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Abstract

Distributed learning has become a hot research topic due to its wide application in cluster-
based large-scale learning, federated learning, edge computing, and so on. Most traditional
distributed learning methods typically assume no failure or attack. However, many unex-
pected cases, such as communication failure and even malicious attack, may happen in real
applications. Hence, Byzantine learning (BL), which refers to distributed learning with
failure or attack, has recently attracted much attention. Most existing BL methods are
synchronous, which are impractical in some applications due to heterogeneous or offline
workers. In these cases, asynchronous BL (ABL) is usually preferred. In this paper, we
propose a novel method, called buffered asynchronous stochastic gradient descent (BASGD),
for ABL. To the best of our knowledge, BASGD is the first ABL method that can resist
non-omniscient attacks without storing any instances on the server. Furthermore, we also
propose an improved variant of BASGD, called BASGD with momentum (BASGDm), by
introducing local momentum into BASGD. Compared with those methods which need to
store instances on server, BASGD and BASGDm have a wider scope of application. Both
BASGD and BASGDm are compatible with various aggregation rules. Moreover, both
BASGD and BASGDm are proved to be convergent and able to resist failure or attack.
Empirical results show that our methods significantly outperform existing ABL baselines
when there exists failure or attack on workers.

Keywords: distributed machine learning, momentum, asynchronous Byzantine learning,
buffer, stochastic gradient descent

1. Introduction

Due to the wide application in cluster-based large-scale learning, federated learning (Konevcnỳ
et al., 2016; Kairouz et al., 2021), edge computing (Shi et al., 2016), and so on, distributed
learning has recently become a hot research topic (Zinkevich et al., 2010; Yang, 2013; Jaggi
et al., 2014; Shamir et al., 2014; Zhang and Kwok, 2014; Ma et al., 2015; Lee et al., 2017;
Lian et al., 2017; Zhao et al., 2017; Sun et al., 2018; Wangni et al., 2018; Zhao et al., 2018;
Zhou et al., 2018; Yu et al., 2019a,b; Haddadpour et al., 2019; Assran et al., 2020; Nokleby
et al., 2020). Most traditional distributed learning methods are based on stochastic gradient
descent (SGD) and its variants (Bottou, 2010; Xiao, 2010; Duchi et al., 2011; Johnson and
Zhang, 2013; Shalev-Shwartz and Zhang, 2013; Zhang et al., 2013; Lin et al., 2014; Schmidt
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et al., 2017; Zheng et al., 2017; Zhao et al., 2018; Duan et al., 2020; Zhao et al., 2021), and
typically assume no failure or attack.

However, in distributed learning applications with multiple networked machines (nodes),
different kinds of hardware or software failure may happen (Lamport et al., 2019; Wang et al.,
2020; Kairouz et al., 2021). Representative failure includes bit-flipping in the communication
media and the memory of some workers (Xie et al., 2019). In this case, small failure on some
machines (workers) might cause a distributed learning method to fail. In addition, malicious
attack should not be neglected in an open network where the manager (or server) generally
has not much control over the workers, such as in the cases of edge computing and federated
learning. Malicious workers may behave arbitrarily or even adversarially. Hence, Byzantine
learning (BL), which refers to distributed learning with failure or attack, has attracted much
attention (Diakonikolas et al., 2017; Chen et al., 2017; Damaskinos et al., 2018; Baruch
et al., 2019; Diakonikolas and Kane, 2019; Wu et al., 2020; Karimireddy et al., 2022).

BL methods can be divided into two main categories: synchronous BL (SBL) methods
and asynchronous BL (ABL) methods. In SBL methods, the learning information, such
as the gradient in SGD, of all workers will be aggregated in a synchronous way. On the
contrary, in ABL methods the learning information of workers will be aggregated in an
asynchronous way.

Existing SBL methods mainly take three different ways to achieve resilience against
Byzantine workers which refer to those workers with failure or attack. The first way is to filter
the suspicious learning information (gradients) before averaging. Representative examples
include ByzantineSGD (Alistarh et al., 2018) and Zeno (Xie et al., 2019). The second way
is to replace the simple averaging aggregation operation with some more robust aggregation
operations, such as median & trimmed-mean (Yin et al., 2018), geometric median (Chen
et al., 2017), and centered-clipping (Karimireddy et al., 2021). Krum (Blanchard et al.,
2017), RSA (Li et al., 2019), ByzantinePGD (Yin et al., 2019) and SignSGD (Seide et al.,
2014; Bernstein et al., 2019; Sohn et al., 2020) also take this way. The third way is based on
redundancy. In this kind of methods such as DRACO (Chen et al., 2018), DETOX (Rajput
et al., 2019), ByzShield (Konstantinidis and Ramamoorthy, 2021), Byzantine resilience is
achieved by assigning computation task of each gradient to several nodes. In these methods,
the manager (or server) may have access to the exact true gradient despite the existence of
Byzantine workers. However, methods based on redundancy usually have higher computation
cost and storage cost than methods that take the other two ways.

Some recent works on SBL also reveal that using history information can strengthen
the Byzantine resilience (Allen-Zhu et al., 2020; El-Mhamdi et al., 2021b; Karimireddy
et al., 2021). The advantage of SBL methods is that they are relatively simple and easy
to be implemented, but SBL methods will result in slow convergence when there exist
heterogeneous workers. Furthermore, in some applications like federated learning and edge
computing, synchronization cannot even be performed most of the time due to the offline
workers (clients or edge servers). Hence, ABL methods are preferred in these cases.

To the best of our knowledge, there exist only a few ABL methods. Kardam (Damaskinos
et al., 2018) introduces two filters to drop out suspicious learning information (gradients),
which can still achieve good performance when the communication delay is heavy. However,
when in the face of malicious attack, some work (Xie et al., 2020b) finds that Kardam
also drops out most correct gradients in order to filter all faulty (failure) gradients. Hence,
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Kardam cannot resist malicious attack. Zeno++ (Xie et al., 2020b) and Sageflow (Park et al.,
2021) need to store some training instances on the server. In some practical applications
like federated learning (Kairouz et al., 2021), storing data on server will increase the risk
of privacy leakage or even face legal risk. There are also existing works (El-Mhamdi et al.,
2021a) that study ABL under the decentralized framework. As far as we know, under the
Parameter Server framework where the server has no access to any training instances, there
does not exist any ABL method that can resist malicious attack.

Moreover, in some recently proposed attacks (Xie et al., 2020a; Baruch et al., 2019),
attackers are assumed to have access to all the information on other workers and use the
information for attack. This type of attacks are called omniscient attacks, while the others
are called non-omniscient attacks. As far as we know, there does not exist any ABL method
that can resist the two omniscient attacks ‘Fall of Empires’ (Xie et al., 2020a) and ‘A Little
is Enough’ (Baruch et al., 2019).

In this paper, we propose a novel method called buffered asynchronous stochastic
gradient descent (BASGD) and an improved variant of BASGD called BASGD with
momentum (BASGDm) for ABL. The main contributions are listed as follows:

• To the best of our knowledge, BASGD is the first ABL method that can resist non-
omniscient attacks without storing any instances on the server. Compared with those
methods which need to store instances on the server, BASGD has a wider scope of
application.

• An improved variant of BASGD, called BASGD with momentum (BASGDm), is
further proposed by introducing local momentum into BASGD. As far as we know,
BASGDm is the first ABL method that can resist the two omniscient attacks ‘Fall of
Empires’ and ‘A Little is Enough’.

• Both BASGD and BASGDm are compatible with various aggregation rules. Moreover,
both BASGD and BASGDm are proved to be convergent and able to resist failure or
attack.

• Empirical results show that our methods significantly outperform existing ABL base-
lines when there exists failure or attack on workers.

2. Preliminary

In this section, we present the preliminary of this paper, including the distributed learning
framework used in this paper and the definition of Byzantine worker.

2.1 Distributed Learning Framework

Many machine learning models, such as logistic regression and deep neural networks, can be
formulated as the following finite sum optimization problem:

min
w∈Rd

F (w) =
1

n

n∑
i=1

f(w; zi), (1)
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where w is the parameter to learn, d is the dimension of parameter, n is the number of
training instances, f(w; zi) is the empirical loss on the instance zi. The goal of distributed
learning is to solve the problem in (1) by designing learning algorithms based on multiple
networked machines.

Although there have appeared many distributed learning frameworks, in this paper
we focus on the widely used Parameter Server (PS) framework (Li et al., 2014). In a
PS framework, there are several workers and one or more servers. Each worker can only
communicate with server(s). There may exist more than one server in a PS framework, but
for the problem of this paper, servers can be logically conceived as a unity. Without loss
of generality, we will assume there is only one server in this paper. Training instances are
disjointedly distributed across m workers. Let Dk denote the index set of training instances
on worker k, we have ∪mk=1Dk = {1, 2, . . . , n} and Dk ∩ Dk′ = ∅ if k 6= k′. In this paper, we
assume that the server has no access to any training instances. If two instances have the
same value, they are still deemed as two distinct instances. Namely, zi may equal zi′ (i 6= i′).
One popular asynchronous method to solve the problem in (1) under the PS framework is
ASGD (Dean et al., 2012) (see Appendix A for details). In this paper, we assume each worker
samples one instance for gradient computation each time. The analysis of the mini-batch
case is similar.

In PS-based ASGD, the server is responsible for updating and maintaining the latest
parameter. The number of iterations that the server has already executed is used as the
global logical clock of the server. In the beginning, iteration number t = 0. Each time an
SGD step is executed, t will increase by 1 immediately. The parameter after t iterations is
denoted as wt. If the server sends parameters to worker k at iteration t′, some SGD steps
may have been executed before the server receives gradient from worker k next time at
iteration t. Thus, we define the delay of worker k at iteration t as τ tk = t − t′. Worker k
is heavily delayed at iteration t if τ tk > τmax, where τmax is a pre-defined non-negative
constant. In the analysis of this work, we will mainly consider the partially asynchronous
setting (Bertsekas et al., 1989), where a limited number of heavily delayed workers at each
iteration are assumed. When there is no confusion, we will omit the word ‘partially’ in the
following text.

2.2 Byzantine Worker

For workers that have sent gradients (one or more) to the server at iteration t, we call
worker k loyal worker if it has finished all the tasks without any fault and each sent gradient
is correctly received by the server. Otherwise, worker k is called Byzantine worker. If
worker k is a Byzantine worker, it means the received gradient from worker k is not credible,
which can be an arbitrary value. Formally, we denote the gradient computed by worker k at
iteration t as gtk. Then, we have:

gtk =

{
∇f(wt′ ; zi), if worker k is loyal at iteration t;

∗, if worker k is Byzantine at iteration t,

where 0 ≤ t′ ≤ t, and i is randomly sampled from Dk. ‘∗’ represents an arbitrary value.
Our definition of Byzantine worker is consistent with most previous works (Blanchard et al.,
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Figure 1: An example of buffers. Each circle represents a worker, and the number is the
worker ID. There are 15 workers and 5 buffers. The gradient received from worker s
is stored in buffer {s mod 5}.

2017; Xie et al., 2019, 2020b). Either accidental failure or malicious attack will result in
Byzantine workers.

We would also like to clarify that, in vanilla ASGD, there is at most one gradient sent
from any worker k at each iteration. However, in the new method called BASGD that we
will present in Section 3, there are possibly multiple gradients sent from any worker k at
each iteration.

3. Buffered Asynchronous SGD

In synchronous BL, gradients from all workers are received at each iteration. We can compare
the gradients with each other, and then filter suspicious ones, or use more robust aggregation
rules such as median and trimmed-mean for updating. However, in asynchronous BL, only
one gradient is received at a time. Without any training instances stored on the server, it is
difficult for the server to identify whether a received gradient is credible or not.

In order to deal with this problem in asynchronous BL, we propose a novel method called
buffered asynchronous SGD (BASGD). BASGD introduces B buffers (0 < B ≤ m) on the
server, and the gradient used for updating parameters will be aggregated from these buffers.
The detail of the learning procedure of BASGD is presented in Algorithm 1.

In this section, we will first introduce the three key components of BASGD: buffer,
aggregation function, and mapping table. At the end of this section, we will also intro-
duce an improved variant of BASGD which is called buffered asynchronous SGD with
momentum (BASGDm).

3.1 Buffer

In BASGD, the m workers do the same job as that in ASGD, while the updating rule
on the server is modified. More specifically, there are B buffers (0 < B ≤ m) on server.
When a gradient g from worker s is received, it will be temporarily stored in buffer b, where
b = s mod B, as illustrated in Figure 1. Only when each buffer has stored at least one
gradient, a new SGD step will be executed. Please note that no matter whether an SGD step
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Algorithm 1 Buffered Asynchronous SGD (BASGD)

Server:
Input: learning rate η, reassignment interval ∆,

buffer number B, aggregation function: Aggr(·);
Initialization: model parameter w0;
Set hb ← 0 and N0

b ← 0 for all b = 0, . . . , B − 1;
Initialize mapping table βs ← s (s = 0, 1, . . . ,m− 1);
Send initial w0 to all workers;
Set t← 0, and start the timer;
repeat

Wait until receiving g from some worker s;
Choose buffer: b← βs mod B;

Let N t
b ← N t

b + 1, and hb ←
(Nt

b−1)hb+g

Nt
b

;

if N t
b > 0 for each b ∈ {0, . . . , B − 1} then

Aggregate: Gt = Aggr([h0, . . . ,hB−1]);
Execute SGD step: wt+1 ← wt − η ·Gt;
Zero out buffers: hb ← 0, N t

b ← 0 (b = 0, . . . , B − 1);
Set t← t+ 1, and restart the timer;

end if
if the timer has exceeded ∆ seconds then

Zero out buffers: hb ← 0, N t
b ← 0 (b = 0, . . . , B − 1);

Modify the mapping table {βs}m−1s=0 for buffer reassignment, and restart the timer;
end if
Send the latest parameters back to worker s, no matter whether an SGD step is executed
or not.

until stop criterion is satisfied
Notify all workers to stop;

Worker k: (k = 0, 1, ...,m− 1)
repeat

Wait until receiving the latest parameter w from server;
Randomly sample an index i from Dk;
Compute ∇f(w; zi);
Send ∇f(w; zi) to server;

until receive server’s notification to stop

is executed or not, the server will immediately send the latest parameters back to the worker
after receiving a gradient. Hence, BASGD introduces no barrier and is an asynchronous
algorithm.

For each buffer b, more than one gradient may have been received at iteration t. We
will store the average of these gradients (denoted by hb) in buffer b. Assume that there
are already (N − 1) gradients g1,g2, . . . ,gN−1 which should be stored in buffer b, and
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hb(old) = 1
N−1

∑N−1
i=1 gi. When the N -th gradient gN is received, the new average value is:

hb(new) =
1

N

N∑
i=1

gi =
N − 1

N
· hb(old) +

1

N
· gN .

This is the updating rule for each buffer b when a gradient is received. We use N t
b to

denote the total number of gradients stored in buffer b at the t-th iteration. After the
parameter w is updated, all buffers will be zeroed out at once. With the benefit of buffers,
the server has access to B candidate gradients when updating model parameters. Thus,
a more reliable (robust) gradient can be aggregated from the B gradients of buffers, if a
proper aggregation function Aggr(·) is chosen.

Please note that from the perspective of workers, BASGD is fully asynchronous, since a
worker will immediately receive the latest parameter from the server after sending a gradient
to the server, without waiting for other workers. Meanwhile, from the perspective of the
server, BASGD is semi-asynchronous because the server will not update the model until all
buffers are filled. Actually, it is a necessity to limit the updating frequency in ABL when the
server has no instances. If the server always updates the model when receiving a gradient,
it will be easily foiled when Byzantine workers send gradients much more frequently than
others. A similar conclusion has been proved in previous works (Damaskinos et al., 2018).

3.2 Aggregation Function

When an SGD step is ready to be executed, there are B buffers providing candidate gradients.
An aggregation function is needed to get the final gradient for updating. A naive way is to
take the mean of all candidate gradients. However, the mean value is sensitive to outliers
which are common in BL. For designing proper aggregation functions, we first define the
q-Byzantine Robust (q-BR) condition to quantitatively describe the Byzantine resilience
ability of an aggregation function.

Definition 1 (q-Byzantine Robust). For an aggregation function Aggr(·): Aggr([h0, . . . ,
hB−1]) = G, where G = [G1, . . . , Gd]

T and hb = [hb1, . . . , hbd]
T , ∀b ∈ {0, . . . , B− 1}, we call

Aggr(·) q-Byzantine Robust (q ∈ Z, 0 < q < B/2), if it satisfies the following two properties:

(a) Aggr([h0 + h′, . . . ,hB−1 + h′]) = Aggr([h0, . . . ,hB−1]) + h′, ∀h0, . . . ,hB−1,h
′ ∈ Rd;

(b) mins∈S{hsj} ≤ Gj ≤ maxs∈S{hsj}, ∀j ∈ [d], ∀S ⊂ {0, . . . , B − 1} with |S| = B − q.

Intuitively, property (a) in Definition 1 says that if all candidate vectors hi are added by
a same vector h′, the aggregated gradient will also be added by h′. Property (b) says that
for each coordinate j, the aggregated value Gj will be between the (q + 1)-th smallest value
and the (q + 1)-th largest value among the j-th coordinates of all candidate vectors. Thus,
the gradient aggregated by a q-BR function is insensitive to at least q outliers. We can find
that the q-BR condition gets stronger when q increases. Namely, if Aggr(·) is q-BR, then
for any 0 < q′ < q, Aggr(·) is also q′-BR.

Remark 2. When B > 1, the mean function is not q-Byzantine Robust for any q > 0. We
illustrate this with a one-dimension example. Let h0, . . . , hB−2 ∈ [0, 1] and hB−1 = 10×B.

Then 1
B

∑B−1
b=0 hb ≥

hB−1

B = 10. Thus, the mean is larger than any of the first B − 1 values.
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We show that the following two widely-used aggregation functions are both q-BR.

Definition 3 (Coordinate-wise median (Yin et al., 2018)). For candidate vectors h0,h1, . . .,
hB−1 ∈ Rd, hb = [hb1, hb2, . . . , hbd]

T , ∀b = 0, . . . , B − 1. Coordinate-wise median is defined
as:

Med([h0, . . . ,hB−1]) = [Med(h·1), . . . ,Med(h·d)]
T ,

where Med(h·j) is the scalar median of the j-th coordinates, ∀j = 1, 2, . . . , d.

Definition 4 (Coordinate-wise q-trimmed-mean (Yin et al., 2018)). For any positive interger
q < B/2 and candidate vectors h0,h1, . . . ,hB−1 ∈ Rd, hb = [hb1, hb2, . . . , hbd]

T , ∀b =
0, . . . , B − 1. Coordinate-wise q-trimmed-mean is defined as:

Trm([h0, . . . ,hB−1]) = [Trm(h·1), . . . , T rm(h·d)]
T ,

where Trm(h·j) = 1
B−2q

∑
b∈Mj

hbj is the scalar q-trimmed-mean. Mj is the subset of

{hbj}B−1b=0 obtained by removing the q largest elements and q smallest elements.

In the following content, coordinate-wise median and coordinate-wise q-trimmed-mean
are also called median and trmean, respectively.

Proposition 5. Coordinate-wise q-trmean is q-BR. Coordinate-wise median is bB−12 c-BR.

Here, bxc represents the maximum integer that is not larger than x. According to
Proposition 5, both median and trmean are proper choices for aggregation function in
BASGD. The proof can be found in Appendix B.

We also define another class of aggregation functions called (δmax, A1, A2)-effective
aggregation functions in Definition 6 and Definition 7. The definition of (δmax, A1, A2)-
effective aggregation function can be deemed as a bridge across synchronous Byzantine
learning and asynchronous Byzantine learning.

Definition 6 (Stable aggregation function). Aggregation function Aggr(·) is called stable
provided that ∀h0, . . . ,hB−1, h̃0, . . . , h̃B−1 ∈ Rd, we have:

∥∥∥Aggr([h0, . . . ,hB−1])−Aggr(h̃0, . . . , h̃B−1)
∥∥∥ ≤ (B−1∑

b=0

∥∥∥hb − h̃b

∥∥∥2)
1
2

.

Definition 6 says that if Aggr(·) is a stable aggregation function, when there is a
disturbance on buffers, the disturbance on the aggregated result by Aggr(·) will not be
larger than the disturbance on buffers in L2-norm.

Definition 7 (Effective aggregation function). When the fraction of Byzantine workers is
not larger than δmax, stable aggregation function Aggr(·) is called a (δmax, A1, A2)-effective
aggregation function, provided that it satisfies the following two properties for all wt ∈ Rd in
cases without delay (τ tk = 0, ∀t = 0, 1, . . . , T − 1):

(a) E[∇F (wt)TGt
syn | wt] ≥ ‖∇F (wt)‖2 −A1;

(b) E[‖Gt
syn‖2 | wt] ≤ (A2)

2;

where A1, A2 ∈ R+ are two non-negative constants, Gt
syn is the aggregated result of

Aggr(·) at the t-th iteration in cases without delay.
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More specifically, Gt
syn can be the aggregated gradient or momentum. In the conference

version of BASGD (Yang and Li, 2021), Gt
syn is the aggregated gradient. We change the

statement to make it compatible with the BASGDm method (please refer to Section 3.4).
The two properties in Definition 7 are for synchronous cases mainly because we would like to
use this definition to extend existing theoretical results for synchronous Byzantine learning
methods to those for asynchronous cases. Please see Section 4 for the detailed results.

For different aggregation functions, constants A1 and A2 may differ. A1 and A2 are
related to loss function F (·), distribution of instances, buffer number B and maximum
Byzantine worker fraction δmax. Inequalities (a) and (b) in Definition 7 are two important
properties in convergence proof of synchronous Byzantine learning methods. As revealed in
(Yang et al., 2020), there are many existing aggregation rules for Byzantine learning. We
find that most of them satisfy Definition 7. For example, Krum, median, and trimmed-mean
have already been proved to satisfy these two properties (Blanchard et al., 2017; Yin et al.,
2018). SignSGD (Bernstein et al., 2019) can be seen as a combination of 1-bit quantization
and median aggregation, while median satisfies the properties in Definition 7.

The q-BR property in Definition 1 is relatively easy to check, while the definition
of (δmax, A1, A2)-effective aggregation allows us to extend existing theoretical results for
synchronous cases to those for the asynchronous cases, which we mainly focus on in this
work. Besides the two types of aggregation rules presented in Definition 1 and Definition 7,
we also introduce the definition of (δmax, c)-robust aggregation function in Definition 8.

Definition 8 ((δmax, c)-robust aggregation function). Aggregation function Aggr(·) is called
(δmax, c)-robust provided that for any B independent random vectors h0, . . . ,hB−1 ∈ Rd and

any set H ⊆ {0, 1, . . . , B − 1} with 1− |H|B = δ ≤ δmax where δmax <
1
2 , we have:

E

∥∥∥∥∥Aggr([h0, . . . ,hB−1])−
1

|H|
∑
b∈H

hb

∥∥∥∥∥
2

≤ cδρ2,

where constant ρ ≥ 0 satisfies that E‖hb − hb′‖2 ≤ ρ2 for any fixed b, b′ ∈ H.

Definition 8 has been used in previous works (Karimireddy et al., 2021) to theoretically
prove that using momentum can enhance the resilience against Byzantine attacks for i.i.d.
cases in synchronous BL. Moreover, it has been proved that the aggregation error O(δρ2)
is theoretically optimal (Karimireddy et al., 2021). We will also introduce momentum to
BASGD in Section 3.4 and theoretically prove that using momentum can also enhance the
resilience against Byzantine attacks for i.i.d. cases in asynchronous BL in Section 4.

Meanwhile, please note that too large B could lower the updating frequency and damage
the performance, while too small B may harm the Byzantine resilience. Thus, a moderate
B is usually preferred. From another perspective, the choice of B can be viewed as a
trade-off between efficiency and Byzantine resilience. In practical applications, practitioners
are suggested to first determine the maximum fraction of Byzantine workers δmax that the
system can tolerate, and then set B to make the aggregation function resilient to up to a
fraction of δmax Byzantine workers.
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Figure 2: An example of buffer reassignment. The white circles represent active workers,
and the grey circles represent unresponsive workers. Before reassignment, buffer 0
is a straggler. After reassignment, there is at least one active worker corresponding
to each buffer.

3.3 Mapping Table

At each iteration of BASGD, buffer b needs at least one gradient for aggregation. In the
worst case, all the workers corresponding to buffer b may be unresponsive. In this case,
buffer b will become the straggler, and slow down the whole learning process. To deal with
this problem, we introduce the mapping table for buffer reassignment.

We call a worker active worker if it has responded at the current iteration. If the
SGD step has not been executed for ∆ seconds, the server immediately zeroes out stored
gradients in all buffers, equally reassigns active workers to each buffer, and then continues
the learning procedure. Hyper-parameter ∆ is called reassignment interval. Figure 2
illustrates an example of reassignment. The grey circles represent unresponsive workers.
After reassignment, there is at least one active worker corresponding to each buffer.

Specifically, we introduce a mapping table {βs}m−1s=0 for buffer reassignment. Initially,
βs = s (∀s = 0, 1, . . . ,m− 1). When reassigning buffers, the server only needs to modify the
mapping table {βs}m−1s=0 , and then stores worker s’s gradients in buffer {βs mod B}, instead
of buffer {s mod B}. Please note that the server only needs to modify the mapping table
for buffer reassignment, and there is no need to notify workers.

In addition, a timer is used on the server for indicating when to reassign buffers. The
timer is started at the beginning of BASGD and is restarted immediately after each SGD
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step or buffer reassignment. When the timer exceeds ∆ seconds, buffers will be zeroed out
and then reassigned. Hyper-parameter ∆ should be set properly. If ∆ is too small, buffers
will be zeroed out too frequently, which may slow down the learning process. If ∆ is too large,
straggler buffers could not be eliminated in time. In practical applications, practitioners
can collect statistics about workers’ time cost on computing gradients (or momentums),
and then properly set ∆ to make that more than B workers are usually able to finish the
computation and send messages in ∆ seconds.

3.4 Buffered Asynchronous SGD with Momentum

As previous works have revealed, history information can greatly help to resist Byzantine
attacks (El-Mhamdi et al., 2021b; Allen-Zhu et al., 2020; Karimireddy et al., 2021). Therefore,
we introduce momentum into BASGD and obtain the method called buffered asynchronous
SGD with momentum (BASGDm). In BASGDm, the algorithm of the server is exactly
the same as that in BASGD. The only difference is that each worker maintains a local
momentum, and sends local momentums to the server instead of gradients. The detail of
BASGDm is illustrated in Algorithm 2. With the benefit of momentum, BASGDm can
achieve stronger Byzantine resilience. In particular, BASGDm has a significantly better
empirical performance than BASGD, as we will show in Section 5.

Meanwhile, we have noticed that the work in (Nguyen et al., 2022) proposes the method
FedBuff, which also adopts buffered asynchronous aggregation. However, the motivation
of BASGD (BASGDm) and FedBuff significantly differ from each other. FedBuff mainly
focuses on privacy preservation in federated learning while BASGD and BASGDm are for
asynchronous Byzantine learning.

4. Convergence

In this section, we theoretically prove the convergence and resilience of BASGD and BASGDm
against failure or attack. We will introduce four main theorems in this section. The
first theorem is for BASGD with q-BR aggregation functions. The second and the third
theorems are for BASGD and BASGDm with (δmax, A1, A2)-effective aggregation functions,
respectively. The last theorem is for BASGDm with (δmax, c)-robust aggregation functions
in i.i.d. cases. Furthermore, the last theorem also shows the effectiveness of using local
momentum in asynchronous Byzantine learning.

Here we only present the results. Proof details are in Appendix B. We first make the
following assumptions, which have been widely used in stochastic optimization.

Assumption 1 (Lower bound). Global loss function F (w) is bounded below: ∃F ∗ ∈
R, F (w) ≥ F ∗, ∀w ∈ Rd.

Assumption 2 (Bounded bias). For any loyal worker k, it can use locally stored training
instances to obtain an estimation of the global gradient with bounded bias κ: ∃κ ∈ R+,
‖Ei∼Dk

[∇f(w; zi)]−∇F (w)‖ ≤ κ, ∀w ∈ Rd.

Assumption 3 (Bounded gradient). Global loss function F (w) has a bounded gradient:
∃D ∈ R+, ‖∇F (w)‖ ≤ D, ∀w ∈ Rd.

11
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Algorithm 2 Buffered Asynchronous SGD with Momentum (BASGDm)

Server:
Input: learning rate η, momentum hyper-parameter µ (0 ≤ µ < 1),

reassignment interval ∆, buffer number B, aggregation function: Aggr(·);
Initialization: model parameter w0;
Set hb ← 0 and N0

b ← 0 for all b = 0, . . . , B − 1;
Initialize mapping table βs ← s (s = 0, 1, . . . ,m− 1);
Send initial w0 to all workers;
Set t← 0, and start the timer;
repeat

Wait until receiving u from some worker s;
Choose buffer: b← βs mod B;

Let N t
b ← N t

b + 1, and hb ←
(Nt

b−1)hb+u

Nt
b

;

if N t
b > 0 for each b ∈ {0, . . . , B − 1} then

Aggregate: Gt = Aggr([h0, . . . ,hB−1]);
Execute SGD step: wt+1 ← wt − η ·Gt;
Zero out buffers: hb ← 0, N t

b ← 0 (b = 0, . . . , B − 1);
Set t← t+ 1, and restart the timer;

end if
if the timer has exceeded ∆ seconds then

Zero out buffers: hb ← 0, N t
b ← 0 (b = 0, . . . , B − 1);

Modify the mapping table {βs}m−1s=0 for buffer reassignment, and restart the timer;
end if
Send the latest parameters back to worker s, no matter whether an SGD step is executed
or not.

until stop criterion is satisfied
Notify all workers to stop;

Worker k: (k = 0, 1, ...,m− 1)
Initialization: initial momentum u← 0;
repeat

Wait until receiving the latest parameter w from server;
Randomly sample an index i from Dk;
Compute stochastic gradient ∇f(w; zi);

Update local momentum u←
{
∇f(w; zi), at the first iteration;
µ · u + (1− µ) · ∇f(w; zi), otherwise;

Send u to server;
until receive server’s notification to stop

Assumption 4 (Bounded variance). For any loyal worker k, the local stochastic gradient
has a bounded variance: ∃σ ∈ R+, Ei∼Dk

||∇f(w; zi)− Ei∼Dk
[∇f(w; zi)]||2 ≤ σ2, ∀w ∈ Rd.

Assumption 5 (L-smoothness). Global loss function F (w) is differentiable and L-smooth:
||∇F (w)−∇F (w′)|| ≤ L||w −w′||, ∀w,w′ ∈ Rd.

12
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Compared with the case of synchronous Byzantine learning, the threat of Byzantine
attacks could be enlarged in asynchronous settings due to the bias caused by asynchrony.
The bounded gradient assumption is mainly used to provide upper bounds for the bias of
stochastic gradients (in BASGD) or local momentums (in BASGDm) caused by the combined
effect of asynchrony and Byzantine attacks. Although ∇F (w) is bounded, Byzantine workers
are allowed to send vectors with arbitrary values.

Then we first analyze the convergence of BASGD with q-BR aggregation functions.
Let N (t) be the (q + 1)-th smallest value in {N t

b}b∈{0,...,B−1}, where N t
b is the number of

gradients (or momentums) stored in buffer b at the t-th iteration. We use r to denote the
total number of heavily delayed workers and Byzantine workers, and define the constant

ΘB,q,r =
(B − r)

√
B − r + 1√

(B − q − 1)(q − r + 1)
,

which will appear in Lemma 9 and Lemma 10.

Lemma 9. If Aggr(·) is q-BR and the total number of heavily delayed workers and Byzantine
workers is not larger than r (r ≤ q), under Assumptions 3 and 4, we have:

E[||Gt||2 | wt] ≤ ΘB,q,rd · (D2 + σ2/N (t)).

Lemma 10. If Aggr(·) is q-BR, and the total number of heavily delayed workers and
Byzantine workers is not larger than r (r ≤ q), under Assumptions 2, 3, 4 and 5, we have:

||E[Gt −∇F (wt) | wt]|| ≤ ΘB,q,rd(τmaxL · [ΘB,q,rd(D2 + σ2/N (t))]
1
2 + σ + κ).

Theorem 11. Let D̃ = 1
T

∑T−1
t=0 (D2 + σ2/N (t))

1
2 . If the total number of Byzantine workers

and heavily delayed workers at each iteration is not larger than r, Aggr(·) is q-BR where
q = r, under Assumptions 1, 2, 3, 4 and 5, we have the following result for BASGD with
learning rate η = O( 1

L
√
T

):

∑T−1
t=0 E[||∇F (wt)||2]

T
≤ O

(
L[F (w0)− F ∗]

T
1
2

)
+O

(
2(1− δmax)rdD̃

δmaxT
1
2

)

+O

(
2(1− δmax)rDdσ

δmax
+

2(1− δmax)rDdκ

δmax
+

2
√

2(1− δmax)
3
2 r

3
2LDD̃d

3
2 τmax

(δmax)
3
2

)
,

where δmax = q
B .

Please note that the convergence rate of vanilla ASGD is O(1/T
1
2 ). Hence, Theorem 11

indicates that BASGD has a theoretical convergence rate as fast as vanilla ASGD, with
an extra constant variance. The term O(2(1− δmax)rDdσ/δmax) is caused by the aggre-
gation function, which can be deemed as a sacrifice for Byzantine resilience. The term
O(2(1− δmax)rDdκ/δmax) is caused by the differences in training instances among different
workers. In independent and identically distributed (i.i.d.) cases, κ = 0 and the term

vanishes. The term O(2
√

2(1− δmax)
3
2 r

3
2LDD̃d

3
2 τmax/δ

3
2
max) is caused by the delay, and

related to parameter τmax. The term is also related to the buffer size since δmax = q
B . When
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N t
b increases, N (t) may increase, and thus D̃ will decrease. Namely, a larger buffer size will

result in smaller D̃. In addition, the factor (1− δmax)r/δmax or (1− δmax)
3
2 r

3
2 /δ

3
2
max decreases

as δmax increases, and increases as r increases.
Then, we present the convergence results for BASGD and BASGDm with (δmax, A1, A2)-

effective aggregation functions (please refer to Definition 7) in Theorem 12 and Theorem 13,
respectively.

Theorem 12. In BASGD, if the total number of Byzantine workers and heavily delayed
workers at each iteration is not larger than r, Aggr(·) is a (δmax, A1, A2)-effective aggregation
function, B = br/δmaxc+ 1 and the learning rate η = O( 1√

LT
) satisfies that 2η2L2τ2max(B −

r) < 1, under Assumption 1, 3, 4 and 5, we have the following result for general asynchronous
cases:∑T−1

t=0 E[‖∇F (wt)‖2]
T

≤ O

(
L

1
2 [F (w0)− F ∗]

T
1
2

)
+O

(
(r − δmaxr + 1)

1
2L

1
2 τmaxDA2

δ
1
2
maxT

1
2

)

+O

(
L

1
2 (A2)

2

T
1
2

)
+O

(
(r − δmaxr + 1)L

3
2 (A2)

2τ2max

δmaxT
3
2

)
+A1.

Theorem 12 indicates that if Aggr(·) makes a synchronous BL method converge (i.e.,
satisfies Definition 7), BASGD converges when using Aggr(·) as aggregation function. Hence,
BASGD can also be seen as a technique of asynchronization. That is to say, new asynchronous
methods can be obtained from synchronous ones when using BASGD. The factor r−δmaxr+1

δmax

equals (1−δmax
δmax

r + 1
δmax

), which decreases as δmax increases and increases as r increases.
The extra constant term A1 is caused by gradient bias. When there is no Byzantine or
heavily delayed workers (r = 0) and instances are i.i.d. across workers, letting B = 1 and
Aggr([h0, . . . ,hB−1]) = Aggr(h0) = h0, BASGD degenerates to vanilla ASGD. In this case,

there is no gradient bias (A1 = 0), and BASGD has a convergence rate of O(1/T
1
2 ). Similarly,

we have the following theoretical results for BASGDm.

Theorem 13. In BASGDm, if the total number of Byzantine workers and heavily de-
layed workers at each iteration is not larger than r, Aggr(·) is a (δmax, A1, A2)-effective
aggregation function, B = br/δmaxc + 1 and the learning rate η = O( 1√

LT
) satisfies that

2η2L2τ2max(1− µ)2 < 1, under Assumption 1, 3, 4 and 5, we have the following result for
general asynchronous cases:∑T−1

t=0 E[‖∇F (wt)‖2]
T

≤O

(
L

1
2 [F (w0)− F ∗]

T
1
2

)
+O

(
(r − δmaxr + 1)

1
2L

1
2 τmaxDA2(1− µ)

δ
1
2
maxT

1
2

)

+O

(
L

1
2 (A2)

2

T
1
2

)
+O

(
(r − δmaxr + 1)L

3
2 (A2)

2τ2max(1− µ)2

δmaxT
3
2

)
+A1.

Please note that when momentum hyper-parameter µ = 0, BASGDm degenerates to
BASGD. In this case, 1− µ = 1, and Theorem 13 is exactly the same as Theorem 12. From
this perspective, Theorem 13 can be deemed as a more general version of Theorem 12. In
addition, we would also like to point out that the factor (1−µ) in Theorem 13 does not mean
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that a larger µ will lead to a tighter upper bound since constants A1 and A2 are dependent
on momentum hyper-parameter µ. In fact, the influence of momentum hyper-parameter is a
complex problem, which has been studied for decades (Qian, 1999). Since it is not the focus
of this work, we are not going to further discuss this problem here.

In general cases, Theorem 12 and Theorem 13 guarantee BASGD and BASGDm to find
a point such that the squared L2-norm of its gradient is not larger than a positive number
close to A1 in expectation, respectively. Please note that Assumption 3 already guarantees
that the gradient’s squared L2-norm is not larger than D2. We introduce Proposition 14 to
show that A1 is guaranteed to be smaller than D2 under a mild condition.

Proposition 14. Assume that Aggr(·) is a (δmax, A1, A2)-effective aggregation function, and
Gt
syn is aggregated by Aggr(·) in synchronous setting. If E[‖Gt

syn−∇F (wt)‖ | wt] ≤ D′ < D,

∀wt ∈ Rd, we have A1 ≤ D′D < D2.

The aggregated result Gt
syn can be viewed as a robust estimator of ∇F (wt) used for

updating. Since ‖∇F (wt)‖ ≤ D, ∇F (wt) locates in a ball centered at the origin with radius
D. E[‖Gt

syn −∇F (wt)‖ | wt] ≤ D′ < D means that the bias of Gt
syn is not larger than the

radius D′ (D′ < D), which is a mild condition for Aggr(·).
In Theorem 11, Theorem 12 and Theorem 13, there exist constant variance terms, which

will not decrease during the training. Recent works (Karimireddy et al., 2021) have shown
that when the aggregation function is (δmax, c)-robust (please refer to Definition 8) and the
momentum hyper-parameter is properly set, synchronous Byzantine learning methods can
reach the convergence rate of O(1/T

1
2 ) (without constant term) in i.i.d. cases where the

bias κ = 0 in Assumption 2. We show that BASGDm can also achieve a similar convergence
rate when κ = 0. The detailed results are presented in Theorem 15 as follows.

Theorem 15. Let λ = 1− µ. When Aggr(·) is a (δmax, c)-robust aggregation function, the
total number of Byzantine workers and heavily delayed workers at each iteration is not larger
than Bδmax, and learning rate η ≤ 1

L , under Assumption 1, 2, 3, 4 and 5, we have the
following result for BASGDm when κ = 0 (i.i.d. case):∑T−1

t=0 E||∇F (wt)||2

T
≤ 2[F (w0)− F ∗]

ηT
+

2(4cδ + 1)(τmax + 1)σ2

T
+ ζ, (2)

where δ is the fraction of Byzantine workers and heavily delayed workers together and

ζ = 2(4cδ + 1)λ2σ2 + 8(4cδ + 1)2
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2.

The right-hand side (RHS) of inequality (2) depends on η and λ, where λ = 1− µ and µ
is the momentum hyper-parameter. Then we discuss the convergence results for different
settings of λ.

Firstly, for BASGD without momentum, we have that µ = 0 and λ = 1− µ = 1. In this
case, for any η, the term ξ in the RHS of (2) is always larger than 2(4cδ + 1)σ2 and thus
cannot converge to 0. It is consistent with the results in previous works (Karimireddy et al.,
2021) that the constant term is inevitable without using history information such as local
momentum when there are Byzantine workers. As we will detailedly show in Proposition 16
below, a better choice for the momentum hyper-parameter in BASGDm is that λ =

√
ηL.
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Proposition 16. Under the same conditions in Theorem 15, when λ =
√
ηL ≤ 1 and

η = min
(√

F (w0)−F ∗
LT (4cδ+1)[σ2+8(4cδ+1)(τmax+1)2D2]

, 1
L

)
, we have∑T−1

t=0 E||∇F (wt)||2

T
≤ 4L

1
2 [F (w0)− F ∗]

1
2 (4cδ + 1)

1
2 [σ2 + 8(4cδ + 1)(τmax + 1)2D2]

1
2

T
1
2

+
14L

3
4 [F (w0)− F ∗]

3
4 (4cδ + 1)

1
2 (τmax + 1)

1
2D

1
2

T
3
4

+
6L[F (w0)− F ∗] + 2(4cδ + 1)(τmax + 1)σ2

T
.

Proposition 16 shows that the ABL method BASGDm can converge to a stationary point
with the convergence rate of O(1/

√
T ), which is the same as that in SBL (Karimireddy

et al., 2021). To the best of our knowledge, this is the first theoretical result indicating that
using momentum can also enhance the resilience against Byzantine attacks in ABL.

In addition, we would like to point out that using local momentum on workers does not
help to reduce the bias in non-i.i.d. cases. Theorem 15, Proposition 15 and the corresponding
theoretical results in previous works (Karimireddy et al., 2021) for SBL are all based on
the i.i.d. assumption. As far as we know, how to enhance Byzantine resilience for non-i.i.d.
cases in asynchronous settings is still a challenging open problem. It is beyond the scope of
this work and we leave it for future work.

Then we discuss the convergence rate with respect to L, T , and τmax. Proposition 16
shows that BASGDm can achieve the convergence rate of O(L

1
2 /T

1
2 ) +O(L

1
2 τmax/T

1
2 ) in

i.i.d. cases. Meanwhile, it is shown in previous works (Liu and Zhang, 2021) that vanilla

ASGD can achieve the convergence rate of O(L
1
2 /T

1
2 ) +O(Lτmax/T ). Compared to vanilla

ASGD, the convergence result of BASGDm is more sensitive to τmax. We would like to
point out that in ABL, the bias caused by asynchrony will leave more room for Byzantine
attacks. Thus, it is reasonable that the convergence result of BASGDm under attacks is
slightly looser than that of vanilla ASGD without attack. In addition, it remains uncertain
whether the dependence on the staleness parameter τmax in Proposition 16 is tight. To the
best of our knowledge, there are almost no works revealing the tightness of τmax in ABL.

Finally, we would like to summarize the theoretical results presented in this section.
Theorem 11 is for BASGD with q-BR aggregation functions, the definition of which is
relatively easy to check. Theorem 12 and Theorem 13 are for BASGD and BASGDm with
(δmax, A1, A2)-effective aggregation functions, respectively. The two theorems can be deemed
as a bridge across ABL and SBL. The three theorems above (Theorem 11, Theorem 12 and
Theorem 13) are for general non-i.i.d. cases, and constant error terms appear in the three
theorems. As far as we know, it is still an open problem whether the constant error terms
can be removed for ABL methods in general non-i.i.d. cases. Theorem 15 and Proposition 16
theoretically show the effectiveness of using local momentum for ABL methods in i.i.d. cases,
which is consistent with previous works on SBL (Karimireddy et al., 2021).

5. Experiment

In this section, we empirically evaluate the performance of BASGD (BASGDm) and baselines
in both image classification (IC) and natural language processing (NLP) applications. Our
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experiments are conducted on a distributed platform with dockers. Each docker is bound to
an NVIDIA Tesla V100 (32G) GPU. We choose 30 dockers as workers and an extra docker
as server1. All algorithms are implemented with PyTorch 1.3.

5.1 Experimental Setting

The performance of decentralized methods (El-Mhamdi et al., 2021a) will depend on the
network topology, which makes it hard to conduct a fair comparison. Thus, we mainly
consider methods under the PS framework in our experiments. Moreover, the server has
no access to any training instances. The ABL methods Zeno++ (Xie et al., 2020b) and
Sageflow (Park et al., 2021) need to store some instances on the server, and thus not appli-
cable in the settings of this work. Hence, we compare BASGD (BASGDm) with baselines
ASGD (ASGDm) and Kardam in our experiments. We set dampening function Λ(τ) = 1

1+τ
for Kardam as suggested in (Damaskinos et al., 2018), and set momentum hyper-parameter
µ = 0.9 for BASGDm and ASGDm in each experiment.

Byzantine attacks. We will compare BASGD and BASGDm with baselines under the
following different attack settings.

• No attack: In this setting, each worker will strictly follow the method, compute and
send the gradient (or momentum) without error.

• Random disturbance attack (RD-attack): Byzantine workers with RD-attack will
replace the true gradient (or momentum) g with g̃RD = g + grnd, where grnd is a
random vector sampled from the normal distribution N (0, ‖σatkg‖2 · I). Here, σatk is
a parameter and I is the d-by-d identity matrix. We set σatk = 0.2 in our experiments.
RD-attack can be seen as an accidental failure with expectation 0.

• Negative gradient attack (NG-attack): Byzantine workers with NG-attack will replace
the true gradient (or momentum) g with g̃NG = −katk · g, where katk ∈ R+ is a
parameter. We set katk = 10 in our experiments. NG-attack is a typical kind of
malicious attack. In some previous works, this type of attack is also called bit-flipping
attack (Xie et al., 2020b; Karimireddy et al., 2021).

• ‘Fall of Empires’ (FoE) attack (Xie et al., 2020a): Byzantine workers with FoE attack
will replace the gradient (or momentum) g with g̃FoE = − ε

|L|
∑

i∈L gi, where L is the

index set of loyal workers and gi is the gradient (or momentum) computed by the i-th
worker at the same iteration. We set hyper-parameter ε = 6 for FoE attack in the
experiments of this work. FoE is a type of omniscient attack originally proposed in
synchronous settings, which requires the gradients (or momentums) computed by loyal
workers at the same iteration as omniscient knowledge. Thus, FoE cannot be directly
adopted in asynchronous settings. To deal with this problem, we use the last sent
gradient (or momentum) from each loyal worker as the omniscient knowledge for FoE.

1. In the conference version (Yang and Li, 2021), we set 8 workers in the NLP experiment. To make the
settings more consistent with that of the IC experiment, we also set the worker number to 30 for the
NLP experiment in this journal version.
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• ‘A Little is Enough’ (ALIE) attack (Baruch et al., 2019): Byzantine workers with
ALIE attack will replace the gradient (or momentum) g with g̃ALIE , where (g̃ALIE)j =
meanj − zmax · stdj . The sub-index (·)j denotes the j-th coordinate of the vector. The
scalars meanj and stdj are the mean and standard error of the j-th coordinate of
loyal workers’ gradients (or momentums) at the same iteration, respectively. zmax =

Φ−1(m−bm/2+1c
m−r ), where Φ−1(·) is the inverse of the standard normal cumulative

distribution function, m is the number of workers, and r is the number of Byzantine
workers. ALIE is also a type of omniscient attack originally proposed in synchronous
settings. Similarly, to make it compatible with asynchronous settings, we use the last
sent gradient (or momentum) from each loyal worker as the omniscient knowledge for
ALIE.

In real-world applications, it is usually hard to adopt the two types of omniscient
attacks (FoE and ALIE) due to the lack of omniscient knowledge. However, we still compare
the performance of different methods under these two attacks to evaluate resilience ability.

Aggregation rules. In the experiments, BASGD and BASGDm are evaluated with
the following aggregation rules.

• Coordinate-wise q-trimmed-mean (trmean): Please refer to Definition 4.

• Coordinate-wise median (median): Please refer to Definition 3. Since median can
be deemed as a special case of trmean, we only report the results of BASGD and
BASGDm with median in the case of no attack2.

• Geometric median (geoMed) (Chen et al., 2017): The geometric median of B vectors
h0, . . . ,hB−1 ∈ Rd is defined as:

geoMed([h0, . . . ,hB−1]) = arg min
h∈Rd

{
B−1∑
b=0

‖h− hb‖2

}
. (3)

The optimization problem defined in the right-hand side of (3) has a unique solution
when vectors {h0, . . . ,hB−1} do not lie in a line. However, geoMed usually does not
have a closed-form solution. We use Weiszfeld’s algorithm (Pillutla et al., 2019) to
compute it and set the iteration number in Weiszfeld’s algorithm to be 5.

• Centered clipping (CC) (Karimireddy et al., 2021): The CC aggregation result of
vectors {h0, . . . ,hB−1} is given by the following iteration formula:

hl+1 = hl +
1

B

B−1∑
b=0

(hb − hl) min

(
1,

R

‖hb − hl‖2

)
. (4)

We set initial point h0 to be the last aggregation result for quicker convergence as
suggested in (Karimireddy et al., 2021). The iteration number is set to be 5 in the IC
task and 50 in the NLP task. Clipping size R is set to be 0.5.

2. In the conference version (Yang and Li, 2021), we report the results of BASGD with median in all cases.
In this journal version, we evaluate BASGD (BASGDm) with two more aggregation rules (geometric
median and centered clipping). Due to limited space in each single figure, we do not report the results
of BASGD (BASGDm) with median for better readability in this journal version. The performance of
median is similar to that of other aggregation rules.
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Table 1: Wall-clock-time of running 160 epochs for different methods (in seconds)

Method ASGD
BASGDm (B = 10) Kardam

w/ trmean w/ geoMed w/ CC γ = 2 γ = 10

Wall-clock-time 1172.30 1191.01 1287.07 1289.32 1522.05 1535.22

To simulate an unstable network environment where asynchronous methods are usually
preferred, each worker is manually set to have a delay, which is kdel times the computing
time. The training set is randomly and equally distributed to different workers. For space
saving, we will only present the average top-1 test accuracy (in IC) or average perplexity (in
NLP) in this section. Average training loss w.r.t. epochs in the IC experiment can be found
in Appendix C, which is consistent with the average top-1 test accuracy results presented in
this section. Unless otherwise stated, for BASGD and BASGDm, the reassignment interval
is set to be 1 second in the IC experiment and 5 seconds in the NLP experiment.

5.2 Image Classification Experiment

In this part, we will empirically compare the performance of BASGD (BASGDm) and
existing asynchronous methods ASGD (ASGDm) and Kardam in image classification tasks.
In the experiment, algorithms are evaluated on CIFAR-10 (Krizhevsky et al., 2009) with
deep learning model ResNet-20 (He et al., 2016). Cross-entropy is used as the loss function.
kdel is randomly sampled from truncated standard normal distribution within [0,+∞). As
suggested in (He et al., 2016), learning rate η is set to 0.1 initially for each algorithm, and
multiplied by 0.1 at the 80-th epoch and the 120-th epoch respectively. The weight decay is
set to 10−4. We run each algorithm for 160 epochs. The batch size is set to 25.

Firstly, we compare the performance of different methods when there are no Byzantine
workers. Experimental results of BASGD and BASGDm are illustrated in Figure 3 and
Figure 4, respectively. The solid line represents that the method does not use momentum
while the dotted line represents that the method utilizes local momentum. ASGD (ASGDm)
achieves the best performance. BASGD (BASGDm) (B > 1) and Kardam have similar
convergence rates to ASGD (ASGDm), but both sacrifice a little accuracy. Furthermore,
the performance of BASGD (BASGDm) gets worse when the buffer number B increases,
which is consistent with the theoretical results. Please note that ASGD (ASGDm) is a
degenerated case of BASGD (BASGDm) when B = 1 and Aggr(h1) = h1. Hence, BASGD
(BASGDm) can achieve the same performance as ASGD (ASGDm) when there is no failure
or attack. The wall clock time of running 160 epochs is reported in Table 1. The time cost
of BASGDm is slightly larger than that of ASGD, while Kardam takes the most time.

Then, for each type of attack, we compare the performance of BASGD (BASGDm) and
Kardam by conducting two experiments in which there are 3 and 6 Byzantine workers,
respectively3. We respectively set 10 and 15 buffers for BASGD (BASGDm) in these two

3. In the conference version (Yang and Li, 2021), we also report the experimental results of ASGD under
attacks. However, due to limited space in figures, we do not report the results of ASGD and ASGDm
in this journal version for better readability since ASGD and ASGDm are not Byzantine-resilient and
achieve low accuracy under attack.
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(b) BASGD with trmean

0 20 40 60 80 100 120 140 160
Epoch

40

45

50

55

60

65

70

75

80

85

90

95

A
ve

ra
ge

 T
op

-1
 A

cc
ur

ac
y

ASGD
BASGD with geoMed (B=5)
BASGD with geoMed (B=10)
BASGD with geoMed (B=15)
BASGD with geoMed (B=30)
Kardam ( =2)
Kardam ( =10)

(c) BASGD with geoMed
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Figure 3: Average top-1 test accuracy w.r.t. epochs of methods BASGD, ASGD, and
Kardam when there are no Byzantine workers.

experiments. The experimental results of the methods under two types of non-omniscient
attacks (RD-attack and NG-attack) are presented in Figure 5. We can find that BASGD
(BASGDm) significantly outperforms Kardam under these two types of non-omniscient
attacks.

Under the less harmful RD-attack, although Kardam still converges, it suffers a significant
loss in accuracy. Under NG-attack, Kardam cannot converge even if we have tried different
values of assumed Byzantine worker number for Kardam, which is denoted by the hyper-
parameter γ in this paper. Hence, Kardam cannot resist these two types of attacks. On the
contrary, BASGD still has a relatively good performance under these two types of attacks.

Moreover, we count the ratio of filtered gradients in Kardam, which is shown in Table 2.
We can find that in order to filter Byzantine gradients, Kardam also filters approximately
an equal ratio of loyal gradients. It explains why Kardam performs poorly under the attack.
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(b) BASGDm with trmean
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(c) BASGDm with geoMed
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Figure 4: Average top-1 test accuracy w.r.t. epochs of methods BASGDm, ASGDm, and
Kardam when there are no Byzantine workers.

Table 2: Filtered ratio in Kardam under NG-attack in IC task (3 Byzantine workers)

Term By Frequency Filter By Lipschitz Filter In total

Loyal Grads (γ = 3) 10.15% (31202/307530) 40.97% (126000/307530) 51.12%
Byzt Grads (γ = 3) 10.77% (3681/34170) 40.31% (13773/34170) 51.08%

Loyal Grads (γ = 8) 28.28% (86957/307530) 28.26% (86893/307530) 56.53%
Byzt Grads (γ = 8) 28.38% (9699/34170) 28.06% (9588/34170) 56.44%

Loyal Grads (γ = 14) 85.13% (261789/307530) 3.94% (12117/307530) 89.07%
Byzt Grads (γ = 14) 84.83% (28985/34170) 4.26% (1455/34170) 89.08%

We also compare the performance of different methods under omniscient attacks (FoE
attack and ALIE attack), the results of which are shown in Figure 6. BASGDm can
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(a) 3 Byzantine workers with RD-attack
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(b) 3 Byzantine workers with NG-attack
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(c) 6 Byzantine workers with RD-attack
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(d) 6 Byzantine workers with NG-attack

Figure 5: Average top-1 test accuracy w.r.t. epochs under non-omniscient attacks. B = 10
for BASGD (BASGDm) when there are 3 Byzantine workers and B = 15 for
BASGD (BASGDm) when there are 6 Byzantine workers.

significantly outperform other methods in each case, except for the case of 3 Byzantine
workers with ALIE attack. When there are 3 Byzantine workers with ALIE attack, all
the methods have a comparable performance to each other. The main reason is that the
Byzantine attack is not strong enough in this case. In addition, the performance of BASGDm
is considerably better than BASGD. This reveals that using history information (such as
momentum) can strengthen the resilience and improve the performance in Byzantine-resilient
machine learning, which is consistent with previous works (Allen-Zhu et al., 2020; El-Mhamdi
et al., 2021b; Karimireddy et al., 2021).

Moreover, although the performance of BASGDm with different aggregation rules (trmean,
geoMed, and CC) slightly differ, all of them are better than those of BASGD and Kardam.

In addition, we evaluate the effect of the buffer reassignment interval ∆. Specifically,
we will compare the performance of BASGDm when ∆ is set to 0.01s, 0.1s, 1s, 10s, and
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(a) 3 Byzantine workers with FoE attack
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(b) 3 Byzantine workers with ALIE attack
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(c) 6 Byzantine workers with FoE attack
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Figure 6: Average top-1 test accuracy w.r.t. epochs under omniscient attacks. B = 10 for
BASGD (BASGDm) when there are 3 Byzantine workers and B = 15 for BASGD
(BASGDm) when there are 6 Byzantine workers.

100s. In this experiment, there are 3 Byzantine workers under omniscient attacks (FoE and
ALIE). We set B = 10 for BASGDm. Since the buffer reassignment technique is used to
deal with the straggler buffer in the extreme case, we set 3 extra workers to be stragglers,
which take 10 times longer to finish local computation than the other workers. We also
evaluate the performance of Kardam and synchronous SGD with momentum (SSGDm) in
this setting. For both SSGDm and BASGDm, the aggregation rule is set to be trmean
and the momentum hyper-parameter µ is set to 0.9. The average top-1 test accuracy w.r.t.
wall-clock time of different methods is illustrated in Figure 7.

As we can see, the value of buffer reassignment interval ∆ significantly affects the
performance of BASGDm. When ∆ is set too small (∆ = 0.01s), buffers will be zeroed out
too frequently and the global model updating is hardly executed on the server. When ∆
is set too large (∆ = 100s), the straggler buffer will not be promptly eliminated by buffer
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Figure 7: Average top-1 test accuracy w.r.t. wall-clock time when there are 3 Byzantine
workers under omniscient attacks. In synchronous SGD with momentum (SSGDm)
and BASGDm, the aggregation rules are set to be trmean. B is set to 10 for
BASGDm.

reassignment. Meanwhile, BASGDm performs stably and outperforms SSGDm and Kardam
when ∆ ranges from 0.1s to 10s. The empirical results about hyper-parameter ∆ is consistent
with our discussion in Section 3.

5.3 Natural Language Processing Experiment

In this part, we will empirically compare the methods on natural language processing (NLP)
tasks. In our NLP experiment, the methods are evaluated on the WikiText-2 dataset with
an LSTM (Hochreiter and Schmidhuber, 1997) network. We only use the training set and
test set, while the validation set is not used in our experiment. For LSTM, we adopt 2 layers
with 100 units in each layer. Word embedding size is set to 100, and the sequence length is
set to 35. Gradient clipping size is set to 0.25. Cross-entropy is used as the loss function.
We run each algorithm for 40 epochs. Initial learning rate η is chosen from {1, 2, 5, 10, 20}
and is divided by 4 at the 21-st epoch and the 31-st epoch. The best result is adopted as
the final one. kdel is randomly sampled from a standard exponential distribution. Similarly,
each method is evaluated under RD-attack, NG-attack, FoE attack, and ALIE attack. The
average perplexity is reported in Figure 8.

As illustrated in Figure 8(a) and Figure 8(b), under the two types of non-omniscient
attacks (RD-attack and NG-attack), BASGD (BASGDm) can outperform Kardam, no
matter which of the three aggregation rules is used. Moreover, the curves representing
Kardam do not appear in Figure 8(b) because Kardam diverges under NG-attack and the
perplexity explodes. We would also like to clarify that the performance of CC can get
further improved by tuning the clipping size hyper-parameter more finely in different settings.
However, it requires much computing cost and is beyond the scope of this work. Therefore,
we fix clipping size R = 0.5, and this can already make BASGDm with CC outperform
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(a) Under RD-attack
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(c) Under FoE attack
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Figure 8: Average perplexity w.r.t. epochs (3 Byzantine workers, B = 15 for BASGD and
BASGDm). In subfigure (b), the curves representing Kardam do not appear
because Kardam diverges in this case and the average perplexity explodes.

Kardam. Theoretically, the best performance of CC can not be worse than geoMed since CC
is equivalent to geoMed when the clipping size R is small enough (please see Appendix B.10
for the proof).

As illustrated in Figure 8(c) and Figure 8(d), under FoE attack and ALIE attack, BASGD
can outperform Kardam except for the case of using trmean as aggregation rule. BASGD
with trmean performs slightly worse than Kardam. A possible reason is that trmean is
sensitive to model dimensions. On the contrary, by using momentum, BASGDm with any
aggregation rule can always outperform Kardam.

The experimental results in this section have shown that BASGD (BASGDm) can
outperform asynchronous Byzantine learning baselines under different settings. Moreover,
BASGD (BASGDm) is compatible with various aggregation rules, such as trmean, geoMed,
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and CC. With the benefit of local momentum, BASGDm gets even stronger Byzantine
resilience than BASGD, especially under the omniscient attacks FoE and ALIE.

6. Conclusion

In this paper, we propose a novel method called BASGD. To the best of our knowledge,
BASGD is the first ABL method that can resist non-omniscient attacks without storing any
instances on the server. Compared with those methods which need to store instances on the
server, BASGD has a wider scope of application. An improved variant of BASGD, called
BASGD with momentum (BASGDm), is further proposed by introducing local momentum
into BASGD. As far as we know, BASGDm is the first ABL method that can resist the two
omniscient attacks ‘Fall of Empires’ and ‘A Little is Enough’. Both BASGD and BASGDm
are compatible with various aggregation rules. Moreover, both BASGD and BASGDm are
proved to be convergent and able to resist failure or attack. Empirical results show that our
methods significantly outperform existing ABL baselines when there exists failure or attack
on workers. Furthermore, both the theoretical results and the empirical results show the
advantages of using local momentum in BASGDm.
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Appendix A. Asynchronous SGD (ASGD)

One popular asynchronous method to solve the problem in (1) under the PS framework is
ASGD (Dean et al., 2012), which is presented in Algorithm 3.

Algorithm 3 Asynchronous SGD (ASGD)

Server:
Initialization: initial parameter w0, learning rate η;
Send initial w0 to all workers;
for t = 0 to tmax − 1 do

Wait until a new gradient gtk is received from arbitrary worker k;
Execute SGD step: wt+1 ← wt − η · gtk;
Send wt+1 back to worker k;

end for
Notify all workers to stop;

Worker k: (k = 0, 1, ...,m− 1)
repeat

Wait until receiving the latest parameter w from server;
Randomly sample an index i from Dk and compute ∇f(w; zi);
Send ∇f(w; zi) to server;

until receive server’s notification to stop

Appendix B. Proof Details

B.1 Proof of Proposition 5

Proof Firstly, we prove that coordinate-wise q-trimmed-mean is q-BR. It is not hard to
check that trmean satisfies the property (a) in the definition of q-BR, then we prove that it
also satisfies property (b). Without loss of generality, we assume h1j , . . . , hBj are already in
descending order. By definition, Trm(h·j) is the average value of Mj , which is obtained by
removing q largest values and q smallest values of {hij}Bi=1. Therefore,

h(q+1)j = max
x∈Mj

{x} ≥ Trm(h·j) ≥ min
x∈Mj

{x} = h(n−q)j .

For any S ⊂ {0, . . . , B − 1} with |S| = B − q, by Pigeonhole Principle, S includes at least
one of h1j , . . . , h(q+1)j , and includes at least one of h(n−q)j , . . . , hBj . Therefore,

max
s∈S
{hsj} ≥ h(q+1)j ; min

s∈S
{hsj} ≤ h(n−q)j .

Combining these two inequalities, we have:

max
s∈S
{hsj} ≥ Trm(h·j) ≥ min

s∈S
{hsj}.

Thus, coordinate-wise q-trimmed-mean is q-BR. By definition, coordinate-wise median can
be seen as bB−12 c-trimmed-mean, and thus is bB−12 c-BR.
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B.2 Proof of Lemma 9

To begin with, we will introduce a lemma to estimate the ordered statistics.

Lemma 17. X1, . . . , XM are non-negative, independent and identically distributed (i.i.d.)
random variables sampled from distribution D, and have limited expectation E[X]. Denote
the K-th largest value in {X1, . . . , XM} as X(K), then E[X(K)] ≤ CM,K · E[X], where

CM,K =

{
M, K = 1;
M !(K−1)K−1(M−K)M−K

(K−1)!(M−K)!(M−1)M−1 , 1 < K < M
2 .

Proof Denote the Probability Density Function (PDF) and Cumulative Density Func-
tion (CDF) of D as p(x) and P (x), respectively. Then the PDF of X(K) is:

p(K)(x) =
M !

(K − 1)!(M −K)!
[1− P (x)]K−1P (x)M−Kp(x).

Thus,

E[X(K)] =

∫ +∞

0
x · p(K)(x)dx

=

∫ +∞

0

[
M !

(K − 1)!(M −K)!
· [1− P (x)]K−1P (x)M−K

]
· xp(x)dx

(a)

≤
∫ +∞

0

[
M !

(K − 1)!(M −K)!
· (K − 1)K−1(M −K)M−K

(M − 1)M−1

]
· xp(x)dx

=
M !(K − 1)K−1(M −K)M−K

(K − 1)!(M −K)!(M − 1)M−1
· E[X].

Inequality (a) is derived based on [1− P (x)]K−1P (x)M−K ≤ (K−1)K−1(M−K)M−K

(M−1)M−1 , which is

obtained by the following process:
Let θ(x) = (1− x)K−1xM−K , x ∈ [0, 1].
Then θ′(x) = (1− x)K−2xM−K−1[(M −K)(1− x)− (K − 1)x].
Let θ′(x) = 0. Solving the equation, we obtain x = M−K

M−1 , 0 or 1.

Also, we have θ(0) = θ(1) = 0, and θ(M−KM−1 ) = (K−1)K−1(M−K)M−K

(M−1)M−1 .

Then we have maxx∈[0,1] θ(x) = θ(M−KM−1 ) = (K−1)K−1(M−K)M−K

(M−1)M−1 .

Thus, [1− P (x)]K−1P (x)M−K = θ(P (x)) ≤ (K−1)K−1(M−K)M−K

(M−1)M−1 .

Proposition 18. ∀B, q, r ∈ Z+, 0 ≤ r ≤ q < B
2 ,

CB−r,q−r+1 ≤ ΘB,q,r =
(B − r)

√
B − r + 1√

(B − q − 1)(q − r + 1)
.

Proof By Stirling’s approximation, we have:
√

2πn · nne−n ≤ n! ≤ e
√
n · nne−n, ∀n ∈ Z+.
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Therefore,
√

2πn · e−n ≤ n!

nn
≤ e
√
n · e−n, ∀n ∈ Z+. (5)

By definition of CM,k,

CM,K =
M !(K − 1)K−1(M −K)M−K

(K − 1)!(M −K)!(M − 1)M−1

=M · (M − 1)!

(M − 1)M−1
· (K − 1)K−1

(K − 1)!
· (M −K)M−K

(M −K)!

≤M · [e
√
M − 1 · e−(M−1)] · eK−1√

2π(K − 1)
· eM−K√

2π(M −K)

=
e

2π
· M

√
M − 1√

(M −K)(K − 1)
,

where the inequality uses Inequality (5).
Case (i). When r < q,

CB−r,q−r+1 ≤
e

2π
· (B − r)

√
B − r − 1√

(B − q − 1)(q − r)

≤ (B − r)
√
B − r + 1√

(B − q − 1)(q − r + 1)
.

Case (ii). When r = q, by definition of CM,K , we have:

CB−r,q−r+1 = CB−q,1 = B − q =
(B − r)

√
B − r + 1√

(B − q − 1)(q − r + 1)
.

In conclusion, when r ≤ q, we have:

CB−r,q−r+1 ≤
(B − r)

√
B − r + 1√

(B − q − 1)(q − r + 1)
.

When B and q are fixed, the upper bound of CB−r,q−r+1 will increase when r (the
number of Byzantine workers) increases. Namely, the upper bound will be larger if there
are more Byzantine workers. When B and r are fixed, q measures the Byzantine Robust
degree of aggregation function Aggr(·). The factor [(B − q − 1)(q − r)]−

1
2 is monotonically

decreasing with respect to q, when q < B−1+r
2 . Since r ≤ q < B

2 , the upper bound will
decrease when q increases. Also, B− q decreases when q increases. Namely, the upper bound
will be smaller if Aggr(·) has a stronger q-BR property.

In the worst case (q = r), the upper bound of CB−r,q−r+1 is linear to B. Even in the best
case (r = 0, q = bB−12 c), the denominator is about B

2 and the upper bound of CB−r,q−r+1 is

linear to
√
B. Thus, larger B might result in larger error. Hence, the buffer number is not

supposed to be set too large.
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Now we prove Lemma 9.
Proof

E[||Gt||2 | wt]

=E[||Aggr([h0, . . . ,hB−1])||2 | wt]

=
d∑
j=1

E[Aggr([h0, . . . ,hB−1])
2
j | wt],

where Aggr([h0, . . . ,hB−1])j represents the j-th coordinate of the aggregated gradient.
We use Ht to denote the credible buffer index set, which is composed of the index of

buffers, where the stored gradients are all from loyal workers.
For each b ∈ Ht, hb has stored N t

b gradients at iteration t: g1, . . . ,gNt
b
, and we have:

hb =
1

N t
b

Nt
b∑

l=1

gl.

Then,

E[‖hb‖2|wt] =E[‖hb − E[hb|wt]‖2|wt] + ‖E[hb|wt]‖2

=E


∥∥∥∥∥∥ 1

N t
b

Nt
b∑

l=1

(gl − E[gl|wt])

∥∥∥∥∥∥
2 ∣∣∣wt

+

∥∥∥∥∥∥E
 1

N t
b

Nt
b∑

l=1

gl

∣∣∣wt

∥∥∥∥∥∥
2

(a)

≤ σ2

N t
b

+

∥∥∥∥∥∥E
 1

N t
b

Nt
b∑

l=1

gl

∣∣∣wt

∥∥∥∥∥∥
2

=
σ2

N t
b

+
1

(N t
b)

2

∥∥∥∥∥∥
Nt

b∑
l=1

E[gl|wt]

∥∥∥∥∥∥
2

(b)

≤ σ2

N t
b

+
1

(N t
b)

2
·N t

b ·
Nt

b∑
l=1

‖E[gl|wt]‖2

(c)

≤ σ2

N t
b

+D2.

Inequality (a) is derived based on Assumption 4 and the fact that gi is mutually uncorrelated.
Inequality (b) is derived by the following process:∥∥∥∥∥∥

Nt
b∑

l=1

E[gl|wt]

∥∥∥∥∥∥
2

=

Nt
b∑

l=1

‖E[gl|wt]‖2 +
∑

1≤l<l′≤Nt
b

2 · E[gl|wt]TE[g′l|wt]

≤
Nt

b∑
l=1

‖E[gl|wt]‖2 +
∑

1≤l<l′≤Nt
b

(‖E[gl|wt]‖2 + ‖E[g′l|wt]‖2)
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=

Nt
b∑

l=1

‖E[gl|wt]‖2 + (N t
b − 1) ·

Nt
b∑

l=1

‖E[gl|wt]‖2

=N t
b ·

Nt
b∑

i=l

‖E[gl|wt]‖2.

Inequality (c) is derived based on Assumption 3.

Because there are no more than r Byzantine workers at iteration t, no more than r
buffers contain Byzantine gradient. Thus, the credible buffer index set Ht has at least
(B − r) elements. In case that Ht has more than (B − r) elements, we take the indices of
the smallest (B − q) elements in {hbj}b∈Ht to compose Htj , and we have |Htj | = B − q.

Note that Aggr(·) is q-BR, and by definition we have:

min
b∈Ht

j

{hbj} ≤ Aggr([h0, . . . ,hB−1])j ≤ max
b∈Ht

j

{hbj}.

Therefore,
d∑
j=1

E[Aggr([h0, . . . ,hB−1])
2
j |wt] ≤

d∑
j=1

E[max
b∈Ht

j

{h2bj}|wt].

There are (B− r) credible buffers, and we choose the smallest (B− q) buffers to compose
Htj . Therefore, for all b ∈ Htj , hbj is not larger than the (q−r+1)-th largest one in {hbj}b∈Ht .

Let N (t) be the (q + 1)-th smallest value in {N t
b}b∈{0,...,B−1}. Using Lemma 17, we have:

E[max
b∈Ht

j

{h2bj}|wt] ≤E[max
b∈Ht

j

{‖hb‖2}|wt]

≤E[max
b∈Ht

j

{D2 +
σ2

N t
b

}|wt]

=CB−r,q−r+1 · (D2 +
σ2

N (t)
).

Thus,

E[||Gt||2 | wt] ≤
d∑
j=1

E[max
b∈Ht

j

{h2bj}|wt] ≤ CB−r,q−r+1d · (D2 +
σ2

N (t)
).

By Proposition 18, we have:

E[||Gt||2 | wt] ≤ d · (B − r)
√
B − r + 1√

(B − q − 1)(q − r + 1)
· (D2 +

σ2

N (t)
).
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B.3 Proof of Lemma 10

Proof

E[Gt −∇F (wt) | wt]

=E[Aggr([h0, . . . ,hB−1])−∇F (wt) | wt]

=E[Aggr([h0 −∇F (wt), . . . ,hB−1 −∇F (wt)]) | wt], (6)

where the second equation is derived based on Property (b) in the definition of q-BR.

For each b ∈ Ht, hb has stored N t
b gradients at iteration t: g1, . . . ,gNt

b
, and we have:

hb −∇F (wt) =
1

N t
b

Nt
b∑

k=1

gi −∇F (wt) =
1

N t
b

Nt
b∑

k=1

[∇f(wtk ; zik)−∇F (wt)],

where 0 ≤ t− tk ≤ τmax, ∀k = 1, 2, . . . , N t
b .

Taking expectations on both sides, we have:

E[||hb −∇F (wt)|| |wt]

=E[|| 1

N t
b

Nt
b∑

k=1

(∇f(wtk ; zik)−∇F (wt))|| |wt]

≤ 1

N t
b

Nt
b∑

k=1

E[||∇f(wtk ; zik)−∇F (wt)|| |wt]

(a)

≤ 1

N t
b

Nt
b∑

k=1

{E[||∇F (wtk)−∇F (wt)|| |wt]

+ E[||∇f(wtk ; zik)− E[∇f(wtk ; zik)]|| |wt]

+ E[||E[∇f(wtk ; zik)]−∇F (wtk)|| |wt]},

where (a) is derived based on Triangle Inequality.

The first part:

E[||∇F (wtk)−∇F (wt)|| |wt]

(b)

≤L · E[||wtk −wt|| |wt]

=L · E[||
t−1∑
t′=tk

Gt′ || |wt]

≤
t−1∑
t′=tk

L · E[||Gt′ || |wt]

=
t−1∑
t′=tk

L ·
√
E[||Gt′ || |wt]2
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≤
t−1∑
t′=tk

L ·
√
E[||Gt′ ||2 |wt]

(c)

≤
t−1∑
t′=tk

L ·
√
CB−r,q−r+1d · (D2 + σ2/N (t))

(d)

≤τmaxL ·
√
CB−r,q−r+1d · (D2 + σ2/N (t)),

where (b) is derived based on Assumption 5, (c) is derived based on Lemma 9, and (d) is
derived based on t− tk ≤ τmax.

The second part:

E[||∇f(wtk ; zik)− E[∇f(wtk ; zik)]|| |wt]

=
√
E[||∇f(wtk ; zik)− E[∇f(wtk ; zik)]|| |wt]2

≤
√
E[||∇f(wtk ; zik)− E[∇f(wtk ; zik)]||2 |wt]

(e)

≤σ,

where (e) is derived based on Assumption 4.
By Assumption 2, we have the following estimation for the third part:

E[||E[∇f(wtk ; zik)]−∇F (wtk)|| |wt] ≤ κ.

Therefore,

E[||hb −∇F (wt)|| |wt]

≤ 1

N t
b

Nt
b∑

k=1

(τmaxL
√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ)

=τmaxL
√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ. (7)

Similar to the proof of Lemma 9, ∀j ∈ [d], we have:

min
b∈Ht

j

{hbj −∇F (wt)j}

≤Aggr([h0 −∇F (wt), . . . ,hB−1 −∇F (wt)])j

≤max
b∈Ht

j

{hbj −∇F (wt)j},

where Htj is composed by the indices of the smallest (B−q) elements in {hbj−∇F (wt)j}b∈Ht .
Therefore,

||E[Aggr([h0 −∇F (wt), . . . ,hB−1 −∇F (wt)]) | wt]||

≤
d∑
j=1

||E[Aggr([h0 −∇F (wt), . . . ,hB−1 −∇F (wt)])j | wt]||
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≤
d∑
j=1

E[||Aggr([h0 −∇F (wt), . . . ,hB−1 −∇F (wt)])j || | wt]

(f)

≤
d∑
j=1

E[max
b∈Ht

j

||hbj −∇F (wt)j || | wt]

(g)

≤
d∑
j=1

CB−r,q−r+1E[||hbj −∇F (wt)j || |wt]

≤
d∑
j=1

CB−r,q−r+1E[||hb −∇F (wt)|| |wt]

(h)

≤
d∑
j=1

CB−r,q−r+1 ·
(
τmaxL

√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ

)

=CB−r,q−r+1d ·
(
τmaxL

√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ

)
, (8)

where (f) is derived based on definition of q-BR, (g) is derived based on Lemma 17, and (h)
is derived based on Inequality (7). Combining Equation (6) and Inequality (8), we obtain:

||E[Gt−∇F (wt) | wt]|| ≤ CB−r,q−r+1d ·
(
τmaxL

√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ

)
.

By Proposition (18), we have:

||E[Gt −∇F (wt) | wt]|| ≤ d(B − r)
√
B − r + 1√

(B − q − 1)(q − r + 1)

·

(
τmaxL

√
d

(B − r)
√
B − r + 1√

(B − q − 1)(q − r + 1)
· (D2 + σ2/N (t)) + σ + κ

)
.

B.4 Proof of Theorem 11

Proof

E[F (wt+1) | wt] =E[F (wt − η ·Gt) | wt]

(a)

≤E[F (wt)− η · ∇F (wt)TGt +
L

2
η2||Gt||2 | wt]

=F (wt)− η · E[∇F (wt)TGt | wt] +
η2L

2
E[||Gt||2 | wt]

=F (wt)− η · ∇F (wt)TE[Gt | wt] +
η2L

2
E[||Gt||2 | wt]

=F (wt)− η · ∇F (wt)T∇F (wt) +
η2L

2
E[||Gt||2 | wt]
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− η · ∇F (wt)TE[Gt −∇F (wt) | wt]

≤F (wt)− η · ||∇F (wt)||2 +
η2L

2
E[||Gt||2 | wt]

+ η · ||∇F (wt)|| · ||E[Gt −∇F (wt) | wt]||,

where (a) is derived based on Assumption 5. Using Lemma 9 and Lemma 10, we have:

E[F (wt+1) | wt]

≤F (wt)− η · ||∇F (wt)||2 +
η2L

2
CB−r,q−r+1d · (D2 + σ2/N (t))

+ η · CB−r,q−r+1d · (τmaxL
√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ) · ||∇F (wt)||.

Also, by Assumption 3, ||∇F (wt)|| ≤ D. Taking total expectation and using that
||∇F (wt)|| ≤ D, we have:

E[F (wt+1)] ≤E[F (wt)]− η · E[||∇F (wt)||2] +
η2L

2
CB−r,q−r+1d · (D2 + σ2/N (t))

+ η · CB−r,q−r+1Dd(τmaxL
√
CB−r,q−r+1d · (D2 + σ2/N (t)) + σ + κ).

Let D̃ = 1
T

∑T−1
t=0

√
D2 + σ2/N (t). By telescoping, we have:

η ·
T−1∑
t=0

E[||∇F (wt)||2] ≤{F (w0)− E[F (wT )]}+ η2T · L
2
CB−r,q−r+1d ·

1

T

T−1∑
t=0

(D2 + σ2/N (t))

+ ηT · CB−r,q−r+1Dd(τmaxLD̃
√
CB−r,q−r+1d+ σ + κ).

Note that E[F (wT )] ≥ F ∗, and let η = O
(

1
L
√
T

)
:

∑T−1
t=0 E[||∇F (wt)||2]

T
≤O

(
L[F (w0)− F ∗]√

T

)
+O

(
CB−r,q−r+1D̃d√

T

)
+O

(
CB−r,q−r+1Dd · (τmaxLD̃

√
CB−r,q−r+1d+ σ + κ)

)
.

Let δmax = q/B. When q = r, we have

CB−r,q−r+1 ≤
(q/δmax − r)

√
q/δmax − r + 1√

(q/δmax − q − 1)(q − r + 1)

=

√
r/δmax − r + 1

r/δmax − r − 1
· (1− δmax)r

δmax
≤ 2(1− δmax)r

δmax
.

Thus,∑T−1
t=0 E[||∇F (wt)||2]

T
≤ O

(
L[F (w0)− F ∗]

T
1
2

)
+O

(
2(1− δmax)rdD̃

δmaxT
1
2

)
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+O

(
2(1− δmax)rDdσ

δmax
+

2(1− δmax)rDdκ

δmax
+

2
√

2(1− δmax)
3
2 r

3
2LDD̃d

3
2 τmax

(δmax)
3
2

)
.

B.5 Proof of Theorem 12

Proof Let h′b be the value of the b-th buffer, if all received loyal gradients were computed
based on wt. Since Gt = Aggr([h0, . . . ,hB−1]), we have:

E[F (wt+1) | wt]

=E[F (wt − η ·Gt) | wt]

(a)

≤E[F (wt)− η · ∇F (wt)TGt +
L

2
η2||Gt||2 | wt]

=F (wt)− η · E[∇F (wt)TGt | wt] +
η2L

2
E[||Gt||2 | wt], (9)

where (a) is derived based on Assumption 5.

Firstly, we estimate the value of E[∇F (wt)TGt | wt].

Since there are at most r Byzantine workers, at most r buffers may contain Byzantine
gradients. Without loss of generality, suppose only the first r buffers may contain Byzantine
gradients.

Let Gt
syn = Aggr([h0, . . . ,hr−1,h

′
r, . . . ,h

′
B−1]), where h0, . . . ,hr−1 may contain Byzan-

tine gradients and be arbitrary value, and h′r, . . . ,h
′
B−1 each stores loyal gradients computed

based on wt. Thus,

E[∇F (wt)TGt
syn | wt] ≥ ‖∇F (wt)‖2 −A1, (10)

E[‖Gt
syn‖2 | wt] ≤ (A2)

2. (11)

Let α = 2η2L2τ2max(B − r) < 1.

We claim that

E[‖Gt −Gt
syn‖2 | wt] ≤ (

1

2
αt+1 +

α

1− α
) · (A2)

2,

and

E[‖Gt‖2 | wt] ≤ (αt+1 +
2

1− α
) · (A2)

2.

Now we prove it by induction on t.

Step 1. When t = 0, all gradients are computed according to w0, and we have G0 = G0
syn.

Thus,

E[‖G0 −G0
syn‖2 | w0] = 0 ≤ (

1

2
α1 +

α

1− α
) · (A2)

2,

E[‖G0‖2 | w0] = E[‖G0
syn‖2 | w0] ≤ (A2)

2 ≤ (α1 +
2

1− α
) · (A2)

2.
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Step 2. If

E[‖Gt′ −Gt′
syn‖2 | wt′ ] ≤ (

1

2
αt
′+1 +

α

1− α
) · (A2)

2,

E[‖Gt′‖2 | wt′ ] ≤ (αt
′+1 +

2

1− α
) · (A2)

2,

holds for all t′ = 0, 1, . . . , t− 1 (induction hypothesis), then:

E[‖Gt −Gt
syn‖2 | wt]

=E[‖Aggr([h0, . . . ,hr−1,hr, . . . ,hB−1])−Aggr([h0, . . . ,hr−1,h
′
r, . . . ,h

′
B−1])‖2 | wt]

(b)

≤E[

B−1∑
b=r

‖hb − h′b‖2 | wt]

=

B−1∑
b=r

E[‖ 1

N t
b

Nt
b∑

k=1

(∇f(wtk ; zik)−∇f(wt; zik))‖2 | wt]

(c)

≤
B−1∑
b=r

E[
1

N t
b

Nt
b∑

k=1

‖∇f(wtk ; zik)−∇f(wt; zik)‖2 | wt]

(d)

≤
B−1∑
b=r

E[
1

N t
b

Nt
b∑

k=1

L2‖wtk −wt‖2 | wt]

=
B−1∑
b=r

L2

N t
b

Nt
b∑

k=1

E[‖wtk −wt‖2 | wt]

=
B−1∑
b=r

L2

N t
b

Nt
b∑

k=1

E[‖
t−1∑
t′=tk

η ·Gt′‖2 | wt]

(e)

≤
B−1∑
b=r

η2L2

N t
b

Nt
b∑

k=1

E[(t− tk)
t−1∑
t′=tk

‖Gt′‖2 | wt]

(f)

≤
B−1∑
b=r

η2L2

N t
b

Nt
b∑

k=1

[(t− tk)
t−1∑
t′=tk

(αt
′+1 +

2

1− α
) · (A2)

2]

≤
B−1∑
b=r

η2L2

N t
b

Nt
b∑

k=1

[(t− tk)
t−1∑
t′=tk

(αt +
2

1− α
) · (A2)

2]

(g)

≤
B−1∑
b=r

(η2L2τ2max) · (αt +
2

1− α
) · (A2)

2

=(η2L2(B − r)τ2max) · (αt +
2

1− α
) · (A2)

2

(h)
=

1

2
α · (αt +

2

1− α
) · (A2)

2

=(
1

2
αt+1 +

α

1− α
) · (A2)

2, (12)
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where (b) is derived based on the definition of stable aggregation function, (c) is derived
based on Cauchy’s Inequality, (d) is derived based on Assumption 5, (e) is also derived based
on Cauchy’s Inequality, (f) is derived based on the induction hypothesis, (g) is derived
based on that t− tk ≤ τmax, and (h) is derived based on that α = 2η2L2τ2max(B − r).

Therefore,

E[‖Gt‖2 | wt] =E[||Gt
syn + (Gt −Gt

syn)||2 | wt]

(i)

≤2 · E[‖Gt
syn‖2 | wt] + 2 · E[||Gt −Gt

syn||2 | wt]

(j)

≤2 · (A2)
2 + 2 · E[||Gt −Gt

syn||2 | wt]

(k)

≤2 · (A2)
2 + 2 · (1

2
αt+1 +

α

1− α
) · (A2)

2

=(αt+1 +
2

1− α
) · (A2)

2, (13)

where (i) is derived based on that ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, ∀x,y ∈ Rd, (j) is derived by
the definition of (δmax, A1, A2)-effective aggregation function, and (k) is derived based on
Inequality (12).

By Inequality (12) and (13), the claimed property also holds for t′ = t.
In conclusion, for all t = 0, 1, . . . , T − 1, we have:

E[‖Gt −Gt
syn‖2 | wt] ≤ (

1

2
αt+1 +

α

1− α
) · (A2)

2, (14)

and

E[‖Gt‖2 | wt] ≤ (αt+1 +
2

1− α
) · (A2)

2. (15)

Also, E[‖Gt‖ | wt]2 + V ar[‖Gt‖ | wt] = E[‖Gt‖2 | wt]. Therefore,

E[‖Gt‖ | wt] =
√

E[‖Gt‖ | wt]2 ≤
√
αt+1 +

2

1− α
·A2. (16)

We have:

η · E[∇F (wt)TGt | wt]

=η · E[∇F (wt)TGt
syn | wt] + η · E[∇F (wt)T (Gt −Gt

syn) | wt]

(l)

≥η · (‖∇F (wt)‖2 −A1) + η · E[∇F (wt)T (Gt −Gt
syn) | wt]

≥η · ‖∇F (wt)‖2 − η ·A1 − η · ‖∇F (wt)‖ · ‖E[(Gt −Gt
syn) | wt]‖

(m)

≥ η · ‖∇F (wt)‖2 − η ·A1 − η ·D · ‖E[(Gt −Gt
syn) | wt]‖

(n)

≥η · ‖∇F (wt)‖2 − η ·A1 − η ·D ·
√

1

2
αt+1 +

α

1− α
·A2, (17)

where (l) is derived based on the definition of (δmax, A1, A2)-effective aggregation function,
(m) is derived by Assumption 3, and (n) is derived based on Inequality (14).
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Combining Inequalities (9), (15), (17) and taking total expectation, we have:

E[F (wt+1)] ≤E[F (wt)]− η · E[‖∇F (wt)‖2]

+ η ·A1 + η ·D
√

1

2
αt+1 +

α

1− α
·A2 +

1

2
η2L(αt+1 +

2

1− α
) · (A2)

2.

By telescoping, we have:

η ·
T−1∑
t=0

E[‖∇F (wt)‖2] ≤{F (w0)− E[F (wT )]}+
1

2
η2TL(α+

2

1− α
) · (A2)

2

+ ηTA1 + ηTD ·
√

1

2
α+

α

1− α
·A2.

Divide both sides of the equation by ηT , and let η = O( 1√
LT

):

∑T−1
t=0 E[‖∇F (wt)‖2]

T

≤{F (w0)− E[F (wT )]}
ηT

+
1

2
ηL(α+

2

1− α
) · (A2)

2 +A1 +D ·
√

1

2
α+

α

1− α
·A2

≤
√
L[F (w0)− F ∗]√

T
+

√
L(12α+ 1

1−α) · (A2)
2

√
T

+A1 + α
1
2 [

3− α
2(1− α)

]
1
2 ·DA2.

Since η = O( 1√
LT

) and B = br/δmaxc+ 1, we have that

α = 2η2L2τ2max(B − r) = O

(
Lτ2max(r − δmaxr + 1)

δmaxT

)
.

Finally, it is obtained that:

∑T−1
t=0 E[‖∇F (wt)‖2]

T
≤O

(√
L · [F (w0)− F ∗]√

T

)
+O

(√
L(A2)

2(1 + α)√
T

)
+O

(
α

1
2DA2

)
+A1

=O

(
L

1
2 [F (w0)− F ∗]

T
1
2

)
+O

(
(r − δmaxr + 1)

1
2L

1
2 τmaxDA2

δ
1
2
maxT

1
2

)

+O

(
L

1
2 (A2)

2

T
1
2

)
+O

(
(r − δmaxr + 1)L

3
2 (A2)

2τ2max

δmaxT
3
2

)
+A1.
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B.6 Proof of Theorem 13

Proof The proof of this theorem is similar to that of Theorem 12. The main differences
are the choices of the values α (in Theorem 12) and α̃ (here in Theorem 13). For more
readability, we still present the detailed proof processes here.

Let h′b be the value of the b-th buffer, if all received loyal gradients were computed based
on wt. Since Gt = Aggr([h0, . . . ,hB−1]), we have:

E[F (wt+1) | wt]

=E[F (wt − η ·Gt) | wt]

(a)

≤E[F (wt)− η · ∇F (wt)TGt +
L

2
η2||Gt||2 | wt]

=F (wt)− η · E[∇F (wt)TGt | wt] +
η2L

2
E[||Gt||2 | wt], (18)

where (a) is derived based on Assumption 5.

Firstly, we estimate the value of E[∇F (wt)TGt | wt].

Since there are at most r Byzantine workers, at most r buffers may contain Byzantine
gradients. Without loss of generality, suppose only the first r buffers may contain Byzantine
gradients.

Let Gt
syn = Aggr([h0, . . . ,hr−1,h

′
r, . . . ,h

′
B−1]), where h1, . . . ,hr may contain Byzantine

gradients and be arbitrary value, and h′r, . . . ,h
′
B−1 each stores loyal gradients computed

based on wt. Thus,

E[∇F (wt)TGt
syn | wt] ≥ ‖∇F (wt)‖2 −A1, (19)

E[‖Gt
syn‖2 | wt] ≤ (A2)

2. (20)

Let α̃ = 2η2L2τ2max(1− µ)2(B − r) < 1.

We claim that

E[‖Gt −Gt
syn‖2 | wt] ≤ (

1

2
α̃t+1 +

α̃

1− α̃
) · (A2)

2,

and

E[‖Gt‖2 | wt] ≤ (α̃t+1 +
2

1− α̃
) · (A2)

2.

Now we prove it by induction on t.

Step 1. When t = 0, all gradients are computed according to w0, and we have G0 = G0
syn.

Thus,

E[‖G0 −G0
syn‖2 | w0] = 0 ≤ (

1

2
α̃1 +

α̃

1− α̃
) · (A2)

2,

E[‖G0‖2 | w0] = E[‖G0
syn‖2 | w0] ≤ (A2)

2 ≤ (α̃1 +
2

1− α̃
) · (A2)

2.

Step 2. If

E[‖Gt′ −Gt′
syn‖2 | wt′ ] ≤ (

1

2
α̃t
′+1 +

α̃

1− α̃
) · (A2)

2,
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E[‖Gt′‖2 | wt′ ] ≤ (α̃t
′+1 +

2

1− α̃
) · (A2)

2,

holds for all t′ = 0, 1, . . . , t− 1 (induction hypothesis), then:

E[‖Gt −Gt
syn‖2 | wt]

=E[‖Aggr([h0, . . . ,hr−1,hr, . . . ,hB−1])−Aggr([h0, . . . ,hr−1,h
′
r, . . . ,h

′
B−1])‖2 | wt]

(b)

≤E[

B−1∑
b=r

‖hb − h′b‖2 | wt]

(c)
=

B−1∑
b=r

E[‖ 1

N t
b

Nt
b∑

k=1

(1− µ)(∇f(wtk ; zik)−∇f(wt; zik))‖2 | wt]

(d)

≤
B−1∑
b=r

E[
1

N t
b

Nt
b∑

k=1

‖(1− µ)(∇f(wtk ; zik)−∇f(wt; zik))‖2 | wt]

(e)

≤
B−1∑
b=r

E[
1

N t
b

Nt
b∑

k=1

(1− µ)2L2‖wtk −wt‖2 | wt]

=
B−1∑
b=r

L2(1− µ)2

N t
b

Nt
b∑

k=1

E[‖wtk −wt‖2 | wt]

=
B−1∑
b=r

L2(1− µ)2

N t
b

Nt
b∑

k=1

E[‖
t−1∑
t′=tk

η ·Gt′‖2 | wt]

(f)

≤
B−1∑
b=r

η2L2(1− µ)2

N t
b

Nt
b∑

k=1

E[(t− tk)
t−1∑
t′=tk

‖Gt′‖2 | wt]

(g)

≤
B−1∑
b=r

η2L2(1− µ)2

N t
b

Nt
b∑

k=1

[(t− tk)
t−1∑
t′=tk

(α̃t
′+1 +

2

1− α̃
) · (A2)

2]

≤
B−1∑
b=r

η2L2(1− µ)2

N t
b

Nt
b∑

k=1

[(t− tk)
t−1∑
t′=tk

(α̃t +
2

1− α̃
) · (A2)

2]

(h)

≤
B−1∑
b=r

(η2L2(1− µ)2τ2max) · (α̃t +
2

1− α̃
) · (A2)

2

=(η2L2(1− µ)2τ2max(B − r)) · (α̃t +
2

1− α̃
) · (A2)

2

(i)
=

1

2
α̃ · (α̃t +

2

1− α̃
) · (A2)

2

=(
1

2
α̃t+1 +

α̃

1− α̃
) · (A2)

2, (21)

where (b) is derived based on the definition of stable aggregation function, (c) is derived based
on the worker momentum updating formula u← µ · u + (1− µ) · ∇f(w; zi), (d) is derived
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based on Cauchy’s Inequality, (e) is derived based on Assumption 5, (f) is also derived
based on Cauchy’s Inequality, (g) is derived based on the induction hypothesis, (h) is derived
based on that t− tk ≤ τmax, and (i) is derived based on that α̃ = 2η2L2τ2max(1− µ)2(B − r).

Therefore,

E[‖Gt‖2 | wt] =E[||Gt
syn + (Gt −Gt

syn)||2 | wt]

(j)

≤2 · E[‖Gt
syn‖2 | wt] + 2 · E[||Gt −Gt

syn||2 | wt]

(k)

≤2 · (A2)
2 + 2 · E[||Gt −Gt

syn||2 | wt]

(l)

≤2 · (A2)
2 + 2 · (1

2
α̃t+1 +

α̃

1− α̃
) · (A2)

2

=(α̃t+1 +
2

1− α̃
) · (A2)

2, (22)

where (j) is derived based on that ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, ∀x,y ∈ Rd, (k) is derived by
the definition of (δmax, A1, A2)-effective aggregation function, and (l) is derived based on
Inequality (21).

By Inequality (21) and (22), the claimed property also holds for t′ = t.

In conclusion, for all t = 0, 1, . . . , T − 1, we have:

E[‖Gt −Gt
syn‖2 | wt] ≤ (

1

2
α̃t+1 +

α̃

1− α̃
) · (A2)

2, (23)

and

E[‖Gt‖2 | wt] ≤ (α̃t+1 +
2

1− α̃
) · (A2)

2. (24)

Also, E[‖Gt‖ | wt]2 + V ar[‖Gt‖ | wt] = E[‖Gt‖2 | wt]. Therefore,

E[‖Gt‖ | wt] =
√

E[‖Gt‖ | wt]2 ≤
√
α̃t+1 +

2

1− α̃
·A2. (25)

We have:

η · E[∇F (wt)TGt | wt]

=η · E[∇F (wt)TGt
syn | wt] + η · E[∇F (wt)T (Gt −Gt

syn) | wt]

(m)

≥ η · (‖∇F (wt)‖2 −A1) + η · E[∇F (wt)T (Gt −Gt
syn) | wt]

≥η · ‖∇F (wt)‖2 − η ·A1 − η · ‖∇F (wt)‖ · ‖E[(Gt −Gt
syn) | wt]‖

(n)

≥η · ‖∇F (wt)‖2 − η ·A1 − η ·D · ‖E[(Gt −Gt
syn) | wt]‖

(p)

≥η · ‖∇F (wt)‖2 − η ·A1 − η ·D ·
√

1

2
α̃t+1 +

α̃

1− α̃
·A2, (26)

where (m) is derived based on the definition of (δmax, A1, A2)-effective aggregation function,
(n) is derived by Assumption 3, and (p) is derived based on Inequality (23).
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Combining Inequalities (18), (24), (26) and taking total expectation, we have:

E[F (wt+1)] ≤E[F (wt)]− η · E[‖∇F (wt)‖2]

+ η ·A1 + η ·D
√

1

2
α̃t+1 +

α̃

1− α̃
·A2 +

1

2
η2L(α̃t+1 +

2

1− α̃
) · (A2)

2.

By telescoping, we have:

η ·
T−1∑
t=0

E[‖∇F (wt)‖2] ≤{F (w0)− E[F (wT )]}+
1

2
η2TL(α̃+

2

1− α̃
) · (A2)

2

+ ηTA1 + ηTD ·
√

1

2
α̃+

α̃

1− α̃
·A2.

Divide both sides of the equation by ηT , and let η = O( 1√
LT

):

∑T−1
t=0 E[‖∇F (wt)‖2]

T

≤{F (w0)− E[F (wT )]}
ηT

+
1

2
ηL(α̃+

2

1− α̃
) · (A2)

2 +A1 +D ·
√

1

2
α̃+

α̃

1− α̃
·A2

≤
√
L[F (w0)− F ∗]√

T
+

√
L(12 α̃+ 1

1−α̃) · (A2)
2

√
T

+A1 + α̃
1
2 [

3− α̃
2(1− α̃)

]
1
2 ·DA2.

Since η = O( 1√
LT

) and B = br/δmaxc+ 1, we have that

α̃ = 2η2L2τ2max(1− µ)2(B − r) = O

(
Lτ2max(1− µ)2(r − δmaxr + 1)

δmaxT

)
.

Finally, it is obtained that:∑T−1
t=0 E[‖∇F (wt)‖2]

T

≤ O

(√
L · [F (w0)− F ∗]√

T

)
+O

(√
L(A2)

2(1 + α̃)√
T

)
+O

(
α̃

1
2DA2

)
+A1

= O

(
L

1
2 [F (w0)− F ∗]

T
1
2

)
+O

(
(r − δmaxr + 1)

1
2L

1
2 τmaxDA2(1− µ)

δ
1
2
maxT

1
2

)

+O

(
L

1
2 (A2)

2

T
1
2

)
+O

(
(r − δmaxr + 1)L

3
2 (A2)

2τ2max(1− µ)2

δmaxT
3
2

)
+A1.
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B.7 Proof of Proposition 14

Proof Under the condition that ∀wt ∈ Rd, E[‖Gt
syn −∇F (wt)‖ | wt] ≤ D′ < D, we have:

E[∇F (wt)TGt
syn | wt]

= E[∇F (wt)T [∇F (wt) + (Gt
syn −∇F (wt))] | wt]

= ‖∇F (wt)‖2 + E[∇F (wt)T (Gt
syn −∇F (wt)) | wt]

≥ ‖∇F (wt)‖2 − ‖∇F (wt)‖ · E[‖Gt
syn −∇F (wt)‖ | wt]

≥ ‖∇F (wt)‖2 −DD′.

Combining with the property (a) of (δmax, A1, A2)-effective aggregation function, we have
A1 ≤ DD′ < D2.

B.8 Proof of Theorem 15

Proof At the end of the t-th iteration, the server updates the global model by letting
wt+1 = wt − η ·Gt, where Gt = Aggr([h0, . . . ,hB−1]). Please note that h0, . . . ,hB−1 may
differ for different t’s. However, when it does not cause confusion, we will omit the superscript
t for more readability. Let Ht = {b | hb does not contain Byzantine values} denote the set
of credible buffer at the t-th iteration. Since there are at most r Byzantine workers, we have
|Ht| ≥ B − r. Let

Ḡt =
1

|Ht|
∑
b∈Ht

hb

denote the mean value of credible buffers. At the beginning, we introduce the following
lemma, which provides an upper bound for the difference between received local momentums
and the global gradient.

Lemma 19. Under the same conditions in Theorem 15, for each local momentum u stored
in any credible buffer hb (b ∈ Ht) at the t-th iteration, we have:∥∥∥E[u−∇F (wt)]

∥∥∥2 ≤ 4(4cδ + 1)
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2.

(27)

Proof In the proof below, all the mentioned local momentums and stochastic gradients
are from a loyal worker k. For simplicity, we will omit the worker ID ‘k’ when there is no
confusion. Let tv (v = 0, 1, . . .) denote the iteration numbers corresponding to the model
parameters that worker k received during the training process. Thus, we have

0 = t0 ≤ t1 ≤ . . . ≤ tv ≤ . . . and tv − tv−1 ≤ τmax + 1.

Therefore, the global model parameter is wtv when worker k sends local momentums for the
v-th time. Let uk,v denote the v-th sent momentum from worker k. We are left to provide
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an upper bound for ‖E[uk,v]− E[∇F (wtv)]‖2. Using Assumption 2, Assumption 5 and the
i.i.d.-ness, it is obtained that∥∥E[uk,v −∇F (wtv)]

∥∥2
=
∥∥µ · E[uk,v−1] + (1− µ) · E[∇f(wtv−1 ; zik)]− E[∇F (wtv)]

∥∥2
=
∥∥µ · E[uk,v−1 −∇F (wtv)] + (1− µ) · E[∇F (wtv−1)−∇F (wtv)]

∥∥2
=
∥∥(1− λ) · E[uk,v−1 −∇F (wtv)] + λ · E[∇F (wtv−1)−∇F (wtv)]

∥∥2
≤ (1− λ)2

∥∥E[uk,v−1 −∇F (wtv)]
∥∥2 + λ2

∥∥E[∇F (wtv−1)−∇F (wtv)]
∥∥2

+ 2λ(1− λ)
∥∥E[uk,v−1 −∇F (wtv)]

∥∥ · ∥∥E[∇F (wtv−1)−∇F (wtv)]
∥∥ . (28)

By using Assumption 3, the L2-norm of each received momentum from loyal workers is
bounded by D. Thus, for any b, b′ ∈ H, ‖hb−hb′‖2 ≤ 4D2. Since tv − tv−1 ≤ τmax, we have:

E‖wtv−1 −wtv‖2 = E

∥∥∥∥∥∥
tv−1∑
t=tv−1

η ·Gt

∥∥∥∥∥∥
2

≤ 2η2E

∥∥∥∥∥∥
tv−1∑
t=tv−1

(Gt − Ḡt)

∥∥∥∥∥∥
2

+ 2η2E

∥∥∥∥∥∥
tv−1∑
t=tv−1

Ḡt

∥∥∥∥∥∥
2

≤ 2η2(τmax + 1)2cδ(4D2) + 2η2(τmax + 1)2D2

= 2(4cδ + 1)η2(τmax + 1)2D2. (29)

The first term in the right-hand side (RHS) of inequality (28) is bounded by

(1− λ)2
∥∥E[uk,v−1 −∇F (wtv)]

∥∥2
=(1− λ)2

∥∥E[uk,v−1 −∇F (wtv−1)] + E[∇F (wtv−1)−∇F (wtv)]
∥∥2

≤(1− λ)(1 +
λ

2
)
∥∥E[uk,v−1 −∇F (wtv−1)]

∥∥2 + (1− λ)(1 +
2

λ
)
∥∥E[∇F (wtv−1)−∇F (wtv)]

∥∥2
≤(1− λ)(1 +

λ

2
)
∥∥E[uk,v−1 −∇F (wtv−1)]

∥∥2 + (1− λ)(1 +
2

λ
)E
∥∥∇F (wtv−1)−∇F (wtv)

∥∥2
≤(1− λ

2
)
∥∥E[uk,v−1 −∇F (wtv−1)]

∥∥2 +
2L2

λ
E
∥∥wtv−1 −wtv

∥∥2
≤(1− λ

2
)
∥∥E[uk,v−1 −∇F (wtv−1)]

∥∥2 +
4(4cδ + 1)η2L2(τmax + 1)2D2

λ
. (30)

The second term in the RHS of inequality (28) is bounded by

λ2
∥∥E[∇F (wtv−1)−∇F (wtv)]

∥∥2 ≤ λ2L2E
∥∥wtv−1 −wtv

∥∥2 ≤ 2(4cδ+1)λ2η2L2(τmax+1)2D2.
(31)

Let constants Q = 2(4cδ + 1)η2L2(τmax + 1)2D2. Substituting (30) and (31) into (28), we
have∥∥∥E[uk,v −∇F (wtv)]

∥∥∥2 ≤ (1− λ

2
)
∥∥E[uk,v−1 −∇F (wtv−1)]

∥∥2 +
2

λ
Q+ λ2Q

+ 2λQ
1
2

(
(1− λ

2
)
∥∥E[uk,v−1 −∇F (wtv−1)]

∥∥2 +
2

λ
Q

) 1
2

. (32)
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Let ξv = ‖E[uk,v −∇F (wtv)]‖ ≥ 0, we have

(ξv)
2 ≤

(
1− λ

2

)
(ξv−1)

2 +
2

λ
Q+ λ2Q+ 2λ

√(
1− λ

2

)
Q(ξv−1)2 +

2

λ
Q2. (33)

By mathematical induction on v, then we prove that

ξv ≤

(
2 +

√
4 + (4− 2λ)λ2

λ

)√
Q, ∀v ∈ N+. (34)

Step 1. For v = 1, using Inequality (29), Assumption 2 and Assumption 5, we have

ξ1 = ‖E[uk,1 −∇F (wt1)]‖ = ‖E[∇f(wt0 ; zik)−∇F (wt1)]‖
= ‖E[∇F (wt0)−∇F (wt1)]‖
≤ L · E‖wt0 −wt1‖

≤
√

2(4cδ + 1)η2L2(τmax + 1)2D2

=
√
Q ≤

(
2 +

√
4 + (4− 2λ)λ2

λ

)√
Q. (35)

Step 2. Suppose that ξv ≤
(

2 +

√
4+(4−2λ)λ2

λ

)√
Q holds for v. Then for v + 1, we have

(ξv+1)
2 ≤

(
1− λ

2

)
(ξv)

2 +
2

λ
Q+ λ2Q+ 2λ

√(
1− λ

2

)
Q(ξv)2 +

2

λ
Q2

=

(√(
1− λ

2

)
(ξv)2 +

2

λ
Q+ λ

√
Q

)2

. (36)

Therefore,

ξv+1 ≤

√(
1− λ

2

)
(ξv)2 +

2

λ
Q+ λ

√
Q

≤

√√√√(1− λ

2

)((
2 +

√
4 + (4− 2λ)λ2

λ

)√
Q

)2

+
2

λ
Q+

√
λ2Q

=


√√√√(1− λ

2

)(
2 +

√
4 + (4− 2λ)λ2

λ

)2

+
2

λ
+ λ

 ·√Q. (37)

Since√√√√(1− λ

2

)(
2 +

√
4 + (4− 2λ)λ2

λ

)2

+
2

λ
+ λ
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=

√√√√(1− λ

2

)(
4 +

4
√

4 + (4− 2λ)λ2

λ
+

4

λ2
+ 4− 2λ

)
+

2

λ
+ λ

=

√√√√(8 +
4
√

4 + (4− 2λ)λ2

λ
+

4

λ2
− 2λ

)
−
(

4λ+ 2
√

4 + (4− 2λ)λ2 +
2

λ
− λ2

)
+

2

λ
+ λ

=

√
4 +

(
4

λ2
+ 4− 2λ

)
+ λ2 +

4
√

4 + (4− 2λ)λ2

λ
− 2
√

4 + (4− 2λ)λ2 − 4λ+ λ

=

√√√√22 +

(√
4 + (4− 2λ)λ2

λ

)2

+ λ2 +
4
√

4 + (4− 2λ)λ2

λ
−

2λ
√

4 + (4− 2λ)λ2

λ
− 4λ+ λ

=

√√√√(2 +

√
4 + (4− 2λ)λ2

λ
− λ

)2

+ λ

=2 +

√
4 + (4− 2λ)λ2

λ
− λ+ λ

=2 +

√
4 + (4− 2λ)λ2

λ
, (38)

we have

ξv+1 ≤

(
2 +

√
4 + (4− 2λ)λ2

λ

)√
Q. (39)

It indicates that the induction hypothesis also holds for v+ 1. Consequently, for any positive
integer v, we have

ξv ≤

(
2 +

√
4 + (4− 2λ)λ2

λ

)√
Q. (40)

Recall that ξv = ‖E[uk,v −∇F (wtv)]‖ and finally it is obtained that

‖E[uk,v −∇F (wtv)]‖2 ≤

(
2 +

√
4 + (4− 2λ)λ2

λ

)2

Q

= 4(4cδ + 1)
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2. (41)

We have finished the proof of Lemma 19 and we will continue to prove Theorem 15.

E[F (wt+1) | wt]

=E[F (wt − η ·Gt) | wt]

(a)

≤E
[
F (wt)− η · ∇F (wt)TGt +

L

2
η2||Gt||2

∣∣∣ wt

]
=E

[
F (wt)− η · 1

2

(
‖∇F (wt)‖2 + ‖Gt‖2 − ‖∇F (wt)−Gt‖2

)
+
L

2
η2||Gt||2

∣∣∣ wt

]
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=E
[
F (wt)− η

2
‖∇F (wt)‖2 +

η

2
‖∇F (wt)−Gt‖2 − η(1− ηL)

2
||Gt||2

∣∣∣ wt

]
(b)

≤F (wt)− η

2
‖∇F (wt)‖2 +

η

2
· E
[
‖Gt −∇F (wt)‖2

∣∣∣wt
]

(c)

≤F (wt)− η

2
‖∇F (wt)‖2 + η · E

[
‖Gt − Ḡt‖2

∣∣∣wt
]

+ η · E
[
‖Ḡt −∇F (wt)‖2

∣∣∣wt
]
, (42)

where (a) is derived based on Assumption 5, (b) is derived based on that η ≤ 1
L , and (c) is

derived based on that ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2. Take total expectation on both sides and
it is obtained that

E[F (wt+1)] ≤ E[F (wt)]− η
2
E
∥∥∇F (wt)

∥∥2+η ·E
∥∥Gt − Ḡt

∥∥2+η ·E
∥∥Ḡt −∇F (wt)

∥∥2 . (43)

Since the fraction of Byzantine workers is not larger than Bδ
n , there are at most Bδ Byzantine

workers. Thus, there are at most Bδ buffers that are not credible. It indicates that the
fraction of credible buffers equals or is larger than 1− δ. Since Aggr(·) is a (δmax, c)-robust
aggregation function and Gt = Aggr([h0, . . . ,hB−1]), we have

E
∥∥Gt − Ḡt

∥∥2 ≤cδ · max
b,b′∈Ht

E ‖hb − hb′‖2

≤cδ · max
b,b′∈Ht

(
2E
∥∥hb −∇F (wt)

∥∥2 + 2E
∥∥hb′ −∇F (wt)

∥∥2)
≤4cδ ·max

b∈Ht
E
∥∥hb −∇F (wt)

∥∥2 . (44)

In addition, since Ḡt = 1
|Ht|

∑
b∈Ht hb, we have

E‖Ḡt −∇F (wt)‖2 ≤ 1

|Ht|
∑
b∈Ht

E
∥∥hb −∇F (wt)

∥∥2 ≤ max
b∈Ht

E
∥∥hb −∇F (wt)

∥∥2 . (45)

Therefore,

E[F (wt+1)] ≤ E[F (wt)]− η

2
E‖∇F (wt)‖2 + η(4cδ + 1) ·max

b∈Ht
E
∥∥hb −∇F (wt)

∥∥2 . (46)

For any b ∈ Ht, let ul (l = 1, 2, . . . , N t
b) denote the momentums received in hb.

E‖hb −∇F (wt)‖2

=E

∥∥∥∥∥∥ 1

N t
b

Nt
b∑

l=1

ul −∇F (wt)

∥∥∥∥∥∥
2

=E

∥∥∥∥∥∥ 1

N t
b

Nt
b∑

l=1

ul − E

 1

N t
b

Nt
b∑

l=1

ul

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥E
 1

N t
b

Nt
b∑

l=1

ul

−∇F (wt)

∥∥∥∥∥∥
2

≤E

∥∥∥∥∥∥ 1

N t
b

Nt
b∑

l=1

(ul − E[ul])

∥∥∥∥∥∥
2

+
1

N t
b

Nt
b∑

l=1

∥∥E[ul]−∇F (wt)
∥∥2 . (47)
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∀l ∈ {1, 2, . . . , N t
b}, suppose that ul is the momentum received from worker k for the v-th

time. When t > τmax, we have v > 1. Thus, ul = uk,v = (1 − λ)uk,v−1 + λ∇f(wtv−1 ; zik)
where uk,v−1 denotes the stored momentum on worker k before ∇f(wtv−1 ; zik) is computed
and t− τmax ≤ tv−1 ≤ t. By using Assumption 4, we have

E‖ul − E[ul]‖2 = λ2 · E
∥∥∇f(wtv−1 ; zik)− E[∇f(wtv−1 ; zik)]

∥∥2 ≤ λ2σ2. (48)

When 0 ≤ t ≤ τmax, it is uncertain whether v = 1 or not. If v > 1, it is already obtained
that E‖ul − E[ul]‖2 ≤ λ2σ2 ≤ σ2. If v = 1, ul = uk,v = ∇f(wtv−1 ; zik). Thus,

E‖ul − E[ul]‖2 = E
∥∥∇f(wtv−1 ; zik)− E[∇f(wtv−1 ; zik)]

∥∥2 ≤ σ2. (49)

In summary, when 0 ≤ t ≤ τmax, we have E‖ul − E[ul]‖2 ≤ σ2. Therefore,

E

∥∥∥∥∥∥ 1

N t
b

Nt
b∑

l=1

(ul − E[ul])

∥∥∥∥∥∥
2

≤ 1

N t
b

Nt
b∑

l=1

E‖ul − E[ul]‖2 ≤
{
σ2, if 0 ≤ t ≤ τmax;
λ2σ2, if t > τmax.

(50)

Meanwhile, by Lemma 19, we have∥∥E[ul −∇F (wt)]
∥∥2 ≤ 4(4cδ + 1)

[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2.

(51)
Consequently,

E‖hb −∇F (wt)‖2

≤
{
σ2 + 4(4cδ + 1)(4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2)η2L2(τmax + 1)2D2, t ≤ τmax;

λ2σ2 + 4(4cδ + 1)(4− λ+ 2
√

4− 2λ+ 4λ−2 + 2λ−2)η2L2(τmax + 1)2D2, t > τmax.

(52)

Substituting it into (46), it is obtained that if 0 ≤ t ≤ τmax,

E[F (wt+1)] ≤E[F (wt)]− η

2
E‖∇F (wt)‖2 + η(4cδ + 1)σ2

+ 4η(4cδ + 1)2
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2;

(53)

and that if t > τmax,

E[F (wt+1)] ≤E[F (wt)]− η

2
E‖∇F (wt)‖2 + η(4cδ + 1)λ2σ2

+ 4η(4cδ + 1)2
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2.

(54)

By taking summation over t, it is obtained that when T > τmax,

E[F (wT )] ≤F (w0)− η

2

T−1∑
t=0

E‖∇F (wt)‖2 + η(4cδ + 1)σ2(τmax + 1 + λ2(T − τmax − 1))
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+ 4ηT (4cδ + 1)2
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2.

(55)

Finally, by using E[F (wT )] ≥ F ∗ and T − τmax − 1 < T , we have

∑T−1
t=0 E||∇F (wt)||2

T
≤ 2[F (w0)− F ∗]

ηT
+

2(4cδ + 1)(τmax + 1)σ2

T
+ ζ, (56)

where
ζ = 2(4cδ + 1)λ2σ2 + 8(4cδ + 1)2

[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2.

B.9 Proof of Proposition 16

Proof Substituting λ =
√
ηL and η ≤

√
F (w0)−F ∗

LT (4cδ+1)[σ2+8(4cδ+1)(τmax+1)2D2]
into (2), it is

obtained that∑T−1
t=0 E||∇F (wt)||2

T

≤ 2[F (w0)− F ∗]
ηT

+
2(4cδ + 1)(τmax + 1)σ2

T
+ 2(4cδ + 1)λ2σ2

+ 8(4cδ + 1)2
[
4− λ+ 2

√
4− 2λ+ 4λ−2 + 2λ−2

]
η2L2(τmax + 1)2D2

≤ 2[F (w0)− F ∗]
ηT

+
2(4cδ + 1)(τmax + 1)σ2

T
+ 2(4cδ + 1)λ2σ2

+ 8(4cδ + 1)2
(
4 + 8λ−1 + 2λ−2

)
η2L2(τmax + 1)2D2

=
2[F (w0)− F ∗]

ηT
+ 2(4cδ + 1)[σ2 + 8(4cδ + 1)(τmax + 1)2D2]ηL+

2(4cδ + 1)(τmax + 1)σ2

T

+ 64(4cδ + 1)2(τmax + 1)2D2η
3
2L

3
2 + 32(4cδ + 1)2(τmax + 1)2D2η2L2

≤ max

(
2L

1
2 [F (w0)− F ∗]

1
2 (4cδ + 1)

1
2 [σ2 + 8(4cδ + 1)(τmax + 1)2D2]

1
2

T
1
2

,
2L[F (w0)− F ∗]

T

)

+
2L

1
2 [F (w0)− F ∗]

1
2 (4cδ + 1)

1
2 [σ2 + 8(4cδ + 1)(τmax + 1)2D2]

1
2

T
1
2

+
2(4cδ + 1)(τmax + 1)σ2

T

+ 64(4cδ + 1)2(τmax + 1)2D2

(
L[F (w0)− F ∗]

T (4cδ + 1)[σ2 + 8(4cδ + 1)(τmax + 1)2D2]

) 3
4

+ 32(4cδ + 1)2(τmax + 1)2D2

(
L[F (w0)− F ∗]

T (4cδ + 1)[σ2 + 8(4cδ + 1)(τmax + 1)2D2]

)
≤ 4L

1
2 [F (w0)− F ∗]

1
2 (4cδ + 1)

1
2 [σ2 + 8(4cδ + 1)(τmax + 1)2D2]

1
2

T
1
2
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+

L
3
4 [F (w0)− F ∗]

3
4

64(4cδ+1)
5
4 (τmax+1)2D2

[σ2+8(4cδ+1)(τmax+1)2D2]
3
4

T
3
4

+
L[F (w0)− F ∗]

(
2 + 32(4cδ+1)(τmax+1)2D2

σ2+8(4cδ+1)(τmax+1)2D2

)
+ 2(4cδ + 1)(τmax + 1)σ2

T

≤ 4L
1
2 [F (w0)− F ∗]

1
2 (4cδ + 1)

1
2 [σ2 + 8(4cδ + 1)(τmax + 1)2D2]

1
2

T
1
2

+
14L

3
4 [F (w0)− F ∗]

3
4 (4cδ + 1)

1
2 (τmax + 1)

1
2D

1
2

T
3
4

+
6L[F (w0)− F ∗] + 2(4cδ + 1)(τmax + 1)σ2

T
.

B.10 Relation between Geometric Median and Centered Clipping

Corollary 20. Aggregation rule centered clipping (CC) is equivalent to geometric me-
dian (geoMed) when clipping size R→ 0+.

Proof The definition of CC is given by:

hl+1 = hl +
1

B

B−1∑
b=0

(hb − hl) min

(
1,

R

‖hb − hl‖2

)
. (57)

When CC converges to h∗CC , it means that

h∗CC = h∗CC +
1

B

B−1∑
b=0

(hb − h∗CC) min

(
1,

R

‖hb − h∗CC‖2

)
. (58)

Thus, we have:
B−1∑
b=0

(hb − h∗CC) min

(
1,

R

‖hb − h∗CC‖2

)
= 0. (59)

When ∀b ∈ {0, . . . , B − 1}, R ≤ ‖hb − h∗CC‖2 (since R→ 0+), we have

min

(
1,

R

‖hb − h∗CC‖2

)
=

R

‖hb − h∗CC‖2
. (60)

Therefore,

R ·
B−1∑
b=0

(hb − h∗CC)

‖hb − h∗CC‖2
= 0. (61)

Namely,

R ·

[
∇

(
B−1∑
b=0

‖h− hb‖2

)]∣∣∣∣∣
h=h∗CC

= 0. (62)
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Considering that the function
∑B−1

b=0 ‖h− hb‖2 is convex, we have:

h∗CC = arg min
h∈Rd

{
B−1∑
b=0

‖h− hb‖2

}
= geoMed([h0, . . . ,hB−1]). (63)

Meanwhile, we have to point out that although CC is theoretically equivalent to geoMed
when R is small enough, R is not supposed to be set too small in practical applications. Too
small R will slow the convergence rate of CC.
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Appendix C. More Experimental Results

Figure 9-10, Figure 11, and Figure 12 illustrate the average training loss w.r.t. epochs when
under no attack, non-omniscient attacks, and omniscient attacks in the image classification
task. Please note that in Figure 11 and Figure 12, some curves do not appear because the
value of the loss function is extremely large due to the Byzantine attack. γ is the hyper-
parameter about the assumed number of Byzantine workers in Kardam. The experimental
results further support the conclusions of this work.
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(c) BASGD with geoMed
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Figure 9: Average training loss w.r.t. epochs of methods BASGD, ASGD, and Kardam
when there are no Byzantine workers.

53



Yang and Li

0 20 40 60 80 100 120 140 160
Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
ra

in
in

g 
Lo

ss

ASGDm
BASGDm with median (B=5)
BASGDm with median (B=10)
BASGDm with median (B=15)
BASGDm with median (B=30)
Kardam ( =2)
Kardam ( =10)

(a) BASGDm with median

0 20 40 60 80 100 120 140 160
Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
ra

in
in

g 
Lo

ss

ASGDm
BASGDm with trmean (B=5, q=1)
BASGDm with trmean (B=10, q=3)
BASGDm with trmean (B=15, q=5)
BASGDm with trmean (B=30, q=10)
Kardam ( =2)
Kardam ( =10)

(b) BASGDm with trmean
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Figure 10: Average training loss w.r.t. epochs of methods BASGDm, ASGDm, and Kardam
when there are no Byzantine workers.
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(a) 3 Byzantine workers with RD-attack
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(b) 3 Byzantine workers with NG-attack
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(c) 6 Byzantine workers with RD-attack
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(d) 6 Byzantine workers with NG-attack

Figure 11: Average training loss w.r.t. epochs under non-omniscient attacks. B = 10 for
BASGD (BASGDm) when there are 3 Byzantine workers and B = 15 for BASGD
(BASGDm) when there are 6 Byzantine workers. Some curves do not appear in
the figure, because the value of loss function is extremely large.
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(a) 3 Byzantine workers with FoE attack

0 20 40 60 80 100 120 140 160
Epoch

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 T
ra

in
in

g 
Lo

ss

BASGD with CC
BASGDm with CC
BASGD with trmean
BASGDm with trmean
BASGD with geoMed
BASGDm with geoMed
Kardam ( =3)
Kardam ( =6)

(b) 3 Byzantine workers with ALIE attack
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(c) 6 Byzantine workers with FoE attack
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(d) 6 Byzantine workers with ALIE attack

Figure 12: Average training loss w.r.t. epochs under omniscient attacks. B = 10 for
BASGD (BASGDm) when there are 3 Byzantine workers and B = 15 for
BASGD (BASGDm) when there are 6 Byzantine workers. Some curves do not
appear in the figure, because the value of loss function is extremely large.
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