
Journal of Machine Learning Research 24 (2023) 1-59 Submitted 3/22; Published 5/23

Weisfeiler and Leman go Machine Learning: The Story so far

Christopher Morris morris@cs.rwth-aachen.de
Department of Computer Science
RWTH Aachen University
Aachen, Germany

Yaron Lipman yaron.lipman@weizmann.ac.il
Meta AI Research
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science
Rehovot, Israel

Haggai Maron hmaron@nvidia.com
NVIDIA Research
Tel Aviv, Israel

Bastian Rieck bastian.rieck@helmholtz-muenchen.de
AIDOS Lab, Institute of AI for Health
Helmholtz Zentrum München and Technical University of Munich
Munich, Germany

Nils M. Kriege nils.kriege@univie.ac.at
Faculty of Computer Science, University of Vienna, Vienna, Austria
Research Network Data Science, University of Vienna, Vienna, Austria

Martin Grohe grohe@informatik.rwth-aachen.de
Department of Computer Science
RWTH Aachen University
Aachen, Germany

Matthias Fey matthias@kumo.ai
Kumo.AI
Mountain View, CA

Karsten Borgwardt∗ karsten.borgwardt@bsse.ethz.ch

Machine Learning & Computational Biology Lab

Department of Biosystems Science and Engineering

ETH Zürich, Basel, Switzerland and

Swiss Institute of Bioinformatics, Lausanne, Switzerland

Editor: David Wipf

∗. Karsten Borgwardt is now at the Max Planck Institute of Biochemistry in Martinsried, Germany.

c©2023 Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe, Matthias
Fey, Karsten Borgwardt.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0240.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0240.html

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

Abstract

In recent years, algorithms and neural architectures based on the Weisfeiler–Leman algorithm,
a well-known heuristic for the graph isomorphism problem, have emerged as a powerful
tool for machine learning with graphs and relational data. Here, we give a comprehensive
overview of the algorithm’s use in a machine-learning setting, focusing on the supervised
regime. We discuss the theoretical background, show how to use it for supervised graph
and node representation learning, discuss recent extensions, and outline the algorithm’s
connection to (permutation-)equivariant neural architectures. Moreover, we give an overview
of current applications and future directions to stimulate further research.

Keywords: Machine learning for graphs, Graph neural networks, Weisfeiler–Leman
algorithm, expressivity, equivariance

1. Introduction

Graph-structured data is ubiquitous across application domains, ranging from chemo- and
bioinformatics (Barabasi and Oltvai, 2004; Jumper et al., 2021; Stokes et al., 2020) to
computer vision (Simonovsky and Komodakis, 2017), and social network analysis (Easley
and Kleinberg, 2010); see Figure 1 for an overview of application areas. We need techniques
exploiting the rich graph structure and feature information within nodes and edges to
develop successful machine-learning models in these domains. Due to the highly non-regular
structure of real-world graphs, most approaches first generate a vectorial representation of
each graph or node, so-called node or graph embeddings, respectively, to apply standard
machine learning tools such as linear regression, random forests, or neural networks.

For successful (supervised) machine learning with graphs, node and graph embeddings
need to address the following key challenges:

1. The graph embedding needs to be invariant to any permutation of the graph’s nodes,
i.e., the output of the graph embedding must not change for different orderings.

2. In the case of node embeddings, the embedding needs to be (permutation-)equivariant
to node orderings, i.e., reordering of the input results in a reordering of the output,
accordingly.

3. The embeddings need to scale to large, real-world graphs and large sets thereof.

4. The embeddings need to consider attribute or label information, e.g., real-valued vectors
attached to nodes and edges.

5. Finally, the embeddings need to generalize to unseen instances and ideally easily adapt
or be robust to changes in the data distributions.

To address the above challenges, numerous approaches have been proposed in recent
years—most notably, graph embedding approaches based on spectral techniques (Athreya
et al., 2017; von Luxburg et al., 2008), graph kernels (Borgwardt et al., 2020; Kriege et al.,
2020), and neural approaches (Chami et al., 2020; Gilmer et al., 2017; Scarselli et al., 2009)
for both node and graph embeddings. Here, graph kernels are positive semi-definite functions,
expressing a pairwise similarity between graphs. Especially, graph kernels based on the
Weisfeiler–Leman algorithm (Weisfeiler and Leman, 1968), a graph comparison algorithm

2

Weisfeiler and Leman go Machine Learning: The Story so far

originally developed to address the graph isomorphism problem, see below, and corresponding
neural architectures, known as graph neural networks (GNNs), have recently advanced the
state-of-the-art in (semi-)supervised node-level and graph-level machine learning.

The (1-dimensional) Weisfeiler–Leman (1-WL)1 or color refinement algorithm is a
well-known heuristic for deciding whether two graphs are isomorphic, i.e., exactly match
structure-wise. Given an initial coloring or labeling of the nodes of both graphs, e.g., their
degree or application-specific information, in each iteration, two nodes with the same label
get different labels if the number of neighbors carrying a particular label is not equal,
see Figure 2 for an illustration. If, after any iteration, the number of nodes annotated
with a certain label is different in both graphs, the algorithm terminates, and we conclude
that the two graphs are not isomorphic. This simple algorithm is already quite powerful
in distinguishing non-isomorphic graphs (Babai and Kucera, 1979) and has been therefore
applied in many areas, see, e.g., Grohe et al. (2014); Kersting et al. (2014); Zhang and Chen
(2017), including graph classification (Shervashidze et al., 2011). On the other hand, it is
easy to see that the algorithm cannot distinguish all non-isomorphic graphs (Cai et al., 1992).
For example, it cannot distinguish graphs with different triangle counts, see Figure 3, or,
in general, cyclic information (Arvind et al., 2015), which is an important feature in social
network analysis (Milo et al., 2002; Newman, 2003) and chemical molecules. To increase the
algorithm’s expressive power, it has been generalized from labeling nodes to k-tuples, defined
over the set of nodes, leading to a more powerful graph isomorphism heuristic, denoted
k-dimensional Weisfeiler–Leman algorithm (k-WL). The k-WL was investigated in-depth
by the theoretical computer science community, see, e.g., Cai et al. (1992); Grohe (2017);
Kiefer (2020a).

Shervashidze and Borgwardt (2009) first used the 1-WL as a graph kernel, the so-called
Weisfeiler–Lehman subtree kernel. The kernel’s idea is to compute the 1-WL for a fixed
number of steps, resulting in a color histogram or feature vector of color counts for each
graph. Subsequently, taking the pairwise inner product between these vectors leads to a valid
kernel function. Hence, the kernel measures the similarity between two graphs by counting
common colors in all refinement steps. Similar approaches are popular in chemoinformatics
for computing vectorial descriptors of chemical molecules (Rogers and Hahn, 2010).

Graph kernels were the primary approach for learning on graphs for several years,
leading to new state-of-the-art results on many graph classification tasks. However, one
limitation, in particular of the most efficient graph kernels, is that their feature vector
representation corresponds to enumerating particular classes of subgraphs, and kernel
computation corresponds to finding exactly matching pairs of these subgraphs in two graphs;
thereby, partial similarities of subgraphs in two graphs may be missed. GNNs have emerged
as a machine learning framework that aims to address these limitations. Primarily, they can
be viewed as a neural version of the 1-WL algorithm, where continuous feature vectors replace
colors, and neural networks are used to aggregate over local node neighborhoods (Gilmer
et al., 2017; Hamilton et al., 2017; Morris et al., 2019).

1. We use the spelling “Leman” here as A. Leman, co-inventor of the algorithm, preferred it over the
transcription “Lehman”; see https://www.iti.zcu.cz/wl2018/pdf/leman.pdf. If a paper used the
spelling “Lehman” for a method’s name, e.g., “Weisfeiler–Lehman subtree kernel” (Shervashidze and
Borgwardt, 2009), we used it as well.

3

https://www.iti.zcu.cz/wl2018/pdf/leman.pdf

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

(a) Recommendation (b) Drug Discovery

Geoffrey
Hinton

Person

University
of Toronto

Canada

Paul
Martin

?
is a

affiliated
with

located in

graduated
from

born in

(c) Reasoning in KGs

(d) Graph Matching (e) Scene Understanding (f) Combinatorial Optimization

Figure 1: Example use cases for machine learning with graphs.

Recently, links between the two above paradigms emerged. Morris et al. (2019); Xu
et al. (2019) showed that any possible GNN architecture cannot be more powerful than the
1-WL in terms of distinguishing non-isomorphic graphs. Moreover, this line of work has
been extended by deriving more powerful neural architectures, based on the k-WL (Maron
et al., 2019c,a; Morris et al., 2019, 2020b), subsequently shown to be universal (Azizian and
Lelarge, 2020; Keriven and Peyré, 2019; Maron et al., 2019c), i.e., being able to represent
any continuous, bounded, invariant or equivariant function over the set of graphs.

1.1 Present Work

In this paper, we survey the application of the Weisfeiler–Leman algorithm to machine
learning with graphs. To this end, we overview the algorithm’s theoretical properties
and thoroughly survey graph kernel approaches based on the Weisfeiler–Leman paradigm.
Subsequently, we also overview the recent progress in aligning the algorithm’s expressive
power with equivariant neural networks, showing 1-WL’s and k-WL’s equivalence to GNNs
and more powerful higher-order GNNs, respectively. Alongside, we also survey works proving
universality results of invariant and equivariant neural architectures for graphs. Moreover,
we review recent efforts extending GNNs’ expressive power, their generalization abilities,w
and exemplary applications of the algorithm’s use in machine learning with graphs. Finally,
we discuss open questions and future research directions.

1.2 Related Work

In the following, we briefly discuss related work relevant to the present survey.

1.2.1 Graph Kernels

Intuitively, a graph kernel is a function measuring the similarity of a pair of graphs,
see Section 2 for a formal definition and Mohri et al. (2012) as well as Shalev-Shwartz

4

Weisfeiler and Leman go Machine Learning: The Story so far

and Ben-David (2014) for an introduction to kernel functions for machine learning. Graph
kernels were the dominant approach in machine learning for graphs, especially for graph
classification with a relatively small number of graphs, for several years, see Borgwardt
et al. (2020) and Kriege et al. (2020) for thorough surveys. Starting from the early 2000s,
researchers proposed a plethora of graph kernels, e.g., based on shortest-paths (Borgwardt
et al., 2005), random walks (Gärtner et al., 2003; Kang et al., 2012; Kashima et al., 2003;
Sugiyama and Borgwardt, 2015; Kriege, 2022), small subgraphs (Shervashidze et al., 2009;
Kriege and Mutzel, 2012), local neighborhood information (Costa and De Grave, 2010;
Morris et al., 2017, 2020b; Shervashidze et al., 2011), Laplacian information (Kondor and
Pan, 2016), and matchings (Fröhlich et al., 2005; Johansson and Dubhashi, 2015; Kriege
et al., 2016; Nikolentzos et al., 2017; Woźnica et al., 2010).

1.2.2 Molecule Descriptors in Cheminformatics

The representation of small molecules by their structure to explain their chemical properties
constitutes one of the early applications of graph theoretical concepts and has influenced
modern graph theory (Biggs et al., 1986). Cheminformatics applies computer science
methods to analyze chemical data and comprises several graph-theoretical and machine-
learning problems. Finding a unique representation of a molecular structure corresponds to
the graph canonization problem. Using the experimentally obtained bioactivity data of small
molecules to predict the activity of untested molecules to find promising drug candidates is
an instance of a graph classification or regression task. Therefore, it is not surprising that
some techniques developed in cheminformatics are closely related to machine learning with
graphs and the Weisfeiler–Leman method. We briefly review the developed methods and
their relation to state-of-the-art techniques.

Morgan’s Algorithm In 1965, Morgan (1965) proposed a method to generate unique
identifiers for molecules, up to isomorphism, see Section 2, that was implemented at the
Chemical Abstracts Service2 to index and provide chemistry-related information. To this
end, the atoms are numbered canonically based on the atom and bond types and their
structure. To increase efficiency, ambiguities are reduced by computing, for each node v,
its connectivity value ec(v). Let G = (V,E) be a (molecular) graph, initially we assign
ec(1)(v) = deg(v) to every node v in V , where deg(v) is the degree of v. Then, the values
ec(i)(v) are computed iteratively for i ≥ 2 and all nodes v in V as

ec(i)(v) =
∑

u∈N(v)

ec(i−1)(u),

until the number of different values no longer increases. For such an iteration i, ec(i−1)(v)
is the final extended connectivity of the node v. Razinger (1982) and Figueras (1993)
independently observed that the extended connectivity values ec(i) are equivalent to the row
(or column) sums of the ith power of the adjacency matrix, which is equal to the number of
walks of length i starting at the individual nodes.

The general idea of encoding neighborhoods of increasing radius to make the descriptor
more specific resembles the idea of the Weisfeiler–Leman algorithm. However, the connectivity

2. www.cas.org

5

www.cas.org

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

value does not incorporate labels, i.e., atom and bond types, discards the values of ec(i−1)(v)
when computing ec(i)(v), and loses information due to summation (Kriege, 2022).

Circular Fingerprints In 1973, Adamson and Bush (1973) considered the task of auto-
mated classification of chemical structures by representing molecules by (chemical) finger-
prints, i.e., a vectorial representation of a molecule. Today, fingerprints are a standard tool
in cheminformatics used to determine molecular similarity, e.g., for classification, clustering,
and similarity search in large chemical information systems (Rogers and Hahn, 2010). A
fingerprint is a vector where each component counts the number of occurrences of certain
substructures or merely indicates their presence or absence by a single bit. Often hashing
is used to map substructures to the entries of a fixed-size fingerprint; see Daylight (2008).
Fingerprints are typically compared using similarity measures for sets such as the Tanimoto
coefficient, which satisfies the property of a kernel (Ralaivola et al., 2005); see Section 2.
The substructures used may stem from a predefined set obtained either by applying data
mining methods, using domain expert knowledge (Durant et al., 2002), or are enumerated
directly from the molecular graph, e.g., all paths up to a given length.

Of particular interest to the present work is the class of circular fingerprints, where the
substructures are the neighborhoods of each node with increasingly distant nodes added to
the neighborhood. In this sense, this type of fingerprint is conceptually similar to Morgan’s
algorithm and is occasionally also referred to as Morgan fingerprint. However, the key
differences are that atom and bond types are encoded, the maximum radius is limited to a
typically small value, and all the intermediate results for radii smaller than the maximum are
retained (Rogers and Hahn, 2010). The earliest of these approaches goes back to so-called
fragments reduced to an environment that is limited proposed in 1973 (Dubois, 1973; Dubois
et al., 1987). Several variations of the approach have been proposed, e.g., atom environment
fingerprints (Bender et al., 2004) and extended connectivity fingerprints (Rogers and Hahn,
2010). These fingerprints are widely used, and implementations are available in open-source
and commercial software libraries such as RDKit3 and OpenEye GraphSim TK.4

Duvenaud et al. (2015) proposed a neural extension of circular fingerprints introducing
learnable parameters for encoding neighborhoods. This work as well as earlier techniques
introduced in cheminformatics, e.g., Baskin et al. (1997); Kireev (1995); Merkwirth and
Lengauer (2005), represent early instances of GNNs.

1.2.3 Graph Neural Networks

Recently, graph neural networks (GNNs) or message-passing neural networks (Gilmer et al.,
2017; Scarselli et al., 2009) (re-)emerged as the most popular machine learning method for
graph-structured input.5 Intuitively, GNNs can be viewed as a differentiable variant of the
1-WL where colors are replaced with real-valued features and a neural network is used for
neighborhood feature aggregation. By deploying a trainable neural network to aggregate
information in local node neighborhoods, GNNs can be trained in an end-to-end fashion
together with the classification or regression algorithm’s parameters, possibly allowing for

3. https://www.rdkit.org

4. https://www.eyesopen.com/graphsim-tk

5. In the following, we use the term GNN and message-passing neural network interchangeably; see
also Section 5.1

6

https://www.rdkit.org
https://www.eyesopen.com/graphsim-tk

Weisfeiler and Leman go Machine Learning: The Story so far

greater adaptability and better generalization than the kernel counterpart of the classical
1-WL algorithm, see Section 5.1 for details.

Notable instances of this architecture include Duvenaud et al. (2015); Hamilton et al.
(2017); Veličković et al. (2018), which can be subsumed under the message passing framework
introduced in Gilmer et al. (2017). In parallel, approaches based on spectral information
were introduced in, e.g., Bruna et al. (2014); Defferrard et al. (2016); Gama et al. (2019);
Kipf and Welling (2017); Levie et al. (2019); Monti et al. (2017). All of the above descend
from early work in Baskin et al. (1997); Kireev (1995); Merkwirth and Lengauer (2005);
Micheli (2009); Micheli and Sestito (2005); Scarselli et al. (2009); Sperduti and Starita (1997).
Aligned with the field’s recent rise in popularity, there exists a plethora of surveys on recent
advances in GNN techniques; some of the most recent ones include Chami et al. (2020); Wu
et al. (2018); Zhou et al. (2018).

1.2.4 Equivariant Neural Networks

Input symmetries are frequently incorporated into learning models to construct efficient
models. A prominent example is the translation invariance encoded by Convolutional Neural
Networks (CNNs), particularly useful for image recognition tasks (LeCun et al., 2015). In
the last few years, incorporating other types of symmetries in neural networks (Ravanbakhsh
et al., 2017; Wood and Shawe-Taylor, 1996), e.g., a set structure where the output is invariant
to the order of the input (Zaheer et al., 2017), became an important research direction.
As with CNNs, the main idea is to construct neural networks as a composition of several
(simple) equivariant building blocks, i.e., layers respecting the symmetry; see Section 6 for
details. These networks were shown to reduce the number of free parameters and to improve
efficiency and generalization.

One important research direction that follows this line of work is devising equivariant
networks for learning on graphs, where, for most tasks, the specific order of nodes does not
matter (Albooyeh et al., 2019; Keriven and Peyré, 2019; Kondor et al., 2018; Maron et al.,
2019c,a,b; Puny et al., 2020; Ravanbakhsh, 2020). In Section 6, we discuss these models
thoroughly and show that their expressive power is closely related to the Weisfeiler–Leman
algorithm.

1.3 Structure of the Document

In Section 2, we fix notation and introduce basic concepts used throughout the present work.
Section 3 introduces the 1-WL, and its generalization, the k-WL, and gives an overview
of its theoretical properties. In the next section, Section 4, we survey non-neural machine
learning approaches leveraging the Weisfeiler–Leman algorithm, focusing on supervised
graph classification. Section 5 introduces GNNs and their connection to the 1-WL and
investigates neural architectures beyond 1-WL’s expressive power. Subsequently, Section 6
describes the recent progress in designing equivariant (higher-order) graph networks and their
connection to the Weisfeiler–Leman hierarchy. Further, Section 8 outlines applications of
Weisfeiler–Leman-based graph embeddings. Section 9 outlines open challenges and sketches
future research directions. Finally, the last section acts as a conclusion.

7

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

2. Preliminaries

As usual, let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and let {{. . .}} denote a multiset. A (undirected)
graph G is a pair (V,E) with a finite set of nodes V (G) and a set of edges E(G) ⊆ {{u, v} ⊆
V | u 6= v}. For notational convenience, we usually denote an edge {u, v} in E(G) by (u, v)
or (v, u), and set n = |V (G)| and m = |E(G)|. In case of a directed graph, the set of edges
E(G) ⊆ {(u, v) ⊆ V 2 | u 6= v}, i.e., E(G) might not be symmetric and the edges (u, v) and
(v, u) are considered distinct. A labeled graph G is a triple (V,E, l) with a label function
l : V (G)∪E(G)→ Σ, where Σ is a subset of the natural numbers. Then l(w) is a label of w
for w in V (G) ∪E(G). An attributed graph G is a triple (V,E, a) with an attribute function
a : V (G) ∪E(G)→ Rd for d > 0. Then a(w) is an attribute or continuous label of a node or
edge w in V (G) ∪ E(G). We denote the set of all labeled or attributed graphs by G. The
neighborhood of v in V (G) is denoted by N(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. Let S ⊆ V (G),
then the set S induces a subgraph (S,ES) with ES = {(u, v) ∈ E(G) | (u, v) ∈ S × S}.
We say that two graphs G and H are isomorphic, denoted G ' H, if there exists an edge-
preserving bijection (graph isomorphism) ϕ : V (G) → V (H), i.e., (u, v) is in E(G) if and
only if (ϕ(u), ϕ(v)) is in E(H). In the case of labeled graphs, we additionally require that
l(v) = l(ϕ(v)) for v in V (G), similarly for edge labels. The graph isomorphism problem deals
with deciding if two graphs are isomorphic or not. The isomorphism type τ(G) of a graph G is
the equivalence class induced by the (isomorphism) relation ', i.e., τ(G) = {H ∈ G | G ' H}.
A (graph) automorphism is an isomorphism from a graph to itself, i.e, ϕ : V (G) → V (G).
A (graph) homomorphism is a map ϕ : V (G)→ V (H) where ((ϕ(u), ϕ(v)) in E(H) if (u, v)
in E(G). Note that ϕ(v) = ϕ(w) for two distinct nodes v and w in V (G) is permitted.
Hence, as opposed to isomorphisms, homomorphisms need not to preserve non-edges, i.e.,
(ϕ(u), ϕ(v)) in E(H) does not imply (u, v) ∈ E(G).

Permutation-invariance and -equivariance Let n > 0, then Sn denotes the set of
permutations of [n], i.e., the set of all bijections from [n] to itself. Further, let V (G) = [n],
then for σ in Sn, Gσ = σ ·G where V (Gσ) = {σ(1), . . . , σ(n)} and E(Gσ) = {(σ(i), σ(j)) |
(vi, vj) ∈ E(G)}. That is, applying the permutation σ reorders the nodes. Hence, for two
isomorphic graphs G and H, i.e., G ' H, there exists σ in Sn such that σ ·G = H.

Assuming that all graphs have n nodes, a function f : G → R is invariant if f(G) = f(σ·G)
for all graphs G in G and all permutations σ in Sn. More generally, given a set X on which
Sn acts, a function f : G → X is equivariant if f(σ ·G) = σ · f(G). In this paper, we mainly
consider X = Rn as a representation for node features. Sn acts on this space by permuting
the entries of the vector, i.e., σ · (x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)). Other options for X
are discussed in Section 6.

Kernels A kernel on a non-empty set X is a positive semi-definite, symmetric function
k : X × X → R. Equivalently, a function k is a kernel if there is a feature map φ : X → H
to a Hilbert space H with an inner product 〈·, ·〉, such that k(x, y) = 〈φ(x), φ(y)〉 for all x
and y in X . Then a positive semi-definite, symmetric function G × G → R is a graph kernel.
Given two vectors x and y in Rd, the linear kernel is defined as k(x, y) = xTy. Given a
finite set X = {x1, . . . , xn} ⊆ X and a kernel k : X × X → R, the Gram matrix M in Rn×n
contains the kernel values for each pair of elements of the set X, i.e., Mij = k(xi, xj); see,
e.g., Mohri et al. (2012), for details.

8

Weisfeiler and Leman go Machine Learning: The Story so far

Relabel
(
�,
{{
�,�

}})

Figure 2: Illustration of 1-WL’s relabeling procedure. The brown, lower-left node gets
updated based on the colors of its neighbors.

3. The Weisfeiler–Leman Method

As mentioned in Section 1, the 1-WL or color refinement is a simple heuristic for the graph
isomorphism problem, originally proposed in Weisfeiler and Leman (1968).6 Intuitively, the
algorithm tries to determine if two graphs are non-isomorphic by iteratively coloring or
labeling nodes. Given an initial coloring or labeling of the nodes of both graphs, e.g., their
degree or application-specific information, in each iteration, two nodes with the same label
get different labels if the number of identically labeled neighbors is not equal. If, after some
iterations, the number of nodes annotated with a specific label is different in both graphs,
the algorithm terminates, and we conclude that the two graphs are not isomorphic. It is
easy to see that the algorithm cannot distinguish all non-isomorphic graphs; see Figure 3
and Cai et al. (1992). Nonetheless, it is a powerful heuristic that can successfully test
isomorphism for a broad class of graphs (Babai and Kucera, 1979), see Section 3.3 for an
in-depth discussion on the algorithm’s properties.

Formally, let G = (V,E, l) be a labeled graph, in each iteration, i > 0, the 1-WL
computes a node coloring C1

i : V (G)→ N, which depends on the coloring of the neighbors.
That is, in iteration i > 0, we set

C1
i (v) = Relabel

((
C1
i−1(v), {{C1

i−1(u) |u ∈N(v)}}
))
, (1)

where Relabel injectively maps the above pair to a unique natural number, which has not
been used in previous iterations. Viewed differently, C1

i−1 induces a partitioning of a graph’s
node set, which is further refined by C1

i . In iteration 0, the coloring C1
0 = l or a constant

value if no labeling is provided.
That is, in each iteration, the algorithm computes a new color for a node based on the

colors of its neighbors; see Figure 2 for an illustration. Hence, after k iterations the color of
a node v captures some structure of its k-hop neighborhood, i.e., the subgraph induced by
all nodes reachable by walks of length at most k.

To test if two graphs G and H are non-isomorphic, we run the above algorithm in
“parallel” on both graphs. If the two graphs have a different number of nodes colored c in N
at some iteration, the 1-WL concludes that the graphs are not isomorphic. Moreover, if the

6. Strictly speaking, the 1-WL and color refinement are two different algorithms. That is, the 1-WL considers
neighbors and non-neighbors to update the coloring, resulting in a slightly higher expressive power when
distinguishing nodes in a given graph; see Grohe (2021) for details. In the case of graph classification, both
algorithms have the same expressive power. For brevity, we consider both algorithms to be equivalent.

9

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

(a) Example 1 (b) Example 2

Figure 3: Examples of two graphs (denoted by � and �) that cannot be distinguished by
the 1-WL.

number of colors between two iterations, i and (i+ 1), does not change, i.e., the cardinalities
of the images of C1

i and C1
i+1 are equal or, equivalently,

C1
i (v) = C1

i (w) ⇐⇒ C1
i+1(v) = C1

i+1(w),

for all nodes v and w in V (G), the algorithm terminates. For such i, we define the stable
coloring C1

∞(v) = C1
i (v) for v in V (G). The stable coloring is reached after at most

max{|V (G)|, |V (H)|} iterations (Grohe, 2017); see Section 3.3 for further bounds on the
algorithm’s running time.

3.1 The k-dimensional Weisfeiler–Leman Algorithm

Due to the shortcomings of the 1-WL or color refinement in distinguishing non-isomorphic
graphs, several researchers (Babai, 1979, 2016; Immerman and Lander, 1990), devised a more
powerful generalization of the former, today known as the k-dimensional Weisfeiler–Leman
algorithm.7 In the literature, there exist two variants of the algorithm, which differ slightly in
the way they aggregate information. The variant we describe below is often denoted folklore
k-dimensional Weisfeiler–Leman algorithm (k-FWL) in the machine learning literature, e.g.,
see Maron et al. (2019a); Morris et al. (2019). We follow this convention to be aligned with
papers in the machine learning literature. We also define the other variant, named oblivious
k-WL (k-OWL), see Section 3.2.

Intuitively, to surpass the limitations of the 1-WL, the k-FWL colors subgraphs instead
of a single node. More precisely, given a graph G, it colors tuples from V (G)k for k ≥ 1
instead of nodes. By defining a neighborhood between these tuples, we can define a coloring
similar to the 1-WL. Formally, let G be a graph, and let k ≥ 2. Moreover, let v be a tuple
in V (G)k, then G[v] is the subgraph induced by the components of v, where the nodes
are labeled with integers from {1, . . . , k} corresponding to indices of v. In each iteration
i ≥ 0, the algorithm, similarly to the 1-WL, computes a coloring Cki : V (G)k → N. In the
first iteration (i = 0), two tuples v and w in V (G)k get the same color if the map vi 7→ wi
induces an isomorphism between G[v] and G[w]. Now, for i > 0, Cki+1 is defined by

Cki+1(v) = Relabel
(
(Cki (v),Mi(v))

)
, (2)

where the multiset

Mi(v) = {{(Cki (φ1(v, w)), . . . , Cki (φk(v, w))) | w ∈ V (G)}} (3)

7. In Babai (2016), László Babai mentions that he first introduced the algorithm in 1979 together with
Rudolf Mathon from the University of Toronto.

10

Weisfeiler and Leman go Machine Learning: The Story so far

2

v

3

c

1

w

1

a

2

b

Figure 4: Illustration of k-FWL’s neighborhood definition for k = 3. The 3-tuple (w, b, c) is
a 1-neighbor of the 3-tuple (a, b, c), while (a, v, c) is a 2-neighbor of the 3-tuple
(a, b, c).

and
φj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, φj(v, w) replaces the j-th component of the tuple v with the node w. Hence, two
tuples are adjacent or j-neighbors (with respect to a node w) if they are different in the
jth component (or equal, in the case of self-loops). Again, we run the algorithm until
convergence, i.e.,

Cki (v) = Cki (w) ⇐⇒ Cki+1(v) = Cki+1(w),

for all v and w in V (G)k holds, and call the partition of V (G)k induced by Cki the stable
partition. For such i, we define Ck∞(v) = Cki (v) for v in V (G)k. Hence, two tuples v and
w with the same color in iteration (t− 1) get different colors in iteration t if there exists j
in [k] such that the number of j-neighbors of v and w, respectively, colored with a certain
color is different. The algorithm then proceeds analogously to the 1-WL.

By increasing k, the algorithm gets more powerful in distinguishing non-isomorphic
graphs, i.e., for each k ≥ 1, there are non-isomorphic graphs distinguished by the (k+ 1)-WL
but not by the k-WL (Cai et al., 1992). See Section 3.3 for a thorough discussion of the
algorithm’s properties and limitations.

3.2 Oblivious k-WL

In the literature, e.g., Grohe (2000), there exists a variation of Equation (3) that leads to

a slightly less powerful algorithm using the coloring Ck,∗i : V (G)k → N. For i > 0, Ck,∗i+1 is
defined by

Ck,∗i+1(v) = Relabel
(
(Ck,∗i (v),M∗i (v))

)
, (4)

where Mi(v) in Equation (2) is replaced by

M∗i (v) =
(
{{Ck,∗i (φ1(v, w)) | w ∈ V (G)}}, . . . , {{Ck,∗i (φk(v, w)) | w ∈ V (G)}}

)
. (5)

Following Grohe (2021), we call the resulting algorithm oblivious k-WL (k-OWL).
It holds that the 1-OWL and 2-OWL have the same expressive power and that the

(k + 1)-OWL has the same expressive power as the k-FWL for k ≥ 2 (Grohe, 2021). The
reason the k-OWL has a lower expressive power than the k-FWL is due to the different

11

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

way they aggregate colors. That is, the k-FWL, see Equation (3), groups colors of k-tuples
according to the replaced node. For example, by that, the k-FWL is able to reconstruct if
there is an edge between the two exchanged nodes; see Grohe (2021) for details.

3.3 Theoretical Properties

The Weisfeiler–Leman algorithm constitutes one of the earliest approaches to isomorphism
testing (Weisfeiler and Leman, 1968; Weisfeiler, 1976). The 1-dimensional version is an
essential building block of the individualization-refinement approach to graph isomorphism
testing (McKay, 1981), forming the basis of almost all practical graph isomorphism solvers.
Higher-dimensional versions have been heavily investigated by the theory community over
the last few decades, see, e.g., Cai et al. (1992); Grohe (2017); Kiefer (2020b); Otto (1997).
For logarithmic k, the k-dimensional WL algorithm is an essential building block of Babai’s
isomorphism algorithm (Babai, 2016) running in quasipolynomial time, i.e., its running time
is in 2O(log

c n) for a constant c > 0. In the following, we overview the Weisfeiler–Leman
algorithm’s theoretical properties, stressing relevance for machine learning with graphs when
possible.

Expressive Power We say that the k-FWL or k-OWL distinguishes two graphs G and
H if their color histograms differ, i.e., there is some color c in the image of Ck∞ such that G
and H have different numbers of node tuples of color c. Furthermore, k-FWL or k-OWL
identifies a graph G if it distinguishes G from all graphs not isomorphic to G.

As previously mentioned, Figure 3 shows a pair of simple, non-isomorphic graphs that
are not distinguished by the 1-WL. Still, it is likely that the 1-WL will distinguish any two
random graphs. It can be shown that the 1-WL almost surely identifies all graphs. That
is, the probability that the 1-WL identifies a graph chosen uniformly at random from the
class of all n-node graphs goes to 1 as n goes to infinity. The above result follows from an
old result due to Babai et al. (1980) stating that with probability greater than 1− 7

√
1/n, in

a random n-node graph, all nodes get different colors after just two iterations of running
the 1-WL. The result was subsequently refined and extended; see Babai and Kucera (1979);
Czajka and Pandurangan (2008); Karp (1979); Lipton (1978). While the 1-WL cannot
distinguish any two regular graphs with the same number of nodes and degree, Bollobás
(1982) showed that the 2-FWL identifies almost all d-regular graphs for every degree d.
However, the 2-FWL cannot distinguish any two strongly regular graphs with the same
parameters, see, e.g., Grohe and Neuen (2021), and Figure 5. For k ≥ 3, it is much harder
to find non-isomorphic graphs that are not distinguished by the k-FWL, resulting in the
seminal paper by Cai et al. (1992). For every k, they constructed non-isomorphic graphs
Gk and Hk, with the number of nodes in O(k), that are not distinguished by the k-FWL.
These graphs can be distinguished by the (k + 1)-FWL. Hence with increasing dimension,
the expressive power of the Weisfeiler–Leman algorithm increases. This hierarchy of more
powerful algorithms was later leveraged to devise more powerful graph neural networks,
see Sections 5 and 6.

While the construction outlined in Cai et al. (1992) shows the limitations of the Weisfeiler–
Leman algorithm, the algorithm is still powerful, in combination with the structural re-
strictions of the graphs. The WL dimension of a graph G is the least k such that k-FWL
identifies G. Clearly, every n-node graph is identified by (n− 1)-FWL and thus has WL-

12

Weisfeiler and Leman go Machine Learning: The Story so far

Figure 5: Two non-isomorphic strongly regular graphs (denoted by � and �) with parameters
(16, 6, 2, 2) that cannot be distinguished by 2-FWL: the line graph of K4,4 (left)
and the Shrikhande graph (right). Figure adapted from Grohe and Neuen (2021).

dimension at most n− 1. In a far-reaching result, Grohe (2012, 2017) proved that for every
h > 0 there is a k > 0 such that all graphs, excluding some h-node graph as a minor, have
WL-dimension at most k. Here a graph H is a minor of a graph G if H is isomorphic to a
graph obtained from G by deleting nodes or edges and by contracting edges. Since planar
graphs exclude the complete 5-node graph K5 as a minor, planar graphs have a bounded
WL dimension. Similarly, the theorem shows that graphs of bounded genus or bounded
treewidth and also more esoteric topologically constrained graphs, for example, graphs that
can be embedded into 3-space in such a way that no cycle is knotted (Robertson et al.,
1993), have bounded WL dimension. Other graphs known to have bounded WL dimensions
are interval graphs (Evdokimov et al., 2000) and graphs of bounded rank width (Grohe
and Neuen, 2019). For some of these classes, explicit bounds on the WL dimension are
known. Most notably, planar graphs have WL dimension at most 3 (Kiefer et al., 2019). This
result has relevance for many applications that involve planar graphs. For example, a large
portion of molecules is known to be planar (Horváth et al., 2010; Yamaguchi et al., 2003).
Moreover, Kiefer et al. (2015); Arvind et al. (2015) gave a complete characterization of the
graphs of WL dimension 1. See Kiefer (2020a,b) for thorough overviews of the algorithm’s
expressive power.

Complexity While a naive implementation of the 1-WL requires (at least) quadratic
time O(nm), where n is the number of nodes and m the number of edges of the input
graph, Cardon and Crochemore (1982) proved that the stable coloring C1

∞ can be computed
in almost linear time O(n + m log n); also see Paige and Tarjan (1987). Berkholz et al.
(2017) proved that this is optimal within a large class of natural partitioning algorithms
that includes all known algorithms for 1-WL. Immerman and Lander (1990) generalized the
almost-linear 1-WL algorithm to the k-FWL and proved that the stable coloring Ck∞ can be
computed in time O(k2nk+1 log n). For every fixed k ≥ 1, the problem of deciding whether
two graphs are distinguished by k-FWL is PTIME-complete under logspace reductions (Grohe,
1999). Hence, it is unlikely that there are fast parallel algorithms computing the stable
coloring.

13

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

Related to these complexity-theoretic results is the question of how many iterations the
k-FWL needs to reach the stable coloring. A trivial upper bound is nk − 1 because, in each
iteration, the number of colors increases, and a partition of a set of size nk has at most
nk classes. Kiefer and McKay (2020) devised several infinite classes of graphs where 1-WL
needs the maximum number of n − 1 iterations. Quite surprisingly, Lichter et al. (2019)
proved an upper bound of O(n log n) on the number of iterations of 2-FWL, a subquadratic
upper bound was already known from Kiefer and Schweitzer (2016). No non-trivial upper
bound is known for the k-FWL with k ≥ 3, and the best known lower bound for all k is
linear (Fürer, 2001).

Connections With Other Areas A particularly nice feature of the Weisfeiler–Leman
algorithm is that it has several characterizations in terms of seemingly unrelated concepts
from logic, algebra, and combinatorics. Here, the logical characterization turned out to be
instrumental in proving several of the expressive power results mentioned above. Specifically,
Cai et al. (1992) showed that two graphs are indistinguishable by the k-FWL if and only if
they satisfy the same sentences of the logic Ck+1, the (k + 1)-variable fragment of first-order
logic extended by counting quantifiers.

Tinhofer (1986, 1991) derived an equivalence between 1-WL’s inability to distinguish
two non-isomorphic graphs and a system of linear equations having a real solution. By
considering the relaxation L of an integer linear program for the graph isomorphism problem,
he showed that two non-isomorphic graphs cannot be distinguished by the 1-WL if and only
if L has a real solution, also known as fractional isomorphism. The authors of Atserias and
Maneva (2013); Grohe and Otto (2015); Malkin (2014) later lifted the above equivalence to
the k-FWL by considering a slight variation Lk− of the linear program Lk of the kth level of
the Sherali-Adams hierarchy for the linear program L. For k ≥ 2, they showed that two
non-isomorphic graphs cannot be distinguished by the k-FWL if and only if the Lk− has a
real solution. Similar results were obtained for systems of polynomial equations (Berkholz
and Grohe, 2017), algebraic proof systems (Berkholz and Grohe, 2015; Grädel et al., 2019),
semidefinite programming (Atserias and Ochremiak, 2018; O’Donnell et al., 2014), and
non-signaling quantum isomorphisms (Atserias et al., 2019). Finally, Kersting et al. (2014)
pointed out a close relationship between the 1-WL and the Franke-Wolfe algorithm for
convex optimization.

Dvorák (2010), see also Dell et al. (2018), showed a connection between k-FWL’s
expressive power and homomorphism counts. Given two graphs F and G, hom(F,G) denotes
the number of (graph) homomorphisms between the graphs F and G. Given a set of graphs

F , the homormorphism number vector
−−→
hom(F , G) = (hom(F,G))F∈F contains the number

of homomorphisms between any graph in F and G. Dvorák (2010) showed that the k-FWL
does not distinguish a pair of non-isomorphic graphs if and only if their homomorphism
number vectors are equal for the set of graphs with treewidth of at most k.

4. Non-neural Methods for Machine Learning Based on the
Weisfeiler–Leman Algorithm

In the following, we review applications of the Weisfeiler–Leman method for machine learning
focusing on graph kernels. Hence, this section mainly deals with (supervised) graph-level

14

Weisfeiler and Leman go Machine Learning: The Story so far

(a) Graph with refined labels (b) 1-WL color histogram

Figure 6: Illustration of the feature vector (color histogram) computed by the Weisfeiler–
Lehman subtree kernel. From left to right, smaller circles represent colors from
previous iterations. Large circles represent the 1-WL colors after three iterations.
Initially, all nodes are colored gray.

prediction tasks, e.g., graph classification, where node and edge labels are often absent.
Starting from the Weisfeiler–Leman subtree kernel (Shervashidze et al., 2011), we thoroughly
survey graph kernels based on the Weisfeiler–Leman method.

4.1 Weisfeiler–Lehman Subtree Kernel

The Weisfeiler–Lehman subtree kernel (Shervashidze and Borgwardt, 2009) constitutes the
earliest approach to leverage the 1-WL as a graph kernel, inspiring many follow-up works.
The primary idea is to compute the 1-WL for h ≥ 0 iterations, resulting in a coloring
C1
i : V (G)→ Σi for each iteration i, where Σi is a finite subset of the natural numbers, i.e.,

Σi ⊂ N. Notice that the image of the coloring changes in every iteration, depending on the
multiset generated by 1-WL. For i = 0, we set Σ0 = Σ, i.e., the original node label alphabet.
In each iteration, we compute a feature vector or color histogram φi(G) in R|Σi| for each
input graph G.

Each component φi(G)c counts the number of occurrences of nodes labeled by c in Σi.
With the ordering of Σi being fixed and known beforehand—which is equivalent to knowing
the label alphabet Σ in advance—the vector φi(G) can be padded with zeroes if necessary.
The overall feature vector φWL(G) is then defined as the concatenation of the feature vectors
of all h iterations, i.e.,

φWL(G) =
[
φ0(G), . . . , φh(G)

]
. (6)

See Figure 6 for an illustration of the feature vector φWL(G). We obtain the corresponding
kernel for h iterations as

kWL(G,H) = 〈φWL(G), φWL(H)〉, (7)

where 〈·, ·〉 denotes the standard inner product or linear kernel. Hence, the Weisfeiler–Lehman
subtree kernel sums the number of node pairs with the same color over all refinement steps.
Note that more powerful kernels may also replace the linear kernel, such as the RBF
kernel (see, e.g., Togninalli et al. (2019)).

The running time for a single feature vector computation is in O(hm) and O(Nhm+
N2hn) for the calculation of the Gram matrix for a set of N graphs (Shervashidze et al.,
2011), under the assumption that a linear-time perfect hashing function is available for

15

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

computing the coloring. Here, n and m denote the maximum number of nodes and edges
over all N graphs, respectively. Hence, the algorithm scales well to large graphs and data
sets and can be used together with linear SVMs (Chang et al., 2008) to avoid the quadratic
overhead of computing the Gram matrix.

4.2 Variations of the Weisfeiler–Lehman Subtree Kernel

The subtree kernel gives rise to many variations, focusing on different aspects of a graph.
Shervashidze et al. (2011) describe two variations, which we will briefly discuss.

The first is the Weisfeiler–Lehman edge kernel, instead of counting the color of nodes,
it computes a feature vector φEi (G), counting edges whose incident nodes have identical
colors. Two such feature vectors can then be compared using a linear kernel. As for the
node-based subtree kernel described above, the overall kernel expression for the edge-based
Weisfeiler–Leman kernel is an inner product of feature vectors concatenated over each
iteration,

kEWL(G,H) = 〈φE(G), φE(H)〉,
where

φE(G) = [φE0 (G), . . . , φEh (G)].

The second variation is obtained similarly to the first one but employs a shortest-path
kernel (Borgwardt and Kriegel, 2005) in iteration i. This results in a feature vector of the
form φSP(G) = [φSP0 (G), . . . φSPh (G)]. Each φSPi (G) consists of triples (σ, τ, l), with σ and τ
in Σi denoting the labels of the start and end node of the shortest path, respectively, and l
denoting its length, which can either be an edge count or incorporate additional edge weights
of the graph. Again, such a kernel can be expressed as an inner product of concatenated
feature vectors,

kSPWL(G,H) = 〈φSP(G), φSP(H)〉.

The advantage of both of these variations is their flexibility—more complicated kernels can
be easily accommodated, making it possible to capture additional information on the edge
labels of a graph.

4.3 Matching-based Kernels

The Weisfeiler–Lehman subtree kernel sums the number of node pairs with the same color
over all refinement steps. Other approaches to graph similarity match node pairs colored by
the Weisfeiler–Leman method and obtain a graph kernel from an optimal assignment (Kriege
et al., 2016) or the Wasserstein distance (Togninalli et al., 2019), which we overview below.

Kernel Based on Optimal Assignments Given two sets A and B with |A| = |B| = n
and a similarity matrix S in Rn×n, where Sij is the similarity of Ai and Bj in A and B,
respectively, the (linear) assignment problem aims to find

LAP(A,B) = max
P∈Pn

〈P, S〉 with Pn =
{
P ∈ {0, 1}n×n : P1 = 1, P>1 = 1

}
, (8)

where Pn is the set of n× n permutation matrices, 1 is a vector of “ones,” and 〈·, ·〉 is the
Frobenius inner product, i.e., the element-wise product of two matrices.

16

Weisfeiler and Leman go Machine Learning: The Story so far

a

b

e

c

d

f

(a) Graph with refined labels

3

2

1

i = 0

{a, b}{c, d} {f} {e}

(b) Hierarchy representing the refinement

Figure 7: Hierarchical node partitioning from the 1-WL. Smaller circles represent colors from
previous iterations. Large circles represent the 1-WL colors after three iterations.
Initially, all nodes are colored gray.

Hence, we can compare graphs by computing an optimal assignment between their nodes
according to a similarity function defined on their nodes, augmenting the smaller graph
with dummy nodes if necessary. The first graph kernel based on this idea was proposed
by Fröhlich et al. (2005). The similarities on the nodes are determined by arbitrary kernels
taking the node attributes and their neighborhood into account. However, in this case,
Equation (8) not always yields a positive semidefinite kernel (Vert, 2008). Kriege et al.
(2016) showed that when the similarity matrix S is obtained from a specific class of base
kernels derived from a hierarchy, the value of the optimal assignment is guaranteed to yield
a positive semidefinite kernel. Such base kernels can be obtained from the Weisfeiler–Leman
method based on the following observation. The Weisfeiler–Leman method produces a
hierarchy on the nodes of a set of graphs, where the ith level consists of nodes for each color
in the refinement step i+ 1 with an artificial root at level 0. The parent-child relationships
are given by the refinement process, where the root has the initial node labels as children,
see Figure 7. This hierarchy gives rise to the base kernel

k(u, v) =

h∑
i=0

kδ(C
1
i (u), C1

i (v)), kδ(x, y) =

{
1, x = y

0, x 6= y
(9)

on the nodes. The kernel counts the number of iterations required to assign different colors to
the nodes and reflects the extent to which the nodes have a structurally similar neighborhood.
For example, in Figure 7, we have k(a, f) = 2, because the nodes a and f are contained in the
same subtree on level 0 and 1, but not on the deeper levels. The optimal assignment kernel
with this base kernel is referred to as the Weisfeiler–Lehman optimal assignment kernel. It is
computed in linear time from the hierarchy of the base kernel and achieves better accuracy
results in many classification experiments compared to the Weisfeiler–Lehman subtree kernel.
Moreover, the hierarchy can be endowed with weights, which can be optimized via multiple
kernel learning (Kriege, 2019).

Kernel Based on Wasserstein Distances A related idea to establish an optimal match-
ing is employed by the so-called Wasserstein distance (or earth mover’s distance, optimal
transport distance). Let A and B in Rn+ with entries that sum to the same value and D in

17

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

Rn×n+ a distance matrix, the Wasserstein distance8

W (A,B) = min
T∈Γ (A,B)

〈T,D〉 with Γ (A,B) =
{
T ∈ Rn×n+ : T1 = A, T>1 = B

}
, (10)

where Γ (A,B) is the set of so-called transport plans. Intuitively, an element Dij of the
matrix D specifies the cost of moving one unit from i to j. Then, the Wasserstein distance
is the minimum cost required to transform A into B.

Togninalli et al. (2019) derived valid kernels from the Wasserstein distance by using a
distance on the nodes obtained from the Weisfeiler–Leman method according to

d(u, v) =
1

h+ 1

h∑
i=0

ρ(C1
i (u), C1

i (v)), ρ(x, y) =

{
1, x 6= y

0, x = y.
(11)

Equation (11) can be regarded as a normalized distance associated with the kernel of
Equation (9). For example, in Figure 7, we have d(a, f) = 1/2, since the nodes a and
f are in different subtrees in two of the four levels. The Wasserstein distance W (A,B)
of Equation (10) using Equation (11) on the nodes is then combined with a distance
substitution kernel (Haasdonk and Bahlmann, 2004), specifically a variant of the Laplacian
kernel. The resulting kernel was shown to be positive semidefinite. For graphs with
continuous attributes, Togninalli et al. (2019) proposed an extension of the Weisfeiler–Leman
method replacing discrete colors with real-valued vectors. Then, the ground costs of the
Wasserstein distance are obtained from the Euclidean distance between these vectors. In this
case, it is not guaranteed that the resulting kernel is positive semidefinite. To circumvent
this issue, Togninalli et al. (2019) proposed using a Krĕın SVM (Loosli et al., 2016), i.e., an
SVM that is capable of handling indefinite kernels.

4.4 Continuous Attributes

Due to its origin in graph isomorphism testing, the Weisfeiler–Leman algorithm initially only
applies to (discretely) labeled graphs. Hence, it is not clear how to extend the algorithm
to graphs with continuous attributes, i.e., graphs whose nodes and edges exhibit high-
dimensional feature vectors in some Rd. Over the years, there have been multiple noteworthy
approaches to address this problem, two of which we briefly discuss and describe below.

The chronologically first approach is due to Orsini et al. (2015) and describes graph
invariant kernels. The overarching idea is to extend existing graph kernels so that they are
able to capture continuous attributes. This necessitates the definition of a graph invariant.
We will provide an abstract definition first and discuss a more concrete example based on
1-WL later on. A function I : G → R is a graph invariant if it maps isomorphic graphs G
and H to the same element, i.e., I(G) = I(H) if G ' H. Similarly, a function L : V (G)→ R
is a node invariant if it assigns labels to the nodes of a graph G such that they are preserved
under any isomorphism ϕ, i.e., L(v) = L(ϕ(v)) for all v in V (G). Since every node invariant
can be phrased as a specific graph invariant, we will subsequently not distinguish between

8. Depending on the context, slightly different definitions are used in the literature, often requiring that A
and B are probability distributions.

18

Weisfeiler and Leman go Machine Learning: The Story so far

node and graph invariants. Given a graph invariant, we can define a generic kernel function
of the form

kGIK(G,H) =
∑

v∈V (G)

∑
v′∈V (H)

w(v, v′) · kAttr(v, v
′),

where w(v, v′) denotes a function that assesses the similarity between vertices v and v′ (Orsini
et al. (2015) suggest using a graph invariant function; as we shall subsequently see, 1-WL
can be employed here), and kAttr(v, v

′) denotes a kernel between node attributes. A simple
choice for kAttr(v, v

′) is an RBF kernel. As for w(v, v′), this function can be realized using,
among others, the 1-WL, by setting

w(v, v′) =
h∑
i=0

∣∣∣{v | c(i)l (v) = c
(i)
l (v′)}

∣∣∣ , (12)

i.e., the number of times two nodes are being assigned the same color during the 1-WL
refinement scheme with h iterations. While only being one specific choice for w(v, v′), this
demonstrates the utility of 1-WL beyond the use of a similarity measure itself. In effect, the
1-WL can also provide more fundamental insights into the structure of a graph.

The second approach is due to Morris et al. (2016). Its fundamental idea is to employ
the 1-WL scheme to assess the similarity of labeled graphs, which are, in turn, obtained by
employing a hashing scheme. The hashing scheme transforms continuous node attributes
into discrete ones, while the 1-WL scheme facilitates the comparison of such labeled graphs.
Formally, given a family H of hash functions, the hash graph kernel takes the form

kHGK(G,H) =
1

J

J∑
j=1

kWL(hj(G), hj(H)), (13)

where hj : Rd → N refers to a hash function from H. This representation once again
demonstrates the versatility of the 1-WL framework. Multiple hash functions are used
in the previous equation to ensure that continuous attributes are represented sufficiently.
Originally, the authors propose to use locality-sensitive hashing schemes (Datar et al., 2004),
but other choices are also possible. The running time of a hash graph kernel evaluation can
be upper-bounded by the running time of the 1-WL scheme, i.e., O(hm), and the complexity
of the hashing scheme O(th), leading to an overall complexity of O(J(hm+ th)). For a fixed
number of iterations J and under the (reasonable) assumption that the hash function is no
more complex than calculating 1-WL feature vectors, the hash graph kernel complexity is
thus asymptotically no higher than the complexity of 1-WL.

In addition to these principled approaches, other works also provide variants of the 1-WL
scheme to target continuous attributes. The work by Togninalli et al. (2019), for instance,
which we discussed in Section 4.3, can also be applied to graphs with continuous attributes.
Its formulation does not give rise to a positive semidefinite kernel, thus necessitating the
use of a special SVM for training (Loosli et al., 2016). Moreover, due to its reliance on
Wasserstein calculations, its complexity is considerably higher with O(n3 log n) for evaluating
the kernel between two graphs G and H, where n refers to the maximum number of nodes
in the two graphs.

19

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

4.5 Kernels Based on the k-OWL

Morris et al. (2017) proposed the first graph kernel based on the k-OWL. Essentially, the
kernel computation works the same way as in the 1-dimensional case, i.e., a feature vector
is computed for each graph based on color counts. To make the algorithm more scalable,
the author resorted to coloring all subgraphs on k nodes instead of all k-tuples, resulting
in a less powerful algorithm (Abboud et al., 2021). Moreover, the authors proposed only
considering a subset of the original neighborhood to exploit the sparsity of the underlying
graph. Formally, let G be a graph, for a given k ≥ 2, they consider all k-element subsets
[V (G)]k over V (G). Let s = {s1, . . . , sk} be a k-set in [V (G)]k, then they define the global
neighborhood of s as

N(s) = {t ∈ [V (G)]k | |s ∩ t| = k − 1} .
That is, two k-element subsets are neighbors if they are different in one element. The local
neighborhood NL(s) consists of all t in N(s) such that (v, w) in E(G) for the unique v in
s \ t and the unique w in t \ s. The coloring [V (G)]k → N is then defined analogously
to Equation (1) using the local neighborhood. Intuitively, the global neighborhood of a
k-element subset s consists of all other k-element subsets s such that we can go from s to t
by replacing exactly one node. The local neighborhood requires that these replaced nodes
are adjacent. For example, in Figure 4, the subset {a, c, v} is in the local neighborhood of
{a, b, c} because the nodes b and v are adjacent.

Further, they offered a sampling-based algorithm to speed up the kernel computation for
large graphs approximating it in constant time, i.e., independent of the number of nodes
and edges, with an additive approximation error. Finally, they show empirically that the
proposed kernel beats the Weisfeiler–Leman subtree kernel on a subset of tested benchmark
data sets.

Similarly to the above work, Morris et al. (2020b) also proposed graph kernels based
on k-OWL. Again, for scalability, they only consider a subset of the original neighborhood.
However, they consider k-tuples and prove that a variant of their method is slightly more
powerful than the k-OWL, see Section 3.2 while taking the original graph’s sparsity into
account. That is, instead of Equation (3), it uses

M δ
i (v) =

(
{{Ck,δi (φ1(v, w)) | w ∈ N(v1)}}, . . . , {{Ck,δi (φk(v, w)) | w ∈ N(vk)}}

)
.

Hence, two tuples v and w are local i-neighbors if the nodes vi and wi are adjacent in the
underlying graph, effectively exploiting the sparsity of the underlying graph. Consequently,
the labeling function is defined by

Ck,δi+1(v) = relabel(Ck,δi (v),M δ
i (v)).

This local version is incomparable to the k-OWL in terms of distinguishing non-isomorphic
graphs. That is, there exist pairs of non-isomorphic graphs that the above local variant can
distinguish while the k-OWL can not and vice versa. However, the authors devised a variant
of the above coloring function, with the same asymptotic running time as the above, that is
more powerful than the k-OWL in distinguishing non-isomorphic graphs. Empirically, they
show that this variant of the k-OWL achieves a new state-of-the-art across many standard
benchmark data sets (Morris et al., 2020a) while being several orders of magnitude faster
than the k-OWL.

20

Weisfeiler and Leman go Machine Learning: The Story so far

AB

C A

Input graph G

A

{{B}}

B

{{A,A,C}}

C

{{B}}
A

{{B}}
Multiset labels

XY

Z X

Weighted graph G′ Topological relevance

1-WL Metric TDA

w1

w2 w3

Figure 8: A brief overview of the topology-based extension of the 1-WL scheme, introduced
by Rieck et al. (2019). After obtaining the 1-WL multiset labels, they are used to
define a metric on the input graph G, turning it into a weighted graph G′. This
weighted graph is then used to determine the topological relevance of each node,
which is subsequently used to reweight the WL feature vector φWL.

Finally, Morris et al. (2022) introduced a more scalable variant of the above local version
by omitting certain k-tuples. Concretely, they proposed the local (k, s)-WL, which only
considers k-tuples inducing at most s connected components, and studied its expressive
power.

4.6 Other Kernels Based on the 1-WL

The general utility of the 1-WL scheme made it a natural building block in other algorithms
and a central element in others. To guide the subsequent discussion, we briefly expand on the
R-convolution framework (Haussler, 1999), which to this date underlies most graph kernel
approaches either implicitly or explicitly. This framework provides a way to construct kernels
to compare structured objects by decomposing them according to a set of agreed-upon
substructures, such as shortest paths. Two objects (e.g., graphs) are then compared by
defining a kernel on their respective substructures. Many existing graph kernels can be
rephrased as kernels based on the R-convolution framework, see, e.g., Borgwardt et al.
(2020) or Kriege et al. (2020), for recent surveys that provide in-depth discussions of this
framework.

As an example of an algorithm in which the 1-WL scheme constitutes a building block,
Yanardag and Vishwanathan (2015a) employed it in its capacity to enumerate substructures,
with the expressed goal to obtain “smoothed” variants of existing graph kernels. These are
graph kernels built on a less rigid version of the R-convolution framework that supports
partial matches between substructures. The smoothed variant of 1-WL demonstrates superior
predictive performance than its “rigid” variant but with higher computational costs. In a
similar vein, Yanardag and Vishwanathan (2015b) describe how to modify existing graph
kernels such that they decompose graphs into their substructures. These substructures
are then treated as sentences (in the natural language processing sense) arising from some
vocabulary. This perspective enables the re-weighting of structures based on co-occurrence
counts, resulting in a generic kernel formulation

kDGK(G,H) = φ(G)Dφ>(H),

21

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

fW1
merge

(
, fW2

aggr

(
{{ , }}

))

Figure 9: Illustration of GNN’s neighorbood aggregation.

where φ(·) refers to a feature vector representation of a graph kernel and D denotes a
diagonal matrix containing substructure weights. The re-weighted “deep” version of 1-WL
also performs slightly better than the unweighted one, but the computational requirements
are again substantially higher.

As an example of the second type of approach, where 1-WL constitutes a critical element,
we briefly summarize a method by Rieck et al. (2019). This paper is motivated by the
observation that 1-WL on its own cannot capture arbitrary topological features, such as
cycles, in graphs (see Section 3.3 or Grohe and Kiefer (2021) for more details and see Figure 3
for a simple example of this). Making use of recent advances in topological data analysis,
see Hensel et al. (2021) for a current survey, Rieck et al. (2019) used the “persistence”, i.e.,
a type of multi-scale measure for assessing the relevance of topological structures in a graph
G, to provide weights for the individual dimensions of 1-WL feature vectors φWL(G). This
amounts to imbuing the label counts with additional information about their topological
relevance in terms of connected components and cycles. For instance, if a set of labels often
occurs as a part of a pronounced cycle in the graph, its weight will be larger than that of a
label that only contributes marginally to the overall topology of a graph. Figure 8 illustrates
the overall workflow. The 1-WL is used to generate multiset labels, from which a weighted
graph is obtained via a multiset distance metric. Topological features of the graph are then
calculated, resulting in a topological relevance score for each node or edge.

Rieck et al. (2019) empirically demonstrated that the inclusion of cycles can boost the
performance of the 1-WL, particularly for molecular data sets. Moreover, they also proved
that it is possible to rephrase the 1-WL scheme as a specific instance of a general topological
relabeling scheme based on graph distances. In essence, the original 1-WL feature vectors
are obtained by using the uniform graph metric, which assigns all edges the same value.
Zhang et al. (2018) devised a pooling method for GNNs, see below, inspired by the 1-WL
histogram construction.

5. Connections to Graph Neural Networks

In the following, we overview the connections between the Weisfeiler–Leman hierarchy,
see Section 3, and neural networks for graphs, specifically GNNs. We introduce GNNs and

22

Weisfeiler and Leman go Machine Learning: The Story so far

their connection to the 1-WL and overview GNN architectures overcoming the limitation of
the 1-WL.

5.1 GNNs and the 1-WL algorithm

Intuitively, GNNs or message-passing neural networks compute a vectorial representation,
i.e., a d-dimensional vector, representing each node in a graph by aggregating information
from neighboring nodes; see Figure 9 for an illustration. Formally, let G = (V,E, l) be a
labeled graph with initial node features f (0) : V (G)→ R1×d that are consistent with l. That
is, each node v is annotated with a feature f (0)(v) in R1×d such that f (0)(u) = f (0)(v) if
l(u) = l(v), e.g., a one-hot encoding of the the labels l(u) and l(v). Alternatively, f (0)(v)
can be an arbitrary real-valued feature vector or attribute of the node v, e.g., physical
measurements in the case of chemical molecules. A GNN architecture consists of a stack of
neural network layers, i.e., a composition of parameterized functions. Each layer aggregates
local neighborhood information, i.e., the neighbors’ features, around each node and then
passes this aggregated information on to the next layer.

GNNs are often realized as follows (Morris et al., 2019). In each layer, t > 0, we compute
node features

f (t)(v) = σ
(
f (t−1)(v) ·W (t)

1 +
∑

w∈N(v)

f (t−1)(w) ·W (t)
2

)
(14)

in R1×e for v, where W
(t)
1 and W

(t)
2 are parameter matrices from Rd×e , and σ denotes an

entry-wise non-linear function, e.g., a sigmoid or a ReLU function.9 Following Gilmer et al.
(2017); Scarselli et al. (2009), one may also replace the sum defined over the neighborhood in
the above equation by an arbitrary, differentiable function, and one may substitute the outer
sum, e.g., by a column-wise vector concatenation. Thus, in full generality a new feature
f (t)(v) is computed as

fW1
merge

(
f (t−1)(v), fW2

aggr

(
{{f (t−1)(w) | w ∈ N(v)}}

))
, (15)

where fW2
aggr aggregates over the multiset of neighborhood features and fW1

merge merges the
node’s representations from step (t− 1) with the computed neighborhood features. Both
fW1
aggr and fW2

merge may be arbitrary differentiable functions and, by analogy to Equation 14,
we denote their parameters as W1 and W2, respectively. To adapt the parameters W1 and
W2 of Equations 14–15, they are optimized in an end-to-end fashion, usually via a variant of
stochastic gradient descent, e.g., Kingma and Ba (2015), together with the parameters of a
neural network used for classification or regression.

Concurrently with Xu et al. (2019), Morris et al. (2019) showed that any GNN’s expressive
power is upper bounded by the 1-WL in terms of distinguishing non-isomorphic graphs.
That is, given two non-isomorphic graphs, for any choice of functions fW1

merge and fW2
aggr and

parameters W1 and W2, the GNN is not able to learn node features distinguishing two
graphs if the 1-WL cannot distinguish them. Let W (t) denote the set of weights up to layer
t. Formally, we can write the above down as follows.

9. For clarity of presentation, we omit biases.

23

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

Theorem 1 (Morris et al., 2019; Xu et al., 2019) Let G = (V,E, l) be a labeled graph.
Then for all t ≥ 0 and for all choices of initial colorings f (0) consistent with l, and weights
W (t),

C1
t (u) = C1

t (v) implies f (t)(u) = f (t)(v),

for all nodes u and v in V (G).

On the positive side, Morris et al. (2019) proved that there exists a sequence of param-
eter matrices W (t) such that GNNs have exactly the same expressive power in terms of
distinguishing non-isomorphic (sub-)graphs as the 1-WL algorithm by deriving injective
variants of the functions fW1

merge and fW2
aggr.

This equivalence in expressive power even holds for the simple architecture of (14),
provided one chooses the encoding of the initial labeling l in such a way that different labels
are encoded by linearly independent vectors (Morris et al., 2019).

Theorem 2 (Morris et al., 2019) Let G = (V,E, l) be a labeled graph. Then for all
t ≥ 0, there exists a sequence of weights W (t), and a GNN architecture such that

C1
t (u) = C1

t (v) if and only if f (t)(u) = f (t)(v),

for all nodes u and v in V (G).

Similarly, (Xu et al., 2019) derived the Graph Isomorphism Network (GIN) layer and showed
that it has the same expressive power as the 1-WL in terms of distinguishing non-isomorphic
graphs. Concretely, the GIN layer updates a feature of node v at layer t as

f t(v) = MLP
(

(1 + ε) · f t−1(v) +
∑

w∈N(v)

f t−1(w)
)
,

where MLP is a standard multi-layer perceptron, and ε is a learnable scalar value. See Grohe
(2021) for an in-depth discussion of both approaches. Further, Aamand et al. (2022) devised
an improved analysis using randomization. In summary, we arrive at the following insight:
Any possible graph neural network architecture can be at most as powerful as the 1-WL in
terms of distinguishing non-isomorphic graphs. A GNN architecture has the same expressive
power as the 1-WL if the functions fW1

merge and fW2
aggr are injective.

Barceló et al. (2020) further tightened the relationship between 1-WL and GNNs by
deriving a GNN architecture that has the same expressive power as the logic C2, see Sec-
tion 3.3. Moreover, Geerts et al. (2020) showed a connection between the 1-WL and the
GCN layer introduced in Kipf and Welling (2017).

5.2 Neural Architectures Beyond 1-WL’s Expressive Power

In the following, we overview some recent works overcoming the limitations of the 1-WL.

Higher-order Architectures Morris et al. (2019) proposed the first GNN architecture
that overcame the limitations of the 1-WL. Specifically, they introduced so-called k-GNNs,
which work by learning features over the set of subgraphs on k nodes instead of nodes by
defining a notion of the neighborhood between these subgraphs. Formally, let G be a graph,

24

Weisfeiler and Leman go Machine Learning: The Story so far

for a given k, they consider all k-element subsets [V (G)]k over V (G). Let s = {s1, . . . , sk}
be a such k-element subset, an element in [V (G)]k, then they define the neighborhood of s as

N(s) = {t ∈ [V (G)]k | |s ∩ t| = k − 1}.

That is, two k-element subsets are neighbors if they are different in one element. The local
neighborhood NL(s) consists of all t in N(s) such that (v, w) in E(G) for the unique v in s\ t
and the unique w in t \ s. The global neighborhood NG(s) then is defined as N(s) \NL(s).
Hence, the neighborhood definition equals the one of Section 4.5

Based on this neighborhood definition, one can generalize most GNN layers for node
embeddings, e.g., the one from Equation (14), to more powerful subgraph embeddings.
Given a graph G, in each layer t, a d-dimensional real-valued feature for a subgraph s can
be computed as

f tk(s) = σ
(
f t−1k (s) ·W t

1 +
∑

u∈NL(s)∪NG(s)

f t−1k (u) ·W t
2

)
. (16)

At initialization, i.e., layer t = 0, the feature of the k-element subset s is set to a one-hot
encoding of the (labeled) isomorphism type of the graph G[s] induced by s, possibly enhanced
by application-specific node and edge features. The authors resort to sum over the local
neighborhood in the experiments for better scalability and generalization, showing a signifi-
cant boost over standard GNNs on a quantum chemistry benchmark data set (Ramakrishnan
et al., 2014; Wu et al., 2018).

Moreover, rather than starting at k-node subgraphs, Morris et al. (2019) also proposed
a hierarchical variant of the layer in Equation (16) that combines the information of the
k-node subgraph’s isomorphism types with learned vectorial representations of (k − 1)-node
subgraphs using a (k − 1)-GNN. That is, rather than simply using one-hot indicator vectors
as initial feature inputs in a k-GNN, they proposed a hierarchical variant of k-GNN that uses
the features learned by a (k− 1)-dimensional GNN, in addition to the (labeled) isomorphism
type, as the initial features, i.e.,

f
(0)
k (s) = σ

([
f iso(s),

∑
u⊂s

f
(Tk−1)
k−1 (u)

]
·Wk−1

)
,

for some Tk−1 > 0, where Wk−1 is a matrix of appropriate size, f iso is a neural network that
learns a vectorial representation of the subset s based on a one-hot encoding of the (labeled)
isomorphism type of the graph G[s] induced by s, and square brackets denote column-wise
matrix concatenation. Hence, the features are recursively learned from dimensions 1 to k in
an end-to-end fashion. Further, Morris et al. (2020b) devised a neural version of the local
version of the k-OWL, see Section 4.5, inheriting its expressive power.

Unique Node Identifiers Vignac et al. (2020) extended the expressive power of GNNs,
by using unique node identifiers, generalizing the message-passing scheme proposed by Gilmer
et al. (2017), see Equation (15), by computing and passing matrix features instead of vector
features. Formally, given an n-node graph, each node i maintains a matrix Ui in Rn×c for
c > 0, denoted local context, where the j-th row contains the node i’s vectorial representation

25

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

of node j. At initialization, each local context Ui is set to a one-hot vector in Rn×1. Now at
each layer l, similar to the above message-passing framework, the local context is updated as

U
(l+1)
i = u(l)

(
U

(l)
i , Ũ

(l)
i

)
∈ Rn×cl+1 with Ũ

(l)
i = φ

({
m(l)(U

(l)
i , U

(l)
j , eij)

}
j∈N(i)

)
,

where u(l),m(l), and φ are update, message, and aggregation functions, respectively, to
compute the updated local context, and eij denotes the edge feature shared by node i and
j. The authors studied the expressive power of the above architecture, showing that it is
more powerful than 1-WL, and proposed more scalable alternative variants of the above
architecture. Moreover, they derived conditions for equivariance. Finally, promising results
on standard benchmark data sets are reported.

To derive more powerful graph representations, Murphy et al. (2019a,b), inspired by Yarot-
sky (2018), proposed relational pooling. To increase the expressive power of GNN layers,
they averaged over all permutations of a given graph. Formally, let G be a graph, then a
representation

f(G) =
1

|V (G)|!
∑
π∈Π

g(Aπ,π, [Fπ, I|V |]) (17)

is learned, where Π denotes all possible permutations of the rows and columns of the
adjacency matrix of the graph G. Here, Aπ,π permutes the rows and columns of the
adjacency matrix A according to the permutation π in Π, similarly Fπ permutes the rows of
the feature matrix F . Moreover, g is a (possibly permutation-sensitive) function to compute
a vectorial representation of the graph G, based on Aπ,π and Fπ, I|V | is the |V |× |V | identity
matrix, and [·, ·] denotes column-wise matrix concatenation. The authors showed that the
above architecture is more powerful in terms of distinguishing non-isomorphic graphs than
the 1-WL, and proposed sampling-based techniques to speed up the computation. If the
underlying model g has maximal expressive power, e.g., an MLP, this model can be shown
to distinguish all non-isomorphic graphs. Further, Keriven et al. (2021) studied unique node
identifiers in the context of large random graphs.

Randomized Node Labels Murphy et al. (2019a); Sato et al. (2020); Abboud et al.
(2021) showed that adding random features, e.g., sampled from the standard uniform
distribution, concatenated to the initial node features, enhances the expressive power of
GNNs. Specifically, Sato et al. (2020) showed that adding random features to the initial
features of the GIN layer of Section 5.1 improves their ability to randomly approximate
the solution of common combinatorial optimization problems, e.g., minimum dominating
set problem and maximum matching problem, over standard GNNs. Abboud et al. (2021)
investigated the universality, see Section 6.2 below, of such architectures. They showed that
adding random features to GNNs results in universality for the class of invariant functions
on graphs with high probability. Dasoulas et al. (2020) obtained similar universality results
also leveraging random colorings.

Homomorphism- and Subgraph-based Approaches Bouritsas et al. (2023) extended
the expressive power of GNNs by enhancing them with subgraph information. Specifically,
they fix a set of small subgraphs F of given graph G. For each node v in V (G) and each
subgraph F in F , they compute the node’s role in the subgraph and add this information

26

Weisfeiler and Leman go Machine Learning: The Story so far

to the node’s feature. That is, formally, they compute the automorphism type of node v
concerning the subgraph F . Similarly, they add information based on the edge automorphism
type. Theoretically, they derived conditions under which the enhanced GNNs become more
powerful than the 1-WL, based on the choice of the set of subgraphs F . By relying on
homomorphism counts, Barceló et al. (2021) analyzed under which conditions adding more
subgraphs leads to added expressivity and studied the expressive power of the resulting
architectures compared to the k-FWL. Moreover, NT and Maehara (2020) directly leveraged
the connection between homomorphism counts and the k-FWL hierarchy, see Section 3.3,
and proved universality results for such architectures.

Subgraph-enhanced Approaches Recently, another type of subgraph-based approach
to enhance GNNs’ expressive power emerged; see, e.g., Bevilacqua et al. (2021); Cotta
et al. (2021); Li et al. (2020); Papp et al. (2021); Thiede et al. (2021); You et al. (2021);
Wijesinghe and Wang (2022); Zhao et al. (2021). These approaches enhanced the expressive
power of GNNs by representing graphs as multi-sets of subgraphs and applying GNNs to
these subgraphs. The subgraphs are obtained by removing, extracting, or marking (small)
subgraphs to allow GNNs to leverage more structural patterns within the given graph,
essentially breaking symmetries induced by the GNNs’ local aggregation function. We
henceforth refer to these approaches as subgraph-enhanced GNNs.

For example, Cotta et al. (2021) derived a more powerful graph representation based
on ideas inspired by the graph reconstruction conjecture (Bondy, 1991). They showed that
removing single vertices and deploying GNNs on the resulting subgraphs leads to more
powerful GNN architectures. Moreover, they showed that such architectures can be made
more powerful by removing several vertices simultaneously, distinguishing graphs the 2-FWL
cannot. Papp et al. (2021) proposed a similar approach. Instead of removing all vertices,
the authors proposed to remove vertices randomly. Papp and Wattenhofer (2022) compared
these approaches’ expressive power to the subgraph-based approaches; see the previous
paragraph.

You et al. (2021) proposed, for each node v, to extract its k-disc, i.e., the graph induced
by all nodes at a distance at most k from node v, and assigned a unique marking to node
v. Each message passing iteration used two aggregation functions with distinct parameters.
One function aggregates features around node v and the other aggregates around all other
subgraph nodes. They showed that this architecture can, e.g., count the number of cycles
starting at node v, predict the clustering coefficient, or distinguish random d-regular graphs.
Hence, making it strictly more powerful than standard GNNs. Sandfelder et al. (2021)
enhanced GNN’s expressive power by proposing an architecture performing message passing
within each node’s ego network, i.e., the subgraph induced by a node and its neighbors, and
across ego networks. The authors show that such architecture can distinguish the graphs
of Figure 3. Similarly, Zhang and Li (2021) proposed to make GNNs more powerful by
extracting the k-hop neighborhood around each node and applying a standard GNN on top.
The resulting node representations for each subgraph are then pooled together to learn a
single representation for each node. Under certain assumptions, the authors showed that
such an architecture can distinguish regular graphs.

Moreover, Bevilacqua et al. (2021) generalized several ideas discussed above and proposed
a framework in which each graph is represented as a subset of its subgraphs and processed

27

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

using an equivariant architecture based on the Deep Sets for Symmetric elements architec-
ture (Maron et al., 2020) and message-passing neural networks. The authors showed that
several simple subgraph selection policies, e.g., edge removal, ego networks, or node removal,
generate more powerful GNNs, and derived equivalent WL-like procedures. In follow-up
work, Frasca et al. (2022) presented a novel symmetry analysis for several of the approaches
mentioned above (Bevilacqua et al., 2021; You et al., 2021; Cotta et al., 2021; Zhao et al.,
2021), for the common case in which subgraphs are selected in one-to-one correspondence
with nodes (for example, by deletion of nodes, node marking, or extraction of ego networks).
Based on this symmetry analysis, they were able to link subgraph-enhanced GNNs with
previously studied equivariant models for graphs (Maron et al., 2019b), thereby defining a
systematic framework to develop novel architectures extending this family of architectures,
as well as proving an upper bound on the expressive power of these methods by 3-OWL.

Qian et al. (2022) introduced a theoretical framework to study and generalize the
approaches in the last three paragraphs. They showed that all such subgraph-enhanced
approaches with subgraph size bounded by k are limited by the (k + 1)-FWL while being
incomparable to the k-FWL in terms of distinguishing non-isomorphic graphs. Moreover,
based on Niepert et al. (2021), they explored data-driven sampling techniques to select
subgraphs. Finally, recently, Zhang et al. (2023a) conducted a more fine-grained, general
analysis of subgraph-enhanced GNNs. Besides other things, they derived a subgraph-
enhanced GNN of maximal expressive power, devised equivalence classes for different types,
and developed new theoretical tools for their analysis.

Other Approaches Tönshoff et al. (2021) proposed an architecture using random walks
to extract substructures from a graph. For each node, they uniformly and at random
sampled a set of random walks from a graph. They collected features along the walks
and constructed a feature matrix processed by 1D convolutions followed by an MLP to
update the node’s feature. Moreover, they showed under which conditions such architecture
exceeds the expressive power of the k-FWL. Leveraging the results in Cai et al. (1992),
they derived pairs of non-isomorphic graphs the k-FWL cannot distinguish, see Section 3.3,
while their proposed architecture, using walks of length k2 and O(n) samples, distinguishes
them. However, they also derive pairs of graphs that the 1-WL can distinguish, but their
architecture cannot.

Bodnar et al. (2021b) defined a variant of the Weisfeiler–Leman algorithm for handling
simplicial complexes—generalizations of graphs, incorporating higher-dimensional connectiv-
ity such as cliques. Moreover, they proposed a corresponding neural architecture showing
that it is more powerful than the 1-WL while being able to distinguish graphs the 2-WL
cannot. This extension is seen to substantially improve classification performance at the
price of higher memory requirements and increased running time. In Bodnar et al. (2021a),
building on the above, Bodnar et al. (2021a) also defined a variant of the Weisfeiler–Leman
algorithm for cellular complexes generalizing simplicial complexes.

Li et al. (2020) enhanced GNNs with distance information, e.g., random walks, and
showed under which conditions such additional information leads to more powerful node
and graph embeddings than GNNs. Further works overcome 1-WL limitations by including
edge (Klicpera et al., 2020), spectral (Balcilar et al., 2021), and directional information (Beaini
et al., 2020). A different strategy is adopted by Horn et al. (2022), who prove that the

28

Weisfeiler and Leman go Machine Learning: The Story so far

Figure 10: Representing graphs as tensors.

integration of low-dimensional topological features (specifically, connected components and
cycles) can be used to develop graph neural networks that are more powerful than the 1-WL.
The use of topological calculations adds an additional complexity factor of O(m logm) to
the calculation of 1-WL features or GNN features, with m = |E(G)|. An extension of this
work recently showed that higher-order topological information results in architectures that
are at least as powerful as k-FWL (Rieck, 2023).

Zhang et al. (2023b) studied the 1-WL and GNNs by showing that they are not able to
solve problems related to biconnectivity (Bollobás, 2002) and derived a variant of the 1-WL
being able to encode general distance metrics, e.g., the shortest-path distance. Further,
they derived a transformer-like architecture (Müller et al., 2023) to simulate this variant.
Additionally, they showed that one of the subgraph-enhanced GNNs by Bevilacqua et al.
(2021) can solve the above problems related to biconnectivity. Finally, Kim et al. (2022)
devised transformer architectures for graphs Müller et al. (2023) that are capable of simulating
the 2-FWL.

Node- and Link Prediction The above neural architecture beyond 1-WL’s expressive
power mainly dealt with graph-level prediction tasks, e.g., graph classification. However,
a few works also use 1-WL’s expressivity as a yardstick to study the expressive power of
GNNs for node-level or link prediction. For example, Zeng et al. (2021) explored extracting a
connected subgraph around a node v using hand-crafted heuristics. On top of this subgraph,
they used a GNN to compute a vectorial representation or feature for the node v. In turn,
this feature is used, e.g., to classify the node v in a node classification setting. Zeng et al.
(2021) showed that the above method can distinguish nodes in a graph that the 1-WL
cannot distinguish. Further, Hu et al. (2022) explored GNNs inspired by the 2-WL for link
prediction.

6. Equivariant Graph Networks and the Weisfeiler–Leman Algorithm

In the following, we give an overview of recent progress in the design of equivariant (higher-
order) graph networks and their connection to the Weisfeiler–Leman hierarchy and univer-
sality.

29

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

6.1 Equivariant Graph Networks

This section shows how graph neural networks can be deduced from the first principles,
namely invariance and equivariance to the action of node permutation. We show how these
networks, called Equivariant Graph Networks (EGN), naturally relate to message-passing
GNNs and the Weisfeiler–Leman hierarchy and discuss their expressive power.

Representing Graphs as Tensors We start by setting up some notation. As before, a
graph G is denoted (V,E), with node set V (G) and edge set E(G). We let n = |V (G)| and
m = |E(G)| denote the number of nodes and edges, respectively. We further assume that
the graph has node features F V in Rn×d and (potentially) edge features FE in Rm×d. In
this section, we encode all the graph data, i.e., adjacency information E(G) and features
F V , and FE as three-dimensional tensors,

X ∈ Rn
2×(2d+1).

The first n2 = n× n slice, namely X:,:,1, holds the adjacency matrix of the graph, which is
determined by the set of edges E(G). The next d channels X:,:,2:d+1 hold the edge features,
namely, Xi,j,2:d+1 = FEe,:, where, with a slight abuse of notation, e = (i, j) in E. Similarly

the last d channels X:,:,d+2:2d+1 hold the node features on the diagonal, Xi,i,d+2:2d+1 = F Vi,i,:,
and zeros on the off-diagonals. See Figure 10 for an illustration of this construction.

A generalization of the graph tensor representation is

X ∈ Rn
k×c,

where we attach feature vectors in Rc to k-tuples of nodes. That is, for a k-tuple of
nodes v = (i1, i2, . . . , ik), for ij in [n], we attach the feature vector Xi1,i2,...,ik,: in Rc. This
representation can be seen as a method of encoding the coloring of the k-OWL algorithm as
described in Section 3.1, where colors are represented as feature vectors. Furthermore, this
representation can be used to represent hypergraphs (Maron et al., 2019b).

An alternative way of representing graphs as tensors is using incidence matrices as
suggested in Albooyeh et al. (2019). Here a (feature-less) graph is represented as a tensor X
in Rn×m, where Xi,e = 1 if the i-th node is incident to the edge e, and Xi,e = 0 otherwise.
Features on nodes or edges can be encoded using extra channels of X. Node features F V can
be added as d layers Xi,e,2:d+1 = F Vi,: , for all e in E, while edge features Xi,e,d+2:2d+1 = FEe,:
for all i.

Symmetries of Graph Tensor Representations Structured objects can often undergo
transformations that do not change their essence. Such transformations are called symmetries
and are mathematically defined by a group G that acts on the objects. A well-known example
of a symmetry is the translation of an image. Applying a translation to an image does not
change the objects appearing in it, assuming they are not taken out of the image boundaries
by the translation. Symmetries in graphs arise because the nodes, in most cases, do not follow
a canonical order, and any order of the nodes may result in an equivalent yet, seemingly
different representation of the graph. More formally, let Sn denote the group of permutations
on n symbols and a graph represented as a tensor X in Rn×n×d, as defined above. Then for
any τ in Sn a reordered version of the tensor, τ ·X, defined by

(τ ·X)ijk = Xτ−1(i),τ−1(j),k,

30

Weisfeiler and Leman go Machine Learning: The Story so far

represents exactly the same graph. When considering a higher-order tensor representation,
the symmetries are defined similarly by (τ ·X)i1,...,ik,j = Xτ−1(i1),...,τ−1(ik),j .

The incidence tensor representation admits a different symmetry where rows correspond-
ing to nodes and columns corresponding to edges can be permuted independently. That is,
for (τ, ν) in Sn × Sn the symmetry transformation on an incidence matrix X in Rn×m can
be written by ((τ, ν) ·X)ijk = Xτ−1(i),ν−1(j),k; see Albooyeh et al. (2019). In this manuscript,
we will focus on the tensor representation and its generalization due to its tight connection
to the Weisfeiler–Leman algorithm.

Equivariance as a Design Principle for Neural Networks The vast majority of
graph learning tasks belong to one of two groups: invariant or equivariant. In cases where
a single output is predicted for the entire graph, e.g., when solving graph classification
problems, the output is often invariant under the node relabeling operation described above,
namely f(τ · X) = f(X). In other cases, predicting values for every node, e.g., in node
classification problems or every edge of a graph, may be required. In these cases, the task is
often equivariant to the relabeling operation, namely f(τ ·X) = τ · f(X).

In learning invariant or equivariant graph functions, restricting the model by construction
to be invariant or equivariant is often preferable to train more powerful models. For example,
recent studies demonstrated that invariant models enjoy better generalization (Bietti et al.,
2021; Elesedy and Zaidi, 2021; Garg et al., 2020; Liao et al., 2021; Mei et al., 2021; Sokolic
et al., 2017) and improved efficiency (Maron et al., 2019a; Zaheer et al., 2017). Indeed,
recent years have seen the introduction of equivariance and invariance as a leading design
principle for deep learning models for structured data (Bronstein et al., 2021; Cohen and
Welling, 2016; Ravanbakhsh et al., 2017; Wood and Shawe-Taylor, 1996).

Invariant and Equivariant Architectures To practically build equivariant networks,
we first need to choose our graph tensor representation, each endowed with its symmetries,
as described above. Second, we compose multiple equivariant layers, as follows,

fequi = L1 ◦ . . . ◦ Lk,

where Li are simple “primitive” equivariant functions with tunable parameters. Drawing
inspiration from multi-layer perceptrons (MLPs), each Li can be chosen to be an affine
equivariant transformation composed with an entrywise non-linearity, such as the ReLU
function. Since invariant linear transformations are often rather limited, invariant networks
are constructed by composing a single invariant layer, potentially followed by an MLP, to
the equivariant architecture,

finv = Linv ◦ fequi,

where Linv is some simple, potentially tunable, invariant layer. As a consequence of the
constructions just described, the problem of constructing equivariant models is reduced to
finding simple and powerful primitive invariant, Linv, and equivariant, Li, blocks.

The first paper to consider the construction above for graph learning is the pioneering
work of Kondor et al. (2018) that suggested a set of linear and non-linear equivariant layers for
tensors with Sn symmetry. While not characterizing the full spaces of equivariant layers, the
authors identified several important instances: tensor product, tensor contraction, and tensor
projection. Since then, a core research theme in this field has become the characterization

31

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

of useful families of equivariant layers. For the incidence matrix representations, Albooyeh
et al. (2019) presented the full characterization of affine layers, while the full characterization
for the tensor representation was provided in Maron et al. (2019b).

Linear Equivariant Layers for Graphs We will elaborate on constructing invariant
and equivariant linear layers for the graph tensor representation. To keep things focused
and concise, we will assume a single feature dimension and no bias; see further information
in Maron et al. (2019a).

A general linear transformation L : Rn2 → Rn2
would be equivariant if it satisfies the

following system of linear equations

L(τ ·X) = τ · L(X), ∀X ∈ Rn
2
, τ ∈ Sn.

To characterize the solutions to this system let us represent L as a tensor L ∈ Rn4
, and

L(X)i,j =
∑

kl Li,j,k,lXk,l. Now the above equations take the form:∑
kl

Li,j,τ(k),τ(l)Xk,l =
∑
kl

Lτ−1(i),τ−1(j),k,lXk,l,

which holds for all X and τ in Sn if and only if

Li,j,k,l = Lτ(i),τ(j),τ(k),τ(l), ∀τ ∈ Sn.

That is, L is equivariant if it is constant on the orbits of the action of Sn on [n]4. Each orbit
is characterized by a unique equality pattern. For example, all indices (i1, i2, i3, i4) ∈ [n]4

such that i1 = i2 = i3 = i4 or all indices such that i1 = i2 6= i3 = i4. A simple counting
argument (Maron et al., 2019c) shows that there are exactly bell(4) = 15 such equality
patterns. Here, bell(k) is the bell number which counts the number of different partitions of
a set of size k. Therefore, the space of equivariant linear operators L : Rn2 → Rn2

is spanned
by the set of indicator matrices of the equality patterns,

Ej ∈ Rn
2×n2

, j ∈ [15].

For example, if the j-th equality pattern is given by i1 = i2 = i3 = i4 then

Eji1,i2,i3,i4 =

{
1 if i1 = i2 = i3 = i4

0 otherwise.

In Ravanbakhsh et al. (2017); Wood and Shawe-Taylor (1996) this principle is discussed in
more general terms. Note, however, that for more general group actions and representations,
a closed-form solution and characterization of the space of equivariant linear operators, as
done above, might be hard to find or calculate. To summarize the above discussion, we have
the following characterization (Maron et al., 2019b).

Theorem 3 (Characterization of linear graph equivariant layers) The space of lin-
ear Sn-equivariant layers L : Rn2 → Rn2

is bell(4) = 15-dimensional, and can be written
as

L =
15∑
j=1

wjE
j ,

32

Weisfeiler and Leman go Machine Learning: The Story so far

where each Ej in Rn2×n2
is an indicator tensor of an equality pattern on 4 indices. The

scalars wj in R are the learnable parameters of this layer.

Notably, the dimension of the space of equivariant layers is independent of the graph size
n = |V (G)|. This crucial property allows practitioners to apply these layers to graphs of any
size by using the same learned parameters wj and Ej matrices of appropriate size for each
graph. Similar arguments as above lead also to a generalization of Theorem 3 to equivariant
linear operators between higher order tensors L : Rnk → Rn`

:

Theorem 4 (Characterization of linear hyper-graph equivariant layers) The space

of linear Sn-equivariant layers L : Rnk → Rn`
is bell(k + l) dimensional, and can be written

as

L =

bell(k+l)∑
j=1

wjE
j ,

where each Ej in Rnk×nl
is an indicator tensor of an equality pattern on k + l indices. As

before, the scalars wj in R are the learnable parameters of this layer.

Non-linear Equivariant Layers for Graphs A natural generalization of the linear
equivariant layers is non-linear equivariant layers. While such characterizations exist, e.g.,
for equivariant set polynomials Rn → Rn; see for example Segol and Lipman (2020), until
recently, it was not known for the more general case of equivariant graph polynomials
Rnk → Rnl

.
A set of quadratic equivariant tensor operations are suggested in Kondor et al. (2018)

based on tensor arithmetic. One systematic way to achieve quadratic equivariant tensor
operators based on the above characterization of linear equivariant operators is by composing
a tensor product X ⊗X defined by

(X ⊗X)i1,...,ik,j1,...,jl = Xi1,...,ikXj1,...,jl ,

with a general linear equivariant operator Rnk+l → Rnm
as characterized in Theorem 4.

Among this myriad of quadratic operators, matrix products have been demonstrated,
via relation to Weisfeiler–Leman as described below, to be of particular interest (Maron
et al., 2019a). Given two matrices X1 and X2 in Rn2

,

(X1X2)i1,i2 =

n∑
j=1

X1
i1,jX

2
j,i2 . (18)

Furthermore, beyond quadratic operators, the following generalization of matrix product
also found a tight connection to higher-order Weisfeiler–Leman algorithms (Azizian and

Lelarge, 2020; Maron et al., 2019c). Given X1, . . . , Xk in Rnk
, then �ki=1X

i in Rnk
defined

by

(�ki=1X
i)i1,...,ik =

n∑
j=1

X1
j,i2,...,ik

X2
i1,j,...,ik

· · ·Xk
i1,...,ik−1,j

. (19)

Very recently, Puny et al. (2023) provided a full characterization of equivariant graph
polynomials P : Rn2 → Rn2

. In particular, they presented a basis for the space of equivariant

33

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

polynomials, where each element, PH , corresponds to a specific multi-graph H. These
polynomial spaces are used to suggest a new hierarchy for studying the expressive power of
GNNs called polynomial expressiveness. Lastly, they discuss how to analyze and enhance
the polynomial expressiveness of existing GNN models.

6.2 Expressive Power and Weisfeiler–Leman Hierarchy

Here, we analyze the expressive power of the above linear and non-linear equivariant layers
in the context of the Weisfeiler–Leman hierarchy.

Separation Power Versus Function Approximation There are two main notions
used to describe the expressive power of GNNs (Chen et al., 2019), graph separation power,
and function approximation power.

Graph separation power refers to the ability of a model class to have an instance that
provides a different output on a pair of non-isomorphic graphs G1 and G2. More formally, we
say that a parametric model class C = {f(· ;W) |W ∈ Rp}, where W denotes the model’s
parameters, can separate a set of graphs G if for every non-isomorphic G1 and G2 in G there
exist parameters W such that

f(G1;W) 6= f(G2;W).

Function approximation, on the other hand, is the ability of a model class to approximate
a given invariant or equivariant function on graphs. Again, more formally, given a compact
domain of graphs, K ⊂ Rn2×(2d+1), we say that a parametric model class C can approximate
some set of continuous invariant functions over K, F ⊂ C(K), if for every g in F and ε > 0
there exist parameters W in Rp such that

‖f(·;W)− g(·)‖ ≤ ε,

where ‖ · ‖ stands for the Linf norm on functions: ‖g‖ = maxx∈K |g(x)|.
While seemingly different, Chen et al. (2019) proved that these two notions are equivalent.

A model class can separate all graphs if and only if it can approximate any continuous invariant
function. We shall later see that Azizian and Lelarge (2020) provided a generalization of
this result for k-FWL and k-OWL separation.

To quantify the power of equivariant graph networks, we would like to measure its
separation power compared to the Weisfeiler–Leman hierarchy.

Equivariant Networks With Linear Layers We now draw the connection between
EGNs with linear equivariant layers to the k-OWL algorithm. We will show that EGNs can
simulate the k-OWL algorithm and, consequently, that they have a separation power of at
least the k-OWL.

To show that, we need to fix a way to represent colors and multisets of colors. Colors
will be represented as vectors in some Euclidean space Rd. We will need the following lemma
for representing multisets of colors.

Lemma 5 Let Rd be a color space, there exist continuous invariant functions φj : Rd → R,
j in [J], where J = O((m+ d)d), so that a multiset consisting of n elements in Rd, namely

34

Weisfeiler and Leman go Machine Learning: The Story so far

X = {{xi ∈ Rd | i ∈ [n]}}, is represented uniquely by a vector in RJ defined by

Φ(X)j =

n∑
i=1

φj(xi).

This lemma was proved, e.g., in Maron et al. (2019a). The essence is that φj is chosen to be
a basis of d-multivariate polynomials of degree n, and the sum of this basis over the different
constituents of X provides a unique (moment-like) representation to each multiset. Another
technical tool we require is a standard approximation power result for MLPs (Hornik, 1991;
Pinkus, 1999).

Theorem 6 The set of one hidden layer MLPs with a continuous activation σ, i.e.,M(σ) =
span{σ(wTx+ b) | w ∈ Rn, b ∈ R} is dense in C(Rn) in the topology of uniform convergence
over compact sets if and only if σ is not a polynomial.

Let us consider the multisets {{C(. . . , i`−1, j, i`+1, . . .)| j ∈ [n]}} required for implementing

the update rule of the k-OWL. Consider the following linear operator T : Rnk → Rnk×k

(TX)i1,...,ik,` 7→
∑
j

X...,i`−1,j,i`+1,....

This operator is equivariant, as can be verified directly from the definition. In particular, this
operator belongs to the linear space characterized in Theorem 4, i.e., there is a choice of wj
so that L = T . Applying T to each feature dimension after applying x 7→ (φ1(x), . . . , φJ(x))
to each feature vector of X, namely Xi1,...,ik,: in Rd, encodes the colors. That is, if Y is the
output of this operation, then Yi1,...,ik,:,: uniquely represents the neighborhood M∗(i1, . . . , ik)
of the k-OWL algorithm (see Equation 5). Using Theorem 6 to replace the φj maps with
arbitrary good MLP approximations concludes that fequi equipped with linear equivariant
layers as in Theorem 4 can represent the update step of k-OWL. Note, however, that tensors
of order k are used in the network. We say f is k-order if it uses tensors of degrees less or
equal to k. Consequently, k-order fequi can represent any finite number of k-OWL update
steps. This is the core argument in the following theorem (Maron et al., 2019c).

Theorem 7 Given two non-isomorphic graphs G1 and G2 that can be distinguished by k-
OWL algorithm, there exists k-order finv and weights W so that finv(G1;W) 6= finv(G2;W).

EGNs with Polynomial Layers and k-WL The matrix product, Equation (18), and
the generalized matrix product, Equation (19), can be used to design equivariant graph
networks that can simulate the k-FWL algorithm (Azizian and Lelarge, 2020; Maron et al.,
2019c). The connection between matrix products and the k-FWL test can be illustrated by
considering the case k = 2 studied in Maron et al. (2019c), where it was shown that second-
order EGNs augmented with a matrix product operation are capable of simulating 2-FWL.
In order to demonstrate this, the authors exploit the similarity between the 2-FWL’s update
rule in Equation (3) and the matrix multiplication from Equation (18). More specifically,
when k = 2, Mi, which represents the neighbor aggregation in the 2-FWL update rule, takes
the form: Mi(v) = {(Cki (v, w), Cki (w, v)) | w ∈ V (G)}. Upon closer inspection, it becomes
apparent that this is a set of tuples whose indices have a striking similarity to those used in

35

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

k-OEGN k-FEGN

Time O(nk · bell(2k)) O(nk+1 · k)
Space O(nk) O(nk)

Table 1: Time and space complexity of LEGNs and OEGNs with a constant number of
layers.

matrix multiplication. See more details in Maron et al. (2019b). This can be generalized
to higher-order k-EGNs with the generalized matrix product in Equation (19) and k-FWL.
We name these architectures FEGN, to emphasize the relation to FWL. Similarly, we call
EGNs with linear layers OEGN. A summary of the separation results of FEGN and OEGN
is provided by Azizian and Lelarge (2020); Geerts (2020).

Theorem 8 The separation power of k-order OEGN coincides with the separation power
of k-OWL. The separation power of k-order FEGN coincides with that of k-FWL.

Universality Several papers have studied the approximation power of EGNs rather than
their ability to separate non-isomorphic graphs. Maron et al. (2019b) proved the universality
of G-invariant networks for any permutation group G when using (very) high-order tensors.
When choosing the appropriate permutation group, this also applies to OEGNs. This
construction, however, is not feasible as it uses O(n4) order tensors. A more efficient, but
still unfeasible, construction of universal OEGNs was presented in Ravanbakhsh (2020);
another proof can be found in Maehara and NT (2019). Keriven and Peyré (2019); Azizian
and Lelarge (2020) expanded these results to equivariant functions.

Efficient Implementation Thus far, we have mainly discussed the theoretical properties
of EGNs. The next step is to discuss how these models can be effectively implemented. A
straightforward way to implement the linear layer used by OEGNs involves constructing
matrices with values defined according to equality patterns on the indices, as described above.
The main disadvantages of this construction are (1) it scales poorly and is impractical for
large values of n, and (2) the basis elements lack intuitive meaning. For the k = 2 case, an
alternative was suggested by Maron et al. (2019b, Appendix A). In particular, the authors
proposed forming a new basis for the space of linear equivariant functions, in which each
basis element is defined as a sum of several previous basis elements. The summands are
carefully chosen so that each new basis element represents a simple operation and can be
implemented in O(n2) time complexity, without constructing the aforementioned n2 × n2
indicator matrix. Here is a partial list of the resulting basis elements: a scaled identity
operator for the diagonal or the off-diagonal part of the matrix, a row summation operator
that broadcasts the sum to the rows or the columns, and a diagonal summation operator
that broadcasts the sum to the diagonal or the off-diagonal. A complete list can be found in
Maron et al. (2019b). Albooyeh et al. (2019) generalized this idea by showing that for general
k, all linear equivariant layers can be written as a composition of linear pooling (summation)
and broadcasting operators. A lesser amount of thought was given to implementing the
generalized matrix multiplication from Equation (19). To our knowledge, only the case k = 2
was implemented by standard matrix multiplication (Maron et al., 2019a; Chen et al., 2019;

36

Weisfeiler and Leman go Machine Learning: The Story so far

Azizian and Lelarge, 2020). Time and space complexity: Table 1 summarizes the space and
time complexity of OEGNs, employing the layers from Theorem 4, and FEGNs, using the
layers from Equation (19), with a constant number of layers and feature dimensions.

The (local) k-OWL-based architectures proposed in Morris et al. (2020b) are implemented
quite differently. Each graph with n nodes simulates the k-OWL on an auxiliary graph G⊗k

on nk vertices defined as follows. The vertex set of G⊗k is the set V (G)k of all k-tuples in
V (G)k. The edge set of G⊗k is defined as follows. Two k-tuples s and t are connected by an
edge in G⊗k if they are local i-neighbors for i in [k]; see Section 4.5. Such edge is annotated
with the label i. On top of the auxiliary graph G⊗k, they use a GNN powerful enough to
simulate a variant of the 1-WL taking edge labels into account. Morris et al. (2019) used a
similar strategy for the set-based version of Equation (16).

7. Expressivity and Generalization Abilities of GNNs

The previous sections show that GNNs’ expressive power is reasonably well understood by
exploiting their connection to the Weisfeiler–Leman hierarchy. While there exists works upper
bounding GNNs’ generalization error, e.g., Garg et al. (2020); Liao et al. (2021); Scarselli
et al. (2018), these approaches express GNNs’ generalization ability using only classical graph
parameters, e.g., maximum degree, number of vertices, or edges, which cannot fully capture
the complex structure of real-world graphs. Recently, Morris et al. (2023) made progress
connecting GNNs’ expressive power and generalization ability via the Weisfeiler–Leman
hierarchy. They studied the influence of graph structure and the parameters’ encoding lengths
on GNNs’ generalization by tightly connecting 1-WL’s expressivity and GNNs’ Vapnik–
Chervonenkis (VC) dimension (Vapnik, 1995). They derived that GNNs’ VC dimension
depends tightly on the number of equivalence classes computed by the 1-WL over a given
set of graphs. Moreover, the results easily extend to the k-WL and many recent, more
expressive GNN extensions. Moreover, they showed that GNNs’ VC dimension depends
logarithmically on the number of colors computed by the 1-WL and polynomially on the
number of parameters.

8. Applications

Structured data is ubiquitous in many disciplines, such as cheminformatics, bioinformatics,
neuroscience, natural language processing, social network analysis, and computer vision. The
considered data can typically be represented as graphs, but the modeling is not necessarily
unique. For example, in bioinformatics, the nodes of a protein graph may represent the amino
acids or the secondary structure elements formed by sequences of amino acids. Likewise, the
nodes and edges may be annotated by additional information in the form of attributes. In
general, the used graph model can significantly influence learning methods for graphs. For
the comparison of machine learning methods, several standard benchmark data sets were
introduced (Hu et al., 2020; Morris et al., 2020a), which contain graphs representing various
objects and concepts such as small molecules, proteins, and protein-protein interactions,
citation networks, as well as letters, fingerprints, and cuneiform signs. The considered tasks
include node, edge, and graph classification or regression in supervised, semi-supervised,
and unsupervised settings. General-purpose graph learning methods based on or closely

37

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

related to the Weisfeiler–Leman method are applied in all these domains and settings and
have proven to be highly effective (Kriege et al., 2020; Morris et al., 2020a).

In the following, we review the development in selected application areas and focus on
domain-specific constraints, for which Weisfeiler–Leman type algorithms have been adapted.
Moreover, we present applications of the Weisfeiler–Leman method in a broader context of
machine learning.

8.1 Computer Programs

The Weisfeiler–Leman graph kernel was used to determine the similarity of computer
programs (Li et al., 2016). To this end, either the API calls made by the program or the data
flow between procedures is represented by a graph. The nodes are labeled by the procedure’s
name and the data type, respectively. Using this graph model, the similarity computed by
the Weisfeiler–Leman graph kernel can, for example, help to find related source code on
internet repositories for reuse.

Narayanan et al. (2016) observed that for malware detection, an extended graph model
is required. To distinguish regular from malicious code, additional context information is
essential, e.g., whether a user is aware or unaware of the execution of the code. This context
information was added to the graph model, and the Weisfeiler–Leman graph kernel was
adapted to incorporate the additional context labels in the re-labeling procedure.

8.2 Semantic Web

Knowledge graphs are a prime example of heterogeneous graphs, in which nodes and edges
have different types. For example, nodes may be of type “person” or type “movie,” each
having a different set of attributes. Further, an edge between a person and a movie can,
among others, represent an “is-actor-in” or “is-screenwriter-of” relationship. De Vries (2013)
modified the Weisfeiler–Leman graph kernel for application to general Resource Description
Framework (RDF) data. RDF data consists of subject-predicate-object statements. These
form directed multigraphs with node and edge labels when interpreted as edges. Typically,
one is interested in the similarity between subgraphs extracted for specific instances. Instead
of applying the Weisfeiler–Leman graph kernel to such subgraphs, the Weisfeiler–Leman
labels are computed in the whole graph but are distinguished according to their depth
regarding instances of interest. By this means, the computation was accelerated compared
to the subgraph-based method.

8.3 Cheminformatics

As detailed in Section 1.2.2, methods that encode the neighborhoods of atoms have been
developed in cheminformatics independently of the Weisfeiler–Leman method and were
widely used for analyzing molecular data before the Weisfeiler–Leman graph kernel was
introduced. Besides parallel developments, research in machine learning with graphs and
cheminformatics strongly influenced each other. Since the development of neural networks
for graphs gained momentum in machine learning, new methods were quickly adapted for
cheminformatics tasks (Wieder et al., 2020).

38

Weisfeiler and Leman go Machine Learning: The Story so far

In the standard graph representation of molecules, the atoms correspond to nodes and
chemical bonds to edges. A particularity in cheminformatics is that the properties of interest
typically depend on the conformations of molecules, i.e., the geometrical arrangement of
the atoms in a 3-dimensional space. Since a molecule can have different conformations,
determining the relevant one is often part of the problem. However, this information
should be exploited for successful learning when reliable coordinates are available. Gilmer
et al. (2017) applied GNNs to predict quantum properties and represented 3-dimensional
coordinates by adding edges encoding the inter-atom distances to obtain rotation-invariance.
Klicpera et al. (2020) adapted the message-passing approach of GNNs by incorporating the
direction in coordinate space to model angular potentials.

For the prediction of fuel ignition quality, Schweidtmann et al. (2020) proposed a graph
neural network architecture relying on standard molecular graphs annotated with atomic and
bond features. The proposed GNN model uses a recurrent neural network architecture with
a hierarchical combination of standard and higher-order GNNs to capture the long-range
effects of atom groups within a molecule. The method shows competitive performance
compared to state-of-the-art domain-specific models.

Apart from the standard graph representation of molecules, further models exist, typically
representing groups of connected atoms such as rings by a single node with additional
attributes (Rarey and Dixon, 1998; Stiefl et al., 2006). Fey et al. (2020b) proposed a
hierarchical architecture where two GNNs run simultaneously on two graph representations
at different levels of abstraction, passing messages inside each graph and exchanging messages
between the two representations. The combination of a standard molecular graph model
with an adaption of a tree-like representation (Rarey and Dixon, 1998) is shown to increase
the expressivity of the GNN architecture (Fey et al., 2020b).

8.4 Computer Vision and Graphics

Graphs have also been becoming increasingly popular in the computer vision domain for
learning on scene graphs (Raposo et al., 2017; Xu et al., 2017), image keypoints (Li et al.,
2019; Fey et al., 2020a; Kriege et al., 2018a), superpixels (Monti et al., 2017), 3D point
clouds (Qi et al., 2017) and manifolds (Fey et al., 2018; Hanocka et al., 2019) where relational
learning introduces a critical inductive bias into the model. Notably, various new GNN
variants have been proposed, derived as differentiable versions of the 1-WL algorithm that can
incorporate continuous spatial and semantic information into the neighborhood aggregation
phase. However, only a few works make this connection explicit.

For example, Zaheer et al. (2017) proposed the popular DeepSets model, e.g., for
learning on point clouds, and were the first who studied universality guarantees for fixed-
size, countable sets and uncountable sets of invariant deep neural network architectures,
pioneering work for the connection of 1-WL and GNNs. Herzig et al. (2018) extends this
study and characterizes all permutation invariant architectures applied to predicting scene
graphs from images. Furthermore, Fey et al. (2020a) tackles the task of keypoint matching
in natural images by using a differentiable validator for graph isomorphism based on the
1-WL heuristic; see also the next section.

39

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

8.5 Graph Matching

A common principle in comparing graphs is identifying correspondences between their nodes
that optimally preserve the edge structure. The problem arises in various domains, and
variations have been studied under different terms such as maximum common subgraph
isomorphism (Kriege et al., 2017), network alignment (Zhang and Tong, 2016), graph
matching (Gold and Rangarajan, 1996) or graph edit distance (Sanfeliu and Fu, 1983),
often using different algorithmic approaches. These problems are NP-hard, and heuristics
are widely applied in practice. A particular simple and efficient approach (Kriege et al.,
2019) applies Weisfeiler–Leman refinement to both graphs to obtain a hierarchy as shown
in Figure 7. Then, the nodes of the first graph are assigned to the nodes of the second
graph by traversing the hierarchy from the leaves to the root. At each node in the hierarchy,
all available nodes are matched, and the remaining nodes are passed to the parent in the
hierarchy for matching in a later step. By performing the matching within the color classes
using the structural results of Arvind et al. (2015), it can be guaranteed that the approach
constructs an isomorphism for two isomorphic graphs that are amenable to Weisfeiler–Leman
refinement (Arvind et al., 2015; Kriege et al., 2019). Moreover, the node correspondences
obtained by this approach preserve more structural information, i.e., lead to a smaller
graph edit distance, on several real-world data sets than comparable heuristics that are
computationally more demanding (Kriege et al., 2019). Stöcker et al. (2019) showed that for
graphs representing protein complexes, a similarity measure defined with Weisfeiler–Leman
labels highly correlates with the graph edit similarity obtained from a minimal sequence of
edit operations.

Recent work by Bai et al. (2019, 2020) suggests learning similarities or distances based on
graph matching using graph neural networks. The graph edit distance has been approximated
using shared GNNs, where the output is fine-tuned by a (non-differentiable) histogram of
correspondence scores (Bai et al., 2019). In follow-up work, Bai et al. (2020) proposed to
order the correspondence matrix in a breadth-first-search fashion and to process it further
with the help of traditional CNNs. The approaches are affected by the limited expressivity
of the used GNNs and do not provide approximation guarantees. Qin et al. (2020) proposed
to learn embeddings for graphs using GNNs reflecting the graph edit distance for similarity
search in databases using semantic hashing.

Another recent direction, referred to as deep graph matching, uses pairwise node simi-
larities obtained from the node features learned by GNNs (Fey et al., 2020a; Wang et al.,
2019; Zanfir and Sminchisescu, 2018). Fey et al. (2020a) proposed a method to iteratively
improve the consistency of the similarities in a subsequent second stage via a differentiable
validator for graph isomorphism based on the 1-WL heuristic. The approach maps node
identifiers of one graph according to the current node similarities and distributes them via
GNNs synchronously in both graphs. The node similarities are then optimized to reduce the
resulting node features’ differences. The optimization step resembles classical gradient-based
graph matching heuristics, which solve a sequence of linear assignment problems (Gold and
Rangarajan, 1996). Among other domains, this method significantly improves the alignment
of cross-lingual knowledge bases (Fey et al., 2020a).

40

Weisfeiler and Leman go Machine Learning: The Story so far

9. Open Challenges, Limitations, Future Research Directions

The present work shows that the Weisfeiler–Leman algorithm, its connection to GNNs, and
more powerful equivariant architectures for graphs have led to many meaningful insights,
advancing machine learning with graphs and relational structures. However, there remain
several open challenges in this area of research, some of which we outline here, along with
limitations and directions for future work.

9.1 Understanding the Interplay of Expressive Power, Generalization, and
Optimization

Although the results presented here, especially the results of Section 6.2, neatly characterize
the expressive power of equivariant neural architecture based on the Weisfeiler–Leman
method, these universal architectures suffer from an exponential dependence on k, e.g., due
to operating on k-order tensors, making them infeasible for large-scale graphs, resulting in
the following challenge.

Open Challenge 1 Design provably powerful equivariant neural architectures for graphs
that better control the trade-off between expressive power and scalability.

Moreover, the expressivity results are of an existentialist nature. While they show
the existence of an architecture’s weight assignment, they do not guarantee that standard
first-order optimization methods, e.g., Kingma and Ba (2015), converge to them. Hence, it
is an open challenge to understand the interplay of expressive power and optimization.

Open Challenge 2 Understand how first-order optimization methods impact the expressive
power of WL-based equivariant architecture for graphs.

Even more, the relationship between generalization and optimization is understood to a
lesser extent. Although some results are shedding some light on the generalization ability
using classical tools from learning theory, see, e.g., Garg et al. (2020); Kriege et al. (2018b);
Liao et al. (2021); Xu et al. (2020), there exists little research in understanding how
optimization influences generalization and what impact graph structure plays. To the best
of our knowledge, only Xu et al. (2021) tackle this problem, relying on a linearized GNN
architecture, and investigate the effect of skip connections, depth, or good label distribution
on the convergence during training. Hence, to further investigate this problem, we propose
the following open challenge.

Open Challenge 3 Understand how first-order optimization methods impact the general-
ization abilities of WL-based equivariant architectures for graphs.

9.2 Locality and the Role of Depth

The number of iterations of the 1-WL or layers of a GNN architecture is typically selected
by cross-validation and often small, e.g., smaller than 5. For larger values, 1-WL’s features
become too specific, leading to overfitting for graph kernels. In contrast, under particular
assumptions, the GNNs’ node features become indistinguishable, a phenomenon referred
to as over-smoothing (Liu et al., 2020). Moreover, for GNNs, the bottleneck problem refers
to the observation that large neighborhoods cannot be accurately represented (Alon and

41

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

Yahav, 2020). These problems prevent both methods from capturing global or long-range
information. Contrarily, depth, i.e., the number of layers, seems to play a crucial role in
the loss landscape of (general) neural networks, e.g., Poggio et al. (2019), resulting in the
following challenge.

Open Challenge 4 Understand the impact of depth in WL-based equivariant architectures
on expressivity, optimization, and generalization, and design architectures that can provably
capture long-range dependency.

9.3 Incorporating Expert Knowledge

Nowadays, kernels based on the 1-WL and GNNs are heavily used in life sciences to
engineering applications. However, their usage is often ad-hoc, not leveraging crucial
expert knowledge. In cheminformatics, for example, information on functional groups or
pharmacophore properties is often available, but it is not straightforward to explicitly
incorporate it into the 1-WL and GNN pipeline. Hence, we view the development of
mechanisms to include such knowledge as a crucial step in making WL-based learning with
graphs more applicable to real-world domains, resulting in the following challenge.

Open Challenge 5 Derive a methodology to incorporate expert knowledge, i.e., designing
WL-based equivariant architectures that provably capture task-relevant graph structure specified
by domain experts.

9.4 Limitations and Future Research Directions

While the Weisfeiler–Leman algorithm’s connections lead to a better understanding of GNNs,
it also has limitations. Since the Weisfeiler–Leman algorithm is purely discrete, it is unclear
what it reveals about GNNs’ expressivity in the presence of attributed graphs, i.e., nodes
annotated with a real-valued vector. For example, the presence of additional (real-valued)
attributes, which 1-WL cannot process adequately, might lead to GNNs distinguishing pairs
of nodes that the Weisfeiler–Leman algorithm cannot distinguish. Hence, understanding how
to adapt the Weisfeiler–Leman paradigm to this setting remains an open challenge. Moreover,
the Weisfeiler–Leman hierarchy might be a too coarse-grained yardstick to understand GNNs’
expressivity. For example, in the case of trees already, 1-WL does not give any insights since
it solves the isomorphism problem for trees.

Further, even for more complex graph classes, the algorithm only reveals if a GNN
will distinguish non-isomorphic graphs within that class. However, it does not indicate
if structurally similar graphs will be mapped to features that are close concerning some
distance. Hence, developing a more fine-grained hierarchy might lead to new insights.
Finally, the algorithm only captures the expressivity of GNNs following the message-passing
framework, see Equation (15), not of the multitude of spectral GNNs. Hence, understanding
how spectral information can enhance or complement the Weisfeiler–Leman algorithm and
GNNs is vital, resulting in the following challenge.

Open Challenge 6 Understand how the Weisfeiler–Leman algorithm can be used to define
a more fine-grained notion of similarity beyond the binary graph isomorphism objective.

42

Weisfeiler and Leman go Machine Learning: The Story so far

10. Conclusion

We have provided an overview of the uses of the Weisfeiler–Leman method for machine
learning with graphs. To this end, we introduced the 1-WL and its more powerful gen-
eralization, the k-dimensional Weisfeiler–Leman algorithm, and outlined its theoretical
properties. We then thoroughly surveyed graph kernels based on the Weisfeiler–Leman
method. Subsequently, we presented results connecting the 1-WL and graph neural networks,
followed by an overview of neural architecture surpassing the limits of the former. Moreover,
we gave an in-depth overview of provably powerful equivariant architectures on graphs and
their connection to the k-WL and surveyed applications for WL-based machine learning
architectures. Finally, we identified open challenges in the field and provided directions for
future research.

We hope our survey presents a helpful handbook of graph representation learning methods,
perspectives, and limitations and that its insights and principles will help spur novel research
results at the intersection of graph theory and machine learning.

Acknowledgements

Christopher Morris is partially funded by a DFG Emmy Noether grant (468502433) and
RWTH Junior Principal Investigator Fellowship under Germany’s Excellence Strategy. Nils M.
Kriege is supported by the Vienna Science and Technology Fund (WWTF) [10.47379/VRG19009].
Bastian Rieck is supported by the Bavarian state government with funds from the Hightech
Agenda Bavaria.

References

A. Aamand, J. Y. Chen, P. Indyk, S. Narayanan, R. Rubinfeld, N. Schiefer, S. Silwal, and
T. Wagner. Exponentially improving the complexity of simulating the Weisfeiler-Lehman
test with graph neural networks. In Advances in Neural Information Processing Systems,
2022.

R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph
neural networks with random node initialization. In International Joint Conference on
Artificial Intelligence, pages 2112–2118, 2021.

G. W. Adamson and J. A. Bush. A method for the automatic classification of chemical
structures. Information Storage and Retrieval, 9(10):561 – 568, 1973.

M. Albooyeh, D. Bertolini, and S. Ravanbakhsh. Incidence networks for geometric deep
learning. CoRR, abs/1905.11460, 2019.

U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical
implications. CoRR, abs/2006.05205, 2020.

V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. On the power of color refinement. In
International Symposium on Fundamentals of Computation Theory, pages 339–350, 2015.

43

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T. Vogelstein, K. D. Levin,
V. Lyzinski, Y. Qin, and D. L. Sussman. Statistical inference on random dot product
graphs: a survey. Journal of Machine Learning Research, 18:226:1–226:92, 2017.

A. Atserias and E. N. Maneva. Sherali-adams relaxations and indistinguishability in counting
logics. SIAM Journal on Computing, 42(1):112–137, 2013.

A. Atserias and J. Ochremiak. Definable ellipsoid method, sums-of-squares proofs, and the
isomorphism problem. In ACM/IEEE Symposium on Logic in Computer Science, pages
66–75, 2018.

A. Atserias, L. Mancinska, D. E. Roberson, R. Sámal, S. Severini, and A. Varvitsiotis.
Quantum and non-signalling graph isomorphisms. Journal of Combinatorial Theory,
Series B, 136:289–328, 2019.

W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant
graph neural networks. CoRR, abs/2006.15646, 2020.

L. Babai. Lectures on graph isomorphism. University of Toronto, Department of Computer
Science. Mimeographed lecture notes, October 1979, 1979.

L. Babai. Graph isomorphism in quasipolynomial time. In ACM Symposium on Theory of
Computing, pages 684–697, 2016.

L. Babai and L. Kucera. Canonical labelling of graphs in linear average time. In Symposium
on Foundations of Computer Science, pages 39–46, 1979.

L. Babai, P. Erdős, and S. M. Selkow. Random graph isomorphism. SIAM Journal on
Computing, 9(3):628–635, 1980.

Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang. SimGNN: A neural network
approach to fast graph similarity computation. In ACM International Conference on Web
Search and Data Mining, pages 384–392, 2019.

Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang. Learning-based efficient graph similarity
computation via multi-scale convolutional set matching. In AAAI Conference on Artificial
Intelligence, pages 3219–3226, 2020.

M. Balcilar, P. Héroux, B. Gaüzère, P. Vasseur, S. Adam, and P. Honeine. Breaking the
limits of message passing graph neural networks. In International Conference on Machine
Learning, pages 599–608, 2021.

A.-L. Barabasi and Z. N. Oltvai. Network biology: Understanding the cell’s functional
organization. Nature Reviews Genetics, 5(2):101–113, 2004.

P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. L. Reutter, and J. P. Silva. The
logical expressiveness of graph neural networks. In International Conference on Learning
Representations, 2020.

P. Barceló, F. Geerts, J. L. Reutter, and M. Ryschkov. Graph neural networks with local
graph parameters. CoRR, abs/2106.06707, 2021.

44

Weisfeiler and Leman go Machine Learning: The Story so far

I. I. Baskin, V. A. Palyulin, and N. S. Zefirov. A neural device for searching direct correlations
between structures and properties of chemical compounds. Journal of Chemical Information
and Computer Sciences, 37(4):715–721, 1997.

D. Beaini, S. Passaro, V. Létourneau, W. L. Hamilton, G. Corso, and P. Liò. Directional
graph networks. CoRR, abs/2010.02863, 2020.

A. Bender, H. Y. Mussa, R. C. Glen, and S. Reiling. Molecular similarity searching using
atom environments, information-based feature selection, and a näıve bayesian classifier.
Journal of Chemical Information and Modeling, 44(1):170–178, 2004.

C. Berkholz and M. Grohe. Limitations of algebraic approaches to graph isomorphism
testing. In International Colloquium on Automata, Languages, and Programming, pages
155–166, 2015.

C. Berkholz and M. Grohe. Linear diophantine equations, group csps, and graph isomorphism.
In ACM/SIAM Symposium on Discrete Algorithms, pages 327–339, 2017.

C. Berkholz, P. S. Bonsma, and M. Grohe. Tight lower and upper bounds for the complexity
of canonical colour refinement. Theory of Computing Systems, 60(4):581–614, 2017.

B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein,
and H. Maron. Equivariant subgraph aggregation networks. CoRR, abs/2110.02910, 2021.

A. Bietti, L. Venturi, and J. Bruna. On the sample complexity of learning under geometric
stability. In Advances in Neural Information Processing Systems, pages 18673–18684,
2021.

N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory 1736-1936. Clarendon Press,
1986.

C. Bodnar, F. Frasca, N. Otter, Y. G. Wang, P. Liò, G. Montúfar, and M. M. Bronstein.
Weisfeiler and Lehman go cellular: CW networks. In Advances in Neural Information
Processing Systems, 2021a.

C. Bodnar, F. Frasca, Y. Wang, N. Otter, G. F. Montufar, P. Lió, and M. Bronstein. Weisfeiler
and Lehman go topological: Message passing simplicial networks. In International
Conference on Machine Learning, pages 1026–1037, 2021b.

B. Bollobás. Distinguishing vertices of random graphs. Annals of Discrete Mathematics, 13:
33–50, 1982.

B. Bollobás. Modern Graph Theory. Springer, 2002.

J. A. Bondy. A graph reconstructor’s manual. Surveys in combinatorics, 166:221–252, 1991.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In IEEE International
Conference on Data Mining, pages 74–81, 2005.

45

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P.
Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(Supplement 1):
i47–i56, 2005.

K. M. Borgwardt, M. E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck. Graph kernels:
State-of-the-art and future challenges. Foundations and Trends in Machine Learning, 13
(5-6), 2020.

G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):657–668, 2023.

M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally
connected networks on graphs. In International Conference on Learning Representation,
2014.

J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identifications. Combinatorica, 12(4):389–410, 1992.

A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V |). Theoretical Computer
Science, 19(1):85 – 98, 1982.

I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. Machine learning on graphs:
A model and comprehensive taxonomy. CoRR, abs/2005.03675, 2020.

K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-loss
linear support vector machines. Journal of Machine Learning Research, 9:1369–1398, 2008.

Z. Chen, S. Villar, L. Chen, and J. Bruna. On the equivalence between graph isomorphism
testing and function approximation with GNNs. In Advances in Neural Information
Processing Systems, pages 15868–15876, 2019.

T. Cohen and M. Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning, pages 2990–2999, 2016.

F. Costa and K. De Grave. Fast neighborhood subgraph pairwise distance kernel. In
International Conference on Machine Learning, pages 255–262, 2010.

L. Cotta, C. Morris, and B. Ribeiro. Reconstruction for powerful graph representations. In
Advances in Neural Information Processing Systems, pages 1713–1726, 2021.

T. Czajka and G. Pandurangan. Improved random graph isomorphism. Journal of Discrete
Algorithms, 6(1):85–92, 2008.

G. Dasoulas, L. D. Santos, K. Scaman, and A. Virmaux. Coloring graph neural networks for
node disambiguation. In International Joint Conference on Artificial Intelligence, pages
2126–2132, 2020.

46

Weisfeiler and Leman go Machine Learning: The Story so far

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In ACM Symposium on Computational Geometry, pages
253–262, 2004.

Daylight. Chemical information systems daylight, daylight theory manual v4.9.
http://www.daylight.com/dayhtml/doc/theory, 2008. URL http://www.daylight.com/

dayhtml/doc/theory.

M. Defferrard, B. X., and P. Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pages 3844–3852, 2016.

H. Dell, M. Grohe, and G. Rattan. Lovász meets Weisfeiler and Leman. In International
Colloquium on Automata, Languages, and Programming, pages 40:1–40:14, 2018.

J. E. Dubois. French national policy for chemical information and the DARC system as a
potential tool of this policy. Journal of Chemical Documentation, 13(1):8–13, 1973.

J. E. Dubois, A. Panaye, and R. Attias. DARC system: notions of defined and generic
substructures. filiation and coding of FREL substructure (SS) classes. Journal of Chemical
Information and Computer Sciences, 27(2):74–82, 1987.

J. L. Durant, B. A. L., D. R. Henry, and J. G. Nourse. Reoptimization of MDL keys for
use in drug discovery. Journal of Chemical Information and Computer Sciences, 42(5):
1273–1280, 2002.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints.
In Advances in Neural Information Processing Systems, pages 2224–2232, 2015.

Z. Dvorák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory,
64(4):330–342, 2010.

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, 2010.

B. Elesedy and S. Zaidi. Provably strict generalisation benefit for equivariant models. In
International Conference on Machine Learning, pages 2959–2969, 2021.

S. Evdokimov, I. N. Ponomarenko, and G. Tinhofer. Forestal algebras and algebraic forests
(on a new class of weakly compact graphs). Discrete Mathematics, 225(1-3):149–172, 2000.

M. Fey, J. E. Lenssen, F. Weichert, and H. Müller. SplineCNN: Fast geometric deep learning
with continuous B-spline kernels. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 869–877, 2018.

M. Fey, J. E. Lenssen, C. Morris, J. Masci, and N. M. Kriege. Deep graph matching
consensus. In International Conference on Learning Representations, 2020a.

M. Fey, J. Yuen, and F. Weichert. Hierarchical inter-message passing for learning on
molecular graphs. CoRR, abs/2006.12179, 2020b.

47

http://www.daylight.com/dayhtml/doc/theory
http://www.daylight.com/dayhtml/doc/theory

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

J. Figueras. Morgan revisited. Journal of Chemical Information and Computer Sciences, 33
(5):717–718, 1993.

F. Frasca, B. Bevilacqua, M. M. Bronstein, and H. Maron. Understanding and extending
subgraph GNNs by rethinking their symmetries. CoRR, abs/2206.11140, 2022.

H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels for attributed
molecular graphs. In ACM International Conference on Machine Learning, pages 225–232,
2005.

M. Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations.
In International Colloquium on Automata, Languages and Programming, pages 322–333,
2001.

F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. Convolutional neural network architectures
for signals supported on graphs. IEEE Trans. Signal Process., 67(4):1034–1049, 2019.

V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph
neural networks. In International Conference on Machine Learning, pages 3419–3430,
2020.

T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning Theory and Kernel Machines, pages 129–143. Springer, 2003.

F. Geerts. The expressive power of kth-order invariant graph networks. CoRR,
abs/2007.12035, 2020.

F. Geerts, F. Mazowiecki, and G. A. Pérez. Let’s agree to degree: Comparing graph
convolutional networks in the message-passing framework. CoRR, abs/2004.02593, 2020.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International Conference on Machine Learning, 2017.

S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 18(4):377–388, 1996.

E. Grädel, M. Grohe, B. Pago, and W. Pakusa. A finite-model-theoretic view on propositional
proof complexity. Logical Methods in Computer Science, 15(1), 2019.

M. Grohe. Equivalence in finite-variable logics is complete for polynomial time. Combina-
torica, 19(4):507–532, 1999.

M. Grohe. Isomorphism testing for embeddable graphs through definability. In ACM
Symposium on Theory of Computing, pages 63–72, 2000.

M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
Journal of the ACM, 59(5):27:1–27:64, 2012.

M. Grohe. Descriptive Complexity, Canonisation, and Graph Structure Theory. Cambridge
University Press, 2017.

48

Weisfeiler and Leman go Machine Learning: The Story so far

M. Grohe. The logic of graph neural networks. In ACM/IEEE Symposium on Logic in
Computer Science, pages 1–17, 2021.

M. Grohe and S. Kiefer. Logarithmic Weisfeiler-Leman identifies all planar graphs. In
International Colloquium on Automata, Languages, and Programming, volume 198, pages
134:1–134:20, 2021.

M. Grohe and D. Neuen. Canonisation and definability for graphs of bounded rank width.
In ACM/IEEE Symposium on Logic in Computer Science, pages 1–13, 2019.

M. Grohe and D. Neuen. Recent advances on the graph isomorphism problem. In Survey in
Combinatorics, volume 470, pages 187–234. Cambridge University Press, 2021.

M. Grohe and M. Otto. Pebble games and linear equations. Journal of Symbolic Logic, 80
(3):797–844, 2015. doi: 10.1017/jsl.2015.28.

M. Grohe, K. Kersting, M. Mladenov, and E. Selman. Dimension reduction via colour
refinement. In European Symposium on Algorithms, pages 505–516, 2014.

B. Haasdonk and C. Bahlmann. Learning with distance substitution kernels. In Pattern
Recognition, pages 220–227. Elsevier, 2004.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pages 1025–1035, 2017.

R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or. Meshcnn: A
network with an edge. ACM Transactions on Graphics, 38(4):90, 2019.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10,
University of California at Santa Cruz, 1999.

F. Hensel, M. Moor, and B. Rieck. A survey of topological machine learning methods.
Frontiers in Artificial Intelligence, 4, 2021.

R. Herzig, M. Raboh, G. Chechik, J. Berant, and A. Globerson. Mapping images to
scene graphs with permutation-invariant structured prediction. In Advances in Neural
Information Processing Systems, 2018.

M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck, and K. Borgwardt. Topological
graph neural networks. In International Conference on Learning Representations, 2022.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

T. Horváth, J. Ramon, and S. Wrobel. Frequent subgraph mining in outerplanar graphs.
Data Mining and Knowledge Discovery, 21:472–508, 2010.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open
graph benchmark: Datasets for machine learning on graphs. In Advances in Neural
Information Processing Systems, 2020.

49

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

Y. Hu, X. Wang, Z. Lin, P. Li, and M. Zhang. Two-dimensional Weisfeiler-Lehman graph
neural networks for link prediction. CoRR, abs/2206.09567, 2022.

N. Immerman and E. Lander. Describing Graphs: A First-Order Approach to Graph
Canonization, pages 59–81. Springer, 1990.

F. D. Johansson and D. Dubhashi. Learning with similarity functions on graphs using
matchings of geometric embeddings. In ACM Conference on Knowledge Discovery and
Data Mining, pages 467–476, 2015.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvu-
nakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J.
Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bo-
denstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis.
Highly accurate protein structure prediction with AlphaFold. Nature, 2021.

U. Kang, H. Tong, and J. Sun. Fast random walk graph kernel. In SIAM International
Conference on Data Mining, pages 828–838, 2012.

R. M. Karp. Probabilistic analysis of a canonical numbering algorithm for graphs. Proceedings
of Symposia in Pure Mathematics, 34:365–378, 1979.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In
International Conference on Machine Learning, pages 321–328, 2003.

N. Keriven and G. Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems, pages 7090–7099, 2019.

N. Keriven, A. Bietti, and S. Vaiter. On the universality of graph neural networks on large
random graphs. In Advances in Neural Information Processing Systems, pages 6960–6971,
2021.

K. Kersting, M. Mladenov, R. Garnett, and M. Grohe. Power iterated color refinement. In
AAAI Conference on Artificial Intelligence, pages 1904–1910, 2014.

S. Kiefer. Power and Limits of the Weisfeiler-Leman Algorithm. PhD thesis, Department of
Computer Science, RWTH Aachen University, 2020a.

S. Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM SIGLOG
News, 7(3):5–27, 2020b.

S. Kiefer and B. D. McKay. The iteration number of colour refinement. In International
Colloquium on Automata, Languages, and Programming, pages 73:1–73:19, 2020.

S. Kiefer and P. Schweitzer. Upper bounds on the quantifier depth for graph differentiation
in first order logic. In ACM/IEEE Symposium on Logic in Computer Science, pages
287–296, 2016.

50

Weisfeiler and Leman go Machine Learning: The Story so far

S. Kiefer, P. Schweitzer, and E. Selman. Graphs identified by logics with counting. In
International Symposium on Mathematical Foundations of Computer Science, pages 319–
330, 2015.

S. Kiefer, I. Ponomarenko, and P. Schweitzer. The weisfeiler-leman dimension of planar
graphs is at most 3. Journal of the ACM, 66(6):44:1–44:31, 2019.

J. Kim, T. D. Nguyen, S. Min, S. Cho, M. Lee, H. Lee, and S. Hong. Pure transformers are
powerful graph learners. CoRR, 2022.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

D. B. Kireev. Chemnet: A novel neural network based method for graph/property mapping.
Journal of Chemical Information and Computer Sciences, 35(2):175–180, 1995.

J. Klicpera, J. Groß, and S. Günnemann. Directional message passing for molecular graphs.
In International Conference on Learning Representations, 2020.

R. Kondor and H. Pan. The multiscale laplacian graph kernel. In Advances in Neural
Information Processing Systems, pages 2982–2990, 2016.

R. Kondor, H. T. Son, H. Pan, B. M. Anderson, and S. Trivedi. Covariant compositional
networks for learning graphs. In International Conference on Learning Representations,
2018.

N. Kriege and P. Mutzel. Subgraph matching kernels for attributed graphs. In International
Conference on Machine Learning. Omnipress, 2012.

N. Kriege, F. Kurpicz, and P. Mutzel. On maximum common subgraph problems in
series-parallel graphs. European Journal on Combinatorics, 2017.

N. M. Kriege. Deep Weisfeiler-Lehman assignment kernels via multiple kernel learning. In
European Symposium on Artificial Neural Networks, 2019.

N. M. Kriege. Weisfeiler and Leman go walking: Random walk kernels revisited. In Advances
in Neural Information Processing Systems, pages 20119–20132, 2022.

N. M. Kriege, G. P.-L., and R. C. Wilson. On valid optimal assignment kernels and
applications to graph classification. In Advances in Neural Information Processing Systems,
pages 1615–1623, 2016.

N. M. Kriege, M. Fey, D. Fisseler, P. Mutzel, and F. Weichert. Recognizing cuneiform signs
using graph based methods. In Workshop on Cost-Sensitive Learning, pages 31–44, 5
2018a.

51

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

N. M. Kriege, C. Morris, A. Rey, and C. Sohler. A property testing framework for the
theoretical expressivity of graph kernels. In International Joint Conference on Artificial
Intelligence, pages 2348–2354, 2018b.

N. M. Kriege, P.-L. Giscard, F. Bause, and R. C. Wilson. Computing optimal assignments
in linear time for approximate graph matching. In IEEE International Conference on
Data Mining, pages 349–358, 2019.

N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied Network
Science, 5(1):6, 2020.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cayleynets: Graph convolutional
neural networks with complex rational spectral filters. IEEE Trans. Signal Process., 67
(1):97–109, 2019.

P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design provably more powerful
neural networks for graph representation learning. In Advances in Neural Information
Processing Systems, 2020.

W. Li, H. Saidi, H. Sanchez, M. Schäf, and P. Schweitzer. Detecting similar programs via
the Weisfeiler-Leman graph kernel. In International Conference on Software Reuse, pages
315–330, 2016.

Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching networks for learning the
similarity of graph structured objects. In International Conference on Machine Learning,
pages 3835–3845, 2019.

R. Liao, R. Urtasun, and R. Zemel. A PAC-bayesian approach to generalization bounds for
graph neural networks. In International Conference on Learning Representations, 2021.

M. Lichter, I. Ponomarenko, and P. Schweitzer. Walk refinement, walk logic, and the
iteration number of the Weisfeiler-Leman algorithm. In ACM/IEEE Symposium on Logic
in Computer Science, pages 1–13, 2019.

R. J. Lipton. The beacon set approach to graph isomorphism. Technical report, Yale
University, 1978.

M. Liu, H. Gao, and S. Ji. Towards deeper graph neural networks. In ACM Conference on
Knowledge Discovery and Data Mining, pages 338–348, 2020.

G. Loosli, S. Canu, and C. S. Ong. Learning SVM in Krĕın spaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38(6):1204–1216, 2016.

T. Maehara and H. NT. A simple proof of the universality of invariant/equivariant graph
neural networks. CoRR, abs/1910.03802, 2019.

P. N. Malkin. Sherali–Adams relaxations of graph isomorphism polytopes. Discrete Opti-
mization, 12:73–97, 2014.

52

Weisfeiler and Leman go Machine Learning: The Story so far

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks.
CoRR, abs/1905.11136, 2019a.

H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

H. Maron, E. Fetaya, N. Segol, and Y. Lipman. On the universality of invariant networks.
In International Conference on Machine Learning, pages 4363–4371, 2019c.

H. Maron, O. Litany, G. Chechik, and E. Fetaya. On learning sets of symmetric elements.
In International Conference on Machine Learning, pages 6734–6744, 2020.

B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features
and kernel models. In Conference on Learning Theory, pages 3351–3418, 2021.

C. Merkwirth and T. Lengauer. Automatic generation of complementary descriptors with
molecular graph networks. Journal of Chemical Information and Modeling, 45(5):1159–
1168, 2005.

A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transac-
tions on Neural Networks, 20(3):498–511, 2009.

A. Micheli and A. S. Sestito. A new neural network model for contextual processing of
graphs. In Italian Workshop on Neural Nets Neural Nets and International Workshop on
Natural and Artificial Immune Systems, pages 10–17, 2005.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT
Press, 2012.

F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric
deep learning on graphs and manifolds using mixture model CNNs. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 5425–5434, 2017.

H. L. Morgan. The generation of a unique machine description for chemical structures-a
technique developed at chemical abstracts service. Journal of Chemical Documentation, 5
(2):107–113, 1965.

C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel. Faster kernel for graphs with
continuous attributes via hashing. In IEEE International Conference on Data Mining,
pages 1095–1100, 2016.

C. Morris, K. Kersting, and P. Mutzel. Glocalized Weisfeiler-Lehman kernels: Global-local
feature maps of graphs. In IEEE International Conference on Data Mining, pages 327–336,
2017.

53

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and leman go neural: Higher-order graph neural networks. In AAAI Conference
on Artificial Intelligence, pages 4602–4609, 2019.

C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset: A
collection of benchmark datasets for learning with graphs. CoRR, abs/2007.08663, 2020a.

C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and Leman go sparse: Towards higher-order
graph embeddings. In Advances in Neural Information Processing Systems, 2020b.

C. Morris, G. Rattan, S. Kiefer, and S. Ravanbakhsh. SpeqNets: Sparsity-aware permutation-
equivariant graph networks. In International Conference on Machine Learning, pages
16017–16042, 2022.

C. Morris, F. Geerts, J. Tönshoff, and M. Grohe. WL meet VC. CoRR, abs/2301.11039,
2023.

L. Müller, M. Galkin, C. Morris, and L. Rampásek. Attending to graph transformers. CoRR,
abs/2302.04181, 2023.

R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro. Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs. In International Conference on
Learning Representations, 2019a.

R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro. Relational pooling for graph
representations. In International Conference on Machine Learning, pages 4663–4673,
2019b.

A. Narayanan, G. Meng, L. Yang, J. Liu, and L. Chen. Contextual weisfeiler-lehman graph
kernel for malware detection. In International Joint Conference on Neural Networks,
pages 4701–4708, 2016.

M. E. J. Newman. The structure and function of complex networks. SIAM review, 45(2):
167–256, 2003.

M. Niepert, P. Minervini, and L. Franceschi. Implicit MLE: backpropagating through discrete
exponential family distributions. Advances in Neural Information Processing Systems, 34:
14567–14579, 2021.

G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. Matching node embeddings for graph
similarity. In AAAI Conference on Artificial Intelligence, pages 2429–2435, 2017.

H. NT and T. Maehara. Graph homomorphism convolution. CoRR, abs/2005.01214, 2020.

R. O’Donnell, J. Wright, C. Wu, and Y. Zhou. Hardness of robust graph isomorphism,
Lasserre gaps, and asymmetry of random graphs. In ACM/SIAM Symposium on Discrete
Algorithms, pages 1659–1677, 2014.

F. Orsini, P. Frasconi, and L. De Raedt. Graph invariant kernels. In International Joint
Conference on Artificial Intelligence, pages 3756–3762, 2015.

54

Weisfeiler and Leman go Machine Learning: The Story so far

M. Otto. Bounded variable logics and counting – A study in finite models, volume 9 of
Lecture Notes in Logic. Springer, 1997.

R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

P. A. Papp and R. Wattenhofer. A theoretical comparison of graph neural network extensions.
In International Conference on Machine Learning, pages 17323–17345, 2022.

P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. Dropgnn: Random dropouts
increase the expressiveness of graph neural networks. In Advances in Neural Information
Processing Systems, 2021.

A. Pinkus. Approximation theory of the MLP model in neural networks. Acta numerica, 8:
143–195, 1999.

T. A. Poggio, A. Banburski, and Q. Liao. Theoretical issues in deep networks: Approximation,
optimization and generalization. CoRR, abs/1908.09375, 2019.

O. Puny, H. Ben-Hamu, and Y. Lipman. From graph low-rank global attention to 2-FWL
approximation. CoRR, abs/2006.07846, 2020.

O. Puny, D. Lim, B. T. Kiani, H. Maron, and Y. Lipman. Equivariant polynomials for graph
neural networks. CoRR, abs/2302.11556, 2023.

C. R. Qi, , H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning on point sets for 3D
classification and segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 77–85, 2017.

C. Qian, G. Rattan, F. Geerts, C. Morris, and M. Niepert. Ordered subgraph aggregation
networks. CoRR, abs/2206.11168, 2022.

Z. Qin, Y. Bai, and Y. Sun. Ghashing: Semantic graph hashing for approximate similarity
search in graph databases. In ACM Conference on Knowledge Discovery and Data Mining,
pages 2062–2072, 2020.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical informatics.
Neural Networks, 18(8):1093–1110, 2005.

R. Ramakrishnan, O. Dral, P., M. Rupp, and O. A. von Lilienfeld. Quantum chemistry
structures and properties of 134 kilo molecules. Scientific Data, 1, 2014. Nature.

D. Raposo, A. Santoro, D. G. T. Barrett, R. Pascanu, T. Lillicrap, and P. W. Battaglia. Dis-
covering objects and their relations from entangled scene representations. In International
Conference on Learning Representations, 2017.

M. Rarey and J. S. Dixon. Feature trees: A new molecular similarity measure based on tree
matching. Journal of Computer-Aided Molecular Design, 12:471–490, 1998.

S. Ravanbakhsh. Universal equivariant multilayer perceptrons. In International Conference
on Machine Learning, pages 7996–8006, 2020.

55

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

S. Ravanbakhsh, J. Schneider, and B. Poczos. Equivariance through parameter-sharing. In
International Conference on Machine Learning, pages 2892–2901, 2017.

M. Razinger. Extended connectivity in chemical graphs. Theoretica chimica acta, 61(6):
581–586, 1982.

B. Rieck. On the expressivity of persistent homology in graph learning. CoRR,
abs/2302.09826, 2023.

B. Rieck, C. Bock, and K. M. Borgwardt. A persistent Weisfeiler-Lehman procedure for
graph classification. In International Conference on Machine Learning, pages 5448–5458,
2019.

N. Robertson, P. Seymour, and R. Thomas. Linkless embeddings of graphs in 3-space.
Bulletin of the AMS, 28:84–89, 1993.

D. Rogers and M. Hahn. Extended-connectivity fingerprints. Journal of Chemical Information
and Modeling, 50(5):742–754, May 2010.

D. Sandfelder, P. Vijayan, and W. L. Hamilton. Ego-GNNs: Exploiting ego structures in
graph neural networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8523–8527, 2021.

A. Sanfeliu and K.-S. Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 13(3):353–362,
1983.

R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks.
CoRR, abs/2002.03155, 2020.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

F. Scarselli, A. C. Tsoi, and M. Hagenbuchner. The Vapnik-Chervonenkis dimension of
graph and recursive neural networks. Neural Networks, pages 248–259, 2018.

A. M. Schweidtmann, J. G. Rittig, A. König, M. Grohe, A. Mitsos, and M. Dahmen. Graph
neural networks for prediction of fuel ignition quality. Energy & Fuels, 34(9):11395–11407,
2020.

N. Segol and Y. Lipman. On universal equivariant set networks. In International Conference
on Learning Representations, 2020.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs. Advances in Neural
Information Processing Systems, 22:1660–1668, 2009. URL http://papers.nips.cc/

paper/3813-fast-subtree-kernels-on-graphs.

56

http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs
http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs

Weisfeiler and Leman go Machine Learning: The Story so far

N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri, K. Mehlhorn, and K. M. Borgwardt.
Efficient graphlet kernels for large graph comparison. In International Conference on
Artificial Intelligence and Statistics, pages 488–495, 2009.

N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12:2539–2561,
2011.

M. Simonovsky and N. Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 29–38, 2017.

J. Sokolic, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization error of invariant
classifiers. In Artificial Intelligence and Statistics, pages 1094–1103. PMLR, 2017.

A. Sperduti and A. Starita. Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, 8(2):714–35, 1997.

N. Stiefl, I. A. Watson, K. Baumann, and A. Zaliani. ErG: 2d pharmacophore descriptions
for scaffold hopping. Journal of Chemical Information and Modeling, 46(1):208–220, 2006.

B. K. Stöcker, T. Schäfer, P. Mutzel, J. Köster, N. M. Kriege, and S. Rahmann. Protein
complex similarity based on Weisfeiler-Lehman labeling. In International Conference on
Similarity Search and Applications, pages 308–322, 2019.

J. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. Donghia, C. MacNair, S. French,
L. Carfrae, Z. Bloom-Ackerman, V. Tran, A. Chiappino-Pepe, A. Badran, I. Andrews,
E. Chory, G. Church, E. Brown, T. Jaakkola, R. Barzilay, and J. Collins. A deep learning
approach to antibiotic discovery. Cell, 180:688–702.e13, 02 2020.

M. Sugiyama and K. M. Borgwardt. Halting in random walk kernels. In Advances in Neural
Information Processing Systems, pages 1639–1647, 2015.

E. H. Thiede, W. Zhou, and R. Kondor. Autobahn: Automorphism-based graph neural nets.
CoRR, abs/2103.01710, 2021.

G. Tinhofer. Graph isomorphism and theorems of Birkhoff type. Computing, 36:285–300,
1986.

G. Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30:253–264, 1991.

M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. M. Borgwardt. Wasserstein
weisfeiler-lehman graph kernels. In Advances in Neural Information Processing Systems,
pages 6436–6446, 2019.

J. Tönshoff, M. Ritzert, H. Wolf, and M. Grohe. Graph learning with 1d convolutions on
random walks. CoRR, abs/2102.08786, 2021.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

57

Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

J.-P. Vert. The optimal assignment kernel is not positive definite. CoRR, abs/0801.4061,
2008.

C. Vignac, A. Loukas, and P. Frossard. Building powerful and equivariant graph neural
networks with structural message-passing. In Advances in Neural Information Processing
Systems, 2020.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. The
Annals of Statistics, pages 555–586, 2008.

F. Wang, N. Xue, Y. Zhang, G. Xia, and M. Pelillo. A functional representation for graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

B. Weisfeiler. On Construction and Identification of Graphs. Lecture Notes in Mathematics,
Vol. 558. Springer, 1976.

B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968. English
translation by G. Ryabov is available at https://www.iti.zcu.cz/wl2018/pdf/wl_

paper_translation.pdf.

O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, and T. Langer.
A compact review of molecular property prediction with graph neural networks. Drug
Discovery Today: Technologies, 2020.

A. Wijesinghe and Q. Wang. A new perspective on ”how graph neural networks go beyond
Weisfeiler-Lehman?”. In International Conference on Learning Representations, 2022.

J. Wood and J. Shawe-Taylor. Representation theory and invariant neural networks. Discrete
applied mathematics, 69(1-2):33–60, 1996.

A. Woźnica, A. Kalousis, and M. Hilario. Adaptive matching based kernels for labelled
graphs. In Advances in Knowledge Discovery and Data Mining, pages 374–385, 2010.

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and
V. Pande. MoleculeNet: a benchmark for molecular machine learning. Chemical Science,
9:513–530, 2018.

D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph generation by iterative message
passing. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3097–
3106, 2017.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks?
International Conference on Machine Learning, 2019.

K. Xu, J. Li, M. Zhang, S. S. Du, K. Kawarabayashi, and S. Jegelka. What can neural
networks reason about? In International Conference on Learning Representations, 2020.

58

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Weisfeiler and Leman go Machine Learning: The Story so far

K. Xu, M. Zhang, S. Jegelka, and K. Kawaguchi. Optimization of graph neural networks:
Implicit acceleration by skip connections and more depth. In International Conference on
Machine Learning, pages 11592–11602, 2021.

A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Graph complexity of chemical compounds in
biological pathways. Genome Informatics, 14:376–377, 2003.

P. Yanardag and S. V. N. Vishwanathan. A structural smoothing framework for robust graph
comparison. In Advances in Neural Information Processing Systems, pages 2125–2133,
2015a.

P. Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In ACM Conference on
Knowledge Discovery and Data Mining, pages 1365–1374, 2015b.

D. Yarotsky. Universal approximations of invariant maps by neural networks. CoRR,
abs/1804.10306, 2018.

J. You, J. Gomes-Selman, R. Ying, and J. Leskovec. Identity-aware graph neural networks.
CoRR, abs/2101.10320, 2021.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola.
Deep sets. In Advances in Neural Information Processing Systems, 2017.

A. Zanfir and C. Sminchisescu. Deep learning of graph matching. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2684–2693, 2018.

H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan, V. K. Prasanna, L. Jin,
and R. Chen. Decoupling the depth and scope of graph neural networks. In Advances in
Neural Information Processing Systems, pages 19665–19679, 2021.

B. Zhang, G. Feng, Y. Du, D. He, and L. Wang. A complete expressiveness hierarchy for
subgraph gnns via subgraph weisfeiler-lehman tests. CoRR, abs/2302.07090, 2023a.

B. Zhang, S. Luo, L. Wang, and D. He. Rethinking the expressive power of gnns via graph
biconnectivity. CoRR, abs/2301.09505, 2023b.

M. Zhang and Y. Chen. Weisfeiler-Lehman neural machine for link prediction. In ACM
Conference on Knowledge Discovery and data mining, pages 575–583, 2017.

M. Zhang and P. Li. Nested graph neural networks. CoRR, abs/2110.13197, 2021.

M. Zhang, Z. Cui, M. Neumann, and C. Yixin. An end-to-end deep learning architecture
for graph classification. In AAAI Conference on Artificial Intelligence, pages 4428–4435,
2018.

S. Zhang and H. Tong. FINAL: fast attributed network alignment. In ACM Conference on
Knowledge Discovery and Data Mining, pages 1345–1354, 2016.

L. Zhao, W. Jin, L. Akoglu, and N. Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. CoRR, abs/2110.03753, 2021.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural
networks: A review of methods and applications. CoRR, abs/1812.08434, 2018.

59

	Introduction
	Present Work
	Related Work
	Graph Kernels
	Molecule Descriptors in Cheminformatics
	Graph Neural Networks
	Equivariant Neural Networks

	Structure of the Document

	Preliminaries
	The Weisfeiler–Leman Method
	The k-dimensional Weisfeiler–Leman Algorithm
	Oblivious k-WL
	Theoretical Properties

	Non-neural Methods for Machine Learning Based on the Weisfeiler–Leman Algorithm
	Weisfeiler–Lehman Subtree Kernel
	Variations of the Weisfeiler–Lehman Subtree Kernel
	Matching-based Kernels
	Continuous Attributes
	Kernels Based on the k-OWL
	Other Kernels Based on the 1-WL

	Connections to Graph Neural Networks
	GNNs and the 1-WL algorithm
	Neural Architectures Beyond 1-WL's Expressive Power

	Equivariant Graph Networks and the Weisfeiler–Leman Algorithm
	Equivariant Graph Networks
	Expressive Power and Weisfeiler–Leman Hierarchy

	Expressivity and Generalization Abilities of GNNs
	Applications
	Computer Programs
	Semantic Web
	Cheminformatics
	Computer Vision and Graphics
	Graph Matching

	Open Challenges, Limitations, Future Research Directions
	Understanding the Interplay of Expressive Power, Generalization, and Optimization
	Locality and the Role of Depth
	Incorporating Expert Knowledge
	Limitations and Future Research Directions

	Conclusion

