
Journal of Machine Learning Research 24 (2023) 1-84 Submitted 3/22; Revised 12/22; Published 2/23

Global Convergence of Sub-gradient Method for Robust
Matrix Recovery: Small Initialization, Noisy Measurements,

and Over-parameterization

Jianhao Ma jianhao@umich.edu
Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI 48105, USA

Salar Fattahi fattahi@umich.edu

Department of Industrial and Operations Engineering

University of Michigan

Ann Arbor, MI 48105, USA

Editor: Francis Bach

Abstract

In this work, we study the performance of sub-gradient method (SubGM) on a natural
nonconvex and nonsmooth formulation of low-rank matrix recovery with `1-loss, where the
goal is to recover a low-rank matrix from a limited number of measurements, a subset of
which may be grossly corrupted with noise. We study a scenario where the rank of the true
solution is unknown and over-estimated instead. The over-estimation of the rank gives rise
to an over-parameterized model in which there are more degrees of freedom than needed.
Such over-parameterization may lead to overfitting, or adversely affect the performance of
the algorithm. We prove that a simple SubGM with small initialization is agnostic to both
over-parameterization and noise in the measurements. In particular, we show that small
initialization nullifies the effect of over-parameterization on the performance of SubGM,
leading to an exponential improvement in its convergence rate. Moreover, we provide
the first unifying framework for analyzing the behavior of SubGM under both outlier and
Gaussian noise models, showing that SubGM converges to the true solution, even under
arbitrarily large and arbitrarily dense noise values, and, perhaps surprisingly, even if the
globally optimal solutions do not correspond to the ground truth. At the core of our
results is a robust variant of restricted isometry property, called Sign-RIP, which controls
the deviation of the sub-differential of the `1-loss from that of an ideal, expected loss. As
a byproduct of our results, we consider a subclass of robust low-rank matrix recovery with
Gaussian measurements, and show that the number of required samples to guarantee the
global convergence of SubGM is independent of the over-parameterized rank.1

Keywords: low-rank matrix recovery, nonconvex optimization, nonsmooth optimization,
sub-gradient method, over-parameterization

1. A preliminary version of this paper has appeared in NeurIPS Workshop on Optimization for Machine
Learning (Ma and Fattahi, 2021a) (without archival proceedings). The current journal submission is
a significant extension of this work on multiple fronts. We extend the definition of Sign-RIP to ap-
proximately low-rank matrices. Using this extension, we prove a series of new results on the effect of
over-parameterization and noisy measurements on the performance of SubGM.
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1. Introduction

We study the problem of robust matrix recovery, where the goal is to recover a low-rank
positive semidefinite matrix X? ∈ Rd×d from a limited number of linear measurements of
the form y = A(X?) + s, where y = [y1, y2, . . . , ym]> is a vector of measurements, A is a
linear operator defined as A(·) = [〈A1, ·〉, 〈A2, ·〉, . . . , 〈Am, ·〉]> with measurement matrices
{Ai}mi=1, and s = [s1, s2, . . . , sm]> is a noise vector. More formally, the robust matrix
recovery is defined as

find X? subject to: y = A(X?) + s, rank(X?) = r, (1)

where r ≤ d is the rank of X?. Robust matrix recovery plays a central role in many contem-
porary machine learning problems, including motion detection in video frames (Bouwmans
and Zahzah, 2014), face recognition (Luan et al., 2014), and collaborative filtering in rec-
ommender systems (Luo et al., 2014). Despite its widespread applications, it is well-known
that solving (1) is a daunting task since it amounts to an NP-hard problem in its worst
case (Natarajan, 1995; Recht et al., 2010). What makes this problem particularly difficult
is the nonconvexity stemming from the rank constraint. The classical methods for solving
low-rank matrix recovery problem are based on convexification techniques, which suffer from
notoriously high computational cost. To alleviate this issue, a far more practical approach
is to resort to the following natural nonconvex and nonsmooth formulation

min
U∈Rd×r′

f`1(U) :=
1

m

∥∥∥y −A(UU>)∥∥∥
1
, (2)

where r′ ≥ r is the search rank. The `1-loss is used to robustify the solution against
noisy measurements. The above formulation is inspired by the celebrated Burer-Monteiro
approach (Burer and Monteiro, 2003), which circumvents the explicit rank constraint by
optimizing directly over the factorized model X = UU>.

Perhaps the most significant breakthrough result in this line of research was presented
by Bhojanapalli et al. (2016), showing that, when the rank of the true solution is known and
the measurements are noiseless, the nonconvex formulation of the problem with a smooth `2-
loss has a benign landscape, i.e., it is devoid of undesirable local solutions; as a result, simple
local-search algorithms are guaranteed to converge to the globally optimal solution. Such
benign landscape seems to be omnipresent in other variants of low-rank matrix recovery,
including matrix completion (Ge et al., 2017, 2016), robust PCA (Ge et al., 2017; Fattahi
and Sojoudi, 2020), sparse dictionary learning (Sun et al., 2016; Qu et al., 2019), linear
neural networks (Kawaguchi, 2016), among others; see recent survey papers (Chi et al.,
2019; Zhang et al., 2020).

A recurring assumption for the absence of spurious local minima is the exact parameter-
ization of the rank: it is often presumed that the exact rank of the true solution is known
a priori. However, the rank of the true solution is rarely known in many applications.
Therefore, it is reasonable to choose the rank of UU> conservatively as r′ > r, leading to
an over-parameterized model. This challenge is further compounded in the noisy regime,
where the injected noise in the measurements can be “absorbed” as a part of the solution,
due to the additional degrees of freedom in the model. Evidently, the existing proof tech-
niques face major breakdowns in this setting, as the problem may no longer enjoy a benign
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(a) (b) (c)

Figure 1: (a) The performance of SubGM for different search ranks r′. (b) The performance of SubGM
for different corruption probabilities. (c) The performance of SubGM for different values of the initialization
scale α. In all of the simulations, the initial point U0 is chosen as αB, where B is obtained from Algorithm 2.

landscape. Moreover, over-parameterization may lead to a dramatic, exponential slow-down
of the local-search algorithms—both theoretically and practically (Zhuo et al., 2021; Zhang
et al., 2021, 2022).

In this work, we study the performance of a simple sub-gradient method (SubGM) on
f`1(U). We prove that small initialization nullifies the effect of over-parameterization on its
performance—as if the search rank r′ were set to the true (but unknown) rank r. Moreover,
we show that SubGM converges to the ground truth at a near-linear rate even if local, or
even global, spurious minima exist. Our proposed overarching framework is based on a
novel signal-residual decomposition of the solution trajectory: we decompose the iterations
of SubGM into low-rank (signal) and residual terms, and show that small initialization keeps
the residual term small throughout the solution trajectory, while enabling the low-rank term
to converge to the ground truth exponentially fast.

1.1 Power of Small Initialization

In this section, we shed light on the power of small initialization on the performance of
SubGM for robust matrix recovery. Given an initial point U0 and at every iteration t,
SubGM selects an arbitrary direction Dt from the (Clarke) sub-differential (Clarke, 1990)
of the `1-loss function ∂f`1(Ut). Due to local Lipschitzness of the `1-loss, the Clarke sub-
differential exists and can be obtained via chain rule (see (Clarke, 1990)):

∂f`1(Ut) =
1

m

m∑
i=1

Sign
(
〈Ai, UtU>t −X?〉

)(
Ai +A>i

)
Ut. (3)

At every iteration, SubGM updates the solution by moving towards −Dt, where Dt ∈
∂f`1(Ut), with a step-size ηt. To showcase the effect of small initialization on the performance
of SubGM, we consider an instance of robust matrix recovery, where the true solution X∗

is a randomly generated matrix with rank r = 3 and dimension d = 20. Furthermore,
we consider m = 500 measurements, where the measurement matrices {Ai}mi=1 have i.i.d.
standard Gaussian entries.
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(a) (b)

Figure 2: (a) The objective value of the solutions obtained via SubGM with and without small initialization.
(b) The error of the solutions obtained via SubGM with and without small initialization. In both instances,
the initial point is chosen as U0 = αB, where B is obtained from Algorithm 2. The initialization scale α is
chosen as α = 10−15 and α = 1, for SubGM with and without small initialization, respectively.

Property 1: Small initialization makes SubGM agnostic to over-parameterization.
Figure 1a shows the performance of SubGM with small initialization for both exact (r′ = 3)
and over-parameterized (r′ > 3) settings, where 10% of the measurements are grossly cor-
rupted with noise. Our simulations uncover an intriguing property of small initialization:
neither the convergence rate nor the final error of SubGM is affected by the over-estimation
of the rank. Moreover, Figure 1b depicts the performance of SubGM for the fully over-
parameterized problem (i.e., r′ = d = 20) with different levels of corruption probability
(the fraction of measurements that are corrupted with noise). The added noise values are
i.i.d. and drawn from a Gaussian distribution with mean and variance equal to 0 and 100,
respectively. It can be seen that, even in the fully over-parameterized setting, SubGM is
robust against large corruption probabilities.

Property 2: Small initialization improves convergence. It is known that different
variants of the (sub-)gradient method converge linearly to the true solution, provided that
the search rank coincides with the true rank (r′ = r) (Tu et al., 2016; Zheng and Lafferty,
2015; Tong et al., 2021; Li et al., 2020a). However, these methods suffer from a dramatic,
exponential slow-down in over-parameterized models with noisy measurements (Zhuo et al.,
2021). Our simulations reveal that small initialization can restore the convergence back to
linear, even in the over-parameterized and noisy settings. Figure 1c shows that SubGM
converges linearly to an error that is proportional to the norm of the initial point: smaller
initial points lead to more accurate solutions at the expense of a slightly larger number of
iterations.

Property 3: Emergence of “spurious” global minima. Inspired by these simulations,
a natural approach to explaining the desirable performance of SubGM is by showing that
the robust matrix recovery problem enjoys a benign landscape. We refute this conjecture
by showing that, not only does the robust matrix recovery with over-parameterized rank
have sub-optimal solutions, but also its globally optimal solutions may be “spurious”, i.e.,
they do not correspond to the ground truth X∗. Figure 2 shows the performance of SubGM
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with and without small initialization. It can be seen that SubGM converges to the ground
truth which is a local solution for the `1-loss with sub-optimal objective value. On the other
hand, SubGM without small initialization converges to a high-rank solution with a strictly
smaller objective value. In other words, the ground truth is not necessarily a globally
optimal solution, and conversely, globally optimal solutions do not necessarily correspond
to the ground truth.

From a statistical perspective, our simulations support the common empirical obser-
vation that first-order methods “generalize well”. In particular, SubGM converges to a
low-rank solution that is close to the ground truth—i.e., has a better generalization er-
ror—rather than recovering a high-rank solution with a smaller objective value (or better
training error). The smaller objective values for higher rank solutions are precisely due to
the overfitting phenomenon: it is possible that the globally optimal solution to (2) achieves
a zero objective value by absorbing the noise into its redundant ranks. To circumvent the
issue of overfitting, a common approach is to regularize the high-rank solutions in favor of
the low-rank ones via different regularization techniques. Therefore, the desirable perfor-
mance of SubGM with small initialization can be attributed to its implicit regularization
property. In particular, we show that small initialization of SubGM is akin to implicitly
regularizing the redundant rank of the over-parameterized model, thereby avoiding overfit-
ting; a recent work (Stöger and Soltanolkotabi, 2021) has shown a similar property for the
gradient descent algorithm on the noiseless matrix recovery with `2-loss.

1.2 Summary of Results

In this part, we present a summary of our results. Let σ1 and σr be the largest and smallest
(nonzero) eigenvalues of X?, and define the condition number κ as σ1/σr.

Theorem 1 (Convergence of SubGM; Informal) Suppose that the measurements sat-
isfy a direction-preserving property delineated in Section 3.2. Suppose that the initial point
is chosen as U0 = αB, for a special choice of B and an initialization scale α. Consider the
iterations {Ut}Tt=0 generated by SubGM applied to the robust matrix recovery with step-size
ηt = ηρt, for an appropriate choice of 0 < ρ < 1 and sufficiently small η. Then, for any
arbitrary accuracy ε > 0 and initialization scale α = O((ε/d)1/β), we have∥∥∥UTU>T −X?

∥∥∥
F
≤ ε (4)

after T = O
(
κ log2(d/ε)

βη

)
iterations, where 0 < β ≤ 2 is a constant depending on the

parameters of the problem.

The above result characterizes the performance of SubGM for the robust matrix recovery
with `1-loss. In particular, it shows that SubGM converges almost linearly to the true
low-rank solution X?, with a final error that is proportional to the initialization scale.
Surprisingly, the required number of iterations is independent of the search rank r′ and
depends only logarithmically on d.

At the crux of our analysis lies a new restricted isometry property of the sub-differentials,
which we call Sign-RIP. Under Sign-RIP, the sub-differentials of the `1-loss are δ-away
from the sub-differentials of an ideal, expected loss function (see Section 3.2 for precise
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definitions). We will show that the classical notions of `2-RIP (Recht et al., 2010) and
`1/`2-RIP (Li et al., 2020a) face major breakdowns in the presence of noise. In contrast,
Sign-RIP provides much better robustness against noisy measurements, while being no more
restrictive than its classical counterparts. We will show that, with Gaussian measurements,
the Sign-RIP holds with an overwhelming probability under two popular noise models,
namely outlier noise model and Gaussian noise model.

Our next theorem establishes the convergence of SubGM under the outlier noise model.
To streamline the presentation, we use Õ(·) and Ω̃(·) to hide the dependency on logarithmic
factors.

Theorem 2 (Convergence of SubGM under Outlier Noise Model; Informal)
Suppose that the measurement matrices {Ai}mi=1 have i.i.d. standard Gaussian entries,
and a fraction p < 1 of the measurements are corrupted with arbitrarily large noise
values. Suppose that the initial point is chosen as U0 = αB, for a special choice of B
and a sufficiently small initialization scale α. Consider the iterations {Ut}Tt=0 generated
by SubGM applied to the robust matrix recovery with an exponentially decaying step-size
ηt = ηρt, for an appropriate choice of 0 < ρ < 1 and sufficiently small η. Finally, suppose
that the number of measurements satisfies m = Ω̃

(
κ4dr2/(1− p)2

)
. Then, for any arbitrary

accuracy ε > 0 and initialization scale α = ε/d, and with an overwhelming probability, we
have ∥∥∥UTU>T −X?

∥∥∥
F
≤ ε, (5)

after T = O
(
κ log2(d/ε)

η

)
iterations.

We compare Theorem 2 with a recent result by Ding et al. (2021) on the convergence
of SubGM for robust matrix recovery. Theorem 2 shows that small initialization enables
SubGM to converge almost linearly, which is exponentially faster than the sublinear rate
Õ(1/ε) introduced by Ding et al. (2021). Second, Ding et al. (2021) show that SubGM
requires Ω̃(κ12dr′3) samples to converge, which depends on the search rank r′. In the
over-parameterized regime, where the true rank is small (i.e., r = O(1)) and the search
rank is large (i.e., r′ = Ω(d)), our result leads to three orders of magnitude improvement
in the required number of samples (modulo the dependency on κ). Moreover, Ding et al.
(2021) crucially rely on the equivalence between globally optimal solutions and the ground
truth, which only holds when p ≤ 1/

√
r′. We relax this assumption and show that SubGM

converges to the ground truth, even if p is arbitrarily close to 1.

Next, we turn our attention to the Gaussian noise model, and show that SubGM con-
verges even if the measurements are corrupted with dense Gaussian noises.

Theorem 3 (Convergence of SubGM under Gaussian Noise Model; Informal)
Suppose that the measurement matrices {Ai}mi=1 have i.i.d. standard Gaussian entries,
and each measurement is corrupted with a zero-mean Gaussian noise with a variance of
at most ν2. Suppose that the initial point is chosen as U0 = αB, for a special choice of
B and a sufficiently small initialization scale α. Consider the iterations {Ut}Tt=0 generated
by SubGM applied to the robust matrix recovery with exponentially decaying step-sizes
ηt = ηρt, for an appropriate choice of 0 < ρ < 1 and sufficiently small η. Finally, suppose
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(a) (b)

Figure 3: (a) Performance of SubGM and GD under the Gaussian noise model with `1- and `2-loss functions,
respectively. (b) The effect of small initialization on the performance of SubGM under the Gaussian noise
model.

that the number of measurements satisfies m & Ω̃(ν2κ4dr2). Then, with an overwhelming
probability, we have

∥∥∥UtU>t −X?
∥∥∥
F

= Õ

(√
ν2dr2

m

)
, (6)

after T = O
(
κ
η log2

(
mκ
νr

))
iterations.

Traditionally, `2-loss has been used for recovering the ground truth under the Gaussian
noise model due to its correspondence to the so-called maximum likelihood estimation.
Our paper extends the application of `1-loss to this setting, proving that SubGM is robust
against not only the outlier, but also Gaussian noise levels. More precisely, Theorem 3
shows that SubGM outputs a solution with an estimation error of Õ(

√
ν2dr2/m), which is

again independent of the search rank r′. To the best of our knowledge, the sharpest known
estimation error for gradient descent (GD) (Zhuo et al., 2021) and its variants (Zhang
et al., 2021) on `2-loss is O(

√
ν2dr′/m), which scales with the search rank r′; in the fully

over-parameterized regime, our provided bound improves upon this error by a factor of
O(
√
d/r). Figure 3 compares the performance of SubGM and GD on `1- and `2-losses, when

the measurements are corrupted with Gaussian noise. Candes and Plan (2011) showed that
any estimate Û suffers from a minimax error of ‖Û Û> −X?‖F = Ω(

√
ν2dr/m). Compared

to this information-theoretic lower bound, our provided final error is sub-optimal only by a
factor of

√
r.

Organization. To ensure the readability of the paper, we present the main theorems and
the key ideas behind their proofs in the main body of the paper, and defer their technical
proofs to the appendix. Appendix A presents the detailed proofs of our main results on
SubGM; an interested reader would fully understand the proofs of our main theorems after
reading the main body and Appendix A. Appendix B presents the proof of Sign-RIP, and
Appendices C-F contain the proofs of the intermediate results used throughout the proofs
of the main theorems.
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2. Related Work

Landscape v.s. Trajectory Analysis: It has been recently shown that different variants
of low-rank matrix recovery (e.g., matrix completion (Ge et al., 2016), matrix recovery
(Ge et al., 2017), robust PCA (Fattahi and Sojoudi, 2020)) enjoy benign landscape. In
particular, it is shown that low-rank matrix recovery with `2-loss and noiseless measurements
has a benign landscape in both exact (Ge et al., 2017, 2016; Zhang et al., 2019) and over-
parameterized (Zhang, 2021) settings. On the other hand, it is known that `1-loss possesses
better robustness against outlier noise. However, there are far fewer results characterizing
the landscape of low-rank matrix recovery with `1-loss. Fattahi and Sojoudi (2020) and Josz
et al. (2018) prove that robust matrix recovery with `1-loss has no spurious local solution,
provided that with r′ = r = 1 and the measurement matrices correspond to element-
wise projections. This result was later extended to Gaussian matrices by Ma and Fattahi
(2021b). However, it is unclear whether these results extend to higher ranks or more general
measurement matrices.

Despite its theoretical significance, benign landscape is too restrictive to hold in prac-
tice: Zhang et al. (2019) and Zhang (2021) show that spurious local minima are ubiquitous
in the low-rank matrix recovery, even under fairly mild conditions. On the other hand, our
experiments in Subsection 1.1 reveal that local-search algorithms may be able to avoid spu-
rious local/global solutions with proper initialization. An alternative approach to explain
the desirable performance of local-search algorithms is via trajectory analysis. It has been
recently shown that the trajectories picked up by gradient-based algorithms benefit from im-
plicit regularization (Gunasekar et al., 2018; Ma and Fattahi, 2022), and incremental learn-
ing (Ma et al., 2022), or behave non-monotonically over short timescales, yet consistently
improve over long timescales (Cohen et al., 2021). In the context of over-parameterized
low-rank matrix recovery with `2-loss, Li et al. (2018) and Stöger and Soltanolkotabi (2021)
use trajectory analysis to show that GD with small initialization can recover the ground
truth, provided that the measurements are noiseless. Zhuo et al. (2021) extend this result to
the noisy setting, showing that GD converges to a minimax optimal solution at a sublinear
rate, and with a number of samples that scale with the search rank.

Iteration and Sample Complexity: Despite their guaranteed convergence, local-search
algorithms may suffer from notoriously slow convergence rates: whereas 10 digits of accu-
racy can be expected in just a few hundred iterations of GD when r′ = r, tens of thousands
of iterations might produce just 1-2 accurate digits once r′ > r (Zhang et al., 2021). Ta-
ble 1 shows the iteration complexity of the existing algorithms with different loss functions,
compared to our proposed method. Evidently, under the outlier noise model, GD does not
perform well due to the sensitivity of the `2-loss to outliers. On the other hand, SubGM
converges linearly in the exact setting (r′ = r), and at a significantly slower (sublinear) rate
in the over-parameterized regime (r′ > r). In contrast, our proposed SubGM algorithm with
small initialization converges near-linearly in both exact and over-parameterized regimes.
In the Gaussian noise model, it is known that GD converges linearly to a minimax optimal
solution in the exact setting, but suffers from a drastic, exponential slow-down in the over-
parameterized regime. In contrast, our proposed SubGM algorithm with small initialization
is not affected by the over-parameterization, and maintains its desirable convergence rate
in both settings.
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Algorithm Outlier noise model Gaussian noise model
Rank r′ = r r′ ≥ r r′ = r r′ ≥ r

GD+`2-loss N/A N/A κ log
(
m
νdr

)
[6] σr

ν

√
m
d [45]

SubGM+`1-loss rκ
σr

log
(
σr

ε

)
[20] σ1κ

ε [10] N/A N/A

Our results κ2 log3
(
d
ε

)
(see Corollary 28) κ2 log3

(
κm
νr

)
(see Corollary 29)

Table 1: A comparison between the iteration complexity of different techniques. We show that SubGM
with small initialization and exponentially decaying step-size converges near-linearly to: (i) an arbitrary
accuracy in the outlier noise model, and (ii) a nearly-minimax optimal error in the Gaussian noise model.
Our derived iteration complexities are obtained from Theorems 2 and 3 after choosing an appropriate value
for the step-size; see Corollaries 28 and 29 for the precise statements.

Algorithm Outlier noise model Gaussian noise model
Rank r′ = r r′ ≥ r r′ = r r′ ≥ r

GD+`2-loss N/A N/A ν2κ2dr [6] ν2κ2dr′ [45]
SubGM+`1-loss κ2dr2 [20]∗ κ12dr′3 [10]∗ N/A N/A

Our results κ4dr2

(1−p)2 (see Corollary 28) ν2κ4dr2 (see Corollary 29)

Table 2: A comparison between the sample complexity of different techniques. Our results provide
the best sample complexity bounds in the over-parameterized setting where r′ � r, under both outlier and
Gaussian noise models. For simplicity, we hide the dependency on the logarithmic factors. ∗Under an outlier
noise model, the results of (Li et al., 2020a; Ding et al., 2021) holds under the assumption p . 1/

√
r′. In

contrast, our result relaxes this assumption to p < 1.

Another important aspect of local-search algorithms is their sample complexity. Table 2
provides a comparison between the sample complexity of the existing algorithms, and our
proposed method. In the outlier noise model, Li et al. (2019) show that SubGM with spectral
initialization on `1-loss requires O(dr2) samples (modulo the condition number), provided
that the true rank is known (r′ = r), and the corruption probability is upper bounded as
p . 1/

√
r′. Ding et al. (2021) extend this result to the over-parameterized regime, showing

that SubGM with spectral initialization requires O(dr′3) samples to converge, under the
same assumption p . 1/

√
r′. In both works, the upper bound p . 1/

√
r′ is imposed to

guarantee that the global minima of the `1-loss correspond to the true solution. Our result
relaxes this upper bound on the corruption probability by showing that SubGM converges
to the ground truth, even if the ground truth is not globally optimal. In the Gaussian noise
model, Zhuo et al. (2021) shows that GD recovers the true solution with O(dr′) samples. In
the over-parameterized regime, our result reduces the sample complexity to O(dr2), showing
that the sample complexity of SubGM is independent of the search rank r′.

Notations

For a rank-r matrix M ∈ Rm×n, its singular values are denoted as ‖M‖ = σ1(X) ≥ σ2(X) ≥
· · · ≥ σr(X) := σmin(X). For a square matrix X ∈ Rn×n, its eigenvalues are defined as
λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) := λmin(X). For two matrices X and Y of the same size,
their inner product is defined as 〈X,Y 〉 = Tr(X>Y ), where Tr(·) is the trace operator. For
a matrix X, its operator and Frobenius norms are denoted as ‖X‖ and ‖X‖F , respectively.
The unit rank-r sphere is defined as Sdr = {X ∈ Rd×d : ‖X‖F = 1, rank(X) ≤ r}. We
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also omit the superscript d when there is no ambiguity. We define PV as the projection
operator onto the row space of the matrix V . The notation B(X, ε) refers to a ball of radius ε
centered at X, i.e., B(X, ε) = {X ′ : ‖X ′ −X‖F ≤ ε}. The `q norm of a vector x is defined as
‖x‖q = (

∑
|xi|q)1/q. Given two sequences f(n) and g(n), the notation f(n) . g(n) implies

that there exists a constant C < ∞ satisfying f(n) ≤ Cg(n). Moreover, the notation
f(n) � g(n) implies that f(n) . g(n) and g(n) . f(n). Throughout the paper, the
symbols C, c1, c2, . . . refer to universal constants whose precise value may change according
to the context. The sign function Sign(·) is defined as Sign(x) = x/|x| if x 6= 0, and
Sign(0) = [−1, 1]. For two sets X and Y, the notation X +Y refers to their Minkowski sum.
Given two scalars a and b, the symbols a ∧ b and a ∨ b are used to denote their minimum
and maximum, respectively.

3. Our Overarching Framework

In this section, we present our overarching framework for the analysis of SubGM. To this
goal, we first explain why the existing techniques for studying the smooth variants of the
low-rank matrix recovery cannot be extended to their robust counterparts.

3.1 Failure of Existing Techniques

Figure 4: The number of samples to sat-
isfy `2-RIP is independent of the noise vari-
ance. However, the performance of `2 highly
depends on the noise variance.

The majority of existing methods study the be-
havior of the gradient descent on `2-loss f`2(U) =
1
m

∥∥y −A(UU>)
∥∥2

by analyzing its deviation from
an “ideal”, noiseless loss function f̄`2(U) =
‖UU> − X?‖2F . It is known that f̄`2(U) =
‖UU> − X?‖2F is devoid of spurious local min-
ima, and its saddle points are strict, and hence,
escapable (see (Zhang et al., 2020, Appendix
A) for a simple proof). Therefore, by control-
ling the deviation of f`2(U) and its gradients
from f̄`2(U), one can show that f`2(U) inherits
the desirable properties of f̄`2(U). More con-
cretely, the gradient of f`2(U) can be written
as ∇f`2(U) = Q(UU> − X?)U , where Q(X) =
(2/m)

∑m
i=1 (〈Ai, X〉 − si)

(
Ai +A>i

)
. One sufficient condition for ∇f`2(U) ≈ ∇f̄`2(U) is to

ensure that Q(M) remains uniformly close to M for every rank-(r + r′) matrix X. In the
noiseless setting, this condition can be guaranteed via `2-RIP:

Definition 4 (`2-RIP, Recht et al. (2010)) The linear operator A(·) satisfies `2-RIP
with parameters (k, δ) if, for every rank-k matrix M , we have (1−δ)‖M‖2F ≤

1
m‖A(M)‖2 ≤

(1 + δ)‖M‖2F .

Roughly speaking, `2-RIP entails that the linear operatorA(·) is nearly “norm-preserving”
for every rank-k matrix. In the noiseless setting, this implies that Q(UU> − X?) ≈
4(UU> − X?), which in turn leads to ∇f`2(U) ≈ ∇f̄`2(U). On the other hand, it is
known that `2-RIP is satisfied under mild conditions. For instance, (k, δ)-`2-RIP holds with

10
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m = Ω(dk/δ2) Gaussian measurements (Recht et al., 2010). However, the next proposition
shows that `2-RIP is not enough to guarantee Q(M) ≈ 4M when the measurements are
subject to noise.

Proposition 5 (Ma and Fattahi (2021a)) Suppose that r′ = d and the measurement
matrices {Ai}mi=1 have i.i.d. standard Gaussian entries. Moreover, suppose that the noise

vector s satisfies si
i.i.d.∼ N (0, σ2) with probability p, and si = 0 with probability 1 − p, for

every i = 1, . . . ,m. Then we have

P

(
sup
M∈S
‖Q(M)− 4M‖F &

√
(1 + pσ2)d2

m

)
≥ 1

2
.

Proposition 5 sheds light on a fundamental shortcoming of `2-RIP: in the presence of
noise, it is possible for the measurements to satisfy `2-RIP, yet ∇f`2(U) may be far from
∇f̄`2(U). In particular, we show that, in order to have ∇f`2(U) ≈ ∇f̄`2(U), the number
of measurements must grow with the noise variance. On the other hand, for any fixed δ,
`2-RIP is guaranteed to be satisfied with a number of measurements that is independent of
the noise variance. Figure 4 shows that `2-RIP cannot capture the behavior of `2-loss in
the high noise regime. Other notions of RIP, such as `1/`2-RIP (Li et al., 2020a), are also
oblivious to the nature of the noise.

Algorithm 1 Subgradient Method

Input: measurement matrices {Ai}mi=1, measurement vector y = [y1, · · · , ym]>, number
of iterations T , the initial point U0;
Output: Solution X̂T = UTU

>
T to (2);

for t ≤ T do
Compute a sub-gradient Dt ∈ ∂f`1(Ut);
Select the step-size ηt (see (10));
Set Ut+1 ← Ut − ηtDt;

end for

3.2 Sign-RIP: A New Robust Restricted Isometry Property

To address the aforementioned challenges, we argue that, while the measurements may not
be norm-preserving in the presence of noise, they may still enjoy a “direction-preserving”
property. At the heart of our analysis lies the following decomposition of the sub-differential
of the `1-loss:

∂f`1(U) = γ · ∂f̄`1(U)︸ ︷︷ ︸
expected sub-differential

+
(
∂f`1(U)− γ · ∂f̄`1(U)

)︸ ︷︷ ︸
sub-differential deviation

,

where γ is a strictly positive number. In the above decomposition, the function f̄`1(U) is
called the expected loss, and it is defined as

∥∥UU> −X∗∥∥
F

. As will be shown later, f̄`1(U)
captures the expectation of the empirical loss f`1(U), when the measurement matrices have
i.i.d. Gaussian entries. To analyze the behavior of SubGM on f`1(U) (Algorithm 1), we

11
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first study the ideal scenario, where the loss deviation is zero, and hence, f`1(U) coincides
with its expectation. Under such an ideal scenario, we establish the global convergence
of SubGM with small initialization. We then extend our result to the general case by
carefully controlling the effect of sub-differential deviation. More specifically, we show that
the desirable performance of SubGM extends to the empirical loss f`1(U), provided that
the sub-differentials are “direction-preserving”, that is, D ≈ γD̄ for every D ∈ ∂f`1(U) and
D̄ ∈ ∂f̄`1(U), where

∂f`1(U)=
{(
Q+Q>

)
U : Q ∈ Q(UU>−X?)

}
, with Q(X) =

1

m

m∑
i=1

Sign(〈Ai, X〉−si)Ai.

(7)

Definition 6 (ε-approximate rank-k matrix) We say matrix X is ε-approximate rank-
k if there exists a matrix X ′ with rank(X ′) ≤ k, such that ‖X −X ′‖F ≤ ε.

Definition 7 (Sign-RIP) The measurements are said to satisfy Sign-RIP with parameters
(k, δ, ε,S) and a uniformly positive and bounded scaling function ϕ : S → R over the set S
if for every nonzero ε-approximate rank-k X, Y ∈ S, and every Q ∈ Q(X), we have〈

Q− ϕ(X)
X

‖X‖F
,

Y

‖Y ‖F

〉
≤ ϕ(X)δ. (8)

According to our definition, the scaling function satisfies ϕ ≤ ϕ(X) ≤ ϕ̄,∀X ∈ S, for
some constants 0 < ϕ ≤ ϕ̄ < ∞. Without loss of generality, we assume that ϕ ≤ 1 ≤ ϕ̄.
Later, we will show that this assumption is satisfied for Gaussian measurements and different
noise models. Whenever there is no ambiguity, we say the measurements satisfy (k, δ, ε,S)-
Sign-RIP if they satisfy Sign-RIP with parameters (k, δ, ε,S) and a (possibly unknown)
uniformly positive and bounded scaling function ϕ : S → R.

Next, we provide the intuition behind Sign-RIP. For any U ∈ Rd×r′ , the rank of UU>−
X∗ is at most r + r′. Now, suppose that the measurements satisfy (r′ + r, δ, ε,S)-Sign-RIP
with small δ and suitable choices of ε,S. Then, upon defining γ = ϕ(UU> − X?) ≤ ϕ̄,
we have

∥∥D − γD̄∥∥ ≤ 2ϕ̄ ‖U‖ δ for every D ∈ ∂f`1(U) and D̄ ∈ ∂f̄`1(U). In other words,
for sufficiently small δ, ∂f`1(U) and ∂f̄`1(U) are almost aligned under (r′ + r, δ, ε,S)-Sign-
RIP. A caveat of this analysis is that the required parameters of Sign-RIP depend on the
search rank r′. One of the important contributions of this work is to relax this dependency
by showing that every matrix in the sequence {UtU>t − X∗}Tt=0 generated by SubGM is
ε-approximate rank-r, for some small ε > 0.

At the first glance, one may speculate that Sign-RIP is extremely restrictive: it requires
the uniform concentration of the set-valued function Q(X) over ε-approximate rank-k ma-
trices. However, we show that, statistically, Sign-RIP is no more restrictive than `2- (Recht
et al., 2010) and `1/`2-RIP (Li et al., 2020a), and—unlike its classical counterparts—holds
under different noise models.

Definition 8 (Outlier Noise Model) With probability p, each entry of the noise vector
s is independently drawn from a zero mean distribution P; otherwise, it is set to zero.

12
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Notice that our proposed noise model does not impose any assumption on the magnitude
of the nonzero elements of s, or the specific form of their distribution, which makes it
particularly suitable for modeling outliers with arbitrary magnitudes.

Definition 9 (Gaussian Noise Model) Each element of the noise vector s is indepen-
dently drawn from a Gaussian distribution with zero mean and variance ν2

g <∞.

Our next two theorems characterize the sample complexity of Sign-RIP under the outlier
and Gaussian noise models.

Theorem 10 (Sign-RIP under Outlier Noise Model) Assume that the measurement
matrices {Ai}mi=1 defining the linear operator A(·) have i.i.d. standard Gaussian entries, and
that the noise vector s follows the outlier noise model with 0 ≤ p < 1 (Definition 8). Then,
with probability of at least 1− C1e

−C2m(1−p)2δ2
, (k, δ, ε,S)-Sign-RIP holds with parameters

k ≤ d, δ ≤ 1, S = {X : ζ ≤ ‖X‖F ≤ R} for some arbitrary R ≥ ζ > 0, ε . ζ
√
k/m,

and a scaling function ϕ(X) =
√

2
π

(
1− p+ pE

[
e−s

2/(2‖X‖2F )
])

, provided that the number

of samples satisfies m & dk log2(m) log(R/ζ)
(1−p)2δ2 .

The proof of the above theorem is provided in Appendix B.2. Theorem 10 shows that, for
any fixed R, ζ, p, and δ, Sign-RIP is satisfied with Õ(dk) number of Gaussian measurements,
which has the same order as `2- (Recht et al., 2010) and `1/`2-RIP (Li et al., 2020a) (modulo
logarithmic factors). However, unlike `2- and `1/`2-RIP, Sign-RIP is not oblivious to noise.
In particular, our theorem shows that Sign-RIP holds with a number of samples that scales
with (1−p)−2, ultimately alleviating the issue raised in Subsection 3.1. Moreover, our result
does not impose any restriction on p, which improves upon the assumption p < 1/

√
r′ made

by Li et al. (2020a) and Ding et al. (2021).

Theorem 11 (Sign-RIP for Gaussian noise model) Assume that the measurement
matrices {Ai}mi=1 defining the linear operator A(·) have i.i.d. standard Gaussian entries,
and that the noise vector s follows the Gaussian noise model (Definition 9). Then, with

probability of at least 1−C1e
−C2mζ2δ2/ν2

g (k, δ, ε,S)-Sign-RIP holds with parameters k ≤ m,
δ ≤ 1, S = {X : ζ ≤ ‖X‖F ≤ R} for some arbitrary R ≥ ζ > 0, ε . ζ

√
k/m, and

a scaling function ϕ(X) =
√

2
π

‖X‖F√
‖X‖2F+ν2

g

, provided that the number of samples satisfies

m &
ν2
gdk log2(m) log(R/ζ)

ζ2δ2 .

The proof of the above theorem is provided in Appendix B.3. Theorem 11 extends Sign-
RIP beyond the outlier noise model, showing that it holds even when all measurements
are corrupted with Gaussian noise. However, unlike the outlier noise model, the sample
complexity of Sign-RIP scales with the noise variance.

3.3 Choice of Step-size

Next, we discuss our choice of the step-size, and its effect on the performance of SubGM.
For simplicity, let ∆t = UtU

>
t − X? and ϕt = ϕ(UtUt − X?). Under Sign-RIP, we have
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Dt ≈ (ϕt/‖∆t‖F ) ·∆tUt for every Dt ∈ ∂f`1(Ut). Therefore, the iterations of SubGM can
be approximated as Ut+1 ≈ Ut − (ηtϕt/‖∆t‖F ) · ∆tUt. Consequently, with the choice of
ηt = ηϕ−1

t ‖∆t‖F , the iterations of SubGM reduce to

Ut+1 = Ut − η ·∆tUt + deviation.

Ignoring the deviation term, the above update coincides with the iterations of GD with
a constant step-size η, applied to the expected loss function f̄`2(U) = ‖UU> − X?‖2F .
By controlling the effect of the deviation term, we show that SubGM on f̄`2(U) behaves
similarly to GD with a constant step-size. A caveat of this analysis is that the proposed
step-size ηt = ηϕ−1

t ‖∆t‖F depends on X?, which is not known a priori. In the noiseless
scenario, Sign-RIP can be invoked to show that ϕ−1

t ‖∆t‖F can be accurately estimated by
f`1(Ut), as shown in the following lemma.

Lemma 12 Suppose that the measurements are noiseless, and satisfy (k, δ, ε,S)-Sign-RIP
for some δ ≤ 1, k ≤ d, ε ≥ 0, S 6= ∅, and uniformly positive and bounded scaling function
ϕ(·). Moreover, suppose that ∆t is ε-approximate rank-k and ∆t ∈ S. Then, we have

(1− δ)ϕt ‖∆t‖F ≤ f`1(Ut) ≤ (1 + δ)ϕt ‖∆t‖F . (9)

The above lemma is the byproduct of a more general result presented in Appendix B.4. It
implies that, for small δ, the step-size ηt = ηf`1(Ut) satisfies ηt ≈ ηϕt ‖∆t‖F , and hence,
Ut+1 ≈ Ut − ηϕ2

t∆tUt, which again resembles the iterations of GD on f̄`2(U) with the
“effective” step-size ηϕ2

t .
In the noisy setting, the value of ϕ−1

t ‖∆t‖F cannot be estimated merely based on f`1(Ut),
since f`1(Ut) is highly sensitive to the magnitude of the noise. To alleviate this issue,
we propose an exponentially decaying step-size that circumvents the need for an accurate
estimate of ‖∆t‖F . In particular, consider the following choice of step-size

ηt =
η

‖Qt‖
· ρt, where Qt ∈ Q(∆t), (10)

for appropriate values of η and 0 < ρ < 1. We note that the set Q(∆t) can be explicitly
characterized without any prior knowledge on ∆t:

Q(∆t) =
1

m

m∑
i=1

Sign (〈Ai,∆t〉−si)Ai =
1

m

m∑
i=1

Sign
(
〈Ai, UtU>t 〉−yi

)
Ai.

Our next lemma shows that the above choice of step-size is well-defined (i.e., Qt 6= 0), so
long as ∆t is not too small and the measurements satisfy (k, δ, ε,S)-Sign-RIP.

Lemma 13 Suppose that the measurements satisfy (k, δ, ε,S)-Sign-RIP with δ < 2/(1 +
5
√
k), k ≤ d, ε > 0, S 6= ∅, and a uniformly positive and bounded scaling function ϕ(·).

Moreover, suppose that ∆t is ε-approximate rank-k, ‖∆t‖ ≥ 4ε, and ∆t ∈ S. Then, we
have (

1−

(
1 + 5

√
k

2

)
δ

)
ηρt

ϕt

‖∆t‖F
‖∆t‖

≤ ηt ≤

(
1 +

(
1 + 5

√
k

2

)
δ

)
ηρt

ϕt

‖∆t‖F
‖∆t‖

. (11)
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The proof of the above lemma can be found in Appendix B.5. Lemma 13 implies that the
chosen step-size remains close to (ηρt/ϕ(∆t))(‖∆t‖F / ‖∆t‖), as long as the error is not close
to zero. Due to Lemma 13, the iterations of SubGM with exponentially-decaying step-size
can be approximated as

Ut+1 = Ut −
(
ηρt

‖∆t‖

)
∆tUt + deviation. (12)

In other words, SubGM selects an approximately correct direction of descent, while the
exponentially decaying step-size ensures convergence to the ground truth.

3.4 Effect of Over-parameterization

At every iteration of SubGM, the rank of the error matrix ∆t = UtU
>
t − X? may be as

large as r + r′. Therefore, in order to guarantee the direction-preserving property of the
sub-differentials, a sufficient condition is to satisfy Sign-RIP for every rank-(r+ r′) matrix.
Such crude analysis implies that the performance of SubGM may depend on the search rank
r′. In particular, with Gaussian measurements, this would increase the required number of

samples to Õ
(

dr′

(1−p)2δ2

)
, which scales linearly with the over-parameterized rank. To address

this issue, we provide a finer analysis of the iterations. Consider the eigen-decomposition
of X?, given as

X? =
[
V V⊥

] [Σ 0
0 0

] [
V >

V >⊥

]>
= V ΣV >,

where V ∈ Rd×r and V⊥ ∈ Rd×(d−r) are (column) orthonormal matrices satisfying V >V⊥ =
0, and Σ ∈ Rr×r is a diagonal matrix collecting the nonzero eigenvalues of X∗. We assume
that the diagonal entries of Σ are in decreasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Moreover,
without loss of generality, we assume that σ1 ≥ 1 ≥ σr. Based on this eigen-decomposition,
we introduce the signal-residual decomposition of Ut as follows:

Ut = V St + V⊥ (Ft +Gt)︸ ︷︷ ︸
Et

, where St = V >Ut, Et = V >⊥ Ut, Ft = EtPSt , Gt = EtP
⊥
St .

(13)

In the above expression, PSt is the orthogonal projection onto the row space of St, and P⊥St
is its orthogonal complement. It is easy to see that UtU

>
t = X? if and only if StS

>
t = Σ

and EtE
>
t = 0. Therefore, our goal is to show that StS

>
t and EtE

>
t converge to Σ and 0,

respectively. Based on the above signal-residual decomposition, one can write

∆t = UtU
>
t −X?

= V
(
StS

>
t − Σ

)
V > + V StE

>
t V
>
⊥ + V⊥EtS

>
t V
> + V⊥FtF

>
t V

>
⊥︸ ︷︷ ︸

rank-4r

+V⊥GtG
>
t V
>
⊥︸ ︷︷ ︸

small norm

.

An important implication of the above equation is that ∆t can be treated as an ε-approximate
rank-4r matrix, where ε =

∥∥V⊥GtG>t V >⊥ ∥∥F . We show that
∥∥V⊥GtG>t V >⊥ ∥∥F = O(

√
dα)

throughout the solution trajectory, and hence, ∆t is approximately rank-4r, provided that
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the initialization scale α is small enough. To this goal, we first characterize the general-
ization error ‖∆t‖ in terms of the signal term

∥∥StS>t −X?
∥∥, cross term

∥∥StE>t ∥∥, and the
residual term

∥∥EtE>t ∥∥.

Lemma 14 We have

‖∆t‖ ≤
∥∥∥Σ− StS>t

∥∥∥+ 2
∥∥∥StE>t ∥∥∥+

∥∥∥EtE>t ∥∥∥ . (14)

The proof of the above lemma follows directly from the signal-residual decomposition (13),
and is omitted for brevity. Motivated by the above lemma, we will study the dynamics of
the signal, cross, and residual terms under different settings.

4. Expected Loss

In this section, we consider a special scenario, where the measurements are noiseless, the
measurement matrices {Ai}mi=1 have i.i.d. standard Gaussian entries, and the number of
measurements m approaches infinity. Evidently, these assumptions do not hold in practice.
Nonetheless, our analysis of this ideal scenario will be the building block for our subsequent
analysis. Since the number of measurements approaches infinity, the uniform law of large
numbers implies that f`1(U) converges to its expectation E[f`1(U)] almost surely, over
any compact set of U (Wainwright, 2019). The next lemma provides the explicit form of
E[f`1(U)].

Lemma 15 Suppose that the measurements are noiseless and the measurement matrices
{Ai}mi=1 have i.i.d. standard Gaussian entries. Then, we have

E[f`1(U)] =

√
2

π

∥∥∥UU> −X∗∥∥∥
F
. (15)

Proof Due to the i.i.d. nature of {Ai}mi=1 and the absence of noise, one can write
E[f`1(U)] = E

[
|〈A,UU> −X∗〉|

]
, where A is random matrix with i.i.d. standard Gaus-

sian entries. It is easy to see that 〈A,UU> − X∗〉 is a Gaussian random variable with

variance
∥∥UU> −X∗∥∥2

F
. The proof is completed by noting that, for a zero-mean Gaussian

random variable X with variance σ2, we have E[|X|] =
√

2
πσ.

Next, we study the performance of SubGM with small initialization for f̄`1(U) =√
π/2E[f`1(U)]. First, it is easy to see that ∂f̄`1(U) =

2(UU>−X?)U
‖UU>−X?‖

F

for UU> 6= X∗.

Moreover, ∂f̄`1(U) is nonempty and bounded for every U that satisfies UU> = X∗. There-
fore, upon choosing the step-size as ηt = (η/2)

∥∥UU> −X?
∥∥
F

, the update rule for SubGM

reduces to Ut+1 = Ut − ηtDt = η
(
UtU

>
t −X?

)
Ut, for any Dt ∈ ∂f̄`1(Ut). In other words,

the iterations of SubGM with step-size ηt = (η/2)
∥∥UU> −X?

∥∥
F

on f̄`1(U) are equiv-
alent to the iterations of GD with constant step-size η on the expected `2-loss function

f̄`2(U) = (1/4)
∥∥UU> −X?

∥∥2

F
.

Due to this equivalence, we instead study the behavior of GD on f̄`2(U). Based on
the decomposition of the generalization error in Lemma 14, we show that the iterations of
SubGM on the expected loss undergo three phases:
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Eigenvalue  
Learning

Global  
Convergence

Local  
Convergence

Figure 5: The iterations of SubGM for the expected loss (15) undergo three phases: eigenvalue learning
phase, where the eigenvalues of StS

>
t converge to those of X∗; global convergence phase, where the general-

ization error decays linearly; and local convergence phase, where the generalization error decays sub-linearly.

- Eigenvalue learning: Due to small initialization, the signal, residual, and cross terms
are small at the initial point. Therefore, the generalization error is dominated by the
signal term

∥∥StS>t − Σ
∥∥ ≈ ‖Σ‖. We show that, in the first phase, SubGM improves the

generalization error by learning the eigenvalues of X?, i.e., by reducing
∥∥StS>t − Σ

∥∥.
During this phase, the residual term

∥∥EtE>t ∥∥ will decrease at a sublinear rate.

- Global convergence: Once the eigenvalues are learned to a certain accuracy, both signal
and cross terms

∥∥StS>t − Σ
∥∥ and

∥∥StE>t ∥∥ start to decay at a linear rate, while the
residual term maintains its sublinear decay rate.

- Local convergence: The discrepancy between the decay rates of the signal and cross
terms, and that of the residual term implies that, at some point, the residual term
becomes the dominant term, and hence, the generalization error starts to decay at a
sublinear rate.

Figure 5 illustrates the three phases of SubGM on the expected loss f̄`1(U) with a rank-
3 ground truth X∗. Here, we assume that the problem is fully over-parameterized, i.e.,
r′ = d = 20. A closer look at the first phase of the algorithm reveals that SubGM learns the
eigenvalues of X∗ at different rates: the larger eigenvalues are learned faster than the small
ones (Figure 6a). A similar observation has been made for gradient flow applied to low-
rank matrix factorization (Li et al., 2020b), and is referred to as incremental learning (Gidel
et al., 2019). Finally, Figure 6b illustrates the dynamics of the signal, cross, and residual
terms.

Proposition 16 (Minimum eigenvalue dynamic) Consider the iterations of SubGM
for the expected loss f̄`1(U) with the step-size ηt = (η/2)f̄`1(Ut). Suppose that η . 1/σ1,
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(a) (b)

Figure 6: (a) The eigenvalues of X? are learned at different rates. (b) During the eigenvalue learning phase,
the generalization error is dominated by the signal term. In the global convergence phase, both signal and
cross terms decay linearly. Finally, the residual term becomes the dominant term in the local convergence
phase, and it governs the generalization error.

StS
>
t � 0, ‖EtEt‖ ≤ σ1, and ‖StSt‖ ≤ 2σ1. Then, we have

λmin

(
St+1S

>
t+1

)
≥
(

(1 + ησr)
2 − 2η

∥∥∥EtE>t ∥∥∥)λmin

(
StS

>
t

)
− 2η (1 + ησr)λmin

(
StS

>
t

)2
.

(16)

The proof of Proposition 16 can be found in Appendix C.1. The above proposition
shows that the minimum eigenvalue of StS

>
t grows exponentially fast at a rate of 1+Θ(ησr),

provided that η and
∥∥EtE>t ∥∥ are small. This implies that the minimum eigenvalue satisfies

λmin

(
StS

>
t

)
& σr after O

(
log
(
1/λmin(S0S

>
0 )
)
/(ησr)

)
iterations.

Proposition 17 (Signal, cross, and residual dynamics) Consider the iterations of
SubGM for the expected loss f̄`1(U), and with the step-size ηt = (η/2)f̄`1(Ut). Suppose
that η . 1/σ1,

∥∥StS>t ∥∥ ≤ 1.01σ1 and
∥∥EtE>t ∥∥ ≤ σ1. Then, we have∥∥∥Σ− St+1S

>
t+1

∥∥∥ ≤ (1− ηλmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥+ 5η

∥∥∥StE>t ∥∥∥2
, (17)∥∥∥St+1E

>
t+1

∥∥∥ ≤ (1−ηλmin

(
StS

>
t

)
+2η

∥∥∥Σ−StS>t
∥∥∥+2η ‖EtEt‖

)∥∥∥StE>t ∥∥∥ , (18)∥∥∥Et+1E
>
t+1

∥∥∥ ≤ ∥∥∥EtE>t ∥∥∥− η ∥∥∥EtE>t ∥∥∥2
, (19)∥∥∥St+1S

>
t+1

∥∥∥ ≤ 1.01σ1. (20)

The proof of Proposition 17 can be found in Appendix C.2. The above proposition
shows that, once the minimum eigenvalue of StS

>
t approaches σr, the iterations enter the

second phase, in which the signal and cross terms start to decay exponentially fast at the
rate of 1−Θ(ησr). Moreover, it shows that the residual term is independent of λmin(StS

>
t ),

and decreases sublinearly throughout the entire solution path. Given these dynamics, we
present our main result.
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Theorem 18 (Global convergence of SubGM for expected loss) Consider the iter-
ations of SubGM for the expected loss f̄`1(U) with the step-size ηt = (η/2)f̄`1(Ut). Suppose
that η . 1/σ1 and the initial point is selected such that

∥∥U0U
>
0 − 2α2X?

∥∥ ≤ α2σr for some
α .
√
σr. Then, the following statements hold:

- Linear convergence: After T̄ . log(σ1/α)
ησr

iterations, we have∥∥∥UT̄U>T̄ −X∗∥∥∥ . α2.

- Sub-linear convergence: For every t ≥ T̄ , we have∥∥∥UtU>t −X?
∥∥∥ . α2

ηα2t+ 1
.

The detailed proof of Theorem 18 is presented in Section A.1. According to the
above theorem, for any accuracy ε > 0, one can guarantee

∥∥UT̄U>T̄ −X∗∥∥ ≤ ε after
O (log(σ1/ε)/(ησr)) iterations, provided that α .

√
ε∧√σr. In Section 5, we will show how

to obtain an initial point that satisfies the conditions of Theorem 18.

5. Empirical Loss with Noiseless Measurements

A key difference between the behavior of SubGM for the empirical loss f`1(U) and its
expected counterpart f̄`1(U) is the fact that the residual term

∥∥EtE>t ∥∥ no longer enjoys
a monotonically decreasing behavior. In particular, Figure 7a shows that, even with an
infinitesimal initialization scale α, the residual term grows to a non-negligible value, before
decaying linearly to a small level. In order to analyze this behavior, we further decompose
Et as

Et = Ft +Gt, where Ft = EtPSt , and Gt = EtP
⊥
St .

Based on the above decomposition and Lemma 14, the generalization error can be written
as: ∥∥∥UtU>t −X?

∥∥∥ ≤ ∥∥∥StS>t − Σ
∥∥∥+ 2

∥∥∥StE>t ∥∥∥+
∥∥∥FtF>t ∥∥∥+

∥∥∥GtG>t ∥∥∥ . (21)

This decomposition plays a key role in characterizing the behavior of the residual term:
we show that the increasing nature of

∥∥EtE>t ∥∥ in the initial stage of the algorithm can be
attributed to the dynamic of

∥∥FtF>t ∥∥. During this phase, the term
∥∥GtG>t ∥∥ also increases,

but at a much slower rate. In particular, we show that
∥∥GtG>t ∥∥ remains in the order of

αγ for some 0 < γ ≤ 2 throughout the entire solution path. In the second phase,
∥∥GtG>t ∥∥

remains roughly in the same order, while
∥∥FtF>t ∥∥ decays linearly until it is dominated by∥∥GtG>t ∥∥. At the end of this phase, the overall error will be in the order of O(αγ). Figure 7b

illustrates the behavior of
∥∥FtF>t ∥∥ and

∥∥GtG>t ∥∥, together with
∥∥EtE>t ∥∥.

Similar to our analysis for the expected loss, our first step towards analyzing the behavior
of SubGM is to characterize the dynamic of the minimum eigenvalue of StS

>
t . For simplicity

of notation, we define η̄t = ηϕ(∆t)
2 in the sequel. Recall that, due to our assumption on

ϕ(∆t)
2, we have ϕ2η ≤ η̄t ≤ ϕ̄2η, provided that ∆t ∈ S.
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(a) (b)

Figure 7: (a) The dynamics of the signal, cross, and residual terms for the empirical loss. Unlike the
expected loss, the residual term for the empirical loss has a non-monotonic behavior. (b) The dynamics of∥∥FtF>t ∥∥ and

∥∥GtG>t ∥∥. The non-monotonic behavior of the residual term can be attributed to the dynamic

of
∥∥FtF>t ∥∥.

Proposition 19 (Minimum eigenvalue dynamic) Consider the iterations of SubGM
for the empirical loss f`1(U) with the step-size ηt = (η/2)f`1(Ut). Suppose that the mea-
surements are noiseless and satisfy (4r, δ, ε,S)-Sign-RIP with δ . 1/

√
r, ε =

√
d ‖Gt‖2, and

S = {X : ζ ≤ ‖X‖F ≤ R} for ζ = ε
(

1/δ ∨
√
d
)

and R = 5
√
rσ1. Moreover, suppose that

η . 1/(ϕ̄2σ1), StS
>
t � 0,

∥∥EtE>t ∥∥ ≤ σ1,
∥∥StS>t ∥∥ ≤ 2σ1, ∆t ∈ S is ε-approximate rank-4r,

and
∥∥EtS>t (StS

>
t )−1

∥∥ ≤ 1/3. Then, we have

λmin

(
St+1S

>
t+1

)
≥
(

(1 + η̄tσr)
2 − 2η̄t

∥∥∥EtE>t ∥∥∥− 72η̄tδ ‖∆t‖F
)
λmin

(
StS

>
t

)
− 2η̄t (1 + η̄tσr)λmin

(
StS

>
t

)2
.

The proof of Proposition 19 can be found in Appendix D.2. Later, we will show that the
conditions of Proposition 19 are satisfied with a sufficiently small initial point. The above
proposition shows that, in the first phase of the algorithm, λmin

(
StS

>
t

)
grows exponentially

with a rate of at least 1+Ω(ηϕ2σr). Comparing this result with Proposition 16 reveals that

λmin

(
St+1S

>
t+1

)
for the empirical loss behaves almost the same as its expected counterpart.

This will play an important role in establishing the linear convergence of SubGM for the
empirical loss. Finally, note that Sign-RIP must be satisfied for every ε-approximate rank-
4r matrix, where ε =

√
d ‖Gt‖2. Later, we will show that, with small initialization, the value

of
√
d ‖Gt‖2 scales with α, and hence, can be kept small throughout the iterations. Our

next proposition characterizes the behavior of the signal and cross terms for the empirical
loss.

Proposition 20 (Signal and cross dynamics) Consider the iterations of SubGM for
the empirical loss f`1(U) with the step-size ηt = (η/2)f`1(Ut). Suppose that the measure-
ments are noiseless and satisfy (4r, δ, ε,S)-Sign-RIP with δ . 1/

√
r, ε =

√
d ‖Gt‖2, and

S = {X : ζ ≤ ‖X‖F ≤ R} for ζ = ε
(

1/δ ∨
√
d
)

and R = 5
√
rσ1. Moreover, suppose that
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Algorithm 2 Initialization Scheme

Input: initialization scale α, measurement matrices {Ai}mi=1, measurement vector y =
[y1, · · · , ym]>, and the search rank r′;
Output: An initialization matrix U0 ∈ Rd×r′ ;
Obtain C ∈ 1

m

∑m
i=1 Sign(yi)

Ai+A
>
i

2 ;
Compute the eigenvalue decomposition C = ΛDΛ>;
Define Dr′

+ as the top r′ × r′ sub-matrix of D corresponding to the r′ largest eigenvalues
of C, whose negative values are replaced by 0;

Set U0 = αΛ
(
Dr′

+

)1/2
.

η . 1/(ϕ̄2σ1),
∥∥StS>t ∥∥ ≤ 1.01σ1,

∥∥EtE>t ∥∥ ≤ σ1,
∥∥EtE>t ∥∥F ≤ √rσ1, and ∆t ∈ S is ε-

approximate rank-4r. Then, we have∥∥∥Σ− St+1S
>
t+1

∥∥∥ ≤(1− η̄tλmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥+ 5η̄t

∥∥∥StE>t ∥∥∥2
+ 37η̄tδσ1 ‖∆t‖F ,

(22)∥∥∥St+1E
>
t+1

∥∥∥≤(1−η̄tλmin

(
StS

>
t

)
+2η̄t

∥∥∥Σ−StS>t
∥∥∥+2η̄t

∥∥∥EtE>t ∥∥∥)∥∥∥StE>t ∥∥∥
+ 22η̄tδσ1 ‖∆t‖F , (23)∥∥∥St+1S

>
t+1

∥∥∥ ≤1.01σ1. (24)

The proof of this proposition is presented in Appendix D.3. Proposition 20 shows that,
under Sign-RIP, the one-step dynamics of the signal and cross terms behave almost the
same as their expected counterparts, provided that δ is sufficiently small.

Finally, we provide the one-step dynamic of the residual term. To this goal, we will
separately analyze Ft and Gt, i.e., the projection of Et onto the row space of St and its
orthogonal complement. This together with Et = Ft +Gt characterizes the dynamic of the
residual term.

Proposition 21 (Residual dynamic) Consider the iterations of SubGM for the empir-
ical loss f`1(U) with the step-size ηt = (η/2)f`1(Ut). Suppose that the measurements
are noiseless and satisfy (4r, δ, ε,S)-Sign-RIP with δ . 1/

√
r, ε =

√
d ‖Gt‖2, and S =

{X : ζ ≤ ‖X‖F ≤ R} for ζ = ε
(

1/δ ∨
√
d
)

and R = 5
√
rσ1. Moreover, suppose that∥∥StS>t ∥∥ ≤ 1.01σ1,

∥∥EtE>t ∥∥ ≤ σ1, ∆t ∈ S is ε-approximate rank-4r, and
∥∥EtSt(StSt)−1

∥∥ ≤
1/3. Then, the following statements hold:

• If η̄t . 1/ ‖∆t‖, we have

‖Gt+1‖ ≤
(

1+η̄2
t

(
2
∥∥∥EtS>t ∥∥∥2

+‖Et‖4+2 ‖∆t‖
∥∥∥EtS>t ∥∥∥)+7η̄tδ ‖∆t‖F

)
‖Gt‖ .

• If η . 1/(ϕ̄2σ1), we have

‖Ft+1‖ ≤
(

1− η̄tλmin

(
StS

>
t

)
+ 3η̄tδ ‖∆t‖F

)
‖Ft‖+ 3η̄tδ ‖∆t‖F ‖St‖+ 6η̄t ‖∆t‖ ‖Gt‖ .
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The proof of the above proposition can be found in Appendix D.4. Note that the condition
η . 1/(ϕ̄2σ1) for the dynamic of ‖Ft‖ readily implies η̄t . 1/ ‖∆t‖. Therefore, the one-step
dynamic of ‖Gt‖ holds under a milder condition on the step-size. Moreover, unlike ‖Ft‖,
the dynamic of ‖Gt‖ is independent of λmin(StS

>
t ). At the early stages of the algorithm,

the term η̄2
t

(
2
∥∥EtS>t ∥∥2

+ ‖Et‖4 + 2 ‖∆t‖
∥∥EtS>t ∥∥) = O(α2) is dominated by η̄tδ ‖∆t‖F ≈

η̄tδ ‖X?‖F . Therefore, ‖Gt‖ grows at a slow rate of 1 +O(1)ηδϕ̄2 ‖X?‖F . As the algorithm
makes progress, ‖∆t‖F decreases, leading to an even slower growth rate for ‖Gt‖. This
is in line with the behavior of ‖Gt‖ in Figure 7b: the growth rate of ‖Gt‖ decreases as
SubGM makes progress towards the ground truth, and it eventually “flattens out” at a
level proportional to the initialization scale. However, unlike ‖Gt‖, the term ‖Ft‖ does not
have a monotonic behavior. In particular, according to Proposition 21, ‖Ft‖ may increase
at the early stages of the algorithm, where λmin

(
StS

>
t

)
is negligible compared to ‖∆t‖F .

However, ‖Ft‖ will start decaying as soon as λmin

(
StS

>
t

)
& δ ‖∆t‖F , which, according

to Proposition 19, is guaranteed to happen after certain number of iterations. The non-
monotonic behavior of ‖Ft‖ is also observed in practice (see Figure 7b).

Before presenting the main result, we provide our proposed initialization scheme in
Algorithm 2. The presented initialization method is analogous to the classical spectral
initialization in the noiseless matrix recovery problems, with a key difference that we scale
down the norm of the initial point by a factor of α2. As will be shown later, the scaling of
the initial point is crucial for establishing the linear convergence of SubGM; without such
scaling, both GD and SubGM suffer from sublinear convergence rates, as evidenced by the
recent works (Zhuo et al., 2021; Ding et al., 2021).

Theorem 22 (Global Convergence of SubGM with Noiseless Measurements)
Consider the iterations of SubGM for the empirical loss f`1(U) with the step-size
ηt = (η/2)f`1(Ut). Suppose that the initial point U0 is obtained from Algorithm 2 with
an initialization scale that satisfies α . 1/(ϕ̄

√
d) ∧ 1/κ. Suppose that the measure-

ments are noiseless and satisfy (4r, δ, ε,S)-Sign-RIP with δ . 1/
(√
rκ2ϕ̄4 log2 (1/α)

)
,

ε �
√
dα2−O(

√
rκ2δ)δ, and S = {X : ζ ≤ ‖X‖F ≤ R} for ζ = ε

(
1/δ ∨

√
d
)

and R = 5
√
rσ1.

Finally, suppose that η . 1/(ϕ̄2σ1). Then, after t = Tend . log (1/α)/(ησrϕ
2) iterations,

we have ∥∥∥UtU>t −X?
∥∥∥
F
. dα2−O(

√
rκ2δ).

The proof of Theorem 22 is presented in Subsection A.2, and follows the same structure
as the proof of Theorem 18. However, unlike the expected loss, the final error will be in the
order of αβ(δ), for some 0 < β(δ) ≤ 2 that is a decreasing function of δ. Indeed, smaller δ will
improve the dependency of the final generalization error on α. Moreover, for an arbitrarily
small ε > 0, one can guarantee

∥∥UTU>T −X?
∥∥
F
≤ ε within T . log(d/ε)/(β(δ)ησrϕ

2)

iterations, provided that the initialization scale satisfies α . (ε/d)1/β(δ).

Finally, we characterize the sample complexity of SubGM with noiseless, Gaussian mea-
surements.

Corollary 23 (Gaussian Measurements) Suppose that the measurement matrices
{Ai}mi=1 have i.i.d. standard Gaussian entries. Consider the iterations of SubGM for
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the empirical loss f`1(U), with the step-size ηt = (η/2)f`1(Ut) and η . 1/σ1. Suppose
that the initial point U0 is obtained from Algorithm 2 with an initialization scale that
satisfies α . 1/

√
d ∧ 1/κ. Finally, suppose that the number of measurements satisfies

m & κ4dr2 log5(1/α2) log2(m). Then, after t = Tend . log (1/α) /(ησr) iterations, and with
an overwhelming probability, we have

∥∥∥UTU>T −X?
∥∥∥
F
. dα

2−O
(√

κ4dr2 log(1/α) log2(m)
m

)
.

The above corollary is a direct consequence of Theorem 10 after setting the corruption
probability p to zero. To the best of our knowledge, Corollary 23 is the first result showing
that, with Gaussian measurements, the sample complexity of SubGM is independent of the
search rank, provided that the initial point is sufficiently close to the origin.

6. Empirical Loss with Noisy Measurements

In this section, we establish the convergence of SubGM with small initialization and noisy
measurements. A key difference compared to our previous analysis is in the choice of the
step-size: in the presence of noise, the value of ηt = (η/2)f`1(Ut) can be arbitrarily far
from the error ηϕ−1

t ‖∆t‖. To circumvent this issue, we instead propose to use the following
geometric step-size:

ηt = η · ρt

‖Qt‖
, where Qt ∈ Q(∆t). (25)

Our first goal is to show that, under a similar Sign-RIP condition, our previous guarantees
on SubGM extend to geometric step-size. Then, we show how our general result can be
readily tailored to specific noise models. Our next result characterizes the dynamic of
λmin(StS

>
t ) with the above choice of step-size.

Proposition 24 (Minimum eigenvalue dynamic) Consider the iterations of SubGM
on f`1(U) with the step-size defined as (25). Suppose that the measurements satisfy (4r, ε, δ,S)-

Sign-RIP with δ . 1/
√
r, ε =

√
d ‖Gt‖2, and S = {X : ζ ≤ ‖X‖F ≤ R} for ζ = ε

(
1/δ ∨

√
d
)

and R = 5
√
rσ1. Moreover, suppose that StS

>
t � 0,

∥∥EtE>t ∥∥ ≤ σ1,
∥∥StS>t ∥∥ ≤ 2σ1,∥∥∥EtS>t (StS>t )−1

∥∥∥ ≤ 1/3, ηρt

‖∆t‖ .
1
σ1

, and ∆t ∈ S is ε-approximate rank-4r. Then, we have

λmin

(
St+1S

>
t+1

)
≥

((
1 +

ηρt

‖∆t‖
σr

)2

− 2ηρt

‖∆t‖

∥∥∥EtE>t ∥∥∥− 384
√
rηρtδ

)
λmin

(
StS

>
t

)
− 2

ηρt

‖∆t‖

(
1 +

ηρt

‖∆t‖
σr

)
λmin

(
StS

>
t

)2
.

The proof of the above proposition is presented in Appendix E.2. Recalling our discus-
sion in Section 3.3, SubGM with geometric step-size moves towards a direction close to
∆t/ ‖∆t‖ with an “effective” step-size of ηρt/‖∆t‖. In light of this, the above proposition
is analogous to Proposition 19, with an additional assumption that the effective step-size
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is upper bounded by 1/σ1. Proposition 24 can be used to show the exponential growth
of λmin(St+1S

>
t+1) in the first phase of the algorithm. To see this, note that, due to small

initialization, we have ‖∆t‖ ≈ ‖X?‖ = σ1, λmin

(
StS

>
t

)2 � λmin

(
StS

>
t

)
, and

∥∥EtE>t ∥∥ ≈ 0
at the early stages of the algorithm. This implies that the minimum eigenvalue dynamic can
be accurately approximated as λmin

(
St+1S

>
t+1

)
≥ (1 + Ω(η/κ))λmin

(
StS

>
t

)
, which grows

exponentially fast. We next characterize the dynamics of the signal and cross terms.

Proposition 25 (Signal and cross dynamics) Consider the iterations of SubGM on
f`1(U) with the step-size defined as (25). Suppose that the measurements satisfy (4r, ε, δ,S)-
Sign-RIP with δ . 1/

√
r, ε =

√
d ‖Gt‖2, and S = {X : ζ ≤ ‖X‖F ≤ R} for ζ =

ε
(

1/δ ∨
√
d
)

and R = 5
√
rσ1. Moreover, suppose that StS

>
t � 0,

∥∥EtE>t ∥∥ ≤ σ1,∥∥StS>t ∥∥ ≤ 1.01σ1,
∥∥∥EtS>t (StS>t )−1

∥∥∥ ≤ 1/3, ηρt

‖∆t‖ .
1
σ1

, and ∆t ∈ S is ε-approximate

rank-4r. Then, we have∥∥∥Σ−St+1S
>
t+1

∥∥∥≤(1− ηρt

‖∆t‖
λmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥+5

ηρt

‖∆t‖

∥∥∥StE>t ∥∥∥2
+193

√
rηρtδσ1,

(26)∥∥∥St+1E
>
t+1

∥∥∥≤(1− ηρt

‖∆t‖

(
λmin

(
StS

>
t

)
−2
∥∥∥Σ−StS>t

∥∥∥−2 ‖EtEt‖
))∥∥∥StE>t ∥∥∥+113

√
rηρtδσ1,

(27)∥∥∥St+1S
>
t+1

∥∥∥ ≤ 1.01σ1. (28)

The proof of Proposition 25 is analogous to Proposition 20, and can be found in Ap-
pendix E.3. Assuming ‖∆t‖ � ρt, the above proposition shows that both signal and cross
terms behave similarly to their expected counterparts in Proposition 17, and their deviation
diminishes exponentially fast.

Proposition 26 Consider the iterations of SubGM on f`1(U) with the step-size defined
as (25). Suppose that the measurements satisfy (4r, ε, δ,S)-Sign-RIP with δ . 1/

√
r, ε =√

d ‖Gt‖2, and S = {X : ζ ≤ ‖X‖F ≤ R} for ζ = ε
(

1/δ ∨
√
d
)

and R = 5
√
rσ1. Moreover,

suppose that StS
>
t � 0,

∥∥EtE>t ∥∥ ≤ σ1,
∥∥StS>t ∥∥ ≤ 1.1σ1,

∥∥∥EtS>t (StS>t )−1
∥∥∥ ≤ 1/3, and

∆t ∈ S is ε-approximate rank-4r. Then, the following statements hold:

• If η . 1
‖∆t‖ , we have

‖Gt+1‖≤
(

1+
η2ρ2t

‖∆t‖2

(
2
∥∥∥EtS>t ∥∥∥2

+‖Et‖4+2 ‖∆t‖
∥∥∥EtS>t ∥∥∥)) ‖Gt‖+49

√
rη0ρ

tδ ‖Gt‖ ,

which can be further simplified as

‖Gt+1‖ ≤
(
1 + 5η2ρ2t + 49

√
rη0ρ

tδ
)
‖Gt‖ . (29)

• If ηρt

‖∆t‖ .
1
σ1

, we have

‖Ft+1‖ ≤
(

1− ηρt

‖∆t‖
λmin

(
StS

>
t

)
+ 16

√
rηρtδ

)
‖Ft‖+ 16

√
rηρtδ ‖St‖+ 6ηρt ‖Gt‖ .
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The proof of Proposition 26 follows that of Proposition 21, and can be found in Ap-
pendix E.4. Inequality (29) implies that the growth rate of ‖Gt‖ diminishes with t. We
will use this property to show that ‖Gt‖ remains proportional to the initialization scale α
throughout the solution trajectory, which will be used to control the final generalization
error. Moreover, unlike the dynamic of ‖Ft‖, (29) holds even when ‖∆t‖ decays faster than
ησ1ρ

t; this will play a key role in the proof of our next theorem.

Theorem 27 (Global Convergence of SubGM with Noisy Measurements)
Consider the iterations of SubGM on f`1(U) with the step-size defined as (25), and
parameters η . 1/ (κ log(1/α)) and ρ = 1 − Θ (η/(κ log(1/α))). Suppose that the
initial point U0 is obtained from Algorithm 2 with an initialization scale that satisfies
α . 1/(

√
d) ∧ 1/κ ∧ ϕ. Suppose that the measurements satisfy (4r, δ, ε,S)-Sign-RIP with

δ . 1/
(√
rκ2ϕ̄4 log2 (1/α)

)
, ε �

√
dα2−O(

√
rκδ)δ, and S = {X : ζ ≤ ‖X‖F ≤ R} for

ζ ≥ ε
(

1/δ ∨
√
d
)

and R = 5
√
rσ1. Then, for any t ≥ Tend = O((κ/η) log2 (1/α)), we have∥∥∥UtU>t −X?

∥∥∥
F
. dα2−O(

√
rκδ) ∨ ζ.

The proof of the above theorem can be found in Section A.3. Upon defining β(δ) =
2 − O(

√
rκδ), the above result implies that, for any arbitrary accuracy ε ≥ ζ, SubGM

converges to a solution that satisfies
∥∥UtU>t −X?

∥∥
F
≤ ε within O(κ log2(d/ε)/(β(δ)η))

iterations, provided that α . (ε/d)1/β(δ). Compared to the noiseless setting, the final error
in Theorem (27) has an additional term ζ. This is due to the fact that we only require
a lower bound on the choice of ζ; as will be explained later, this additional freedom will
be used to show the convergence of SubGM under the Gaussian noise model. Moreover,
compared to the noiseless setting, the iteration complexity of SubGM in the noisy regime
is higher by a factor of log(d/ε), and its step-size must be chosen more conservatively. The
higher iteration complexity is due to the lack of a prior estimate of ‖∆t‖F ; to alleviate this
issue, we proposed a geometric step-size, which inevitably leads to a slightly higher iteration
complexity.

In the proof of the above theorem, we show that SubGM already achieves a small error
after Tend iterations, and any additional iterations may in fact worsen the final error. In
fact, this is the main reason behind the early stopping of gradient descent with constant
step-size, as shown by Li et al. (2018); Stöger and Soltanolkotabi (2021). However, we no
longer require an early stopping for SubGM. This is due to the fact that, because of their
exponentially-decaying nature, the step-sizes become so small that SubGM stops making
any meaningful progress after Tend iterations. More precisely, we control the dynamics of
SubGM in the last t− Tend iterations, showing that it does not deviate too much from the
solution at iteration Tend.

Finally, according to Theorem 27, ρ must satisfy 1 − ρ = Θ (η/(κ log(1/α))), which
requires a prior knowledge of the condition number κ. However, our analysis in fact guar-
antees the convergence of SubGM for any 1 − Θ (η/(κ log(1/α))) ≤ ρ < 1. Therefore, if κ
is not known (or only a conservative upper bound of κ is known), ρ can be conservatively
close to one at the expense of a slower convergence rate.

Equipped with the above theorem and Theorems 10 and 11, we next characterize the
behavior of SubGM under both outlier and Gaussian noise regimes.
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Corollary 28 (Outlier Noise Model) Suppose that the measurement matrices {Ai}mi=1

have i.i.d. standard Gaussian entries, and the noise vector s follows an outlier noise model
with a corruption probability 0 ≤ p < 1 (Definition 8). Consider the iterations of SubGM
on f`1(U) with the step-size defined as (10), and parameters η . 1/ (κ log(1/α)) and ρ =
1 − Θ (η/(κ log(1/α))). Suppose that the initial point U0 is obtained from Algorithm 2
with an initialization scale that satisfies α . 1/

√
d ∧ 1/κ ∧ (1 − p). Suppose that the

number of measurements satisfies m & κ4dr2 log5(1/α2) log2(m)/(1 − p)2. Then, for any
t ≥ Tend = O((κ/η) log2 (1/α)) and with an overwhelming probability, we have∥∥∥UtU>t −X?

∥∥∥
F
. dα

2−O
(√

κ2dr2 log(1/α) log2(m)

(1−p)2m

)
.

Corollary 29 (Gaussian Noise Model) Suppose that the measurement matrices {Ai}mi=1

have i.i.d. standard Gaussian entries, and the noise vector s follows a Gaussian noise model
with a variance νg <∞ (Definition 9). Consider the iterations of SubGM on f`1(U) with the
step-size defined as (10), and parameters η . 1/ (κ log(1/α)) and ρ = 1−Θ (η/(κ log(1/α))).
Suppose that the initial point U0 is obtained from Algorithm 2 with an initialization scale
that satisfies α . 1/

√
d∧
√
dr/m∧ 1/κ. Then, for any t ≥ Tend = O((κ/η) log2 (1/α)) and

with an overwhelming probability, we have

∥∥∥UtU>t −X?
∥∥∥
F

= O

√ν2
gκ

4dr2 log5(1/α) log2(m)

m

 .

The proof of Corollary 29 follows directly from Theorems 11 and 27 after choosing

ζ = C
√
ν2
gκ

4dr2 log5(1/α) log2(m)/m,

for sufficiently large constant C. The details are omitted for brevity.

Remark 30 Our result can be readily extended to settings where the measurements are
corrupted with both outlier and Gaussian noise values. Consider measurements of the form

yi = 〈Ai, X?〉+ s
(1)
i + s

(2)
i , where s

(1)
i and s

(2)
i follow the outlier and Gaussian noise models

delineated in Definitions 8 and 9. In this setting, Corollaries 28 and 29 can be combined
to show that, with m = Ω̃

(
ν2
gκ

4dr2/(1− p)2
)

samples, SubGM with small initialization and

geometric step-size achieves the error
∥∥UtU>t −X?

∥∥2

F
= Õ

(
ν2
gκ

4dr2/((1− p)2m)
)

(modulo
logarithmic factors).

Remark 31 We highlight that our required measurement number for the convergence of
SubGM must scale poly-logarithmically with the initialization scale. According to Theo-
rems 22 and 27, the final error of SubGM depends on the initialization scale, which in turn
leads to the dependency of the final error on the measurement number. This dependency
is inevitable in the Gaussian noise regime (Corollary 29) due to the information-theoretical
lower bounds. Moreover, for the noiseless (Corollary 23) and outlier noise settings (Corol-
lary 28), the dependency of the final error on the measurement number is of the form
exp(−Ω(poly(m))). As such, to obtain an ε-accurate solution, the measurement number
must scale as poly log(1/ε). While we note that this dependency is mild, as a future re-
search direction, we will investigate the possibility of removing such a dependency.
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7. Concluding Remarks

In this work, we study the performance of sub-gradient method (SubGM) on a nonconvex
and nonsmooth formulation of the robust matrix recovery with noisy measurements, where
the rank of the true solution r is unknown and over-estimated instead with r′ ≥ r. We
prove that the over-estimation of the rank has no effect on the performance of SubGM,
provided that the initial point is sufficiently close to the origin. Moreover, we prove that
SubGM is robust against outlier and Gaussian noise values. In particular, we show that
SubGM provably converges to the ground truth, even if the globally optimal solutions of
the problem are “spurious”, i.e., they do not correspond to the ground truth. At the heart
of our method lies a new notion of restricted isometry property, called Sign-RIP, which
guarantees a direction-preserving property for the sub-differentials of the `1-loss. We show
that, while the classical notions of restricted isometry property face major breakdowns in
the face of noise, Sign-RIP can handle a wide range of noisy measurements, and hence, is
better-suited for analyzing the robust variants of low-rank matrix recovery. A few remarks
are in order next:

Spectral vs. random initialization: In our work, we assume that the initial point is
obtained via a special form of the spectral method, followed by a norm reduction. A natural
question thus arises as to whether the spectral method can be replaced by small random
initialization. Here we briefly mention the potential technical difficulty in extending our
theoretical result to the random initialization. According to the proofs of Theorems 22
and 27, we require the minimum eigenvalue of the signal term to dominate the maximum
eigenvalues of the cross and residual terms at the initial point. If the initial point is chosen
randomly, it is likely that such an assumption is violated. As a consequence, it is unclear
how to ensure the initial exponential growth of the signal term under our current error
perturbation analysis. Despite this theoretical hurdle, we observed in our simulations that
SubGM with small random initialization behaves almost the same as SubGM with spectral
initialization. Therefore, we conjecture that a small random initialization followed by a
few iterations of SubGM is in fact equivalent to spectral initialization; a similar result has
been recently proven by Stöger and Soltanolkotabi (2021) for gradient descent on `2-loss.
We consider a rigorous verification of this conjecture as an enticing challenge for future
research.

Beyond Sign-RIP: Another natural question pertains to the performance of SubGM
on problems that do not satisfy Sign-RIP. An important and relevant example is over-
parameterized matrix completion, where the linear measurement operator is an element-wise
projector that reveals partial and potentially noisy observations of a low-rank matrix. In-
deed, the performance SubGM on problems of this type requires a more refined analysis,
which is left as future work.
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Appendix A. Proofs of the Main Theorems

A.1 Proof of Theorem 18

Before delving into the details, we first present the general overview of our proof technique
for Theorem 18. First, we prove that the conditions of Propositions 16 and 17 hold for
every 0 ≤ t <∞. Then, we use the minimum eigenvalue dynamic in Proposition 17 to show
that λmin(StS

>
t ) ≥ 0.98σr after O

(
log(1/α2)/(ησr)

)
iterations. In the second phase, we

leverage the lower bound λmin(StS
>
t ) ≥ 0.98σr to further simplify the one-step dynamics in

Proposition 16, and show that both signal and cross terms decay linearly, while the residual
term remains in the order of α2. This phase lasts for O

(
log(σ1/α

2)/(ησr)
)

iterations, and
the generalization error can be upper bounded by α2 at the end of this phase. Finally, in
the third phase, we show that the residual term will dominate the signal and cross terms,
and the generalization error will decay at a sublinear rate.

Lemma 32 The conditions of Propositions 16 and 17 are satisfied for every 0 ≤ t < ∞.
In particular, for any 0 ≤ t <∞, we have∥∥∥EtE>t ∥∥∥ ≤ α2

ηα2t+ 1
, (30)∥∥∥StS>t ∥∥∥ ≤ 1.01σ1, (31)

StS
>
t � 0. (32)

The proof of the above lemma can be found in Appendix C.3. Given Lemma 32, we
proceed to prove Theorem 18.
Phase 1: Eigenvalue Learning. Due to Proposition 16 and Lemma 32, we have

λmin

(
St+1S

>
t+1

)
≥
(

1 + 2ησr − 2η
∥∥∥EtE>t ∥∥∥)λmin

(
StS

>
t

)
− 2.01ηλ2

min

(
StS

>
t

)
≥ (1 + 1.99ησr)λmin

(
StS

>
t

)
− 2.01ηλ2

min

(
StS

>
t

)
,

(33)
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where we used the assumption 2
∥∥EtE>t ∥∥ ≤ 2α2 ≤ 0.01σr due to our choice of α. Now, we

consider two cases:

- Suppose that T1 is the largest iteration such that λmin

(
StS

>
t

)
≤ σr/2.01 for every

t ≤ T1. According to (33), we have

λmin

(
StS

>
t

)
≥ (1 + 0.99ησr)

tλmin

(
S0S

>
0

)
≥ (1 + 0.99ησr)

tα2σr.

This implies that, afterO
(
log(1/α2)/(ησr)

)
iterations, we have λmin

(
StS

>
t

)
> σr/2.01,

and hence, T1 = O
(
log(1/α2)/(ησr)

)
.

- For t > T1, let xt = σr − λmin

(
StS

>
t

)
. Then, according to (33), we have

xt+1 ≤ (1− 2.03ησr)xt + 2.01ηx2
t + 0.02ησ2

r

≤ (1− 1.02ησr)xt + 0.02ησ2
r ,

(34)

where in the second inequality, we used the fact that xt = σr − λmin

(
StS

>
t

)
≤

1.01σr/2.01. The above inequality implies

xt+1 − 0.0196σr ≤ (1− 1.02ησr) (xt − 0.0196σr)

=⇒ xt+1 − 0.0196σr ≤ (1− 1.02ησr)
t−T1+1 (xT1 − 0.0196σr) .

Hence, we have xt ≤ 0.02σr after T3 = T1 + T2 iterations, where T2 = O (1/ησr),
which in turn shows that λmin

(
StS

>
t

)
≥ 0.98σr.

The above analysis shows that λmin(StS
>
t ) ≥ 0.98σr for every t ≥ T3 = T1 + T2 =

O
(
log(1/α2)/(ησr)

)
.

Phase 2: Global Convergence. We have 0.98σr ≤ λmin(StS
>
t ) ≤ 1.01σ1 for every t ≥ T3.

This, combined with the one-step signal dynamic (17), implies that∥∥∥Σ− St+1S
>
t+1

∥∥∥ ≤ (1− 0.98ησr)
∥∥∥Σ− StS>t

∥∥∥+ 5η
∥∥∥StE>t ∥∥∥2

.

On the other hand, due to Lemma 32, we have∥∥∥StE>t ∥∥∥2
≤
∥∥∥StS>t ∥∥∥∥∥∥EtE>t ∥∥∥ ≤ (1.01σ1)α2.

This implies that∥∥∥Σ− St+1S
>
t+1

∥∥∥ ≤ (1− 0.98ησr)
∥∥∥Σ− StS>t

∥∥∥+ 6ησ1α
2 (35)

=⇒
∥∥∥Σ− St+1S

>
t+1

∥∥∥− 6σ1α
2

0.98σr
≤ (1− 0.98ησr)

(∥∥∥Σ− StS>t
∥∥∥− 6σ1α

2

0.98σr

)
=⇒

∥∥∥Σ−St+1S
>
t+1

∥∥∥− 6σ1α
2

0.98σr
≤ (1−0.98ησr)

t−T3+1

(∥∥∥Σ−ST3S
>
T3

∥∥∥− 6σ1α
2

0.98σr

)
.

Therefore,
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∥∥∥Σ− StS>t
∥∥∥ ≤ 7κα2 for t ≥ T5 = T3 + T4, where T4 = O

(
log
(
σ1
κα2

)
ησr

)
.

Here, we use the inequality
∥∥Σ− ST3S

>
T3

∥∥ ≤ ‖Σ‖+
∥∥ST3S

>
T3

∥∥ ≤ 2.01σ1. On the other hand,
the one-step dynamics for the cross term (18) implies that

∥∥∥St+1E
>
t+1

∥∥∥≤(1−ηλmin

(
StS

>
t

)
+2η

∥∥∥Σ−StS>t
∥∥∥+2η

∥∥∥EtE>t ∥∥∥)∥∥∥StE>t ∥∥∥
≤ (1− 0.5ησr)

∥∥∥StE>t ∥∥∥
=⇒

∥∥∥St+1E
>
t+1

∥∥∥ ≤ (1− 0.5ησr)
t−T5+1

∥∥∥ST5E
>
T5

∥∥∥
≤ (1− 0.5ησr)

t−T5+1 (1.01α
√
σ1) , (36)

where the second inequality follows from the proven upper bound
∥∥Σ− StS>t

∥∥ ≤ 7κα2 and
Lemma 32. Moreover, the last inequality is due to the fact that∥∥∥ST5E

>
T5

∥∥∥ ≤ ‖ST5‖ ‖ET5‖ ≤ 1.01α
√
σ1.

The inequality (36) results in

∥∥∥StE>t ∥∥∥ ≤ α2 for t ≥ T7 = T6 + T5 where T6 = O

 log
(√

σ1

α

)
ησr

 .

This upper bound can in turn be used in (35) further to strengthen the upper bound on
the signal term as follows

∥∥∥Σ− StS>t
∥∥∥ ≤ α2 for t ≥ T8 = T7 + T6 = O

(
log
(
σ1
α2

)
ησr

)
.

Finally, invoking the signal-residual decomposition in Lemma 14, we have∥∥∥UtU>t −X∗∥∥∥ ≤ ∥∥∥StS>t − Σ
∥∥∥+ 2

∥∥∥StE>t ∥∥∥+
∥∥∥EtE>t ∥∥∥ . α2

for t ≥ T8 = O

(
log
(
σ1
α2

)
ησr

)
.

Phase 3: Sublinear convergence. Once both signal and cross terms are in the order
of α2, the residual term becomes the dominant term, while both signal and cross terms
maintain their linear decay rates. Therefore, we have∥∥∥UtU>t −X∗∥∥∥ . ∥∥∥EtE>t ∥∥∥ . α2

ηα2t+ 1
.

This completes the proof. �
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A.2 Proof of Theorem 22

The proof of Theorem 22 follows the same structure as the proof of Theorem 18: first, we
use Proposition 19 to show that λmin(StS

>
t ) reaches 0.98σr after T1 . log(1/α)/(ησrϕ

2)
iterations. Given this inequality and equipped with the one-step dynamics of the signal,
cross, and residual terms (Propositions 20 and 21), we then establish the linear convergence
of SubGM to the ground truth. As a first step, we show an important property of the
proposed initialization scheme.

Lemma 33 Suppose that the measurements are noiseless and satisfy (4r, δ, ε,S)-Sign-RIP
where ε = 0, and X? ∈ S. Then, the initial point U0 = V S0 + V⊥E0 generated from
Algorithm 2 satisfies ∥∥∥∥U0U

>
0 − α2ϕ(X?)

X?

‖X?‖F

∥∥∥∥ ≤ 2α2ϕ(X?)δ,

The proof can be found in Appendix D.5. An immediate consequence of the above lemma
is the following inequality:∥∥∥∥S0S

>
0 − α2ϕ(X?)

Σ

‖X?‖F

∥∥∥∥ ∨ ∥∥∥S0E
>
0

∥∥∥ ∨ ∥∥∥E0E
>
0

∥∥∥ ≤ 2α2ϕ(X?)δ.

Given this property of the proposed initialization scheme, we next show that the conditions
of Propositions 19, 20, and 21 are satisfied throughout solution path.

Lemma 34 We either have ‖∆t‖F . dα2−O(
√
rκ2δ) for some 0 ≤ t ≤ Tend, or the conditions

of Propositions 19, 20, and 21 are satisfied for every 0 ≤ t ≤ Tend. In particular, for any
0 ≤ t ≤ Tend, we have

‖Ft‖ ≤ ηϕ̄2
(

100
√
rσ1.5

1 δ + 30σ1

√
αϕ̄δ

)
(t+ 1), (37)

‖Gt‖ ≤ α1−O(
√
rκ2δ)

√
ϕ̄δ, (38)

‖∆t‖ ≤ 5σ1, (39)∥∥∥StS>t ∥∥∥ ≤ 1.01σ1, (40)

StS
>
t � 0, (41)∥∥∥∥EtS>t (StS>t )−1
∥∥∥∥ ≤ 1/3. (42)

The proof of Lemma 34 is provided in Appendix D.6. Note that the inequality ‖∆t‖F .
dα2−O(

√
rκ2δ) for some 0 ≤ t ≤ Tend readily implies the final result. On the the other hand,

if ‖∆t‖F & dα2−O(
√
rκ2δ), Lemma 34 implies that Propositions 19, 20, and 21 hold for every

0 ≤ t ≤ Tend.

Phase 1: Eigenvalue Learning. Based on Lemma 34, the conditions of Proposition 19
are satisfied for T1 . log(1/α)/(ησrϕ

2), and we have

λmin

(
St+1S

>
t+1

)
≥
(

(1 + 2η̄tσr)− 2η̄t

∥∥∥EtE>t ∥∥∥− 72η̄tδ ‖∆t‖F
)
λmin

(
StS

>
t

)
− 2η̄t (1 + η̄tσr)λmin

(
StS

>
t

)2
. (43)
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Due to (37) and (38), we have
∥∥EtE>t ∥∥ ≤ ‖Ft‖2 + ‖Gt‖2 ≤ 0.005σr for every t .

log (1/α)/(ησrϕ
2), where we used Lemma 34 and the assumed upper bounds on δ and

α. Moreover, 72δ ‖∆t‖F ≤ 150σ1δ ≤ 0.005σr, where again we used the assumed upper
bound on δ and Lemma 34. These two inequalities together with (43) lead to

λmin

(
St+1S

>
t+1

)
≥ (1 + 1.99η̄tσr)λmin

(
StS

>
t

)
− 2.01η̄tλ

2
min

(
StS

>
t

)
.

The above inequality is identical to (33), after noticing that ηϕ2 ≤ η̄t ≤ ηϕ̄2. On the other

hand, Lemma 33 shows that λmin

(
S0S

>
0

)
≥ α2ϕ(X?)

(
σr

‖X?‖F
− 2δ

)
≥ α2ϕ 1

2
√
rκ

. Therefore,

using an argument analogous to the proof of Theorem 18, we have λmin(StS
>
t ) ≥ 0.98σr for

t ≥ T1 = O(log(1/α)/(ησrϕ
2)). The details are omitted for brevity.

Phase 2: Global convergence. Recall the signal-residual decomposition∥∥∥UtU>t −X?
∥∥∥ ≤ ∥∥∥Σ− StS>t

∥∥∥+ 2
∥∥∥StE>t ∥∥∥+

∥∥∥FtF>t ∥∥∥+
∥∥∥GtG>t ∥∥∥ .

In what follows, we show that once λmin(StS
>
t ) ≥ 0.98σr, all terms in the above inequality

decay at a linear rate, except for
∥∥GtG>t ∥∥. To this goal, first note that Propositions 20 and 21

together with 0.98σr ≤ λmin(StS
>
t ) ≤ 1.01σ1 lead to the following one-step dynamics:∥∥∥Σ− St+1S

>
t+1

∥∥∥ ≤ (1− 0.98η̄tσr)
∥∥∥Σ− StS>t

∥∥∥+ 5η̄t

∥∥∥StE>t ∥∥∥2
+ 37η̄tδϕ̄

2σ1 ‖∆t‖F , (44)∥∥∥St+1E
>
t+1

∥∥∥ ≤(1− 0.98η̄tσr + 2η̄t

∥∥∥Σ− StS>t
∥∥∥+ 2η̄t ‖EtEt‖

)∥∥∥StE>t ∥∥∥+ 22η̄tδσ1 ‖∆t‖F ,
(45)

‖Ft+1‖ ≤ (1− 0.98η̄tσr) ‖Ft‖+ 5
√
σ1η̄tδ ‖∆t‖F + 6η̄t ‖∆t‖ ‖Gt‖ . (46)

Note that, unlike
∥∥Σ− StS>t

∥∥ and ‖Ft‖, the cross term
∥∥StE>t ∥∥ enjoys linear decay only

under the condition
∥∥Σ− StS>t

∥∥ < 0.98σr, which is not necessarily satisfied in the eigenvalue
learning phase. Our next lemma shows that this condition is satisfied shortly after the
eigenvalue learning phase.

Lemma 35 We have
∥∥Σ− StS>t

∥∥ < 0.03σr, for every Tend ≥ t ≥ T1 + T2, where T2 =
O
(
log(κ)/(ησrϕ

2
)
.

Proof It is easy to see that

5η̄t

∥∥∥StE>t ∥∥∥2
≤ 5.05σ1η̄t ‖Et‖2 ≤ 5.05η̄tσ1 (‖Ft‖+ ‖Gt‖)2 ≤ 0.01η̄tσ

2
r , (47)

where the last inequality is due to our choice of δ and Lemma 34. Similarly, we can show
that 37η̄tδσ1 ‖∆t‖F ≤ 0.01η̄tσ

2
r . These two inequalities combined with (44) lead to∥∥∥Σ− St+1S
>
t+1

∥∥∥ ≤ (1− 0.98η̄tσr)
∥∥∥Σ− StS>t

∥∥∥+ 0.02η̄tσ
2
r .

This implies that
∥∥Σ− StS>t

∥∥ ≤ 0.03σr after O
(
log(κ)/(ησrϕ

2)
)

iterations.
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The above lemma shows that the one-step dynamic of the cross term can be simplified as∥∥∥St+1E
>
t+1

∥∥∥ ≤ (1− 0.49η̄tσr)
∥∥∥StE>t ∥∥∥+ 22η̄tδ

2σ1 ‖∆t‖F . (48)

Moreover, recall that

‖Gt+1‖ ≤
(

1+η̄2
t

(
2
∥∥∥EtS>t ∥∥∥2

+‖Et‖4+2 ‖∆t‖
∥∥∥EtS>t ∥∥∥)+ 7η̄tδ ‖∆t‖F

)
‖Gt‖

≤
(

1 + 5η̄2
t ‖∆t‖2 + 7η̄tδ ‖∆t‖F

)
‖Gt‖ . (49)

Here we use the fact that
∥∥EtS>t ∥∥∨‖Et‖2 ≤ ‖∆t‖. Now, let us define γt :=

∥∥Σ− StS>t
∥∥+

2
∥∥StE>t ∥∥ + ‖Ft‖2 + ‖Gt‖2 as an upper bound for the generalization error

∥∥UtU>t −X?
∥∥.

Combining (44), (46), (48), and (49), we have

γt+1 =
∥∥∥Σ− St+1S

>
t+1

∥∥∥+ 2
∥∥∥St+1E

>
t+1

∥∥∥+ ‖Ft+1‖2 + ‖Gt+1‖2

≤ (1− C1η̄tσr) γt + C2η̄tδσ1 ‖∆t‖F + C3η̄tσr ‖Gt‖2

≤
(
1− C1η̄tσr + C2η̄t

√
rσ1δ

)
γt + C4η̄tσr

√
d ‖Gt‖2

≤ (1− C5η̄tσr) γt + C4η̄tσr
√
d ‖Gt‖2 ,

for some universal constants C1, C2, C3, C4, C5 > 0. This implies that

γt+1 − C6

√
d ‖Gt‖2 ≤ (1− C5η̄tσr)

(
γt − C6

√
d ‖Gt‖2

)
=⇒ γt+1 − C6

√
d ‖Gt‖2 ≤ (1− C5η̄tσr)

t−(T1+T2) (γT1+T2 − C6

√
d ‖Gt‖2).

Note that γT1+T2 ≤ 0.1σr, according to Lemma 35, inequality (47), and the upper

bounds on ‖Ft‖2 and ‖Gt‖2. On the other hand, ‖Gt‖ ≤ α1−O(
√
rκ2δ)√ϕ̄δ, according to

Lemma 34. Therefore, after T1 + T2 + T3 iterations with T3 = O
(
log(1/α)/(ησrϕ

2)
)
, we

have ‖∆t‖F ≤
√
dγt . dα

2−O(
√
rκ2δ)ϕ̄δ. This completes the proof. �

A.3 Proof of Theorem 27

Without loss of generality, we assume that ‖∆t‖F ≥ ζ for every 0 ≤ t ≤ Tend; otherwise, the
final bound for the generalization error holds, and the proof is complete. Before delving into
the details, we first provide a general overview of our approach. The proof of Theorem 27
is similar to that of Theorem 22 with a key difference that we divide our analysis into
two parts depending on the value of ‖∆t‖: if ηρt/ ‖∆t‖ . 1/σ1, then ‖∆t‖ decays slower
than σ1ηρ

t. Under this assumption, we will use the one-step dynamics of the signal, cross,
and residual terms in Propositions 24, 25, and 26 to prove that ‖∆t‖ decays exponentially
fast. Alternatively, ηρt/ ‖∆t‖ & 1/σ1 implies that ‖∆t‖ . σ1ηρ

t, which readily establishes
the exponential decay of the generalization error. Indeed, the above two cases may occur
alternatively, which requires a more delicate analysis.

Similar to the proof of Theorem 22, we show that SubGM undergoes two phases: (1)
eigenvalue learning phase, and (2) global convergence phase. In the first phase, we show
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that λmin(StS
>
t ) and ‖∆t‖ converge to 0.98σr and 0.02σr, respectively. The main difference

between the proofs of Theorems 22 and 27 is the fact that the one-step dynamics of the
signal, cross, and residual terms may not hold during the entire solution trajectory. However,
our next lemma shows that they indeed hold in the first phase of our analysis.

Lemma 36 Suppose that ‖∆t‖ ≥ 0.02σr for every 0 ≤ t ≤ T̄ ≤ Tend. Then, the assump-
tions of Propositions 24, 25, and 26 are satisfied for every 0 ≤ t ≤ T̄ . In particular, for
any 0 ≤ t ≤ T̄ , we have

‖Ft‖ ≤
(

15
√
rηρt
√
σ1δ + 12

√
2η
√
ϕ̄αδ

)
(t+ 1), (50)

‖Gt‖ ≤ 2
√

2α1−O(
√
rκδ)

√
ϕ̄δ, (51)

‖∆t‖ ≤ 5σ1, (52)∥∥∥StS>t ∥∥∥ ≤ 1.1σ1, (53)

StS
>
t � 0, (54)∥∥∥∥EtS>t (StS>t )−1
∥∥∥∥ ≤ 1/3. (55)

Moreover, for any t ≥ T̄ , we also have

‖Gt‖ ≤ 2
√

2α1−O(
√
rκδ)

√
ϕ̄δ. (56)

The proof of Lemma 36 is analogous to that of Lemma 34, and can be found in Appendix E.5.
Equipped with this lemma, we provide proof for the eigenvalue learning phase.

Phase 1: Eigenvalue Learning. We will show that λmin(StS
>
t ) ≥ 0.98σr within t ≤

T1 = O((κ/η) log(1/α)) iterations. After that, we prove that we only need T2 = O((κ/η) log(κ))
additional iterations to ensure that ‖∆t‖ ≤ 0.02σr; this marks the end of Phase 1. Without
loss of generality, we may assume that ‖∆t‖ ≥ 0.02σr for every t ≤ T1. To see this, suppose
that ‖∆t‖ ≤ 0.02σr for some t ≤ T1. This implies that

∥∥Σ− StS>t
∥∥ ≤ ‖∆t‖ ≤ 0.02σr, which

in turn leads to λmin(StS
>
t ) ≥ 0.98σr. On the other hand, ‖∆t‖ ≥ 0.02σr together with

Lemma 36 implies that the one-step dynamic in Proposition 24 holds and we have

λmin

(
St+1S

>
t+1

)
≥

((
1 +

ηρt

‖∆t‖
σr

)2

− 2ηρt

‖∆t‖

∥∥∥EtE>t ∥∥∥− 384
√
rηρtδ

)
λmin

(
StS

>
t

)
− 2

ηρt

‖∆t‖

(
1 +

ηρt

‖∆t‖
σr

)
λmin

(
StS

>
t

)2

≥
(

1 +
2ηρt

‖∆t‖
(
σr −O(

√
rσ1δ)

))
λmin

(
StS

>
t

)
− 2.01ηρt

‖∆t‖
λmin

(
StS

>
t

)2

≥
(

1 +
1.99ηρtσr
‖∆t‖

)
λmin

(
StS

>
t

)
− 2.01ηρt

‖∆t‖
λmin

(
StS

>
t

)2
(57)

where the second inequality follows from ‖∆t‖ ≥ 0.02σr and η . 1, and the last inequality
follows from δ . 1/(

√
rσ1). The rest of the proof for the eigenvalue learning phase is

37



Ma and Fattahi

similar to the arguments made after (33) in the proof of Theorem 18. Suppose that T ′1
is the largest iteration such that λmin

(
StS

>
t

)
≤ σr/2.01 for every t ≤ T ′1. We show that

T ′1 = O((κ/η) log(1/α)). To see this, note that for every t ≤ T ′1, the above inequality can
be simplified as

λmin

(
StS

>
t

)
≥
(

1 +
0.99ηρtσr
‖∆t‖

)
λmin

(
StS

>
t

)
≥ λmin

(
S0S

>
0

) t∏
s=0

(
1 +

ηρs

6κ

)
, (58)

where we used the assumption δ . 1/(
√
rκ) and ‖∆t‖ ≤ 5σ1. To proceed with the proof,

we need the following technical lemma.

Lemma 37 For any α > 0, 0 < ρ < 1 and T ∈ N+, we have

exp

(
αTρT

1 + α

)
≤

T∏
t=0

(
1 + αρt

)
≤ exp

(
α

1− ρ

)
.

The proof of Lemma 37 can be found in Appendix F.5. Lemma 37 together with Lemma 33
and (58) leads to

λmin

(
StS

>
t

)
≥ exp

(
ηtρt

6κ+ η

)
α2ϕ(X?)

(
σr
‖X?‖F

− δ
)

≥ exp

(
ηtρt

6κ+ η

)
α2ϕ(X?)

(
σr√
rσ1
− δ
)

≥ exp

(
ηtρt

6κ+ η

)
α2ϕ(X?)

2
√
rκ

.

Due to our assumption ρ = 1 − Θ(η/(κ log(1/α))), we have ρt ≥ 1 − O(ηt/(κ log(1/α))).
This together with the assumption t ≤ O((κ/η) log(1/α)) leads to ρt ≥ 1 − O(1) ≥ Ω(1).
Therefore, one can write

λmin

(
StS

>
t

)
≥ exp

(
Ω(1)

ηt

κ

)
α2ϕ(X?)

2
√
rκ

.

Given the above equation, it is easy to verify that after O((κ/η) log(1/α)) iterations, we
have λmin

(
StS

>
t

)
≥ σr/2.01. This implies that T ′1 = O((κ/η) log(1/α)).

For t > T ′1, define xt = σr − λmin

(
StS

>
t

)
. Then, arguments analogous to the proof of

Theorem 18 can be used to write

xt+1 − 0.0196σr ≤
(

1− 1.02
ηρtσr
‖∆t‖

)
(xt − 0.0196σr)

≤
(

1− ηρt

5κ

)
(xt − 0.0196σr)

≤ (xT ′1 − 0.0196σr)

t∏
s=T ′1

(
1− ηρt

5κ

)
.
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Recall that ρt = Ω(1) for every t ≤ O((κ/η) log(1/α)). Therefore, for every T ′1 < t ≤
O((κ/η) log(1/α)), we have

xt+1 − 0.0196σr ≤ (xT ′1 − 0.0196σr)
(

1− Ω(1)
ησr
κ

)t−T ′1+1
.

This in turn implies that after additional T ′′1 = O(κ/η) iterations, we have xt+1 ≤ 0.02σr.
Therefore, we have λmin

(
StS

>
t

)
≥ 0.98σr after T1 = T ′1+T ′′1 = O((κ/η) log(1/α)) iterations.

Now, it suffices to show that, after additional T2 = O((κ/η) log(κ)) iterations, we have
‖∆t‖ ≤ 0.02σr. To this goal, suppose that ‖∆t‖ ≥ 0.02σr for every T1 ≤ t ≤ T1 + T2.
Recalling the signal-residual decomposition (21), one can write

‖∆t‖ ≤
∥∥∥Σ− StS>t

∥∥∥+ 2
∥∥∥StE>t ∥∥∥+ ‖Ft‖2 + ‖Gt‖2

≤
∥∥∥Σ− StS>t

∥∥∥+ 0.01σr,

where the second inequality follows from Lemma 36. Given the above inequality, ‖∆t‖ ≥
0.02σr implies that

∥∥Σ− StS>t
∥∥ ≥ 0.01σr for every T1 ≤ t ≤ T1 + T2. Combined with the

one-step dynamic for the signal term, we have

∥∥∥Σ− St+1S
>
t+1

∥∥∥ ≤(1− ηρt

‖∆t‖
λmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥+ 5

ηρt

‖∆t‖

∥∥∥StE>t ∥∥∥2

+ 193
√
rηρtδσ1

(a)

≤
(

1− 0.98ηρt

‖∆t‖
σr

)∥∥∥Σ− StS>t
∥∥∥+O

(√
rηρtδσ1

)
≤
∥∥∥Σ−StS>t

∥∥∥−0.98ηρtσr

∥∥Σ−StS>t
∥∥∥∥Σ−StS>t

∥∥+ 0.01σr

+O
(√
rηρtδσ1

)
≤
∥∥∥Σ− StS>t

∥∥∥− 0.49ηρtσr +O
(√
rηρtδσ1

)
≤
∥∥∥Σ− StS>t

∥∥∥− Ω
(
ηρtσr

)
,

(59)

where in (a) we used the fact that
∥∥StE>t ∥∥ . √σ1 ‖Ft‖ . σ1

√
rη0ρ

tδt, δ . 1/
(√
rκ2ϕ̄4 log2 (1/α)

)
,

and t . (κ/η) log (1/α). The above inequality leads to

∥∥∥Σ− StS>t
∥∥∥ ≤ ∥∥∥Σ− ST1S

>
T1

∥∥∥− Ω

 t−1∑
s=T1

ηρtσr

 .

Therefore, after T3 = T1 + O((κ/η) log κ) iterations, we have
∥∥Σ− StS>t

∥∥ ≤ 0.01σr. This
completes the proof of the first phase.

Phase 2: Global Convergence. In the second phase, we show that, once ‖∆t‖ ≤ 0.02σr,
‖∆t‖ starts to decay linearly until it is dominated by

√
d ‖Gt‖2. Similar to before, we define

γt =
∥∥Σ− StS>t

∥∥+ 2
∥∥StE>t ∥∥+ ‖Ft‖2 + ‖Gt‖2. Our next lemma plays a central role in our

subsequent arguments:
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Lemma 38 Suppose that T3 ≤ t ≤ Tend is chosen such that γs ≤ 0.1σr and ‖∆s‖ ≥√
d ‖Gs‖2, for every T3 ≤ s ≤ t. Then, we have

- γt+1 ≤ 0.1σr.

Moreover, at least one of the following statements is satisfied:

- ‖∆t+1‖ ≥
√
d ‖Gt+1‖2,

- ‖∆t+1‖ .
√
dα2−O(

√
rκδ).

To streamline the presentation, we defer the proof of the above lemma to Appendix F.6.
According to the above lemma, we may assume that γt ≤ 0.1σr and ‖∆t‖ ≥

√
d ‖Gt‖2 for all

iterations T3 ≤ t ≤ Tend; otherwise, we have ‖∆t‖ .
√
dα2−O(

√
rκδ) for some T3 ≤ t ≤ Tend,

which readily completes the proof. On the other hand, the assumptions γt ≤ 0.1σr and
‖∆t‖ ≥

√
d ‖Gt‖2 lead to

λmin

(
StS

>
t

)
≥ 0.9σr,

∥∥∥StS>t ∥∥∥ ≤ 1.1σ1,

and ∥∥∥EtE>t ∥∥∥ ≤ 0.1σr,

∥∥∥∥EtS>t (StS>t )−1
∥∥∥∥ ≤ 0.2. (60)

Together with our analysis in Phase 1, this implies that the one-step dynamic of Gt holds

for every 0 ≤ t ≤ Tend, and we have ‖Gt‖ ≤ 2
√

2α1−O(
√
rκδ)√ϕ̄δ, for every 0 ≤ t ≤ Tend.

Under the assumption ‖∆t‖ ≥
√
d ‖Gt‖2, our next lemma shows that, if ‖∆t+T3‖ ≥

0.02σrρ
t for some t ≥ 0, then there exists t′ satisfying t′− t = O(1/η) such that ‖∆t′+T3‖ ≤

0.02σrρ
t′ . This in turn ensures that the generalization error decays by a constant factor

every O(1/η) iterations until it reaches the same order as
√
d ‖Gt‖2. In particular, we have

the following lemma:

Lemma 39 Suppose that ‖∆t‖ ≥
√
d ‖Gt‖2 for every T3 ≤ t ≤ Tend. Suppose that t0 ≥ 1

satisfies ‖∆t0+T3−1‖ ≤ 0.02σrρ
t0−1 and ‖∆t0+T3‖ > 0.02σrρ

t0. Then, after at most ∆t =
O (1/η) iterations, we have ‖∆t0+∆t+T3‖ ≤ 0.02σrρ

t0+∆t.

The proof of the above lemma is presented in Appendix F.7. We show how Lemma 39
can be used to finish the proof of Theorem 27. Recall that ρ = 1 − Θ (η/(κ log(1/α))).
Let us pick T4 = O((κ/η) log2(1/α)). Simple calculation reveals that 0.02σrρ

T4 . α2.
According to Lemma 39, if ‖∆T4+T3‖ > 0.02σrρ

T4 , then there exists ∆t = O (1/η) such
that ‖∆T4+T3+∆t‖ ≤ 0.02σrρ

T4+∆t . α2. Combined with Lemma 38, we have ‖∆t‖F ≤√
d ‖∆t‖ . d ‖Gt‖2∨ζ . dα2−O(

√
rκδ)∨ζ after at most Tend = T3+T4+∆t = O((κ/η) log2(1/α))

iterations. Last, note that ‖Gt‖ ≤ 2
√

2α1−O(
√
rκδ)√ϕ̄δ,∀t ≥ 0 as shown in Lemma 36. We

immediately derive ‖∆t‖F ≤
√
d ‖∆t‖ . d ‖Gt‖2∨ ζ . dα2−O(

√
rκδ)∨ ζ. This completes the

proof of Theorem 27. �

40



Convergence of Sub-gradient Method for Robust Matrix Recovery

Appendix B. Proofs of Sign-RIP

B.1 Preliminary

We first provide the preliminary probability tools for proving Theorems 10 and 11.

Definition 40 (Sub-Gaussian random variable) We say a random variable X ∈ R
with expectation E[X] = µ is σ2-sub-Gaussian if for all λ ∈ R, we have E

[
eλ(X−µ)

]
≤ e

λ2σ2

2 .

Moreover, the sub-Gaussian norm of X is defined as ‖X‖ψ2
:= supp∈N+

{
p−1/2(E[|X|p])1/p

}
.

According to (Wainwright, 2019), the following statements are equivalent:

• X is σ2-sub-Gaussian.

• (Tail bound) For any t > 0, we have P(|X − µ| ≥ t) ≤ 2e−
t2

2σ2 .

• (Moment bound) We have ‖X‖ψ2
. σ.

Next, we provide the definitions of the sub-Gaussian process, ξ-net, and the covering num-
ber.

Definition 41 (Sub-Gaussian process) A zero mean stochastic process {Xθ, θ ∈ T} is
a σ2-sub-Gaussian process with respect to a metric d on a set T, if for every θ, θ′ ∈ T, the
random variable Xθ −Xθ′ is (σd(θ, θ′))2-sub-Gaussian.

Definition 42 (ξ-net and covering number) A set N is called an ξ-net on (T, d) if for
every t ∈ T, there exists π(t) ∈ N such that d(t, π(t)) ≤ ξ. The covering number N(T, d, ξ)
is defined as the smallest cardinality of an ξ-net for (T, d):

N(T, d, ξ) := inf{|N | : N is an ξ-net for (T, d)}.

Next, we introduce some additional notations which will be used throughout our argu-
ments. Define the rank-k and ε-approximate rank-k unit balls as:

Sk = {X ∈ Rd×d : rank(X) ≤ k, ‖X‖F = 1},
Sk,ε = {X ∈ Rd×d : ‖X‖F = 1 and ∃X ′ s.t. rank(X ′) ≤ k,

∥∥X −X ′∥∥
F
≤ ε}.

For simplicity of notation, we use Nk,ξ to denote N(Sk, ‖·‖F , ξ). Moreover, we define Sk,ε as
the restriction of the set S to the set of ε-approximate rank-k matrices, i.e., Sk,ε = {X : X ∈
S, X is ε-approximate rank-k}. The following lemma characterizes the covering number of
the set of low-rank matrices with the unit norm.

Lemma 43 (Li et al. (2020a)) We have Nk,ξ = N(Sk, ‖·‖F , ξ) ≤
(

9
ξ

)(2d+1)k
.

The following well-known result characterizes a concentration bound on the supremum
of a sub-Gaussian process.

Theorem 44 (Corollary 5.25 and Theorem 5.29 in (Van Handel, 2014)) Let {Xt}t∈T
be a separable sub-Gaussian process on (T, d). Then, the following statements hold:
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• We have

E
[
sup
t∈T

Xt

]
≤ 12

∫ ∞
0

√
logN(T, d, ξ)dξ.

• For all t0 ∈ T and x ≥ 0, we have

P
(

sup
t∈T
{Xt −Xt0} ≥ C

∫ ∞
0

√
logN(T, d, ξ)dξ + x

)
≤ Ce−x2/C diam(T)2

,

where C <∞ is a universal constant, and diam(T) = supt,t′∈T{d(t, t′)} is the diameter
of T.

Equipped with these preliminary results, we proceed with the proof of Theorem 10.

B.2 Proof of Theorem 10

To provide the proof of Theorem 10, we first define the following stochastic process:

HX,Y = sup

{
1

m

m∑
i=1

Sign(〈Ai, X〉 − si) 〈Ai, Y 〉 − ϕ(X)

〈
X

‖X‖F
, Y

〉}
,

where ϕ(X) :=
√

2
π

(
1− p+ pE

[
e−s

2/(2‖X‖2F )
])

, and the supremum is taken over the set-

valued function Sign(·). Moreover, to streamline the presentation and whenever there is no
ambiguity, we drop the supremum when it is taken with respect to the set-valued function
Sign(·). Our next lemma provides a sufficient condition for Sign-RIP.

Lemma 45 Sign-RIP holds with parameters delineated in Theorem 10, if

sup
X∈Sk,ε,Y ∈Sk,ε/ζ

HX,Y . inf
X∈Sk,ε

ϕ(X)δ. (61)

Proof According to the definition, Sign-RIP is satisfied if, for every X,Y ∈ Sk,ε and
Q ∈ Q(X), we have 〈

Q− ϕ(X)
X

‖X‖F
,

Y

‖Y ‖F

〉
≤ ϕ(X)δ. (62)

Recall that Sk,ε = {X : ζ ≤ ‖X‖F ≤ R,X is ε-approximate rank-k}. This implies that
Y ∈ Sk,ε if Y/ ‖Y ‖F ∈ Sk,ε/ζ . Hence, it suffices to restrict Y ∈ Sk,ε/ζ . Therefore, Sign-RIP
is satisfied if

HX,Y ≤ ϕ(X)δ, ∀X ∈ Sk,ε, Y ∈ Sk,ε/ζ .

Hence, to guarantee Sign-RIP, it suffices to have

sup
X∈Sk,ε,Y ∈Sk,ε/ζ

HX,Y ≤ inf
X∈Sk,ε

ϕ(X)δ.

Relying on the above lemma, we instead focus on analyzing the stochastic process
{HX,Y }X∈Sk,ε,Y ∈Sk,ε/ζ . As a first step towards this goal, we show that the scaling func-
tion can be used to characterize E[〈Q,Y 〉], for every Q ∈ Q(X).
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Lemma 46 Suppose that the matrix A has i.i.d. standard Gaussian entries and the noise
satisfies Assumption 8. Then, for every Q ∈ Q(X), we have

E [〈Q,Y 〉] =

√
2

π

(
1− p+ pE

[
e−s

2/(2‖X‖F )
])〈 X

‖X‖F
, Y

〉
.

Proof Without loss of generality, we assume ‖X‖F = ‖Y ‖F = 1. Let us denote u :=
〈A,X〉 , v := 〈A, Y 〉 , ρ := Cov(u, v) = 〈X,Y 〉. Then, we have

E [Sign (〈A,X〉 − s) 〈A, Y 〉 |s 6= 0]

= E [Sign (u− s) v|s 6= 0]

(a)
= ρE [Sign(u− s)u|s 6= 0]

= ρEs∼P
[∫ ∞

s
u

1√
2π
e−u

2/2du−
∫ s

−∞
u

1√
2π
e−u

2/2du

]
= ρEs∼P

[∫ ∞
s

u
1√
2π
e−u

2/2du+

∫ ∞
−s

u
1√
2π
e−u

2/2du

]
= 2ρEs∼P

[∫ ∞
|s|

u
1√
2π
e−u

2/2du

]

=

√
2

π
Es∼P

[∫ ∞
|s|

d
(
−e−u2/2

)]
〈X,Y 〉

=

√
2

π
Es∼P

[
e−s

2/2
]
〈X,Y 〉 ,

where, in (a), we used the fact that v|u, s ∼ N (ρu, 1 − ρ2) since s is independent of u, v.

Similarly, one can show that E [Sign (〈A,X〉) 〈A, Y 〉] =
√

2
π 〈X,Y 〉. The proof is completed

by noting that

E [Sign (s+ 〈A,X〉) 〈A, Y 〉]
= pE [Sign (〈A,X〉 − s) 〈A, Y 〉 |s 6= 0] + (1− p)E [Sign (〈A,X〉) 〈A, Y 〉] .

This completes the proof.

Now, we provide an overview of our proof technique for Theorem 10. Let GY =
supX∈Sk,ε HX,Y and ḠY = GY − E[GY ] be stochastic processes indexed by Y . According
to Lemma 45, it suffices to control supY ∈Sk,ε/ζ GY . We consider the following decomposi-
tion:

sup
Y ∈Sk,ε/ζ

GY ≤ sup
Y ∈Sk,ε/ζ

ḠY + sup
Y ∈Sk,ε/ζ

E[GY ]

≤ sup
Y ∈Sk

ḠY +
ε

ζ
sup
Y ∈S
ḠY + sup

Y ∈Sk
E[GY ] +

ε

ζ
sup
Y ∈S

E[GY ], (63)

where the second inequality follows from Sk,ε/ζ ⊂ Sk + ε
ζS, and the fact that both ḠY and

E[GY ] are linear functions of Y . We control the individual terms in the above decomposition
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separately. To provide an upper bound for supY ∈Sk ḠY and supY ∈S ḠY , we rely on the
following key lemma.

Lemma 47 The stochastic processes {ḠY }Y ∈Sk and {ḠY }Y ∈S are O (1/m)-sub-Gaussian
processes.

Proof Since Sk ⊂ S, it suffices to show that {ḠY }Y ∈S is O (1/m)-sub-Gaussian. According
to Definition 41, the stochastic process

{
ḠY
}
Y ∈S is sub-Gaussian if for any arbitrary Y, Y ′ ∈

S, ḠY − ḠY ′ is O
(
‖Y − Y ′‖2F /m

)
-sub-Gaussian. Note that ḠY − ḠY ′ is sub-Gaussian if

and only if GY − GY ′ is sub-Gaussian with the same parameter. The latter will be proven
by checking the moment bound condition in Definition 40. For arbitrary Y, Y ′ ∈ S, denote
∆Y = Y − Y ′. Then, for any p ∈ N+, we have

E
[
|GY − GY ′ |2p

]
≤ E

∣∣∣∣∣ sup
X∈Sk,ε

1

m

m∑
i=1

Sign (〈Ai, X〉 − si) 〈Ai,∆Y 〉 − ϕ(X)

〈
X

‖X‖F
,∆Y

〉∣∣∣∣∣
2p


≤E

[(
sup

X∈Sk,ε

∣∣∣∣∣ 1

m

m∑
i=1

Sign (〈Ai, X〉−si) 〈Ai,∆Y 〉

∣∣∣∣∣+ sup
X∈Sk,ε

∣∣∣∣ϕ(X)

〈
X

‖X‖F
,∆Y

〉∣∣∣∣
)2p]

≤ E

( 1

m

m∑
i=1

| 〈Ai,∆Y 〉 |+
√

2

π
‖∆Y ‖F

)2p


≤ 22p

E

( 1

m

m∑
i=1

| 〈Ai,∆Y 〉 |

)2p
+

(
2

π

)p
‖∆Y ‖2pF

 ,

where in the third inequality, we used ϕ(X) ≤
√

2/π, which holds for every X ∈ Rd×d.
According to (Li et al., 2020a, Appendix A.2), the random variable (1/m)

∑m
i=1 | 〈Ai,∆Y 〉 |

is O
(
‖∆Y ‖2F /m

)
-sub-Gaussian with mean

√
2/π ‖∆Y ‖F . Therefore, we have

E

( 1

m

m∑
i=1

|〈Ai,∆Y 〉|

)2p


= E

( 1

m

m∑
i=1

|〈Ai,∆Y 〉| −
√

2

π
‖∆Y ‖F +

√
2

π
‖∆Y ‖F

)2p


≤ 22p

E

( 1

m

m∑
i=1

|〈Ai,∆Y 〉| −
√

2

π
‖∆Y ‖F

)2p
+

(
2

π

)p
‖∆Y ‖2pF


≤ 22p

(
(2p− 1)!!

1

mp
‖∆Y ‖2pF +

(
2

π

)p
‖∆Y ‖2pF

)
.
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Combining the above inequalities leads to

E
[
|GY − GY ′ |2p

]1/2p ≤ 4

(
(2p− 1)!!

1

mp
‖∆Y ‖2pF +

(
2

π

)p
‖∆Y ‖2pF

)1/2p

.

√
p

m
‖∆Y ‖F ,

given that p > m. Therefore, {GY }Y ∈S is a O (1/m)-sub-Gaussian process, which implies
that {GY }Y ∈Sk is also a O (1/m)-sub-Gaussian process.

Given that both {ḠY }Y ∈Sk and {ḠY }Y ∈S are sub-Gaussian processes, we can readily
obtain sharp concentration bounds on their suprema.

Lemma 48 The following statements hold:

E

[
sup
Y ∈Sk

ḠY

]
.

√
dk

m
, P

(
sup
Y ∈Sk

ḠY ≥ E

[
sup
Y ∈Sk

ḠY

]
+ γ

)
. e−cmγ

2
; (64)

E
[
sup
Y ∈S
ḠY
]
.

√
d2

m
, P

(
sup
Y ∈S
ḠY ≥ E

[
sup
Y ∈S
ḠY
]

+ γ

)
. e−cmγ

2
. (65)

Proof The proof follows directly from Theorem 44. The details are omitted for brevity.

Equipped with the above lemma, we provide a concentration bound on supY ∈Sk,ε/ζ ḠY .

Lemma 49 Assume that m &
√
dk/γ2 and ε/ζ .

√
k/d. Then, the following inequality

holds with probability of at least 1− Ce−cmγ2
:

sup
Y ∈Sk,ε/ζ

ḠY ≤

(
3 +

√
k

d

)
γ.

Proof Based on (64), we have, with probability of at least 1− Ce−cmγ2

sup
Y ∈Sk

ḠY ≤ E

[
sup
Y ∈Sk

ḠY

]
+ γ .

√
dk

m
+ γ ≤ 2γ,

where the last inequality follows from the assumption m &
√
dk/γ2. Similarly, based

on (65), the following inequalities hold with a probability of at least 1− Ce−cmγ2
:

ε

ζ
sup
Y ∈S
ḠY ≤

ε

ζ

(
E
[
sup
Y ∈S
ḠY
]

+ γ

)
.

√
ε2d2

ζ2m
+
εγ

ζ
≤

(
1 +

√
k

d

)
γ,

where the last inequality follows from m &
√
dk/γ2 and ε/ζ .

√
k/d. Finally, a simple

union bound implies that

sup
Y ∈Sk,ε/ζ

ḠY ≤ sup
Y ∈Sk

ḠY +
ε

ζ
sup
Y ∈S
ḠY ≤

(
3 +

√
k

d

)
γ,

with probability of at least 1− Ce−cmγ2
, thereby completing the proof.

Recalling (63), it remains to control the terms supY ∈Sk E[GY ] and supY ∈S E[GY ].
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Lemma 50 The following inequality holds:

sup
Y ∈Sk

E[GY ] ≤ sup
Y ∈S

E[GY ] .

√
dk

m
log2(m) log

(
R

ζ

)
. (66)

Due to its length, we defer the proof of Lemma 50 to Appendix F.1. Equipped with
Lemmas 49 and 50, we are ready to present the proof of Theorem 10.

Proof of Theorem 10. The inequality (63) combined with Lemmas 49 and 50 implies that
the following inequality holds with probability of at least 1− Ce−cmγ2

:

sup
Y ∈Sk,ε/ζ

GY .

√
dk

m
log2(m) log

(
R

ζ

)
+ γ.

On the other hand, one can write

inf
X∈Sk,ε

ϕ(X) = inf
X∈Sk,ε

{√
2

π

(
1− p+ pE

[
e−s

2/(2‖X‖2F )
])}

≥
√

2

π
(1− p). (67)

Therefore, upon choosing

m &
dk log2(m) log (R/ζ)

(1− p)2δ2
, and γ . (1− p)δ,

we have

sup
Y ∈Sk,ε/ζ

GY = sup
X∈Sk,ε
Y ∈Sk,ε/ζ

HX,Y ≤ inf
X∈Sk,ε

ϕ(X)δ

with probability of at least 1−Ce−cm(1−p)2δ2
. This completes the proof of Theorem 10. �

B.3 Proof of Theorem 11

Recall that, with the outlier noise model, the scaling function takes the form ϕ(X) =√
2
π

(
1− p+ pE

[
e−s

2/(2‖X‖2F )
])

. Setting p = 1, and si ∼ N (0, ν2
g ) immediately implies

ϕ(X) = Es∼N (0,ν2
g )

[
e−s

2/(2‖X‖2F )
]

=
√

2
π

‖X‖F√
‖X‖2F+ν2

g

. On the other hand, using the same

method in the proof of Theorem 10, we can show that the following inequality holds with
probability at least 1− Ce−cmγ2

:

sup
Y ∈Sk,ε/ζ

GY .

√
dk

m
log2(m) log

(
R

ζ

)
+ γ,

where GY is defined in the proof of Theorem 10. It remains to bound infX∈Sk,ε ϕ(X). To
this goal, note that ‖X‖F ≥ ζ,∀X ∈ Sk,ε. Hence, we have the following lower bound for
the scaling function

inf
X∈Sk,ε

ϕ(X) = inf
X∈Sk,ε

√
2

π

‖X‖F√
‖X‖2F + ν2

g

≥
√

2

π

ζ√
ζ2 + ν2

g

&
ζ

νg
, (68)
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provided that ζ . νg. Therefore, upon choosing m &
ν2
gdk log2(m) log(R/ζ)

ζ2δ2 and γ . ζ
νg
δ, we

have
sup

Y ∈Sk,ε/ζ
GY = sup

X∈Sk,ε
Y ∈Sk,ε/ζ

HX,Y ≤ inf
X∈Sk,ε

ϕ(X)δ, (69)

with probability at least 1− C1e
−C2mζ2δ2/ν2

g , which completes the proof. �

B.4 Proof of Lemma 12

Lemma 51 is a direct consequence of the following more general result:

Lemma 51 Suppose that the measurements are noiseless, and satisfy (k, δ, ε,S)-Sign-RIP
for any ε ≥ 0, S, and scaling function ϕ(·). Then, for any ε-approximate rank-k matrix
X ∈ S, we have ∣∣∣∣∣ 1

m

m∑
i=1

|〈Ai, X〉| − ϕ(X) ‖X‖F

∣∣∣∣∣ ≤ δϕ(X) ‖X‖F .

Proof According to the definition of Sign-RIP, for every ε-approximate rank-k matrices

X,Y ∈ S, and every Q ∈ Q(X), we have
∣∣∣〈Q− ϕ(X) X

‖X‖F
, Y
‖Y ‖F

〉∣∣∣ ≤ ϕ(X)δ. In particular,

upon choosing Y = X, we have∣∣∣∣〈Q− ϕ(X)
X

‖X‖F
, X

〉∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

|〈Ai, X〉| − ϕ(X) ‖X‖F

∣∣∣∣∣ ≤ ϕ(X)δ ‖X‖F .

This completes the proof.

Evidently, the result of Lemma 51 can be readily recovered from the above lemma after
substituting X with ∆t. Moreover, it is worth noting that the above lemma recovers the
so-called `1/`2-RIP introduced in (Li et al., 2020a) with ε = 0 and ϕ(X) =

√
2/π.

B.5 Proof of Lemma 13

Due to Sign-RIP, we have

‖Qt‖ ≤ ϕ(∆t)

(
‖∆t‖
‖∆t‖F

+ δ

)
=⇒ 1

‖Qt‖
≥ 1

ϕ(∆t)

1

δ + ‖∆t‖
‖∆t‖F

=⇒ 1

‖Qt‖
≥ 1

ϕ(∆t)

‖∆t‖F
‖∆t‖

(
1− δ

‖∆t‖F
‖∆t‖

)
. (70)

By our assumption, ∆t is ε-approximate rank-k. This implies that, there exists a rank-k
matrix X ′ such that ‖∆t −X ′‖F ≤ ε. This in turn implies that

‖∆t‖F ≤
∥∥∆t −X ′

∥∥
F

+
∥∥X ′∥∥

F

≤ ε+
∥∥X ′∥∥

F

≤ ε+
√
k
∥∥X ′∥∥

≤ (1 +
√
k)ε+

√
k ‖∆t‖

47



Ma and Fattahi

and

‖∆t‖ ≥
∥∥X ′∥∥− ∥∥∆t −X ′

∥∥
≥
∥∥X ′∥∥− ε

≥ ‖∆t‖ − 2ε

≥ ‖∆t‖ /2,

where in the last inequality we used the assumption ‖∆t‖ ≥ 4ε. Combining the above
inequalities implies that

‖∆t‖F
‖∆t‖

≤ 2(1 +
√
k)ε

‖∆t‖
+ 2
√
k ≤ 1 + 5

√
k

2
.

Combining the above inequality with (70) leads to

ηt =
ηρt

‖Qt‖
≥

(
1−

(
1 + 5

√
k

2

)
δ

)
ηρt

ϕ(∆t)

‖∆t‖F
‖∆t‖

.

The upper bound can be derived in a similar fashion. �

Appendix C. Proofs of the Expected Loss

C.1 Proof of Proposition 16

According to the update rule Ut+1 = Ut − η
(
UtU

>
t −X?

)
Ut, we have

St+1 = V >Ut+1 = St − η
((
StS

>
t − Σ

)
St + StE

>
t Et

)
.

Define an auxiliary matrix M as

M := (I − Ξ)
(
St − η

(
StS

>
t − Σ

)
St

)(
S>t − ηS>t

(
StS

>
t − Σ

))(
I − Ξ>

)
, (71)

where Ξ = ηStE
>
t EtS

>
t

(
StS

>
t

)−1 (
I − η

(
StS

>
t − Σ

))−1
. Note that, due to our assumptions

and the choice of η, we have StS
>
t � 0 and η

∥∥StS>t − Σ
∥∥ < 1. Therefore, both matrices

StS
>
t and I − η

(
StS

>
t − Σ

)
are invertible and the matrix Ξ is well-defined. Our goal is

to first show that λmin(St+1S
>
t+1) ≥ λmin(M), and then derive a lower bound for λmin(M).

Based on the definition of Ξ, it is easy to verify that Ξ
(
St − η

(
StS

>
t − Σ

)
St
)

= StE
>
t EtPSt .

Combining this with (71) reveals that

St+1S
>
t+1 −M = η2StE

>
t EtP

⊥
StE

>
t EtS

>
t � 0.
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Therefore, instead of obtaining a lower bound for λmin(St+1S
>
t+1), it suffices to obtain a

lower bound for λmin(M). One can write

‖Ξ‖ ≤ η
∥∥∥∥StE>t EtS>t (StS>t )−1

∥∥∥∥∥∥∥∥(I − η (StS>t − Σ
))−1

∥∥∥∥
. η

∥∥∥∥StE>t EtS>t (StS>t )−1
∥∥∥∥

= η

∥∥∥∥(StS>t )−1/2
StE

>
t EtS

>
t

(
StS

>
t

)−1/2
∥∥∥∥

≤ η
∥∥∥EtE>t ∥∥∥∥∥∥∥(StS>t )−1/2

StS
>
t

(
StS

>
t

)−1/2
∥∥∥∥

= η
∥∥∥EtE>t ∥∥∥

< 1,

(72)

where the last inequality is due to the assumption
∥∥EtE>t ∥∥ ≤ σ1 and the choice of η.

Therefore, we have

λmin

(
St+1S

>
t+1

)
≥ λmin (M)

≥ (1− ‖Ξ‖)2 λmin

((
St − η

(
StS

>
t − Σ

)
St

)(
S>t − ηS>t

(
StS

>
t − Σ

)))
.

(73)
Now it suffices to bound λmin

((
St−η

(
StS

>
t −Σ

)
St
) (
S>t −ηS>t

(
StS

>
t −Σ

)))
. First, note

that

St − η
(
StS

>
t − Σ

)
St =

(
I + ηΣ

(
I − ηStS>t

)−1
)(

St − ηStS>t St
)
.
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Based on the above equality, one can write

λmin

((
St − η

(
StS

>
t − Σ

)
St

)(
S>t − ηS>t

(
StS

>
t − Σ

)))
= λmin

((
I + ηΣ

(
I − ηStS>t

)−1
)(

St − ηStS>t St
)

(
S>t − ηS>t StS>t

)(
I + ηΣ

(
I − ηStS>t

)−1
))

≥ λmin

((
I+ηΣ

(
I − ηStS>t

)−1
))2

λmin

((
St − ηStS>t St

)(
S>t − ηS>t StS>t

))
(a)

≥
(

1+ησr

(
1−ηλmin

(
StS

>
t

))−1
)2

λmin

(
StS

>
t −2η

(
StS

>
t

)2
+η2

(
StS

>
t

)3
)

(b)
=

(
1 + ησr

(
1− ηλmin

(
StS

>
t

))−1
)2

×
(
λmin

(
StS

>
t

)
− 2ηλmin

(
StS

>
t

)2
+ η2λmin

(
StS

>
t

)3
)

≥
(

1 + ησr

(
1− ηλmin

(
StS

>
t

))−1
)2(

λmin

(
StS

>
t

)
− 2ηλmin

(
StS

>
t

)2
)

= (1 + ησr)
2 λmin

(
StS

>
t

)
− 2η (1 + ησr)λmin

(
StS

>
t

)2
,

(74)

where in (a), we used the fact that

λmin

(
I + ηΣ

(
I − ηStS>t

)−1
)

= 1 + λmin

(
ηΣ
(
I − ηStS>t

)−1
)

= 1 + ηλmin

(
Σ1/2

(
I − ηStS>t

)−1
Σ1/2

)
≥ 1 + ησrλmin

((
I − ηStS>t

)−1
)

= 1 + ησr

(
1− ηλmin

(
StS

>
t

))−1
,

and in (b) we used the fact that the matrices StS
>
t , (StS

>
t )2, and (StS

>
t )3 share the same

eigenvectors. Combining (74) with (72) and (73) completes the proof. �

C.2 Proof of Proposition 17

Before delving into the details, we provide the update rule for St and Et, which will be used
frequently throughout our proof. Applying the signal-residual decomposition to Ut+1 =
Ut − η

(
UtU

>
t −X?

)
Ut leads to

St+1 = V >Ut+1 = St − η
((
StS

>
t − Σ

)
St + StE

>
t Et

)
, (75)

Et+1 = V >⊥ Ut+1 = Et − ηEt
(
S>t St + E>t Et

)
. (76)
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Bounding
∥∥Σ− St+1S

>
t+1

∥∥: The update rule for St+1 leads to

Σ−St+1S
>
t+1

= Σ−StS>t +ηStS
>
t

(
StS

>
t −Σ

)
+η
(
StS

>
t −Σ

)
StS

>
t −η2

(
StS

>
t −Σ

)
StS

>
t

(
StS

>
t −Σ

)
︸ ︷︷ ︸

(A)

+2ηStE
>
t EtS

>
t − η2

(
StS

>
t − Σ

)
StE

>
t EtS

>
t − η2StE

>
t EtS

>
t

(
StS

>
t − Σ

)
︸ ︷︷ ︸

(B)

− η2StE
>
t EtE

>
t EtS

>
t︸ ︷︷ ︸

(C)

.

(77)
First, we provide an upper bound for (B). Recall that η = O (1/σ1). Moreover, we have∥∥StS>t − Σ

∥∥ ≤ 2.01σ1 due to the assumption
∥∥StS>t ∥∥ ≤ 1.01σ1. Therefore, one can write

‖(B)‖ ≤ 2η
∥∥∥StE>t EtS>t ∥∥∥+ 2η2

∥∥∥StS>t − Σ
∥∥∥∥∥∥StE>t EtS>t ∥∥∥ ≤ 4η

∥∥∥StE>t ∥∥∥2
.

Similarly, due to our assumption on
∥∥EtE>t ∥∥ and η, we have

∥∥EtE>t ∥∥ ≤ 1/η, which in turn
implies

‖(C)‖ ≤ η2
∥∥∥EtE>t ∥∥∥∥∥∥StE>t ∥∥∥2

≤ η
∥∥∥StE>t ∥∥∥2

.

Finally, we provide an upper bound for (A). First, one can verify that

(A) =
(

Σ− StS>t
)(

0.5I − ηStS>t
)

︸ ︷︷ ︸
(A1)

+
(

0.5I − ηStS>t + η2
(
StS

>
t − Σ

)
StS

>
t

)(
Σ− StS>t

)
︸ ︷︷ ︸

(A2)

.

For the first term, we have

‖(A1)‖ ≤
∥∥∥0.5I − ηStS>t

∥∥∥∥∥∥Σ− StS>t
∥∥∥ ≤ (0.5− ηλmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥ .

To provide a bound for (A2), observe that

0.5I − ηStS>t + η2
(
StS

>
t − Σ

)
StS

>
t = 0.5I − η

(
I + η

(
Σ− StS>t

))
StS

>
t .

The next step in our proof is to show that, with the choice of η . 1/σ1, the eigen-
values of

(
I + η

(
Σ− StS>t

))
StS

>
t are nonnegative. We prove this by showing that the

eigenvalues of
(
I + η

(
Σ− StS>t

))
StS

>
t are close to those of StS

>
t . First, note that I +

η
(
Σ− StS>t

)
is positive definite due to our choice of step-size. Therefore, the matrix

D =
(
I + η

(
Σ− StS>t

))1/2
is well-defined and invertable. Hence, for any 1 ≤ i ≤ r, we

have

λi

((
I + η

(
Σ− StS>t

))
StS

>
t

)
= λi

(
D−1

(
I + η

(
Σ− StS>t

))
StS

>
t D
)

= λi

(
DStS

>
t D
)
.

To proceed with our argument, we first present a relative perturbation bound for symmetric
matrices.
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Lemma 52 (Relative Perturbation Bound, Eisenstat and Ipsen (1995)) Let X ∈
Rd×d be a symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λd. Moreover, suppose R is a
non-singular matrix. Let λ̂1 ≥ · · · ≥ λ̂d be the eigenvalues of Y = R>XR. Then, we have∣∣∣λi − λ̂i∣∣∣ ≤ |λi|∥∥∥I −R>R∥∥∥ , for all i.

Invoking Lemma 52 with X = StSt and Y = DStStD results in∣∣∣λi ((I + η
(

Σ− StS>t
))

StS
>
t

)
− λi

(
StS

>
t

)∣∣∣
≤
∣∣∣λi(StS>t )

∣∣∣ ∥∥I −D2
∥∥

=
∣∣∣λi(StS>t )

∣∣∣ ∥∥∥I − (I + η
(

Σ− StS>t
))∥∥∥

= η
∣∣∣λi(StS>t )

∣∣∣ ∥∥∥Σ− StS>t
∥∥∥

≤ 0.5
∣∣∣λi(StS>t )

∣∣∣ .
for every i = 1, 2, . . . , r. The above inequality implies that λmin

((
I + η

(
Σ− StS>t

))
StS

>
t

)
�

λmin

(
StS

>
t

)
, and therefore, λmin

((
I + η

(
Σ− StS>t

))
StS

>
t

)
≥ 0. This leads to∥∥∥0.5I − ηStS>t + η2

(
StS

>
t − Σ

)
StS

>
t

∥∥∥
=

∥∥∥∥0.5I − ηStS>t + η2
(
StS

>
t

)1/2 (
StS

>
t − Σ

)(
StS

>
t

)1/2
∥∥∥∥

≤ 0.5− λmin

(
ηStS

>
t − η2

(
StS

>
t

)1/2 (
StS

>
t − Σ

)(
StS

>
t

)1/2
)

= 0.5− λmin

(
ηStS

>
t − η2

(
StS

>
t − Σ

)(
StS

>
t

))
= 0.5− ηλmin

((
I + η

(
Σ− StS>t

))
StS

>
t

)
≤ 0.5,

where in the last inequality, we used the fact that λmin

((
I + η

(
Σ− StS>t

))
StS

>
t

)
≥ 0.

Combined with the definition of (A2), we have

‖(A2)‖ ≤
∥∥∥0.5I−ηStS>t +η2

(
StS

>
t −Σ

)
StS

>
t

∥∥∥∥∥∥Σ−StS>t
∥∥∥≤0.5

∥∥∥Σ−StS>t
∥∥∥ ,

which in turn implies

‖(A)‖ ≤
(

1− ηλmin(StS
>
t )
)∥∥∥Σ− StS>t

∥∥∥ .
Combining the derived upper bounds for (A), (B), and (C) completes the proof for the
signal dynamics. �

52



Convergence of Sub-gradient Method for Robust Matrix Recovery

Bounding
∥∥St+1E

>
t+1

∥∥: Recalling the update rules (75) and (76), we have

St+1E
>
t+1 = StE

>
t + η(Σ− StS>t )StE

>
t − ηSt(S>t St + E>t Et)E

>
t︸ ︷︷ ︸

(A)

+ η2
(
StS

>
t − Σ

)
St(S

>
t St + E>t Et)E

>
t︸ ︷︷ ︸

(B)

− ηStE>t EtE>t︸ ︷︷ ︸
(C)

+ η2StE
>
t Et

(
S>t St + E>t Et

)
E>t︸ ︷︷ ︸

(D)

.

We provide separate bounds for the individual terms in the above equality. First, observe
that ‖(C)‖ ≤ η

∥∥EtE>t ∥∥∥∥StE>t ∥∥. Moreover, one can write

‖(B)‖ ≤ η2
∥∥∥Σ− StS>t

∥∥∥∥∥∥St(S>t St + E>t Et)E
>
t

∥∥∥
≤ η2

∥∥∥Σ− StS>t
∥∥∥(∥∥∥StS>t ∥∥∥+

∥∥∥EtE>t ∥∥∥)∥∥∥StE>t ∥∥∥
≤ η

∥∥∥Σ− StS>t
∥∥∥∥∥∥StE>t ∥∥∥ ,

where, in the last inequality, we used the assumption that
∥∥EtE>t ∥∥ . σ1 and

∥∥StS>t ∥∥ . σ1.
Similarly, we have

‖(D)‖
(a)

≤ η2
∥∥∥StE>t ∥∥∥(∥∥∥StS>t ∥∥∥+

∥∥∥EtE>t ∥∥∥)∥∥∥EtE>t ∥∥∥
≤ η

∥∥∥EtE>t ∥∥∥∥∥∥StE>t ∥∥∥ ,
where, in (a), we used

∥∥StS>t ∥∥EtE>t � EtS>t StE>t � 0. Finally, we provide an upper bound
for (A).

‖(A)‖ ≤
(
η
∥∥∥Σ− StS>t

∥∥∥+
∥∥∥I − ηStS>t ∥∥∥)∥∥∥StE>t ∥∥∥

≤
(
η
∥∥∥Σ− StS>t

∥∥∥+ 1− ηλmin

(
StS

>
t

))∥∥∥StE>t ∥∥∥ .
Combining the derived bounds for (A), (B), (C), and (D) concludes the proof. �

Bounding
∥∥Et+1E

>
t+1

∥∥: Due to the update rule for Et+1, one can write

Et+1E
>
t+1 = EtE

>
t − 2ηEt

(
E>t Et + S>t St

)
E>t + η2Et

(
E>t Et + S>t St

)2
E>t

= Et

(
I − 2η

(
E>t Et + S>t St

)
+ η2

(
E>t Et + S>t St

)2
)
E>t .

(78)

On the other hand, η . 1/σ1, ‖EtEt‖ . σ1, and ‖StSt‖ . σ1 imply that

I − ηE>t Et � I − 2η
(
E>t Et + S>t St

)
+ η2

(
E>t Et + S>t St

)2
� 0. (79)
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Hence, we have∥∥∥EtE>t ∥∥∥ =

∥∥∥∥Et(I − 2η
(
E>t Et + S>t St

)
+ η2

(
E>t Et + S>t St

)2
)
E>t

∥∥∥∥
≤
∥∥∥Et (I − ηE>t Et)E>t ∥∥∥

=
∥∥∥EtE>t − ηEtE>t EtE>t ∥∥∥

=
(

1− η
∥∥∥EtE>t ∥∥∥)∥∥∥EtE>t ∥∥∥ ,

where in the last inequality, we used the fact that
∥∥EtE>t ∥∥ ≤ σ1.

Bounding
∥∥St+1S

>
t+1

∥∥: First, recall that

St+1S
>
t+1 = StS

>
t − 2ηStS

>
t StS

>
t + ηΣStS

>
t + ηStS

>
t Σ− 2ηStEtE

>
t S
>
t

+ η2
(
StS

>
t − Σ

)
StS

>
t

(
StS

>
t − Σ

)
+ η2StE

>
t EtE

>
t EtS

>
t

+ η2
(
StS

>
t − Σ

)
StEtE

>
t S
>
t + η2StEtE

>
t S
>
t

(
StS

>
t − Σ

)
� StS>t − 2ηStS

>
t StS

>
t + ηΣStS

>
t + ηStS

>
t Σ + η2

(
StS

>
t − Σ

)
StS

>
t

(
StS

>
t − Σ

)
︸ ︷︷ ︸

(A)

+ η2StE
>
t EtE

>
t EtS

>
t + η2

(
StS

>
t − Σ

)
StEtE

>
t S
>
t + η2StEtE

>
t S
>
t

(
StS

>
t − Σ

)
︸ ︷︷ ︸

(B)

,

where the last inequality follows by noting that −2ηStEtE
>
t S
>
t � 0. Now, it is easy to see

that

‖(B)‖ ≤ η2
∥∥∥EtE>t ∥∥∥2 ∥∥∥StS>t ∥∥∥+ 2η2

∥∥∥EtE>t ∥∥∥∥∥∥StS>t ∥∥∥(σ1 +
∥∥∥StS>t ∥∥∥)

≤ 3η2
∥∥∥EtE>t ∥∥∥∥∥∥StS>t ∥∥∥(σ1 +

∥∥∥StS>t ∥∥∥) .
It remains to provide an upper bound for (A). One can write

(A) =StS
>
t − 2η

(
StS

>
t

)2
+ η2

((
StS

>
t

)3
+ ΣStS

>
t Σ

)
︸ ︷︷ ︸

(A1)

+ ηΣStS
>
t

(
I − ηStS>t

)
ηStS

>
t

(
I − ηStS>t

)
Σ︸ ︷︷ ︸

(A2)

.

For (A1), we have

‖(A1)‖ ≤
∥∥∥∥StS>t − 2η

(
StS

>
t

)2
+ η2

(
StS

>
t

)3
∥∥∥∥+ η2

∥∥∥ΣStS
>
t Σ
∥∥∥

≤
∥∥∥∥StS>t − 2η

(
StS

>
t

)2
+ η2

(
StS

>
t

)3
∥∥∥∥+ η2σ2

1

∥∥∥StS>t ∥∥∥
(a)

≤
∥∥∥StS>t ∥∥∥− 2η

∥∥∥StS>t ∥∥∥2
+ η2

∥∥∥StS>t ∥∥∥3
+ η2σ2

1

∥∥∥StS>t ∥∥∥ ,
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where (a) follows from the fact that StS
>
t ,
(
StS

>
t

)2
,
(
StS

>
t

)3
share the same eigenvectors,

and the assumption η . 1/σ1. On the other hand, one can easily verify that

‖(A2)‖ ≤ 2ησ1

∥∥∥StS>t (I − ηStS>t )∥∥∥ ≤ 2ησ1

(∥∥∥StS>t ∥∥∥− η ∥∥∥StS>t ∥∥∥2
)
.

Combining the upper bounds for (A) and (B) leads to∥∥∥St+1S
>
t+1

∥∥∥ ≤ ((1 + ησ1)2 + 3η2σ1

∥∥∥EtE>t ∥∥∥)∥∥∥StS>t ∥∥∥
− 2η

(
1 + ησ1 − 1.5η

∥∥∥EtE>t ∥∥∥)∥∥∥StS>t ∥∥∥2
+ η2

∥∥∥StS>t ∥∥∥3

(a)

≤ ((1 + 2.001σ1)
∥∥∥StS>t ∥∥∥− 2η

∥∥∥StS>t ∥∥∥2
+ η2

∥∥∥StS>t ∥∥∥3
,

where, in (a), we used the assumption
∥∥EtE>t ∥∥ . σ1 and η . 1/σ1. Now, let us define the

function

f(x) := η2x3 − 2ηx2 + (1 + 2.001σ1)x.

It is easy to see that f(x) is increasing within the interval x ≤ 1/4η. On the other hand,
we have 1.01σ1 ≤ 1/4η due to our choice of η. Therefore, we have∥∥∥St+1S

>
t+1

∥∥∥ ≤ f (∥∥∥StS>t ∥∥∥) ≤ f (1.01σ1) .

On the other hand, a simple calculation reveals that

f(1.01σ1) = η2(1.01σ1)3 − 2η(1.01σ1)2 + (1 + 2.001σ1) (1.01σ1) ≤ 1.01σ1.

for η ≤ c/σ1 with sufficiently small constant c. This completes the proof. �

C.3 Proof of Lemma 32

We prove this lemma by induction on t. First, due to our choice of the initial point in
Theorem 18, we have

∥∥E0E
>
0

∥∥ ≤ α2,
∥∥S0S

>
0

∥∥ ≤ 1.01σ1 and S0S
>
0 � 0. Now, suppose

that (30), (31), and (32) hold for t. Then, it is easy to see that∥∥∥EtE>t ∥∥∥ ≤ ∥∥∥E0E
>
0

∥∥∥ ≤ α2,

due to the decreasing nature of
∥∥EtE>t ∥∥. Therefore, Proposition 17 can be invoked to show

that
∥∥St+1S

>
t+1

∥∥ ≤ 1.01σ1. Moreover, we have∥∥∥Et+1E
>
t+1

∥∥∥ ≤ ∥∥∥EtE>t ∥∥∥− η ∥∥∥EtE>t ∥∥∥2

≤ 1

ηt+ 1
α2

− η(
ηt+ 1

α2

)2
≤ 1

η(t+ 1) + 1
α2

.
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On the other hand, Proposition 16 can be used to show that

λmin

(
St+1S

>
t+1

)
≥
(
1 + η2σ2

r

)
λmin

(
StS

>
t

)
− 2η (1 + ησr)λmin

(
StS

>
t

)2

≥
(
1− 2ησ1 (1 + ησr) + η2σ2

r

)
λmin

(
StS

>
t

)
> 0,

where in the first inequality, we used
∥∥EtE>t ∥∥ . σr, which follows from

∥∥EtE>t ∥∥ ≤ α2 and
our choice of α. Moreover, the last inequality follows from our choice of η. �

Appendix D. Proofs of Empirical Loss with Noiseless Measurements

D.1 Preliminaries

For simplicity, we define ∆t = UtU
>
t −X?. Before presenting the proofs for the empirical

loss, we first introduce a key decomposition. Recall the update rule

Ut+1 = Ut − 2ηtQtUt := Ũt+1 +RtUt, (80)

where ηt = η
2

1
m

∑m
i=1 | 〈Ai,∆t〉 | and Qt ∈ Q(∆t). Moreover, denote Ũt+1 = Ut − η̄t∆tUt,

where η̄t = ηϕ(∆t)
2 is the update rule obtained from the expected loss, and RtUt with

Rt = η̄t∆t − 2ηtQt is the residual caused by the deviation of the empirical loss from its
expectation. Finally, we define S̃t = V >Ũt, and Ẽt = V >⊥ Ũt.

Lemma 53 Suppose that the measurements satisfy Sign-RIP with parameters(
4r, δ,

√
d ‖Gt‖2

)
. Then, we have ‖Rt‖ ≤ 3η̄tδ ‖∆t‖F .

Proof One can write

∆t =V
(
StS

>
t − Σ

)
V > + V StE

>
t V
>
⊥ + V⊥EtS

>
t V
> + V⊥GtG

>
t V
>
⊥︸ ︷︷ ︸

rank-4r

+ V⊥GtG
>
t V
>
⊥︸ ︷︷ ︸

small perturbation

.

Note that
∥∥V⊥GtG>t V >⊥ ∥∥F ≤ √d ‖Gt‖2. Therefore, ∆t is an

√
d ‖Gt‖2-approximate rank-4r

matrix. One can write

Rt =ηϕ(∆t)
2∆t − 2ηtQt

=
(η

2
ϕ(∆) ‖∆t‖F − ηt

)
Qt +

(η
2
ϕ(∆) ‖∆t‖F − ηt

)
Q>t

+
η

2
ϕ(∆t) ‖∆t‖F

(
ϕ(∆t)

∆t

‖∆t‖F
−Qt

)
+
η

2
ϕ(∆t) ‖∆t‖F

(
ϕ(∆t)

∆t

‖∆t‖F
−Q>t

)
.

Due to the above decomposition, one can write

‖Rt‖ ≤ 2
∣∣∣η
2
ϕ(∆) ‖∆t‖F − ηt

∣∣∣ ‖Qt‖+ ηϕ(∆t) ‖∆t‖F

∥∥∥∥ϕ(X)
∆t

‖∆t‖F
−Qt

∥∥∥∥. (81)

56



Convergence of Sub-gradient Method for Robust Matrix Recovery

First, note that |(η/2)ϕ(∆) ‖∆t‖F − ηt| ≤ δ(η/2)ϕ(∆t) ‖∆t‖F due to Lemma 51. Moreover,

due to Sign-RIP, we have ‖Qt‖ ≤ (1 + δ)ϕ(∆t) and
∥∥∥ϕ(X) ∆t

‖∆t‖F
−Qt

∥∥∥ ≤ δϕ(∆t). Combin-

ing these upper bounds with (81) completes the proof.

D.2 Proof of Proposition 19

Due to the proposed decomposition (80), one can write

St+1 = S̃t+1 + V >RtUt. (82)

Our main goal is to show that the minimum eigenvalue of StS
>
t follows that of S̃tS̃

>
t —

which has been characterized in Lemma 16—plus an additional deviation caused by the
term V >RtUt. Similar to the proof of Proposition 16, we characterize the growth rate of
λmin(St+1S

>
t+1) by first resorting to a more tractable lower bound. Adopting the notation

introduced in Appendix D, consider the following auxiliary matrix

M := (I + Ξ) S̃t+1S̃
>
t+1 (I + Ξ)>

= (I + Ξ)V > (I − η̄t∆t)UtU
>
t (I − η̄t∆t) (I + Ξ)> ,

where Ξ := V >RtUtS̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
. Note that, according to Lemma 32, we have

S̃t+1S̃
>
t+1 � 0 due to our assumption StS

>
t � 0. Therefore, S̃t+1S̃

>
t+1 is invertible, and

hence, the matrix Ξ is well-defined. On the other hand, it is easy to see that Ξ satisfies

V >RtUtS̃
>
t+1 = ΞS̃t+1S̃

>
t+1.

Based on the above equality, one can write

St+1S
>
t+1−M=

(
S̃t+1S̃

>
t+1+V >RtUtU

>
t R
>
t V +S̃t+1U

>
t R
>
t V +V >RtUtS̃

>
t+1

)
−
(
S̃t+1S̃

>
t+1 − ΞS̃t+1S̃

>
t+1Ξ> + ΞS̃t+1S̃

>
t+1 + S̃t+1S̃

>
t+1Ξ>

)
= V >RtUtU

>
t R
>
t V − V >RtUtS̃>t+1

(
S̃t+1S̃

>
t+1

)−1
S̃t+1U

>
t R
>
t V

= V >RtUt

(
I − S̃>t+1

(
S̃t+1S̃

>
t+1

)−1
S̃t+1

)
U>t R

>
t V

= V >RtUtP
⊥
S̃+1

U>t R
>
t V

� 0.

(83)

Therefore, we have λmin(St+1S
>
t+1) ≥ λmin(M). Our next goal is to provide a lower bound

for λmin(M). To this goal, we will show that the minimum eigenvalue of M is close to that
of S̃t+1S̃

>
t+1. Combined with the minimum eigenvalue dynamics of S̃t+1S̃

>
t+1 presented in

Proposition 16, this completes the proof.

To show that λmin(M) ≈ λmin(S̃t+1S̃
>
t+1), we will use the relative perturbation bound

presented in Lemma 52. To this goal, first we need to provide an upper bound for ‖Ξ‖.
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Bounding ‖Ξ‖. One can write

‖Ξ‖ ≤ ‖Rt‖
∥∥∥∥UtS̃>t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥

= ‖Rt‖
∥∥∥∥(I − η̄t (UtU>t −X?

))−1
Ũt+1S̃

>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥

≤ ‖Rt‖
∥∥∥∥(I − η̄t (UtU>t −X?

))−1
∥∥∥∥∥∥∥∥Ũt+1S̃

>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥

(a)

≤ 2 ‖Rt‖
∥∥∥∥Ũt+1S̃

>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥

(b)

≤ 6η̄tδ ‖∆t‖F

∥∥∥∥Ũt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥ ,

(84)

where in (a), we used the fact that
∥∥UtU>t −X?

∥∥ . σ1 due to our assumptions on
∥∥StS>t ∥∥

and
∥∥EtE>t ∥∥, and our choice of η. Moreover, (b) follows from Lemma 53. Now, note that

Ũt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
=V S̃t+1S̃

>
t+1

(
S̃t+1S̃

>
t+1

)−1
+V⊥Ẽt+1S̃

>
t+1

(
S̃t+1S̃

>
t+1

)−1

= V +V⊥Ẽt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
.

Therefore, we have∥∥∥∥Ũt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥ ≤ 1 +

∥∥∥∥Ẽt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥ .

In order to provide an upper bound for ‖Ξ‖, it suffices to bound

∥∥∥∥Ẽt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥.

To this goal, first we present the following technical lemma, the proof of which can be found
in Appendix F.2.

Lemma 54 The following statements hold:

- 1
2 ≤

∥∥∥∥StS>t (S̃t+1S̃
>
t+1

)−1
∥∥∥∥ ≤ 2 and 1

3 ≤
∥∥∥StS>t (St+1S

>
t+1

)−1
∥∥∥ ≤ 3;

-

∥∥∥∥Ẽt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥ ≤ 3

∥∥∥EtS>t (StS>t )−1
∥∥∥.

The second statement of the above lemma connects

∥∥∥∥Ẽt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥ to∥∥∥EtS>t (StS>t )−1

∥∥∥ which, according to our assumption, is upper bounded by 1/3. This

upper bound, together with (84) implies that

‖Ξ‖ ≤ 12η̄tδ ‖∆t‖F .
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On the other hand, applying the relative perturbation bound to M and S̃t+1S̃
>
t+1 implies

that ∣∣∣λmin(M)− λmin(S̃t+1S̃
>
t+1)

∣∣∣ ≤λmin(S̃t+1S̃
>
t+1)

∥∥∥I − (I + Ξ)(I + Ξ)>
∥∥∥

≤3 ‖Ξ‖λmin

(
S̃t+1S̃

>
t+1

)
≤36η̄tδ ‖∆t‖F λmin

(
S̃t+1S̃

>
t+1

)
.

This in turn implies that

λmin(St+1S
>
t+1) ≥ λmin(M)

≥ (1− 36η̄tδ ‖∆t‖F )λmin

(
S̃t+1S̃

>
t+1

)
≥
(
(1+η̄tσr)

2−2η̄t

∥∥∥EtE>t ∥∥∥)λmin

(
StS

>
t

)
− 72η̄tδ

∥∥∥UtU>t −X?
∥∥∥
F
λmin

(
StS

>
t

)
− 2η̄t (1 + η̄tσr)λmin

(
StS

>
t

)2
,

which completes the proof. �

D.3 Proof of Proposition 20

Bounding
∥∥Σ− St+1S

>
t+1

∥∥: Recall that St+1 = S̃t+1 + V >RtUt. Therefore, we have

Σ− St+1S
>
t+1 = Σ− S̃t+1S̃

>
t+1−V >RtUtS̃>t+1 − S̃t+1U

>
t R
>
t V − V >RtUtU>t R>t V︸ ︷︷ ︸

deviation

.
(85)

The main idea behind our proof is to first control the norm of the deviation term, and then
invoke Proposition 17 for Σ− S̃t+1S̃

>
t+1. One can write∥∥∥V >RtUtS̃>t+1

∥∥∥ ≤ ‖Rt‖ ∥∥∥S̃t+1U
>
t

∥∥∥ ≤ 3η̄tδ ‖∆t‖F
∥∥∥S̃t+1U

>
t

∥∥∥ ,
where in the last inequality, we used Lemma 53. Moreover, S̃t+1U

>
t can be rewritten as

S̃t+1U
>
t =

((
I − η̄t

(
StS

>
t − Σ

)
St + StE

>
t Et

))(
S>V > + E>V >⊥

)
=
(
I − η̄t

(
StS

>
t − Σ

))
StS

>
t V
> +

(
I − η̄t

(
StS

>
t − Σ

))
StE

>
t V
>
⊥

+ StE
>
t EtS

>
t V
> + StE

>
t EtE

>
t V
>
⊥ .

Note that
∥∥I − η̄t (StS>t − Σ

)∥∥ ≤ 2 due to our choice of η and our assumption on StS
>
t .

Therefore, we have∥∥∥S̃t+1U
>
t

∥∥∥ ≤ 2
∥∥∥StS>t ∥∥∥+ 2

∥∥∥StE>t ∥∥∥+
∥∥∥StE>t ∥∥∥2

+
∥∥∥StE>t ∥∥∥ ‖Et‖2 ≤ 6σ1, (86)
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where we used our assumptions on
∥∥StS>t ∥∥ and

∥∥EtE>t ∥∥. Combining the above two in-
equalities leads to ∥∥∥S̃t+1U

>
t R
>
t V
∥∥∥ =

∥∥∥V >RtUtS̃>t+1

∥∥∥ ≤ 18η̄tδσ1 ‖∆t‖F . (87)

Using a similar technique, we have∥∥∥V >RtUtU>t R>t V ∥∥∥ ≤ 9η̄2
t δ

2σ1 ‖∆t‖2F ≤ η̄tδσ1 ‖∆t‖F , (88)

where we used the assumed upper bounds on η and δ, and the fact that
∥∥EtE>t ∥∥ ≤ σ1,∥∥StS>t ∥∥ ≤ 1.01σ1, and

∥∥EtE>t ∥∥F ≤ √rσ1, which in turn implies ‖∆t‖F .
√
rσ1 due to

Lemma 14. Moreover, we have already shown in Proposition 17 that∥∥∥Σ− S̃t+1S̃
>
t+1

∥∥∥ ≤ (1− η̄tλmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥+ 5η̄t

∥∥∥StE>t ∥∥∥2
.

Hence, combining the above inequalities leads to∥∥∥Σ− St+1S
>
t+1

∥∥∥ ≤(1− η̄tλmin

(
StS

>
t

))∥∥∥Σ− StS>t
∥∥∥

+ 5η̄t

∥∥∥StE>t ∥∥∥2
+ 37η̄tδσ1 ‖∆t‖F .

Bounding
∥∥St+1E

>
t+1

∥∥: First, note that

St+1E
>
t+1 = S̃t+1Ẽ

>
t+1 + V >RtUtẼ

>
t+1 + S̃t+1U

>
t R
>
t V⊥ + V >RtUtU

>
t R
>
t V⊥︸ ︷︷ ︸

deviation

.

Similar to the signal term, the main idea behind our proof is to first control the norm of
the deviation term, and then invoke Proposition 17 for S̃t+1Ẽ

>
t+1. We first provide an upper

bound for
∥∥∥V >RtUtẼ>t+1

∥∥∥∥∥∥V >RtUtẼ>t+1

∥∥∥ ≤ ‖Rt‖ ∥∥∥UtẼ>t+1

∥∥∥ ≤ 3η̄tδ ‖∆t‖F
∥∥∥UtẼ>t+1

∥∥∥ .
To bound

∥∥∥UtẼ>t+1

∥∥∥, one can write∥∥∥UtẼ>t+1

∥∥∥ ≤ ‖Ut‖∥∥∥Et − η̄tS>t StE>t − η̄tEtE>t Et∥∥∥
≤ 2 (‖St‖+ ‖Et‖) ‖Et‖
≤ 5σ1,

where we used the assumption ‖St‖ ≤ 1.01
√
σ1 and ‖Et‖ ≤

√
σ1. Similar to (88), we have∥∥∥S̃t+1U

>
t R
>
t V⊥

∥∥∥ ≤ ∥∥∥S̃t+1U
>
t

∥∥∥ ‖Rt‖
≤
∥∥∥St − η̄t ((StS>t − Σ

)
St + StE

>
t Et

)∥∥∥ ‖Rt‖
≤ 6η̄tδ

√
σ1 ‖∆t‖F ,
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and ∥∥∥V >RtUtU>t R>t V⊥∥∥∥ ≤ ∥∥∥UtU>t ∥∥∥ ‖Rt‖2 ≤ 10σ1η̄
2
t δ

2 ‖∆t‖2F ≤ η̄tδσ1 ‖∆t‖F .

Moreover, we have already shown in Proposition 17 that∥∥∥S̃t+1Ẽ
>
t+1

∥∥∥ ≤ (1− η̄tλmin

(
StS

>
t

)
+ 2η̄t

∥∥∥Σ− StS>t
∥∥∥+ 2η̄t ‖EtEt‖

)∥∥∥StE>t ∥∥∥ . (89)

Combining the above inequalities leads to∥∥∥St+1E
>
t+1

∥∥∥ ≤(1− η̄tλmin

(
StS

>
t

)
+ 2η̄t

∥∥∥Σ− StS>t
∥∥∥+ 2η̄t ‖EtEt‖

)∥∥∥StE>t ∥∥∥
+ 22η̄tδσ1 ‖∆t‖F .

Bounding
∥∥St+1S

>
t+1

∥∥: First, note that

St+1S
>
t+1 = S̃t+1S̃

>
t+1 + V >RtUtS

>
t+1 + St+1U

>
t R
>
t V + V >RtUtU

>
t R
>
t V︸ ︷︷ ︸

deviation

.

Similar to our previous arguments, we will provide an upper bound on the deviation term,
and then resort to Proposition 17 to provide an upper bound for S̃t+1S̃

>
t+1. First, note that∥∥∥V >RtUtS>t+1

∥∥∥ ≤ ∥∥∥V >RtV StS>t+1

∥∥∥+
∥∥∥V >RtV⊥EtS>t+1

∥∥∥
≤ 3η̄tδ ‖∆t‖F

(∥∥∥StS>t+1

∥∥∥+
∥∥∥EtS>t+1

∥∥∥) , (90)

where we used Lemma 53 in the last inequality. On the other hand∥∥∥StS>t+1

∥∥∥ =
∥∥∥St (S>t − η̄t (S>t (StS>t − Σ

)
+ E>t EtS

>
t

)
+ U>t R

>
t V
)∥∥∥

≤
∥∥∥StS>t ∥∥∥(1 + η̄t

∥∥∥StS>t − Σ
∥∥∥+ η̄t

∥∥∥EtE>t ∥∥∥)+
∥∥∥StU>t R>t V ∥∥∥

≤ 2
∥∥∥StS>t ∥∥∥+

∥∥∥StS>t V >R>t V ∥∥∥+
∥∥∥StE>t V >⊥ R>t V ∥∥∥

≤ 3
∥∥∥StS>t ∥∥∥+ 3η̄tδ ‖∆t‖F

∥∥∥StE>t ∥∥∥ .
Similarly, we have ∥∥∥EtS>t+1

∥∥∥ ≤ 3
∥∥∥EtS>t ∥∥∥+ 3η̄tδ ‖∆t‖F

∥∥∥EtE>t ∥∥∥ .
The above two inequalities combined with (90) results in

2
∥∥∥V >RtUtS>t+1

∥∥∥ ≤ 216η̄tσ
2
1

√
rδ.

which follows from our assumption on ‖St‖, ‖Et‖ and δ. Similarly, one can show that∥∥∥V >RtUtU>t R>t V ∥∥∥ ≤ η̄tσ2
1

√
rδ.
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Therefore, the norm of the deviation term is upper bounded by 217η̄tσ
2
1

√
rδ. Moreover,

Proposition 17 implies∥∥∥S̃t+1S̃
>
t+1

∥∥∥ ≤ (1 + 2σ1η̄t + 4σ2
1 η̄

2
t

) ∥∥∥StS>t ∥∥∥− 2η̄t

∥∥∥StS>t ∥∥∥2
+ η̄2

t

∥∥∥StS>t ∥∥∥3
,

which in turn leads to∥∥∥St+1S
>
t+1

∥∥∥ ≤ (1 + 2σ1η̄t + 4σ2
1 η̄

2
t

) ∥∥∥StS>t ∥∥∥− 2η̄t

∥∥∥StS>t ∥∥∥2
+ η̄2

t

∥∥∥StS>t ∥∥∥3
+ 217η̄tσ

2
1

√
rδ.

The rest of the proof is analogous to that of Proposition 17, and hence, omitted for brevity.�

D.4 Proof of Proposition 21

Bounding ‖Gt+1‖: To provide an upper bound for ‖Gt+1‖ =
∥∥∥Et+1P

⊥
St+1

∥∥∥ in terms of

‖Gt‖ =
∥∥EtP⊥St∥∥, it is crucial to characterize the relationship between the projection oper-

ators P⊥St+1
and P⊥St . To this goal, we decompose P⊥St+1

as follows

P⊥St+1
= PStP

⊥
St+1

+ P⊥StP
⊥
St+1

.

Based on the above decomposition, Gt+1 can be written as

Gt+1 = Et+1PStP
⊥
St+1︸ ︷︷ ︸

(A)

+Et+1P
⊥
StP
⊥
St+1︸ ︷︷ ︸

(B)

.

We first study (A). Let MtDtN
>
t be the singular value decomposition of St, where Mt ∈

Rr×r and Nt ∈ Rr′×r are (row) orthonormal matrices, and Dt ∈ Rr×r is a diagonal matrix
collecting the singular values of St. Based on this definition, we have PSt = NtN

>
t . On the

other hand, we have St+1PStP
⊥
St+1

= −St+1P
⊥
St
P⊥St+1

, which is equivalent to

St+1NtN
>
t P⊥St+1

= −St+1P
⊥
StP
⊥
St+1

. (91)

Our next technical lemma shows that St+1Nt is invertible.

Lemma 55 The matrix St+1Nt is invertible.

The proof of this lemma can be found in Appendix F.3. Lemma (55) combined with (91)
leads to

N>t P⊥St+1
= − (St+1Nt)

−1 St+1P
⊥
StP
⊥
St+1

.

Therefore, we have

(A) = Et+1PStP
⊥
St+1

= Et+1NtN
>
t P⊥St+1

= −Et+1Nt (St+1Nt)
−1 St+1P

⊥
StP
⊥
St+1

= −Et+1Nt (St+1Nt)
−1 S̃t+1P

⊥
StP
⊥
St+1︸ ︷︷ ︸

(A1)

− Et+1Nt (St+1Nt)
−1
(
St+1 − S̃t+1

)
P⊥StP

⊥
St+1︸ ︷︷ ︸

(A2)

.
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We first control (A1). Observe that

S̃t+1P
⊥
St =

(
St − η̄t

(
StS

>
t − Σ

)
St − η̄tStE>t Et

)
P⊥St = −η̄tStE>t Gt.

Therefore, we have

(A1) = η̄tEt+1Nt (St+1Nt)
−1 StE

>
t GtP

⊥
St+1

. (92)

On the other hand, note that Et+1 = Et− η̄tEt
(
S>t St + E>t Et

)
+V >⊥ RtUt. Hence, we have

(B) =
(
I − η̄tEtE>t

)
GtP

⊥
St+1

+ V >⊥ RtV⊥GtP
⊥
St+1

. (93)

Combining equations (92) and (93), we obtain

Gt+1 =
(
I − η̄tEtE>t + η̄tEt+1Nt (St+1Nt)

−1 StE
>
t

)
GtP

⊥
St+1

+ V >⊥ RtV⊥GtP
⊥
St+1

+ (A2),

which results in

‖Gt+1‖ ≤
∥∥∥I − η̄tEtE>t + η̄tEt+1Nt (St+1Nt)

−1 StE
>
t

∥∥∥︸ ︷︷ ︸
(C)

‖Gt‖+ ‖Rt‖ ‖Gt‖+ ‖(A2)‖ .

Therefore, it remains to control the terms ‖(C)‖ and ‖(A2)‖. First, we provide an upper
bound on ‖(C)‖. Define St+1Nt = (I + Ξ)StNt, where Ξ = St+1Nt (StNt)

−1− I (note that
StNt = MtDt which implies that StNt is invertible). Hence, we have

‖(C)‖ ≤
∥∥∥I − η̄tEtE>t + η̄tEt+1Nt (StNt)

−1 StE
>
t

∥∥∥︸ ︷︷ ︸
(C1)

+ η̄t

∥∥∥Et+1Nt (StNt)
−1
∥∥∥∥∥(I + Ξ)−1 − I

∥∥∥∥∥StE>t ∥∥∥︸ ︷︷ ︸
(C2)

.

It is shown in the proof of Lemma 55 that ‖Ξ‖ ≤ 3η̄t ‖∆t‖ ≤ 1/2. Therefore, one can

write
∥∥(I + Ξ)−1 − I

∥∥ ≤ ‖Ξ‖ ∥∥∥(I + Ξ)−1
∥∥∥ ≤ 6η̄t ‖∆t‖. To provide an upper bound for∥∥∥Et+1Nt (StNt)

−1
∥∥∥, one can write

Et+1Nt (StNt)
−1 = Et+1S

>
t

(
StS

>
t

)−1

=
(
Et − η̄tEt

(
S>t St + E>t Et

)
+ V >⊥ RtUt

)
S>t

(
StS

>
t

)−1

=
(
I − η̄tEtE>t

)
Ht − η̄tEtS>t + V >⊥ RtUtS

>
t

(
StS

>
t

)−1

=
(
I − η̄tEtE>t

)
Ht − η̄tEtS>t + V >⊥ RtV + V >⊥ RtV⊥Ht,

where Ht = EtS
>
t

(
StS

>
t

)−1
. Therefore, we have∥∥∥Et+1Nt (StNt)

−1
∥∥∥ ≤ ‖Ht‖+ η̄t

∥∥∥EtS>t ∥∥∥+ ‖Rt‖ (1 + ‖Ht‖)

≤ ‖Ht‖+ η̄t

∥∥∥EtS>t ∥∥∥+ 4η̄tδ ‖∆t‖F .
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Hence, we obtain

‖C2‖ ≤ 6η̄2
t ‖∆t‖

(
‖Ht‖+ η̄t

∥∥∥EtS>t ∥∥∥+ η̄tδ ‖∆t‖F
)∥∥∥EtS>t ∥∥∥ .

To control ‖(C1)‖, we use triangle inequality to arrive at the following decomposition

(C1) ≤
∥∥∥I − η̄tEtE>t + η̄tEtNt (StNt)

−1 StE
>
t

∥∥∥︸ ︷︷ ︸
(C11)

+ η̄2
t

∥∥∥∥StS>t EtS>t (StS>t )−1
StE

>
t

∥∥∥∥︸ ︷︷ ︸
(C12)

+ η̄2
t

∥∥∥∥EtE>t EtS>t (StS>t )−1
StE

>
t

∥∥∥∥︸ ︷︷ ︸
(C13)

+ η̄t

∥∥∥RtUtNt (StNt)
−1 StE

>
t

∥∥∥︸ ︷︷ ︸
(C14)

.

It is easy to see that ‖(C11)‖ =
∥∥I − η̄tGtG>t ∥∥ ≤ 1, due to the assumed upper bound on η̄t

and
∥∥EtE>t ∥∥. Moreover, one can verify that ‖(C12)‖ ≤ η̄2

t

∥∥EtS>t ∥∥2
, ‖(C13)‖ ≤ η̄2

t ‖Et‖
4, and

‖(C14)‖ ≤ 3η̄2
t δ ‖∆t‖F (1 + ‖Ht‖)

∥∥StE>t ∥∥ ≤ 6η̄2
t δ ‖∆t‖F

∥∥StE>t ∥∥. Combining the derived
upper bounds for ‖C1‖ and ‖C2‖, we have

(C) ≤ 1 + η̄2
t

(
2
∥∥∥EtS>t ∥∥∥2

+ ‖Et‖4 + 7δ ‖∆t‖F
∥∥∥EtS>t ∥∥∥+ 6 ‖Ht‖ ‖∆t‖

∥∥∥EtS>t ∥∥∥) .
To complete the proof, it remains to provide an upper bound for ‖(A2)‖. First, note that(
St+1 − S̃t+1

)
P⊥St = V >RtV⊥Gt. Given this equality, one can write

‖A2‖ ≤
∥∥∥Et+1Nt (St+1Nt)

−1 V >RtV⊥GtP
⊥
St+1

∥∥∥
≤
∥∥∥Et+1Nt (St+1Nt)

−1
∥∥∥ ‖Rt‖ ‖Gt‖

≤3η̄tδ
∥∥∥Et+1Nt (St+1Nt)

−1
∥∥∥ ‖∆t‖F ‖Gt‖ .

Therefore, it suffices to provide an upper bound for
∥∥∥Et+1Nt (St+1Nt)

−1
∥∥∥:∥∥∥Et+1Nt (St+1Nt)

−1
∥∥∥ ≤ ∥∥∥Et+1Nt (StNt)

−1
∥∥∥∥∥∥StNt (St+1Nt)

−1
∥∥∥

≤
∥∥∥Et+1Nt (StNt)

−1
∥∥∥∥∥(I + Ξ)−1

∥∥
≤ 2

∥∥∥Et+1Nt (StNt)
−1
∥∥∥

≤ 2.

Combining the above inequalities leads to

‖(A2)‖ ≤ 6η̄tδ ‖∆t‖F ‖Gt‖ .
Finally, combining the derived upper bounds for (C) and (A2) gives rise to the following
inequalities

‖Gt+1‖≤
(

1+2η̄2
t

∥∥∥EtS>t ∥∥∥2
+η̄2

t ‖Et‖
4+6η̄2

t ‖Ht‖ ‖∆t‖
∥∥∥EtS>t ∥∥∥+7η̄tδ ‖∆t‖F

)
‖Gt‖

≤
(

1+2η̄2
t

∥∥∥EtS>t ∥∥∥2
+ η̄2

t ‖Et‖
4 + 2η̄2

t ‖∆t‖
∥∥∥EtS>t ∥∥∥+ 7η̄tδ ‖∆t‖F

)
‖Gt‖ .
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Bounding ‖Ft+1‖ : Similar to the previous part, we use the decomposition PSt+1 =
PStPSt+1 + P⊥StPSt+1 to write

Ft+1 = Et+1PSt+1 = Et+1PStPSt+1︸ ︷︷ ︸
(A)

+Et+1P
⊥
StPSt+1︸ ︷︷ ︸

(B)

.

First, we provide an upper bound for ‖(B)‖:

‖(B)‖ =
∥∥∥Et+1P

⊥
St

(
PSt+1 − PSt

)∥∥∥
≤
∥∥∥Et+1P

⊥
St

∥∥∥∥∥PSt+1 − PSt
∥∥

=
∥∥∥(I − η̄tEtE>t )Gt + V >⊥ RtUtP

⊥
St

∥∥∥∥∥PSt+1 − PSt
∥∥

≤
(
‖Gt‖+

∥∥∥V >⊥ RtV⊥Gt∥∥∥)∥∥PSt+1 − PSt
∥∥

≤ (‖Gt‖+ 3η̄tδ ‖∆t‖F ‖Gt‖)
∥∥PSt+1 − PSt

∥∥
≤ 2 ‖Gt‖

∥∥PSt+1 − PSt
∥∥ . (94)

To control
∥∥PSt+1 − PSt

∥∥, we use the following technical lemma.

Lemma 56 (Theorem 2.4, Chen et al. (2016)) Let A ∈ Rm×n, and B = A + E ∈
Rm×n have the same rank. Then, we have

‖PA − PB‖ ≤
∥∥∥EA†∥∥∥ ∨ ∥∥∥EB†∥∥∥ .

Due to Proposition 19 and our assumptions, we have λmin(St+1S
>
t+1) ≥ λmin(StS

>
t ) > 0,

and hence, both St+1S
>
t+1 and StS

>
t are rank-r. Invoking Lemma 56, we have

∥∥PSt+1 − PSt
∥∥ ≤ ∥∥∥∥(St+1 − St)S>t

(
StS

>
t

)−1
∥∥∥∥

=

∥∥∥∥(−η̄t ((StS>t −Σ
)
St+StE

>
t Et

)
+V >RtUt

)
S>t

(
StS

>
t

)−1
∥∥∥∥

≤ η̄t
∥∥∥StS>t − Σ

∥∥∥+ η̄t

∥∥∥StE>t ∥∥∥ ‖Ht‖+ ‖Rt‖ (1 + ‖Ht‖)

≤ η̄t
∥∥∥StS>t − Σ

∥∥∥+ η̄t

∥∥∥StE>t ∥∥∥+ 6η̄tδ ‖∆t‖F
≤ 3η̄t ‖∆t‖ ,

(95)

where in the last inequality, we used the following auxiliary lemma.

Lemma 57 If ‖∆t‖ ≥
√
d ‖Gt‖2, then we have ‖∆t‖F ≤ 5

√
r ‖∆t‖.

Proof Recall the signal-residual decomposition

∆t = V
(
StS

>
t −Σ

)
V > + V StE

>
t V
>
⊥ + V⊥EtS

>
t V
> + V⊥FtF

>
t V

>
⊥ + V⊥GtG

>
t V
>
⊥ .
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One can write

‖∆t‖F ≤
√
r
(∥∥∥StS>t − Σ

∥∥∥+ 2
∥∥∥StE>t ∥∥∥+

∥∥∥FtF>t ∥∥∥)+
√
d ‖Gt‖2

= 4
√
r ‖∆t‖+ ‖∆t‖

≤ 5
√
r ‖∆t‖ ,

which completes the proof.

Combining (95) with (94) leads to

‖(B)‖ ≤ 6η̄t ‖∆t‖ ‖Gt‖ .

Next, we will provide an upper bound for (A). One can write

‖(A)‖ ≤ ‖Et+1PSt‖

≤
∥∥∥(Et − η̄tEt (E>t Et + S>t St

)
+ V >⊥ RtUt

)
PSt

∥∥∥
≤
∥∥∥Ft − η̄tEtE>t Ft − η̄tFtS>t St∥∥∥+

∥∥∥V >⊥ RtUtPSt∥∥∥ . (96)

The first term in the above inequality can be bounded as follows∥∥∥Ft−η̄tEtE>t Ft−η̄tFtS>t St∥∥∥≤∥∥∥(0.5I−η̄tEtE>t
)
Ft

∥∥∥+
∥∥∥Ft (0.5I−η̄tS>t St

)∥∥∥
≤
(∥∥∥0.5I − η̄tEtE>t

∥∥∥+
∥∥∥0.5I − η̄tS>t St

∥∥∥) ‖Ft‖
≤
(

1− η̄tλmin

(
StS

>
t

))
‖Ft‖ .

Moreover, we have∥∥∥V >⊥ RtUtPSt∥∥∥ ≤ ‖Rt‖ (‖St‖+ ‖Ft‖) ≤ 3η̄tδ ‖∆t‖F (‖St‖+ ‖Ft‖) .

Therefore, we have

‖(A)‖ ≤
(

1− η̄tλmin

(
StS

>
t

)
+ 3η̄tδ ‖∆t‖F

)
‖Ft‖+ 3η̄tδ ‖∆t‖F ‖St‖ .

Finally, combining the derived upper bounds for (A) and (B) leads to

‖Ft+1‖ ≤
(

1− η̄tλmin

(
StS

>
t

)
+ 3η̄tδ ‖∆t‖F

)
‖Ft‖+ 3η̄tδ ‖∆t‖F ‖St‖+ 6η̄t ‖∆t‖ ‖Gt‖ ,

which completes the proof. �

D.5 Proof of Lemma 33

Recall that U0 = αB, where BB> is the best rank-r′ approximation of C ∈
1

2m

∑m
i=1 Sign (yi)

(
Ai +A>i

)
. Since rank(X?) = r, Sign-RIP implies∥∥∥∥C − ϕ(X?)

X?

‖X?‖F

∥∥∥∥ ≤ ϕ(X?)δ.
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Note that BB> is the best rank-r′ approximation of C. We have∥∥∥∥BB> − ϕ(X?)
X?

‖X?‖F

∥∥∥∥ ≤ ∥∥∥BB> − C∥∥∥+

∥∥∥∥C − ϕ(X?)
X?

‖X?‖F

∥∥∥∥
≤ |λr′+1(C)|+ ϕ(X?)δ

≤
∥∥∥∥C − ϕ(X?)

X?

‖X?‖F

∥∥∥∥+ ϕ(X?)δ

≤ 2ϕ(X?)δ.

Therefore, based on the definition of U0, we have∥∥∥∥U0U
>
0 − α2ϕ(X?)

X?

‖X?‖F

∥∥∥∥ ≤ 2α2ϕ(X?)δ.

Given this bound, one can write∥∥∥∥S0S
>
0 − α2ϕ(X?)

Σ

‖X?‖F

∥∥∥∥ =

∥∥∥∥V >(U0U
>
0 − α2ϕ(X?)

X?

‖X?‖F

)
V

∥∥∥∥
≤
∥∥∥∥U0U

>
0 − α2ϕ(X?)

X?

‖X?‖F

∥∥∥∥
≤ 2α2ϕ(X?)δ.

Similarly, we have∥∥∥S0E
>
0

∥∥∥ =

∥∥∥∥V >(U0U
>
0 − α2ϕ(X?)

X?

‖X?‖F

)
V⊥

∥∥∥∥ ≤ 2α2ϕ(X?)δ,∥∥∥E0E
>
0

∥∥∥ =

∥∥∥∥V >⊥ (U0U
>
0 − α2ϕ(X?)

X?

‖X?‖F

)
V⊥

∥∥∥∥ ≤ 2α2ϕ(X?)δ.

This completes the proof. �

D.6 Proof of Lemma 34

We prove this lemma by induction on t. First, due to Lemma 33, it is easy to verify that (39)-
(42) hold for t = 0. Now, suppose that (39)-(41) are satisfied for t < Tend. Moreover,
without loss of generality, we assume that ‖∆t‖F & dα2−O(

√
rκ2δ) for every 0 ≤ t ≤ Tend;

otherwise, the statement of the lemma holds. Together with the induction hypothesis on
‖Gt‖, this implies that ‖∆t‖F ≥ ζ, for ζ > 0 defined in Propositions 19, 20, and 21.

Bounding ‖Ft+1‖: In order to apply Proposition 21, first we verify its assumptions. One
can write

∥∥EtE>t ∥∥ = ‖Ft‖2 +‖Gt‖2. Therefore, we have
∥∥EtE>t ∥∥ ≤ σ1, due to the induction

hypothesis on ‖Ft‖ and ‖Gt‖. On the other hand,
∥∥StS>t ∥∥ ≤ 1.01σ1 and

∥∥EtS>t (StS
>
t )−1

∥∥ ≤
1/3 due to our induction hypothesis. It remains to show that (4r, δ, ε,S)-Sign-RIP with
ε ≥
√
dϕ̄α implies (4r, δ,

√
d ‖Gt‖2 ,S)-Sign-RIP. To show this, first note that (4r, δ, ε1,S)-

Sign-RIP implies (4r, δ, ε2,S)-Sign-RIP, for any ε2 ≤ ε1. Using this fact, it suffices to show
that

√
d ‖Gt‖2 ≤

√
dϕ̄α . ε, which is immediate due to our induction hypothesis on ‖Gt‖,
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and our choice of δ. Therefore, Proposition 21 holds and we have

‖Ft+1‖ ≤
(

1− η̄tλmin

(
StS

>
t

)
+ 3η̄tδ ‖∆t‖F

)
‖Ft‖+ 3η̄tδ ‖∆t‖F ‖St‖+ 6η̄t ‖∆t‖ ‖Gt‖ .

(97)

Due to our induction hypothesis, (97) can be simplified as

‖Ft+1‖ ≤
(
1 + 75

√
rσ1η̄tδ

)
‖Ft‖+ 80

√
rσ1.5

1 η̄tδ + 30σ1η̄t ‖Gt‖
≤‖Ft‖+ 100

√
rσ1.5

1 η̄tδ + 30σ1η̄t ‖Gt‖

≤‖Ft‖+ 100
√
rσ1.5

1 η̄tδ + 30σ1η̄t
√
αϕ̄δ

≤ηϕ̄2
(

100
√
rσ1.5

1 δ + 30σ1

√
αϕ̄δ

)
(t+ 2),

where in the first inequality, we use Lemma 57 and the induction hypothesis on ‖∆t‖.
Moreover, in the last inequality, we used the induction hypothesis on ‖Gt‖.

Bounding
∥∥St+1S

>
t+1

∥∥: Similar to our previous argument, it is easy to verify that the
assumptions of Proposition 20 are satisfied at iteration t. Therefore,

∥∥St+1S
>
t+1

∥∥ ≤ 1.01σ1

readily follows from Proposition 20.

Bounding
∥∥Ut+1U

>
t+1 −X?

∥∥: Note that∥∥∥Ut+1U
>
t+1 −X?

∥∥∥ ≤ ∥∥∥Σ− St+1S
>
t+1

∥∥∥+ 2
∥∥∥St+1E

>
t+1

∥∥∥+
∥∥∥Et+1E

>
t+1

∥∥∥ .
On the other hand, we have∥∥∥Et+1E

>
t+1

∥∥∥ ≤ ‖Ft+1‖2 + ‖Gt+1‖2 ≤ 0.5σ1.

where the last inequality is due to our choice of δ and α. Similarly, we can show that∥∥St+1E
>
t+1

∥∥ ≤ σ1. This together with
∥∥Σ− St+1S

>
t+1

∥∥ ≤ ∥∥St+1S
>
t+1

∥∥+σ1 ≤ 2.01σ1 leads to∥∥∥Ut+1U
>
t+1 −X?

∥∥∥ ≤ 5σ1.

Establishing St+1S
>
t+1 � 0: The proof follows directly from the application of Proposi-

tion 19. The details are omitted due to their similarity to the proof of (32) in Lemma 32.

Bounding
∥∥∥Et+1S

>
t+1

(
St+1S

>
t+1

)−1
∥∥∥: To streamline the proof, let Ht = EtS

>
t

(
StS

>
t

)−1
.

Our goal is to prove ‖Ht‖ ≤ 1/3 by showing the following recursive relationship.

Lemma 58 For every 0 ≤ s ≤ t, we have

‖Hs+1‖ ≤ (1− cη̄tσr) ‖Hs‖+ c′
√
rσ1η̄tδ, (98)

where c, c′ > 0 are some universal constants.

68



Convergence of Sub-gradient Method for Robust Matrix Recovery

The proof of Lemma 58 can be found in Appendix F.4. Equipped with this lemma, we are
ready to derive the desired result. First, due to Lemma 33, we have

‖H0‖ ≤
∥∥E0S

>
0

∥∥
λmin(S0S>0 )

≤ 2α2δϕ(X?)

α2ϕ(X?)
(

1√
rκ
− 2δ

) ≤ 4
√
rκδ,

provided that δ ≤ 1
4
√
rκ

. On the other hand, (98) implies that

‖Ht+1‖ −
c′

c

√
rκδ ≤ (1− cη̄tσr)t+1

(
‖H0‖ −

c′

c

√
rκδ

)
≤ ‖H0‖+

c′

c

√
rκδ.

Therefore, due to our choice of δ, we have

‖Ht+1‖ ≤
(

4
√
rκ+

2c′

c

√
rκ

)
δ .
√
rκδ ≤ 1/3.

Bounding ‖Gt+1‖: Due to Proposition 21, we have

‖Gt+1‖ ≤
(

1 + η̄2
t

(
2
∥∥∥EtS>t ∥∥∥2

+ ‖Et‖4 + 6
∥∥EtSt(StSt)−1

∥∥ ‖∆t‖
∥∥∥EtS>t ∥∥∥)

+7η̄tδ ‖∆t‖F ) ‖Gt‖ .

Moreover, one can write

η̄2
t

∥∥∥EtS>t ∥∥∥2
. η̄t ‖Et‖2 . rσ3

1 η̄
2
t δ

2t2 + σ2
1 η̄

2
tαϕ̄δt

2 .
√
rκδ log

(
1

α

)
.

Similarly, it can be shown that

η̄2
t ‖Et‖

4 ∨ η̄2
t ‖Ht‖ ‖∆t‖

∥∥∥EtS>t ∥∥∥ ∨ η̄tδ ‖∆t‖F .
√
rκδ log

(
1

α

)
.

Therefore, for some universal constant C > 0, we have

‖Gt+1‖ ≤
(

1 + C
√
rκδ log

(
1

α

))
‖Gt‖ .

Hence, we have

‖Gt+1‖ ≤
(

1 + C
√
rκδ log

(
1

α

))t+1

‖G0‖

≤
(

1 + C
√
rκδ log

(
1

α

))C′ log(1/α)
η̄tσr

‖G0‖

≤ exp

(
C
′′√

rκ2δ log

(
1

α

))
‖G0‖

≤ α−O(
√
rκ2δ) ‖G0‖

≤ α1−O(
√
rκ2δ)

√
ϕ̄δ,

where in the last inequality, we used the upper bound ‖G0‖ ≤ ‖E0‖ and Lemma 33.

69



Ma and Fattahi

Appendix E. Proofs of Empirical Loss with Noisy Measurements

E.1 Preliminaries

Given the update rule Ut+1 = Ut − 2ηtQtUt, we consider the following decomposition

Ut+1 = Ũt+1 +RtUt, where Ũt+1 = Ut −
2ηρt

‖∆t‖
∆tUt, Rt =

2ηρt

‖∆t‖
∆t − 2ηtQt, (99)

In the above decomposition, Ũt+1 resembles one iteration of GD on f̄`2(U) with the “effec-

tive” step-size ηρt

2‖∆t‖ . Moreover, the term RtUt captures the deviation of SubGM and GD.
Similar to the noiseless setting, the main idea behind our proof technique is to show that
Rt remains small throughout the iterations of SubGM, and consequently, SubGM behaves
similarly to GD. To this goal, we first provide an upper bound on ‖∆t‖F in terms of ‖∆t‖.

Lemma 59 Suppose that
√
d ‖Gt‖2 ≤ ‖∆t‖. Then, we have ‖∆t‖F ≤ 2(1 +

√
r) ‖∆‖.

Proof Due to our proposed signal-residual decomposition, one can write

‖∆t‖F ≤

∥∥∥∥∥∥∥V
(
StS

>
t − Σ

)
V > + V StE

>
t V
>
⊥ + V⊥EtS

>
t V
> + V⊥FtF

>
t V

>
⊥︸ ︷︷ ︸

rank-4r

∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥V⊥GtG>t V >⊥︸ ︷︷ ︸
small norm

∥∥∥∥∥∥
F

≤
√

4r
∥∥∥V (StS>t − Σ

)
V > + V StE

>
t V
>
⊥ + V⊥EtS

>
t V
> + V⊥FtF

>
t V

>
⊥

∥∥∥+
√
d ‖Gt‖2

≤
√

4r ‖∆t‖+
√

4r
∥∥∥V⊥GtG>t V >⊥ ∥∥∥+

√
d ‖Gt‖2

≤2(1 +
√
r) ‖∆t‖ ,

where the last inequality follows from the assumption 4r ≤ d and
√
d ‖Gt‖2 ≤ ‖∆t‖. This

completes the proof.

Equipped with this technical lemma, we next provide an upper bound on ‖Rt‖.

Lemma 60 Suppose that the measurements satisfy (4r, δ, ε,S)-Sign-RIP with δ < 1
4(1+

√
r)

,

ε =
√
d ‖Gt‖2, S = {X : ‖X‖F ≥ ζ} for ζ =

√
d ‖Gt‖2

(
1
δ ∨
√
d
)

, and
√
d ‖Gt‖2 ≤ ‖∆t‖.

Then, we have ‖Rt‖ ≤ 8(1 +
√
r)ηρtδ.

Proof One can write

Rt =
2ηρt

‖∆t‖
∆t −

2ηρt

‖Qt‖
Qt

= − 2ηρt

‖Qt‖

(
Qt − ϕ(∆t)

∆t

‖∆t‖F

)
− 2ηρtϕ(∆t)

‖Qt‖ ‖∆t‖F
∆t +

2ηρt

‖∆t‖
∆t

= − 2ηρt

‖Qt‖

(
Qt − ϕ(∆t)

∆t

‖∆t‖F

)
+
‖Qt‖ − ϕ(∆t)

‖∆t‖
‖∆t‖F

‖Qt‖
2ηρt

‖∆t‖
∆t.
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The above equality implies that

‖Rt‖ ≤
2ηρt

‖Qt‖

∥∥∥∥Qt − ϕ(∆t)
∆t

‖∆t‖F

∥∥∥∥+ 2ηρt ·

∣∣∣‖Qt‖ − ϕ(∆t)
‖∆t‖
‖∆t‖F

∣∣∣
‖Qt‖

≤
(

1

‖Qt‖

)
2ηρtϕ(∆t)δ,

(100)

where in the last inequality, we used Sign-RIP. Next, we provide an upper bound for 1/ ‖Qt‖.
Due to Sign-RIP, we have ‖Qt‖ ≥

(
‖∆t‖
‖∆t‖F

− δ
)
ϕ(∆t). On the other hand, due to Lemma 59,

we have ‖∆t‖
‖∆t‖F

≤ 1
2(1+

√
r)

. Combining these inequalities with (100), we have

‖Rt‖ ≤
2

1
2(1+

√
r)
− δ
· ηρtδ ≤ 8(1 +

√
r)ηρtδ,

where the last inequality is due to the assumption δ ≤ 1
4(1+

√
r)

.

E.2 Proof of Proposition 24

The proof is almost a line-by-line reconstruction of the proof of Proposition 19 in Ap-
pendix D.2. For brevity, we only provide a sketch of the proof. Similar to (82), one can
write

St+1 = S̃t+1 + V >RtUt. (101)

Given this decomposition, we characterize the growth rate of λmin(St+1S
>
t+1) by first resort-

ing to a more tractable lower bound. In particular, we defineM := (I + Ξ) S̃t+1S̃
>
t+1 (I + Ξ)>,

where Ξ := V >RtUtS̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
. Based on the definition of M , a series of inequal-

ities analogous to (83) can be used to show that λmin(St+1S
>
t+1) ≥ λmin(M). Therefore,

providing a lower bound for λmin(M) suffices. Similar to the proof of Proposition 19, we
first show that λmin(M) ≈ λmin(S̃t+1S̃

>
t+1):∣∣∣λmin(M)− λmin

(
S̃t+1S̃

>
t+1

)∣∣∣ ≤ 3 ‖Ξ‖λmin

(
S̃t+1S̃

>
t+1

)
≤ 192

√
rηρtλmin

(
S̃t+1S̃

>
t+1

)
.

Combining the above inequality with the one-step dynamic of λmin

(
S̃t+1S̃

>
t+1

)
from Propo-

sition 16 completes the proof. �

E.3 Proof of Proposition 25

Similar to the minimum eigenvalue dynamics, the proof is identical to the proof of Propo-
sition 20. Hence, we only provide a sketch. Similar to (85), one can write

Σ−St+1S
>
t+1 =Σ−S̃t+1S̃

>
t+1−V >RtUtS̃>t+1−S̃t+1U

>
t R
>
t V −V >RtUtU>t R>t V .
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Lemma 60 combined with an argument similar to Appendix D.3 leads to∥∥∥V >RtUtS̃>t+1 + S̃t+1U
>
t R
>
t V + V >RtUtU

>
t R
>
t V
∥∥∥ ≤ 193

√
rηρtσ1δ.

The above bound combined with the one-step dynamics of Σ− S̃t+1S̃
>
t+1 in Proposition 17

completes the proof for the one-step dynamics of Σ− St+1S
>
t+1. The dynamics of the cross

term (27) and the upper bound on
∥∥St+1S

>
t+1

∥∥ (28) can be deduced in a similar fashion.
The details are omitted for brevity. �

E.4 Proof of Proposition 26

The proof of Proposition 26 is identical to that of Proposition 21, with a key difference that
‖Rt‖ ≤ 16

√
rηρt. The details are omitted for brevity. �

E.5 Proof of Lemma 36

The proof is based on an inductive argument similar to the proof of Lemma 34 in Ap-
pendix D.6. Due to our special initialization, it is easy to verify that the statements of
the lemma are satisfied for t = 0. Now suppose that (50)-(55) are satisfied for t. Due to
Proposition 26, one can write

‖Gt+1‖ ≤
(
1 + 5η2ρ2t + 49

√
rη0ρ

tδ
)
‖Gt‖ ,

≤ exp
(
5η2ρ2t + 49

√
rηρtδ

)
‖Gt‖ ,

≤ ‖G0‖
t∏

s=0

exp
(
5η2ρ2s + 49

√
rη0ρ

sδ
)

≤ ‖G0‖ exp

(
t∑

s=0

5η2ρ2s + 49
√
rη0ρ

sδ

)

≤ ‖G0‖ exp

( ∞∑
s=0

5η2ρ2s + 49
√
rη0ρ

sδ

)

≤ ‖G0‖ exp

(
5η2

1− ρ2
+

49
√
rηδ

1− ρ

)
.

Due to ρ = 1−Θ(η/(κ log(1/α))) and η . 1/(κ log(1/α)), we have

5η2

1− ρ2
. ηκ log(1/α) ≤ 1/2, and

49
√
rηδ

1− ρ
.
√
rκδ log(1/α).

Combining the above inequalities leads

‖Gt+1‖ ≤ 2 ‖G0‖α−O(
√
rκδ) ≤ 2

√
2α1−O(

√
rκδ)
√
ϕ̄δ,

where the last inequality is due to our special initialization technique and Lemma 33. The
remaining bounds in Lemma 36 can be established similarly to Lemma 34. The details are
omitted for brevity. �
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Appendix F. Omitted Proofs

F.1 Proof of Lemma 50

To prove this lemma, we use the one-step discretization technique. First note that, for any
X ∈ Sk,ε, there exists a matrix in X ′ ∈ Sk such that ‖X −X ′‖F ≤ ε. Suppose that Nk,ξ
is a ξ-net of Sk where ξ ≥ ε. Based on the definition of ξ-net, there exists X ′′ ∈ Nk,ξ such
that ‖X ′ −X ′′‖F ≤ ξ. This implies that ‖X −X ′′‖F ≤ ‖X −X ′‖F + ‖X ′ −X ′′‖F ≤ 2ξ,
and hence, Nk,ξ is a 2ξ-net of Sk,ε. Given this fact, one can write the following chain of
inequalities for every Y ∈ S:

E [GY ] ≤ E

[
sup

X′∈Nk,ξ

1

m

m∑
i=1

Sign
(〈
Ai, X

′〉− si) 〈Ai, Y 〉 − ϕ(X ′)

〈
X ′

‖X ′‖F
, Y

〉]
︸ ︷︷ ︸

(A)

+E

[
sup

‖X−X′‖F≤2ξ

1

m

m∑
i=1

(
Sign (〈Ai, X〉−si)−Sign

(〈
Ai, X

′〉−si)) 〈Ai, Y 〉]︸ ︷︷ ︸
(B)

+ sup
‖X−X′‖F≤2ξ

〈
ϕ(X)

X

‖X‖F
− ϕ(X ′)

X ′

‖X ′‖F
, Y

〉
︸ ︷︷ ︸

(C)

.

(102)

We control each term in the above inequality separately.

Bounding (A). To control (A), note that 1
m

∑m
i=1 Sign (〈Ai, X ′〉 − si) 〈Ai, Y 〉−ϕ(X ′)

〈
X′

‖X′‖F
, Y
〉

isO (1/m)-sub-Gaussian and (A) is the supremum of the sub-Gaussian random variable over
a finite set Nk,ξ. Hence, the Maximum Inequality implies that

(A) .

√
dk

m
log

(
R

ξ

)
. (103)

Bounding (B). Invoking Hölder’s inequality, one can write

(B) ≤E

[
sup

‖X−X′‖F≤2ξ

(
1

m

m∑
i=1

∣∣Sign (〈Ai, X〉 − si)− Sign
(〈
Ai, X

′〉− si)∣∣) max
1≤i≤m

| 〈Ai, Y 〉 |

]
.
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Note that if | 〈Ai, X −X ′〉 | ≤ | 〈Ai, X ′ − λsi〉 |, then Sign(〈Ai, X ′〉 − λsi) = Sign(〈Ai, X〉 −
λsi). Therefore, the above term can be further bounded by

(B)

≤E

[
sup

‖X−X′‖F≤2ξ

(
1

m

m∑
i=1

1
(
|
〈
Ai, X−X ′

〉
| ≥ |

〈
Ai, X

′〉−si|)) max
1≤i≤m

| 〈Ai, Y 〉 |

]

≤E

[
sup

‖X−X′‖F≤2ξ

(
1

m

m∑
i=1

1
(
|
〈
Ai, X −X ′

〉
| ≥ t

)
+ 1

(
|
〈
Ai, X

′〉− si| ≤ t)) max
1≤i≤m

| 〈Ai, Y 〉 |

]

≤E

[
sup

‖X−X′‖F≤2ξ

(
1

m

m∑
i=1

1
(
|
〈
Ai, X −X ′

〉
| ≥ t

))
max

1≤i≤m
| 〈Ai, Y 〉 |

]
︸ ︷︷ ︸

(B1)

+ E

[
sup

X′∈Nk,ξ

(
1

m

m∑
i=1

1
(
|
〈
Ai, X

′〉− si| ≤ t)) max
1≤i≤m

| 〈Ai, Y 〉 |

]
︸ ︷︷ ︸

(B2)

.

(104)
For (B1), we have

(B1) ≤ E

[(
1

m

m∑
i=1

1

(
‖Ai‖F ≥

t

2ξ

))
max

1≤i≤m
| 〈Ai, Y 〉 |

]

≤ E
[
1

(
‖Ai‖F ≥

t

2ξ

)]
E
[
max
j 6=i
| 〈Aj , Y 〉 |

]
+ E

[
1

(
‖Ai‖F ≥

t

2ξ

)
| 〈Ai, Y 〉 |

]
≤ O

(
e
−C t2

ξ2
√

log (m)

)
+ E

[
1

(
‖Ai‖F ≥

t

2ξ

)
| 〈Ai, Y 〉 |

]
,

where C > 0 is a universal constant and t/ξ ≥
√
d. Furthermore, applying Cauchy-Schwarz

inequality, we have

E
[
1

(
‖Ai‖F ≥

t

2ξ

)
| 〈Ai, Y 〉 |

]
≤
√
P (2ξ ‖Ai‖F ≥ t)

√
E
[
〈Ai, Y 〉2

]
. e
−C t2

ξ2 .

Hence, we conclude that (B1) . e
−C t2

ξ2
√

log (m).
Now we turn to bound (B2). Note that

(
1
m

∑m
i=1 1 (| 〈Ai, X ′〉 − si| ≤ t)

)
max1≤i≤m | 〈Ai, Y 〉 |

is O (log(m)/m)-sub-Gaussian, and Nk,ξ is a finite set. Hence, the Maximum Inequality
yields

(B2) ≤ sup
X′∈Nk,ξ

E

[(
1

m

m∑
i=1

1
(
|
〈
Ai, X

′〉− si| ≤ t)) max
1≤i≤m

| 〈Ai, Y 〉 |

]

+O

(√
dk log(m) log (R/ξ)

m

)
.

(105)
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For the first part, one can write

E

[(
1

m

m∑
i=1

1
(
|
〈
Ai, X

′〉− si| ≤ t)) max
1≤i≤m

| 〈Ai, Y 〉 |

]

≤E
[
1
(
|
〈
Ai, X

′〉−si|≤ t)]E[max
j 6=i
| 〈Ai, Y 〉 |

]
+E

[
1
(
|
〈
Ai, X

′〉−si|≤ t) | 〈Ai, Y 〉 |]
≤
√

log(m)
t

ζ
.

Therefore, we conclude that (B) .
√

log(m) tζ+e
−C t2

ξ2
√

log (m)+

√
dk log(m) log(R/ξ)

m . Finally,

it remains to bound (C) in (102).

Bounding (C). We have

(C) = sup
‖X−X′‖F≤2ξ

{(
ϕ(X)−ϕ(X ′)

)〈 X

‖X‖F
, Y

〉
+ϕ(X ′)

〈
X

‖X‖F
− X ′

‖X ′‖F
, Y

〉}
≤ sup
‖X−X′‖F≤2ξ

{
ϕ(X)− ϕ(X ′)

}
+ sup
‖X−X′‖F≤2ξ

∥∥∥∥ X

‖X‖F
− X ′

‖X ′‖F

∥∥∥∥
F

.

For the first part, we use the mean value theorem to write

|ϕ(X ′)− ϕ(X)| ≤ ‖∇ϕ(Z)‖F
∥∥X ′ −X∥∥

F
≤ 2 ‖∇ϕ(Z)‖F ξ,

where Z = λX + (1− λ)X ′, λ ∈ [0, 1]. Note that ∇ϕ(Z) =
√

2
πpE

[
s2Z
‖Z‖4F

e
− s2

2‖Z‖2
F

]
. Hence,

we have

sup
‖Z‖F≥ζ

‖∇ϕ(Z)‖F . sup
‖Z‖F≥ζ

E

[
s2

‖Z‖3F
e
− s2

2‖Z‖2
F

]

≤ 1

ζ
sup
‖Z‖F≥ζ

E

[
s2

‖Z‖2F
e
− s2

2‖Z‖2
F

]
.

1

ζ
.

For the second part, we have

sup
‖X−X′‖F≤2ξ

∥∥∥∥ X

‖X‖F
− X ′

‖X ′‖F

∥∥∥∥
F

≤ sup
‖X−X′‖F≤2ξ

∥∥∥∥X −X ′‖X‖F

∥∥∥∥
F

+

∥∥∥∥X (‖X ′‖F − ‖X‖F )

‖X‖F ‖X ′‖F

∥∥∥∥
F

≤ 4ξ

ζ
.

Therefore, we conclude that (C) . ξ
ζ .
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Combining the derived upper bounds for (A), (B), and (C), we have

E[GY ] ≤(A) + (B) + (C)

.

√
dk

m
log

(
R

ξ

)
+
√

log(m)
t

ζ
+ e
−C t2

ξ2
√

log (m)

+

√
dk log(m) log (R/ξ)

m
+
ξ

ζ
,

(106)

provided that ξ ≥ ε and t/ξ ≥
√
d. Let ξ � ζ

√
k/m and t � ζ

√
dk log (m) /m. Clearly,

these choices of parameters satisfy t/ξ ≥
√
d. Moreover, ξ � ζ

√
k/m together with the

assumption ε . ζ
√
k/m implies that ε ≤ ξ. Finally, plugging these values in (106) leads to

E[GY ] .

√
dk

m
log2(m) log

(
R

ζ

)
,

for every Y ∈ S. This in turn implies

sup
Y ∈Sk

E[GY ] ≤ sup
Y ∈S

E[GY ] .

√
dk

m
log2(m) log

(
R

ζ

)
,

which completes the proof. �

F.2 Proof of Lemma 54

To prove 0.5 ≤
∥∥∥∥StS>t (S̃t+1S̃

>
t+1

)−1
∥∥∥∥ ≤ 2, it suffices to show that 0.5 ≤

λmin

(
S̃t+1S̃

>
t+1

(
StS

>
t

)−1
)
≤
∥∥∥S̃t+1S̃

>
t+1

(
StS

>
t

)−1
∥∥∥ ≤ 2. For brevity, we only show

0.5 ≤ λmin

(
S̃t+1S̃

>
t+1

(
StS

>
t

)−1
)

, as the other part of the inequality can be proven in a

similar fashion. One can write

S̃t+1S̃
>
t+1 =StS

>
t −η̄tStS>t

(
StS

>
t −Σ

)
−η̄t

(
StS

>
t −Σ

)
StS

>
t −2η̄tStEtE

>
t S
>
t

+ η̄2
t

(
StS

>
t − Σ

)
StS

>
t

(
StS

>
t − Σ

)
+ η̄2

t StE
>
t EtE

>
t EtS

>
t

+ η̄2
t

(
StS

>
t − Σ

)
StEtE

>
t S
>
t + η̄2

t StEtE
>
t S
>
t

(
StS

>
t − Σ

)
.

(107)

Note that the eigenvalues of S̃t+1S̃
>
t+1

(
StS

>
t

)−1
are real and nonnegative, due to its simi-

larity to
(
StS

>
t

)−1/2
S̃t+1S̃

>
t+1

(
StS

>
t

)−1/2
. One the other hand, one can write

S̃t+1S̃
>
t+1

(
StS

>
t

)−1

=I + η̄tΣ + η̄tStS
>
t Σ

(
StS

>
t

)−1
− 2η̄tStS

>
t − 2η̄tStEtE

>
t S
>
t

(
StS

>
t

)−1

+η̄2
t

(
StS

>
t −Σ

)
StS

>
t

(
StS

>
t −Σ

)(
StS

>
t

)−1
+η̄2

t StE
>
t EtE

>
t EtS

>
t

(
StS

>
t

)−1

+η̄2
t

(
StS

>
t −Σ

)
StEtE

>
t S
>
t

(
StS

>
t

)−1
+η̄2

t StEtE
>
t S
>
t

(
StS

>
t −Σ

)(
StS

>
t

)−1
.
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We will show that every term in the above decomposition, except for the first term, is in
the order of O(η̄tσ1). First, note that

‖η̄tΣ‖ =

∥∥∥∥η̄tStS>t Σ
(
StS

>
t

)−1
∥∥∥∥ = O(η̄tσ1).

Similarly, we have ∥∥∥∥2η̄tStS
>
t + 2η̄tStEtE

>
t S
>
t

(
StS

>
t

)−1
∥∥∥∥

≤ 2η̄t

∥∥∥StS>t ∥∥∥+ 2η̄t

∥∥∥∥StEtE>t S>t (StS>t )−1
∥∥∥∥

= 2η̄t

∥∥∥StS>t ∥∥∥+ 2η̄t

∥∥∥EtE>t ∥∥∥∥∥∥∥S>t (StS>t )−1
St

∥∥∥∥
≤ 2η̄t

∥∥∥StS>t ∥∥∥+ 2η̄t

∥∥∥EtE>t ∥∥∥
= O(η̄tσ1).

It is easy to see that all the remaining terms are in the order of O(η̄tσ1); we omit their
proofs for brevity. Combining the above bounds, we obtain

λmin

(
S̃t+1S̃

>
t+1

(
StS

>
t

)−1
)

= 1−O(η̄tσ1) ≥ 1/2,

where the last inequality is due to our choice of η̄t. This in turn implies that∥∥∥∥StS>t (S̃t+1S̃
>
t+1

)−1
∥∥∥∥ ≤ 2. Similarly, we can show that

∥∥∥StS>t (St+1S
>
t+1

)−1
∥∥∥ ≤ 3, by

proving λmin

(
St+1S

>
t+1(StS

>
t )−1

)
≥ 1/3. This can be shown in an analogous fashion, after

noting that

St+1S
>
t+1 = S̃t+1S̃

>
t+1 + V >RtUtS̃

>
t+1 + S̃t+1U

>
t R
>
t V + V >RtUtU

>
t R
>
t V︸ ︷︷ ︸

perturbation

.

Similar to the proof of Proposition 20, it can be shown that the norm of the perturba-
tion term is upper bounded by 4η̄tδ ‖∆t‖F ≤ 1/6, due to our choice of δ and η, and our
assumptions on

∥∥EtE>t ∥∥ and
∥∥StS>t ∥∥.

Finally, we prove the second statement by providing an upper bound for∥∥∥∥Ẽt+1S̃
>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥. Due to the first part of the lemma, one can write∥∥∥∥Ẽt+1S̃

>
t+1

(
S̃t+1S̃

>
t+1

)−1
∥∥∥∥ ≤ ∥∥∥∥Ẽt+1S̃

>
t+1

(
StS

>
t

)−1
∥∥∥∥∥∥∥∥StS>t (S̃t+1S̃

>
t+1

)−1
∥∥∥∥

≤ 2

∥∥∥∥Ẽt+1S̃
>
t+1

(
StS

>
t

)−1
∥∥∥∥ .

On the other hand, we have

Ẽt+1S̃
>
t+1 = EtS

>
t + η̄tEtS

>
t (Σ− StS>t )− η̄tEt(S>t St + E>t Et)S

>
t

+ η̄2
tEt(S

>
t St + E>t Et)S

>
t

(
StS

>
t − Σ

)
− η̄tEtE>t EtS>t + η̄2

tEt

(
S>t St + E>t Et

)
E>t EtS

>
t .
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Let us define Ht = EtS
>
t

(
StS

>
t

)−1
. Based on this definition, one can verify that

Ẽt+1S̃
>
t+1

(
StS

>
t

)−1

=Ht + η̄tHtStS
>
t (Σ− StS>t )

(
StS

>
t

)−1
− η̄tHtStS

>
t − 2η̄tEtE

>
t Ht

+ η̄2
tHt

(
StS

>
t

)2 (
StS

>
t − Σ

)(
StS

>
t

)−1
+ η̄2

tEt

(
S>t St + E>t Et

)
E>t Ht

+ η̄2
tEtE

>
t HtStS

>
t

(
StS

>
t − Σ

)(
StS

>
t

)−1
.

Now, note that ∥∥∥∥η̄tHtStS
>
t (Σ− StS>t )

(
StS

>
t

)−1
∥∥∥∥ ≤ η̄t ‖Ht‖

∥∥∥Σ− StS>t
∥∥∥

. η̄tσ1 ‖Ht‖ ≤
1

12
‖Ht‖ .

Similarly, we have
∥∥η̄tHtStS

>
t

∥∥ ≤ 1
12 ‖Ht‖ and

∥∥η̄tEtE>t Ht

∥∥ ≤ 1
12 ‖Ht‖. Moreover, we have∥∥∥∥η̄2

tHt

(
StS

>
t

)2 (
StS

>
t − Σ

)(
StS

>
t

)−1
∥∥∥∥ ≤ η̄2

t ‖Ht‖
∥∥∥StS>t ∥∥∥∥∥∥StS>t − Σ

∥∥∥
. (η̄tσ1)2 ‖Ht‖ ≤

1

12
‖Ht‖ .

In a similar fashion, it can be shown that
∥∥η̄2

tEt
(
S>t St + E>t Et

)
E>t Ht

∥∥ ≤ 1
12 ‖Ht‖

and
∥∥∥η̄2

tEtE
>
t HtStS

>
t

(
StS

>
t − Σ

) (
StS

>
t

)−1
∥∥∥ ≤ 1

12 ‖Ht‖. Combining the derived bounds

completes the proof. �

F.3 Proof of Lemma 55

To prove this lemma, we show that

St+1Nt = (I + Ξ)StNt (108)

for some matrix Ξ with ‖Ξ‖ < 1. Before proceeding, we show that the above inequality is
enough to prove the invertibility of St+1Nt. First, note that StNt = MtDt. Therefore, the
matrix MtDt is invertible due to the assumption StS

>
t � 0. On the other hand, ‖Ξ‖ < 1

implies that I + Ξ is invertible, thereby completing the proof. To verify (108), it suffices to
show that Ξ = St+1Nt (StNt)

−1 − I has norm less than one. To this goal, we write

Ξ =St+1Nt (StNt)
−1 − I

=V >
(
Ut − η̄t

(
UtU

>
t −X?

)
Ut +RtUt

)
Nt

(
V >UtNt

)−1
−
(
V >UtNt

)(
V >UtNt

)−1

=V >
(
−η̄t

(
UtU

>
t −X?

)
+Rt

)
UtNt

(
V >UtNt

)−1

(a)
=V >

(
−η̄t

(
UtU

>
t −X?

)
+Rt

)
UtS

>
t

(
StS

>
t

)−1

=V >
(
−η̄t

(
UtU

>
t −X?

)
+Rt

)
V + V >

(
−η̄t

(
UtU

>
t −X?

)
+Rt

)
V⊥Ht,
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where Ht is defined as EtS
>
t

(
StS

>
t

)−1
. Moreover, in (a), we used the following chain of

equalities

Nt

(
V >UtNt

)−1
=Nt(StNt)

−1=NtD
−1
t M

>
t =NtDtM

>
t MtD

−2
t M>t =S>t

(
StS

>
t

)−1

Therefore, we have

‖Ξ‖ ≤
∥∥∥−η̄t (UtU>t −X?

)
+Rt

∥∥∥ (1 + ‖Ht‖)

≤ 2η̄t ‖∆t‖+ 6η̄tδ ‖∆t‖F ≤ 3η̄t ‖∆t‖ ≤ 1/2.
(109)

Here we used Lemma 57, ‖∆t‖ . σ1, ‖Rt‖ ≤ 3η̄tδ ‖∆t‖F , ‖Ht‖ ≤ 1/3, and our assumption
on η. This completes the proof. �

F.4 Proof of Lemma 58

First, note that

Es+1S
>
s+1 = EsS

>
s + η̄tEsS

>
s (Σ− SsS>s )− η̄tEs(S>s Ss + E>s Es)S

>
s

− η̄tEsE>s EsS>s + η̄2
tEs(S

>
s Ss + E>s Es)S

>
s

(
SsS

>
s − Σ

)
+ η̄2

tEs

(
S>s Ss + E>s Es

)
E>s EsS

>
s + V >⊥ RsUsS

>
s+1

+ Es+1U
>
s R
>
s V + V >⊥ RsUsU

>
s R
>
s V.

(110)

On the other hand, one can write

Ss+1S
>
s+1 =SsS

>
s +η̄tSsS

>
s

(
Σ−SsS>s

)
+η̄t

(
Σ−SsS>s

)
SsS

>
s −2η̄tSsE

>
s EsS

>
s

+ η̄2
t

(
Σ− SsS>s

)
SsS

>
s

(
Σ− SsS>s

)
+ η̄2

t SsE
>
s EsE

>
s EsS

>
s

− η̄2
t

(
Σ− SsS>s

)
SsE

>
s EsS

>
s − η̄2

t SsE
>
s EsS

>
s

(
Σ− SsS>s

)
+ V >RsUsS

>
s+1 + Ss+1U

>
s R
>
s V + V >RsUsU

>
s R
>
s V.

(111)

Pre-multiplying (111) with Hs leads to a relationship between Ss+1S
>
s+1 and Es+1S

>
s+1:

Es+1S
T
s+1 = HsSs+1S

>
s+1 + T

=⇒ Hs+1 = Hs + T (Ss+1Ss+1)−1,

where simple algebra reveals that

T = −Hs

(
η̄tΣSsS

>
s − 2η̄tSsE

>
s EsS

>
s + η̄2

tΣSsS
>
s

(
Σ− SsS>s

)
+η̄2

t SsE
>
s EsE

>
s EsS

>
s − η̄2

tΣSsE
>
s EsS

>
s − η̄2

t SsE
>
s EsS

>
s

(
Σ− SsS>s

))
− 2η̄tEsE

>
s EsS

>
s + η̄2

tEsE
>
s EsS

>
s

(
SsS

>
s − Σ

)
+ η̄2

tEsE
>
s EsE

>
s EsS

>
s

+ V >⊥ RsUsS
>
s+1 + Es+1U

>
s R
>
s V + V >⊥ RsUsU

>
s R
>
s V

−Hs

(
V >RsUsS

>
s+1 + Ss+1U

>
s R
>
s V + V >RsUsU

>
s R
>
s V
)
.
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For simplicity, we define D = SsS
>
s

(
Ss+1S

>
s+1

)−1
in the sequel. Based on the definition of

T , one can write

Hs + T (Ss+1Ss+1)−1 = HsAs +Bs + Cs, (112)

where the matrices As, Bs, and Cs are defined as

As =I − η̄tΣD − η̄2
tΣ
(
SsS

>
s

)
Σ
(
SsS

>
s

)−1
D + η̄2

tΣSsS
>
s D,

Bs = − 2η̄tSsE
>
s HsD − η̄2

t SsE
>
s EsE

>
s HsD

− η̄2
tΣSsE

>
s HsD − η̄2

t SsE
>
s EsS

>
s Σ

(
SsS

>
s

)−1
D − η̄2

t SsE
>
s EsS

>
s D

−
(
V >RsUsS

>
s+1 + Ss+1U

>
s R
>
s V + V >RsUsU

>
s R
>
s V
)(

Ss+1S
>
s+1

)−1
,

Cs =− 2η̄tEsE
>
s HsD + η̄2

tEsE
>
s HsSsS

>
s

(
SsS

>
s − Σ

)(
Ss+1S

>
s+1

)−1

+
(
V >⊥ RsUsS

>
s+1 + Es+1U

>
s R
>
s V + V >⊥ RsUsU

>
s R
>
s V
)(

Ss+1S
>
s+1

)−1

+ η̄2
tEsE

>
s EsE

>
s HsD.

To provide an upper bound on ‖As‖, we define P =
(
I + η̄tSsS

>
s Σ

(
SsS

>
s

)−1 − η̄tSsS>s
)
D

and Q = I + η̄tSsS
>
s Σ

(
SsS

>
s

)−1 − η̄tSsS>s . We have

‖As‖2 = ‖I − η̄tΣP‖2 = λmax

(
(I − η̄tPΣ)> (I − η̄tΣP )

)
≤ 1 + λmax

(
−η̄tΣP − η̄tP>Σ + η̄2

tP
>Σ2P

)
= 1− η̄tλmin

(
ΣP + P>Σ− η̄tP>Σ2P

)
≤ 1− η̄tλmin

(
ΣP + P>Σ− P>ΣP

)
,

where we used the fact that η . 1
σ1

in the last inequality. Now it suffices to provide a lower

bound for λmin

(
ΣP + P>Σ− P>ΣP

)
. To this goal, we use the following intermediate

lemma.

Lemma 61 (Theorem 4.1. in Eisenstat and Ipsen (1998)) Given a diagonal matrix
Λ ∈ Rd×d and its perturbed variant Λ′ = ΛR for some R ∈ Rd×d, we have

min
k
|λi(Λ′)− λk(Λ)| ≤ |λi(Λ′)|

∥∥I −R−1
∥∥ .

for every i = 1, 2, · · · , d.

To apply this lemma, we choose Λ = Σ and R = P + Σ−1P>Σ − Σ−1P>ΣP , which leads
to the equality ΣP + P>Σ− P>ΣP = ΣR. Given this definition and Lemma 61, we have

σr
1 + ‖I −R−1‖

≤ λmin(ΣR). (113)
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Now, we provide an upper bound for
∥∥I −R−1

∥∥. First note that
∥∥I −R−1

∥∥ ≤ ‖I −R‖∥∥R−1
∥∥.

On the other hand

‖I −R‖ =
∥∥∥Σ−1

(
P> − I

)
Σ (I − P )

∥∥∥ ≤ ‖I − P‖2 ≤ (‖I −D‖+ ‖(I −Q)D‖)2 .

Using a similar approach to the proof of Lemma 54, we have

‖I −D‖ =

∥∥∥∥(St+1S
>
t+1 − StS>t

)(
St+1S

>
t+1

)−1
∥∥∥∥ ≤ 0.1.

On the other hand, one can write

‖(I −Q)D‖ ≤ ‖I −Q‖ ‖D‖
(a)

≤ 3 ‖I −Q‖

= η̄t

∥∥∥∥StS>t (Σ− StS>t
)(

StS
>
t

)−1
∥∥∥∥

≤ η̄t
∥∥∥Σ− StS>t

∥∥∥
≤ 0.1,

where, in (a), we used Lemma 54. Therefore, we have ‖I −R‖ ≤ 0.04. Next, we provide
an upper bound for

∥∥R−1
∥∥. Note that

R = P + Σ−1P>Σ (I − P ) .

By Weyl’s inequality, we have

σmin(R) ≥ σmin(P )−
∥∥∥Σ−1P>Σ (I − P )

∥∥∥
≥ σmin(P )− ‖P‖ ‖I − P‖
≥ 0.8− 1.2× 0.2 = 0.56.

Here we used the fact that ‖I − P‖ ≤ 0.2. The above inequality implies that
∥∥R−1

∥∥ =
1/σmin(R) ≤ 2. Combining the above bounds, we have∥∥I −R−1

∥∥ ≤ ‖I −R‖ ∥∥R−1
∥∥ ≤ 0.08.

This together with (113) implies that

λmin (ΣR) ≥ 0.92σr.

Therefore, we have

‖As‖2 ≤ 1− 0.92η̄tσr =⇒ ‖As‖ ≤ 1− 0.46η̄tσr. (114)

Next, we provide an upper bound for ‖Bs‖. Simple algebra reveals that∥∥∥2η̄tSsE
>
s HsD+η̄2

t SsE
>
s EsE

>
s HsD+η̄2

tΣSsE
>
s HsD

+η̄2
t SsE

>
s EsS

>
s Σ

(
SsS

>
s

)−1
D + η̄2

t SsE
>
s EsS

>
s D

∥∥∥∥
. η̄t

∥∥∥SsE>s ∥∥∥ ‖Hs‖ .
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Next, we provide a bound for the remaining terms in Bs. We have∥∥∥∥V >⊥ RsUsS>s+1

(
Ss+1S

>
s+1

)−1
∥∥∥∥

≤ ‖Rs‖
∥∥∥∥(I − η̄t (UsU>s −X?

)
+Rs

)−1
Us+1S

>
s+1

(
Ss+1S

>
s+1

)−1
∥∥∥∥

≤ ‖Rs‖
∥∥∥∥(I − η̄t (UsU>s −X?

)
+Rs

)−1
∥∥∥∥∥∥∥∥Us+1S

>
s+1

(
Ss+1S

>
s+1

)−1
∥∥∥∥

. η̄tδ ‖∆s‖F

∥∥∥∥Us+1S
>
s+1

(
Ss+1S

>
s+1

)−1
∥∥∥∥ .

To proceed, we provide an upper bound for
∥∥∥Us+1S

>
s+1

(
Ss+1S

>
s+1

)−1
∥∥∥.∥∥∥∥Us+1S

>
s+1

(
Ss+1S

>
s+1

)−1
∥∥∥∥

≤
∥∥∥∥V S>s+1S

>
s+1

(
Ss+1S

>
s+1

)−1
+ V⊥Es+1S

>
s+1

(
Ss+1S

>
s+1

)−1
∥∥∥∥

≤ 1 + ‖Hs+1‖ .

Similarly, one can show that∥∥∥∥V >⊥ RsUsU>s R>s V (Ss+1S
>
s+1

)−1
∥∥∥∥ . η̄2

t δ
2ϕ̄4 ‖∆s‖2F (1 + ‖Hs‖) . η̄tδ ‖∆s‖F .

Combining the derived bounds leads to

‖Bs‖ . η̄t
∥∥∥SsE>s ∥∥∥ ‖Hs‖+ η̄tδ ‖∆s‖F (1 + ‖Hs+1‖). (115)

In a similar way, one can show that

‖Cs‖ . η̄t
∥∥∥EsE>s ∥∥∥ ‖Hs‖+ η̄tδ ‖∆s‖F (1 + ‖Hs+1‖). (116)

Substituting (114), (115), and (116) in (112) yields

(1− c1η̄tδ ‖∆s‖F ) ‖Hs+1‖ ≤
(

1− 0.46η̄tσr + c2η̄t

(∥∥∥SsE>s ∥∥∥+
∥∥∥EsE>s ∥∥∥)

+c3η̄tδ ‖∆s‖F ) ‖Hs‖+ c4η̄tδ ‖∆s‖F

=⇒ ‖Hs+1‖≤

(
1−0.46η̄tσr+c2η̄t

(∥∥SsE>s ∥∥+
∥∥EsE>s ∥∥)+c3η̄tδ ‖∆s‖F

1− c1η̄tδ ‖∆s‖F

)
‖Hs‖

+
c4η̄tδ ‖∆s‖F

1− c1η̄tδ ‖∆s‖F
=⇒ ‖Hs+1‖ ≤ (1− c5η̄tσr) ‖Hs‖+ c6

√
rσ1η̄tδ,

where the last inequality follows from the assumed upper bound on δ, as well as (37)-(39).
This completes the proof. �
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F.5 Proof of Lemma 37

We first prove the upper bound. One can write

log

(
T∏
t=0

(
1 + αρt

))
=

T∑
t=0

log
(
1 + αρt

)
≤
∞∑
t=0

αρt =
α

1− ρ
.

Hence, we have
∏T
t=0

(
1 + αρt

)
≤ exp

(
α

1−ρ

)
. For the lower bound, we have

log

( ∞∏
t=0

(
1 + αρt

))
=

T∑
t=0

log
(
1 + αρt

)
≥

T∑
t=0

αρt

1 + αρt

≥
T∑
t=0

αρt

1 + α

≥ α

1 + α
TρT .

Hence, we have
∏T
t=0

(
1 + αρt

)
≥ exp

(
α

1+αTρ
T
)

. �

F.6 Proof of Lemma 38

We start with the proof of the first statement. We consider two cases:

- Suppose that ‖∆t‖ ≤ 0.01σrρ
t. Recall that Ut+1 = Ut − η0ρt

‖∆t‖∆tUt +RtUt. Hence, we
have

∆t+1 =

(
Ut −

η0ρ
t

‖∆t‖
∆tUt +RtUt

)(
U>t −

η0ρ
t

‖∆t‖
U>t ∆>t + U>t R

>
t

)
−X?.

The above equality leads to

‖∆t+1‖ ≤ ‖∆t‖+ ηρt
∥∥∥UtU>t ∥∥∥ (2 + 2 ‖Rt‖)

+ 2
∥∥∥UtU>t ∥∥∥ ‖Rt‖+

∥∥∥UtU>t ∥∥∥ ‖Rt‖2 + η2ρ2t
∥∥∥UtU>t ∥∥∥

(a)

≤ ‖∆t‖+ 4σ1ηρ
t + 4σ1ηδρ

t ‖∆t‖F + 2σ1η
2ρ2t

≤ 0.02σrρ
t.

On the other hand, we know that γt+1 ≤ 5 ‖∆t+1‖, which, together with the above
inequality, implies that γt+1 ≤ 0.1σr.

- Suppose that ‖∆t‖ ≥ 0.01σrρ
t. Therefore, we have η0ρt

‖∆t‖ .
1
σ1

. On the other hand,
since γt ≤ 0.1σr, we have

λmin

(
StS

>
t

)
≥ 0.9σr,

∥∥∥StS>t ∥∥∥ ≤ 1.1σ1,
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and ∥∥∥EtE>t ∥∥∥ ≤ 0.1σr,

∥∥∥∥EtS>t (StS>t )−1
∥∥∥∥ ≤ 0.2.

This implies that the assumptions of Propositions 24, 25, and 26 are satisfied at
iteration t, and we have

γt+1 ≤
∥∥∥Σ− St+1S

>
t+1

∥∥∥+ 2
∥∥∥St+1E

>
t+1

∥∥∥+ ‖Ft+1‖2 + ‖Gt+1‖2

(a)

≤
(

1− Ω(1)
σrη0ρ

t

γt

)
γt +O(1)

√
rσ1η0δρ

t +O (1)
σrη0ρ

t

‖∆t‖
‖Gt‖2

≤ γt − Ω
(
σrη0ρ

t
)

+O (1)σrη0ρ
t ‖Gt‖

2

‖∆t‖
(b)

≤ γt − Ω
(
σrη0ρ

t
)

+O
(
σrη0ρ

t/
√
d
)

≤ γt − Ω
(
σrη0ρ

t
)
,

where (a) follows from the one-step dynamics of the signal, cross, and residual terms
derived in Propositions 24, 25, and 26. Moreover, (b) follows from ‖∆t‖ ≥

√
d ‖Gt‖2.

Therefore, we have γt+1 ≤ γt ≤ 0.1σr.

To complete the proof of this lemma, it suffices to show that if ‖∆t+1‖ ≤
√
d ‖Gt+1‖2,

then ‖∆t+1‖ ≤
√
dα1−O(

√
rκδ). Note that based on our assumption and Phase 1 of the proof

of Theorem 27, the one-step dynamic of Gs holds for every 0 ≤ s ≤ t + 1. Therefore, an
analysis similar to Lemma (36) leads to ‖∆t+1‖ ≤

√
dα1−O(

√
rκδ). �

F.7 Proof of Lemma 39

Since ‖∆t0+T3−1‖ ≤ 0.02σrρ
t0−1, an argument similar to the proof of Lemma 38 can be

invoked to show that ‖∆t0+T3‖ ≤ 0.03σrρ
t0 and γt0+T3 ≤ 0.15σrρ

t0 . Let ∆t be the first
time that ‖∆t0+T3+∆t‖ ≤ 0.02σrρ

t0+∆t. Note that since ‖∆t0+T3‖ > 0.02σrρ
t0 , we have

∆t ≥ 1. This implies that, for every 0 ≤ s ≤ ∆t − 1, we have ‖∆t0+T3+s‖ > 0.02σrρ
t0+s.

Therefore, (117) implies that γt0+T3+s+1 ≤ γt0+T3+s − Ω(σrηρ
t0+s). This in turn leads to

γt0+T3+∆t ≤ γt0+T3 − Ω

(
∆t−1∑
s=0

σrηρ
t0+s

)

≤ 0.15σrρ
t0 − Ω

(
∆t−1∑
s=0

σrηρ
t0+s

)

= σrρ
t0

(
0.15− Ω

(
∆t−1∑
s=0

ηρs

))
.

Let us assume that ∆t . (κ/η) log(1/α). Under this assumption, we have ρs = Ω(1) for

every s ≤ ∆t. This implies that Ω
(∑∆t−1

s=0 ηρs
)

= Ω(η∆t). Therefore, upon choosing

∆t = Ω(1/η), we have γt0+T3+∆t ≤ 0.15 − Ω
(∑∆t−1

s=0 ηρs
)
≤ 0. This implies that, there

must exist t̃ ≤ ∆t such that γt0+T3+t̃ ≤ 0.02σrρ
t0+t̃. This completes the proof. �
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