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Abstract

We present L0Learn: an open-source package for sparse linear regression and classification
using `0 regularization. L0Learn implements scalable, approximate algorithms, based on
coordinate descent and local combinatorial optimization. The package is built using C++
and has user-friendly R and Python interfaces. L0Learn can address problems with millions
of features, achieving competitive run times and statistical performance with state-of-the-
art sparse learning packages. L0Learn is available on both CRAN and GitHub.1
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1. Introduction

High-dimensional data is common in many important applications of machine learning,
such as genomics and healthcare (Bycroft et al., 2018). For statistical and interpretability
reasons, it is desirable to learn linear models with sparse coefficients (Hastie et al., 2015).
Sparsity can be directly obtained using `0 regularization, which controls the number of
nonzero coefficients in the model. To illustrate this, let us consider the standard linear
regression problem with a data matrix X ∈ Rn×p, regression coefficients β ∈ Rp, and a
response vector y ∈ Rn. Using ‖β‖0 to denote the number of nonzero entries in β, the
`0-regularized least-squares problem is given by:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖0, (1)

where λ ≥ 0 is a regularization parameter. Problem (1) is a fundamental problem in statis-
tics and machine learning known as best subset selection, since it searches for a subset of
the features that leads to the best fit (in terms of squared error) (Hocking and Leslie, 1967).
Statistical optimality properties of estimator (1) have been discussed in Greenshtein (2006);
Raskutti et al. (2011); Zhang et al. (2014). Problem (1) is NP-hard and poses computa-
tional challenges. Various approaches have been proposed to approximate solutions to (1).

1Links: https://cran.r-project.org/package=L0Learn and https://github.com/hazimehh/L0Learn
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These include continuous proxies to the `0 norm such as the `1 norm (Tibshirani, 1996)
and nonconvex penalties such as SCAD and MCP (Fan and Li, 2001; Zhang, 2010). For
these continuous penalties, specialized software packages have been developed, e.g., glmnet
(Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), sparsenet (Mazumder et al.,
2011), and picasso (Ge et al., 2019). Approaches for cardinality-constrained problems
include greedy heuristics (e.g., stepwise methods), iterative hard thresholding (IHT) (Blu-
mensath and Davies, 2008), BeSS (Wen et al., 2020), abess (Zhu et al., 2020), among
others.

Recently, there have been significant advances in computing globally optimal solutions
to `0-regularized problems, by using mixed integer programming (Wolsey and Nemhauser,
1999)—see for example Bertsimas et al. (2016); Bertsimas and Van Parys (2020); Hazimeh
et al. (2022), and references therein. For example, `0-regularized regression problems can be
solved to optimality in minutes to hours for p ∼ 107 when highly sparse solutions are desired
(Hazimeh et al., 2022). In several applications however, high-quality approximate solutions
for `0-regularized problems may be more practical than obtaining global optimality certifi-
cates. Our recent works (Hazimeh and Mazumder, 2020; Dedieu et al., 2021) propose fast,
approximate algorithms for computing high-quality solutions to `0-regularized problems,
with running times comparable to that of fast `1 solvers. Our algorithms are based on a
combination of coordinate descent (CD) and local combinatorial optimization, for which we
establish convergence guarantees. Local search often results in improved solution quality
over using CD alone. Indeed, the experiments in Hazimeh and Mazumder (2020); Dedieu
et al. (2021) indicate that our algorithms can outperform state-of-the-art methods based
on `1, MCP, SCAD, IHT, and others in terms of different statistical metrics (prediction,
estimation, variable selection) and across a wide range of statistical settings.

This paper introduces L0Learn: a package for `0-regularized linear regression and clas-
sification. In addition to the `0 penalty, L0Learn supports continuous penalties such as the
`1 or squared `2 norm. L0Learn implements highly optimized CD and local combinatorial
optimization algorithms (Hazimeh and Mazumder, 2020; Dedieu et al., 2021) in C++, along
with user-friendly R and Python interfaces to support fitting and visualizing models.

2. Package Overview

Problem formulation. In L0Learn, we consider a supervised learning setting with samples
{(xi, yi)}ni=1, where xi ∈ Rp is the i-th feature vector and yi ∈ R is the corresponding
response. Let L : R×R→ R be an associated loss function (such as squared error or logistic
loss). L0Learn approximately minimizes the empirical risk, penalized with an `0`1 or `0`2
regularization. Specifically, for a fixed q ∈ {1, 2}, we compute approximate solutions to

min
β0,β

n∑
i=1

L(yi, β0 + xTi β) + λ‖β‖0 + γ‖β‖qq, (2)

where λ and γ are non-negative regularization parameters. While the `0 penalty per-
forms variable selection, the `q regularization induces shrinkage to help mitigate overfit-
ting, especially in low-signal settings (Mazumder et al., 2023; Hazimeh and Mazumder,
2020). L0Learn supports regression using squared-error loss, classification using logistic
and squared-hinge losses; and also accommodates box constraints on the βis.
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# Assume the data matrix (x) and response (y) have been loaded

fit <- L0Learn.fit(x, y, penalty="L0") # Fit an L0 regularized regression model

plot(fit) # Plot the regularization path

cv_fit <- L0Learn.cvfit(x, y, penalty="L0", nFolds =5) # 5-fold cross validation

plot(cv_fit) # Plot the cross -validation error

Figure 1: Simple examples of using L0Learn in R.

Overview of the algorithms. L0Learn uses a combination of (i) cyclic CD and (ii)
local combinatorial optimization. The choice of CD is inspired by its strong performance in
sparse learning with continuous penalties (Friedman et al., 2010; Mazumder et al., 2011).
Standard convergence results for cyclic CD, e.g., Tseng (2001), do not apply for the discon-
tinuous objective in (2). Hence, in Hazimeh and Mazumder (2020), we show that a variant
of cyclic CD converges to a local minimizer of Problem (2). Given a CD solution (β0, β), the
local combinatorial optimization algorithm searches a local neighborhood for solutions with
a better objective.2 After finding a new improved solution using local search, we run CD
with the new solution in an attempt to further improve the current solution. We keep iter-
ating between local search and CD, until convergence—see Hazimeh and Mazumder (2020)
for details.

Efficient computation of the regularization path. L0Learn solves (2) over a grid
of regularization parameters. We use computational schemes such as warm starts, active
sets, greedy cyclic order for CD, and correlation screening (Hazimeh and Mazumder, 2020),
to speed up the algorithm. Due to the nature of the `0 penalty, different values of λ in
(2) can lead to the same solution. Thus, to avoid duplicate solutions and unnecessary
computations, we develop a new method that computes a data-dependent grid of λs, which
is guaranteed to avoid duplicate solutions—see Hazimeh and Mazumder (2020) for details.

Implementation and development. All the algorithms in the package are imple-
mented in C++, along with high-level R and Python interfaces. For linear algebra opera-
tions, we rely on the Armadillo library (Sanderson and Curtin, 2016), which is accelerated
by Basic Linear Algebra Subprograms (BLAS) (Lawson et al., 1979). The R interface is in-
tegrated with C++ using RcppArmadillo (Eddelbuettel and Sanderson, 2014). The Python
interface is integrated with C++ using carma (Urlus, 2023) and pybind11 (Jakob et al.,
2017). L0Learn supports both dense and sparse data matrices. Sparse matrices generally
speed up computation and reduce memory requirements. In all functions that require the
data matrix as an input argument, we use function templates that accept a generic matrix
type. Thus, exactly the same code is used for both dense and sparse matrices, but each
matrix type uses specialized linear algebra implementations.

For development, we use continuous integration based on Travis CI to build and test the
package. Our unit and integration tests are primarily implemented in R based on testthat

(Wickham, 2011) and have a coverage of 97% (as measured by covr). L0Learn achieved
the highest rating (A) for code quality by the code analysis tool Codacy (www.codacy.com).
We have additional CI checks that use Github Actions for our Python bindings to ensure
the Python bindings interact with the C++ library identically to the R bindings.

2We implement the case where the neighborhood consists of all solutions obtained by removing one
variable from the support of β and adding another previously zero variable to the support.
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3. Usage and Documentation

L0Learn can be installed in R by executing install.packages("L0Learn") and can be
installed in Python by executing pip install l0learn. It is supported on Linux, macOS,
and Windows. In Figure 1, we provide simple examples of how to use L0Learn in R. More
elaborate examples and a full API documentation can be found in L0Learn’s Vignette and
Reference Manual, which are available on L0Learn’s main pages1. Similar examples and
API documentation are available in Python as well.

4. Experiments

Our main goal in these experiments is to compare the running time of L0Learn with similar
toolkits, designed for sparse learning problems. Specifically, we compare with glmnet,
ncvreg, picasso, and abess. For space constraints, we focus on linear regression, and refer
the reader to Dedieu et al. (2021) for sparse classification experiments. Our experiments
also shed some light on the statistical performance of the different approaches: for in-
depth studies of statistical properties, see Hazimeh and Mazumder (2020); Hastie et al.
(2020); Mazumder et al. (2023). We note that there are modern approaches for solving `0-
regularized problems to global optimality e.g., Bertsimas and Van Parys (2020); Hazimeh
et al. (2022, 2023). However, due to their focus on optimality certification, they are usually
(much) slower than the competing toolkits we present here (Hazimeh et al., 2022).

Setup. Following Hazimeh and Mazumder (2020), we consider synthetic data as per a
linear regression model under the fixed design setting (exponential correlation model with
ρ = 0.3). We take n = 1000, k = 50, signal-to-noise ratio (SNR)3 to be 5 and vary
p ∈ {103, 104, 105}. In L0Learn, we used the default CD algorithm with the `0`2 penalty. In
picasso, we used `1 regularization and changed the convergence threshold (prec) to 10−10

so that its solutions roughly match those of glmnet. In ncvreg, we used the (default)
MCP penalty. All competing methods are tuned to minimize MSE on a validation set with
the same size as the training set. In L0Learn, ncvreg, and abess, we tune over a two-
dimensional grid consisting of 100 λ values (chosen automatically by the toolkits) and 100
γ values (in the range [10−2, 102] for L0Learn, [1.5, 103] for ncvreg, [1, 103] for abess4).
Experiments were performed on a Linux c5n.2xlarge EC2 instance running R 4.0.2.

Metrics. We report the running time in seconds for computing a path of 100 solutions.
(L0Learn, abess, and ncvreg require additional time for tuning their second parameter γ).
In addition, given an estimator β̂, we compute the following statistical metrics: (i) prediction
error (PE) given by ‖Xβ̂−Xβ∗‖2/‖Xβ∗‖2, (ii) the number of false positives (FP), i.e., the
nonzero variables in β̂ that are not in β∗, and (iii) the support size (SS).

Results. In Table 1, we report the metrics averaged over 10 repetitions. The results
indicate that L0Learn achieves best-in-class run times and statistical performance. While
we only show results on synthetic data sets due to space constraints, L0Learn is useful
and can lead to good improvements on real data sets, as demonstrated in many studies,

3Similar to Bertsimas et al. (2016), SNR := Var(Xβ∗)/σ2.
4We found out that abess requires a different range for γ (the parameter of the squared `2 reguralizer)

to perform well. This is expected since abess considers a different, cardinality-constrained formulation.
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p = 103 p = 104 p = 105

Time PE×102 FP SS Time PE×102 FP SS Time PE×102 FP SS

L0Learn 0.09 (0.01) 9.4 (1.2) 0 (0) 50 (0) 0.49 (0.0) 9.4 (0.8) 0 (0) 50 (0) 4.4 (0.4) 9.5 (1.1) 0 (0) 50 (0)
glmnet 0.55 (0.02) 19.8 (1.0) 154 (22) 204 (22) 0.94 (0.0) 26.4 (0.9) 300 (22) 350 (22) 8.0 (0.1) 32.3 (1.5) 485 (38) 535 (38)
picasso 1.46 (.15) 19.8 (1.0) 157 (24) 207 (24) 2.92 (0.0) 26.4 (0.9) 303 (22) 353 (22) 15.5 (0.2) 32.3 (1.5) 483 (35) 533 (35)
abess 0.43 (0.04) 11.0 (1.8) 3.9 (3) 53.9 (3) 7.21 (0.1) 16.2 (7.8) 2 (0) 52 (0) - - - -
ncvreg 1.35 (0.22) 9.4 (1.2) 2 (5) 52 (5) 3.74 (0.4) 9.4 (0.7) 4 (7) 54 (7) 19.7 (0.6) 9.6 (1.0) 1 (1) 51 (1)

Table 1: The mean and standard error of the running time (s), prediction error (PE), number of
false positives (FP), and support size (SS). A dash indicates failure due to memory issues.

including Hazimeh and Mazumder (2020); OShea et al. (2021); Cao et al. (2021); Li et al.
(2023).

5. Conclusion

We introduced L0Learn: a scalable package for `0-regularized regression and classification.
The package is implemented in C++ along with R and Python interfaces. It offers two
approximate algorithms: a fast coordinate descent-based method and a local combinatorial
search algorithm that helps in improving solution quality. Our experiments indicate that
L0Learn is highly scalable and can outperform popular sparse learning toolkits in important
high-dimensional settings. The package has been successfully used in a variety of applica-
tions in healthcare and genetics; and has also proven to be effective in warm starting exact
`0 regularization solvers (Hazimeh et al., 2022). As a future direction, it would be interest-
ing to study the performance of CD and local combinatorial search in (`0-based) pruning
of neural networks (Benbaki et al., 2023).
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