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Abstract

Finite-order Markov models are well-studied models for dependent finite alphabet data.
Despite their generality, application in empirical work is rare when the order d is large
relative to the sample size n (e.g., d = O(n)). Practitioners rarely use higher-order Markov
models because (1) the number of parameters grows exponentially with the order, (2) the
sample size n required to estimate each parameter grows exponentially with the order, and
(3) the interpretation is often difficult. Here, we consider a subclass of Markov models
called Mixture of Transition Distribution (MTD) models, proving that when the set of
relevant lags is sparse (i.e., O(log(n))), we can consistently and efficiently recover the lags
and estimate the transition probabilities of high-dimensional (d = O(n)) MTD models.
Moreover, the estimated model allows straightforward interpretation. The key innovation
is a recursive procedure for a priori selection of the relevant lags of the model. We prove a
new structural result for the MTD and an improved martingale concentration inequality to
prove our results. Using simulations, we show that our method performs well compared to
other relevant methods. We also illustrate the usefulness of our method on weather data
where the proposed method correctly recovers the long-range dependence.

Keywords: Markov Chains, High-dimensional inference, Mixture Transition Distribution

1. Introduction

From the daily number of COVID-19 cases to the activity of neurons in the brain, dis-
crete time series are ubiquitous in our life. A natural way to model these time series is by
describing how the present events depend on the past events, i.e., characterizing the tran-
sition probabilities. Therefore, finite-order Markov chains - models specified by transition
probabilities that depend only on a limited portion of the past - are an obvious choice to
model time series with discrete values. The length of the portion of the relevant past defines
the order of the Markov chain. At first glance, estimating the transition probabilities of a
Markov chain from the data is straightforward. Given a sample X1:n := (X1, X2, . . . , Xn)
of a stationary d-th order Markov chain on a discrete alphabet A, the empirical transition
probabilities are computed, for all past x−d:−1 := (x−d, . . . , x−1) ∈ A{−d,...,−1} and symbol
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a ∈ A, as

p̂n(a|x−d:−1) :=
Nn(x−d:−1, a)∑
b∈ANn(x−d:−1, b)

,

where Nn(x−d:−1, a) denotes the number of occurrences of the past x−d:−1 followed by the
symbol a in the sample X1:n.

Nevertheless, some difficulties become apparent. First, for a Markov chain of order d,
we have to estimate |A|d(|A| − 1) transition probabilities (parameters), making the uniform
control of estimation errors much harder when the order d increases. One solution to avoid
the exponential increase in the number of parameters is to consider more parsimonious
classes of models. One such popular class of models is the variable length Markov chains
(VLMC), in which

P(Xt = a|Xt−d:t−1 = x−d:−1) = P(Xt = a|Xt−`:t−1 = x−`:−1),

where ` is a function of the past x−d:−1 (Rissanen, 1983; Bühlmann and Wyner, 1999;
Galves et al., 2012). The relevant portion x−`:−1 of the past x−d:−1 is called a context.
The key feature of VLMC is that all transition probabilities with the same context have
the same values. Therefore, denoting τ as the set of all contexts, the number of transition
probabilities that need to be estimated reduces to |τ |(|A|−1). Another class of models that
is even more parsimonious is the Minimal Markov Models - also known as Sparse Markov
Chains (SMC) (Garcıa et al., 2011; Jääskinen et al., 2014). In SMC, we say that the pasts
x−d:−1 and y−d:−1 are related if for all symbols a ∈ A,

P(Xt = a|Xt−d:t−1 = x−d:−1) = P(Xt = a|Xt−d:t−1 = y−d:−1).

This relation generates the equivalent classes C1, . . . , CK that partition A{−d,...,−1}. Now, the
number of transition probabilities that need to be estimated is K(|A|−1). Both VLMC and
SMC have the advantage of better balancing the bias and variance tradeoff. Nevertheless,
in both models we still need to estimate the transition probability using p̂n(a|x−d:−1), either
because we need to estimate the largest context (for VLMC) or because we need first to
calculate the transition probabilities to establish the partitions (for SMC). This creates a
second difficulty. For the estimator p̂n(a|x−d:−1) to have any meaning, we have to observe
the sequence x−d:−1 in the sample X1:n at least once. By ergodicity, the number of times
that we will observe the sequence x−d:−1 is roughly nP(X1:d = x−d:−1). It is straightforward
to show that, if the transition probabilities are bounded below from zero, there exists a
constant c > 0 such that P(X1:d = x−d:−1) < e−cd. Therefore, in general, it is hopeless
to have a reasonable estimator p̂n(a|x−d:−1) if d > (1 + ε) log n/c, for some positive value
ε. This imposes a fundamental limit to the size of the past that can be included in the
description of the time series.

Moreover, Markov chains with small orders are not consistent with the known workings
of several natural phenomena where the transition probabilities might depend on remote
pasts. For example, in predicting whether today will be a warm or cold day, we might
need to know remote past events like the corresponding weather approximately a year ago
(Király et al., 2006; Yuan et al., 2013). Physiological phenomena in humans with cycles
of different lengths might result from dependence on events at vastly different temporal
scales (Gilden et al., 1995; Chen et al., 1997; Buzsaki and Draguhn, 2004). Importantly,
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not all portions of the past are necessarily relevant. These observations motivate us to
explore sparser representations of the dependence on past events. The mixture of transition
distribution model (MTD) is a subclass of finite order Markov chains that can be used to
obtain such sparse representation. Like VLMC and SMC, MTD was initially introduced to
overcome the problem of exponential increase in the number of transition probabilities for
Markov chains (Raftery, 1985; Berchtold and Raftery, 2002). MTD represents higher-order
Markov models as a convex mixture of single-step Markov chains, where each single-step
Markov chain depends on a single time point in the past. If an MTD model is a mixture of
only a few single step Markov chains, we naturally obtain a class of sparse Markov chains
that depends only on a small portion of the past events. Nevertheless, available methods to
consistently estimate the transition probabilities of MTD still need to consider all the past
events up to the MTD order (Berchtold and Raftery, 2002), which might include irrelevant
portions of the past. This fact still restricts the MTD order to d = O(log n).

In this work, we introduce a simple method that consistently recovers the relevant part of
the past even when the order d of the MTD model is proportional to the sample size n (i.e.,
d = O(n)) if the size of the relevant past is O(log n). Consequently, we prove that we can
consistently estimate the transition probabilities for high dimensional MTD under sparsity
constraint. Our estimator is computationally efficient, consisting of a forward stepwise
procedure that finds the candidates for relevant past portions and a cutting procedure to
eliminate the irrelevant portions. The theoretical guarantees of our estimator are based on
a novel structural result for MTD and an improved martingale concentration inequality.
Both results might have an interest on their own. Moreover, we show that the estimator
can be further improved when the alphabet is binary. We also prove that in several cases,
our estimator is minimax rate optimal.

Finally, using simulated data, we show that our method’s performance is, in general
superior to a best subset selection method, where the lags with k largest weights are selected
after estimating the model with a classical MTD estimation method (Berchtold, 2001), and
similar to the performance of Conditional Tensor Factorization (CTF) based on higher-order
Markov chain estimation when the order is moderate (Sarkar and Dunson, 2016). We also
applied our method to weather data to model a binary sequence indicating days with and
without rain. Our method successfully captures long-range dependencies (e.g. annual cycle)
that were not detected either by VLMC algorithm with BIC order selection (Csiszár and
Talata, 2006) or by the CTF based higher order Markov chain estimation. New Bayesian
approaches for higher order VLMC and MTD selection were introduced in (Kontoyiannis
et al., 2020; Heiner and Kottas, 2021), where a posteriori most likely model estimation is
considered. These works provide interesting alternative approaches for modeling higher-
order Markovian dependence in a Bayesian setting.

We organized the paper as follows. In Section 2 we introduce the main notations, defi-
nitions, and assumptions that we will use throughout the paper. In Section 3 we introduce
the algorithms to select the relevant part of the past. In Section 3.4 we provide an esti-
mate of the estimator’s convergence rate for the transition probabilities. In Section 3.5, we
show that our estimator achieves the optimal minimax rate. In Section 4, we illustrate the
performance of the proposed estimators through simulations and an application on weather
data.
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2. Notation, Model Definition and Preliminary Remarks

2.1 General notation

We denote Z = {. . . − 1, 0, 1, . . .} and Z+ = {1, 2 . . .} the set of integers and positive
integers respectively. For s, t ∈ Z with s ≤ t, we write Js, tK to denote the discrete interval
Z ∩ [s, . . . , t]. Throughout the article A denotes a finite subset of R, called alphabet. The
elements of A will be denoted by the first letters of the alphabet a, b and c. Hereafter,
we denote ‖A‖∞ = maxa∈A |a| and Diam(A) = maxa,b∈A |a − b|. For each S ⊂ Z, the set
AS denotes the set of all A-valued strings xS = (xj)j∈S indexed by the set S. To alleviate
the notation, if S = Js, tK for s, t ∈ Z with s ≤ t, we write xs:t instead of xJs,tK. For any

non-empty subsets U ⊂ S ⊆ Z and any string xS ∈ AS , we denote x(S\U) ∈ A(S\U) the

string obtained from xS by removing the string xU ∈ AU . For all t ∈ Z and S ⊂ Z, we will
write in some cases t+ S do denote the set {t+ s : s ∈ S}.

The set of all finite A-valued strings is denoted by

A =
⋃

S⊂Z:S finite

AS .

For all x ∈ A, we denote Sx ⊂ Z the set indexing the string x, i.e., such that x ∈ ASx .

Given two probability measures µ and ν on A, we denote dTV (µ, ν) the total variation
distance between µ and ν, defined as

dTV (µ, ν) =
1

2

∑
a∈A
|µ(a)− ν(a)|.

For q ∈ Z+, the ‖ · ‖q-norm of vector v ∈ RL is defined as

‖v‖q =

(
L∑
`=1

|v`|q
)1/q

.

The dimension L ∈ Z+ will be implicit in most cases.

For two probability distributions P and Q on AJ1,kK where P is absolutely continuous
with respect to Q, we denote KL(P ||Q) the Kullback-Leibler divergence between P and Q,
given by

KL(P ||Q) =
∑

x1:k∈AJ1,kK

P (x1:k) log

(
P (x1:k)

Q(x1:k)

)
.

2.2 Markov models

Let X = (Xt)t∈Z be a discrete time stochastic chain, defined in a suitable probability space
(Ω,F ,P), taking values in an alphabet A. For a d ∈ Z+, we say that X is a Markov chain
of order d if for all k ∈ Z+ with k > d, t ∈ Z and xt−k:t ∈ AJt−k,tK with P(Xt−k:t−1 =
xt−k:t−1) > 0, we have

P (Xt = xt|Xt−k:t−1 = xt−k:t−1) = P (Xt = xt|Xt−d:t−1 = xt−d:t−1) . (1)
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We say that a Markov chain is stationary if Xs:t and Xs+h:t+h have the same distribution
for all t, s, h ∈ Z. Throughout the article, the distribution of a stationary Markov chain will
be denoted by P. For a finite S ⊂ Z and xS ∈ AS , we write P(xS) to denote P(XS = xS).
The support of a stationary Markov model is the set supp(P) = {x ∈ A : P(xSx) > 0}.

For stationary Markov chains, the conditional probabilities in (1) do not depend on
the time index t. Therefore, for a stationary Markov chain of order d, for any a ∈ A,
xS ∈ supp(P) with S ⊆ J−d,−1K and t ∈ Z, we denote

p(a|xS) = P (Xt = a|Xt+S = xS) .

Notice that p(·|xS) is a probability measure on A, for each fixed past xS ∈ supp(P).
The set {p(·|x−d:−1) : x−d:−1 ∈ supp(P)} is called the family of transition probabilities of
the chain. In this article, we consider only stationary Markov chains.

For a Markov chain of order d, the oscillation δj for j ∈ J−d,−1K is defined as

δj = max{dTV (p(·|x−d:−1), p(·|y−d:−1)) : (x−d:−1, y−d:−1) ∈ AJ−d,−1K, x−k = y−k, ∀ k 6= j}.

The oscillation is useful to measure the influence of a j-th past value in the values of the
transition probabilities.

2.3 Mixture transition distribution (MTD) models

A MTD model of order d ∈ Z+ is a Markov chain of order d for which the associated family
of transition probabilities {p(·|x−d:−1) : x−d:−1 ∈ supp(P)} admits the following represen-
tation:

p(a|x−d:−1) = λ0p0(a) +
−1∑
j=−d

λjpj(a|xj), a ∈ A, (2)

with λ0, λ−1, . . . , λ−d ∈ [0, 1] satisfying
∑0

j=−d λj = 1 and p0(·) and pj(·|b),j ∈ J−d,−1K
and b ∈ A, being probability measures on A.

Following (Berchtold and Raftery, 2002), we call the index j ∈ J−d, 0K of the weight λj
in (2) the j-th lag of the model. The representation in (2) has the following probabilistic
interpretation. To sample a symbol from p(·|x−d:−1), we first choose a lag in J−d, 0K ran-
domly, being λj the probability of choosing the lag j. Once the lag has been chosen, say
lag j, we then sample a symbol from the probability measure pj(·|xj) which depends on the
past x−d:−1 only through the symbol xj . Notice that a symbol is sampled independently
from the past x−d:−1, whenever the lag 0 is chosen.

For later use, let us define the conditional average at lag j as

mj(b) =
∑
a∈A

apj(a|b), (3)

for each j ∈ J−d,−1K and b ∈ A.

For a MTD model of order d, we have that the oscillation δj of the lag j ∈ J−d,−1K can
be written as,

δj = λj max
b,c∈A

dTV (pj(·|b), pj(·|c)). (4)
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Notice that in this case δj = 0 if and only if either λj = 0 or dTV (pj(·|b), pj(·|c)) = 0 for all
b, c ∈ A.

In the sequel, we say that the lag j is relevant if δj > 0, and irrelevant otherwise. We
will denote Λ the set of all relevant lags, i.e.,

Λ = {j ∈ J−d,−1K : δj > 0}. (5)

The set Λ captures the dependence structure of the MTD model. The size |Λ| of the set
Λ represents the degree of sparsity of the MTD model. The smaller the value of |Λ|, the
sparser the MTD model.

The following quantities will appear in many of our results:

δmin = min
j∈Λ

δj and δ̃min = min
j∈Λ

λj‖mj‖Lip, (6)

where ‖mj‖Lip = max{|mj(b)−mj(c)|/|b− c| : b, c ∈ A, b 6= c} denotes the Lipschitz norm
of the function mj defined in (3). One can check easily that these quantities coincide when
the alphabet A is binary (i.e. A = {0, 1}). For general alphabets, the following inequality
holds:

δmin ≥ ‖A‖−1
∞ δ̃min min

b,c∈A:b 6=c
|b− c|.

2.4 Statistical lag selection

Suppose that we are given a sample X1:n of a MTD model of known order d < n and whose
set of relevant lags Λ is unknown. The goal of statistical lag selection is to estimate the set
Λ from the sample X1:n. Our particular interest is in the high-dimensional setting in which
the parameters d = dn and |Λ| = |Λn| scale as a function of the sample size n. Let us write
Λ̂n to indicate an estimator of the set of relevant lags Λ computed from the sample X1:n.
We say that the estimator Λ̂n is consistent if

P(Λ̂n 6= Λ)→ 0 as n→∞.

With respect to statistical lag selection, our goal is to exhibit sufficient conditions for each
proposed estimator guaranteeing its consistency.

2.5 Empirical transition probabilities

Let n,m and d be positive integers such that n −m > d. We denote for each a ∈ A and
xS ∈ A with S ⊆ J−d,−1K non-empty,

Nm,n(xS , a) =
n∑

t=m+d+1

1{Xt+j = xj , j ∈ S,Xt = a}.

The random variable Nm,n(xS , a) indicates the number of occurrences of the string xS
“followed” by the symbol a, in the last n − m symbols Xm+1:n of the sample X1:n. We
also define N̄m,n(xS) =

∑
a∈ANm,n(xS , a). With this notation, the empirical transition
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probabilities computed from the last n−m symbols Xm+1:n of the sample X1:n are defined
as,

p̂m,n(a|xS) =

{
Nm,n(xS ,a)

N̄m,n(xS)
, if N̄m,n(xS) > 0

1
|A| , otherwise

. (7)

When the countings are made over the whole sample X1:n, we denote Nn(xS , a) and N̄n(xS)
the corresponding counting random variables, and p̂n(a|xS) the corresponding empirical
transition probabilities.

In the next sections, the estimators for the set of relevant lags we propose in this paper
rely on these empirical transition probabilities. If Λ̂m denotes an estimator for the set of
relevant lags Λ computed from X1:m, we expect that under some assumptions (guarantee-
ing in particular the consistency of Λ̂m) the empirical transition probability p̂m,n(a|xΛ̂m

)
converges (in probability) to p(a|xΛ) as min{n,m} → ∞, for any x−d:−1 ∈ supp(P). To
understand the convergence for the transition probabilities of high order Markov chains is
crucial in our analysis.

2.6 Assumptions

We collect here the main assumptions used in the article.

Assumption 1 The MTD model has full support, that is, supp(P) = A.

In other words, Assumption 1 means that P(XS = xS) = P(xS) > 0 for any string
xS ∈ AS with S ⊂ Z finite. This means that the marginal distributions of the distribution
generating the data are strictly positive. Such a condition is usually assumed in the problem
of estimating the graph structure underlying graphical models (see for instance Chapter 11
of (Wainwright, 2019)). Notice that this assumption implies, in particular, that

pmin = min{p(a|xΛ) : a ∈ A, xΛ ∈ AΛ} > 0, (8)

where p(·|xΛ) are the transition probabilities of MTD generating the data.

Assumption 2 The quantity ∆ := 1−
∑

j∈Λ δj > 0, where δj is given by (4).

We have that λ0 > 0 is a sufficient condition to Assumption 2 to hold. To check this,
notice that ∑

j∈Λ

δj =
∑
j∈Λ

λj max
b,c∈A

dTV (pj(·|b), pj(·|c)) ≤
∑
j∈Λ

λj = 1− λ0,

where we have used that dTV (pj(·|b), pj(·|c)) ≤ 1 for all b, c ∈ A and j ∈ Λ. Hence, it follows
that ∆ > 0 whenever λ0 > 0.

Assumptions 1 and 2 are used to obtain concentration inequalities for the counting
random variables Nm,n(xS , a) and N̄m,n(xS) appearing in the definition of the empirical
transition probabilities p̂m,n(a|x).

The next assumption is as follows.

Assumption 3 For each j ∈ Λ, there exists b?, c? ∈ A such that mj(b
?) 6= mj(c

?), where
mj(·) is defined in (3).
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Notice that if A = {0, 1}, then mj(1) −mj(0) = pj(1|1) − pj(1|0), so that Assumption 3
holds whenever dTV (pj(·|1), pj(·|0)) = |pj(1|1) − pj(1|0)| > 0 for each j ∈ Λ. In this case
this is always true by the definition of the set Λ. As we will see in Section 3, the condition
is crucial to prove a structural result about MTD models, presented in Proposition 6.

In what follows, PxS (Xj ∈ ·|Xk = b) denotes the conditional distribution of Xj given
XS = xS and Xk = b. We use the convention that, for S = ∅, these conditional probabilities
correspond to the unconditional ones. Moreover, for any function f : A → R, we write
ExS (f(Xj)|Xk = b) to denote the expectation of f(Xj) with respect to PxS (Xj ∈ ·|Xk = b).

The next two assumptions are the following.

Assumption 4 (Inward weak dependence condition) There exists Γ1 ∈ (0, 1] such
that the following condition holds: for all S ⊆ J−d,−1K such that Λ 6⊆ S, k ∈ Λ \ S and
b, c ∈ A with b 6= c satisfying |mk(b)−mk(c)| > 0,

max
xS∈AS

∑
j∈Λ\S∪{k}

λj |ExS (mj(Xj)|Xk = b)− ExS (mj(Xj)|Xk = c)|
λk|mk(b)−mk(c)|

≤ (1− Γ1). (9)

Assumption 5 (Outward weak dependence condition) The alphabet is binary, i.e.
A = {0, 1}. Moreover, there exists Γ2 ∈ (0, 1] such that the following condition holds: for
all S ⊆ J−d,−1K such that S ⊂ Λ and k /∈ Λ,∑

j∈Λ\S

max
xS∈{0,1}S

|PxS (Xk = 1|Xj = 1)− PxS (Xk = 1|Xj = 0)| ≤ Γ2. (10)

Both Assumptions 4 and 5 are conditions of weak dependence. In words, Assumption 4
says that no relevant lag j can be completely determined by any subset S containing only
relevant lags or any other relevant lag k when combined with some irrelevant lags. Similarly,
Assumption 5 says that irrelevant lags cannot be completely determined by some subset of
relevant lags. These two assumptions will be only necessary to obtain a computationally
very efficient algorithm.

3. Statistical Lag Selection

In this section, we address the problem of statistical lag selection for the MTD models. We
will first introduce a statistical procedure called PCP estimator that is general and works
well if there is a known small set S such that Λ ⊆ S. When such set S is not available, we will
have to consider an alternative procedure called FSC estimator, which will be introduced
later.

3.1 Estimator based on pairwise comparisons

Throughout this section we suppose that there is a known set S ⊆ J−d,−1K such that
Λ ⊆ S. Note that this is always satisfied in the worse case scenario in which the set S is
the whole set J−d,−1K. In some cases, however, we may have a prior knowledge on the set
Λ and we can use this information to restrict our analysis to the lags in a known set S of
size (possibly much) smaller than d.
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The estimator discussed in this section is based on pairwise comparisons of empirical
transition probabilities corresponding to compatible pasts. For this reason, we call it PCP

estimator. The estimator is based on the following observation. For any j ∈ S, we say that
the pasts xS , yS ∈ AS are (S \ {j})-compatible, if yS\{j} = xS\{j}. We have that if j ∈ Λ,

then there exist a pair of (S \ {j})-compatible pasts xS , yS ∈ AS such that total variation
distance between p(·|xS) and p(·|yS) is strictly positive. On the other hand, if j ∈ S \ Λ,
then the total variation distance between p(·|xS) and p(·|yS) is 0 for all (S \{j})-compatible
pasts xS , yS ∈ AS .

These remarks suggests to estimate Λ by the subset of all lags j ∈ S for which the total
variation distance between p̂n(·|xS) and p̂n(·|yS) is larger than a suitable positive threshold,
for some pair of (S\{j})-compatible pasts xS and yS . An uniform threshold over all possible
realizations usually gives suboptimal results by either underestimating or overestimating for
some configurations. The threshold we use here is adapted to each realization of the MTD,
relying on improved martingale concentration inequalities that are of independent interest
(see Appendix B).

Fix ε > 0, α > 0 and µ ∈ (0, 3) such that µ > ψ(µ) := eµ−µ− 1. For each xS , yS ∈ AS ,
consider the random threshold tn(xS , yS) defined as,

tn(xS , yS) = sn(xS) + sn(yS), (11)

where sn(xS) is given by

sn(xS) =

√
α(1 + ε)

2N̄n(xS)

∑
a∈A

√
µ

µ− ψ(µ)

(
p̂n(a|xS) +

α

N̄n(xS)

)
+

α|A|
6N̄n(xS)

. (12)

With this notation, the PCP estimator Λ̂1,n is defined as follows. A lag j ∈ S belongs to
Λ̂1,n if and only if there exists a (S \ {j})-compatible pair of pasts xS , yS ∈ AS such that

dTV (p̂n(·|xS), p̂n(·|yS)) ≥ tn(xS , yS). (13)

In the sequel, the set S ⊆ J−d,−1K such that Λ ⊆ S and the constants ε > 0, α > 0
and µ ∈ (0, 3) such that µ > ψ(µ) are called parameters of the PCP estimator Λ̂1,n.

Hereafter, for each j ∈ S and any b, c ∈ A, let

Cj(b, c) =
{

(x, y) ∈ AS ×AS : xS\{j} = yS\{j}, xj = b and yj = c
}
,

and define

tn,j(b, c) = min
(xS ,yS)∈Cj(b,c)

tn (xS , yS) , tn,j = max
b,c∈A:b6=c

tn,j(b, c) and γn,j = 2tn,j . (14)

Finally, consider the following quantity

PS = min
j∈Λ

min
b,c∈A:b 6=c

max
(xS ,yS)∈Cj(b,c)

(P(xS) ∧P(yS)) . (15)

With these definitions, we have the following result.
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Theorem 1 Let X1:n be a sample of MTD model with set of relevant lags Λ, where n > d.
If Λ̂1,n is the PCP estimator defined in (13) with parameters µ ∈ (0, 3) such that µ > ψ(µ),
α > 0, ε > 0 and Λ ⊆ S ⊆ J−d,−1K, we have that

1. For each j ∈ S \ Λ, we have that

P
(
j ∈ Λ̂1,n

)
≤ 8|A|(n− d)

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α.

2. For each j ∈ Λ, we have that

P
(
j /∈ Λ̂1,n, γn,j ≤ δj

)
≤ 8|A|

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α,

where γn,j and and δj are defined in (14) and (4) respectively.

3. Furthermore, if assumptions 1 and 2 hold, then there exits a constant C = C(ε, µ) > 0
such that for n satisfying

n ≥ d+
C|A|α
δ2
minPS

, (16)

where δmin and PS are defined in respectively (6) and (15), we have that

P
(

Λ̂1,n 6= Λ
)
≤ 8|A| ((|S| − |Λ|)(n− d) + |Λ|)

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α

+ 6|A|(|A| − 1)|Λ| exp

{
−

∆2(n− d)2P2
S

8n(|S|+ 1)2

}
. (17)

The proof of Theorem 1 is given in Appendix A.1.1.

Remark 2 (a) The sum over j ∈ S \Λ of the upper bound provided by Item 1 of Theorem
1 controls the probability that the PCP estimator Λ̂1,n overestimates the set of relevant
lags Λ. The sum over j ∈ Λ of the upper bound given in Item 2 of Theorem 1 is as
an upper bound for the probability that the PCP estimator underestimates the subset of
relevant lags j ∈ Λ whose oscillation δj is larger or equal than the “noise level” γn,j.
Note that the sum of these upper bounds corresponds to the first term appearing on
the right hand side of (17).

(b) The second term on the right hand side of (17) is an upper bound for the probability
that there exists some relevant lag j ∈ Λ whose oscillation δj is strictly smaller than
the “noise level” γn,j.

(c) (Computation of PCP estimator) As we show in Appendix (A.6), the PCP estimator
can be implemented with at most O(|A|2|S|(n− d)) computations.

Remark 3 By Assumption 1, we have that PS ≥ pmin/|A||S|−1, where pmin is defined in
(8). As a consequence, it follows from (16) that if the sample size n is such that

n ≥ d+
C|A||S|α
pminδ2

min

, (18)

10
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then inequality (17) holds with the second exponential term replaced by

exp

{
− ∆2p2

min(n− d)2

8n(|S|+ 1)2|A|2(|S|−1)

}
. (19)

Combining Theorem 1 and Remark 3, one can deduce the following result.

Corollary 4 For each n, consider a MTD model with set of relevant lags Λn and transition
probabilities pn(a|xΛn) such that pmin,n ≥ p?min and ∆n ≥ ∆?

min for some positive constants
p?min and ∆?

min. Let dn = βn for some β ∈ (0, 1) and suppose that Λn ⊆ Sn ⊆ J−dn,−1K
with |Sn| ≤ ((1 − γ)/2) log|A|(n) for some γ ∈ (0, 1). Let X1:n be a sample from the MTD

specified by Λn and pn(a|xΛn), and denote Λ̂1,n the PCP estimator defined in (13) computed
from this sample with parameters µn = µ ∈ (0, 3) such that µ > ψ(µ), εn = ε > 0,
αn = (1 + η) log(n) with η > 0 and Sn. Under these assumptions there exists a constant
C = C(µ, ε, β, p?min,∆

?
min, γ, η) > 0 such that if

δ2
min,n ≥

C log(n)

n(1+γ)/2
, (20)

then P(Λ̂1,n 6= Λn)→ 0 as n→∞.

The proof of Corollary is given in Appendix A.1.2.

Remark 5 (a) Under the assumptions of Corollary 4, if additionally we have |Λn| ≤ L
for all values of n for some positive integer L, then one can choose a suitable sequence
γn → 1 as n→∞ to obtain that P(Λ̂1,n 6= Λn) vanishes as n→∞, as long as

δ2
min,n ≥

C log(n)

n
, (21)

where the constant C here is larger than the one given in (20).

(b) Observe that in Corollary 4, the set of relevant lags can be either finite or grow very
slowly with respect to the sample size n. On the other hand, no assumption on the
orders dn of the underlying sequence of MTD models is made. In particular, we could
consider MTD models with very large orders, for example dn = βn with β ∈ (0, 1).

As Corollary 4 indicates, in the setting dn = βn, the major drawback of the PCP es-
timator Λ̂1,n is that it requires a prior knowledge of Λn in the form of a set Sn growing
slowly enough and such that Λn ⊆ Sn. The main goal of the next two sections is to propose
alternative estimators of Λn to deal with this issue.

3.2 Forward Stepwise and Cut estimator

In this section we introduce a second estimator of the set of relevant lags Λ, called Forward
Stepwise and Cut (FSC) estimator. This estimator is based on a structural result about
MTD models presented in Proposition 6 below. Before presenting this structural result, we
need to introduce some notation.

11
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In what follows, for each lag k ∈ J−d,−1K, subset S ⊆ J−d,−1K \ {k}, configuration
xS ∈ AS and symbols b, c ∈ A, let us denote

dk,S(b, c, xS) = dTV (PxS (X0 ∈ ·|Xk = b),PxS (X0 ∈ ·|Xk = c)) , (22)

and
wk,S(b, c, xS) = PxS (Xk = b)PxS (Xk = c). (23)

Recall that PxS (X0 ∈ ·|Xk = b) and PxS (Xk = b) denote, respectively, the conditional dis-
tribution of X0 given XS = xS and Xk = b and the conditional probability of Xk = b given
XS = xS , with the convention that these conditional probabilities for S = ∅ correspond to
the unconditional ones.

Let us also denote for each lag k ∈ J−d,−1K and subset S ⊆ J−d,−1K \ {k},

νk,S(xS) =
∑
b∈A

∑
c∈A

wk,S(b, c, xS)dk,S(b, c, xS), (24)

and
ν̄k,S = E (νk,S(XS)) . (25)

The quantity νk,S(xS) measures the influence of Xk on X0, conditionally on the variables
XS = xS . The average conditional influence of Xk on X0 is measured through the quantity
ν̄k,S .

In the sequel, we write CovxS (X0, Xk) to denote the conditional covariance between the
random variables X0 and Xk given that XS = xS . Here, we also use the convention that the
conditional covariance for S = ∅ corresponds to the unconditional one. With this notation,
we can prove the following structural result about MTD models.

Proposition 6 For any lag k ∈ J−d,−1K and subset S ⊆ J−d,−1K \ {k},

Diam(A)‖A‖∞ν̄k,S ≥ E (|CovXS (X0, Xk)|) . (26)

Moreover, if Assumptions 1 and 3 hold, then there exists a constant κ > 0 such that the
following property holds: for any S ⊆ J−d,−1K such that Λ 6⊆ S there exists k ∈ Λ \ S
satisfying

E (|CovXS (X0, Xk)|) ≥ κ. (27)

Furthermore, if Assumption 3 is replaced by Assumption 4, then the constant κ satisfies

κ ≥ p2
minΓ1 min{|b− c|2 : b 6= c}δ̃min

2
√
|Λ|

, (28)

where δ̃min, pmin and Γ1 are defined respectively in (6), (8) and (9).

The proof of Proposition 6 is given in A.2.

Remark 7 Denote f(S) = maxk∈Sc ν̄k,S, for each S ⊆ J−d,−1K. On one hand, we have
that f(S) = 0 for any S ⊆ J−d,−1K such that Λ ⊆ S. This follows immediately from the
definition of Λ. On the other hand, Proposition 6 assures that f(S) ≥ κ/Diam(A)‖A‖∞ > 0
for any S ⊆ J−d,−1K such that Λ 6⊆ S. Putting together these facts, we deduce that the set
of relevant lags can be written as Λ = arg min{|S| : f(S) = 0}. This observation motivates
the FSC estimator defined below.

12
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In what follows, we split the data X1:n into two pieces. The first part is composed of
the first m symbols X1:m where 1 ≤ m < n, whereas the second part is composed of the
n−m last symbols Xm+1:n. In the sequel, we write ν̂m,k,S to denote the empirical estimate
of ν̄k,S computed from X1:m. The formal definition of ν̂m,k,S involves extra notation and is
postponed to Appendix A.

The FSC estimator is built in two steps. The first step is called Forward Stepwise (FS)
and the second one is called CUT. In the FS step, we start with S = ∅ and add iteratively to
the set S a lag j ∈ arg maxk∈Sc ν̂m,k,S , as long as |S| < `, where 0 ≤ ` ≤ d is a parameter of

the estimator. We denote Ŝm the set obtained at the end of FS step, with the convention
that Ŝm = ∅ if the parameter ` = 0. As we will see, if ` is properly chosen the candidate set
Ŝm will contain the set of relevant lags Λ with high probability. It may, of course, include
irrelevant lags j (those with δj = 0). In the CUT step, for each j ∈ Ŝm, we remove j from Ŝm
unless dTV (p̂m,n(·|xŜm), p̂m,n(·|yŜm)) ≥ tm,n(xŜm , yŜm) := sm,n(xŜm) + sm,n(yŜm) for some

(Ŝm \ {j})-compatible pasts xŜm , yŜm ∈ A
Ŝm , where sm,n(xŜm) is given by (12) replacing

N̄n(·) and p̂n(·|·) by N̄m,n(·) and p̂m,n(·|·) respectively. The FSC estimator is defined as
the set Λ̂2,n of all lags not removed in the CUT step. The pseudo-code of the algorithm to
compute the FSC estimator is given in Algorithm 1.

Algorithm 1: FSC(X1, . . . , Xn)

FS Step;

1. Ŝm = ∅;
2. While |Ŝm| < `;

3. Compute j∗ = arg maxj∈Ŝcm
ν̂m,j,Ŝm and include j∗ in Ŝm;

CUT step;

6. For each j ∈ Ŝm, remove j from Ŝm unless

dTV (p̂m,n(·|xŜm), p̂m,n(·|yŜm)) ≥ tm,n(xŜm , yŜm),

for some (Ŝm \ {j})-compatible pasts xŜm , yŜm ∈ A
Ŝm ;

7. Output Ŝm;

Remark 8 (a) It is worth mentioning the following alternative algorithm (henceforth
called Algorithm 2) to estimate the set of relevant lags Λ. As Algorithm 1, Algorithm
2 has two steps as well. In the first step, we start with S = ∅ and add iteratively a lag
j ∈ arg maxk∈Sc ν̂n,k,S as long as ν̂n,j,S > τ , where τ is a parameter of the algorithm
and ν̂n,j,S is the empirical estimate of ν̄j,S computed from the entire data X1:n. Let

Ŝn denote the set obtained at the end of this step. Next, in the second step, for each
j ∈ Ŝn, we remove j from Ŝn unless ν̂n,j,Ŝn\{j} ≥ τ . The output of Algorithm 2 is

the set of all lags in Ŝn which were not removed in the second step. Algorithm 2 can
be seen as a version adapted for our setting of the LearnNbhd algorithm, proposed in
Bresler (2015), to estimate the interaction graph underlying an Ising model from i.i.d
samples of the model.

13
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(b) As opposed to Algorithm 2, notice that the data X1:n is split into two parts in Algorithm
1. The first m symbols X1:m of the sample are used in the FS step, whereas the last
n −m symbols Xm+1:n are only used in the CUT step. Despite requiring to split the
data into two parts, one nice feature of Algorithm 1 is that even if a large ` is chosen
the CUT step would remove the non-relevant lags, whereas in Algorithm 2, we have to
calibrate τ carefully to recover the relevant lags.

(c) (Computation of FSC estimator) As we show in the Appendix A.6, we need to perform
at most O(|A|3`(m− d)(d− (`− 1)/2) + |A|2(n−m− d)`) computations to determine
the FSC estimator. The first summand in the sum corresponds to the algorithmic
complexity of the FS step, whereas that the second summand can be interpreted as the
algorithmic complexity of the PCP estimator computed from a sample of size n −m
and whose set S has ` elements (recall item (c) of Remark 2).

In what follows, for any ξ > 0 and 0 ≤ ` ≤ d, let us define the following event,

Gm(`, ξ) =
⋂

S∈Sd,`

{
max
j∈Sc
|ν̄j,S − ν̂m,j,S | ≤ ξ

}
, (29)

where Sd,` = {S ⊆ J−d,−1K : |S| ≤ `}. In the next result we show that whenever the event

Gm(`, ξ) holds with properly chosen parameters ξ and `, the candidate set Ŝm constructed
in the FS step with parameter ` contains Λ.

Theorem 9 Suppose Assumptions 1 and 3 hold and let κ be the lower bound provided by
Proposition 6. Let

ξ∗ =
κ

4‖A‖∞Diam(A)
and `∗ =

⌊
log2(|A|)

8ξ2
∗

⌋
=

⌊
2(Diam(A)‖A‖∞)2 log2(|A|)

κ2

⌋
. (30)

Let Ŝm denote the candidate set constructed in the FS step of Algorithm 1 with parameter
`∗. On the event Gm(`∗, ξ∗), we have that Λ ⊆ Ŝm.

The proof of Theorem 9 is given in Appendix A.2.2. Theorem 9 ensures that the
candidate set Ŝm contains the set of relevant lags Λ whenever the event Gm(`∗, ξ∗) holds.
In this case, we can think of the CUT step as the PCP estimator discussed in the previous
section applied to the n − m last observations Xm+1:n of the data, where S = Ŝm. The
main difference is that Ŝm is a random set, depending on the first m observations X1:m of
the data.

In the sequel, let us denote

PSd,` = min
S∈Sd,`

PS , (31)

where PS is defined in (15).

In the next result we estimate the error probability of the FSC estimator.

Theorem 10 Suppose Assumptions 1, 2, and 3 hold. Let ∆ > 0 be the quantity defined in
Assumption 2. Denote Λ̂2,n the FSC estimator constructed by Algorithm 1 with parameter

14
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`∗, as defined in (30). Suppose also that m > d ≥ 2`∗. Then there exits a constant
C = C(ε, µ) > 0 such that if

n ≥ m+ d+
C|A|α

δ2
minPSd,`∗

, (32)

where δmin and PSd,`∗
are defined in (6) and (31), then we have that,

P(Λ̂2,n 6= Λ) ≤ 2|A|(`∗ + 1)

(
d

`∗

)[
d|A|`∗+1 exp

{
− (ξ∗∆)2(m− d)2

18m|A|2(`∗+2)(`∗ + 2)2

}
+3(|A| − 1)|Λ| exp

{
−

∆2(n−m− d)2P2
Sd,`∗

8(n−m)(`∗ + 1)2

}]

+ 8|A| ((`∗ − |Λ|)(n−m− d) + |Λ|)
⌈

log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α, (33)

where ξ∗ is defined in (30).

The proof of Theorem 10 is given in Appendix A.2.3.

Remark 11 (a) Let us give some intuition about the three terms appearing on the right-
hand side of (33). The first one is an upper bound for P(Gcm(`∗, ξ∗)). The other two
are related to the terms appearing in (17). Indeed, by recalling that |Ŝm| = `∗, one
immediately sees that the third terms of (33) corresponds to the first term of (17) with
Ŝm and n−m in the place of S and n respectively. Besides, the second term of (33)
is similar (modulo a factor which depends on d and `∗) to the second term of (17).
This extra factor reflects the fact that we do not know a priori a set S containing the
set of relevant lags Λ.

(b) Similar to Remark 3, one can also show that PSd,` ≥ pmin/|A|`−1, where pmin is
defined in (8). Hence, we can deduce from (32) that when the sample size n satisfies

n ≥ d+
C|A|`∗α
pminδ2

min

, (34)

then inequality (33) holds with the second exponential term replaced by

exp

{
− (∆pmin)2(n− d)2

8n(`∗ + 1)2|A|2(`∗−1)

}
. (35)

The next result is a corollary of Theorem 10.

Corollary 12 For each n, consider a MTD model with set of relevant lags Λn and transition
probabilities pn(a|xΛn) satisfying pmin,n ≥ p?min ∆n ≥ ∆?

min for some positive constants p?min
and ∆?

min, and such that Assumption 3 holds. Let mn = n/2 and dn = mnβ with β ∈ (0, 1).
Let X1:n be a sample from the MTD specified by Λn and pn(a|xΛn), and denote Λ̂2,n the
FSC estimator constructed by Algorithm 1 with parameters mn, µn = µ ∈ (0, 3) such that
µ > ψ(µ), εn = ε > 0, αn = (1 + η) log(n) with η > 0 and `∗,n as defined in (30).
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Assume that `∗,n ≤ ((1 − γ)/2) log|A|(n) for some γ ∈ (0, 1). Then there exists a constant

C = C(β, γ, η, p?min,∆
?
min, ε, µ) > 0 such that P(Λ̂2,n 6= Λ∗)→ 0 as n→∞, whenever

δ2
min,n ≥

C log(n)

n(1+γ)/2
. (36)

The proof of Corollary 12 is given in Appendix A.2.4.

Remark 13 (a) Under Assumption 4, one can check that `∗,n ≤ ((1 − γ)/2) log|A|(n)
whenever,

δ̃2
min

|Λ|
≥ 16(1− γ)

Γ2
1(p?min min{|b− c| : b 6= c})4 log|A|(n)

.

(b) Comparing Corollaries 12 and 4, we observe that the consistency of both FSC and PCP

estimators require the same lower bound on the decay of minimal oscillation δmin,n.
Despite requiring additional assumptions (Assumption 3 and a condition on the growth
of `∗), FSC estimator do not need prior knowledge of a small subset S containing the
set of relevant lags Λ as opposed to the PCP estimator, which is a significant advantage
in practice.

(c) Let us mention that under the assumptions of Corollary 12, we have that the algorith-
mic complexity of the FSC is O(|A|3n2 log|A|(n)). This follows immediately from item
(c) of Remark 8.

3.3 Improving the efficiency for the binary case

In this section, we show that when the alphabet is binary, i.e., A = {0, 1}, we can further
improve the FSC algorithm if we consider Assumptions 4 and 5. Observe that when the
alphabet is binary, Assumption 3 holds automatically (see Section 2.6). Moreover, we have
that

ν̄k,S = 2E (PXS (Xk = 1)PXS (Xk = 1) |PXS (X0 = 1|Xk = 1)− PXS (X0 = 1|Xk = 0)|)
= 2E (|CovXS (X0, Xk)|) ,

for any lag k ∈ J−d,−1K, subset S ⊆ J−d,−1K \ {k} and configuration xS ∈ {0, 1}S .
For a binary MTD, we have the following result.

Theorem 14 Under Assumptions 4 and 5, it holds that

min
S⊂Λ

(
max
j∈Λ\S

ν̄j,S − max
j∈(Λ)c

ν̄j,S

)
≥ 2(Γ1 − Γ2)p2

minδmin,

where δmin and pmin are defined in (6) and (8) respectively. In particular, if Γ1 > Γ2 and
Ŝm denotes the candidate set constructed at the end of the FS step of Algorithm 1 with
parameter ` ≥ |Λ|, then Λ ⊆ Ŝm whenever the event Gm(`, ξ) holds where

0 < ξ < (Γ1 − Γ2)p2
minδmin. (37)

The proof of Theorem 14 is given in Appendix A.3.1.
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Remark 15 Notice that if the size of Λ is known, then Theorem 14 implies Ŝm = Λ on
the event Gm(|Λ|, ξ) with ξ satisfying (37). In particular, in this case, we neither need to
execute the CUT step nor to split the data into two pieces.

In the same spirit of the previous corollaries, we can show the following result.

Corollary 16 For each n, consider a MTD model with set of relevant lags Λn and transition
probabilities pn(a|xΛn) satisfying Assumptions 4 and 5 with Γ1,n = Γ1 > Γ2 = Γ2,n and such
that |Λn| ≤ L for some integer L, pmin,n ≥ p?min and ∆n ≥ ∆?

min for some positive constants
p?min and ∆?

min. Let X1:n be a sample from the MTD specified by Λn and pn(a|xΛn), and
denote Λ̂2,n the FSC estimator with parameters with parameters mn = n/2, µn = µ ∈ (0, 3)
such that µ > ψ(µ), εn = ε > 0, αn = (1+η) log(n) with η > 0 and ` = L. Suppose that dn =
βn with β ∈ (0, 1). Then there exists a constant C = C(β, L,∆∗min, p

∗
min,Γ1,Γ2, η, µ, ε) > 0

such that P(Λ̂2,n 6= Λ∗)→ 0 as n→∞, as long as

δmin,n ≥ C
√

log(n)

n
, (38)

The proof of Corollary 16 is given in Appendix A.3.2.

3.4 Post-selection transition probabilities estimation

Once the set of relevant lags have been estimated by applying the FSC estimator to the
sample X1:n, we reuse the entire sample to compute the estimator p̂n(a|xΛ̂2,n

) of the transi-

tion probability p(a|xΛ). In the next result, we provide an estimate for rate of convergence
of p̂n(a|xΛ̂2,n

) towards p(a|xΛ), simultaneously for all pasts x−d:−1 ∈ AJ−d,−1K.

Theorem 17 Under assumptions and notation of Theorem 10,

P

⋃
a∈A

⋃
x−d:−1∈AJ−d,−1K

|p̂n(a|xΛ̂2,n
)− p(a|xΛ)| ≥

√√√√2α(1 + ε)V̂n(a, xΛ̂2,n
)

N̄n(xΛ̂2,n
)

+
α

3N̄n(xΛ̂2,n
)

})
≤ 4|A|(n− d)

⌈
log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α + P(Λ̂2,n 6= Λ), (39)

where V̂n(a, xΛ̂2,n
) is given by

V̂n(a, xΛ̂2,n
) =

µ

µ− ψ(µ)
p̂n(a|xΛ̂2,n

) +
α

µ− ψ(µ)

1

N̄n(xΛ̂2,n
)
.

The proof of Theorem 17 is given in Appendix A.4.

3.5 A remark on the minimax rate for the lag selection

We take A = {0, 1} and consider the set of {p(j)(·|·), j ∈ J−d,−1K} of transition probabilities
of the following form:

p(j)(1|x−d:−1) =
(1− λ)

2
+ λp(1|xj), j ∈ J−d,−1K, λ ∈ (0, 1), (40)
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where λ|p(1|1) − p(1|0)| := δ > 0. For each j ∈ J−d,−1K, we denote P(j) the probability
measure under which (Xt)t∈Z is a stationary MTD model having transition probability

p(j)(·|·). For each t ≥ 1, we denote P
(j)
t the marginal distribution with respect to the

variables X1:t:

P
(j)
t (x1:t) = P(j)(X1:t = x1:t)

In what follows, KL(P
(j)
t ||P

(k)
t ) denotes the Kullback-Leibler divergence between the distri-

butions P
(j)
t and P

(k)
t . We denote MTDd,δ the set all transition probabilities p = {p(a|xΛ) :

a ∈ A, xΛ ∈ AΛ} of a MTD model of order d whose corresponding δmin ≥ δ. For a given
p ∈MTDd,δ, we denote Pp the probability distribution under which (Xt)t∈Z is a stationary
MTD model of order d with transition probabilities given by p. With this notation, we have
the following result.

Proposition 18 Let n > d. Then the following inequality holds: for j, k ∈ J−d,−1K,

KL(P (j)
n ||P (k)

n ) ≤ 2nδ2

1− λ
. (41)

In particular, if β ∈ (0, 1), d = nβ, and

δ2 ≤ (1− λ)

2n

(
log(nβ)

2
− log(2)

)
, (42)

then

inf
Λ̂n

sup
p∈MTDd,δ

Pp(Λ̂n 6= Λ) ≥ 1/4, (43)

where the infimum is over all lag estimators Λ̂n based on a sample of size n.

The proof of (43) follows immediately from Fano’s inequality and the upper bound (41).
Combining (38) and (42), we deduce that the condition on the minimal oscillation required
for the consistency of the FSC estimator in Corollary 16 is sharp. The proof of Proposition
18 is given in Appendix A.5

4. Simulations

Here, we investigated the performance of the proposed methods using simulations.

4.1 Experiment 1

We first used a MTD model on alphabet A = {0, 1} with two relevant lags, denoted here
as −i and −j for notational convenience. The choices for the order d and for the values
of i and j are shown in the first three columns of Table 1. Let p0(1) = p0(0) = 0.5 and
λ0 = 0.4. Also, let λ−i = 0.2, λ−j = 0.4, p−i(0|0) = 0.3, p−i(0|1) = 0.6, p−j(0|0) = 0.5, and
p−j(0|1) = 0.9. For all x−d:−1 ∈ {0, 1}J−d,−1K and a ∈ A, the transition probability of the
model was given by

p(a|x−d:−1) = λ0p0(a) + λ−ip−i(a|x−i) + λ−jp−j(a|x−j).

18
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We simulated the above model using sample sizes

n ∈ {102, 5.102, 103, 5.103, 104, 5.104, 105, 5.105}.

For each choice of i, j, d, and n we simulated 100 realizations. We compared four different
methods to select the relevant lags. FSC(`) stands for the Forward Stepwise and Cut algo-
rithm described in Algorithm 1 with parameter `, ε = 0.1, µ = 0.5, and α = C log(n), where
the values of the constant C was chosen by optimizing the probability to select the relevant
lags correctly only for sample size n = 100, for the given choice of d, i and j. We used the
first n/2 samples for the Forward Stepwise and the last n/2 for Cut. Remember that ε, µ, α
are used to define the random threshold for the Cut step. BSS(2) stands for the best sub-
set selection algorithm, where we first estimated the parameters of the MTD model using
n samples and the algorithm described in Berchtold (2001) with python implementation
mtd-learn. This algorithm estimated for k ∈ {1, 2, . . . , d} the weight parameters λ−k. We
then choose the lags of the two largest λ−k as the lags selected by BSS(2). We were not able
to run the mtd-learn on models with order d larger than 15 in our computers because that
algorithm did not converge. Finally, CTF(`) stands for Conditional Tensor Factorization
based Higher Order Markov Chain estimation together with the test for relevance of lags
described in Sarkar and Dunson (2016), the parameter ` being the maximal number of rel-
evant lags. We used the code available at https://github.com/david-dunson/bnphomc.
The maximal possible order of the Markov chain was set to d and the number of simulation
for the Gibbs sampler was set to 1000. The set of relevant lags chosen by CTF was given by
the lags with non-null inclusion probability estimated using the Gibbs sampler. We were
not able to run CTF(`) when j = n/5 and d = n/4 because the algorithm did not converge
when n > 103. We note that FS and BSS assume prior knowledge of the number of relevant
sites, giving advantage over FSC and CTF. The results are indicated in Table 1.

Table 1: Estimated probability of correctly selecting only the relevant lags.

Model parameter Method Sample size (n)
i j d 100 500 103 5.103 104 5.104 105 5.105

1 8 8 FSC(3) 0.05 0.08 0.13 0.53 0.81 0.86 0.93 1
1 8 8 CTF(3) 0 0 0.04 0.67 0.99 1 1 1
1 8 8 FS(2) 0.07 0.3 0.47 0.98 1 1 1 1
1 8 8 BSS(2) 0.05 0.14 0.23 0.41 0.79 0.78 0.84 0.87

1 15 15 FSC(5) 0.03 0.36 0.51 0.82 0.97 1 1 1
1 15 15 CTF(5) 0 0 0.01 0.62 0.99 1 1 1
1 15 15 FS(2) 0.02 0.2 0.66 0.92 1 1 1 1
1 15 15 BSS(2) 0.04 0.18 0.17 0.28 0.31 0.8 0.8 0.93

1 n/5 n/4 FSC(5) 0 0 0.04 0.19 0.46 1 1 1
1 n/5 n/4 CTF(5) 0 0 0 - - - - -
1 n/5 n/4 FS(2) 0.01 0.11 0.27 0.89 0.96 1 1 1
1 n/5 n/4 BSS(2) - - - - - - - -
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4.2 Experiment 2

Here we used the following MTD model on alphabet A = {0, 1}. We considered different
choices of order d and relevant lags −i,−j ∈ J1, dK (see Table 2). Let p0(1) = p0(0) = 0.5
and λ0 = 0.2. Also, let p−i(0|0) = 1 − p−i(0|1) = p−j(0|1) = 1 − p−j(0|1) = 0.7 and
λ−i = λ−j = 0.4. For all x−d:−1 ∈ {0, 1}J−d,−1K and a ∈ A, the transition probability of the
model was given by

p(a|x−d:−1) = λ0p0(a) + λ−ip−i(a|x−i) + λ−jp−j(a|x−j).

We simulated the above model using sample sizes n ∈ {28, 29, 210, 211, 212, 213}. For each
choice of i, j, d, and n we simulated 100 realizations. For each realization, we estimated the
transition probability p(0|0d). We used different estimators for the comparisons. FSC(`) and
FS(`) are the same as described in Experiment 1. For transition probability estimation with
FSC, we used X1:n/2 for Forward Stepwise and Xn/2+1:n for Cut step, obtaining the estimated

relevant lag set Λ̂n. Then we used X1:n to calculate p̂n(0|0Λ̂n
). For transition probability

estimation after PCP, we used X1:n to calculate Λ̂n for the PCP relevant lag estimator with
initial set S = J−d,−1K. The parameters for the threshold were chosen as follows: ε = 0.1,
µ = 0.5, and α = C log(n), where we choose the values of the constant C by optimizing
the probability to select the relevant lags correctly only for sample size n = 100, for the
given choice of d, i and j. Then we used X1:n to calculate p̂n(0|0Λ̂n

). We also compared
the performance of transition probability estimator p̂n(0|0−d:−1), where we did not select
the relevant lags (Naive estimator). In our simulations, when d was larger than 5, for both
PCP and Naive estimators we did not obtain meaningful results because N̄n(0d) = 0 with
high probability. Therefore, we compared PCP and Naive estimators only for d = 5. In
this case, FSC showed similar performance to PCP estimator and was in general better than
Naive estimator. When d > 5, e.g. d = n/8, FSC still exhibited good performance. The
results are indicated in Table 2.

Table 2: Empirical standard deviation of the estimator of p(0|0d). FSC, FS, PCP, and Naive

are described in the main text.

Model parameter Method Sample size (n)
i j d 256 512 1024 2048 4096 8192

1 5 5 FS(2) 0.0774 0.0682 0.0506 0.0286 0.0174 0.0133
1 5 5 FSC(5) 0.0745 0.0835 0.0602 0.0426 0.0222 0.0129
1 5 5 PCP 0.0965 0.0786 0.0577 0.0432 0.0242 0.0131
1 5 5 Naive 0.1518 0.0933 0.0624 0.0455 0.0340 0.0252
1 5 10 FSC(5) 0.0836 0.0842 0.0659 0.0425 0.0228 0.0141
1 10 15 FSC(5) 0.0864 0.0781 0.0641 0.0438 0.0249 0.0151
1 15 15 FSC(5) 0.0833 0.0834 0.0747 0.0488 0.0222 0.0167
11 100 120 FSC(5) - - 0.0838 0.0647 0.0312 0.0169
1 10 n/8 FSC(5) 0.0563 0.0543 0.0780 0.0698 0.0504 0.0105
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4.3 Application

We applied the proposed method to study the relevant lags on a daily weather data register-
ing the rainy and non-rainy days in Canberra Australia for a n = 1000 days. We obtained
the data from kaggle
(https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package). We
used the first 1000 time points of the data. We used Forward Stepwise algorithm with
` = 3 (FS(3)) and maximal order d = 400 to include the possibility of the annual cycle. We
obtained as the three relevant lags {1, 62, 330}. The selected relevant lags were the same for
d = 365 and d = 450, showing teh robustness of the result. The day before (lag 1) is clearly
relevant and is often included in weather prediction models. Annual cycles (≈ 12 months)
are also predictor of the weather, matching the 330 days lag that we found. Finally, the
62 days lag is consistent with the cycle of Madden-Julian oscillator (≈ 60 days), which is
the largest inter-seasonal source of precipitation events in Australia (Wheeler et al. (2009)).
We note that the estimated Markov chain is of order 330, which is around one-third of the
sample size n = 1000, whereas using VLMC we do not expect to typically estimate Markov
chains of order larger than log(10) ≈ 7. Indeed, using VLMC with BIC model selection
criterion we selected a model with order 1. We set the upper limit of the model size as
400 for the VLMC order selection. As a further comparison, we applied the Conditional
Tensor Factorization based Higher Order Markov Chain estimation together with the test
for relevance of lags described in Sarkar and Dunson (2016). We again used the code avail-
able at https://github.com/david-dunson/bnphomc. The maximal possible order of the
Markov chain was set to 400, the maximal number of relevant lags was 3, and the number
of simulation for the Gibbs sampler was set to 1000. The inclusion probability calculated
using Gibbs sampler for lags (1, 2, 3, 4, 5, 6, 7) were (100, 1.2, 0.2, 0.6, 0.2, 0.4, 0.2) percent,
respectively. For all other orders the inclusion probability was zero. Therefore, no larger
lags were detected by this method.

Acknowledgments

This research has been conducted as part of FAPESP project Research, Innovation and
Dissemination Center for Neuromathematics (grant 2013/07699-0). GO thanks FAPERJ
(grants E-26/201.397/2021 and E-26/211.343/2019) and CNPq (grant 303166/2022-3).

Appendix A. Proofs of Section 3

A.1 Proofs of Section 3.1

A.1.1 Proof of Theorem 1

Proof [Proof of Theorem 1] Since the set S ⊆ J−d,−1K containing the set Λ is fixed, we
will write x instead of xS to alleviate the notation. We start proving Item 1.

Proof of Item 1. For each x ∈ AS , let us define the event

Gx =
⋂
a∈A

|p̂n(a|x)− p(a|x)| <

√
2α(1 + ε)V̂n(a, x)

N̄n(x)
+

α

3N̄n(x)

 ,
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where V̂n(a, x) is given by

V̂n(a, x) =
µ

µ− ψ(µ)
p̂n(a|x) +

α

(µ− ψ(µ))N̄n(x)
.

By using first the union bound and then by applying Proposition 34, we deduce that
for each x ∈ AS ,

P(Gcx) ≤ 4|A|
⌈

log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−αP

(
N̄n(x) > 0

)
. (44)

Now, observe that on Gx, we have that

dTV (p̂n(·|x), p(·|x)) <
∑
a∈A

√
α(1 + ε)V̂n(a, x)

2N̄n(x)
+

α|A|
6N̄n(x)

= sn(x),

which, together with (44), implies that

P (dTV (p̂n(·|x), p(·|x)) ≥ sn(x)) ≤ 4|A|
⌈

log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−αP

(
N̄n(x) > 0

)
. (45)

Note that if j /∈ Λ, then by the definition of the set Λ it follows that p(a|x) = p(a|y) for all
x, y ∈ AS which are (S\{j})-compatible. Hence, by applying first the triangle inequality and
then using that tn(x, y) = sn(x) + sn(y), we deduce that the event {dTV (p̂n(·|x), p̂n(·|y)) ≥
tn(x, y)} is contained in the event

{dTV (p̂n(·|x), p(·|x)) ≥ sn(x)} ∪ {dTV (p̂n(·|y), p(·|y)) ≥ sn(y)},

so that

P
(
j ∈ Λ̂1,n

)
≤ 2

∑
x∈AS

P(dTV (p̂n(·|x), pn(·|x)) ≥ sn(x))

≤ 8|A|
⌈

log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α

∑
x∈AS

P(N̄n(x) > 0),

where in the second inequality we have used (45).
Since n − d =

∑
x∈AS N̄n(x) ≥

∑
x∈AS 1{N̄n(x) > 0} which implies that n − d ≥

E
[∑

x∈AS 1{N̄n(x) > 0}
]

=
∑

x∈AS P(N̄n(x) > 0), we obtain from the above inequality
that,

P
(
j ∈ Λ̂1,n

)
≤ 8|A|

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α(n− d),

concluding the the proof of Item 1.
Proof of Item 2. Let j ∈ Λ, recall that δj = λj maxb,c∈A dTV (pj(·|b), pj(·|c)) and

consider the event E = {δj ≥ γn,j}. Take b?, c? ∈ A such that dTV (pj(·|b?), pj(·|c?)) =
maxb,c∈A dTV (pj(·|b), pj(·|c)), and observe that with this choice,

δj = λjdTV (pj(·|b?), pj(·|c?)).
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From this equality it follows that for any pair (x, y) ∈ Cj(b?, c?), we have

E = {dTV (p(·|x), p(·|y)) ≥ 2tn,j},

where we have used also that γn,j = 2tn,j . Now, take a pair (x?, y?) ∈ Cj(a?, b?) attaining
the minimum in (14):

tn,j(b
?, c?) = tn(x?, y?).

From the definition of tn,j , it follows then that

tn,j ≥ tn,j(b?, c?) = tn(x?, y?).

Therefore, we conclude that

E ⊆ {dTV (p(·|x?), p(·|y?)) ≥ 2tn(x?, y?)},

so that by the triangle inequality, we obtain that on E,

2tn(x?, y?) ≤ dTV (p̂n(·|x?), p(·|x?))
+ dTV (p̂n(·|y?), p(·|y?)) + dTV (p̂n(·|x?), p̂n(·|y?)).

Hence, on {j /∈ Λ̂1,n} ∩ E, we have

tn(x?, y?) ≤ dTV (p̂n(·|x?), p(·|x?)) + dTV (p̂n(·|y?), p(·|y?)),

implying that

P
(
{j /∈ Λ̂1,n} ∩ E

)
≤ P(dTV (p̂n(·|x?), p(·|x?)) ≥ sn(x?))

+ P(dTV (p̂n(·|y?), p(·|y?)) ≥ sn(y?)).

From (45), it follows then that

P
(
j /∈ Λ̂1,n, γn,j ≤ δj

)
= P

(
{j /∈ Λ̂1,n} ∩ E

)
≤ 8|A|

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α,

concluding the proof of Item 2.
Proof of Item 3. Observe that by combining Items 1 and 2 together with the union

bound, we deduce that

P
(

Λ̂1,n 6= Λ
)
≤ 8|A| ((|S| − |Λ|)(n− d) + |Λ|)

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α

+
∑
j∈Λ

P (γn,j > δj) .

Hence, to conclude the proof of Item 3, it suffices to show that

P (γn,j > δj) ≤ 6|A|(|A| − 1) exp

{
−∆2(n− d)2P2

S

8n(|S|+ 1)2

}
, (46)
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for all j ∈ Λ, whenever the sample size n satisfies (16).
By the union bound, we have that

P (γn,j > δj) ≤
∑
b∈A

∑
c∈A:c 6=b

P (tn,j(b, c) > δj/2) , (47)

and for each b, c ∈ A with b 6= c,

P (tn,j(b, c) > δj/2) ≤ P (tn(x, y) > δj/2) ≤ P (sn(x) > δj/4) + P (sn(y) > δj/4) , (48)

for any (x, y) ∈ Cj(b, c).
By using again the union bound, we can deduce that for each in x ∈ AS ,

P (sn(x) > δj/4) ≤ P

∑
a∈A

√
α(1 + ε)V̂n(a, x)

2N̄n(x)
> δj/8

+ P
(

α

6N̄n(x)
>

δj
8|A|

)
.

and also that

P

∑
a∈A

√
α(1 + ε)V̂n(a, x)

2N̄n(x)
> δj/8

 ≤ P

(∑
a∈A

√
α(1 + ε)p̂n(a|x)µ

2(µ− ψ(µ))N̄n(x)
> δj/16

)

+ P

(
|A|α
N̄n(x)

√
(1 + ε)

2(µ− ψ(µ))
> δj/16

)
.

By applying Proposition 26 with u1 = P(x) − (4|A|α)/(3δj(n − d)) and u2 = P(x) −
(16|A|α

√
(1 + ε)/2(µ− ψ(µ)))/(δj(n− d)), one can show that

P
(
|A|α

6N̄n(x)
> δj/8

)
+ P

(
|A|α
N̄n(x)

√
(1 + ε)

2(µ− ψ(µ))
> δj/16

)

≤ 2 exp

− ∆2(n− d)2

2n(|S|+ 1)2

(
P(x)− 16|A|α

δj(n− d)

√
(1 + ε)

2(µ− ψ(µ))

)2
 ,

as long as (n− d) > 16|A|α
δjP(x)

√
(1+ε)

2(µ−ψ(µ)) .

By using Jensen inequality, one can verify that

P

(∑
a∈A

√
α(1 + ε)p̂n(a|x)µ

2(µ− ψ(µ))N̄n(x)
> δj/16

)
≤ P

(
N̄n(x) <

128α(1 + ε)µ|A|
δ2
j (µ− ψ(µ))

)
,

so that by Proposition 26 with u3 = P(x) − (128α(1 + ε)µ|A|)/(δ2
j (µ − ψ(µ))), it follows

that

P

(∑
a∈A

√
2α(1 + ε)p̂n(a|x)µ

(µ− ψ(µ))N̄n(x)
> δj/16

)
≤

≤ exp

− ∆2(n− d)2

2n(|S|+ 1)2

(
P(x)− 128|A|αµ(1 + ε)

δ2
j (µ− ψ(µ))(n− d)

)2
 ,
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whenever (n− d) > (128|A|αµ(1 + ε))/(δ2
jP(x)(µ− ψ(µ))).

Therefore, we have shown that for any x ∈ AS ,

P (sn(x) > δj/4) ≤ 3 exp

{
−∆2(n− d)2P2(x)

8n(|S|+ 1)2

}
, (49)

as long as

(n− d) ≥ 2

(
16
|A|α
δ2
jP(x)

(
8µ(1 + ε)

(µ− ψ(µ))
+

√
(1 + ε)

2(µ− ψ(µ))

))
.

Now, considering b∗,j , c∗,j ∈ A with b∗ 6= c∗ and (x∗,j , y∗,j) ∈ Cj(a∗,j , b∗,j) such that

min
b,c∈A:b 6=c

max
(x,y)∈Cj(a,b)

(P(x) ∧P(y)) = (P(x∗,j) ∧P(y∗,j)),

we can deduce from (48) and (49) that

P (tn,j(b, c) > δj/2) ≤ 6 exp

{
−∆2(n− d)2(P(x∗,j) ∧P(y∗,j))2

8n(|S|+ 1)2

}
,

whenever

(n− d) ≥ 2

(
16

|A|α
δ2
jP(x∗,j) ∧P(y∗,j)

(
8µ(1 + ε)

(µ− ψ(µ))
+

√
(1 + ε)

2(µ− ψ(µ))

))
.

Since P(x∗,j) ∧P(y∗,j) ≥ PS for all j ∈ Λ∗, we can take

C = C(µ, ε) = 32

(
8µ(1 + ε)

(µ− ψ(µ))
+

√
(1 + ε)

2(µ− ψ(µ))

)
,

to deduce that (46) is indeed satisfied whenever

(n− d) ≥ C|A|α
δ2
minPS

,

concluding the proof.

A.1.2 Proof of Corollary 4

Proof [Proof of Corollary 4] Notice that Assumptions 1 and 2 are satisfied for all values of
n, since pmin,n ≥ p?min and ∆n ≥ ∆?

min for positive constants p?min and ∆?
min. Hence, the

result follows immediately from Theorem 1-Item 3 and Remark 2-Item (c).
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A.2 Proofs of Section 3.2

A.2.1 Proof of Proposition 6

In this section we prove Proposition 6. To that end, we need some auxiliary results. The
first auxiliary result is the following. Recall that we write CovxS (X0,mk(Xk)) to denote the
conditional covariance between the random variables X0 and mk(Xk) given that XS = xS ,
where mk is defined (3).

Lemma 19 For each S ⊆ J−d,−1K, k ∈ Sc and xS ∈ AS, the following identity holds:

CovxS (X0,mk(Xk)) =
∑
j∈Λ\S

λjCovxS (mj(Xj),mk(Xk)). (50)

Remark 20 In (50), we use the convention that
∑

j∈∅ λjCovxS (mj(Xj),mk(Xk)) = 0.

Proof [Proof of Lemma 19]
Observe that if Λ ⊆ S, then the both sides of (50) are 0, so that the result holds

immediately in this case.
Now suppose that Λ 6⊆ S. In this case, to shorten the notation, let us write

PxS (xΛ\S) = PxS (XΛ\S = xΛ\S), for xΛ\S ∈ AΛ\S .

We want to compute

CovxS (X0,mk(Xk)) = ExS (X0mk(Xk))− ExS (X0)ExS (mk(Xk)).

We first compute ExS (X0). To that end, write

ExS (X0) =
∑
a∈A

aPxS (X0 = a),

and observe that for each a ∈ A,

PxS (X0 = a) =
∑

xΛ\S∈AΛ\S

PxS (xΛ\S)p(a|xSxΛ\S)

= λ0p0(a) +
∑
j∈Λ∩S

λjpj(a|xj) +
∑
j∈Λ\S

λj
∑

xΛ\S∈AΛ\S

PxS (xΛ\S)pj(a|xj)

= λ0p0(a) +
∑
j∈Λ∩S

λjpj(a|xj) +
∑
j∈Λ\S

λjExS (pj(a|Xj)),

where in the second equality we have used the definition of the transition probabilities (2).
Hence, we have that

ExS (X0) = λ0m0 +
∑
j∈Λ∩S

λjmj(xj) +
∑
j∈Λ\S

λjExS (mj(Xj)),

where m0 =
∑

a∈A ap0(a).
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As a consequence of the above equality, it follows that

ExS (X0)ExS (mk(Xk)) =

λ0m0 +
∑
j∈Λ∩S

λjmj(xj)

ExS (mk(Xk))

+
∑
j∈Λ\S

λjExS (mj(Xj))ExS (mk(Xk)). (51)

We now compute ExS (X0mk(Xk)). We consider only the case k ∈ Λ, the other is treated
similarly. In this case, we first write

ExS (X0mk(Xk)) =
∑
a∈A

∑
b∈A

amk(b)PxS (X0 = a,Xk = b), (52)

and then we proceed similar as above to deduce that for each a, b ∈ A,

PxS (X0 = a,Xk = b) =
∑

xΛ\S∈AΛ\S

PxS (xΛ\S)p(a|xSxΛ\S)1{xk = b}

=

λ0p0(a) +
∑
j∈Λ∩S

λjpj(a|xj) + λkpk(a|b)

PxS (Xk = b)

+
∑

j∈Λ\(S∪{k})

λj
∑
c∈A

pj(a|c)PxS (Xj = c,Xk = b). (53)

where in the second equality we have used the definition of the transition probabilities (2).
Combining (52) and (53), we deduce that

ExS (X0mk(Xk)) =

λ0m0 +
∑
j∈Λ∩S

λjmj(xj)

ExS (mk(Xk)) + λkExS (m2
k(Xk))

+
∑

j∈Λ\(S∪{k})

λjExS (mk(Xk)mj(Xj))

=

λ0m0 +
∑
j∈Λ∩S

λjmj(xj)

ExS (mk(Xk))

+
∑
j∈Λ\S

λjExS (mk(Xk)mj(Xj)). (54)

Putting together the identities (51) and (54), we then conclude that

CovxS (X0mk(Xk)) =
∑
j∈Λ\S

λj (ExS (mj(Xj)mk(Xk))

−ExS (mj(Xj))ExS (mk(Xk)) , (55)

and the result follows.

The next auxiliary result is the following.
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Lemma 21 Suppose Assumptions 1 and 3 hold. Then there exists a constant κ′ > 0 such
that the following property holds: for any S ⊆ J−d,−1K such that Λ 6⊆ S, we have∑

j∈Λ\S

∑
k∈Λ\S

λjλkE(CovXS (mj(Xj),mk(Xk))) ≥ κ′.

Proof [Proof of Lemma 21] It suffices to show that for S ⊆ J−d,−1K such that Λ 6⊆ S, we
have ∑

j∈Λ\S

∑
k∈Λ\S

λjλkE(CovxS (mj(Xj),mk(Xk))) > 0.

Suppose that this is not the case. Then,

0 =
∑
j∈Λ\S

∑
k∈Λ\S

λjλkE(CovxS (mj(Xj),mk(Xk)))

=
∑
j∈Λ\S

∑
k∈Λ\S

λjλkCov (mj(Xj)− EXS (mj(Xj)),mk(Xk)− EXS (mk(Xk)))

= Var

 ∑
j∈Λ\S

λj(mj(Xj)− EXS (mj(Xj)))

 ,

so that P-almost surely, ∑
j∈Λ\S

λj(mj(Xj)− EXS (mj(Xj))) = 0.

This implies that P-almost surely,

∑
j∈Λ\S

λjmj(Xj) = EXS

 ∑
j∈Λ\S

λjmj(Xj)

 ,

or equivalently, ∑
j∈Λ\S

λjmj(Xj) = f(XS), P-a.s.,

for some function f : AS → R.
Now take any configuration xS ∈ AS and consider the event A = {XS = xS}. From the

above identity, it follows that P-a.s.,

1A
∑
j∈Λ\S

λjmj(Xj) = 1Af(xS).

Finally, take any configuration xΛ\S ∈ AΛ\S such that∑
j∈Λ\S

λjmj(xj) 6= f(xS),
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and let B = {XΛ\S = xΛ\S}. Such a configuration must exist by Assumption 3. As a
consequence, we have that P-a.s.,

1A∩B
∑
j∈Λ\S

λjmj(xj) = 1A∩Bf(xS),

implying that

P(A ∩B)
∑
j∈Λ\S

λjmj(xj) = P(A ∩B)f(xS).

By Assumption 1, we have P(A ∩ B) = P(xΛ) > 0 so that the identify above would imply
that ∑

j∈Λ\S

λjmj(xj) = f(xS),

which is a contradiction. Therefore, we must have

Var

 ∑
j∈Λ\S

λj(mj(Xj)− EXS (mj(Xj)))

 > 0,

and the result follows.

We also need the following result.

Lemma 22 For each S ⊆ J−d,−1K, k ∈ Sc and xS ∈ AS, the following identity holds:

|CovxS (X0,mk(Xk))| ≤ ‖mk‖Lip|CovxS (X0, Xk)|, (56)

where mk and ‖mk‖Lip are defined (3) and (6) respectively.

Proof [Proof of Lemma 22] First observe that CovxS (X0,mk(Xk)) = CovxS (X0,mk(Xk)−
mk(c)), for any c ∈ A. Since,

CovxS (X0,mk(Xk)−mk(c)) =
∑
b∈A

(mk(b)−mk(c))CovxS (X0, 1{Xk = b})

and |mk(b)−mk(c)| ≤ ‖mk‖Lip|b− c|, it follows then that

CovxS (X0,mk(Xk)) ≤ ‖mk‖Lip
∑
b∈A
|b− c|CovxS (X0, 1{Xk = b}).

By taking c = min(A), we have that |b− c| = (b− c) for any b ∈ A and we deduce from the
above inequality that

CovxS (X0,mk(Xk)) ≤ ‖mk‖LipCovxS (X0, Xk) ≤ ‖mk‖Lip|CovxS (X0, Xk)|.

A similar argument shows that CovxS (X0,mk(Xk)) ≥ −‖mk‖Lip|CovxS (X0, Xk)|, conclud-
ing the proof.

Our last auxiliary result is the following.
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Lemma 23 For each S ⊆ J−d,−1K such Λ 6⊂ S, xS ∈ AS and j, k ∈ Λ \ S, the following
identity holds:

CovxS (mj(Xj),mk(Xk)) =
1

2

∑
b∈A

∑
c∈A

PxS (Xk = b)PxS (Xk = c)(mk(b)−mk(c))×

(ExS (mj(Xj)|Xk = b)− ExS (mj(Xj)|Xk = c)) . (57)

where mj is defined (3).

Proof [Proof of Lemma 23] First notice that

CovxS (mj(Xj),mk(Xk)) =
∑
a,b∈A

mj(a)mk(b)CovxS (1{Xj = a}, 1{Xk = b}).

Now, for any a, b ∈ A, one can check that

CovxS (1{Xj = a}, 1{Xk = b}) =
∑
c∈A

PxS (Xk = b)PxS (Xk = c)

× (PxS (Xj = a|Xk = b)− PxS (Xj = a|Xk = c))

Hence, we deduce from the above equalities that

CovxS (mj(Xj),mk(Xk)) =
∑
b∈A

∑
c∈A

mk(b)PxS (Xk = b)PxS (Xk = c))

× (ExS (mj(Xj)|Xk = b)− ExS (mj(Xj)|Xk = c)).

Interchanging the role of the symbols b and c in the equality above, we obtain that

CovxS (mj(Xj),mk(Xk)) = −
∑
c∈A

∑
b∈A

mk(c)PxS (Xk = b)PxS (Xk = c))

× (ExS (mj(Xj)|Xk = b)− ExS (mj(Xj)|Xk = c)).

The result follows by combing the last two equalities above.

We now prove Proposition 6.
Proof [Proof of Proposition 6]

We first prove inequality (26). Let us denote Dk,S(a, b, c, xS) = PxS (X0 = a|Xk =
b)− PxS (X0 = a|Xk = c), for each a, b, c ∈ A, xS ∈ AS and k /∈ S. With this notation, one
can check that for any xS ∈ AS and k /∈ S, we have that

CovxS (X0, Xk) =
1

2

∑
b∈A

∑
c∈A

(b− c)wk,S(b, c, xS)
∑
a∈A

aDk,S(a, b, c, xS). (58)

Now, observe that the triangle inequality and the equality

1

2

∑
a∈A
|Dk,S(a, b, c, xS)| = dk,S(b, c, xS),
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imply that

|CovxS (X0, Xk)| ≤ Diam(A)‖A‖∞
∑
b∈A

∑
c∈A

wk,S(b, c, xS)dk,S(b, c, xS),

so that
E (|CovXS (X0, Xk)|) ≤ Diam(A)‖A‖∞ν̄k,S ,

proving inequality (26).
We now prove (27). This is done as follows. In the sequel, we shall write λ1Λ\S to

denote the vector λ = (λj)j∈Λ restricted to the coordinates in Λ \ S: λ1Λ\S = (λj)j∈Λ\S .
With this notation, it follows from Lemma 19 and Lemma 21 that for any S ⊆ J−d,−1K
such that Λ 6⊆ S, ∑

k∈Λ\S

λkE (CovXS (X0,mk(Xk))) ≥ κ′.

By the triangle inequality, it then follows that∑
k∈Λ\S

λk |E (CovXS (X0,mk(Xk))|) ≥ κ′.

Now using that

max
k∈Λ\S

|E (CovXS (X0,mk(Xk)))| ‖λ1Λ\S‖1 ≥
∑
k∈Λ\S

λk |E (CovXS (X0,mk(Xk)))| ,

we conclude that
max
k∈Λ\S

|E (CovXS (X0,mk(Xk)))| ‖λ1Λ\S‖1 ≥ κ′.

By observing that 1 − λ0 =
∑

k∈Λ λk ≥ ‖λ1Λ\S‖1, we conclude from the above inequality
that

max
k∈Λ\S

|E (CovXS (X0,mk(Xk)))| ≥ κ′/(1− λ0) > 0,

and the result follows from Lemma 22.
Therefore, it remains to prove (28). To that end, we first use Lemma 19, Lemma (22)

and Lemma 23 to obtain that∑
k∈Λ\S

λk‖mk‖Lip|CovxS (X0, Xk)| ≥
1

2

∑
k∈Λ\S

∑
j∈Λ\S

∑
b∈A

∑
c∈A

λkλjPxS (Xk = b)PxS (Xk = c)

× (mk(b)−mk(c)) (ExS (mj(Xj)|Xk = b)− ExS (mj(Xj)|Xk = c)) .

Next, we observe that Assumption 4 implies that1−
∑

j∈Λ\S:j 6=k

λj (|ExS (mj(Xj)|Xk = b)− ExS (mj(Xj)|Xk = c)|)
λk|mk(b)−mk(c)|

 ≥ Γ1,

so that∑
k∈Λ\S

λk‖mk‖LipE (|CovxS (X0, Xk)|) ≥
p2
minΓ1

2

∑
k∈Λ\S

λ2
k

∑
b∈A

∑
c∈A

(mk(b)−mk(c))
2,
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where we have also used that PxS (Xk = b) ≥ pmin. Finally, note that |mk(b) −mk(c)| ≥
min{|b− c|2 : b 6= c}‖mk‖2Lip to obtain that

max
k∈Λ\S

E (|CovxS (X0, Xk)|)
∑
k∈Λ\S

λk‖mk‖Lip ≥
p2
minΓ1

2 min{|b− c|2 : b 6= c}
∑
k∈Λ\S

λ2
k‖mk‖2Lip.

Then, by using Cauchy-Schwartz inequality, we deduce that∑
k∈Λ\S

λk‖mk‖Lip ≤
√ ∑
k∈Λ\S

λ2
k‖mk‖2Lip

√
|Λ \ S| ≤

√ ∑
k∈Λ\S

λ2
k‖mk‖2Lip

√
|Λ|.

The result follows by combining the last two inequalities.

A.2.2 Proof of Theorem 9

Before starting the proof of Theorem 9, we recall some definitions from Information Theory.
In what follows, for S ∈ J−d,−1K and j ∈ J−d,−1K, we write I(X0;Xj |XS) to denote the
conditional mutual information between X0 and Xj given XS , defined as

I(X0;Xj |XS) =
∑

xS∈AS
P(xS)I(X0;Xj |XS = xS), (59)

where I(X0;Xj |XS = xS) := Ij(xS) denotes the conditional mutual information between
X0 and Xj given XS = xS , defined as

Ij(xS) =
∑
a,b∈A

PxS (X0 = a,Xj = b) log

(
PxS (X0 = a,Xj = b)

PxS (X0 = a)PxS (Xj = b)

)
. (60)

We use the convention that when S = ∅, the conditional probability Pxs is the unconditional
probability P. Hence, in this case, the conditional mutual information between X0 and Xj

is the mutual information between these random variables, denoted I(X0;Xj) := Ij .
The entropy H(X0) of X0 is defined as

H(X0) = −
∑
a∈A

P(X0 = a) log(P(X0 = a)). (61)

To prove Theorem 9 we proceed similarly to Bresler (2015). During the proof we will
need the the following lemma.

Lemma 24 Suppose that the event Gm(ξ, `) defined in (29) holds and let S ⊆ J−d,−1K
with |S| ≤ `. If ν̂m,k,S ≥ τ with k ∈ Sc, then I(X0;Xk|XS) ≥ 2(τ − ξ)2.

Proof Definition (59) together with Jensen inequality implies that for any j ∈ Sc,√
1

2
I(X0;Xj |XS) =

√√√√1

2

∑
xS∈AS

P(xS)Ij(xS)

≥
∑

xS∈AS
P(xS)

√
1

2
Ij(xS).
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By Pinsker inequality, it then follows that√
1

2
Ij(xS) ≥ 1

2

∑
a,b∈A

|PxS (X0 = a,Xj = b)− PxS (X0 = a)PxS (Xj = b)|

=
∑
b∈A

PxS (Xj = b)
1

2

∑
a∈A
|PxS (X0 = a|Xj = b)− PxS (X0 = a)|

=
∑
b∈A

∑
c∈A

wj,S(b, c, xS)dTV (PxS (X0 ∈ ·|Xj = b),PxS (X0 ∈ ·|Xj = c))

= νj,S(xS),

where in the second equality we have used that for any a, b ∈ A,

PxS (X0 = a|Xj = b) =
∑
c∈A

PxS (Xj = c)PxS (X0 = a|Xj = b),

and also that

PxS (X0 = a) =
∑
c∈A

PxS (Xj = c)PxS (X0 = a|Xj = c)).

As a consequence, we deduce that√
1

2
I(X0;Xj |XS) ≥

∑
xS∈AS

P(xS)νj,S(xS) = ν̄j,S .

Now, on the event Gm(ξ, `), we have that ν̄k,S ≥ ν̂m,k,S − ξ so that√
1

2
I(X0;Xk|XS) ≥ ν̂m,k,S − ξ ≥ τ − ξ,

where in the rightmost inequality we have used that ν̂m,k,S ≥ τ . Hence,

I(X0;Xj |XS) ≥ 2(τ − ξ)2,

and the result follows.

We now prove Theorem 9.

Proof Suppose the event Gm(ξ∗, `∗) holds and let Ŝm be the set obtained at the end of
FS step of Algorithm 1 with parameter `∗, where the parameters ξ∗ and `∗ are defined as
in (30). In the sequel, let S0 = ∅ and Sk = Sk−1 ∪ {jk}, where jk ∈ arg maxj∈Sck−1

ν̂m,j,Sk−1

for 1 ≤ k ≤ d, and observe that by construction Ŝm = S`∗ . We want to show that Λ ⊆ Ŝm.
We argue by contraction. Suppose that Λ is not contained in Ŝm. In this case, it follows
that Λ 6⊆ Sk for all 1 ≤ k ≤ `∗, and Proposition 6 implies that for all 1 ≤ k ≤ `∗,

max
j∈Sck

ν̄j,Sk ≥
κ

‖A‖∞Diam(A)
= 4ξ∗,
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where the equality holds by the choice of ξ∗. Since the event Gm(ξ∗, `∗) holds and |Sk| ≤
|S`∗ | = `∗, it follows from the above inequality that

ν̂m,jk,Sk−1
= max

j∈Sck−1

ν̂m,j,Sk−1
≥ 3ξ∗,

for all 1 ≤ k ≤ `∗ + 1. By Lemma 24, we then deduce that I(X0, Xjk |XSk−1
) ≥ 8ξ2

∗ for all
1 ≤ k ≤ `∗ + 1.

Now, notice that

log2(|A|) ≥ H(X0) ≥ I(X0;XŜm∪{j`∗+1}) =

`∗+1∑
k=1

I(X0, Xjk |XSk−1
), (62)

where we have used Gibbs inequality in the first passage, the fact that the entropy is always
larger than the mutual information in the second passage and the Chain Rule in the last
passage. The proof of these facts can be found, for instance, in (Cover and Thomas, 2006).

By the choice of `∗ =
⌊
log2(|A|)/8ξ2

∗
⌋
, we have that `∗ + 1 > log2(|A|)/8ξ2

∗ so that it
follows from (62) that

log2(|A|) ≥ (`∗ + 1)8ξ2
∗ > log2(|A|),

a contradiction. Thus, we must have Λ ⊆ Ŝm and the result follows.

A.2.3 Proof of Theorem 10

To prove Theorem 10 we shall need the following result.

Proposition 25 Suppose Assumptions 1 and 2 hold, and let ∆? > 0 the quantity defined
in Assumption 2. Then, for any ξ > 0 and m > d ≥ 2` ≥ 0,

P(Gcm(`, ξ)) ≤ 2d(`+ 1)

(
d

`

)
|A|`+2 exp

{
− ξ2(m− d)2(∆∗)

2

18|A|2(`+2)m(`+ 2)2

}
. (63)

During the proof of Proposition 25 we will make use of the following proposition. For
any function f : AJ1,mK → R, define for each 1 ≤ j ≤ m,

δj(f) = sup
{
|f(x1:j−1axj+1:m)− f(x1:j−1bxj+1:m)| : a, b ∈ A, x1:m ∈ AJ1,mK

}
, (64)

with the convention that x1:0 = xm+1:m = ∅, ∅ax2:m = ax2:m and x1:m−1a = x1:m−1a∅.
Let δ(f) = (δ1(f), . . . , δm(f)) and denote ‖δ(f)‖22 =

∑m
j=1 δ

2
j (f). In what follows, we write

E1:m[f ] =
∑

x1:m∈AJ1,mK P(X1:m = x1:m)f(x1:m).

Proposition 26 (Theorem 3.4. of (Chazottes et al., 2020)) Suppose Assumption 2
holds, that is, ∆ > 0.

1. For any u > 0 and f : AJ1,mK → R,

P (|f(X1:m)− E1:m[f ]| > u) ≤ 2 exp

{
− 2u2∆2

‖δ(f)‖22

}
.
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2. For m > d, any g : AS ×A→ R with S ⊆ J−d,−1K and u > 0,

P

(∣∣∣∣∣ 1

(m− d)

m∑
t=d+1

g(Xt+S , Xt)− ES [g]

∣∣∣∣∣ > u

)
≤ 2 exp

{
− u2(m− d)2∆2

2m(|S|+ 1)2‖g‖2∞

}
,

where ES [g] =
∑

xS∈AS
∑

a∈A P(XS = xS , X0 = a)g(xS , a) and Xt+S = (Xt+j)j∈S.

Before starting the proof Proposition 25, we need to introduce some additional notation.
For each x ∈ AS with S ⊆ J−d,−1K, we write

P̂m(x) =
N̄m(x)

m− d
. (65)

In what follows, we write xaV ∪{0}, with a ∈ A and V ⊆ J−d,−1K, to denote the configuration
((xa)j)j∈V ∪{0}, defined as

(xa)j =

{
xj , for j ∈ V
a, for j = 0

.

When V = S ∪ {k} and xk = b ∈ A, we shall write xbaS∪{k,0} instead of xaV ∪{0}.
With this notation, the empirical version of ν̄k,S is defined as follows:

ν̂m,k,S =
∑

xS∈AS
P̂m(xS)ν̂m,k,S(xS) (66)

where for xS ∈ AS , we define

ν̂m,k,S(xS) =
∑
b∈A

∑
c∈A

ŵm,k,S(b, c, xS)d̂m,k,S(b, c, xS), (67)

and for b, c ∈ A,

ŵm,k,S(b, c, xS) =
P̂m(xbS∪{k})

P̂m(xS)

P̂m(xcS∪{k})

P̂m(xS)
, (68)

and

d̂m,k,S(b, c, xS) =
1

2

∑
a∈A

∣∣∣P̂xS (X0 = a|Xk = b)− P̂xS (X0 = a|Xk = c)
∣∣∣ ,

where for each b ∈ A,

P̂xS (X0 = a|Xk = b) =
P̂m(xbaS∪{k,0})

P̂m(xbS∪{k})
.

Hereafter, we omit the dependence on S and on m, whenever there is no risk of confusion.
We now prove Proposition 25.
Proof [Proof of Proposition 25]

Claim 1. Let S ⊆ J−d,−1K with |S| ≤ ` < d/2 and take j ∈ Sc. Then,

|ν̄j,S − ν̂j,S | ≤ 3
∑
x∈AS

∑
a∈A

∑
b∈A

∣∣∣P̂(XS = x,Xj = b,X0 = a)− P(XS = x,Xj = b,X0 = a)
∣∣∣ .
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Proof of the Claim 1. By applying the triangle inequality twice, one can check that

|ν̄j,S − ν̂j,S | ≤
1

2

∑
x∈AS

∑
a,b,c∈A

|P(x)wj,S(b, c, x) (Px(X0 = a|Xj = b)− Px(X0 = a|Xj = c))

−P̂(x)ŵj,S(b, c, x)
(
P̂x(X0 = a|Xj = b)− P̂x(X0 = a|Xj = c)

)∣∣∣ . (69)

Now observe that for fixed x ∈ AS and a, b, c ∈ A,

P(x)wj,S(b, c, x)Px(X0 = a|Xj = b) = Px(Xj = c)P(XS = x,Xj = b,X0 = a)

and similarly,

P̂(x)ŵj,S(b, c, x)P̂x(X0 = a|Xj = b) = P̂x(Xj = c)P̂(XS = x,Xj = b,X0 = a).

By using these identities in (69) and then by applying the triangle inequality, one can deduce
that

|ν̄j,S − ν̂j,S | ≤
∑
x∈AS

∑
a,b,c∈A

|Px(Xj = c)P(XS = x,Xj = b,X0 = a)

−P̂x(Xj = c)P̂(XS = x,Xj = b,X0 = a)
∣∣∣ . (70)

By adding and subtracting the term Px(Xj = c)P̂(XS = x,Xj = b,X0 = a) in the
right-hand side of the above inequality and using again the triangle inequality, it follows
that

∑
x∈AS

∑
a,b,c∈A

|Px(Xj = c)P(XS = x,Xj = b,X0 = a)

−P̂x(Xj = c)P̂(XS = x,Xj = b,X0 = a)
∣∣∣

≤
∑
x∈AS

∑
a,b∈A

|P(XS = x,Xj = b,X0 = a)− P̂(XS = x,Xj = b,X0 = a)|

+
∑
x∈AS

∑
a,c∈A

P̂(XS = x,X0 = a)|Px(Xj = c)− P̂x(Xj = c)|. (71)

By adding and subtracting the term P(XS = x)P(XS = x,Xj = c), we can then check
that

|Px(Xj = c)− P̂x(Xj = c)| ≤ P(Xj = c)

P̂(XS = x)
|P̂(XS = x)− P(XS = x)|

+
1

P̂(XS = x)
|P̂(XS = x,Xj = c)− P(XS = x,Xj = c)|. (72)
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From (71) and (72), one deduces that

|ν̄j,S − ν̂j,S | ≤
∑
x∈AS

∑
a,b∈A

|P(XS = x,Xj = b,X0 = a)− P̂(XS = x,Xj = b,X0 = a)|

+
∑
x∈AS

∑
c∈A
|P(XS = x,Xj = c)− P̂(XS = x,Xj = c)|

+
∑
x∈AS

|P(XS = x)− P̂(XS = x)|. (73)

Since

|P(XS = x,Xj = c)− P̂(XS = x,Xj = c)|

≤
∑
a∈A
|P(XS = x,Xj = c,X0 = a)− P̂(XS = x,Xj = c,X0 = a)|

and

|P(XS = x)− P̂(XS = x)|

≤
∑
a,c∈A

|P(XS = x,Xj = c,X0 = a)− P̂(XS = x,Xj = c,X0 = a)|,

the proof of Claim 1 follows from (73).
Claim 2. For any u > 0,

P

3
∑
x∈AS

∑
a∈A

∑
b∈A

∣∣∣P̂(XS = x,Xj = b,X0 = a)− P(XS = x,Xj = b,X0 = a)
∣∣∣ > u


≤ 2|A||S|+2 exp

{
− u2(m− d)2∆2

18|A|2(|S|+2)m(|S|+ 2)2

}
.

Proof of Claim 2. It follows from the union bound and Proposition 26.

We now will conclude the proof. Let Sk = {S ⊆ J−d,−1K : |S| = k} and observe that
by the union bound

P(Gcm(ξ, `)) ≤
∑̀
k=0

∑
S∈Sk

∑
j∈Sc

P (|ν̄j,S − ν̂j,S | > ξ) .

Combining Claims 1 and 2, it follows that

P (|ν̄j,S − ν̂j,S | > ξ) ≤ 2|A||S|+2 exp

{
− ξ2(m− d)(∆∗)

2

18|A|2(|S|+2)m(|S|+ 2)2

}
,

which implies that

P(Gcm(ξ, `)) ≤ 2
∑̀
k=0

(
d

k

)
(d− k)|A|k+2 exp

{
− ξ2(m− d)2∆2

18|A|2(k+2)m(k + 2)2

}
.
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Since ` ≤ d/2, we can use that
(
d
k

)
≤
(
d
`

)
for all 0 ≤ k ≤ ` to obtain that

P(Gcm(ξ, `)) ≤ 2d(`+ 1)

(
d

`

)
|A|`+2 exp

{
− ξ2(m− d)(∆∗)

2

18|A|2(`+2)m(`+ 2)2

}
,

and the result follows.

We now prove Theorem 10.
Proof [Proof of Theorem 10]

First, observe that by Theorem 9,

P(Λ̂2,n 6= Λ) ≤ P(Gcm(ξ∗, `∗)) + P(Λ ⊆ Ŝm, Λ̂2,n 6= Λ) (74)

Next, notice that the second term on the right hand side of (74) can be written as

P(Λ ⊆ Ŝm, Λ̂2,n 6= Λ) =
∑

S⊆J−d,−1K:Λ⊆S,|S|≤`∗

P(Ŝm = S, Λ̂2,n 6= Λ).

Now for any S ∈ J−d,−1K such that Λ ⊆ S, |S| ≤ `∗, it follows from the union bound
that

P(Ŝm = S, Λ̂2,n 6= Λ) ≤
∑
j∈Λ

P(Ŝm = S, j /∈ Λ̂2,n) +
∑
j∈S\Λ

P(Ŝm = S, j ∈ Λ̂2,n).

By proceeding similarly as in the proof of Item 1 of Theorem 1, one can deduce that for
any j ∈ S \ Λ,

P(Ŝm = S, j ∈ Λ̂2,n) ≤ 8|A|
⌈

log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α

∑
x∈AS

P(Ŝm = S, N̄m,n(x) > 0),

so that∑
j∈S\Λ

P(Ŝm = S, j ∈ Λ̂2,n) ≤ 8(`∗ − |Λ|)|A|
⌈

log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α

×
∑
x∈AS

P(Ŝm = S, N̄m,n(x) > 0).

Since ∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗

∑
x∈AS

P(Ŝm = S, N̄m,n(x) > 0) ≤ (n−m− d)P(Λ ⊆ Ŝm)

we then deduce that∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗

∑
j∈S\Λ

P(Ŝm = S, j ∈ Λ̂2,n) ≤ 8(`∗ − |Λ|)|A|

×
⌈

log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α(n−m− d).
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Following the steps of the proof of Item 2 of of Theorem 1, we can also show that∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗

∑
j∈Λ

P(Ŝm = S, j /∈ Λ̂2,n, δj ≥ γSm,n,j) ≤ 8|Λ||A|

×
⌈

log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α

∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗

P(Ŝm = S)

≤ 8|Λ||A|
⌈

log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α,

where γSm,n,j is defined as in (14) with tm,n,j = maxb,c∈A:b 6=c min(xS ,yS)∈Cj(b,c) tm,n(xS , yS) in
the place of tn,j .

Hence, it remains to estimate∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗

∑
j∈Λ

P(Ŝm = S, j /∈ Λ̂2,n, δj < γSm,n,j).

By proceeding similarly to the proof of Item 3 of Theorem 1, one can show that for each
S ⊆ J−d,−1K such that |S| ≤ `∗,

P
(
γSm,n,j > δj

)
≤ 6|A|(|A| − 1) exp

{
−(∆pmin)2(n−m− d)2

2(n−m)|A|2(`∗−1)(`∗ + 1)2

(
1− nmin

n−m− d

)2
}
,

for all j ∈ Λ as long as n satisfies n > m + d + nmin. By using this upper bound and by
recalling that

∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗ ≤

∑`∗
k=0

(
d
k

)
≤ (`∗ + 1)

(
d
`∗

)
(since 2`∗ ≤ d), we deduce

that ∑
S⊆J−d,−1K:Λ⊆S,|S|≤`∗

∑
j∈Λ

P(Ŝm = S, j /∈ Λ̂2,n, δj < γSm,n,j) ≤

6|A|(|A| − 1)(`∗ + 1)

(
d

`∗

)
exp

{
−(∆pmin)2(n−m− d)2

2(n−m)|A|2(`∗−1)(`∗ + 1)2

(
1− nmin

n−m− d

)2
}
,

for all j ∈ Λ whenever n > m+ d+ nmin, implying the result.

A.2.4 Proof of Corollary 12

Proof [Proof of Corollary 12] Assumptions 1 and 2 are satisfied for all values of n, since
p?n ≥ p?min and ∆?

n ≥ ∆?
min for positive constants p?min and ∆?

min for all n. Since the se-
quence of MTD models also satisfy Assumption 3, the result follows from Theorem 10 and
Remark 11-Item (b).

A.3 Proofs of Section 3.3

A.3.1 Proof of Theorem 14

Proof [Proof of Theorem 14]
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Notice that we can write for each j ∈ J−d,−1K,

mj(Xj) = (pj(1|1)− pj(1|0)X−j + pj(1|0),

so that equality (50) can be rewritten for any j ∈ J−d,−1K satisfying (pj(1|1)−pj(1|0)) 6= 0,
S ⊆ J−d,−1K \ {j} and xS ∈ {0, 1}S , as

CovxS (X0, Xj) =
∑
`∈Λ\S

∆`CovxS (X`, Xj),

where ∆` = λ`(p`(1|1) − p`(1|0)) for ` ∈ Λ. Recalling that ν̄j,S = 2E (|CovXS (X0, Xj)|) in
the binary case, we can deduce that for any S ⊆ J−d,−1K, xS ∈ {0, 1}S and j ∈ J−d,−1K\S,

ν̄j,S = 2E

∣∣∣∣∣∣
∑
`∈Λ\S

∆`CovXS (X`, Xj)

∣∣∣∣∣∣
 .

As a consequence, it follows that for S ⊂ Λ and j ∈ Λ \ S,

ν̄j,S ≥ 2E

VarXS (Xj)|∆j | −
∑

`∈Λ\S:` 6=j

|∆`||CovXS (X`, Xj)|


= 2E (|∆j |VarXS (Xj)×1−

∑
`∈Λ\S: 6̀=j

|∆`|
|∆j |
|PxS (X` = 1|Xj = 1)− PxS (X` = 1|Xj = 0)|

 ,

where in the second inequality we have used that

|CovxS (X`, Xj)| = VarxS (Xj)|PxS (X` = 1|Xj = 1)− PxS (X` = 1|Xj = 0)|.

By Assumption 4, we then deduce that

ν̄j,S ≥ 2Γ1|∆j |E(VarXS (Xj)). (75)

Now, take S ⊂ Λ and let jS ∈ arg min`∈Λ\S |∆j |E(VarXS (X`)). For any j ∈ (Λ)c, use
the triangle inequality, equality (75) and Assumption 5 to deduce that

ν̄j,S ≤ 2E

 ∑
`∈Λ\S

|∆`||CovXS (X`, Xj)|


≤ 2|∆jS |E (VarXS (XjS )) Γ2 (76)

Using that δj = |∆j | and combing inequalities (75) and (76), it follows then that

max
j∈Λ\S

ν̄j,S − max
j∈(Λ)c

ν̄j,S ≥ 2(Γ1 − Γ2)|∆jS |E (VarXS (XjS )) , (77)
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where we have used also that maxj∈Λ\S ν̄j,S ≥ ν̄jS ,S . Using that E (VarXS (XjS )) ≥ (p?)2

and |∆jS | ≥ minj∈Λ |∆j | we obtain that

min
S⊂Λ

(
max
j∈Λ\S

ν̄j,S − max
j∈(Λ)c

ν̄j,S

)
≥ 2(Γ1 − Γ2)p2

min min
j∈Λ
|∆j |.

concluding the first half of the proof.

To show the second assertion of the theorem, take S ⊂ Λ, let j∗S ∈ arg maxj∈Λ\S ν̄j,S
and note that on Gn(`, ξ),

max
j∈Λ\S

ν̂n,j,S ≥ ν̂n,j∗S ,S ≥ ν̄j∗S ,S − ξ = max
j∈Λ\S

ν̄j,S − ξ.

Similarly, one can show that on Gn(`, ξ),

max
j∈(Λ)c

ν̂n,j,S ≤ max
j∈(Λ)c

ν̄j,S + ξ.

As a consequence, it follows that

max
j∈Λ\S

ν̂n,j,S − max
j∈(Λ)c

ν̂n,j,S ≥
(

max
j∈Λ\S

ν̄j,S − max
j∈(Λ)c

ν̄j,S

)
− 2ξ,

whenever Gn(`, ξ). By taking ξ as in (37), we have that

max
j∈Λ\S

ν̂n,j,S − max
j∈(Λ)c

ν̂n,j,S > 0,

implying that arg maxj∈Sc ν̂n,j,S ∈ Λ for all S ⊂ Λ, and the result follows.

A.3.2 Proof of Corollary 16

Proof [Proof of Corollary 16] By Theorem 14, we have that

P(Λ̂2,n 6= Λ) ≤ P(Gcm(ξ, L)) + P(Λ ⊆ Ŝm, Λ̂2,n 6= Λ),

for any ξ < (Γ1 − Γ2)p?min minj∈Λ δj .

By Proposition 25, we have that

P(Gcm(ξ, L)) ≤ 2d(L+ 1)

(
d

L

)
|A|L+2 exp

{
− ξ2(m− d)2∆2

18|A|2(L+2)m(L+ 2)2

}
.

By taking ξ = (Γ1 − Γ2)p?min minj∈Λ δj , one can check that if

min
j∈Λ

δj ≥ C1
log(n)

n
,

for some constant C1 = C1(β, L,∆∗min, p
∗
min,Γ1,Γ2), then P(Gcm(ξ, L))→ 0 as n→∞.
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By proceeding exactly as in the proof of Theorem 10 and using 11-item (b), we can show
that

P(Λ ⊆ Ŝm, Λ̂2,n 6= Λ) ≤

6|A|(L+ 1)

(
d

L

)[
d|A|L+1(|A| − 1)|Λ| exp

{
− (∆pmin)2(n− d)2

8n(L+ 1)2|A|2(L−1)

}]
+ 8|A| ((L− |Λ|)(n−m− d) + |Λ|)

⌈
log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−α,

as long as

n ≥ d+
C|A|Lα
pminδ2

min

,

where C = C(µ, ε).

Therefore, using that ∆ ≥ ∆?
min, pmin ≥ p?min, d = nβ, α = (1 + η) log(n), we also see

that if δ2
min ≥ C2

log(n)
n for some C2 = C2(µ, ε, η,∆?

min, p
?
min, β, L) then P(Λ ⊆ Ŝm, Λ̂2,n 6=

Λ)→ 0 as n→∞.

By taking C = C1 ∨ C2, we deduce that P(Λ̂2,n 6= Λ) → 0 as n → ∞ as long as

δ2
min ≥ C

log(n)
n , and the result follows.

A.4 Proofs of Section 3.4

Proof [Proof of Theorem 17]

By the union bound, we have that

P

⋃
a∈A

⋃
x−d:−1∈AJ−d,−1K

|p̂n(a|xΛ̂2,n
)− p(a|xΛ)| ≥

√√√√2α(1 + ε)V̂n(a, xΛ̂2,n
)

N̄n(xΛ̂2,n
)

+
α

3N̄n(xΛ̂2,n
)

})
≤ P(Λ 6= Λ̂2,n)

+
∑
a∈A

∑
xΛ∈AΛ

P

|p̂n(a|xΛ)− p(a|xΛ)| ≥

√
2α(1 + ε)V̂n(a, xΛ)

N̄n(xΛ)
+

α

3N̄n(xΛ)

 .

Now, Proposition 34 implies that for any a ∈ A and xΛ ∈ AΛ,

P

|p̂n(a|xΛ)− p(a|xΛ)| ≥

√
2α(1 + ε)V̂n(a, xΛ)

N̄n(xΛ)
+

α

3N̄n(xΛ)


≤ 4

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−αP

(
N̄n(xΛ) > 0

)
,
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so that

∑
a∈A

∑
xΛ∈AΛ

P

|p̂n(a|xΛ)− p(a|xΛ)| ≥

√
2α(1 + ε)V̂n(a, xΛ)

N̄n(xΛ)
+

α

3N̄n(xΛ)


≤ 4|A|

⌈
log(µ(n− d)/α+ 2)

log(1 + ε)

⌉
e−α ×

∑
xΛ∈AΛ

E
[
1{N̄n(xΛ) > 0}

]
.

Since ∑
xΛ∈AΛ

E[1{N̄n(xΛ) > 0}] ≤ (n− d),

the result follows.

A.5 Proof of Section 3.5

A.5.1 Proof of Proposition 18

Proof [Proof of Proposition 18]
First observe that since all MTDs are stationary Markov chains of order at most d, we

can use the Markov property to show that

KL(P (j)
n ||P (k)

n ) = KL(P
(j)
d ||P

(k)
d ) + (n− d)E(j)(KL(p(j)(·|X−d:−1)||p(k)(·|X−d:−1))).

where KL(p(j)(·|x−d:−1)||p(k)(·|x−d:−1)) denotes the Kullback-Leibler divergence between
p(j)(·|x−d:−1) and p(k)(·|x−d:−1).

Now note that for each fixed x−:d1 ∈ AJ−d,−1K, we can use the definition of the transition
probabilities p(j)(·|·) together with Lemma 6 of Csizar and Talata (2005) to deduce that

KL(p(j)(·|x−d:−1)||p(k)(·|x−d:−1)) ≤ λ2|p(1|1)− p(1|0)|2(pmin)−11{xj 6=xk}.

Since pmin ≥ (1− λ)/2 and δ = λ|p(1|1)− p(1|0)|, it follows from the above inequality that

E(j)(KL(p(j)(·|X−d:−1)||p(k)(·|X−d:−1))) ≤ 2δ2

1− λ
.

By using similar arguments, one can also show that

KL(P
(j)
d ||P

(k)
d ) ≤ 1

pmin

(
max

x−d:−1,y−d:−1

|p(j)(1|x−d:−1)− p(k)(1|y−d:−1)|2

+
d−1∑
i=1

max
x−d:−1,y−d:−1:x−i:−1=y−i:−1

|p(j)(1|x−d:−1)− p(k)(1|y−d:−1)|2
)
≤ 2dδ2

1− λ
.

Therefore, it follows that

KL(P (j)
n ||P (k)

n ) ≤ 2dδ2

1− λ
+ (n− d)

2δ2

1− λ
=

2nδ2

1− λ
,

and the result follows.
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A.6 Computation of PCP and FSC estimators

We will first show that one can compute the PCP estimator with at most O(|A|2|S|(n−d))
computations, as claimed in item (c) of Remark 2.

Proof of item (c) of Remark 2. One way to compute the PCP estimator is the
following. First, we compute Nn(xS , a) simultaneously for all pasts xS and symbols a ∈ A,
and build the set ES = {xS : N̄n(xS) > 0}. This can be done with O(n− d) computations.
Indeed, we set initially Nn(xS , a) = 0 for all past xS and symbol a ∈ A. Then at each time
d+ 1 ≤ t ≤ n, we increment by 1 the count of Nn(xS , a) for which Xt+S = xS and Xt = a,
leaving all the other counts unchanged. Moreover, at the first time that Nn(xS , a) > 0, we
include xS in the set E. Note that the cardinality of the set ES is at most (n − d). Next,
we need to compute sn(xS) and p̂n(·|xS) for each xS ∈ E, which can be done with at most
O(|A|) additional computations. Once all these quantities are determined, we then need to
test whether a given lag j ∈ S has to be removed or not, by evaluating inequality (13) for
all pairs of (S \ {j})-compatible pasts in ES . This can be done with at most O(|A|2(n− d))
more computations because 1) the number of different pasts in ES is at most (n − d); 2)
there are at most |A| pasts in E which are compatible with a fixed past xS in ES ; and
3) one can evaluate whether inequality (13) holds or not to a given pair of compatible
past with O(|A|) additional computations. Finally, since the number of lags to be tested
is |S|, it follows that we can implement the PCP estimator with at most O(|A|2|S|(n− d))
computations, concluding the proof.

We now show that we can compute the FSC estimator by using at most O(|A|3`(m −
d)(d− (`− 1)/2) + |A|2(n−m− d)`) computations, as stated in item (c) of Remark 8.

Proof of item (c) of Remark 8.

By the item (c) of Remark 2, the CUT step can be computed with at most O(`|A|2(n−
m−d)) computations since the FS step outputs a subset of size ` and the size of the second
half of the sample is n−m. Hence, the proof will be concluded if we show that the FS step
can be computed with at most O(|A|3(m− d)(`d− (`− 1)`/2) computations. To see that,
let us fix S ⊆ J−d,−1K and j /∈ S. Proceeding as in the proof item (c) of Remark 2, one
can check that we compute Nm(xbaS∪{0,j}) simultaneously for all configurations xbaS∪{j,0}
and build the set ES = {xS : Nm(xS) > 0} with O(m − d) computations. Notice that
the size of the set ES is most (m − d). Since for each xS ∈ ES , we need to perform
at most O(|A|3) additional operations to compute P̂m(xS) and ν̂j,m(xS), it follows that
with at most O(|A|3(m − d)) computations we can determine ν̂m,j,S . Therefore, the step
3 of the FS step (where we need to compute ν̂m,j,S for j ∈ Sc) can be implemented with
O(|A|3(m − d)(d − |S|)) calculations. Since we need to repeat step 3 of the FS step for `
different sets, we conclude that with at most

O(|A|3(m− d)

`−1∑
|S|=0

(d− |S|)) = O(|A|3(m− d)(`d− (`− 1)`/2)

computations, we can implement the FS step. This concludes the proof.
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Appendix B. Martingale concentration inequalities

In the sequel, N denotes the set of non-negative integers {0, 1, . . .} Let (Ω,F ,P) be a prob-
ability space. We assume that this probability space is rich enough so that the following
stochastic processes may be defined on it. In what follows, let (Xt)t∈Z be a Markov chain
of order d ∈ Z+, taking values on a finite alphabet A, with family of transition probabilities
{p(·|x−d:−1) : x−d:−1 ∈ supp(P)}. Denote Ft = σ(X−d:t) for t ∈ N. For each a ∈ A, consider
the stochastic process Ma = ((Ma

t ))t∈N defined as,

Ma
t = 1{Xt = a} − p(a|X(t−d):(t−1)), t ∈ N.

Let H = (Ht)t∈N be a stochastic process taking values on a finite alphabet B ⊂ R,
satisfying H0 = 0 and Ht ∈ Ft−1 for all t ∈ Z+, and consider H •Ma = (H •Ma

t )t∈N defined
as,

H •Ma
t =

t∑
s=0

HsM
a
s , t ∈ N. (78)

Notice that H •Ma is adapted to the fitration F := (Ft)t∈N, that is H •Ma
t ∈ Ft for all

t ∈ N. Also H •Ma
0 = 0. Recall the notation ‖B‖∞ = maxb∈B |b|.

Lemma 27 Let H •Ma = (H •Ma
t )t∈N be the stochastic process defined in (78). Then

H •Ma is a square integrable Martingale w.r.t. F starting from H •Ma
0 = 0. Moreover, the

predictable quadratic variation of H •Ma, denoted by 〈H •Ma〉 = (〈H •Ma〉t)t∈N, is given
by

〈H •Ma〉t =

t∑
s=0

H2
s p
(
a|X(s−d):(s−1)

) (
1− p

(
a|X(s−d):(s−1)

))
, t ∈ N. (79)

Furthermore, for any λ > 0 and b > 0 such that ‖B‖∞ ≤ b, the stochastic process

exp

(
λH •Ma − eλb − λb− 1

b2
〈H •Ma〉

)
=

(
exp

(
λH •Ma

t −
eλb − λb− 1

b2
〈H •Ma〉t

))
t∈N

is a supermartingale w.r.t. F starting from 1.

Proof For each t ∈ Z+, we have that Ht ∈ Ft−1 and also that E [1{Xt = a}|Ft−1] =
p(a|X(t−d):(t−1)). These two facts imply that for any t ∈ Z+,

E [HtM
a
t |Ft−1] = HtE [Ma

t |Ft−1] = 0,

which, in turn, implies that E[H •Ma
t |Ft−1] = H •Ma

t−1. Hence, H •Ma is a martingale
w.r.t. to F. Since |H •Ma

t | ≤ ‖B‖∞t for t ≥ 1, it follows that H •Ma is also square
integrable.

The predictable quadratic variation of H •Ma is defined as

〈H •Ma〉t =

t∑
s=1

E
(

(Ms −Ms−1)2 |Fs−1

)
,

for t ∈ Z+ with 〈H •Ma〉0 = 0. For any t ∈ Z+, one can check that(
H •Ma

t −H •Ma
t−1

)2
= H2

t (1{Xt = a}−2p(a|X(t−d):(t−1))1{Xt = a}−p2(a|X(t−d):(t−1))).
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Using again that Ht ∈ Ft−1 and also that E [1{Xt = a}|Ft−1] = p(a|X(t−d):(t−1)), one then
deduces that for any t ∈ Z+,

E
((
H •Ma

t −H •Ma
t−1

)2 |Ft−1

)
= H2

t p(a|X(t−d):(t−1))(1− p(a|X(t−d):(t−1))),

which establishes (79). The proof that exp
(
λH •Ma − eλb−λb−1

b2
〈H •Ma〉

)
is a super-

martingale w.r.t F can be found in (Raginsky and Sason, 2014).

We will use Lemma 27 to prove the following concentration inequality.

Proposition 28 Let H • Ma = (H • Ma
t )t∈N be the stochastic process defined in (78).

Suppose that ‖B‖∞ ≤ b for some b > 0. For any fixed α > 0 and v > 0, we have for t ∈ N,

P
(
H •Ma

t ≥
√

2vα+
αb

3
, 〈H •Ma〉t ≤ v

)
≤ exp (−α)P(〈H •Ma〉t > 0).

Remark 29 This is basically Lemma 5 of (Oliveira, 2015) (see the Economical Freedman’s
inequality provided in Inequality (41)) applied to the square integrable martingale H •Ma.
The only difference is the factor 2 in front of the linear term αb

3 which is not present here.
Notice that for t ∈ Z+, the concentration inequality above can be rewritten in the following
form:

P
(
H •Ma

t ≥
√

2vα+
αb

3
, 〈H •Ma〉t ≤ v|〈H •Ma〉t > 0

)
≤ exp (−α) .

The conditioning on event {〈H •Ma〉t > 0} reflects the fact that if 〈H •Ma〉t = 0 almost
surely, then H •Ma

t = H •Ma
0 = 0 almost surely as well.

Proof For t = 0 the result holds trivially. Now, suppose t ∈ Z+. By considering the
set B/b = {c/b : c ∈ B} instead of B, it suffices to prove the case b = 1. To shorten the
notation, we denote Mt = H •Ma

t in the sequel. By the Markov property, we have that for
any λ > 0,

P(λMt − ψ(λ)〈M〉t ≥ α) ≤ exp(−α)E [exp (λMt − ψ(λ)〈M〉t) 1{〈M〉t > 0}] ,

where ψ(λ) = eλ−λ−1 and we have used that if 〈M〉t = 0 almost surely, then Mt = M0 = 0
almost surely. By using the fact that (exp (λMt − ψ(λ)〈M〉t))t∈N is a supermartingale
(Lemma 27 with b = 1) together with the decomposition

{〈M〉t > 0} =

t⋃
k=1

{〈M〉k > 0 and 〈M〉j = 0 for all j < k},

as in (Oliveira, 2015), we can deduce that

E [exp (λMt − ψ(λ)〈M〉t) 1{〈M〉t > 0}] ≤ P(〈M〉t > 0),
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which implies not only that for any λ > 0,

P
(
Mt ≥

ψ(λ)

λ
〈M〉t +

α

λ

)
≤ exp(−α)P(〈M〉t > 0), (80)

but also that

P
(
Mt ≥

ψ(λ)

λ
v +

α

λ
, 〈M〉t ≤ v

)
≤ exp(−α)P(〈M〉t > 0).

Now, we use that for λ ∈ (0, 3) it holds that ψ(λ) ≤ λ2(1− λ/3)−1/2. Hence, from the
above inequalities we deduce that for any λ ∈ (0, 3),

P
(
Mt ≥

λ

2(1− λ/3)
〈M〉t +

α

λ

)
≤ exp(−α)P(〈M〉t > 0), (81)

and also that

P
(
Mt ≥

λ

2(1− λ/3)
v +

α

λ
, 〈M〉t ≤ v

)
≤ exp(−α)P(〈M〉t > 0).

Minimizing λ ∈ (0, 3) 7→ λ
(1−λ/3)v + α

λ , the result follows.

By using a peeling argument as in (Hansen et al., 2015), we deduce from the above result
the following.

Proposition 30 Let H • Ma = (H • Ma
t )t∈N be the stochastic process defined in (78).

Suppose that ‖B‖∞ ≤ b for some b > 0. For ε > 0, v > w > 0 and α > 0, we have for
t ∈ N,

P
(
H •Ma

t ≥
√

2α(1 + ε)〈H •Ma〉t +
αb

3
, w ≤ 〈H •Ma〉t ≤ v

)
≤⌈

log(v/w + 1)

log(1 + ε)

⌉
exp (−α)P(〈H •Ma〉t > 0).

Proof It suffices to prove the case b = 1. The general case follows from this one by first
replacing B by B/b = {c/b : c ∈ B} and then rearranging the terms properly. Let us denote

v0 = w and vk = (1 + ε)vk−1 for 1 ≤ k ≤ K :=
⌈

log(v/w+1)
log(1+ε)

⌉
. Notice that vK ≥ v, by the

definition of K. To shorten the notation, we denote H •Ma
t = Mt in what follows.

Starting from (81), one can deduce that for any 0 ≤ k < K and λ ∈ (0, 3), we have

P
(
Mt ≥

λ

2(1− λ/3)
〈M〉t +

α

λ
, vk ≤ 〈M〉t ≤ vk+1

)
≤ exp(−α)P(〈M〉t > 0),

which, in turn, implies that

P
(
Mt ≥

λ

2(1− λ/3)
vk+1 +

α

λ
, vk ≤ 〈M〉t ≤ vk+1

)
≤ exp(−α)P(〈M〉t > 0).
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Minimizing w.r.t. to λ ∈ (0, 3) as in Proposition 28, it then follows that

P
(
Mt ≥

√
2vk+1α+

α

3
, vk ≤ 〈M〉t ≤ vk+1

)
≤ exp (−α)P(〈M〉t > 0).

Now, on the event {vk ≤ 〈M〉t}, we have that 〈M〉t(1 + ε) ≥ (1 + ε)vk = vk+1, so that the
inequality above implies

P
(
Mt ≥

√
2(1 + ε)〈M〉tα+

α

3
, vk ≤ 〈M〉t ≤ vk+1

)
≤ exp (−α)P(〈M〉t > 0).

Summing over k the result follows (recall that v ≤ vK by the choice of K).

Hereafter, let m ∈ N and consider a function ϕ : AJ1,mK × AJ−d,−1K such that its supre-
mum norm ‖ϕ‖∞ = max(x1:m,x−d:−1)∈AJ1,mK×AJ−d,−1K |ϕ(x1:m, x−d:−1)| ≤ b. Here we use the

convention that ϕ is a function defined only on AJ−d,−1K when m = 0. Given such a function
ϕ, let us denote Hϕ = (Hϕ

t )t≥0 the stochastic process defined as Hϕ
0 = . . . = Hϕ

m+d = 0 and
Hϕ
t = ϕ(X1:m, X(t−d):(t−1)) for t ≥ d+m+ 1.

Clearly, Hϕ
t ∈ Ft−1 for all t ∈ Z+. From (79), one can check that the predictable

quadratic variation 〈Hϕ •Ma〉 of the martingale Hϕ •Ma is given by 〈Hϕ •Ma〉0 = . . . =
〈Hϕ •Ma〉m+d = 0 and for t ≥ m+ d+ 1,

〈Hϕ •Ma〉t =

t∑
s=m+d+1

ϕ2(X1:m, X(s−d):(s−1))p
(
a|X(s−d):(s−1)

) (
1− p

(
a|X(s−d):(s−1)

))
.

(82)

As a direct consequence of Proposition 30, we derive the following result.

Corollary 31 Let X1:n be a sample from a MTD model of order d with set of relevant lags
Λ. Let Λ̂m be an estimator of Λ computed from X1:m, where n > m. For each x ∈ AJ−d,−1K,
a ∈ A and S ⊆ J−d,−1K, let p̂m,n(a|xS) be the empirical transition probability defined in
(7) computed from Xm+1:n. Then for any S ⊆ J−d,−1K such that Λ ⊆ S, ε > 0, α > 0 and
n ≥ m+ d+ 1, we have

P

(
Λ̂m = S, |p̂m,n(a|xS)− p(a|xΛ)| ≥

√
2α(1 + ε)p(a|xΛ)(1− p(a|xΛ))

N̄m,n(xS)

+
α

3N̄m,n(xS)

)
≤ 2

⌈
log(n−m− d+ 1)

log(1 + ε)

⌉
e−αP

(
N̄m,n(xS) > 0, Λ̂m = S

)
. (83)

In particular,

P

(
Λ ⊆ Λ̂m, |p̂m,n(a|xΛ̂m

)− p(a|xΛ)| ≥
√

2α(1 + ε)p(a|xΛ)(1− p(a|xΛ))

N̄m,n(xΛ̂m
)

+
α

3N̄m,n(xΛ̂m
)

)
≤ 2

⌈
log(n−m− d+ 1)

log(1 + ε)

⌉
e−αP

(
N̄m,n(xΛ̂m

) > 0,Λ ⊆ Λ̂m

)
. (84)
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Proof Summing in both sides of (83) over S ⊆ J−d,−1K such that Λ ⊆ S, we obtain
inequality (84). Thus, it remains to prove (83). To that end, take ϕ(X1:m, X(t−d):(t−1)) =

1{Λ̂m = S}1{Xt+j = xj , j ∈ S} and notice that in this case

〈Hϕ •Ma〉n = 1{Λ̂m = S}N̄m,n(xS)p(a|xΛ)(1− p(a|xΛ)).

So, if either p(a|xΛ) = 0 or p(a|xΛ) = 1, then we have necessarily 〈Hϕ •Ma〉n = 0 for all
n ≥ m+ d+ 1, which implies that almost surely for all n ≥ m+ d+ 1,

Hϕ •Ma
n = 1{Λ̂m = S}(N̄m,n(xS , a)− N̄m,n(xS)p(a|xΛ)) = 0.

By noticing that Hϕ •Ma
n = 1{Λ̂m = S}N̄m,n(xS)(p̂m,n(a|xS) − p(a|xΛ)), it follows that,

on the event {Λ̂m = S, N̄m,n(xS) > 0}, we must have p̂m,n(a|xS) = p(a|xΛ) almost surely
and so the left-hand side of (83) is 0 and the result holds trivially.

Let us now suppose 0 < p(a|xΛ) < 1. In this case, we apply Proposition 30 with
w = p(a|xΛ)(1− p(a|xΛ)), v = (n−m− d)w and b = 1 to deduce that,

P
(

Λ̂m = S,N∗n,m(xS)(p̂m,n(a|xS)− p(a|xΛ)) ≥√
2α(1 + ε)p(a|xΛ)(1− p(a|xΛ))N̄m,n(xS) +

α

3
, N̄m,n(xS) > 0

)
≤
⌈

log(n−m− d+ 1)

log(1 + ε)

⌉
e−αP(1{Λ̂m = S}N̄m,n(xS)p(a|xΛ)(1− p(a|xΛ)) > 0). (85)

To conclude the proof, observe that in this case

{1{Λ̂m = S}N̄m,n(xS)p(a|xΛ)(1− p(a|xΛ)) > 0} = {Λ̂m = S, N̄m,n(xS) > 0},

and use again Proposition 30 with H−ϕ •Ma in the place of Hϕ •Ma (by noting also that
〈Hϕ •Ma〉 = 〈H−ϕ •Ma〉).

Remark 32 Let us briefly comment on the results of Corollary 31. Suppose x ∈ AJ−d,−1K

and a ∈ A are such that 0 < p(a|xΛ) < 1 and also that Λ̂m is a consistent estimator of Λ. By

the CLT for aperiodic and irreducible Markov Chains it follows that
√
N̄m,n(xΛ)(p̂m,n(a|xΛ)−

p(a|xΛ))1{Λ̂m = Λ, N̄m,n(xΛ) > 0} converges in distribution (as min{m,n} → ∞) to a cen-
tered Gaussian random variable with variance p(a|xΛ)(1 − p(a|xΛ)). This implies that for
sufficiently large n,

P (p̂m,n(a|xΛ)− p(a|xΛ)

≥

√
2αp(a|xΛ)(1− p(a|xΛ))

N̄m,n(xΛ)
|Λ̂m = Λ, N̄m,n(xΛ) > 0

)
≤ e−α.

Let us compare this heuristic argument with Corollary 31 applied to S = Λ. In this case, in

Inequality (83), the variance term
√

2α(1+ε)p(a|xΛ)(1−p(a|xΛ))
N̄m,n(xΛ)

can be made arbitrarily close to
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optimal value
√

2αp(a|xΛ)(1−p(a|xΛ))
N̄m,n(xΛ)

, at the cost 1
log(1+ε) . Both the linear term α

N̄m,n(xΛ)
and

the log(n −m − d + 1) factor are the price to pay to achieve the result which holds every
n ≥ m+d+1 and reflect the fact that p̂m,n(a|xΛ)−p(a|xΛ) is Gaussian only asymptotically.

In particular, Corollary 31 improves the Economical Freedman’s Inequality (as stated in
(Oliveira, 2015) - Lemma 5, Inequality (42)) when restricted to the martingale Hϕ •Ma.

In the sequel, let us denote P a = (P at )t∈N, for each a ∈ A, the stochastic process defined
as P at = p(a|X(t−d:t−1)) for each t ∈ N. With this notation, notice that

H2 • P at =

t∑
s=0

H2
s p(a|X(s−1):(s−d)), t ∈ N, (86)

is such that 〈H •Ma〉t ≤ H2 • P at for all t ∈ N. In particular, Proposition 28 holds if we
replace 〈H •Ma〉t by H2 •P at . A closer inspection of the proof of Proposition 30 reveals that
this proposition also holds with H2 •P at in the place of 〈H •Ma〉t. In the next theorem, we
show that we can replace H2 • P at by a linear transformation of its empirical version which
is crucial for our analysis.

Theorem 33 Let H •Ma = (H •Ma
t )t∈N be the stochastic process defined in (78). Suppose

that ‖B‖∞ ≤ b for some b > 0. For any fixed µ ∈ (0, 3) satisfying µ > ψ(µ) = exp(µ)−µ−1
and α > 0, define for t ∈ N,

H2 • P̂ at =
µ

µ− ψ(µ)

t∑
s=0

H2
s P̂

a
s +

b2α

µ− ψ(µ)
,

where P̂ as = 1{Xs = a} for all s ∈ N. Then, for any fixed ε > 0 and v > w > 0, we have for
any t ∈ N,

P
(
H •Ma

t ≥
√

2(1 + ε)αH2 • P̂ at +
αb

3
, w ≤ H2 • P̂ at ≤ v

)
≤ 2

⌈
log(v/w + 1)

log(1 + ε)

⌉
exp (−α)P(〈H •Ma〉t > 0).

Proof We prove only the case b = 1. Note that −H2 •Ma
t = H2 • P at − H2 • P̂ at . Also

recall that 〈H •Ma〉t ≤ H2 • P at .
We now proceed to the proof. We first use Inequality (80) for the martingale −H2 •Ma

together with that fact that 〈−H2 •Ma〉t ≤ H4 • P at ≤ H2 • P at (the last inequality holds
because b = 1) to deduce that for any µ > 0,

P
(
H2 • P at ≥ H2 • P̂ at +

ψ(µ)

µ
H2 • P at +

α

µ

)
≤ exp(−α)P(〈H •Ma〉t > 0),

which implies that for any µ ∈ (0, 3) satisfying µ > ψ(µ), it holds

P
(
H2 • P at ≥ H2 • P̂ at

)
≤ exp(−α)P(〈H •Ma〉t > 0).
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Hence, combining this inequality with (81), we conclude that for any λ ∈ (0, 3) and any
µ ∈ (0, 3) satisfying µ > ψ(µ),

P
(
H •Ma

t ≥
λ

2(1− λ/3)
H2 • P̂ at +

α

λ

)
≤

P
(
H •Ma

t ≥
λ

2(1− λ/3)
H2 • P̂ at +

α

µ
,H2 • P at ≤ H2 • P̂ at

)
+ P

(
H2 • P at ≥ H2 • P̂ at

)
≤ 2 exp(−α)P(〈H •Ma〉t > 0),

where we also used in the last inequality the fact that 〈H •Ma〉t ≤ H2 • P at .

To conclude the proof, we need to follow the same steps as Proposition 28 and then
use the peeling argument as in the proof of Proposition 30 with H2 • P̂ at in the place of
〈H •Ma〉t.

As consequence of Theorem 33, we obtain the following result.

Proposition 34 Let X1:n be a sample from a MTD model of order d with set of relevant
lags Λ. Let Λ̂m be an estimator of Λ computed from X1:m where n > m. For any x ∈
AJ−d,−1K, a ∈ A and S ⊆ J−d,−1K, let p̂m,n(a|xS) be the empirical transition probability
defined in (7) computed from Xm+1:n, and consider for α > 0 and µ ∈ (0, 3) satisfying
µ > ψ(µ) = exp(µ)− µ− 1,

V̂m,n(a, x, S) =
µ

µ− ψ(µ)
p̂m,n(a|xS) +

α

µ− ψ(µ)

1

N̄m,n(xS)
.

Then for any S ⊆ J−d,−1K such that Λ ⊆ S and n ≥ m+ d+ 1, we have

P

Λ̂m = S, |p̂m,n(a|xS)− p(a|xΛ)| ≥

√
2α(1 + ε)V̂m,n(a, x, S)

N̄m,n(xS)
+

α

3N̄m,n(xS)


≤ 4

⌈
log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−αP

(
Λ̂m = S, N̄m,n(xS) > 0

)
. (87)

In particular,

P

(
Λ ⊆ Λ̂m, |p̂m,n(a|xΛ̂m

)− p(a|xΛ)| ≥

√
2α(1 + ε)V̂m,n(a, x, Λ̂m)

N̄m,n(xΛ̂m
)

+
α

3N̄m,n(xΛ̂m
)

)

≤ 4

⌈
log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−αP

(
Λ ⊆ Λ̂n, N̄m,n(xΛ̂m

) > 0
)
. (88)

Proof Summing in both sides of (87) over S ⊆ J−d,−1K such that Λ ⊆ S, we obtain
inequality (88). Hence, it remains to show (87). Arguing as in Corollary 31 we need to
consider only the case 0 < p(a|x) < 1.
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By applying Theorem 33 with H = H±ϕ where ϕ is as in the proof of Corollary 31,
v = µ

µ−ψ(µ)(n−m− d) + α
µ−ψ(µ) and w = α

µ−ψ(µ) , we obtain that

P
(

Λ̂m = S, N̄m,n(xS)|p̂m,n(a|xS)− p(a|xΛ)| ≥
√

2(1 + ε)αṼm,n(a, x, S) +
α

3

)
≤ 4

⌈
log(µ(n−m− d)/α+ 2)

log(1 + ε)

⌉
e−αP(1{Λ̂m = S}N̄m,n(xS)p(a|xΛ)(1− p(a|xΛ)) > 0),

where Ṽm,n(a, x, S) = N̄m,n(xS)V̂m,n(a, x, S).
By using that when 0 < p(a|x) < 1,

{1{Λ̂m = S}N̄m,n(xS)p(a|xΛ)(1− p(a|xΛ)) > 0} = {Λ̂m = S, N̄m,n(xS) > 0},

and the fact that Ṽm,n(a, x, S) = N̄m,n(xS)V̂m,n(a, x, S), we deduce (87) from the above
inequality.
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Andrea Király, Imre Bartos, and Imre M Jánosi. Correlation properties of daily temperature
anomalies over land. Tellus A: Dynamic Meteorology and Oceanography, 58(5):593–600,
2006.

Ioannis Kontoyiannis, Lambros Mertzanis, Athina Panotopoulou, Ioannis Papageorgiou,
and Maria Skoularidou. Bayesian context trees: Modelling and exact inference for discrete
time series. arXiv preprint arXiv:2007.14900, 2020.

Roberto Imbuzeiro Oliveira. Stochastic processes with random contexts: A characterization
and adaptive estimators for the transition probabilities. IEEE Transactions on Informa-
tion Theory, 61(12):6910–6925, 2015.

Adrian E. Raftery. A model for high-order markov chains. Journal of the Royal Statistical
Society. Series B (Methodological), 47(3):528–539, 1985.

Maxim Raginsky and Igal Sason. Concentration of Measure Inequalities in Information
Theory, Communications, and Coding: Second Edition. 2014.

Jorma Rissanen. A universal data compression system. IEEE Transactions on information
theory, 29(5):656–664, 1983.

Abhra Sarkar and David B Dunson. Bayesian nonparametric modeling of higher order
markov chains. Journal of the American Statistical Association, 111(516):1791–1803,
2016.

M.J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

53



Ost and Takahashi

Matthew C Wheeler, Harry H Hendon, Sam Cleland, Holger Meinke, and Alexis Donald.
Impacts of the madden–julian oscillation on australian rainfall and circulation. Journal
of Climate, 22(6):1482–1498, 2009.

Naiming Yuan, Zuntao Fu, and Shida Liu. Long-term memory in climate variability: A
new look based on fractional integral techniques. Journal of Geophysical Research: At-
mospheres, 118(23):12–962, 2013.

54


	Introduction
	Notation, Model Definition and Preliminary Remarks
	General notation
	Markov models
	Mixture transition distribution (MTD) models
	Statistical lag selection
	Empirical transition probabilities
	Assumptions

	Statistical Lag Selection
	Estimator based on pairwise comparisons
	Forward Stepwise and Cut estimator
	Improving the efficiency for the binary case
	Post-selection transition probabilities estimation 
	A remark on the minimax rate for the lag selection

	Simulations
	Experiment 1
	Experiment 2
	Application

	Proofs of Section 3
	Proofs of Section 3.1
	Proof of Theorem 1
	Proof of Corollary 4

	Proofs of Section 3.2
	Proof of Proposition 6
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Corollary 12

	Proofs of Section 3.3
	Proof of Theorem 14
	Proof of Corollary 16

	Proofs of Section 3.4
	Proof of Section 3.5
	Proof of Proposition 18

	Computation of PCP and FSC estimators

	Martingale concentration inequalities

