently, practitioners can choose a tolerable utility sacrifice level so
that the Pareto frontier will provide a learning outcome with the minimum statistical
disparity while not violating the utility sacrifice tolerance.

1. There are many other notions of fairness, such as equalized odds or equal opportunity, which all have
their benefits and shortcomings [16]. A discussion of the advantages or disadvantages of the different
concepts of fairness is beyond the scope of this paper.
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2 (Self-fulfilling prophecy) As mentioned in [21, 26], self-fulfilling prophecy results from
random, careless, or malicious selection in minority groups. But the barycenter char-
acterization method guarantees the optimal fair model to make good selections in all
sensitive groups to maximize utility. Section 1.2 contribution point 4 and Section 2.1
provides, respectively, the intuitive and technical explanation of how the utility maxi-
mization enforces the model to give similar learning outcomes to data points sharing
relatively (within their sensitive groups) similar qualifications. For example, if race is
the sensitive information and an admission test score is the only qualification variable,
a barycenter-characterized optimal fair admission model would give admission to the
same percentage of top-score students in each of their racial groups.

Interestingly, the interpretation is consistent with the philosophical definition of fairness
involving proportional equality: a model is fair (with respect to the sensitive information)
if it distributes proportional chance or prediction to proportionally qualified independent
variables within each of the sensitive groups.

Beginning with [21], there is now a sizable body of research studying fair machine
learning solutions. The resulting approaches can be categorized into the following: (1) pre-
processing: deform data before training to mitigate sensitive information in the learning
outcome [13, 29]; (2) in-processing: implement the definition of fairness in the training
process by penalizing unfair outcome [8, 43]; (3) post-processing: enforce the definition of
fairness directly on the learning outcome [26, 28].

In recent years, the post-processing approach has received significant attention due to
the following remarkable result: the optimal fair distribution of supervised learning, such
as classification [28] and regression [18, 24], can be characterized as the Fréchet mean of the
learning outcome marginals on the Wasserstein space, which is also known as the Wasser-
stein barycenter in the optimal transport literature. (See Remark 2.2 for more details on
learning outcome marginals.) The following remark provides an intuition of the Wasser-
stein (W2) barycenter characterization, on which we develop our theoretical results and
algorithms.

Remark 1.2 (Intuition of Wasserstein barycenter characterization) The Fréchet
mean is the closest point to a set of points in a metric space and, therefore, a generalization
of the mean on the Euclidean space to general metric spaces such as the Wasserstein space.
Intuitively, one can consider the barycenter (Fréchet mean in Wasserstein space) charac-
terization of optimal fair learning outcome as an analog of representing a set of points by
their average, which thereby optimally (with respect to total moving distance) removes the
disparity among those points, except that each point is now in Wasserstein space, and hence
a distribution. See Section 1.2 contribution point 4 below for more details.

Despite the theoretical elegance of the post-processing barycenter characterization, chal-
lenges remain in theory and practice (see Section 1.2 for a detailed explanation of the
challenges), especially compared to pre-processing or data representation methods.

Fair machine learning using a pre-processing approach has been considered in [13, 23,
25, 37, 29]. While the Wasserstein barycenter provides a mathematically rigorous charac-
terization of the post-processing optimal learning outcome, optimal fair data representation
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for general supervised learning models still lacks a theoretical characterization. See, for
example, [16, Section 3.4, 3.5] for more details on the current challenges in fair data repre-
sentation design for general machine learning models beyond classification, not to mention
data representations that provide the optimal trade-off between accuracy and fairness.

The goal of the present work is to develop an optimal fair data representation charac-
terization so that any supervised learning model, which aims to estimate the conditional
expectation, trained via the fair data representation results in a fair estimation of the
post-processing Wasserstein barycenter characterized optimal fair learning outcome. The
ultimate goal is to develop a method that enjoys both the mathematically rigorous charac-
terization of post-processing and the flexibility of pre-processing.

1.1 Optimization Problems with Sensitive Variable Independence Constraint

The statistical parity constraint for supervised learning or data representation in a nutshell
is a constraint on the dependence between the learning outcome and a chosen sensitive
variable. Equivalently, the constraint limits the ability to access or reverse engineer the
sensitive variable from the learning outcome or data representation. Therefore, although the
theory and methods in the present work aim to solve current challenges in machine learning
fairness, they can also be useful in other areas where sensitive or undesirable information
needs to be eliminated within the existing learning outcome or data. One example of such
an area other than fair machine learning is machine (feature) unlearning. It starts from [14]
and now has a sizable body of research works.

Here, we summarize the constrained optimization problems solved in the present work.
We prove existence (and uniqueness, if possible) results via a constructive characterization
approach so that an explicit formula of the solutions becomes available. Practitioners and
researchers interested in limiting the statistical dependence between the learning outcome
or data representation and certain feature variables can directly refer to the corresponding
section for results. We leave the underlying motivations resulting from machine learning
fairness to the following two subsections.

In Section 3, we target the following problem:

Problem 1 (Optimal fair L2-objective learning outcome)

inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : f(X,Z) ⊥ Z} (1)

Here, Y is the dependent variable, and f(X,Z) is an estimator that uses the independent
variable X and sensitive variable Z to estimate Y . The loss function aims to maximize
utility by minimizing the L2-norm between Y and f(X,Z):

||Y − f(X,Z)||22 =

∫
Ω
||Y − f(X,Z)||2dP.

(Ω,Σ,P) is a probability space. For S ∈ {X,Y, Z}, S : Ω → S is a random variable
(equivalently a measurable function) from Ω to the state space S. ||·|| denotes the Euclidean
norm. The constraint f(X,Z) ⊥ Z guarantees that the final result is independent of the
sensitive information Z and hence satisfies statistical parity. Finally, the admissible function
space L2(X × Z,Y) is the space of all square-integrable measurable functions from X × Z
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to Y. (Our proof shows Problem 1 does not change if one allows all measurable functions
X ×Z to Y.) The reason of allowing all measurable functions in our problem setting is due
to the recent development of deep neural networks that are capable of estimating arbitrary
measurable functions.

In Section 4, we relax the above strict independence constraint by applying a quantifica-
tion of statistical disparity: the Wasserstein disparity, which is the average pairwise Wasser-
stein distance among conditional (on Z) distributions of f(X,Z), denoted by D(f(X,Z), Z).
It has the following desirable properties: (1) D(f(X,Z)) = 0 if and only if f(X,Z) ⊥ Z. (2)
The larger D is, the more disparities there are among the marginals (w.r.t. Z) of f(X,Z).
(3) D has a meaningful interpretation in physics as the minimum expected amount of work
required to remove the distributional discrepancy between two randomly chosen sensitive
groups on the learning outcome. Therefore, fixing a disparity tolerance level d ∈ [0,∞),

Problem 2 (Optimal L2-objective learning Pareto frontier)

inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : D(f(X,Z), Z) < d} (2)

gives us the corresponding Pareto optimal solution. That is, if one wants a lower L2-loss
than provided by the infimum in Problem 2, then it is necessary to increase the tolerance
level d. Equivalently, if one wants to lower the tolerance level d, then it is necessary to
sacrifice more L2-loss than the infimum.

In Section 5, we provide a theoretical characterization of the solution to

Problem 3 (Optimal fair data representation for conditional expectation esti-
mation)

inf
(X̃,Ỹ )∈D

{||Y − E(Ỹ |X̃)||22 : X̃,E(Ỹ |X̃, Z) ⊥ Z}, (3)

where D is the admissible data representation set we define later. Here, the objective func-
tion aims to maximize the potential utility remaining within the deformed data (X̃, Ỹ )
by minimizing the L2 distance between the perfect estimator E(Ỹ |X̃) on (X̃, Ỹ ) and the
original Y , so that better estimation of E(Ỹ |X̃) leads to better prediction of Y . The con-
straint X̃,E(Ỹ |X̃, Z) ⊥ Z guarantees: (1) f(X̃) ⊥ Z for ∀f : X → Y, such that any
estimator of E(Ỹ |X̃) is independent of Z; (2) The perfect adversarial estimator E(Ỹ |X̃, Z)
is independent of Z, so that a better estimation of E(Ỹ |X̃, Z) leads to more indepen-
dence of Z (alignment between the training objective and independence constraint). In
addition, one may choose the following alternative constraints according to the application
context: (1) X̃ ⊥ Z, which guarantees f(X̃) ⊥ Z for all measurable f as mentioned above;
(2) (X̃, Ỹ ) ⊥ Z, which guarantees any (adversarial) supervised or unsupervised learning on
(X̃, Ỹ ) to be independent of Z. The first alternative is useful if only measurable functions
of X are allowed, whereas the second should be applied when one does not know which
features are dependent or independent. See Section 1.3 for a more detailed derivation and
explanation of the data representation objective function and constraints.

1.2 Challenges and Contributions in Machine Learning Fairness

Now, we go back to the motivation behind the optimization problems listed above: fair
machine learning. We first summarize the limitations of the current post-processing char-
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acterization and the current methods based on it to estimate the optimal fair learning
outcome.

1. The post-processing barycenter characterization lacks theoretical and computational
generalization to high-dimensional data spaces, such as text or image spaces. From
a theoretical perspective, the current works [18, 24, 37] focus on classification and
1-dimensional regression. From a computational perspective, the current works apply
the coupling of cumulative distribution functions (cdf) of the learning outcome sen-
sitive conditionals to find the barycenter and the inverse of the cdf to compute the
optimal transport map. Both the coupling and the inverse of the cdf are computa-
tionally expensive. Furthermore, since the inverse of the cdf cannot be generalized
to high-dimensional spaces, the current methods lack the generalization to supervised
learning with high-dimensional dependent variables.

Due to the recent development of generative AI models, it is now important to have
fair machine learning methods for arbitrarily high-dimensional data. We hope the
present work on the L2 space can be a starting point for fair machine learning or data
representation on more general spaces for high-dimensional data.

2. The current post-processing barycenter characterization lacks both theoretical and
computational generalization to (an estimation of) the optimal trade-off, also known
as the Pareto frontier, between prediction accuracy and fairness. In theory, there is
a lack of characterization of the Pareto frontier (optimal trade-off) between utility
and fairness. Current works on the Pareto frontier, such as [37], apply tight in-
equalities based on the convexity of distance metrics to suggest the optimal trade-off
coincide with the Wasserstein geodesic path. While such inequalities are tight for a
broad type of metrics on the space of probability measures, they are not tight for the
Wasserstein metric. Hence, the inequalities are not able to extend the mathemat-
ically rigorous Wasserstein barycenter characterization of the optimal fair learning
outcome to a Pareto frontier. From a computational perspective, current methods,
such as [37], apply interpolation between the inverses of the sensitive conditional cdf’s
(more specifically, interpolating the data points that share the same image under the
sensitive conditional cdf’s) to estimate the geodesics. In addition to the drawbacks
mentioned above, the inverse of the cdf also does not come with an explicit form,
which makes the computation of an interpolation between two cdf inverses even more
cumbersome.

3. The post-processing nature of the characterization requires explicit or implicit sen-
sitive information in the training and decision-making process. More specifically, in
order to apply the barycenter characterization to find the optimal fair learning out-
come or to make predictions to newly incoming data, one needs the following steps:
(1) Estimate the conditional expectation and obtain its conditional distributions with
respect to the sensitive information; (2) Find the Wasserstein barycenter of the sensi-
tive conditionals of the conditional expectation estimation or the learning outcome; (3)
Compute the optimal transport maps from each sensitive conditional to the barycen-
ter; (4) Apply each transport map to the conditional with the matched sensitive
information. Here, not only does the trained model still inherit unfairness, but it
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is also clear that sensitive information needs to be attached to both the dependent
variable or incoming data and its learning outcome or prediction, until the very last
post-processing step of finding the barycenter comes to the rescue. Hence, we say that
the characterization has a post-processing nature. As a result, the user needs access
to the sensitive information of each individual incoming data at every step during the
learning process. Such a strong access to sensitive information makes the supervised
learning process vulnerable to attack and sensitive information leakage.

The post-processing nature of the characterization also suffers from the lack of flex-
ibility in model selection, modification, and composition. For model selection and
modification, a practitioner would have to perform the post-processing step for ev-
ery model and every modification in order to compare the corresponding optimal
fair learning outcomes. See Table 7 for more details on the additive computational
cost of the post-processing approach compared to the one-time cost of the proposed
pre-processing approach. For model composition, we consider the simple example
task2◦task1 where taski, i ∈ {1, 2} are trained supervised learning models. In practice,
there is a good chance that task1 and task2 belong to different practitioners or organi-
zations, denoted by practitioners 1 and 2, respectively. Therefore, to protect sensitive
information from practitioner 2, practitioner 1 will perform the post-processing step
to obtain a fair learning outcome and provide it as an input variable for the training
task of practitioner 2. But unless task2 needs no more input variables other than the
dependent variables of task1 (in that case, task1 would be fair data representation
design), still practitioner 2 needs full access to the sensitive variable attached to its
input data, which includes the desensitized task1 output and other input variables.
Such attachment makes the post-processing step performed by practitioner 1 mean-
ingless. Considering the recent development of decentralized learning in practice, such
drawback in model composition makes a model-independent fair data representation
more applicable than a post-processing solution.

4. Many of the current fair machine learning methods are proposed without utility guar-
antee or explainability. Such a lack of utility guarantee or explainability prevents the
study of fair machine learning from practical use. For instance, Wells Fargo [45] con-
cluded recently that current fair machine learning methods are black-box methods,
and hence they hesitate to adopt fair machine learning techniques.

We provide a road map of the tools that we have developed in response to each of the
listed challenges and how the present work combines all the tools to provide (exact solution
and estimation of) the fair data representation at the Pareto frontier.

1. In response to the theoretical part of the first challenge, Lemma 3.1 in Section 3 pro-
vides a characterization (with explicit construction) of the exact solution to Problem 1
(the optimal fair L2-objective learning). The result shows that the infimum loss value
of Problem 1 can be nicely decomposed into two parts: (1) L2 orthogonal projection
loss and (2) independence projection loss. Also, the result now allows the data spaces
X ,Y,Z to be [k]d,Nd, [0, l]d, or Rd for arbitrary dimension d <∞.

To address the challenge of computing the Wasserstein barycenter in high-dimensional
data spaces [3], we propose a method that applies affine transport maps to find the
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optimal affine estimation of the post-processing optimal fair L2-objective supervised
learning outcome with an arbitrarily finite-dimensional dependent variable, which re-
sponds to the first challenge listed above. In particular, by restricting admissible
transport maps to be affine and making a corresponding relaxation to the fairness
constraint, we derive a relaxed version of Problem 1, stated as Problem 4. Applying
the optimal affine transport maps [2], Definition 3.1 introduces the post-processing
pseudo-barycenter, Lemma 3.2 shows the proposed pseudo-barycenter coincides with
the true barycenter when the sensitive conditionals are Gaussian, and finally, Theo-
rem 3.1 proves that the pseudo-barycenter is the optimal affine estimation of the true
barycenter in the general conditional distribution case and provides the estimation
error. Optimal affine transport and pseudo-barycenter have the advantage of compu-
tational efficiency, compared to the current methods, due to the explicit matrix form
of the transport map and the nearly closed-form solution to the pseudo-barycenter.

The importance of optimal affine maps encompasses much more than a solution to the
first challenge. The optimal affine maps together with McCann interpolation [32] help
us in obtaining an explicit form of the geodesic path characterization of the Pareto
frontier in Section 4. More importantly, Section 5 shows that optimal affine maps and
the pseudo-barycenter are necessary tools to overcome the post-processing nature of
the Wasserstein barycenter characterization by exploiting the linearity of conditional
expectation and thereby generating optimal fair data representations.

2. In Section 4, we prove an exact characterization of the solution to Problem 2 (the opti-
mal utility-parity trade-off or Pareto frontier) in response to the theoretical part of the
second challenge. In particular, Theorem 4.1 shows that, when utility loss and dispar-
ity are quantified respectively by the L2 distance (between the true outcome Y and the
prediction Ŷ = f(X,Z)) and the average pairwise W2 distance among the sensitive
conditionals of Ŷ , the optimal trade-off happens if and only if the conditionals of Ŷ
travel along the Wasserstein geodesic path from the conditionals of E(Y |X,Z) to their
barycenter. Therefore, we say that the Pareto frontier is on the Wasserstein space.
Corollary 4.1 then derives an explicit form of the Pareto optimal solution to Problem
2. The result is a natural extension to the post-processing Wasserstein barycenter
characterization of the optimal fair learning outcome: the barycenter characterization
coincides with the point at zero disparity on the Pareto frontier. Interestingly, our
result shows that the Pareto frontier is linear.

To solve the computational challenge of the geodesic path, Remark 4.1 applies McCann
interpolation together with the optimal affine maps and the pseudo-barycenter to
derive a computationally efficient (nearly) closed-form formula to estimate the Pareto
frontier, which results in Algorithm 1.

3. In response to the third challenge, the present work proposes in Section 1.3 Problem
3 (optimal fair data representation problem), which makes the objective function and
the fairness (statistical parity) constraint model-independent and therefore suitable
for fair data representation design. More specifically, by applying the Minkowski
inequality, we use an objective function to maximize the potential utility remaining
in the data. On the other hand, a fair data representation should provide a fairness
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guarantee to arbitrary L2-objective supervised learning models. Therefore, the present
work proposes a pre-processing fairness constraint to guarantee fairness in the learning
outcome of arbitrary L2-objective models trained via the fair data representation.

In Section 5, Lemma 5.3 first provides a characterization of the exact solution to
Problem 3 under a mild assumption. Next, Definition 5.2 and Definition 5.1 define
the dependent and independent pseudo-barycenter, respectively. Then, similar to
solving a relaxation of the post-processing characterization to obtain the optimal
affine estimation, Theorem 5.1 proves that the dependent and independent pseudo-
barycenter pair coincides with the true solution to the optimal fair data representation
when the conditional data distributions are Gaussian, and Theorem 5.2 proves that
the pseudo-barycenter pair forms the optimal affine estimation of the optimal fair data
representation.

To derive (an estimation of) fair data representation at the Pareto frontier, Corol-
lary 5.1 in Section 5.4 first provides a characterization of the Pareto frontier for con-
ditional expectation on a fixed sigma-algebra. Finally, combining optimal affine map,
pseudo-barycenter, together with a diagonal argument in Remark 5.4, we derive an es-
timation of the fair representation at the Pareto frontier, which results in Algorithm 1
and Algorithm 2.

Furthermore, in Section 7, experiments show that the proposed fair data represen-
tations preserve as large an amount of information (w.r.t. the L2 objective) as the
fairness constraint allows. Therefore, it provides a better and more flexible solution
to fair learning compared to encoding-based data representations [13, 44], which en-
code the information of the original data into some binary feature variables designed
to guarantee statistical parity for classification. Surprisingly, experiments also show
that applying the pseudo-barycenter results in nearly zero utility loss compared to the
post-processing barycenter characterization solution.

4. In addition to the provable utility guarantee resulting from the Pareto frontier, the
proposed method also has a meaningful interpretation from a datapoint-wise perspec-
tive in how it achieves the statistical parity requirement: A data point of the optimal
fair learning outcome is the Euclidean average of the optimally matched data points
from each of the sensitive groups. Here, matching means partitioning the original
data set into subsets consisting of one point from each sensitive group. Each subset
is called a match. The points within a match are called matched points. Optimality
in matching is equivalent to minimization of the expected variance within a randomly
chosen match. Such expected (hence total) variance minimization enforces points with
similar relative positions in their sensitive marginal to form a match. For example,
assume that there are two sensitive conditionals A = {1 (low in A), 4 (high in A)}
and B = {2 (low in B), 3 (high in B)}, then the optimal matching is

{{1 (low in A), 2 (low in B)}, {3 (high in B), 4 (high in A)}}

to minimize the expected or total variance within the matches. The optimal matching
in high-dimensional L2 spaces shares the same geometric intuition with the simple
example. That is, from a point-wise perspective, the optimal fair learning achieves
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statistical parity by first matching the points with similar relative positions in their
sensitive groups and then representing the matched ones with their Euclidean average.

Figure 1: The left panel depicts three distributions, sampled from an isotropic Gaussian distribution with different
first two moments. The right panel shows the pseudo-barycenter of the three sample distributions.

1.3 Fair Data Representations: From Theory to Practice

In this subsection, we derive a fairness objective function that is both theoretically tractable
and practically appealing. This task is more involved than one initially might expect, and it
sheds light on some subtleties of both the post-processing and the pre-processing approaches.

Before proceeding, we need some preparation. Let X, Y , and Z represent respectively
the independent, dependent, and sensitive random variable, with the same underlying prob-
ability space (Ω,Σ,P). We use the term ‘random variables’ to denote random vectors with
an arbitrary but finite dimension. That is, S : Ω→ S where S ∈ {[kS ]dS ,NdS , [0, lS ]dS ,RdS}
with kS ∈ N, lS ∈ R and dS <∞ for S ∈ {X,Y, Z}.

It follows from [18, 24] that the optimal fair regression outcome can be characterized by
the Wasserstein barycenter. In Lemma 3.1 we will generalize their result from regression to
all functions in L2(X × Z,Y), which shows that the optimal fair L2-objective supervised
learning outcome can be characterized by solutions to Problem 1:

inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : f(X,Z) ⊥ Z} (4)

The utility loss is quantified by L2-norm: ||Y − f(X,Z)||22 =
∫

Ω ||Y − f(X,Z)||2dP, where
|| · || is the Euclidean norm. The constraint f(X,Z) ⊥ Z guarantees that the final result
satisfies statistical parity and, therefore, is fair.

Since it follows from L2 orthogonal decomposition that

||Y − f(X,Z)||22 = ||Y − E(Y |X,Z)||22 + ||E(Y |X,Z)− f(X,Z)||22 (5)

and only the second term on the right hand side depends on the choice of f ∈ L2(X ×Z,Y),
we conclude that (1) is equivalent to

inf
f∈L2(X×Z,Y)

{||E(Y |X,Z)− f(X,Z)||22 : f(X,Z) ⊥ Z}. (6)

It turns out—see Lemma 3.1—that the solution to (6) is exactly the Wasserstein barycen-
ter. Therefore, we say that the optimal fair L2-objective supervised learning outcome is
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characterized by the Wasserstein barycenter. But notice that the Wasserstein barycen-
ter characterization (6) assumes knowledge of the learning outcome E(Y |X,Z). That is,
if practitioners apply the characterization to estimate the optimal learning outcome, it is
necessary to obtain an estimator of E(Y |X,Z) via supervised learning before solving the
post-processing rescue step (6). Therefore, we say that the characterization has a post-
processing nature and hence call it a post-processing characterization.

Now, notice that the estimator of E(Y |X,Z) is obtained via the training process

inf
f∈F
{||Y − f(X,Z)||22}, (7)

where the admissible function set F depends on the choice of supervised learning models.
Denote the estimator by f ′(X,Z). Then in practice (6) becomes

inf
f∈L2(X×Z,Y)

{||f ′(X,Z)− f(X,Z)||22 : f(X,Z) ⊥ Z}. (8)

That is, the application of the post-processing characterization is model-dependent. The
fundamental reason for model dependence is that (1) is optimizing over all L2 functions while
in practice it is necessary to reduce the admissible set from L2 to some F which depends on
the choice of the model. As a result, the optimizer is necessarily dependent on the choice
of the model. Therefore, the constrained optimization (1) and its characterization are not
suitable for our ultimate goal of deriving a model-independent pre-processing approach
to the optimal fair learning outcome. The present work proposes a different constrained
optimization problem that characterizes the optimal fair data representation for all L2-
objective supervised learning models.

To make a constraint optimization problem suitable for fair data representation design,
we require both the objective function and the fairness constraint to be model-independent.
Furthermore, the data representation design objective and the training objective given the
data representation have to be consistent in the following sense: the better training and
testing result on the fair data representation leads to less L2-fitting error with respect to
the true data.

We now derive an objective function that is suitable for fair data representation design
purpose. To start, notice that our goal is to generate a synthetic data representation (X̃, Ỹ ),
a deformation of (X,Y ), via which any L2-objective model that is trained by

inf
f∈F
||Ỹ − f(X̃)||22 (9)

would result in (an estimation of) the optimal fair learning outcome. In the rest of this
paper we denote the solution to (9) by fỸ .

Also, because conditional expectation is an orthogonal projection operator on L2-space,
we obtain the following orthogonal decomposition of the objective in (9):

||Ỹ − f(X̃)||22 = ||Ỹ − E(Ỹ |X̃)||22 + ||E(Ỹ |X̃)− f(X̃)||22. (10)

Only the second term on the right hand side depends on the choice of f ∈ F , hence the
training step objective (9) is equivalent to the following:

inf
f∈F
||E(Ỹ |X̃)− f(X̃)||22. (11)

11
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Thus, the solution to (11) is also fỸ , which depends on the choice of F .

The key observation is that, given a data representation (X̃, Ỹ ), (11) is the objective
that practitioners try to achieve via model selection, modification, and parameter turning.
Furthermore, it follows from the triangle or Minkowski inequality that

||Y − fỸ (X̃)||2︸ ︷︷ ︸
total utility loss

≤ ||Y − E(Ỹ |X̃)||2︸ ︷︷ ︸
data representation utility loss

+ ||E(Ỹ |X̃)− fỸ (X̃)||2︸ ︷︷ ︸
learning utility loss

. (12)

The second term on the right-hand side is the target of a supervised learning task which
should be left to practitioners. Thus, the natural choice of the model-independent objective
of the optimal fair synthetic data design is to minimize the first term:

inf
(X̃,Ỹ )∈D

||Y − E(Ỹ |X̃)||2, (13)

where D is some admissible set of deformed versions of the original data (X,Y ) that we
define later. Intuitively, the loss function can be interpreted as the potential utility sacrifice
resulting from deforming (X,Y ) to (X̃, Ỹ ) for L2-objective supervised learning, while leaving
the task of minimizing the second term on the right-hand side to practitioners via model
selection, modification, or parameter tuning.

Next, we derive a fairness constraint for synthetic data design purposes. That is, the goal
is to design (X̃, Ỹ ) such that fỸ (X̃) ⊥ Z for any admissible function set F ⊂ L2(X ,Y). The
flexibility of model choice becomes important due to the increasing complexity of models
in practice nowadays, such as neural networks. The key observation here is that, due to
the potential dependence of fỸ on Z, one needs to look at both models that use merely
measurable functions from X to Y and more complicated models consisting of Z-dependent
measurable functions:

1 For measurable functions from X to Y, if we require X̃ ⊥ Z, then it follows that for
any f : X → Y, it is guaranteed that f(X̃) ⊥ Z. Hence, we require X̃ ⊥ Z to prevent
models from exploiting sensitive information from the independent variables.

2 For advanced or adversarial models that use Z-dependent functions from X ×Z to Y,
the trained model fY could still depend on Z because Y and Z are not independent.
For example, consider the extreme case where Y = kZ, k ∈ R and a perfect model
results in E(kZ|X̃, Z) = kZ which fully depends on Z even if we require X̃ ⊥ Z.
Therefore, we also require fỸ (X̃, Z) ⊥ Z to prevent such a model from exploiting
sensitive information from the dependent variables.

But notice that the second requirement leads us back to the post-processing nature of fair-
ness constraints as in (8). For fair data representation design purposes, it is necessary to
keep the constraint model-independent. Therefore, instead of enforcing fỸ (X̃, Z) ⊥ Z, the

present work requires E(Ỹ |X̃, Z) ⊥ Z for the following two reasons: (1) Under the modified
constraint E(Ỹ |X̃, Z) ⊥ Z, the better fỸ (X̃, Z) estimates E(Ỹ |X̃, Z), the more independent

of Z becomes fỸ (X̃, Z). Such alignment between training objective and fairness makes the
modification a natural choice under the assumption that the goal of L2-objective (adversar-
ial) supervised learning tasks is to minimize ||E(Ỹ |X̃, Z)− fỸ (X̃, Z)||22, which is equivalent

12
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to minimizing ||Ỹ −fỸ (X̃, Z)||22. (2) Since a supervised learning model with poor prediction
accuracy already results in severe unfairness, the dependence on sensitive information is of
less concern when designing a fair data representation.

Based on the fairness requirement for both measurable functions on merely X and Z-
dependent functions, a natural choice of (pre-processing) statistical parity constraint for
data representation has the following form:

X̃,E(Ỹ |X̃, Z) ⊥ Z. (14)

It guarantees: (1) statistical parity for any model that uses only a deterministic function
and any model that results in a perfect estimation of E(Ỹ |X̃); (2) the better fỸ (X̃, Z)

estimates E(Ỹ |X̃, Z), the more independent fỸ (X̃, Z) becomes of Z.

While the fairness constraint (14) is not the only choice, it does balance utility and
fairness. The following remark discusses two alternative fairness constraint choices, which
are more polarized in optimizing utility or fairness.

Remark 1.3 (Alternative fair data representation constraints) There are two al-
ternative choices of fairness constraints that are valuable in practice:

1 X̃ ⊥ Z: the weaker constraint guarantees any model using merely a deterministic
function, even if sub-optimal, to result in statistical parity. But it does not protect Z
from advanced models, which exploit the dependence of Y on Z and apply Z-dependent
functions. Therefore, X̃ ⊥ Z provides more utility but less sensitive information
protection, compared to our choice.

2 (X̃, Ỹ ) ⊥ Z: the stronger constraint guarantees statistical parity in the learning out-
come of any supervised learning model, even for those that adopt Z-dependent func-
tions and are suboptimal. But it sacrifices more utility. This stronger constraint is
particularly useful in practice when one does not know which variables are dependent
and which ones are independent.

Our choice is a compromise of the two alternatives in terms of balancing utility sacrifice
and protecting sensitive information. Furthermore, simple modifications of our analysis and
algorithm would solve the two alternatives because they are essentially simplified versions of
our choice. Hence, the present work targets (14).

Finally, combining the objective and constraint for synthetic data design, we aim to
solve Problem 3:

inf
(X̃,Ỹ )∈D

{||Y − E(Ỹ |X̃)||22 : X̃,E(Ỹ |X̃, Z) ⊥ Z}. (15)

The solution provides a fair data representation via which the trained L2-objective super-
vised learning models become estimations of the optimal fair conditional expectation.

Compared to the original constrained optimization problem (1) which results in the
post-processing nature of its barycenter characterization (6), the proposed constrained op-
timization problem (3) has the following advantages by design:
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1 It provides a fairness guarantee for arbitrary L2-objective models.

2 The model-independence together with the alignment between training objective and
fairness enables practitioners to enjoy flexibility in model selection, modification, and
parameter tuning on the fair data representation.

3 The fair data representation approach has more applicable models than the post-
processing approach. See Remark 1.4 below for a detailed explanation of two different
interpretations of L2-objective models.

In the following remark, we explain the different interpretations of L2-objective models
in the post-processing and pre-processing approaches.

Remark 1.4 (Interpretation of L2-objective models) For the post-processing approach,
it follows from (6) and (8) that the barycenter characterization works only if the supervised
learning model comes with an objective function in explicit L2-form. For the proposed pre-
processing approach, the applicable L2-objective models include all the models that aim to
estimate the conditional expectation. In particular, it follows from (12) and (13) that the
proposed fair data representation works for any supervised learning model that aims to es-
timate conditional expectation or conditional probability, even though some of them do not
come with an explicit objective function in L2-form. For example, all classification models
share the goal of estimating the conditional probability of {Y = 1} given an observation of
{X = x}, which is E(1Y=1|X = x). Therefore, the resulting synthetic data can be used for
any classification model, even models such as logistic regression and random forest that do
not have L2-based objective functions.

1.4 Setting and Notation

In the rest of the work, L(X) = P ◦X−1 : BX → [0, 1] denotes the distribution or law of X,
which is a function that assigns each event in the Borel sigma-algebra, BX , a probability. Let
λ := L(Z) denote the law of the sensitive random variable to simplify notation. To remove
sensitive information Z, the method we propose is to find a set of maps Tx := {Tx(·, z)}z such
that Tx(·, z) : X → X pushes the conditional (on {Z = z}) distribution (see the definition
of conditional distribution L(Xz) below) forward to a common probability measure L(X̃)
for λ-a.e. z ∈ Z. Also, when restricting T to be a linear map or a matrix, we use T � 0 to
denote T is positive definite, and ||T ||F to denote its Frobenius norm.

Given a measurable map T : X → X and a probability measure µ ∈ P(X ), T]µ denotes
the push-forward probability measure that is defined as the following: for any event, A, in
the Borel sigma-algebra, BX , T]µ(A) := µ(T−1(A)). In the rest of the paper, we often say
T pushes µ forward to T]µ.

The conditional distributions {L(Xz)}z are defined uniquely λ-a.e. by the disintegration
theorem [36, Box 2.2]. Hence, z → L(Xz) is Borel measurable and, for all Borel measurable
sets E ∈ BX , P(E) =

∫
X P(X−1

z (E))dλ(z). The application of the disintegration theorem
aims to allow Z to be uncountably infinite, such as the real line or the real vector space.
In the practical case of a finite data set, when the data set (X,Z) is {(xi, zi)}i∈[N ], for each
z ∈ Z, the empirical conditional random variable (with uniform distribution) is defined as
follows:

Xz := {xi : (xi, zi) ∈ (X,Z), zi = z}.
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Therefore, on the product data space X ×Z with a joint distribution, the law of the random
variable or vector Xz is the conditional distribution on {Z = z}.

The present work often assumes the conditionals {L(Xz)}z∈Z ⊂ P2,ac(X ). Here, P2,ac(X )
denotes the set of probability measures on X that have finite second moments and are
absolutely continuous with respect to the Lebesgue measure. The finite second moment
assumption guarantees the Wasserstein distance to be well-defined without being infinite.
The absolute continuity assumption guarantees the existence of their Wasserstein barycen-
ter (See Definition 2.3) and the respective (almost surely invertible) optimal transport maps
that map them to the barycenter. The present work denotes the barycenter by L(Xz) or
L(X) interchangeably, and denotes the optimal transport map that pushes L(Xz) to L(X)
by Tz or T (·, z).

To simplify notation and proof, we define X̄ to be the random variable that satisfies the
following: for λ-a.e. z ∈ Z,

X̄z = Tz(Xz). (16)

In other words, the couple (Xz, X̄z) is a coupling of (L(Xz),L(X)) and satisfies:

||Xz − X̄z||22 =W2
2 (L(Xz),L(X)) (17)

for λ-a.e. z ∈ Z. We refer interested readers to [40, 41] for more details on the assumption
of P2,ac(X ) and the coupling of measures. In the rest of the paper, we call X̄ the Wasserstein
barycenter of {Xz}z.

In solving the post-processing characterization, with the assumption of E(Y |X,Z), one
first finds the Wasserstein barycenter of {L(E(Y |X,Z)z)}z, denoted by L(E(Y |X,Z)z)).
Here, E(Y |X,Z)z denotes the conditional of E(Y |X,Z) on {Z = z} for λ-a.e. z ∈ Z. Then
one applies the optimal transport map T (·, z) : Y → Y which pushes E(Y |X,Z)z forward
to E(Y |X,Z)z for λ-a.e. z ∈ Z.

In solving the pre-processing characterization, one has two different optimal transport
maps to deform X and Y . For the dependent variable, we define Ty = {Ty(·, z)}z, L(Yz),
and L(Ỹ ) analogously, but require merely the agreement of L(E(Ỹ |X̃, Z)z) for λ-a.e. z ∈ Z.
The λ-a.e. agreement of L(E(Ỹ |X̃, Z)z) means that the laws of the random variables or
vectors E(Ỹ |X̃, Z)z are equal, except for some z on a λ-null set on Z. In other words, on
the Borel measurable space (Y,BY), for any set B in the Borel sigma-algebra BY , we have
P ◦ [E(Ỹ |X̃, Z)z1 ]−1(B) = P ◦ [E(Ỹ |X̃, Z)z2 ]−1(B) for all z1, z2 ∈ Z, except on a set N ⊂ Z
such that λ(N) = 0.

Therefore, by generating and applying (Tx, Ty) to the data, we achieve E(Ỹ |X̃, Z) ⊥ Z,
i.e. statistical parity, due to the enforced λ-a.e. agreement of L(E(Ỹ |X̃, Z)z)). Combin-
ing the application of deformation maps and (3), we obtain the fair data representation
optimization problem

inf
(X̃,Ỹ )∈D

{||Y − E(Ỹ |X̃)||22 : X̃,E(Ỹ |X̃, Z) ⊥ Z} (18)

with the admissible set D is defined as

D := {(X̃, Ỹ ) : X̃ = Tx(X,Z), Ỹ = Ty(Y,Z)}, (19)

Here, Tx(·, z) : X → X and Ty(·, z) : Y → Y are Borel measurable maps. We denote the set
of admissible X̃ and Ỹ by D|X and D|Y , respectively. The reason underlying the definition
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of D is that the fair data should still has its foundation from the real data, albeit suitably
“deformed”.

1.5 Paper Organization

The rest of the paper is organized as follows: Section 2 reviews the tools in optimal trans-
port that are needed to derive results in the present work: Wasserstein space, Wasserstein
barycenter, and optimal affine transport within a location-scale family. Section 3 first gener-
alizes the current barycenter characterization of optimal regression to optimal L2-objective
supervised learning, then defines pseudo-barycenter, and proves pseudo-barycenter is the
optimal affine estimation of the true barycenter. Section 4 is concerned with both the the-
oretical characterization and an explicit formula of the Pareto frontier on the Wasserstein
space. Section 5 studies the exact solution to the optimal data representation and the op-
timal affine estimation of the exact solution. Section 6 proposes an algorithm based on the
theoretical results in the previous sections. Section 7 provides an extensive numerical study
regarding the application of the pseudo-barycenter and the optimal affine maps to (1) the
estimation of optimal fair learning outcome compared to the known fair machine learning
techniques on different learning models; and (2) Pareto frontier estimation for different
disparity definitions.

2. Preliminaries on Optimal Transport

In this section, we review the theoretical results on optimal transport and the Wasserstein
barycenter that are important for the development of the main theoretical results on efficient
algorithm design, Wasserstein geodesic characterization of the Pareto frontier, and the pre-
processing approach resulting in the optimal fair data representation. For our purposes,
we focus on Rd. We refer readers who are interested in more generalized versions, e.g. on
compact Riemannian manifolds, to for example [30].

2.1 General Distribution Case

Given µ, ν ∈ P(Rd), which is the set of all probability measures on Rd, Monge asked for an
optimal transportation map Tµν : Rd → Rd that solves

inf
T]µ=ν

{∫
Rd
||x− T (x)||2dµ

}
(20)

Here, || · || denotes the Euclidean norm on Rd. The problem remained open until Brenier
showed that Monge’s problem coincides with Kantorovich’s relaxed version:

inf
γ∈

∏
(µ,ν)

{∫
Rd×Rd

||x1 − x2||2dγ(x1, x2)
}

(21)

and admits a unique solution provided µ ∈ P2,ac(Rd). Here, P2,ac(Rd) denotes the space of
probability measures on Rd that have finite first two moments and are absolutely continuous
w.r.t. (with respect to) the Lebesgue measure. That is, the optimal solution to (21) has
the form: γ = (Id, Tµν)]µ, where Tµν solves (20). Here,

∏
(µ, ν) denotes all the probability

measures on (R2d,B(Rd)⊗B(Rd)) such that the marginals are µ and ν. The relaxed problem

16



Fair Data Representation for Machine Learning at the Pareto Frontier

is easy to solve due to the weak* compactness of
∏

(µ, ν). We refer interested readers
to [40, 41] for more detailed existence and uniqueness results.

Remark 2.1 The uniqueness is in the weak sense for γ and µ-a.e. for Tµν .

Kantorovich’s problem provides a certain kind of “distance” on P(Rd) except for the
possibility of being infinite.

Definition 2.1 (Wasserstein distance2) Given µ, ν ∈ P(Rd),

W2(µ, ν) :=

(
inf

γ∈
∏

(µ,ν)

{∫
Rd×Rd

||x1 − x2||2dγ(x1, x2)
}
.

) 1
2

(22)

It is not hard to verify that the Wasserstein distance defined above satisfies the axioms of
a metric except for finiteness of W2(µ, ν) for arbitrary µ, ν ∈ P(Rd). In order to guarantee
finiteness, one needs to put more restrictions on the set of all probability measures:

Definition 2.2 (Wasserstein space) Define W2 as above and

P2(Rd) :=
{
µ ∈ P(Rd) :

∫
Rd
||x||2dµ <∞

}
. (23)

The couple (P2(Rd),W2) is called Wasserstein space.

The Wasserstein space has gained increasing popularity in image processing, economics
[22, 15], and machine learning in recent years due to its useful properties such as polishness
(of the space) and robustness (w.r.t. perturbation on the marginal probability measures and
hence on sampling).

Since the Wasserstein space is a metric space, the Fréchet mean on the space is well-
defined and it is called the Wasserstein barycenter in the optimal transport literature.

Definition 2.3 (Wassserstein barycenter [2]) Given {µz}z∈Z ⊂ (P2(Rd),W2) for some
index set Z, the barycenter of {µz}z is the Fréchet mean of the set on (P2(Rd),W2). That
is, µ̄ is the solution to

inf
µ∈P2(Rd)

{∫
Z
W2

2 (µz, µ)dλ(z)
}
, (24)

where µ̄ denotes the Fréchet mean or barycenter.

Here, for our purpose, we focus on the case where the index set Z ∈ {[k],N, [0, 1],Rn}.
Next, we look at optimal transport and the barycenter problem from the perspective

of optimal coupling. The goal is to show that the multi-marginal coupling problem is
equivalent to the Wasserstein barycenter problem. The equivalence is an essential tool in
proving our result in optimal affine transport, the optimality of the pseudo-barycenter, and
the geodesic characterization of the Pareto frontier.

2. Throughout this paper we work with the Wasserstein-2 distance, and thus simply call it the Wasserstein
distance.
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First, notice that Kantorovich’s problem is in fact a 2-marginal coupling problem: Let
X1, X2 be the random variable satisfy L(X1) = µ,L(X2) = ν, the problem looks for a γ with
marginals being µ, ν that minimizes Eγ ||X1 − X2||2. It follows naturally by the existence
and uniqueness result of the optimal transport map (also known as Brenier’s map) [11],
that the Wasserstein distance admits the form in the classic probability language:

W2(µ, ν) = (Eµ||X1 − T (X1)||2)
1
2 , (25)

where T is the optimal transport map that pushes µ = L(X1) forward to ν = L(X2).
More recent work in mathematics [30, 34] and economics [15, 22] has generalized the

Kantorovich problem to the multi-marginal coupling problem:

inf
γ∈

∏
({µz}z∈Z)

{
Eγ(

∫
Z2

||Xz1 −Xz2 ||2dλ(z1)dλ(z2))
}
, (26)

where
∏

({µz}z∈Z) denotes all the Borel probability measures on (Rd)|Z| with marginals
being µz = L(Xz) ∈ P(Rd) λ-a.e.. Hence, one can consider λ ∈ P(P(Rd)). It can be shown
that the above is equivalent to the following:

sup
γ∈

∏
({µz}z∈Z)

{
Eγ(||

∫
Z
Xzdλ(z)||2)

}
(27)

Remark 2.2 (Justification for the name of marginals) Since {Xz}z are the marginals
for the admissible couplings in (26), with the equivalence between the multi-marginal cou-
pling and Wasserstein barycenter (see Remark 2.3 below) in mind, we often call {Xz}z
and {L(Xz)}z the sensitive marginals, even though they are also the conditional random
variables and distributions constructed by disintegration.

Intuitively, (27) tends to find a family of random variables parametrized by z with fixed
marginals µz such that the variance of the matched (by γ) group average is maximized. For
readers who are more familiar with stochastic processes, consider z = t as a time variable,
then Xt is a stochastic process with fixed time marginals, and (27) tends to find a way (γ)
to group the fixed marginals into trajectories so that the variance of the trajectory-wise
(sample path) average is maximized. (Hence, the expected variance within a randomly
chosen sample path is minimized.)

As shown in [2, 34], the above multi-marginal problem is equivalent to the barycenter
problem:

Remark 2.3 (Equivalence between multi-marginal coupling and barycenter) As-
sume {µz}z are absolutely continuous w.r.t. the Lebesgue measure and let γ∗ and µ̄ be the
solution to (27) and (24), respectively. It follows that µ̄ = γ∗ ◦ T−1 where T ({xz}z) :=∫
Z xzdλ(z).

The importance of this equivalence is twofold:

1 It is the key to proving the non-degenerate Gaussianity of the Wasserstein barycenter
of non-degenerate Gaussian marginal distributions;
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2 It provides technical support for the interpretation (Section 1.3 point 4) of how the
Wasserstein barycenter solves data-related fairness issues on a point-wise scale.

Therefore, we generalize the equivalence to the case where Z is a Polish space, which is
a metric space that is separable and complete. In particular, [k]d, [0, l]d,Nd,Rd mentioned
above are all examples of Polish spaces. This generalization is important for our purpose
as it provides a theoretical foundation for removing Z in the form of random vectors.

Now, the following result provides the existence and uniqueness result of the barycenter
problem that is suitable for our purpose.

Theorem 2.1 (Existence and uniqueness of barycenter [31](Theorem 2 and Propo-
sition 6) )

Assume that Z is a Polish space and that λ := P ◦Z−1 satisfies
∫
ZW

2
2 (µz, ν)dλ(z) <∞

for some ν ∈ P2(X ) (hence, for all ν ∈ P2(X )). Then the following properties hold:

1 There exists a barycenter of {µz}z∈Z w.r.t. λ.

2 If, in addition, λ({z : µz ∈ Pac(X )}) > 0, then the barycenter is unique.

Remark 2.4 (Applicability of assumptions in Theorem 2.1) The assumption that∫
ZW

2
2 (µz, ν)dλ(z) < ∞ in the above result is satisfied in our application to the optimal

fair learning outcome or data representation: When generating the optimal transport maps
{Tz}z, the training set has a finite number of data and hence finite different values of z in the
discrete case or after discretization in the continuous case. Therefore, since {µz}z ⊂ P2(X ),
pick a value z0 that is in the training set, we have that W2

2 (µz, µz0) are essentially (w.r.t.
λ) uniformly bounded. That implies

∫
ZW

2
2 (µz, µz0)dλ(z) <∞.

Now, we have the theoretical results that are needed to prove the main results, except
for the McCann interpolation, which will be introduced in Section 4. The next step is to
develop a computationally efficient method to compute (an estimation of) the Wasserstein
barycenter, (the McCann interpolation of) optimal transport maps, and thereby the optimal
fair model and Pareto frontier. More specifically, we focus on positive definite affine optimal
transport maps.

2.2 Rigid Translation

Before deriving our main result on optimal positive definite affine maps, we first study the
case where admissible maps are restricted to the set of rigid translations. The following
property of rigid translations makes our results on the optimal affine maps simpler: we can
assume, without loss of generality, that the first moments of the marginal measures are zero:
mXz := E(Xz) = 0 and mYz := E(Yz) = 0.

Lemma 2.1 Let µ, ν ∈ P2, mµ :=
∫
xdµ(x), and mν :=

∫
xdν(x). Also, let µ′, ν ′ be the

centered versions of µ, ν, respectively. It follows that

W2
2 (µ, ν) =W2

2 (µ′, ν ′) + ||mµ −mν ||2. (28)
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Proof See Appendix A.

Notice that the above result allows us to assume measures to have vanishing first mo-
ments when deriving the optimal transport maps. Indeed, if Tµ′ν′ is the Brenier’s map
between µ′ and ν ′, then Tµν := T+mν ◦ Tµ′ν′ ◦ T−mµ is the optimal transport map between
µ and ν. Here, T+mν (x) := x+mν and T−mµ are defined analogously.

In the rest of Section 2, we assume without loss of generality that the first moments of
the measures are all equal to zero.

2.3 Location-Scale Case and Optimal Affine Transport

A sufficient condition for Brenier’s maps to be positive definite affine is to require a certain
“similarity” between the marginal data distributions. One natural choice is to assume {Yz}z
and {Xz}z to be non-degenerate Gaussian vector λ-a.e.. As shown in [4], the assumptions
of Gaussian vector can easily be generalized to a location-scale family. In the definition
below, Sd++ denotes the set of all d× d positive definite matrices.

The generalization from Gaussian to location-scale families is important for the main re-
sult in the next section, where we consider computationally efficient solutions to a relaxation
of the Wasserstein barycenter problem in the case of general marginal distributions.

Definition 2.4 (Location-Scale Family) For any L(X0) ∈ P(Rd), define

F(L(X0)) :=
{
L(AX0 +m) : A ∈ Sd++,m ∈ Rd

}
. (29)

The set F(L(X0)) is called a location-scale family characterized by L(X0).

In other words, under the assumption of vanishing first moments, the random variables
that share laws in the same location-scale family can be transformed into each other by a
positive definite linear transformation.

In [4] it is shown that Brenier’s map between two probability measures, each having
a vanishing first moment, within the same location-scale family is linear and has a closed
form.

Lemma 2.2 (Optimal affine map) If µ, ν ∈ F(L(X0)) for some X0 such that mµ =
mν = 0, then the Brenier’s map that pushes µ forward to ν is given by:

Tµν = Σ
− 1

2
µ (Σ

1
2
µΣνΣ

1
2
µ )

1
2 Σ
− 1

2
µ (30)

where Σµ :=
∫
xxTdµ and Σν :=

∫
xxTdν.

Proof See, for example, Theorem 2.3 in [4].

Remark 2.5 The optimal affine map is also the midpoint of the geodesic path joining Σ−1
µ

and Σν on the manifold of positive definite matrices. We refer interested readers to, for
example, Chapter 6.1 in [9] for more details.
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Now, back to the barycenter problem. It follows from Lemma 2.2 that, if one assumes
that all the marginals belong to the same location-scale family, then the barycenter also
belongs to the family and a nearly closed-form solution to the barycenter is available.

Lemma 2.3 (Barycenter in the location-scale case) Assume {µz}z belong to the same
location-scale family F(P0) and satisfy mµz = 0,Σµz � 0, λ−a.e., then there exists a unique
solution, denoted by µ̄, to (24). Moreover, µ̄ also belongs to F(P0) and is characterized by
mµ̄ = 0 and Σµ̄ = Σ where Σ is the unique solution to the following equation:∫

Z
(Σ

1
2 ΣµzΣ

1
2 )

1
2dλ(z) = Σ, (31)

where Σµz is the second moment of µz,∀z ∈ Z.

Proof See Appendix A.

In the case where mµz 6= 0, it follows from Lemma 2.1 that

∫
Z
W2

2 (µz, µ)dλ(z) =

∫
Z
W2

2 (µ′z, µ
′)dλ(z) +

∫
Z
||mµz −mµ||2dλ(z)

where µ′ denotes the centered version of µ. By Lemma 2.3, we know the first term on
the right is minimized at µ̄′ ∼ N (0,Σµ̄). Also, the second term on the right is minimized
at the Fréchet mean with Euclidean metric, which is equal to the expectation. That is,
mµ̄ =

∫
Z mµzdλ(z). As a result, the optimal transport map is

Tµzµ̄ = T+mµ̄ ◦ Tµ′zµ̄′ ◦ T−mµz (32)

Remark 2.6 (Solution to (31)) The non-linear matrix equation (31) has a unique solu-
tion that can be approached via the following iterative process:∫

Z
(Σ

1
2
i ΣµzΣ

1
2
i )

1
2dλ(z)→ Σi+1. (33)

We refer interested readers to [4] for more details on the fixed point approach to the Wasser-
stein barycenter. The present work only applies this fact in the algorithm design in Section 6.

3. Wasserstein Barycenter Characterization of the Optimal Fair Learning
Outcome

Optimal transport has been considered an adversarial or constrained optimization problem
in its application to machine learning. In particular, some of the most popular unsuper-
vised learning methods, such as K-means and PCA, are specific examples of the Wasserstein
barycenter problems when putting restrictions on the admissible transport maps and re-
laxation on the weak equivalence requirement of the push-forwards w.r.t. test functions.
See, for example, [39] for more details. But we apply optimal transport in an opposite
direction so that the independence or imperceptibility of the sensitive variable Z becomes
theoretically provable.
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In this section, the primary goal is to develop the optimal affine map and pseudo-
barycenter as tools to solve the challenge of the high computational cost of Wasserstein
barycenter and optimal transport maps in high-dimensional data space. More specifically,
we restrict the admissible transport maps to be merely affine maps while relaxing the fairness
constraint to a sufficient and necessary level. The importance of efficiency in computing the
barycenter and optimal transport maps will soon be clear in Section 4 when we compute
the Pareto frontier along the Wasserstein geodesic path. Furthermore, the importance of
affinity of transport maps will also be soon clear in Section 5 when solving the optimal fair
data representation problem (3).

The organization of the current section is as follows: we first generalize the Wasserstein
barycenter characterization of the optimal regression to all L2-objective supervised learning
models, then apply the optimal affine maps to estimate high-dimension optimal learning
outcome. Now, we show that the (unique) solution to Problem 1 can be characterized as the
Wasserstein barycenter of the conditional expectation sensitive marginals. The barycenter
characterization of the optimal fair regression is first proved in [18, 24].

3.1 Wasserstein Barycenter Characterization

We start with a characterization of the optimal learning outcome of the L2-objective su-
pervised learning task. Let E(Y |X,Z)z be the sensitive marginals of (E(Y |X,Z), Z) (or,
equivalently, the sensitive conditionals of E(Y |X,Z) on {Z = z} by Remark 2.2) for λ-a.e.
z ∈ Z, L(E(Y |X,Z)z) := µz, and µ̄ denote the Wasserstein barycenter of {µz}z∈Z . Also,
let T (·, z) denote the optimal transport map from µz to µ̄.

Lemma 3.1 (Optimal fair L2-objective supervised learning characterization) As-
sume that the conditional expectation marginals {µz}z∈Z ⊂ P2,ac(Y), then

E(Y |X,Z) = T (E(Y |X,Z), Z) := {T (E(Y |X,Z)z, z)}z∈Z (34)

is the unique solution to Problem 1. Furthermore, we have

||Y − T (E(Y |X,Z), Z)||22 = inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : f(X,Z) ⊥ Z}

= ||Y − E(Y |X,Z)||22 +

∫
Z
W2

2 (µz, µ̄)dλ

Proof First, notice that the fairness constraint f(X,Z) ⊥ Z is equivalent to L(f(X,Z)z) =
µ λ-a.e. for some µ ∈ P(Y). Now, we prove the lower bound: let f ∈ L2(X ×Z,Y) satisfies
f(X,Z) ⊥ Z, we have

||Y − f(X,Z)||22 =||Y − E(Y |X,Z)||22 + ||E(Y |X,Z)− f(X,Z)||22

=||Y − E(Y |X,Z)||22 +

∫
Z
||E(Y |X,Z)z − f(X,Z)z||22dλ

≥||Y − E(Y |X,Z)||22 +

∫
Z
W2

2 (µz,L(f(X,Z)z))dλ

≥||Y − E(Y |X,Z)||22 +

∫
Z
W2

2 (µz, µ̄)dλ
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Here, the first line follows from the L2 projection characterization of conditional expectation,
the second follows from disintegration, the third from the definition of W2, and the fourth
from the definition of the Wasserstein barycenter and the fairness restriction f(X,Z) ⊥ Z.

Next, we construct a fY ∈ L2(X × Z,Y) such that the lower bound is obtained. Let
Tz denote the optimal transport map such that (Tz)]µz = µ̄ for λ-a.e. z ∈ Z. Define
T (·, z) := Tz(·) and

fY (X,Z) := T ((E(Y |X,Z), Z)). (35)

Here, π := (Id, Tz)]µzdλ defines π ∈ P(Z×Y×Y). Hence, we have π = π(y,z)dλ(E(Y |X,Z),Z)

and π(y,z) = δT (y,z) λ(E(Y |X,Z),Z) − a.e.. Since (y, z) → π(y,z) = δT (y,z) is Y × Z/P(Y)
measurable, we have (y, z) → T (y, z) is Y × Z/Y measurable. It follows from E(Y |·, ·) ⊗
Id|Z(·, ·) : X×Z → Y×Z being X×Z/Y×Z measurable that fY = T ◦(E(Y |·, ·)⊗Id|Z(·, ·))
is X × Z/Y measurable. Also, µ̄ ∈ P2(Y) =⇒ ||fY (X,Z)||2 < ∞. This proves fY ∈
L2(X × Z,Y). It remains to show that the lower bound is obtained at fY (X,Z). Indeed,
by construction, we have

||E(Y |X,Z)− fY (X,Z)||22 =

∫
Z
||E(Y |X,Z)z − fY (X,Z)z||22dλ

=

∫
Z
||E(Y |X,Z)z − T (E(Y |X,Z)z, z)||22dλ

=

∫
Z
W2

2 (µz, (Tz)]µz)dλ

=

∫
Z
W2

2 (µz, µ̄)dλ.

It follows from the derivation of the lower bound above that

||Y − fY (X,Z)||22 = inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : f(X,Z) ⊥ Z} (36)

Uniqueness follows from the uniqueness of µ̄ and the uniqueness of T (·, z). We are done.

The above result shows that the minimum L2-loss for statistical parity can be nicely
decomposed into two parts: (1) an L2(X × Z,Y) orthogonal projection loss due to the
inference capability of (X,Z) w.r.t. Y and (2) an independence projection loss due to the
statistical parity constraint. That is,

inf
f
{||Y − f(X,Z)||22 : f(X,Z) ⊥ Z}︸ ︷︷ ︸

minimum loss for statistical parity

= ||Y − E(Y |X,Z)||22︸ ︷︷ ︸
orthogonal projection loss

+

∫
Z
W2

2 (µz, µ̄)dλ︸ ︷︷ ︸
independence projection loss

.

Furthermore, to construct the optimal fair L2 learning outcome, one first performs L2

orthogonal projection to obtain the conditional expectation E(Y |X,Z), then outputs the
Wasserstein barycenter of the sensitive marginals of E(Y |X,Z) as the optimal (with respect
to L2-objective) fair (for statistical parity) result.

Unfortunately, in practice, the characterization suffers from a lack of efficient methods to
compute the Wasserstein barycenter and obtain an explicit formula of the optimal transport

23



Xu and Strohmer

maps [3]. Current methods restrict the sensitive variable Z to be binary mainly because the
computation of a multi-marginal barycenter is expensive. Furthermore, notice the current
methods restrict the dependent variable Y to be one-dimensional, because the only well-
known exact solution to transport maps is the inverse of cumulative function that merely
works for one-dimensional variables.

Therefore, to provide methods using the characterization in high-dimensional dependent
variable cases, we introduce the optimal affine map and the associated pseudo-barycenter.

3.2 Optimal Affine Estimation: Pseudo-barycenter

To solve the challenge of deriving an explicit formula for the Wasserstein barycenter and
optimal transport maps, we restrict the admissible transport maps to be affine and show
that the estimation of the Wasserstein barycenter via optimal affine maps coincides with the
true Wasserstein barycenter in the Gaussian case, and that the estimation error is bounded
in the case of general distributions. In other words, we consider the choice of positive
definite affine maps under two circumstances:

1 We assume the marginals are non-degenerate Gaussian. That is, {E(Y |X,Z)z}z are
assumed to be non-degenerate Gaussian vectors λ-a.e..

2 Instead of making assumptions on the data distribution, we relax the independence
constraint to the independence between Z and merely the first two moments of
f(X,Z).

From a theoretical perspective, affine maps allow us to derive (nearly) closed-form so-
lutions under either of the assumptions mentioned above. Also, affine maps allow us to
develop a pre-processing approach by directly applying the obtained maps to the original
data before training, even though such maps are constructed to push the post-training
marginals toward their barycenter.

From a practical perspective, the advantage is obvious: the computation of affine maps
only uses (sample estimation of) the first two moments of the marginal distributions and
hence is highly efficient compared to the computation of general Brenier’s maps, especially
in the case of high-dimension data.

Before developing the pseudo-barycenter, the following remarks compare in more detail
the exact barycenter with its affine approximation.

Remark 3.1 (Applying pseudo-barycenter vs exact barycenter) The comparison
between the pseudo-barycenter method and the exact barycenter is an analog of the com-
parison between the linear regression model and the exact conditional expectation: When
there is no worry about over-fitting, a practitioner who cares more about the strict goal of
minimizing L2 error (analog: the strict statistical parity guarantee) should always try to
find the exact conditional expectation function (analog: the exact barycenter and the cor-
responding exact transport maps) by using more complicated models. But the simplicity,
robustness, and interpretability of linear regression (analog: pseudo-barycenter and optimal
affine maps) are often useful in practice.

We define the pseudo-barycenter, using merely matrix calculations, as follows:
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Definition 3.1 The post-processing pseudo-barycenter Ŷ † is given via

Ŷ † := Taffine(Ŷ , Z), (37)

where

Taffine(·, z) := Σ
− 1

2

Ŷz
(Σ

1
2

Ŷz
ΣΣ

1
2

Ŷz
)

1
2 Σ
− 1

2

Ŷz
, (38)

and Σ is the unique solution to ∫
Z

(Σ
1
2 ΣŶz

Σ
1
2 )

1
2dλ(z) = Σ. (39)

To obtain (an approximation of) the unique solution, we apply the iterative method
(33) in Remark 2.6 when designing our algorithm in Section 6.

Now, Lemma 2.2 shows that under the assumption of Gaussianity of the learning out-
come marginals, the optimal transport map is affine and the pseudo-barycenter is indeed
the Wasserstein barycenter. Moreover, Lemma 2.3 shows that the barycenter of Gaus-
sian marginals is still Gaussian. Therefore, the optimal maps from the marginals to the
barycenter are determined entirely by the first two moments.

Lemma 3.2 (Post-processing pseudo-barycenter in the Gaussian case) Assume
Ŷz ∼ N (0,Σz) for λ-a.e. z ∈ Z, then Ŷ † is the Wasserstein barycenter of {Ŷz}z.

It follows from Theorem 3.2 that, if Ŷ = E(Y |X,Z), then Y † is the solution to the
Wasserstein barycenter characterization of the optimal fair learning outcome.

Finally, we show that the pseudo-barycenter is the optimal affine estimation of the
Wasserstein barycenter in the case of general marginal distributions. To do so, we need
to first put restrictions on the admissible transport maps. However, such a restriction
on admissible maps leads to a necessary relaxation of the fairness constraint. To see the
necessity, Lemma 2.2 shows positive definite affine maps transform distributions within the
same location-scale family. Therefore, given marginals Y1 and Y2 from different location-
scale families, affine maps are not able to transform them to each other. That implies the
non-existence of the barycenter under the original independence restriction. Indeed, if a
barycenter of {Yz}z∈{1,2} exists under the restriction of positive definite affine maps, then Y1

and Y2 belong to the same location-scale family as their barycenter, which contradicts the
assumption of general distributions. That is, the Wasserstein barycenter characterization
does not have a solution when we admit merely affine transport maps in the general marginal
distribution case.

On the other hand, notice that the best affine maps can achieve is to map Y1 to a Y ′2 ,
which shares the same first two moments with Y2 within the Y1 location-scale family. We
call such Y ′2 a Y1 location-scale family analog of Y2. Therefore, we propose the following
relaxation of the fairness constraint that suffices to guarantee the existence of a solution to
the relaxed version of (1) with merely positive definite affine transport maps:

mf(X,Z),Σf(X,Z) ⊥ Z (40)

where mf(X,Z), and Σf(X,Z), denotes respectively the first and second moment of f(X,Z).
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Remark 3.2 (Fairness guarantee of the relaxation) The adversarial task of testing
and exploiting probabilistic independence between f(X,Z) and Z is equivalently difficult to
enforcing the independence. One common strategy is to explore its equivalence to the inde-
pendence between all moments of f(X,Z) and Z, provided the boundedness of the two ran-
dom variables. But the verification or enforcement of independence among higher moments
is extremely vulnerable to data noise in practice. Thus, instead of enforcing f(X,Z) ⊥ Z,
one could relax the constraint to the independence between Z and some of the moments of
f(X,Z). In this section, we focus on the first two moments. That is, mf(X,Z),Σf(X,Z) where

mf(X,Z) := E(f(X,Z)) and Σf(X,Z) := E((f(X,Z)−E(f(X,Z)))(f(X,Z)−E(f(X,Z)))T ).
It is not hard to notice that the relaxation is already strong enough to result in impercepti-
bility to any unsupervised learning algorithm that uses merely the mean and covariance of
data to extract information, such as K-means and PCA.

Therefore, the optimal affine estimation of the Wasserstein barycenter characterization
is given by:

Problem 4 (Optimal affine estimation of barycenter problem)

inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : mf(X,Z),Σf(X,Z) ⊥ Z}. (41)

Now, we show that the pseudo-barycenter defined above is indeed the solution to Prob-
lem 4 and hence the optimal affine estimate of the optimal fair learning outcome. To
prove the main result, we need the following result: given any fixed covariance matrix, the
optimal positive definite affine maps result in the lowest Wasserstein distance such that
the push-forwards all share the same fixed covariance matrix. To simplify notation, let
µz := L(E(Y |X,Z)z). Also, let mY |Xz and ΣY |Xz denote the mean and covariance matrix
of E(Y |X,Z)z respectively.

Lemma 3.3 (Projection Lemma) Assume {µz}z ⊂ P2,ac(Y). If mY |Xz = 0,ΣY |Xz � 0
λ-a.e., for any Σ � 0,

inf
Ŷ :ΣŶz=Σ

∫
Z
W2

2 (µz,L(Ŷz))dλ(z) (42)

admits a unique solution, denoted by ŶΣ, that satisfies

ŶΣ,z := TΣ(Ŷz, z) (43)

where TΣ(·, z) := Σ
− 1

2

Y |Xz(Σ
1
2

Y |XzΣΣ
1
2

Y |Xz)
1
2 Σ
− 1

2

Y |Xz .

Proof ∫
Z
W2

2 (µz,L(Ŷz)dλ(z) =

∫
Z
||E(Y |X,Z)z − TΣ(Ŷz, z)||22dλ(z)

=

∫
Z

inf
ν:Σν=Σ

W2
2 (µz, ν)dλ(z)

= inf
ν:Σνz=Σ

∫
Z
W2

2 (µz, νz)dλ(z),
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where the second equality follows from the characterization of Gelbrich’s bound, see for
example Proposition 2.4 in [20]. Now, let Ŷ ′ 6= ŶΣ but also satisfy ΣŶ ′ = Σ λ-a.e., then we
have ∫

Z
||E(Y |X,Z)z − ŶΣ,z||22dλ(z) <

∫
Z
W2

2 (µz,L(Ŷ ′z ))dλ(z)

≤
∫
Z
||E(Y |X,Z)z − Ŷ ′z ||22dλ(z),

where the first inequality is strict due to the uniqueness of Brenier’s maps TΣ(·, z) and hence
of TΣ(Ŷz, z) λ-a.e.. The proof is complete.

Remark 3.3 (Intuition of the Projection Lemma) Intuitively, for an arbitrary positive
definite matrix Σ, one can consider TΣ(·, z) as the projection map (w.r.t. W2 distance) onto

{ν ∈ P2(Y) : Σν = Σ} (44)

which is the set of centered probability measures with fixed covariance matrix Σ in (P2(Y),W2).
In other words, given a probability measure, the maps {TΣ(·, z)}z finds the closest (w.r.t.
the Wasserstein distance) point in the set for each of the marginals.

Finally, we are ready to prove the justification of the pseudo-barycenter in the case of
general distributions.

Theorem 3.1 (Optimal affine estimation of W2 barycenter: Pseudo-barycenter)
E(Y |X,Z)† := {Taffine(E(Y |X,Z)z, z)}z is the unique solution to Problem 4:

inf
f∈L2(X×Z,Y)

{||Y − f(X,Z)||22 : mf(X,Z),Σf(X,Z) ⊥ Z}, (45)

provided {µz}z ⊂ P2,ac(Y).

Proof First, we fix Σ � 0 arbitrary and denote ŶΣ,z := TΣ(E(Y |X,Z)z, z) for λ-a.e. z ∈ Z,
we have

||Y − TΣ(E(Y |X,Z), Z)||22 − ||Y − E(Y |X,Z)||22 =

∫
Z
||E(Y |X,Z)z − ŶΣ,z||22dλ(z) (46)

and it follows from Lemma 3.3 that∫
Z
||E(Y |X,Z)z − ŶΣ,z||22dλ(z) =

∫
Z
W2

2 (µz,L(TΣ(E(Y |X,Z)z, z))dλ(z)

= min
ν:Σνz=Σ

∫
Z
W2

2 (µz, νz)dλ(z).

Therefore, (41) boils down to the following:

inf
Σ�0

{∫
Z
||E(Y |X,Z)z − TΣ(E(Y |X,Z)z, z)||22dλ(z)

}
. (47)
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Finally, notice that∫
Z
||E(Y |X,Z)z − TΣ(E(Y |X,Z)z, z)||22dλ(z)

=

∫
Z
||E(Y |X,Z)z||22 + ||TΣ(E(Y |X,Z)z, z)||22 − 2〈E(Y |X,Z)z, TΣ(E(Y |X,Z)z, z)〉2dλ(z)

=

∫
Z

Trace(ΣY |Xz) + Trace(Σ)− 2E(E(Y |X,Z)Tz TΣ(E(Y |X,Z)z, z)dλ(z)

=

∫
Z

Trace(ΣY |Xz) + Trace(Σ)− 2〈TΣ,ΣY |Xz〉Fdλ(z)

=

∫
Z
||E(Y |X,Z)′z − TΣ(E(Y |X,Z)′z, z)||22dλ(z),

where 〈·, ·〉F denotes the Frobenius inner product and X ′ ∼ N (mX ,ΣX) denotes the Gaus-
sian analog of X. It follows from definition of Taffine(E(Y |X,Z)z, z) with Taffine(·, z) :=

Σ
− 1

2

Y |Xz(Σ
1
2

Y |XzΣΣ
1
2

Y |Xz)
1
2 Σ
− 1

2

Y |Xz and Lemma 2.3 that
∫
Z ||E(Y |X,Z)z −E(Y |X,Z)†z||22dλ(z) is

the unique lower bound of the objective function in (47). It then follows from the unique-
ness of Brenier’s map that E(Y |X,Z)† is the unique solution to (41).

In this section, we focus on applying the optimal affine transport map and the pseudo-
barycenter to find a computationally efficient estimation of the optimal fair learning outcome
in high-dimensional space. As we mentioned above, it will soon become clear in the next
two sections and numerical experiments that a combination of McCann interpolation and
optimal affine maps in matrix form results in not only a mathematically neat solution to
estimate the Pareto frontier, which significantly reduces computational expense in practice,
but also a necessary tool to help us circumvent the post-processing nature and solve the
optimal fair data representation problem (3).

Now, we are ready to address the lack of a precise theoretical characterization of the
Pareto frontier between utility and fairness, which turns out to be a natural generalization
of the Wasserstein barycenter characterization of the optimal fair L2-objective learning
outcome.

4. Wasserstein Geodesics Characterization of Pareto Frontier

In reality, rather than looking for the optimal fair learning outcome, practitioners may have
to choose a middle ground: sacrificing some prediction accuracy while tolerating a certain
level of disparity. Therefore, it is tempting to generalize the barycenter characterization
of the optimal fair learning outcome to the entire Pareto frontier between prediction error
and statistical disparity. In this section, we show that the constant-speed geodesics from
the conditional expectation sensitive marginals to their Wasserstein barycenter characterize
the Pareto frontier on the Wasserstein space, in which utility loss and statistical disparity
are quantified respectively by the L2 norm and the average pair-wise Wasserstein distance
among the sensitive marginals. As a result, given the optimal transport maps, one can
derive a closed-form solution to the geodesics and thereby the Pareto frontier using McCann
interpolation.
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Here, we first provide a post-processing characterization of the Pareto frontier, Theorem
4.1, which is of theoretical interest and great generality. Then, we derive a closed-form solu-
tion to Problem 2 based on this characterization. The results form a direct generalization of
the barycenter characterization, which is Lemma 3.1, and practitioners can apply the result
together with the pseudo-barycenter and McCann interpolation to obtain the optimal affine
estimation to the post-processing Pareto frontier. Later in Section 5, we further apply the
result to provide a characterization of the exact solution and an optimal affine estimation
of the solution to the optimal fair data representation problem (3).

Now, we start to characterize the Pareto frontier. In the rest of the section, we denote
L(E(Y |X,Z)) =: µ,L(E(Y |X,Z)z) =: µz. For utility, given any measurable function f :
X × Z → Y, we define the increased prediction error by the L2-norm of the difference
between f(X,Z) and the orthogonal projection E(Y |X,Z):

L(f(X,Z)) := ||E(Y |X,Z)− f(X,Z)||2 = (

∫
Z
||E(Y |X,Z)z − f(X,Z)z)||22dλ(z))

1
2 . (48)

To simplify notation, we also denote

L(T ′) := L(T ′(E(Y |X,Z), Z)) = (

∫
Z
||E(Y |X,Z)z − T ′z(E(Y |X,Z)z)||22dλ(z))

1
2 . (49)

for any measurable T ′ : Y × Z → Y.
To relax the hard independence constraint for the Pareto frontier, we quantify the

statistical disparity of a given learning outcome or prediction Ŷ by the average pairwise
Wasserstein distance among its sensitive marginals:

Definition 4.1 (Wasserstein disparity)

D(Ŷ , Z) :=
(∫
Z2

W2
2 (L(Ŷz1),L(Ŷz2))dλ(z1)dλ(z2)

) 1
2
. (50)

In our setting, Ŷ = f(X,Z) for some f : X ×Z → Y. Also, to simplify notation, we denote
the Wasserstein disparity that remains in the already deformed (by applying T ′) conditional
expectation by

D(T ′) := D(T ′(E(Y |X,Z), Z), Z) = (

∫
Z2

W2
2 ((T ′z1)]µz1 , (T

′
z2)]µz2)dλ(z1)dλ(z2))

1
2 (51)

for any measurable T ′ : Y × Z → Y. Here, Tz = T (·, z) : Y → Y for λ-a.e. z ∈ Z.
We adopt the Wasserstein disparity as a statistical disparity quantification due to the

following desirable properties:

• Wasserstein disparity characterizes statistical parity:

D(f(X,Z), Z) = 0 ⇐⇒ f(X,Z) ⊥ Z

• Physics interpretation: Due to the definition based on the Wasserstein distance,
Wasserstein disparity can be understood as the expected minimum amount of work
that is required to move one randomly chosen marginal to another random chosen
one. Therefore, the larger D(f(X,Z), Z) is, the more necessary work is expected to
remove the distributional discrepancy among the sensitive groups on f(X,Z).
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Now, let T : Y ×Z → Y satisfy T (·, z) being the optimal transport maps from {µz}z to
their barycenter µ̄ for λ-a.e. z ∈ Z (See construction of T in the proof of Lemma 3.1), we
define

V := L(T ) = (

∫
Z
||E(Y |X,Z)z − T (E(Y |X,Z)z, z)||22dλ(z))

1
2 (52)

= (

∫
Z
||E(Y |X,Z)z − E(Y |X,Z)z||

2
2dλ(z))

1
2 . (53)

As shown in Lemma 3.1, V is the minimum increase of L2 error (or, in physics, the
minimum work/energy required) to deform E(Y |X,Z) to satisfy statistical parity. Before
showing the main result, we need to define the geodesic on metric space to show the explicit
form of constant speed geodesic on the Wasserstein space, which plays a key role in the
proof.

Definition 4.2 (Constant-speed geodesic between two points on metric space)
Given a metric space (X, d) and x, x′ ∈ X, the constant-speed geodesic between x and x′

is a continuously parametrized path {xt}t∈[0,1] such that x0 = x, x1 = x′, and d(xs, xt) =
|t− s|d(x, x′), ∀s, t ∈ [0, 1].

The following lemma, which is well known as the McCann (displacement) interpolation
[41, Chapter 7] in the optimal transport literature, shows that a linear interpolation using
the optimal transport plan results in the constant-speed geodesic on the Wasserstein space.

Lemma 4.1 (Constant-speed geodesic on Wasserstein space, [32, 41]) Given µ0, µ1 ∈
(P2(Rd),W2) and γ the optimal transport plan in between, let πt(x, y) := (1− t)x+ ty, then

µt := (πt)]γ, t ∈ [0, 1] (54)

is the constant-speed geodesic between µ0 and µ1.

Proof See Appendix B

Remark 4.1 (Linear interpolation formula for W2 deodesics) If there exists an op-
timal transport map T such that T](µ0) = µ1, then the McCann interpolation has the simple
form

µt = ((1− t)Id+ tT )]µ0, t ∈ [0, 1]. (55)

We apply this simple formula to obtain a closed-form estimation of the Pareto frontier in
algorithm design, see Section 6.

Now, we are ready to establish the main result, which shows that V is a lower bound
of L(f(X,Z)) + 1√

2
D(f(X,Z), Z) for any measurable function f : X × Z → Y and is

achieved along the constant-speed geodesics from the sensitive marginals of the conditional
expectation to their barycenter on the Wasserstein space.
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Theorem 4.1 (W2 geodesics characterization of a linear Pareto frontier) Define
L,D, V as above and assume µz ∈ P2,ac(Y), λ− a.e.. It follows that

V ≤ L(f(X,Z)) +
1√
2
D(f(X,Z), Z) (56)

for any measurable function f : X×Z → Y. Furthermore, define T (t) such that T (t)(·, z) :=
(1 − t)Id + t(T (·, z)), t ∈ [0, 1] is the linear interpolation between the identity map and
the optimal transport map for λ-a.e. z ∈ Z, then equality holds in (56) if and only if
f(X,Z) = T (t)(E(Y |X,Z), Z), t ∈ [0, 1] as

L(T (t)) = tL(T (1)) = tV (57)

1√
2
D(T (t)) =

1√
2

(1− t)D(T (0)) = (1− t)V. (58)

Proof See Appendix B.

Remark 4.2 (Intuition of Theorem 4.1: a Euclidean analog) Here, we provide a
Euclidean analog of Theorem 4.1. In fact, our proof is based on the observation of the
analog and equivalent to it when one considers x→ δx as an embedding from X to P2(X ).

Let X := {xi}Ni=1 be a fixed data set on the Euclidean space X (N = 3 in Figure 2),
X̃ := {x̃i}Ni=1 be a data set consisting of N arbitrarily chosen data points on X , and define
the following:

• [Euclidean analog of V ] std(X) := ( 1
N

∑N
i=1 ||xi −mx||2)

1
2 with mx := 1

N

∑N
i=1 xi,

• [Euclidean analog of L] solid(X̃) := ( 1
N

∑N
i=1 ||xi − x̃i||2)

1
2 ,

• [Euclidean analog of D] dotted(X̃) := ( 1
N2

∑N
i,j=1 ||x̃i − x̃j ||2)

1
2 .
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Figure 2: In this figure, we have three data points on an Euclidean space traveling along straight lines (Euclidean
geodesics) to their average (Euclidean barycenter). Define (1) std := the standard deviation of the three points, (2)
solid line (loss) := the average moving (Euclidean) distance away from their original location, and (3) dotted line
(disparity) := the average pairwise (Euclidean) distance among them. One can show that std ≤ solid + 1√

2
dotted

where equality holds if and only if the three points travel at constant-speed along straight lines to their average.

It is straight-forward to verify that (1)

std(X) ≤ solid(X̃)︸ ︷︷ ︸
utility loss

+
1√
2

dotted(X̃)︸ ︷︷ ︸
disparity

,

and (2) equality holds if and only if X̃ = X(t) := {(1 − t)xi + tmx}Ni=1 for t ∈ [0, 1] as
loss(X(t)) = tstd(X) and 1√

2
disparity(X(t)) = (1− t)std(X).

Since V (the minimum work or energy required for statistical parity) is fixed for the
data (X,Y, Z) when one applies (X,Z) to predict Y , the above theorem implies that
the Pareto frontier between the increased prediction error L(T ) and the remaining dis-
parity D(T ) is a line that results from the constant-speed geodesics from the marginal
conditional expectations to their barycenter on the Wasserstein space. In particular, let
T (t)(E(Y |X,Z), Z) := {T (t)(E(Y |X,Z)z, z)}z, λ-a.e., t ∈ [0, 1], we arrive at a closed-form
solution to Problem 2:

Corollary 4.1 (Pareto optimal fair L2-objective learning) Given (X,Y, Z) satisfying
µz ∈ Pac, λ-a.e., then

fd(X,Z) :=

{
T (1− d√

2V
)(E(Y |X,Z), Z), if d ∈ [0,

√
2V ]

E(Y |X,Z), if d ∈ (
√

2V,∞)
(59)

are the unique solutions to Problem 2 for d ∈ [0,∞).

Proof If d ∈ (
√

2V,∞), then it follows from Theorem 4.1 that D(E(Y |X,Z)) = D(T (0)) =√
2V < d. Hence, Problem 2 reduces to the unconstrained L2 projection problem and the
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optimal solution is E(Y |X,Z). Now, for a fixed d ∈ [0,
√

2V ], assume for contradiction that
∃f ∈ L2(X × Z,Y) such that

||Y − f(X,Z)||22 < ||Y − T (t)(E(Y |X,Z), Z)||22

for t = 1 − d√
2V

. Then, let f(X,Z) denote the Wasserstein barycenter of {f(X,Z)z}z, we

have

||Y − f(X,Z)||22 ≤ ||Y − f(X,Z)||22 + ||f(X,Z)− f(X,Z)||22
< ||Y − T (t)(E(Y |X,Z), Z)||22 + ||f(X,Z)− f(X,Z)||22

= ||Y − E(Y |X,Z)||22 + L(T (t)) +
1√
2
D(f(X,Z))

= ||Y − E(Y |X,Z)||22 + (V − 1√
2
d) +

1√
2
d

= ||Y − E(Y |X,Z)||22 + V

where the second line follows from the assumption, the third from L2 orthogonal decompo-
sition and Theorem 4.1, and the forth from the assumption and Theorem 4.1. The strict
inequality above contradicts the optimality of E(Y |X,Z) shown in Lemma 3.1. That proves
the optimality of T (1− d√

2V
)(E(Y |X,Z), Z) for the fixed d. Uniqueness result follows from

the uniqueness of E(Y |X,Z) shown in Lemma 3.1. Since the choice of d ∈ [0,
√

2V ] is
arbitrary, we are done.

We note that Corollary 4.1 together with Lemma 4.1 and Remark 4.1 provide a post-
processing approach to (estimate) the Pareto frontier: applying McCann interpolation to
the Brenier’s maps between the learning outcome sensitive marginals {E(Y |X,Z)z}z and
their (pseudo-) barycenter. One can apply Algorithm 1 directly with the learning outcome
marginals as inputs.

From a theoretical perspective, various metrics of disparity that differ from D, the
Wasserstein disparity (Definition 4.1), can be used and the theoretical results derived in this
section provide a lower bound estimation for the Pareto frontier that uses other disparity
metrics. The quality of the lower bound can be studied using the relationship between the
Wasserstein distance and the defined disparity metric. Also, the present work provides a
numerical study on the lower bound estimation in Section 6 to which we refer the interested
readers for more details.

In practice, various metrics of disparity are adopted, such as the prediction success
ratio (difference from 1) in classification [13] and the Kolmogorov-Smirnov distance for 1-
dimensional regression [18]. The proposed estimation of the Pareto frontier leaves the choice
of α to practitioners who would face specific fairness requirements and disparity metrics.

5. Optimal Fair Data Representation for Supervised Learning

In this section, we study the optimal fair data representation problem, Problem 3, that is
motivated by the current challenges in the pre-processing or synthetic data design approach
to fair machine learning. To solve the problem, we first characterize the exact solution
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using a dependent and independent Wasserstein barycenter pair, see Lemma 5.3. Then, we
define a dependent and independent pseudo-barycenter pair via optimal affine maps, and
prove that the pair is the exact optimal fair data representation with Gaussian marginals,
cf. Lemma 5.5 and the optimal affine estimate of the representation with general marginals
in Theorem 5.2.

5.1 Wasserstein Barycenter Pair Characterization

We will prove a characterization of the solutions to Problem 3. To start, notice that since
(X̃, Z) = T ⊗ Id|Z(X,Z) for some measurable map T ⊗ Id|Z : X × Z → X × Z, we have
σ((X̃, Z)) ⊂ σ((X,Z)). Also, from X̃ ⊥ Z, we have σ(X̃) ⊂ σ(X̃) ⊗ σ(Z) = σ((X̃, Z)).
Therefore, σ(X̃) ⊂ σ((X,Z)) and it follows from L2 orthogonal decomposition that

||Y − E(Ỹ |X̃)||22 = ||Y − E(Y |X,Z)||22 + ||E(Y |X,Z)− E(Ỹ |X̃)||22. (60)

The first term on the right hand side can be interpreted as the minimum loss of information
by using (X,Z) to predict Y . Furthermore, one can decompose the second term on the
right hand side of (60):

||E(Y |X,Z)− E(Ỹ |X̃)||22
=||E(Y |X,Z)− E(Y |X̃, Z)||22 + ||E(Y |X̃, Z)− E(Ỹ |X̃)||22

=||E(Y |X,Z)− E(Y |X̃, Z)||22 +

∫
Z
||E(Yz|X̃)− E(Ỹ |X̃)z||22dλ(z).

Here, the first equality follows from L2 orthogonal decomposition. The second equality
follows from disintegration, the fairness constraint X̃,E(Ỹ |X̃) ⊥ Z, and the fact that X̃ ⊥ Z
implies

E(Yz|X̃) = E(Y |X̃, Z)z.

See Appendix C for the proof.
Now, the key observation is that, given a fixed X̃ ⊥ Z, the choice of Ỹ depends only on

the second term on the right, which forms a Wasserstein barycenter problem with marginals
being {E(Yz|X̃)}z. Hence, the optimal choice of Ỹ is the one which satisfies E(Ỹ |X̃) =

E(Y |X̃, Z), where E(Y |X̃, Z)) is the Wasserstein barycenter of {E(Yz|X̃)}z. Therefore, we

denote the optimal choice of Ỹ to be Ȳ which satisfies E(Ȳ |X̃) = E(Y |X̃, Z).
It remains to find the optimal choice of X̃. The following result shows that the optimal

choice is the one admissible X̃ which generates the finest sigma-algebra.

Lemma 5.1 (Finer sigma-algebra, more accurate optimal fair learning) Let X̃, X̃ ′ ∈
{X̃ ∈ D|X : X̃ ⊥ Z}. If σ(X̃ ′) ⊂ σ(X̃), then

||E(Y |X,Z)− E(Ȳ |X̃)||22 ≤ ||E(Y |X,Z)− E(Ȳ ′|X̃ ′)||22 (61)

where Ȳ and Ȳ ′ satisfy E(Ȳ |X̃) = E(Y |X̃, Z) and E(Ȳ ′|X̃ ′) = E(Y ′|X̃ ′, Z).

Proof See Appendix C.
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Therefore, it is clear that our optimal choice of X̃ is the one that generates the finest
sigma-algebra while satisfying X̃ ⊥ Z. The following technical lemma shows that the
barycenter of {Xz}z∈Z is one of the optimal choices.

Lemma 5.2 (X̄ generates the finest sigma-algebra among admissible) If {L(Xz)}z
⊂ P2,ac(X ) λ-a.e., then σ((X̄, Z)) = σ((X,Z)). In addition, σ(X̃) ⊂ σ(X̄) for all X̃ ∈
{X̃ ∈ D|X : X̃ ⊥ Z}.

Proof See Appendix C.

Therefore, Lemma 5.1, Lemma 5.2, and the choice of Ȳ above together provide a char-
acterization of the solution to Problem 3.

Lemma 5.3 (Characterization of optimal fair data representation) Let X̄ and

E(Y |X̄, Z) denote the respective Wasserstein barycenter of {Xz}z and {E(Yz|X̄)}z. If
{L(Xz)}z ⊂ P2,ac(X ) and {L(E(Y |X̄, Z)z)}z ⊂ P2,ac(Y), then the following are equiva-
lent:

• (X̃, Ỹ ) ∈ arg min(X̃,Ỹ )∈D{||Y − E(Ỹ |X̃)||22 : X̃,E(Ỹ |X̃, Z) ⊥ Z}.

• (X̃, Ỹ ) ∈ {(X̃, Ỹ ) ∈ D : σ(X̃) = σ(X̄),E(Ỹ |X̄) = E(Y |X̄, Z)}.

In Lemma 5.3, the choice of X̄ is not unique. In fact, any random variable X̃ that
satisfies σ(X̃) = σ(X̄) can be our choice according to Lemma 5.1 and Lemma 5.2. This
is because any X̃ that satisfies the above conditions gives E(Y |X̃) = E(Y |X̄). For both
theoretical and computational convenience, we fix our choice to be X̄ from now on.

Remark 5.1 (Application of the optimal fair representation characterization to
algorithm design) In theory, we should always take X̄ because we prove that X̄ generates
the finest sigma-algebra among all the admissible X̃ that is independent of Z. Especially
when working with data sets with clear high-dimensional structure such as image data, one
should apply more complicated models to estimate the optimal transport map instead of
using affine maps. But when working with data with less high-dimensional structure such
as tabular data, we hope to take advantage of the simplicity, robustness, and interpretability
of linear maps in practice and hence restrict the admissible transport maps to be affine,
as mentioned in Remark 3.1. Therefore, we showed that the pseudo-barycenter X†, which
is equal to X̄ in the Gaussian case and solves a relaxed version of the barycenter problem
in the general distribution case, can be achieved using optimal affine maps. As a result,
we apply X† in the algorithm design and experiments. Still, if there is no concern about
over-fitting or computational cost, it is recommended for strict statistical parity guarantee
purposes to compute X̄ to improve the result.

Now, it remains to find Ȳ to obtain the optimal fair data representation characterized
by Lemma 5.3. In general, it is difficult to find E(Y |X̄, Z), not to mention find a Ỹ

satisfying E(Ỹ |X̄) = E(Y |X̄, Z). The key observation here is that if the Brenier’s maps
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{Ty|X̄(·, z)}z that push {E(Yz|X̄)}z forward to E(Y |X̄, Z) are affine, then a straight-forward

choice in Ȳ is {Ty|X̄(Yz, z)}z∈Z = Ty|X̄(Y, Z). This step is the key to circumvent the post-
processing nature. Therefore, following the same derivation of (41) from (1) in Section
3 to guarantee feasibility of affine maps, we relax the fairness constraint to the first two
moments in Problem 3, and show a pseudo-barycenter pair provides us an exact solution to
Problem 3 in the Gaussian marginal case and the optimal affine estimation in the general
marginal case.

5.2 Fairness with Gaussian Marginals

Assume {(Xz, Yz)}z to be non-degenerate Gaussian vectors λ-a.e. and define the following:

Definition 5.1 (Independent pseudo-barycenter: X†)

X† := Tx(X,Z), (62)

where

Tx(·, z) := Σ
− 1

2
Xz

(Σ
1
2
Xz

ΣΣ
1
2
Xz

)
1
2 Σ
− 1

2
Xz

(63)

and Σ is the unique solution to ∫
Z

(Σ
1
2 ΣXzΣ

1
2 )

1
2dλ(z) = Σ. (64)

Definition 5.2 (Dependent pseudo-barycenter: Y †)

Y † := Ty|X†(Y,Z) (65)

where

Ty|X†(·, z) := Σ
− 1

2

Yz |X†(Σ
1
2

Yz |X†ΣΣ
1
2

Yz |X†)
1
2 Σ
− 1

2

Yz |X† (66)

with ΣYz |X† := ΣYzX†Σ−1
X†Σ

T
YzX†, and Σ is the unique solution to∫

Z
(Σ

1
2 ΣYz |X†Σ

1
2 )

1
2dλ(z) = Σ (67)

Here, to obtain (an estimation of) the solution to equations (67) and (64), we apply the
iterative method (33) in Remark 2.6 when designing our algorithm in Section 6.

Since it is a direct result of Lemma 2.3 that X† = X̄, the goal is now to show that

E(Y †|X̄) = E(Y |X̄, Z), (68)

and therefore by Lemma 5.3 to conclude E(Y †|X†) = E(Y †|X̄) indeed minimizes the esti-
mation error while staying independent of Z.

To prove the above equation and justify the definition of the pseudo-barycenter, we
need the following results: (1) existence and uniqueness of both X̄ and E(Y |X̄, Z); (2)
affinity of the corresponding Brenier’s maps Tx(·, z) and Ty|X†(·, z). By assumption, we

have {L(Xz)}z ⊂ P2,ac(X ), and {L(E(Yz|X̄))}z ⊂ P2,ac(Y). The existence and uniqueness
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then follow directly from Lemma 2.1. It remains to show that the corresponding Brenier’s
maps are affine. But by Lemma 2.3, if {Xz}z and {E(Yz|X̄)}z both are from some location-
scale family, then the barycenters are also from the corresponding location-scale family and
the Brenier’s maps are affine.

The following result shows that if {Yz}z come from the same location-scale family, then
{E(Yz|X̄)}z also belongs to the same location-scale family.

Lemma 5.4 (Conditional expectation preserves location-scale family) Assume that
{Yz}z ⊂ F(P0) for some P0, then {E(Yz|X̄)}z ⊂ F(L(E(Yz|X̄))) for any z.

Proof This follows immediately from the existence of positive definite affine transforma-
tions among {Yz}z, Lemma 2.2, and the linearity of conditional expectation.

Therefore, given {(Xz, Yz)}z being Gaussian vectors, we have {(X̄, Yz)} being Gaussian
vectors, which further implies that {E(Yz|X̄)}z are Gaussian vectors by Lemma 5.4. (We
note that it is not necessary to apply Lemma 5.4 to show {E(Yz|X̄)}z are Gaussian because
it is a well-known result in probability theory, but the lemma becomes necessary later in
the case of general marginal distributions.)

Lemma 5.5 (Solution to the optimal fair data representation in the Gaussian
case) Let {(Xz, Yz)}z be Gaussian vectors satisfying Σz � 0 λ-a.e., then there exists a

unique barycenter pair (X̄,E(Y |X̄, Z)) which are Gaussian vectors characterized by the
covariance matrix being the unique solution to∫

Z
(Σ

1
2SΣ

1
2 )

1
2dλ(z) = Σ (69)

for S ∈ {ΣXz ,ΣYz |X†} respectively, where ΣYz |X† = ΣYzX†Σ−1
X†Σ

T
YzX†. Moreover, {Tx(·, z)}z

and {Ty|X†(·, z)}z which push Xz and E(Yz|X̄) respectively to X̄ and E(Y |X̄, Z) are affine
with closed-form (63) and (66). As a result, for λ− a.e. z ∈ Z, we have

E(Y |X̄, Z)z = Ty|X†(E(Yz|Tx(Xz, z)), z) = E(Ty|X†(Yz, z)|Tx(Xz, z)) (70)

Proof The existence, uniqueness, and Gaussianity of the barycenter follow from Lemma
2.3, whereas the affinity of corresponding Brenier’s maps results from Lemmas 5.4 and 2.2.

The above result provides us a theoretical foundation to apply the affine maps {Tx(·, z)}z
and {Ty|X†(·, z)}z to {Xz}z and {Yz}z respectively as a pre-processing step before the
training step.

Furthermore, notice that although Ty|X†(E(Yz|X̄), z) = E(Yz|X̄, Z)z λ-a.e. by construc-
tion, {Ty|X†(Yz, z)}z does not agree in general: for z1 6= z2,

Ty|X†(Yz1 , z1) 6= Ty|X†(Yz2 , z2). (71)

The pseudo-barycenter solves the disagreement by merging them directly. Despite of the
differences among {Ty|X†(Yz, z)}z, the L2 projections of them on σ(X̄) agree. Therefore, a

direct merging of {Ty|X†(Yz, z)}z is simply: Ty|X†(Y,Z) = Y †. It follows:
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E(Y †|X†) = E(Y †|X̄) = E(Ty|X†(Y, Z)|X̄)

=

∫
Z
E(Ty|X†(Yz, z)|X̄)dλ(z)

=

∫
Z
Ty|X†(E(Yz|X̄), z)dλ(z)

=

∫
Z
Ty|X†(E(Y |X̄, Z)z, z)dλ(z)

=

∫
Z
E(Y |X̄, Z)zdλ(z) = E(Y |X̄, Z),

where the second equality follows from disintegration, the third from linearity of Ty|X̄ , and

the forth from E(Yz|X̄) = E(Y |X̄, Z)z. Therefore, we have proved a result that justifies the
definition of the pseudo-barycenter:

Theorem 5.1 (Justification of Y † in Gaussian case) (X†, Y †) is a solution to Prob-
lem 3

inf
(X̃,Ỹ )∈D

{||Y − E(Ỹ |X̃)||22 : X̃,E(Ỹ |X̃, Z) ⊥ Z}, (72)

if {(Xz, Yz)}z are non-degenerate Gaussian vectors.

5.3 The Case of General Distribution

In practice, one should not always expect the sensitive marginal data distributions to be
Gaussian, and the results we derived under the assumption of Gaussianity may not apply
to the general marginal distribution case. Instead, we solve the following relaxed optimal
fair data representation problem:

inf
(X̃,Ỹ )∈D

{||Y − E(Ỹ |X̃)||22 : mX̃ ,mỸ |X̃ ,ΣX̃ ,ΣỸ |X̃ ⊥ Z}, (73)

where mỸ |X̃ := E(E(Ỹ |X̃, Z)) and similarly for ΣỸ |X̃ , to find the optimal affine estimation
of the true solution to the original Problem 3. The fairness guarantee of the affine estimation
is the same as mentioned in Remark 3.2.

Now, we justify the pseudo-barycenter pair (X†, Y †) in the case of general distributions
by proving it is a solution to the relaxed optimal fair L2-objective supervised learning
problem (73). To start, notice that (X†, Y †) ∈ D and satisfies mX† ,mY †|X† ,ΣX† ,ΣY †|X† ⊥
Z by construction and therefore is admissible.

Remark 5.2 (Finest sigma-algebra vs. most variance) Due to the relaxation, the
admissible X̃ ∈ D|X are no longer required to be independent of Z. Furthermore, without
the assumption of Gaussianity, X† is no longer equal to X̄. As a result, although one can
still prove σ((X,Z)) = σ((X†, Z)) by following the same argument in the proof of Lemma
5.2 as in the Gaussian case, but this fact now cannot imply σ(X̃) ⊂ σ(X†) due to the lack
of independence condition. Instead, the present work shows that Var(X̃) ≤ Var(X†) for all
admissible X̃ ∈ D|X , which in general implies σ(X̃) ⊂ σ(X†). For example, whenever set
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inclusion forms an order between σ(X̃) and σ(X†), then it is true that Var(X̃) ≤ Var(X†)
implies σ(X̃) ⊂ σ(X†). As a result, we still fix X† as our optimal choice among all the
admissible X̃ ∈ D|X .

In addition, for any Σ � 0, define

TΣ,x := Σ
− 1

2
Xz

(Σ
1
2
Xz

ΣΣ
1
2
Xz

)
1
2 Σ
− 1

2
Xz

(74)

TΣ := Σ
− 1

2

Yz |X†
z
(Σ

1
2

Yz |X†
z
ΣΣ

1
2

Yz |X†
z
)

1
2 Σ
− 1

2

Yz |X†
z

(75)

where Σ
Yz |X†

z
:= E((E(Yz|X†z) − mYz)(E(Yz|X†z) − mYz)

T ) and E(Yz|X†z) := E(Y |X†, Z)z.

Now, the goal is to show (X†, Y †) is indeed a solution to the relaxed problem (73), under
the following two assumptions:

1 Set inclusion forms an order between X† and all X̃ ∈ {X̃ ∈ D|X : mX̃ ,ΣX̃ ⊥ Z}.

2 Σ
Yz |X†

z
= Σ

YzX
†
z
Σ−1

X†
z
ΣT
YzX

†
z
.

Remark 5.3 (Applicability of the assumptions) For the first assumption, Lemma 5.6
below guarantees that X† generates the finest sigma-algebra among all the admissible sigma-
algebras. In other words, for any admissible X̃, either it generates a coarser sigma-algebra
than σ(X†) or the two sigma-algebras do not contain each other. In other words, there is
no admissible X̃ such that σ(X†) ⊂ σ(X̃).

The second assumption allows us to directly compute the covariance matrix of E(Yz|X†z)
from Σ

YzX
†
z

and Σ
X†
z
. The second assumption is necessary to keep our pre-processing ap-

proach. In general, E(Yz|X†z) is not a linear function of X†z as in the Gaussian case. When
the second assumption is not true, our pre-processing approach uses Σ

YzX
†
z
Σ−1

X†
z
ΣT
YzX

†
z

as our

best affine estimate of Σ
Yz |X†

z
.

To that end, we need the following result on the relationship among the variance of the
original distribution, the variance of the barycenter, and the Wasserstein distance.

Lemma 5.6 (Variance reduction of Wasserstein barycenter [39]) Given X satisfies
{L(Xz)}z ⊂ P2,ac(X ) and X̄ satisfies L(X̄) being the Wasserstein barycenter of {L(Xz)},
it follows that

||X − E(X)||22 − ||X̄ − E(X̄)||22 =

∫
Z
W2

2 (L(Xz),L(X̄))dλ(z) (76)

As a result, we obtain the following:

Lemma 5.7 (X† Contains the largest variance among admissible) X† is the unique
solution to

sup
X̃∈D|X

{Var(X̃) : mX̃ ,ΣX̃ ⊥ Z}. (77)
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Proof To simplify notation, by the invariance of variance under translation and Lemma
2.1, we can assume without loss of generality that mXz = 0 λ−a.e. in the rest of the proof,
which only deal with variance and Wasserstein distance. Now, for λ− a.e. z ∈ Z, we have

||Xz − TΣ,x(Xz, z)||22 =||Xz||22 + ||TΣ,x(Xz, z)||22 − 2〈Xz, TΣ,x(Xz, z)〉2
= Trace(ΣXz) + Trace(Σ)− 2E(XT

z TΣ,x(Xz, z))

= Trace(ΣXz) + Trace(Σ)− 2〈TΣ,x,ΣXz〉F
= Trace(ΣX′

z
) + Trace(Σ)− 2〈TΣ,x,ΣX′

z
〉F

=||X ′z − TΣ,x(X ′z, z)||22
=W2

2 (L(X ′z),L(TΣ,x(X ′z)))

where X ′ ∼ N (mX ,ΣX) is the Gaussian analog of X and 〈·, ·〉F is the Frobenius inner
product.

Similarly, by the disintegration theorem, we also have for S ∈ {X,X†}

Var(S) = ||S||22 =

∫
Z
||Sz||22dλ =

∫
Z

Trace(ΣSz)dλ. (78)

Therefore, it follows from Lemma 5.6 that

Var(X)−Var(X†) = Var(X ′)−Var((X ′)†)

= Var(X ′)−Var(X̄ ′)

=

∫
Z
W2

2 (L(X ′z),L(X̄ ′))dλ(z).

Finally, assume there exists a X̃ ∈ D|X such that Var(X†) ≤ Var(X̃). It follows
Var(X ′)−Var(X̃ ′) ≤ Var(X ′)−Var((X ′)†) = Var(X ′)−Var(X̄ ′). But since mX̃′ ,ΣX̃′ ⊥ Z,

we have X̃ ′ ⊥ Z as X̃ ′ is Gaussian by construction. In other words, there exists a X̃ ′ ⊥ Z
such that ∫

Z
W2

2 (L(X ′z),L(X̃ ′))dλ(z) ≤
∫
Z
W2

2 (L(X ′z),L(X̄ ′))dλ(z) (79)

which contradicts the uniqueness of X̄ ′.

The above lemma shows that Var(X̃) ≤ Var(X†) for all admissible X̃ ∈ D|X satisfies
mX̃ ,ΣX̃ ⊥ Z, which together with the first assumption imply σ(X̃) ⊂ σ(X̄) in practice.

Therefore, from now on, we fix the choice of X̃ to be X† and prove the general characteri-
zation result based on the two assumptions listed above.

It remains to justify the choice of Y †. To do so, we need the following lemma, which
provides a multi-marginal characterization of the optimal affine map.
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Lemma 5.8 (Projection Lemma for conditional expectations) Given m
Yz |X†

z
= 0

and Σ
Yz |X†

z
� 0 λ-a.e., for any Σ � 0,

inf
E(Ỹ |X†):Σ

Ỹz |X
†
z

=Σ

∫
Z
W2

2 (L(E(Yz|X†z)),L(E(Ỹz|X†z)))dλ(z) (80)

admits a unique solution, denoted by Y †Σ, that has the form

Y †Σ := TΣ(Y, Z) (81)

where TΣ(·, z) := Σ
− 1

2

Ỹz |X†
z
(Σ

1
2

Ỹz |X†
z
ΣΣ

1
2

Ỹz |X†
z
)

1
2 Σ
− 1

2

Ỹz |X†
z

Proof This is a direct corollary from Lemma 3.3.

Finally, we are ready to prove the justification of the pseudo-barycenter in the case of
general distributions.

Theorem 5.2 (Justification of (X†, Y †) in general distribution case) E(Y †|X†) is a
solution to

inf
(X̃,Ỹ )∈D

{||Y − E(Ỹ |X̃)||22 : mX̃ ,mỸ |X̃ ,ΣX̃ ,ΣỸ |X̃ ⊥ Z} (82)

under the assumptions: (1) set inclusion forms an order between X† and all X̃ ∈ {X̃ ∈
D|X : mX̃ ,ΣX̃ ⊥ Z}; and (2) Σ

Yz |X†
z

= Σ
YzX

†
z
Σ−1

X†
z
ΣT
YzX

†
z
.

Proof The choice of X† follows from the first assumption and Lemma 5.7. It remains to
show that Y † is a solution to

inf
Ỹ ∈D|Y

{||Y − E(Ỹ |X†)||22 : mỸ |X† ,ΣỸ |X† ⊥ Z} (83)

Fix Σ � 0 arbitrary, we have

||Y − E(Y †Σ|X
†)||22 − ||Y − E(Y |X†)||22 =

∫
Z
||E(Yz − Y †Σ,z|X

†
z)||22dλ(z) (84)

and it follows from Lemma 5.8 that

∫
Z
||E(Yz − Y †Σ,z|X

†
z)||22dλ(z) =

∫
Z
W2

2 (L(E(Yz|X†z)),L(TΣ(E(Yz|X†z), z))dλ(z)

= min
ν:Σνz=Σ

∫
Z
W2

2 (L(E(Yz|X†z)), νz)dλ(z)

Therefore, (73) boils down to the following:

inf
Σ�0
{
∫
Z
||E(Yz − Y †Σ,z|X

†
z)||22dλ(z)}. (85)
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Finally, notice that∫
Z
||E(Yz − Y †Σ,z|X

†
z)||22dλ(z)

=

∫
Z
||E(Yz|X†z)− TΣ(E(Yz|X†z), z)||22dλ(z)

=

∫
Z
||E(Yz|X†z)||22 + ||TΣ(E(Yz|X†z), z)||22 − 2〈E(Yz|X†z), TΣ(E(Yz|X†z), z)〉2dλ(z)

=

∫
Z

Trace(Σ
Yz |X†

z
) + Trace(Σ)− 2E(E(Yz|X†z)TTΣ(E(Yz|X†z), z))dλ(z)

=

∫
Z

Trace(Σ
Yz |X†

z
) + Trace(Σ)− 2〈TΣ,ΣYz |X†

z
〉Fdλ(z)

=

∫
Z
||E(Yz|X†z)′ − TΣ(E(Yz|X†z)′, z)||22dλ(z)

where 〈·, ·〉F denotes the Frobenius inner product and X ′ ∼ N (mX ,ΣX) denotes the Gaus-
sian analog of X. It follows from the definition of Y † and Lemma 2.3 that

∫
Z ||E(Yz −

Y †z |X†)||22dλ(z) is the lower bound of (85). The proof is complete.

To conclude, given an arbitrary L2-objective supervised learning model that aims to esti-
mate conditional expectation, the training via (X†, Y †) results in an estimate of E(Y |X̄, Z).
In other words, any supervised learning model trained via (X†, Y †) is guaranteed to be in-
dependent of Z in the location-scale family marginal case (or, to have first two moments
independent of Z in the general marginal case), while resulting in the minimum prediction
error among all the admissible functions of some specific model due to the training step.
Here, the assumption is that the test sample distribution is the same as the training sample
distribution, which is a ubiquitous assumption for machine learning.

5.4 Optimal Fair Data Representation at the Pareto Frontier

Finally, we extend the pseudo-barycenter pair, which is the solution to the optimal fair
data representation, to the fair data representation at the Pareto frontier using McCann
interpolation via a similar approach as we derived the post-processing Pareto frontier in
Section 4. But notice a direct application of Theorem 4.1 does not work here because there
is no direct interpolation between E(Y |X,Z) and E(Y |X̄, Z) due to the change of the un-
derlying sigma-algebra. Therefore, we apply a diagonal argument, Remark 5.4, to estimate
the interpolation between E(Y |X,Z) and E(Y |X̄, Z) and thus the fair data representation
at the Pareto frontier.

To start, we derive the following post-processing optimal trade-off result directly from
Theorem 4.1 for a fixed choice of X̃ ∈ {X̃ ∈ D|X : X̃ ⊥ Z}. For any f : X ×Z → Y, define
Ly|X̃ , Dy|X̃ , and Vy|X̃ as follows:

Ly|X̃(f(X̃, Z)) := (

∫
Z
||E(Yz|X̃)− f(X̃, Z)z||22dλ(z))

1
2 (86)

Dy|X̃(f(X̃, Z)) := (

∫
Z2

W2
2 (f(X̃, Z)z1 , f(X̃, Z)z2)dλ(z1)dλ(z2))

1
2 . (87)
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To simplify notation, for any T ′ : Y × Z → Y, we also define the following:

Ly|X̃(T ′) := (

∫
Z
||E(Yz|X̃)− T ′z(E(Yz|X̃))||22dλ(z))

1
2 (88)

Dy|X̃(T ′) := (

∫
Z2

W2
2 ((T ′z1)]L(E(Yz1 |X̃)), (T ′z2)]L(E(Yz2 |X̃)dλ(z1)dλ(z2))

1
2 . (89)

Also, let T denote the optimal transport map from {E(Yz|X̃)}z to the barycenter E(Y |X̃, Z),
let T (t), t ∈ [0, 1] be the McCann interpolation, and define

Vy|X̃ := Ly|X̃(T ) = (

∫
Z
||E(Yz|X̃)− Tz(E(Yz|X̃))||22dλ(z))

1
2 (90)

= (

∫
Z
||E(Yz|X̃)− E(Y |X̃, Z)||22dλ(z))

1
2 . (91)

Then the result below follows directly similar to the proof of Theorem 4.1.

Corollary 5.1 (Pareto frontier for conditional expectation on fixed sigma-algebra)
Given Ly|X̃ , Dy|X̃ , and Vy|X̃ defined above, we have

Vy|X̃ ≤ Ly|X̃(f(X̃, Z)) +
1√
2
Dy|X̃(f(X̃, Z)) (92)

where equality holds if and only if f(X̃, z) = T (t)(E(Yz|X̃), z) λ-a.e. for t ∈ [0, 1] as

Ly|X̃(T (t)) = tLy|X̃(T (0)) = tVy|X̃ , (93)

1√
2
Dy|X̃(T (t)) =

1√
2

(1− t)Dy|X̃(T (0)) = (1− t)Vy|X̃ . (94)

The above result shows that by fixing X̃ ∈ {X̃ ∈ D|X : X̃ ⊥ Z}, the McCann interpo-

lation between Id and Ty|X̃ yields the Pareto frontier from E(Y |X̃, Z) to E(Y |X̃, Z), which

is a weak version of the true frontier from E(Y |X,Z) to E(Y |X̃, Z). The only difficulty re-
maining is to coarsen the underlying sigma-algebra from σ(X,Z) to σ(X̄). But by Remark
5.2, we know that one can coarsen the sigma-algebra by reducing the variance. Therefore,
we apply a diagonal argument to estimate the McCann interpolation between (X,Y ) and
(X̄, Ȳ ).

Remark 5.4 (Diagonal estimate of the post-processing Pareto frontier) The key
observation is that the optimal affine transport map that pushes (X,Y ) forward to (X†, Y †)
is the pair (Tx, Ty|X̄). Therefore, McCann interpolation between Id and Tx can optimally

reduce variance and thereby coarsen σ((X,Z)) to σ(X†), whereas the interpolation betwen
Id and Ty|X̄ forms an estimation of the geodesic path between Y and Y †. Therefore, the
present work matches the two interpolations diagonally

(Tx(t), Ty|X̄(t)) := ((1− t)Idx + tTx, (1− t)Idy + tTy|X̄),

to estimate the true optimal fair data representation at the Pareto frontier.
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Finally, since X† and E(Y †|X†) are the estimation of X̄ and E(Y |X̄, Z), respectively,
as shown in the last section, it follows from Corollary 5.1 and Remark 5.4 that

E(Ty|X̄(t)(Y, Z)|Tx(t)(X,Z)), t ∈ [0, 1] (95)

provides a pre-processing estimate of the Pareto frontier from E(Y |X,Z) to E(Y |X̄, Z) that
is characterized by Theorem 4.1.

6. Algorithm Design

In this section, we propose two algorithms based on the theoretical results above. Algo-
rithm 2 is designed for the fair learning outcome in the post-processing approach and for
the dependent variable in fair data representation, whereas Algorithm 1 is designed for the
independent variable in fair data representation.

1. For practitioners who want to generate fair learning outcomes along the Pareto fron-
tier, Algorithm 2 takes the learning outcomes marginals {f(X,Z)z}z as input and out-
puts the learning outcomes at (the optimal affine estimation of) the post-processing
estimation of the Pareto frontier: {f(X,Z)(t)}t∈[0,1], which is the Wasserstein geodesic
paths from the original learning outcome, f(X,Z)(0), to the estimate of the optimal
fair learning outcome, f(X,Z)(1). Here, f(X,Z)(1) is the best estimate of the optima
fair learning outcome based on the provided learning outcome {f(X,Z)z}z.

2. For practitioners who want to generate a fair data representation, Algorithm 1 and Al-
gorithm 2 take in respectively the marginal independent and dependent data: {Xz}z
and {Yz}z, then outputs respectively the independent and dependent data representa-
tions along the Wasserstein geodesics from the marginals to their pseudo-barycenter:
{(X†(t), Y †(t))}t∈[0,1]. So that any conditional expectation estimation supervised

learning model trained via {(X†(t), Y †(t))}t∈[0,1] results in (an diagonal affine esti-
mation of) the learning outcome at the Pareto frontier.

The choice of the Frobenius norm in Step 1 is due to computational efficiency. Any
matrix norm would work.

Remark 6.1 (Solution to alternative fair data representation constraint) In Sec-
tion 1.3, the present work shows two alternative fair data representation constraints: (1)
(X̃, Ỹ ) ⊥ Z and (2) X̃ ⊥ Z, which offer different trade-offs between fairness protection and
utility. If a practitioner applies the alternative constraint, the proposed algorithms can be
applied to generate (the optimal affine estimation of) corresponding fair data representation
as the following:

1 For (X̃, Ỹ ) ⊥ Z, one applies Algorithm 1 to both {(Xz, Yz)}z. This alternative is
especially useful when practitioners or data publishers do not know which features
would be chosen as independent or dependent.

2 For X̃ ⊥ Z, one applies Algorithm 1 to {Xz}z and leaves {Yz} untouched.
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Algorithm 1: Pseudo-Barycenter Geodesics for Independent Variable

Input: marginal data sets {Xz}z, stop criterion ε;
Step 1: Find the optimal barycenter covariance;
Initialization: δ =∞, Σ = rand or Id
while δ > ε do

Σnew = 1
|X|
∑

z |Xz|(Σ
1
2 ΣXzΣ

1
2 )

1
2 ; // (33)

δ = ||Σ− Σnew||F ;
Σ = Σnew;

end
Step 2: Find the optimal affine transport maps;

Tz = Σ
− 1

2
Xz

(Σ
1
2
Xz

ΣΣ
1
2
Xz

)
1
2 Σ
− 1

2
Xz

; // (63)

Step 3: Find the geodesic path to independent pseudo-barycenter;

X†z(t) = Tz(t)(Xz −mXz) +mX ; // (62)
where Tz(t) := (1− t)Id+ tTz, t ∈ [0, 1]; // (55)

Step 4 (optional): For binary rows Xi∈I , reshape (X†(t))i to binary by
randomized rounding for all i ∈ I;

For all Xi binary: p(t) = (X†
z (t))i

max((X†
z (t))i)−min((X†

z(t))i)
, (X†z(t))i ∼ Bernoulli(p(t));

Step 5 (optional): If sensitive information needs to be attached, merge the
marginals back with mitigating Z;

X†z(t) = (Xz(t), z(t)) where z(t) = (1− t)(z −mZ) +mZ , t ∈ [0, 1]

Output: {{X†z(t)}z∈Z}t∈[0,1]
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Algorithm 2: Dependent (or Post-processing) Pseudo-Barycenter Geodesics

Input: marginal data sets {Yz}z (post-processing: {f(X,Z)z}z), stop criterion ε;
Step 1: Find the optimal barycenter covariance;
Initialization: δ =∞, Σ = rand or Id
while δ > ε do

Σnew = 1
|Y |
∑

z |Yz|(Σ
1
2 Σ

Yz |X†
z
Σ

1
2 )

1
2 // (33)

(post-processing: Σnew = 1
|Y |
∑

z |f(X,Z)z|(Σ
1
2 Σf(X,Z)zΣ

1
2 )

1
2 );

δ = ||Σ− Σnew||F ;
Σ = Σnew;

end
Step 2: Find the optimal affine transport maps;

Tz = Σ
− 1

2

Yz |X†
z
(Σ

1
2

Yz |X†
z
ΣΣ

1
2

Yz |X†
z
)

1
2 Σ
− 1

2

Yz |X†
z

// (66)

(post-processing: Tz = Σ
− 1

2

f(X,Z)z
(Σ

1
2

f(X,Z)z
ΣΣ

1
2

f(X,Z)z
)

1
2 Σ
− 1

2

f(X,Z)z
); // (38)

Step 3: Find the geodesic path to dependent pseudo-barycenter;

Y †z (t) = Tz(t)(Yz −mYz) +mY // (65)
where Tz(t) := (1− t)Id+ tTz, t ∈ [0, 1] // (55)
(post-processing: f(X,Z)z(t) = Tz(t)(f(X,Z)z −mf(X,Z)z) +mf(X,Z)); // (37)
Step 4 (optional): For binary rows Yi∈I (post-processing: (f(X,Z))i∈I), reshape
(Y †(t))i (post-processing: (f(X,Z)(t))i∈I) to binary by randomized rounding for
all i ∈ I;

For all Yi binary: p(t) = (Y †
z (t))i

max((Y †
z (t))i)−min((Y †

z (t))i)
, (Y †z (t))i ∼ Bernoulli(p(t));

Output: {{Y †z (t)}z∈Z}t∈[0,1] (post-processing: {{f(X,Z)z(t)}z∈Z}t∈[0,1])
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7. Empirical Study: Fair Supervised Learning

In this section, we present numerical experiments with the proposed Algorithms 1 and 2
from Section 6. The proposed fair data representation method is bench-marked against two
baselines:

1. the prediction model trained via the original data (denoted by “supervised learning
name” in the experiment result figure below): supervised learning models trained
via data including the sensitive variable provide an estimation of statistical disparity
resulting from both disparate treatment and impact.

2. the prediction model trained via data excluding the sensitive variable (denoted by
“supervised learning name + Excluding Z”): supervised learning models trained via
data excluding the sensitive variable provide an estimation of statistical disparity
resulting from only disparate impact.

7.1 Benchmark Data and Comparison Methods

For comparison, we implement the following known methods for different types of supervised
learning tests:

1. For classification test, the present work compares the current state-of-the-art pre-
processing methods [13, 44] (“supervised learning name + Calmon or Zemel”, the
later is also known as “Learning Fair Representation”) with the proposed fair data
representation methods (“supervised learning name + pre-proc. Pareto frontier Est.
or Pseudo-barycenter”).

2. For uni-variate regression test, we compare the post-processing Wasserstein barycenter
based fair regression [18] (“supervised learning name + Chzhen”) with the proposed
post-processing pseudo-barycenter methods (“supervised learning name + post-proc.
Pareto frontier Est. or Pseudo-barycenter”) and the fair data representation methods.

3. For multi-variate supervised learning test, we compare the post-processing pseudo-
barycenter methods with the fair data representation methods.

The reasons for this choice are as follows: (1) the known attempts via the pre-processing
approach are only available for fair classification; (2) the post-processing Wasserstein barycen-
ter based methods on fair classification are analogous to the one on fair regression, which is
shown to outperform other in-processing or post-processing methods in reducing discrimina-
tion while preserving accuracy; (3) there exists no practical attempt along the Wasserstein
characterization approach to multi-dimensional supervised learning due to the computa-
tional complexity of finding the barycenter and the optimal transport maps.

We adopt the following metrics of accuracy and discrimination that are frequently used
in fair machine learning experiments on various data sets: (1) For fair classification, the
prediction accuracy, and statistical disparity are quantified respectively by AUC (area under
the Receiver Operator Characteristic curve) and

Definition 7.1 (Classification discrimination)

Discrimination = max
z,z′∈Z

∣∣∣ P(Ŷz = 1)

P(Ŷz′ = 1)
− 1
∣∣∣
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as defined in [13]. (2) For univariate supervised learning, the prediction error and statistical
disparity are quantified respectively by MSE (mean squared error, equivalent to the squared
L2 norm on sample probability space) and KS (Kolmogorov-Smirnov) distance as in [18] for
indirect comparison purpose. So that readers can compare the proposed methods indirectly
with other methods that are tested in [13, 18, 44] and their references. (3) For univariate and
multivariate supervised learning, the prediction error and statistical disparity are quantified
respectively by L2 andW2 (Wasserstein) distances, which are the quantification the current
work adopts to prove the Pareto frontier in the above sections.

In addition, we perform tests on four benchmark data sets: CRIME, LSAC, Adult,
COMPAS, which are also frequently used in fair learning experiments. A brief summary is
given below. For all the test results, we apply 5-fold cross-validation with 50% training and
50% testing split, except for 90% training and 10% testing split in the linear regression test
on LSAC due to the high computational cost of the post-processing Wasserstein barycenter
method [18]. Therefore, interested readers can also compare the pseudo-barycenter test
results indirectly to other methods tested in [13, 18].

Data set Tests Data size dim(X) dim(Y )

UCI Adult logit regression, random forest 162805 16 1

COMPAS logit regression, random forest 26390 7 1

LSAC linear regression, ANN 20454 9 1

CRIME linear regression, ANN 1994 97 1

CRIME linear regression, ANN 1994 87 11

• Communities and Crime Data Set (CRIME) contains the social, economic, law exec-
utive, and judicial data of communities in the United States with 1994 examples [35].
The task of univariate learning is to predict the number of crimes per 105 population
using the rest of the information on the data set. Here, race is the sensitive infor-
mation and, for (indirect) comparison purposes, we made race a binary categorical
variable of whether the percentage of the African American population (racepctblack)
is greater than 30%.

In multivariate supervised learning on CRIME, we keep the same sensitive variable.
But the learning task is to predict the following vector that represents the local housing
and rental market information: (low quartile occupied home value, median home
value, high quartile home value, low quartile rent, median rent, high quartile rent,
median gross rent, number of immigrants, median number of bedrooms, number of
vacant households, number of crimes).

• LSAC National Longitudinal Bar Passage Study data set (LSAC) contains social,
economic, and personal data of law school students with 20454 examples [42]. The
goal of univariate models is to predict the students’ GPA using other information
on the data set. Here, race is the sensitive variable and, for (indirect) comparison
purposes, we make it a binary variable on whether the student is non-white.

• UCI Adult Data Set (Adult) contains the 1994 Census data with 162805 examples
[7]. The goal is to predict the binary categorization (whether gross annual income is

48



Fair Data Representation for Machine Learning at the Pareto Frontier

greater than 50k) using age, education years, and gender, where gender is the sensitive
information.

• Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is
a benchmark set of data from Broward County, Florida for algorithmic bias studies
[5]. Following [13], the goal here is to predict whether an individual would commit
any violent crime while race is the sensitive binary variable (African-American and
Caucasian).

7.2 Numerical Result

In this subsection, we summarize the experimental results3.

The classification test result is summarized in Figure 3 below. Here, the vertical and
horizontal axes are AUC and Discrimination defined in Definition 7.1. That is, the more
upper-left, the better the result. The first row of Figure 3 shows the results of logistic regres-
sion (left) and random forest (right) on Adult whereas the second shows the corresponding
results on COMPAS.

3. The code for the results of our experiments is available online at: github.com/xushizhou/fair_data_

representation

49

github.com/xushizhou/fair_data_representation
github.com/xushizhou/fair_data_representation


Xu and Strohmer

Figure 3: As shown in the classification test above, the proposed fair data representation method (+ Pre-proc. Pareto
frontier Est. or Pseudo-barycenter) outperforms the other methods (+ Zemel or + Calmon) in estimating the optimal
fair learning outcome. It reduces the Discrimination metric to nearly zero while keeping the relatively high level of
AUC with both logistic regression (LR) and random forest (RF) on both Adult and COMPAS. Furthermore, fair data
representation method offers flexibility in choosing the desired trade-off while other methods only estimate a random
point near the Pareto frontier.

We note that there exists a large disparate impact in the learning outcome on COMPAS
due to the relatively small difference between the “Discrimination” of learning outcome on
the original data (LR and RF) and the outcome on the data excluding Z (LR and RF +
Excluding Z). Therefore, a further reduction of statistical disparity is needed. In contrast,
the relatively large difference in the Adult data set implies a small disparate impact. That
is, a simple exclusion of the sensitive variable Z results in a significant improvement in
fairness.

For further reduction of statistical disparity, it is clear from the experiment results on
both COMPAS and Adult that the estimation via the Wasserstein geodesics to Pseudo-
barycenter (LR and RF + Pseudo-barycenter) consistently outperforms LR and RF +
Calmon by obtaining lower Discrimination with higher AUC.

In addition, although “LR and RF + Zemel” achieves a point near the Pareto fron-
tier estimated by the proposed Pseudo-barycenter methods, the point estimation is rather
random. Hence, “+ Zemel” is not consistent in estimating the optimal fair learning out-
come (the end point of the Pareto curve). Practitioners cannot know which point on the
Pareto frontier is estimated by “+ Zemel”. In comparison, the pseudo-barycenter methods
are consistent in estimating the optimal fair learning outcome. In addition, they providef

50



Fair Data Representation for Machine Learning at the Pareto Frontier

the entire Pareto frontier, and hence offer practitioners the flexibility to choose the desired
trade-off. Moreover, the proposed method works for any model that aims to estimate con-
ditional expectation, including classification and regression, while “+ Zemel” only works
for classification.

The univariate regression test result on the LSAC and the one on CRIME are shown
respectively in Figure 4 and 5 below. Here, the vertical and horizontal axes in the first rows
are MSE and KS distance. The corresponding axes in the second row are the L2-quantified
test error and the W2 distance that quantifies the remaining statistical disparity among
sensitive groups. Therefore, the more lower-left, the better is the result in both rows. The
two supervised learning methods we use are linear regression and artificial neural networks
(ANN with 4 linearly stacked layers where each of the first three layers has 32 units all with
ReLu activation while the last has 1 unit with linear activation).

Figure 4: As shown in the univariate regression test on LSAC above, the proposed fair data representation method (+
pre-proc. Pareto frontier Est. or Pseudo-barycenter) and the post-processing pseudo-barycenter geodesics method (+
post-proc. Pareto frontier Est. or Pseudo-barycenter) achieved similar performance as the exact barycenter method
(+ Chzhen). The proposed methods outperformed “+ Chzhen” with linear regression and were exceeded with the
artificial neural network, both by a narrow margin. But the performance of the proposed methods is achieved at
0.0128% of the time costs “+ Chzhen” (see Figure 7 below). In addition, the proposed methods offer the flexibility
of choosing the desired (optimal) trade-off between utility loss (MSE or L2-loss) and statistical disparity (KS or W2

distance), whereas “+ Chzhen” only estimate the end point of the Pareto curve.

In the regression tests, post-processing Pareto frontier estimation via ANN is smooth
while the pre-processing estimation is not. Here, the smoothness is due to the McCann inter-
polation between the identity matrix and the optimal transport map in the post-processing
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approach. The non-smoothness is due to the randomness in training the neural network.
When testing fair data representations via ANN, one has to train the neural network for the
data representation at every time t ∈ [50]. Hence, the randomness in ANN training results
in the non-smoothness in the Pareto frontier estimation via fair data representations.

On the LSAC data set, the proposed methods (+ pre-proc. Pseudo-barycenter and +
post-proc. Pseudo-barycenter) obtains a similar performance as the post-processing exact
Wasserstein barycenter method (+ Chzhen): the proposed methods outperformed the exact
method in the linear regression test and were outperformed by the exact method in the non-
linear artificial neural network tests, which is consistent with our theoretical results. But
the performance of the proposed methods is achieved at 0.81 seconds on average, whereas
the average time cost of “+ Chzhen” is 6365.98 seconds (see Figure 7 below). In addition,
we gained the flexibility in choosing the desired trade-off, computational efficiency, model
selection, parameter tuning, and composition.

Figure 5: As shown above, the fair data representation method ( + pre-proc. Pareto frontier Est. or Pseudo-
barycenter) achieved the same, if not better, performance as the exact barycenter method (+ Chzhen) in estimating
the optimal learning outcome. In addition, the fair data representations method offers flexibility in choosing a desired
(optimal) trade-off between utility and fairness.

For CRIME data, the small difference between the KS of learning outcome on the
original data (LR and ANN) and the one on the data excluding the sensitive variable (LR
and ANN + Excluding Z) implies a significant disparate impact. This observation and the
multi-dimensional test below agree with the following statement in [17]: “Simply removing
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the ‘protected attribute’ is insufficient. As long as the model takes in features that are
correlated with, say, gender or race, avoiding explicitly mentioning it will do little good.”

In Figure 5, it is clear that the fair data representation methods (+ pre-proc. Pareto
frontier Est. or Pseudo-barycenter) achieved the same, if not better, performance as the
comparison method (+ Chzhen): the proposed method was outperformed by “+ Chzhen”
with linear regression and outperformed “+ Chzhen” with artificial neural network, both by
a narrow margin. But the performance of the fair data representation method is achieved
at 4.735% of the time costs “+ Chzhen.” In addition, the fair data representation method
provides (an estimation of) the entire Pareto frontier and works for multivariate supervised
learning (see Figure 6 below), whereas “+ Chzhen” only estimates the end point of the
Pareto frontier and only works in the univariate learning.

Remark 7.1 One possible explanation for the proposed method to outperform the exact
post-processing Wasserstein barycenter method (“+ Chzhen”) is the following: Although
[18] is designed specifically for univariate learning and the KS distance by matching the
sensitive marginal cumulative distribution functions, such matching on training data can
lead to over-fitting. Therefore, the resulting optimal transport map fits the training data too
well to be optimal for the test data.

Next, we show the multivariate supervised learning on CRIME data to provide a high-
dimensional baseline, to which later proposed machine learning fairness methods on high-
dimensional data can compare. The vertical and horizontal axes are the L2 test error and
the W2 distance among sensitive groups. Hence, the more lower-left, the better the result.

Figure 6: As shown above, the fair data representation method (+ pre-proc. Pareto frontier Est. or Pseudo-barycenter)
achieves similar performance to the post-processing pseudo-barycenter method (+ post-proc. Pareto frontier Est. or
Pseudo-barycenter).

Due to the relatively high dimensionality of X (87-dimensional) and Y (11-dimensional),
the probabilistic dependence and correlation between the learning outcome and the sensitive
variable Z becomes more difficult to remove. It is clear that (LR or ANN + Excluding Z)
now removes almost none of the statistical disparity compared to the learning outcome on
the original data.
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To show the difference in practical computational cost among the comparison methods,
we include the following processing time table, where the unit of time is second, and the
simulations were run on a 2019 Macbook pro with Intel i9 processor.

Figure 7: As shown in the table above, the computational cost of the pseudo-barycenter method is significantly lower
than the cost of the known post-processing methods: on average 7836 times faster on LSAC and 21 times faster
on CRIME in a single train-test cycle for a single supervised learning model. Furthermore, in model selection or
composition, the pre-processing time is a fixed one-time cost while the post-processing time is additive. (See point 4
below for a more detailed explanation)

Now, we show the major advantages of the proposed method compared to the post-
processing ones, such as [18, 28, 24]:

1. Flexibility in Trade-off: The pre-processing method provides an estimation for the
entire Pareto frontier and thereby allows practitioners to balance between prediction
error and disparity. In contrast, the known post-processing method merely estimates
the starting (left) point of the frontier.

2. Sensitive data privacy protection: The geodesics to the pseudo-barycenter allow prac-
titioners to suppress the sensitive information remaining in the data to the desired
level. That is, given the resulting suppressed data, anyone who has leaked data from
the training or decision stage can merely extract the level of sensitive information
up to the pre-determined remaining level. For example, if one chooses to suppress
as much sensitive information as possible by setting t = 1, then it follows from the
construction of dependent and independent pseudobarycenter, it is guaranteed that
any unsupervised learning method that uses only the first two moments of the sample
data distribution, such as the K-means and PCA, would be unable to extract any
information about Z from X† or fY †(X†).

3. Computational efficiency in high-dimensional learning: As summarized in Figure 7,
the computation of the pseudo-barycenter estimation of the optimal fair learning
outcome is significantly faster than the computation of the exact barycenter via the
post-processing matching cdf approach, especially on the LSAC data which has a
larger sample size.

4. Flexibility in model selection, modification, and composition: in practice, one needs
to repeat the training process multiple times to compare different supervised learning
algorithms or parameters. The proposed fair data representation method has a fixed
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pre-processing time while the processing time of post-processing methods is additive.
For example, if a practitioner needs to compare linear regression and ANN on LSAC
as shown in Figure 7 and repeat the training process N times for parameter tun-
ing or validation purpose, the total processing time for pseudo-barycenter method is
0.81 +N(0.0025 + 104.2) while the processing time for the post-processing method is
N(0.003 + 6380.61 + 105.738 + 6351.36).
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Appendix A. Appendix: Proof of Results in Section 2

A.1 Proof of Lemma 2.1

Proof

W2
2 (µ, ν) =

∫
||x− y||2dγ∗(x, y)

=

∫
||((x−mµ)− (y −mν)) + (mµ −mν)||2dγ∗(x, y)

=

∫
||(x−mµ)− (y −mν)||2dγ∗(x, y) + ||mµ −mν ||2

≥ W2
2 (µ′, ν ′) + ||mµ −mν ||2

=

∫
||x− y||2d(γ′)∗(x, y) + ||mµ −mν ||2

=

∫
||(x+mµ)− (y +mν)||2d(γ′)∗(x, y)

≥ W2
2 (µ, ν)

where γ∗ and (γ′)∗ denote the optimal transport plan for (µ, ν) and (µ′, ν ′), respectively.
The first inequality results from the fact that γ′(x, y) := γ∗(x −mµ, y −mν) ∈

∏
(µ′, ν ′),

the second inequality from γ(x, y) := (γ′)∗(x + mµ, y + mν) ∈
∏

(µ, ν), and the equalities
from direct expansion.

A.2 Proof of Lemma 2.3

Proof Existence and uniqueness follow directly from Theorem 2.1. For the equivalent
multi-marginal coupling problem, there exists an optimal solution γ∗ = L({Xz}z). It follows
from Remark 2.3 that X̄ = T ({Xz}z) where L(X̄) is the Wasserstein barycenter. Therefore,
the Gaussianity of barycenter results from linearity of T in the finite |Z| case, and the fact
that the set of Gaussian distribution is closed in (P2,ac,W2) when |Z| is infinite. The
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characterization equation is proved in the case of finite |Z| in [2]. For infinite |Z|, the
equation still holds due to the continuity of the covariance function on (P2,ac,W2). The
sufficiency and necessity of the equation follows from the following characterization of the
barycenter via Brenier’s maps {TX̄Xz}z derived in [2]:∫

Z
TX̄Xzdλ(z) = Id. (96)

It follows from the explicit form of {TX̄Xz}z in Lemma 2.2 that∫
Z
TX̄Xzdλ(z) =

∫
Z

Σ
− 1

2

X̄
(Σ

1
2

X̄
ΣXzΣ

1
2

X̄
)

1
2 Σ
− 1

2

X̄
dλ(z) = Id

⇐⇒ Σ
1
2

X̄
Σ
− 1

2

X̄

∫
Z

(Σ
1
2

X̄
ΣXzΣ

1
2

X̄
)

1
2dλ(z)Σ

− 1
2

X̄
Σ

1
2

X̄
= Σ

1
2

X̄
IdΣ

1
2

X̄

⇐⇒
∫
Z

(Σ
1
2

X̄
ΣXzΣ

1
2

X̄
)

1
2dλ(z) = ΣX̄ .

Appendix B. Appendix: Proof of Results in Section 4

B.1 Proof of Lemma 4.1

Proof First, it follows from the triangle inequality that

W2(µ0, µ1) ≤ W2(µ0, µs) +W2(µs, µt) +W2(µt, µ1)

for any s, t ∈ [0, 1]. On the other hand, it follows from the definition of µt that for s, t ∈ [0, 1]

W2
2 (µs, µt) ≤

∫
(Rd)2

||x− y||2d(πs)]γ(x)⊗ d(πt)]γ(y)

=

∫
(Rd)2

||πs(x, y)− πt(x, y)||2dγ(x, y)

=

∫
(Rd)2

||(1− s)x+ sy − (1− t)x− ty||2dγ(x, y)

=

∫
(Rd)2

||(t− s)x− (t− s)y||2dγ(x, y)

= |t− s|2
∫

(Rd)2

||x− y||2dγ(x, y) = |t− s|2W2
2 (µ0, µ1),

where the first equation results from definition of W2. Given the above two facts, we
complete the proof by contradiction. Assume ∃s, t ∈ [0, 1] such that W2(µs, µt) < |t −
s|W2(µ0, µ1), then

W2(µ0, µ1) ≤ W2(µ0, µs) +W2(µs, µt) +W2(µt, µ1)

< |s|W2(µ0, µ1) + |t− s|W2(µ0, µ1) + |1− t|W2(µt, µ1)

=W2(µ0, µ1).
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B.2 Proof of Theorem 4.1

Proof First, we derive the inequality from the triangle inequality and the optimality of
{T (·, z)}z: Let f : X × Z → Y be an arbitrary measurable function. It follows that

V ≤ (

∫
Z
||E(Y |X,Z)z − f(X,Z)z||

2
2dλ(z))

1
2

≤ L(f(X,Z)) + (

∫
Z
||f(X,Z)z − f(X,Z)z||

2
2dλ(z))

1
2

≤ L(f(X,Z)) + (

∫
Z
W2

2 (L(f(X,Z)z),L(f(X,Z)z))dλ(z))
1
2

= L(f(X,Z)) + (
1

2

∫
Z2

W2
2 (L(f(X,Z)z1),L(f(X,Z)z2))dλ(z1)dλ(z2))

1
2

= L(f(X,Z)) +
1√
2
D(f(X,Z)).

Here, the penultimate equation results from the fact that, for any {νz}z ⊂ P2,ac(Rd),∫
Z2

W2
2 (νz1 , νz2)dλ(z1)dλ(z2) = 2

∫
Z
W2

2 (νz, ν̄)dλ(z), (97)

where ν̄ is the Wasserstein barycenter of {νz}z. Now, we show that the lower bound is
achieved if and only if f(X,Z) = T (t)(E(Y |X,Z), Z), t ∈ [0, 1]. Let t ∈ [0, 1], Tz := T (·, z),
and µz := L(E(Y |X,Z)z). It follows from Lemma 4.1 and Remark 4.1 that:

V = (

∫
Z
W2

2 (µz, µ̄)dλ(z))
1
2

≤ (

∫
Z
W2

2 (µz, Tz(t)]µz)dλ(z))
1
2 + (

∫
Z
W2

2 (Tz(t)]µz, µ̄)dλ(z))
1
2

= (t2
∫
Z
W2

2 (µz, µ̄)dλ(z))
1
2 + ((1− t)2

∫
Z
W2

2 (µz, µ̄)dλ(z))
1
2

= tV + (1− t)V = V.

Therefore, the second inequality is an equality where the first term is L(T (t)):

L(T (t)) = (

∫
Z
||E(Y |X,Z)z − Tz(t)(E(Y |X,Z)z)||22dλ(z))

1
2

= (

∫
Z
W2

2 (µz, Tz(t)]µz)dλ(z))
1
2

= t(

∫
Z
W2

2 (µz, µ̄)dλ(z))
1
2 = tV.
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For the second term, we claim that it equals 1√
2
D(T (t)). To see this, we need to first

show Tz(t)]µz = µ̄. Indeed, if not, then
∫
ZW

2
2 (Tz(t)]µz, Tz(t)]µz)dλ(z) is strictly less than∫

ZW
2
2 (Tz(t)]µz, µ̄)dλ(z) by the definition and uniqueness of Tz(t)]µz. It follows that

(

∫
Z
W2

2 (µz, Tz(t)]µz)dλ(z))
1
2

≤(

∫
Z
W2

2 (µz, Tz(t)]µz)dλ(z))
1
2 + (

∫
Z
W2

2 (Tz(t)]µz, Tz(t)]µz)dλ(z))
1
2

<L(T (t)) + (

∫
Z
W2

2 (Tz(t)]µz, µ̄)dλ(z))
1
2

=(

∫
Z
W2

2 (µz, µ̄)dλ(z))
1
2 ,

which contradicts the definition and uniqueness of µ̄. Therefore,

D(T (t)) = (

∫
Z2

W2
2 (Tz1(t)]µz1 , Tz2(t)]µz2)dλ(z1)dλ(z2))

1
2

= (2

∫
Z
W2

2 (Tz(t)]µz, Tz(t)]µz)dλ(z))
1
2

=
√

2(

∫
Z
W2

2 (Tz(t)]µz, µ̄)dλ(z))
1
2

=
√

2((1− t)2

∫
Z
W2

2 (µz, µ̄)dλ(z))
1
2

=
√

2(1− t)V.

That completes the proof.

Appendix C. Appendix: Proof of Results in Section 5

C.1 Proof of X̃ ⊥ Z implies E(Yz|X̃) = E(Y |X̃, Z)z

Proof Let X̃ ⊥ Z and assume for contradiction that E(Yz|X̃) 6= E(Y |X̃, Z)z. Then, we
have

||Y − E(Y |X̃, Z)||22 =

∫
Z
||Yz − f∗(X̃, Z)z||22dλ

=

∫
Z
||Yz − f∗(X̃, z)||22dλ

>

∫
Z
||Yz − E(Yz|X̃)||22dλ

=

∫
Z
||Yz − f̃z(X̃)||22dλ
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where the first line follows from disintegration and the fact that there exists a measurable
function f∗ : X × Z → Y such that f∗(X̃, Z) = E(Y |X̃, Z), the second from X̃ ⊥ Z, the
third line follows from orthogonal projection property of conditional expectation and the
assumption, and the forth from the fact that there exists a measurable function f̃z : X → Y
such that f̃z(X̃) = E(Yz|X̃). Now, define f̃ : X × Z → Y by f̃(·, z) := f̃z for λ-a.e. z ∈ Z.
It follows that

||Y − E(Y |X̃, Z)||22 >
∫
Z
||Yz − f̃z(X̃)||22dλ

=

∫
Z
||Yz − f̃(X̃, z)||22dλ

= ||Y − f̃(X̃, Z)||22
= ||Y − E(Y |X̃, Z)||22 + ||E(Y |X̃, Z)− f̃(X̃, Z)||22.

That implies ||E(Y |X̃, Z)− f̃(X̃, Z)||22 < 0, a contradiction. This completes the proof.

C.2 Proof of Lemma 5.1

Proof Let X̃, X̃ ′ ∈ {X̃ ∈ DX : X̃ ⊥ Z} satisfy σ(X̃ ′) ⊂ σ(X̃). We have

||E(Y |X,Z)− E(Ȳ |X̃, Z)||22 − ||E(Y |X,Z)− E(Ȳ ′|X̃ ′, Z)||22
=||E(Y |X,Z)− E(Y |X̃, Z)||22 − ||E(Y |X,Z)− E(Y |X̃ ′, Z)||22

Notice that

||E(Y |X,Z)− E(Y |X̃, Z)||22 = ||E(Y |X,Z)− E(Y |X̃, Z)||22 +

∫
Z
W2

2 (µz, µ̄)dλ

where µz := L(E(Y |X̃, Z)z) and µ̄ := L(E(Y |X̃, Z)). Also, we define µ′z and µ̄′ analogously
to have

||E(Y |X,Z)− E(Y |X̃ ′, Z)||22

=||E(Y |X,Z)− E(Y |X̃ ′, Z)||22 +

∫
Z
W2

2 (µ′z, µ̄
′)dλ

=||E(Y |X,Z)− E(Y |X̃, Z)||22 + ||E(Y |X̃, Z)− E(Y |X̃ ′, Z)||22 +

∫
Z
W2

2 (µ′z, µ̄
′)dλ.

Combining the above, we have

||E(Y |X,Z)− E(Ȳ |X̃, Z)||22 − ||E(Y |X,Z)− E(Ȳ ′|X̃ ′, Z)||22

=

∫
Z
W2

2 (µz, µ̄)dλ−
∫
Z
W2

2 (µ′z, µ̄
′)dλ− ||E(Y |X̃, Z)− E(Y |X̃ ′, Z)||22.

It remains to show that
∫
ZW

2
2 (µz, µ̄)dλ <

∫
ZW

2
2 (µ′z, µ̄

′)dλ+ ||E(Y |X̃, Z)− E(Y |X̃ ′, Z)||22.

Indeed, assume for contradiction that
∫
ZW

2
2 (µ′z, µ̄

′)dλ + ||E(Y |X̃, Z) − E(Y |X̃ ′, Z)||22 ≤
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∫
ZW

2
2 (µz, µ̄)dλ, then we have∫

Z
W2

2 (µz, µ̄
′)dλ ≤ ||E(Y |X̃, Z)− E(Y |X̃ ′, Z)||22 +

∫
Z
W2

2 (µ′z, µ̄
′)dλ

≤
∫
Z
W2

2 (µz, µ̄)dλ.

This contradicts the optimality and uniqueness of µ̄ by Lemma 3.1. Therefore, we prove by
contradiction that

∫
ZW

2
2 (µz, µ̄)dλ <

∫
ZW

2
2 (µ′z, µ̄

′)dλ + ||E(Y |X̃, Z) − E(Y |X̃ ′, Z)||22 and,
hence,

||E(Y |X,Z)− E(Ȳ |X̃, Z)||22 − ||E(Y |X,Z)− E(Ȳ ′|X̃ ′, Z)||22 < 0.

That completes the proof.

C.3 Proof of Lemma 5.2

Proof We first prove σ((X̄, Z)) = σ((X,Z)). Since L(Xz) ⊂ P2,ac, it follows from
Lemma 3.1 that there exists a measurable map T : X × Z → X such that T (Xz, z) = X̄z

λ-a.e., where X̄ denotes the Wasserstein barycenter of {Xz}z. Define T ⊗ Id|Z : X × Z →
X×Z, we have T⊗Id|Z is X×Z/X×Z-measurable and satisfies T⊗Id|Z((X,Z)) = (X̄, Z).
That implies σ((X̄, Z)) ⊂ σ((X,Z)). Furthermore, since L(X̄) ∈ P2,ac, it follows from
Brenier’s theorem [11] that there exists T−1(·, z) such that T−1(X̄z, z) = Xz. There-
fore, we have (T ⊗ Id|Z)−1 = T−1 ⊗ Id|Z is X × Z/X × Z-measurable and satisfies
(T ⊗ Id|Z)−1((X̄, Z)) = (X,Z). That implies σ((X,Z)) ⊂ σ((X̄, Z)). That completes
the proof of σ((X̄, Z)) = σ((X,Z)). Now, we show σ(X̃) ⊂ σ(X̄). From the construction of
X̃, we have σ((X̃, Z)) ⊂ σ((X̄, Z)) = σ((X,Z)). But X̃ ⊥ Z implies that, for any BX ∈ BX ,
we can construct BX × Z ∈ BX ⊗ BZ . In addition, due to σ((X̃, Z)) ⊂ σ((X̄, Z)), there
exists B′XZ ∈ BX ⊗BZ such that (X̄, Z)−1(B′XZ) = (X,Z)−1(BX ×Z). Lastly, X̄ ⊥ Z also
implies that there exists B′X ∈ BX satisfying B′XZ = B′X ×Z. It follows that

X̃−1(BX) = (X̃, Z)−1(BX ×Z) = (X,Z)−1(B′X ×Z) = X−1(B′X) (98)

Since our choice of BX ∈ BX is arbitrary, it follows that σ(X̃) ⊂ σ(X̄). Finally, since our
choice of X̃ ∈ {X̃ ∈ D|X : X̃ ⊥ Z} is arbitrary, we are done.
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